sched/cgroup: Fix cgroup entity load tracking tear-down
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 inode_lock(inode);
226 i = sched_feat_set(cmp);
227 inode_unlock(inode);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return list_is_singular(&rt_se->run_list);
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (idle_policy(p->policy)) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(sched_prio_to_weight[prio]);
827 load->inv_weight = sched_prio_to_wmult[prio];
828 }
829
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
835 p->sched_class->enqueue_task(rq, p, flags);
836 }
837
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
843 p->sched_class->dequeue_task(rq, p, flags);
844 }
845
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
851 enqueue_task(rq, p, flags);
852 }
853
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
859 dequeue_task(rq, p, flags);
860 }
861
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 if (static_key_false((&paravirt_steal_rq_enabled))) {
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
903 rq->prev_steal_time_rq += steal;
904 delta -= steal;
905 }
906 #endif
907
908 rq->clock_task += delta;
909
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944 }
945
946 /*
947 * __normal_prio - return the priority that is based on the static prio
948 */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 return p->static_prio;
952 }
953
954 /*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 int prio;
964
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972 }
973
974 /*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
981 static int effective_prio(struct task_struct *p)
982 {
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992 }
993
994 /**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
999 */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 return cpu_curr(task_cpu(p)) == p;
1003 }
1004
1005 /*
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
1011 */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
1014 int oldprio)
1015 {
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
1018 prev_class->switched_from(rq, p);
1019
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 rq_clock_skip_update(rq, true);
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065 /*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 lockdep_assert_held(&rq->lock);
1073
1074 p->on_rq = TASK_ON_RQ_MIGRATING;
1075 dequeue_task(rq, p, 0);
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 enqueue_task(rq, p, 0);
1084 p->on_rq = TASK_ON_RQ_QUEUED;
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088 }
1089
1090 struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093 };
1094
1095 /*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
1103 */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 if (unlikely(!cpu_active(dest_cpu)))
1107 return rq;
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 return rq;
1112
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
1116 }
1117
1118 /*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 struct migration_arg *arg = data;
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
1153 local_irq_enable();
1154 return 0;
1155 }
1156
1157 /*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
1172 lockdep_assert_held(&p->pi_lock);
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1183 dequeue_task(rq, p, DEQUEUE_SAVE);
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
1188 p->sched_class->set_cpus_allowed(p, new_mask);
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195
1196 /*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
1207 {
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
1252 rq = move_queued_task(rq, p, dest_cpu);
1253 lockdep_pin_lock(&rq->lock);
1254 }
1255 out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259 }
1260
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 !p->on_rq);
1276
1277 /*
1278 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1279 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1280 * time relying on p->on_rq.
1281 */
1282 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1283 p->sched_class == &fair_sched_class &&
1284 (p->on_rq && !task_on_rq_migrating(p)));
1285
1286 #ifdef CONFIG_LOCKDEP
1287 /*
1288 * The caller should hold either p->pi_lock or rq->lock, when changing
1289 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1290 *
1291 * sched_move_task() holds both and thus holding either pins the cgroup,
1292 * see task_group().
1293 *
1294 * Furthermore, all task_rq users should acquire both locks, see
1295 * task_rq_lock().
1296 */
1297 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1298 lockdep_is_held(&task_rq(p)->lock)));
1299 #endif
1300 #endif
1301
1302 trace_sched_migrate_task(p, new_cpu);
1303
1304 if (task_cpu(p) != new_cpu) {
1305 if (p->sched_class->migrate_task_rq)
1306 p->sched_class->migrate_task_rq(p);
1307 p->se.nr_migrations++;
1308 perf_event_task_migrate(p);
1309 }
1310
1311 __set_task_cpu(p, new_cpu);
1312 }
1313
1314 static void __migrate_swap_task(struct task_struct *p, int cpu)
1315 {
1316 if (task_on_rq_queued(p)) {
1317 struct rq *src_rq, *dst_rq;
1318
1319 src_rq = task_rq(p);
1320 dst_rq = cpu_rq(cpu);
1321
1322 p->on_rq = TASK_ON_RQ_MIGRATING;
1323 deactivate_task(src_rq, p, 0);
1324 set_task_cpu(p, cpu);
1325 activate_task(dst_rq, p, 0);
1326 p->on_rq = TASK_ON_RQ_QUEUED;
1327 check_preempt_curr(dst_rq, p, 0);
1328 } else {
1329 /*
1330 * Task isn't running anymore; make it appear like we migrated
1331 * it before it went to sleep. This means on wakeup we make the
1332 * previous cpu our targer instead of where it really is.
1333 */
1334 p->wake_cpu = cpu;
1335 }
1336 }
1337
1338 struct migration_swap_arg {
1339 struct task_struct *src_task, *dst_task;
1340 int src_cpu, dst_cpu;
1341 };
1342
1343 static int migrate_swap_stop(void *data)
1344 {
1345 struct migration_swap_arg *arg = data;
1346 struct rq *src_rq, *dst_rq;
1347 int ret = -EAGAIN;
1348
1349 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1350 return -EAGAIN;
1351
1352 src_rq = cpu_rq(arg->src_cpu);
1353 dst_rq = cpu_rq(arg->dst_cpu);
1354
1355 double_raw_lock(&arg->src_task->pi_lock,
1356 &arg->dst_task->pi_lock);
1357 double_rq_lock(src_rq, dst_rq);
1358
1359 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1360 goto unlock;
1361
1362 if (task_cpu(arg->src_task) != arg->src_cpu)
1363 goto unlock;
1364
1365 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1366 goto unlock;
1367
1368 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1369 goto unlock;
1370
1371 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1372 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1373
1374 ret = 0;
1375
1376 unlock:
1377 double_rq_unlock(src_rq, dst_rq);
1378 raw_spin_unlock(&arg->dst_task->pi_lock);
1379 raw_spin_unlock(&arg->src_task->pi_lock);
1380
1381 return ret;
1382 }
1383
1384 /*
1385 * Cross migrate two tasks
1386 */
1387 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1388 {
1389 struct migration_swap_arg arg;
1390 int ret = -EINVAL;
1391
1392 arg = (struct migration_swap_arg){
1393 .src_task = cur,
1394 .src_cpu = task_cpu(cur),
1395 .dst_task = p,
1396 .dst_cpu = task_cpu(p),
1397 };
1398
1399 if (arg.src_cpu == arg.dst_cpu)
1400 goto out;
1401
1402 /*
1403 * These three tests are all lockless; this is OK since all of them
1404 * will be re-checked with proper locks held further down the line.
1405 */
1406 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1407 goto out;
1408
1409 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1410 goto out;
1411
1412 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1413 goto out;
1414
1415 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1416 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1417
1418 out:
1419 return ret;
1420 }
1421
1422 /*
1423 * wait_task_inactive - wait for a thread to unschedule.
1424 *
1425 * If @match_state is nonzero, it's the @p->state value just checked and
1426 * not expected to change. If it changes, i.e. @p might have woken up,
1427 * then return zero. When we succeed in waiting for @p to be off its CPU,
1428 * we return a positive number (its total switch count). If a second call
1429 * a short while later returns the same number, the caller can be sure that
1430 * @p has remained unscheduled the whole time.
1431 *
1432 * The caller must ensure that the task *will* unschedule sometime soon,
1433 * else this function might spin for a *long* time. This function can't
1434 * be called with interrupts off, or it may introduce deadlock with
1435 * smp_call_function() if an IPI is sent by the same process we are
1436 * waiting to become inactive.
1437 */
1438 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1439 {
1440 unsigned long flags;
1441 int running, queued;
1442 unsigned long ncsw;
1443 struct rq *rq;
1444
1445 for (;;) {
1446 /*
1447 * We do the initial early heuristics without holding
1448 * any task-queue locks at all. We'll only try to get
1449 * the runqueue lock when things look like they will
1450 * work out!
1451 */
1452 rq = task_rq(p);
1453
1454 /*
1455 * If the task is actively running on another CPU
1456 * still, just relax and busy-wait without holding
1457 * any locks.
1458 *
1459 * NOTE! Since we don't hold any locks, it's not
1460 * even sure that "rq" stays as the right runqueue!
1461 * But we don't care, since "task_running()" will
1462 * return false if the runqueue has changed and p
1463 * is actually now running somewhere else!
1464 */
1465 while (task_running(rq, p)) {
1466 if (match_state && unlikely(p->state != match_state))
1467 return 0;
1468 cpu_relax();
1469 }
1470
1471 /*
1472 * Ok, time to look more closely! We need the rq
1473 * lock now, to be *sure*. If we're wrong, we'll
1474 * just go back and repeat.
1475 */
1476 rq = task_rq_lock(p, &flags);
1477 trace_sched_wait_task(p);
1478 running = task_running(rq, p);
1479 queued = task_on_rq_queued(p);
1480 ncsw = 0;
1481 if (!match_state || p->state == match_state)
1482 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1483 task_rq_unlock(rq, p, &flags);
1484
1485 /*
1486 * If it changed from the expected state, bail out now.
1487 */
1488 if (unlikely(!ncsw))
1489 break;
1490
1491 /*
1492 * Was it really running after all now that we
1493 * checked with the proper locks actually held?
1494 *
1495 * Oops. Go back and try again..
1496 */
1497 if (unlikely(running)) {
1498 cpu_relax();
1499 continue;
1500 }
1501
1502 /*
1503 * It's not enough that it's not actively running,
1504 * it must be off the runqueue _entirely_, and not
1505 * preempted!
1506 *
1507 * So if it was still runnable (but just not actively
1508 * running right now), it's preempted, and we should
1509 * yield - it could be a while.
1510 */
1511 if (unlikely(queued)) {
1512 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1513
1514 set_current_state(TASK_UNINTERRUPTIBLE);
1515 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1516 continue;
1517 }
1518
1519 /*
1520 * Ahh, all good. It wasn't running, and it wasn't
1521 * runnable, which means that it will never become
1522 * running in the future either. We're all done!
1523 */
1524 break;
1525 }
1526
1527 return ncsw;
1528 }
1529
1530 /***
1531 * kick_process - kick a running thread to enter/exit the kernel
1532 * @p: the to-be-kicked thread
1533 *
1534 * Cause a process which is running on another CPU to enter
1535 * kernel-mode, without any delay. (to get signals handled.)
1536 *
1537 * NOTE: this function doesn't have to take the runqueue lock,
1538 * because all it wants to ensure is that the remote task enters
1539 * the kernel. If the IPI races and the task has been migrated
1540 * to another CPU then no harm is done and the purpose has been
1541 * achieved as well.
1542 */
1543 void kick_process(struct task_struct *p)
1544 {
1545 int cpu;
1546
1547 preempt_disable();
1548 cpu = task_cpu(p);
1549 if ((cpu != smp_processor_id()) && task_curr(p))
1550 smp_send_reschedule(cpu);
1551 preempt_enable();
1552 }
1553 EXPORT_SYMBOL_GPL(kick_process);
1554
1555 /*
1556 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1557 */
1558 static int select_fallback_rq(int cpu, struct task_struct *p)
1559 {
1560 int nid = cpu_to_node(cpu);
1561 const struct cpumask *nodemask = NULL;
1562 enum { cpuset, possible, fail } state = cpuset;
1563 int dest_cpu;
1564
1565 /*
1566 * If the node that the cpu is on has been offlined, cpu_to_node()
1567 * will return -1. There is no cpu on the node, and we should
1568 * select the cpu on the other node.
1569 */
1570 if (nid != -1) {
1571 nodemask = cpumask_of_node(nid);
1572
1573 /* Look for allowed, online CPU in same node. */
1574 for_each_cpu(dest_cpu, nodemask) {
1575 if (!cpu_online(dest_cpu))
1576 continue;
1577 if (!cpu_active(dest_cpu))
1578 continue;
1579 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1580 return dest_cpu;
1581 }
1582 }
1583
1584 for (;;) {
1585 /* Any allowed, online CPU? */
1586 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1587 if (!cpu_online(dest_cpu))
1588 continue;
1589 if (!cpu_active(dest_cpu))
1590 continue;
1591 goto out;
1592 }
1593
1594 /* No more Mr. Nice Guy. */
1595 switch (state) {
1596 case cpuset:
1597 if (IS_ENABLED(CONFIG_CPUSETS)) {
1598 cpuset_cpus_allowed_fallback(p);
1599 state = possible;
1600 break;
1601 }
1602 /* fall-through */
1603 case possible:
1604 do_set_cpus_allowed(p, cpu_possible_mask);
1605 state = fail;
1606 break;
1607
1608 case fail:
1609 BUG();
1610 break;
1611 }
1612 }
1613
1614 out:
1615 if (state != cpuset) {
1616 /*
1617 * Don't tell them about moving exiting tasks or
1618 * kernel threads (both mm NULL), since they never
1619 * leave kernel.
1620 */
1621 if (p->mm && printk_ratelimit()) {
1622 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1623 task_pid_nr(p), p->comm, cpu);
1624 }
1625 }
1626
1627 return dest_cpu;
1628 }
1629
1630 /*
1631 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1632 */
1633 static inline
1634 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1635 {
1636 lockdep_assert_held(&p->pi_lock);
1637
1638 if (p->nr_cpus_allowed > 1)
1639 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1640
1641 /*
1642 * In order not to call set_task_cpu() on a blocking task we need
1643 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1644 * cpu.
1645 *
1646 * Since this is common to all placement strategies, this lives here.
1647 *
1648 * [ this allows ->select_task() to simply return task_cpu(p) and
1649 * not worry about this generic constraint ]
1650 */
1651 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1652 !cpu_online(cpu)))
1653 cpu = select_fallback_rq(task_cpu(p), p);
1654
1655 return cpu;
1656 }
1657
1658 static void update_avg(u64 *avg, u64 sample)
1659 {
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662 }
1663
1664 #else
1665
1666 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1667 const struct cpumask *new_mask, bool check)
1668 {
1669 return set_cpus_allowed_ptr(p, new_mask);
1670 }
1671
1672 #endif /* CONFIG_SMP */
1673
1674 static void
1675 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1676 {
1677 #ifdef CONFIG_SCHEDSTATS
1678 struct rq *rq = this_rq();
1679
1680 #ifdef CONFIG_SMP
1681 int this_cpu = smp_processor_id();
1682
1683 if (cpu == this_cpu) {
1684 schedstat_inc(rq, ttwu_local);
1685 schedstat_inc(p, se.statistics.nr_wakeups_local);
1686 } else {
1687 struct sched_domain *sd;
1688
1689 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1690 rcu_read_lock();
1691 for_each_domain(this_cpu, sd) {
1692 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1693 schedstat_inc(sd, ttwu_wake_remote);
1694 break;
1695 }
1696 }
1697 rcu_read_unlock();
1698 }
1699
1700 if (wake_flags & WF_MIGRATED)
1701 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1702
1703 #endif /* CONFIG_SMP */
1704
1705 schedstat_inc(rq, ttwu_count);
1706 schedstat_inc(p, se.statistics.nr_wakeups);
1707
1708 if (wake_flags & WF_SYNC)
1709 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1710
1711 #endif /* CONFIG_SCHEDSTATS */
1712 }
1713
1714 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1715 {
1716 activate_task(rq, p, en_flags);
1717 p->on_rq = TASK_ON_RQ_QUEUED;
1718
1719 /* if a worker is waking up, notify workqueue */
1720 if (p->flags & PF_WQ_WORKER)
1721 wq_worker_waking_up(p, cpu_of(rq));
1722 }
1723
1724 /*
1725 * Mark the task runnable and perform wakeup-preemption.
1726 */
1727 static void
1728 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1729 {
1730 check_preempt_curr(rq, p, wake_flags);
1731 p->state = TASK_RUNNING;
1732 trace_sched_wakeup(p);
1733
1734 #ifdef CONFIG_SMP
1735 if (p->sched_class->task_woken) {
1736 /*
1737 * Our task @p is fully woken up and running; so its safe to
1738 * drop the rq->lock, hereafter rq is only used for statistics.
1739 */
1740 lockdep_unpin_lock(&rq->lock);
1741 p->sched_class->task_woken(rq, p);
1742 lockdep_pin_lock(&rq->lock);
1743 }
1744
1745 if (rq->idle_stamp) {
1746 u64 delta = rq_clock(rq) - rq->idle_stamp;
1747 u64 max = 2*rq->max_idle_balance_cost;
1748
1749 update_avg(&rq->avg_idle, delta);
1750
1751 if (rq->avg_idle > max)
1752 rq->avg_idle = max;
1753
1754 rq->idle_stamp = 0;
1755 }
1756 #endif
1757 }
1758
1759 static void
1760 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1761 {
1762 lockdep_assert_held(&rq->lock);
1763
1764 #ifdef CONFIG_SMP
1765 if (p->sched_contributes_to_load)
1766 rq->nr_uninterruptible--;
1767 #endif
1768
1769 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1770 ttwu_do_wakeup(rq, p, wake_flags);
1771 }
1772
1773 /*
1774 * Called in case the task @p isn't fully descheduled from its runqueue,
1775 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1776 * since all we need to do is flip p->state to TASK_RUNNING, since
1777 * the task is still ->on_rq.
1778 */
1779 static int ttwu_remote(struct task_struct *p, int wake_flags)
1780 {
1781 struct rq *rq;
1782 int ret = 0;
1783
1784 rq = __task_rq_lock(p);
1785 if (task_on_rq_queued(p)) {
1786 /* check_preempt_curr() may use rq clock */
1787 update_rq_clock(rq);
1788 ttwu_do_wakeup(rq, p, wake_flags);
1789 ret = 1;
1790 }
1791 __task_rq_unlock(rq);
1792
1793 return ret;
1794 }
1795
1796 #ifdef CONFIG_SMP
1797 void sched_ttwu_pending(void)
1798 {
1799 struct rq *rq = this_rq();
1800 struct llist_node *llist = llist_del_all(&rq->wake_list);
1801 struct task_struct *p;
1802 unsigned long flags;
1803
1804 if (!llist)
1805 return;
1806
1807 raw_spin_lock_irqsave(&rq->lock, flags);
1808 lockdep_pin_lock(&rq->lock);
1809
1810 while (llist) {
1811 p = llist_entry(llist, struct task_struct, wake_entry);
1812 llist = llist_next(llist);
1813 ttwu_do_activate(rq, p, 0);
1814 }
1815
1816 lockdep_unpin_lock(&rq->lock);
1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 }
1819
1820 void scheduler_ipi(void)
1821 {
1822 /*
1823 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 * this IPI.
1826 */
1827 preempt_fold_need_resched();
1828
1829 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 return;
1831
1832 /*
1833 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 * traditionally all their work was done from the interrupt return
1835 * path. Now that we actually do some work, we need to make sure
1836 * we do call them.
1837 *
1838 * Some archs already do call them, luckily irq_enter/exit nest
1839 * properly.
1840 *
1841 * Arguably we should visit all archs and update all handlers,
1842 * however a fair share of IPIs are still resched only so this would
1843 * somewhat pessimize the simple resched case.
1844 */
1845 irq_enter();
1846 sched_ttwu_pending();
1847
1848 /*
1849 * Check if someone kicked us for doing the nohz idle load balance.
1850 */
1851 if (unlikely(got_nohz_idle_kick())) {
1852 this_rq()->idle_balance = 1;
1853 raise_softirq_irqoff(SCHED_SOFTIRQ);
1854 }
1855 irq_exit();
1856 }
1857
1858 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1859 {
1860 struct rq *rq = cpu_rq(cpu);
1861
1862 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1863 if (!set_nr_if_polling(rq->idle))
1864 smp_send_reschedule(cpu);
1865 else
1866 trace_sched_wake_idle_without_ipi(cpu);
1867 }
1868 }
1869
1870 void wake_up_if_idle(int cpu)
1871 {
1872 struct rq *rq = cpu_rq(cpu);
1873 unsigned long flags;
1874
1875 rcu_read_lock();
1876
1877 if (!is_idle_task(rcu_dereference(rq->curr)))
1878 goto out;
1879
1880 if (set_nr_if_polling(rq->idle)) {
1881 trace_sched_wake_idle_without_ipi(cpu);
1882 } else {
1883 raw_spin_lock_irqsave(&rq->lock, flags);
1884 if (is_idle_task(rq->curr))
1885 smp_send_reschedule(cpu);
1886 /* Else cpu is not in idle, do nothing here */
1887 raw_spin_unlock_irqrestore(&rq->lock, flags);
1888 }
1889
1890 out:
1891 rcu_read_unlock();
1892 }
1893
1894 bool cpus_share_cache(int this_cpu, int that_cpu)
1895 {
1896 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1897 }
1898 #endif /* CONFIG_SMP */
1899
1900 static void ttwu_queue(struct task_struct *p, int cpu)
1901 {
1902 struct rq *rq = cpu_rq(cpu);
1903
1904 #if defined(CONFIG_SMP)
1905 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1906 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1907 ttwu_queue_remote(p, cpu);
1908 return;
1909 }
1910 #endif
1911
1912 raw_spin_lock(&rq->lock);
1913 lockdep_pin_lock(&rq->lock);
1914 ttwu_do_activate(rq, p, 0);
1915 lockdep_unpin_lock(&rq->lock);
1916 raw_spin_unlock(&rq->lock);
1917 }
1918
1919 /*
1920 * Notes on Program-Order guarantees on SMP systems.
1921 *
1922 * MIGRATION
1923 *
1924 * The basic program-order guarantee on SMP systems is that when a task [t]
1925 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1926 * execution on its new cpu [c1].
1927 *
1928 * For migration (of runnable tasks) this is provided by the following means:
1929 *
1930 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1931 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1932 * rq(c1)->lock (if not at the same time, then in that order).
1933 * C) LOCK of the rq(c1)->lock scheduling in task
1934 *
1935 * Transitivity guarantees that B happens after A and C after B.
1936 * Note: we only require RCpc transitivity.
1937 * Note: the cpu doing B need not be c0 or c1
1938 *
1939 * Example:
1940 *
1941 * CPU0 CPU1 CPU2
1942 *
1943 * LOCK rq(0)->lock
1944 * sched-out X
1945 * sched-in Y
1946 * UNLOCK rq(0)->lock
1947 *
1948 * LOCK rq(0)->lock // orders against CPU0
1949 * dequeue X
1950 * UNLOCK rq(0)->lock
1951 *
1952 * LOCK rq(1)->lock
1953 * enqueue X
1954 * UNLOCK rq(1)->lock
1955 *
1956 * LOCK rq(1)->lock // orders against CPU2
1957 * sched-out Z
1958 * sched-in X
1959 * UNLOCK rq(1)->lock
1960 *
1961 *
1962 * BLOCKING -- aka. SLEEP + WAKEUP
1963 *
1964 * For blocking we (obviously) need to provide the same guarantee as for
1965 * migration. However the means are completely different as there is no lock
1966 * chain to provide order. Instead we do:
1967 *
1968 * 1) smp_store_release(X->on_cpu, 0)
1969 * 2) smp_cond_acquire(!X->on_cpu)
1970 *
1971 * Example:
1972 *
1973 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1974 *
1975 * LOCK rq(0)->lock LOCK X->pi_lock
1976 * dequeue X
1977 * sched-out X
1978 * smp_store_release(X->on_cpu, 0);
1979 *
1980 * smp_cond_acquire(!X->on_cpu);
1981 * X->state = WAKING
1982 * set_task_cpu(X,2)
1983 *
1984 * LOCK rq(2)->lock
1985 * enqueue X
1986 * X->state = RUNNING
1987 * UNLOCK rq(2)->lock
1988 *
1989 * LOCK rq(2)->lock // orders against CPU1
1990 * sched-out Z
1991 * sched-in X
1992 * UNLOCK rq(2)->lock
1993 *
1994 * UNLOCK X->pi_lock
1995 * UNLOCK rq(0)->lock
1996 *
1997 *
1998 * However; for wakeups there is a second guarantee we must provide, namely we
1999 * must observe the state that lead to our wakeup. That is, not only must our
2000 * task observe its own prior state, it must also observe the stores prior to
2001 * its wakeup.
2002 *
2003 * This means that any means of doing remote wakeups must order the CPU doing
2004 * the wakeup against the CPU the task is going to end up running on. This,
2005 * however, is already required for the regular Program-Order guarantee above,
2006 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2007 *
2008 */
2009
2010 /**
2011 * try_to_wake_up - wake up a thread
2012 * @p: the thread to be awakened
2013 * @state: the mask of task states that can be woken
2014 * @wake_flags: wake modifier flags (WF_*)
2015 *
2016 * Put it on the run-queue if it's not already there. The "current"
2017 * thread is always on the run-queue (except when the actual
2018 * re-schedule is in progress), and as such you're allowed to do
2019 * the simpler "current->state = TASK_RUNNING" to mark yourself
2020 * runnable without the overhead of this.
2021 *
2022 * Return: %true if @p was woken up, %false if it was already running.
2023 * or @state didn't match @p's state.
2024 */
2025 static int
2026 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2027 {
2028 unsigned long flags;
2029 int cpu, success = 0;
2030
2031 /*
2032 * If we are going to wake up a thread waiting for CONDITION we
2033 * need to ensure that CONDITION=1 done by the caller can not be
2034 * reordered with p->state check below. This pairs with mb() in
2035 * set_current_state() the waiting thread does.
2036 */
2037 smp_mb__before_spinlock();
2038 raw_spin_lock_irqsave(&p->pi_lock, flags);
2039 if (!(p->state & state))
2040 goto out;
2041
2042 trace_sched_waking(p);
2043
2044 success = 1; /* we're going to change ->state */
2045 cpu = task_cpu(p);
2046
2047 if (p->on_rq && ttwu_remote(p, wake_flags))
2048 goto stat;
2049
2050 #ifdef CONFIG_SMP
2051 /*
2052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 * possible to, falsely, observe p->on_cpu == 0.
2054 *
2055 * One must be running (->on_cpu == 1) in order to remove oneself
2056 * from the runqueue.
2057 *
2058 * [S] ->on_cpu = 1; [L] ->on_rq
2059 * UNLOCK rq->lock
2060 * RMB
2061 * LOCK rq->lock
2062 * [S] ->on_rq = 0; [L] ->on_cpu
2063 *
2064 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 * from the consecutive calls to schedule(); the first switching to our
2066 * task, the second putting it to sleep.
2067 */
2068 smp_rmb();
2069
2070 /*
2071 * If the owning (remote) cpu is still in the middle of schedule() with
2072 * this task as prev, wait until its done referencing the task.
2073 *
2074 * Pairs with the smp_store_release() in finish_lock_switch().
2075 *
2076 * This ensures that tasks getting woken will be fully ordered against
2077 * their previous state and preserve Program Order.
2078 */
2079 smp_cond_acquire(!p->on_cpu);
2080
2081 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2082 p->state = TASK_WAKING;
2083
2084 if (p->sched_class->task_waking)
2085 p->sched_class->task_waking(p);
2086
2087 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2088 if (task_cpu(p) != cpu) {
2089 wake_flags |= WF_MIGRATED;
2090 set_task_cpu(p, cpu);
2091 }
2092 #endif /* CONFIG_SMP */
2093
2094 ttwu_queue(p, cpu);
2095 stat:
2096 ttwu_stat(p, cpu, wake_flags);
2097 out:
2098 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2099
2100 return success;
2101 }
2102
2103 /**
2104 * try_to_wake_up_local - try to wake up a local task with rq lock held
2105 * @p: the thread to be awakened
2106 *
2107 * Put @p on the run-queue if it's not already there. The caller must
2108 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2109 * the current task.
2110 */
2111 static void try_to_wake_up_local(struct task_struct *p)
2112 {
2113 struct rq *rq = task_rq(p);
2114
2115 if (WARN_ON_ONCE(rq != this_rq()) ||
2116 WARN_ON_ONCE(p == current))
2117 return;
2118
2119 lockdep_assert_held(&rq->lock);
2120
2121 if (!raw_spin_trylock(&p->pi_lock)) {
2122 /*
2123 * This is OK, because current is on_cpu, which avoids it being
2124 * picked for load-balance and preemption/IRQs are still
2125 * disabled avoiding further scheduler activity on it and we've
2126 * not yet picked a replacement task.
2127 */
2128 lockdep_unpin_lock(&rq->lock);
2129 raw_spin_unlock(&rq->lock);
2130 raw_spin_lock(&p->pi_lock);
2131 raw_spin_lock(&rq->lock);
2132 lockdep_pin_lock(&rq->lock);
2133 }
2134
2135 if (!(p->state & TASK_NORMAL))
2136 goto out;
2137
2138 trace_sched_waking(p);
2139
2140 if (!task_on_rq_queued(p))
2141 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2142
2143 ttwu_do_wakeup(rq, p, 0);
2144 ttwu_stat(p, smp_processor_id(), 0);
2145 out:
2146 raw_spin_unlock(&p->pi_lock);
2147 }
2148
2149 /**
2150 * wake_up_process - Wake up a specific process
2151 * @p: The process to be woken up.
2152 *
2153 * Attempt to wake up the nominated process and move it to the set of runnable
2154 * processes.
2155 *
2156 * Return: 1 if the process was woken up, 0 if it was already running.
2157 *
2158 * It may be assumed that this function implies a write memory barrier before
2159 * changing the task state if and only if any tasks are woken up.
2160 */
2161 int wake_up_process(struct task_struct *p)
2162 {
2163 return try_to_wake_up(p, TASK_NORMAL, 0);
2164 }
2165 EXPORT_SYMBOL(wake_up_process);
2166
2167 int wake_up_state(struct task_struct *p, unsigned int state)
2168 {
2169 return try_to_wake_up(p, state, 0);
2170 }
2171
2172 /*
2173 * This function clears the sched_dl_entity static params.
2174 */
2175 void __dl_clear_params(struct task_struct *p)
2176 {
2177 struct sched_dl_entity *dl_se = &p->dl;
2178
2179 dl_se->dl_runtime = 0;
2180 dl_se->dl_deadline = 0;
2181 dl_se->dl_period = 0;
2182 dl_se->flags = 0;
2183 dl_se->dl_bw = 0;
2184
2185 dl_se->dl_throttled = 0;
2186 dl_se->dl_new = 1;
2187 dl_se->dl_yielded = 0;
2188 }
2189
2190 /*
2191 * Perform scheduler related setup for a newly forked process p.
2192 * p is forked by current.
2193 *
2194 * __sched_fork() is basic setup used by init_idle() too:
2195 */
2196 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2197 {
2198 p->on_rq = 0;
2199
2200 p->se.on_rq = 0;
2201 p->se.exec_start = 0;
2202 p->se.sum_exec_runtime = 0;
2203 p->se.prev_sum_exec_runtime = 0;
2204 p->se.nr_migrations = 0;
2205 p->se.vruntime = 0;
2206 INIT_LIST_HEAD(&p->se.group_node);
2207
2208 #ifdef CONFIG_FAIR_GROUP_SCHED
2209 p->se.cfs_rq = NULL;
2210 #endif
2211
2212 #ifdef CONFIG_SCHEDSTATS
2213 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2214 #endif
2215
2216 RB_CLEAR_NODE(&p->dl.rb_node);
2217 init_dl_task_timer(&p->dl);
2218 __dl_clear_params(p);
2219
2220 INIT_LIST_HEAD(&p->rt.run_list);
2221
2222 #ifdef CONFIG_PREEMPT_NOTIFIERS
2223 INIT_HLIST_HEAD(&p->preempt_notifiers);
2224 #endif
2225
2226 #ifdef CONFIG_NUMA_BALANCING
2227 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2228 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2229 p->mm->numa_scan_seq = 0;
2230 }
2231
2232 if (clone_flags & CLONE_VM)
2233 p->numa_preferred_nid = current->numa_preferred_nid;
2234 else
2235 p->numa_preferred_nid = -1;
2236
2237 p->node_stamp = 0ULL;
2238 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2239 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2240 p->numa_work.next = &p->numa_work;
2241 p->numa_faults = NULL;
2242 p->last_task_numa_placement = 0;
2243 p->last_sum_exec_runtime = 0;
2244
2245 p->numa_group = NULL;
2246 #endif /* CONFIG_NUMA_BALANCING */
2247 }
2248
2249 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2250
2251 #ifdef CONFIG_NUMA_BALANCING
2252
2253 void set_numabalancing_state(bool enabled)
2254 {
2255 if (enabled)
2256 static_branch_enable(&sched_numa_balancing);
2257 else
2258 static_branch_disable(&sched_numa_balancing);
2259 }
2260
2261 #ifdef CONFIG_PROC_SYSCTL
2262 int sysctl_numa_balancing(struct ctl_table *table, int write,
2263 void __user *buffer, size_t *lenp, loff_t *ppos)
2264 {
2265 struct ctl_table t;
2266 int err;
2267 int state = static_branch_likely(&sched_numa_balancing);
2268
2269 if (write && !capable(CAP_SYS_ADMIN))
2270 return -EPERM;
2271
2272 t = *table;
2273 t.data = &state;
2274 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2275 if (err < 0)
2276 return err;
2277 if (write)
2278 set_numabalancing_state(state);
2279 return err;
2280 }
2281 #endif
2282 #endif
2283
2284 /*
2285 * fork()/clone()-time setup:
2286 */
2287 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2288 {
2289 unsigned long flags;
2290 int cpu = get_cpu();
2291
2292 __sched_fork(clone_flags, p);
2293 /*
2294 * We mark the process as running here. This guarantees that
2295 * nobody will actually run it, and a signal or other external
2296 * event cannot wake it up and insert it on the runqueue either.
2297 */
2298 p->state = TASK_RUNNING;
2299
2300 /*
2301 * Make sure we do not leak PI boosting priority to the child.
2302 */
2303 p->prio = current->normal_prio;
2304
2305 /*
2306 * Revert to default priority/policy on fork if requested.
2307 */
2308 if (unlikely(p->sched_reset_on_fork)) {
2309 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2310 p->policy = SCHED_NORMAL;
2311 p->static_prio = NICE_TO_PRIO(0);
2312 p->rt_priority = 0;
2313 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2314 p->static_prio = NICE_TO_PRIO(0);
2315
2316 p->prio = p->normal_prio = __normal_prio(p);
2317 set_load_weight(p);
2318
2319 /*
2320 * We don't need the reset flag anymore after the fork. It has
2321 * fulfilled its duty:
2322 */
2323 p->sched_reset_on_fork = 0;
2324 }
2325
2326 if (dl_prio(p->prio)) {
2327 put_cpu();
2328 return -EAGAIN;
2329 } else if (rt_prio(p->prio)) {
2330 p->sched_class = &rt_sched_class;
2331 } else {
2332 p->sched_class = &fair_sched_class;
2333 }
2334
2335 if (p->sched_class->task_fork)
2336 p->sched_class->task_fork(p);
2337
2338 /*
2339 * The child is not yet in the pid-hash so no cgroup attach races,
2340 * and the cgroup is pinned to this child due to cgroup_fork()
2341 * is ran before sched_fork().
2342 *
2343 * Silence PROVE_RCU.
2344 */
2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
2346 set_task_cpu(p, cpu);
2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348
2349 #ifdef CONFIG_SCHED_INFO
2350 if (likely(sched_info_on()))
2351 memset(&p->sched_info, 0, sizeof(p->sched_info));
2352 #endif
2353 #if defined(CONFIG_SMP)
2354 p->on_cpu = 0;
2355 #endif
2356 init_task_preempt_count(p);
2357 #ifdef CONFIG_SMP
2358 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2359 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2360 #endif
2361
2362 put_cpu();
2363 return 0;
2364 }
2365
2366 unsigned long to_ratio(u64 period, u64 runtime)
2367 {
2368 if (runtime == RUNTIME_INF)
2369 return 1ULL << 20;
2370
2371 /*
2372 * Doing this here saves a lot of checks in all
2373 * the calling paths, and returning zero seems
2374 * safe for them anyway.
2375 */
2376 if (period == 0)
2377 return 0;
2378
2379 return div64_u64(runtime << 20, period);
2380 }
2381
2382 #ifdef CONFIG_SMP
2383 inline struct dl_bw *dl_bw_of(int i)
2384 {
2385 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2386 "sched RCU must be held");
2387 return &cpu_rq(i)->rd->dl_bw;
2388 }
2389
2390 static inline int dl_bw_cpus(int i)
2391 {
2392 struct root_domain *rd = cpu_rq(i)->rd;
2393 int cpus = 0;
2394
2395 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2396 "sched RCU must be held");
2397 for_each_cpu_and(i, rd->span, cpu_active_mask)
2398 cpus++;
2399
2400 return cpus;
2401 }
2402 #else
2403 inline struct dl_bw *dl_bw_of(int i)
2404 {
2405 return &cpu_rq(i)->dl.dl_bw;
2406 }
2407
2408 static inline int dl_bw_cpus(int i)
2409 {
2410 return 1;
2411 }
2412 #endif
2413
2414 /*
2415 * We must be sure that accepting a new task (or allowing changing the
2416 * parameters of an existing one) is consistent with the bandwidth
2417 * constraints. If yes, this function also accordingly updates the currently
2418 * allocated bandwidth to reflect the new situation.
2419 *
2420 * This function is called while holding p's rq->lock.
2421 *
2422 * XXX we should delay bw change until the task's 0-lag point, see
2423 * __setparam_dl().
2424 */
2425 static int dl_overflow(struct task_struct *p, int policy,
2426 const struct sched_attr *attr)
2427 {
2428
2429 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2430 u64 period = attr->sched_period ?: attr->sched_deadline;
2431 u64 runtime = attr->sched_runtime;
2432 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2433 int cpus, err = -1;
2434
2435 if (new_bw == p->dl.dl_bw)
2436 return 0;
2437
2438 /*
2439 * Either if a task, enters, leave, or stays -deadline but changes
2440 * its parameters, we may need to update accordingly the total
2441 * allocated bandwidth of the container.
2442 */
2443 raw_spin_lock(&dl_b->lock);
2444 cpus = dl_bw_cpus(task_cpu(p));
2445 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2446 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2447 __dl_add(dl_b, new_bw);
2448 err = 0;
2449 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2450 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2451 __dl_clear(dl_b, p->dl.dl_bw);
2452 __dl_add(dl_b, new_bw);
2453 err = 0;
2454 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2455 __dl_clear(dl_b, p->dl.dl_bw);
2456 err = 0;
2457 }
2458 raw_spin_unlock(&dl_b->lock);
2459
2460 return err;
2461 }
2462
2463 extern void init_dl_bw(struct dl_bw *dl_b);
2464
2465 /*
2466 * wake_up_new_task - wake up a newly created task for the first time.
2467 *
2468 * This function will do some initial scheduler statistics housekeeping
2469 * that must be done for every newly created context, then puts the task
2470 * on the runqueue and wakes it.
2471 */
2472 void wake_up_new_task(struct task_struct *p)
2473 {
2474 unsigned long flags;
2475 struct rq *rq;
2476
2477 raw_spin_lock_irqsave(&p->pi_lock, flags);
2478 /* Initialize new task's runnable average */
2479 init_entity_runnable_average(&p->se);
2480 #ifdef CONFIG_SMP
2481 /*
2482 * Fork balancing, do it here and not earlier because:
2483 * - cpus_allowed can change in the fork path
2484 * - any previously selected cpu might disappear through hotplug
2485 */
2486 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2487 #endif
2488
2489 rq = __task_rq_lock(p);
2490 activate_task(rq, p, 0);
2491 p->on_rq = TASK_ON_RQ_QUEUED;
2492 trace_sched_wakeup_new(p);
2493 check_preempt_curr(rq, p, WF_FORK);
2494 #ifdef CONFIG_SMP
2495 if (p->sched_class->task_woken) {
2496 /*
2497 * Nothing relies on rq->lock after this, so its fine to
2498 * drop it.
2499 */
2500 lockdep_unpin_lock(&rq->lock);
2501 p->sched_class->task_woken(rq, p);
2502 lockdep_pin_lock(&rq->lock);
2503 }
2504 #endif
2505 task_rq_unlock(rq, p, &flags);
2506 }
2507
2508 #ifdef CONFIG_PREEMPT_NOTIFIERS
2509
2510 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2511
2512 void preempt_notifier_inc(void)
2513 {
2514 static_key_slow_inc(&preempt_notifier_key);
2515 }
2516 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2517
2518 void preempt_notifier_dec(void)
2519 {
2520 static_key_slow_dec(&preempt_notifier_key);
2521 }
2522 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2523
2524 /**
2525 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2526 * @notifier: notifier struct to register
2527 */
2528 void preempt_notifier_register(struct preempt_notifier *notifier)
2529 {
2530 if (!static_key_false(&preempt_notifier_key))
2531 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2532
2533 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2534 }
2535 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2536
2537 /**
2538 * preempt_notifier_unregister - no longer interested in preemption notifications
2539 * @notifier: notifier struct to unregister
2540 *
2541 * This is *not* safe to call from within a preemption notifier.
2542 */
2543 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2544 {
2545 hlist_del(&notifier->link);
2546 }
2547 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2548
2549 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2550 {
2551 struct preempt_notifier *notifier;
2552
2553 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2554 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2555 }
2556
2557 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2558 {
2559 if (static_key_false(&preempt_notifier_key))
2560 __fire_sched_in_preempt_notifiers(curr);
2561 }
2562
2563 static void
2564 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2565 struct task_struct *next)
2566 {
2567 struct preempt_notifier *notifier;
2568
2569 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2570 notifier->ops->sched_out(notifier, next);
2571 }
2572
2573 static __always_inline void
2574 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2575 struct task_struct *next)
2576 {
2577 if (static_key_false(&preempt_notifier_key))
2578 __fire_sched_out_preempt_notifiers(curr, next);
2579 }
2580
2581 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2582
2583 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 }
2586
2587 static inline void
2588 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2589 struct task_struct *next)
2590 {
2591 }
2592
2593 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2594
2595 /**
2596 * prepare_task_switch - prepare to switch tasks
2597 * @rq: the runqueue preparing to switch
2598 * @prev: the current task that is being switched out
2599 * @next: the task we are going to switch to.
2600 *
2601 * This is called with the rq lock held and interrupts off. It must
2602 * be paired with a subsequent finish_task_switch after the context
2603 * switch.
2604 *
2605 * prepare_task_switch sets up locking and calls architecture specific
2606 * hooks.
2607 */
2608 static inline void
2609 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2610 struct task_struct *next)
2611 {
2612 sched_info_switch(rq, prev, next);
2613 perf_event_task_sched_out(prev, next);
2614 fire_sched_out_preempt_notifiers(prev, next);
2615 prepare_lock_switch(rq, next);
2616 prepare_arch_switch(next);
2617 }
2618
2619 /**
2620 * finish_task_switch - clean up after a task-switch
2621 * @prev: the thread we just switched away from.
2622 *
2623 * finish_task_switch must be called after the context switch, paired
2624 * with a prepare_task_switch call before the context switch.
2625 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2626 * and do any other architecture-specific cleanup actions.
2627 *
2628 * Note that we may have delayed dropping an mm in context_switch(). If
2629 * so, we finish that here outside of the runqueue lock. (Doing it
2630 * with the lock held can cause deadlocks; see schedule() for
2631 * details.)
2632 *
2633 * The context switch have flipped the stack from under us and restored the
2634 * local variables which were saved when this task called schedule() in the
2635 * past. prev == current is still correct but we need to recalculate this_rq
2636 * because prev may have moved to another CPU.
2637 */
2638 static struct rq *finish_task_switch(struct task_struct *prev)
2639 __releases(rq->lock)
2640 {
2641 struct rq *rq = this_rq();
2642 struct mm_struct *mm = rq->prev_mm;
2643 long prev_state;
2644
2645 /*
2646 * The previous task will have left us with a preempt_count of 2
2647 * because it left us after:
2648 *
2649 * schedule()
2650 * preempt_disable(); // 1
2651 * __schedule()
2652 * raw_spin_lock_irq(&rq->lock) // 2
2653 *
2654 * Also, see FORK_PREEMPT_COUNT.
2655 */
2656 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2657 "corrupted preempt_count: %s/%d/0x%x\n",
2658 current->comm, current->pid, preempt_count()))
2659 preempt_count_set(FORK_PREEMPT_COUNT);
2660
2661 rq->prev_mm = NULL;
2662
2663 /*
2664 * A task struct has one reference for the use as "current".
2665 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2666 * schedule one last time. The schedule call will never return, and
2667 * the scheduled task must drop that reference.
2668 *
2669 * We must observe prev->state before clearing prev->on_cpu (in
2670 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2671 * running on another CPU and we could rave with its RUNNING -> DEAD
2672 * transition, resulting in a double drop.
2673 */
2674 prev_state = prev->state;
2675 vtime_task_switch(prev);
2676 perf_event_task_sched_in(prev, current);
2677 finish_lock_switch(rq, prev);
2678 finish_arch_post_lock_switch();
2679
2680 fire_sched_in_preempt_notifiers(current);
2681 if (mm)
2682 mmdrop(mm);
2683 if (unlikely(prev_state == TASK_DEAD)) {
2684 if (prev->sched_class->task_dead)
2685 prev->sched_class->task_dead(prev);
2686
2687 /*
2688 * Remove function-return probe instances associated with this
2689 * task and put them back on the free list.
2690 */
2691 kprobe_flush_task(prev);
2692 put_task_struct(prev);
2693 }
2694
2695 tick_nohz_task_switch();
2696 return rq;
2697 }
2698
2699 #ifdef CONFIG_SMP
2700
2701 /* rq->lock is NOT held, but preemption is disabled */
2702 static void __balance_callback(struct rq *rq)
2703 {
2704 struct callback_head *head, *next;
2705 void (*func)(struct rq *rq);
2706 unsigned long flags;
2707
2708 raw_spin_lock_irqsave(&rq->lock, flags);
2709 head = rq->balance_callback;
2710 rq->balance_callback = NULL;
2711 while (head) {
2712 func = (void (*)(struct rq *))head->func;
2713 next = head->next;
2714 head->next = NULL;
2715 head = next;
2716
2717 func(rq);
2718 }
2719 raw_spin_unlock_irqrestore(&rq->lock, flags);
2720 }
2721
2722 static inline void balance_callback(struct rq *rq)
2723 {
2724 if (unlikely(rq->balance_callback))
2725 __balance_callback(rq);
2726 }
2727
2728 #else
2729
2730 static inline void balance_callback(struct rq *rq)
2731 {
2732 }
2733
2734 #endif
2735
2736 /**
2737 * schedule_tail - first thing a freshly forked thread must call.
2738 * @prev: the thread we just switched away from.
2739 */
2740 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2741 __releases(rq->lock)
2742 {
2743 struct rq *rq;
2744
2745 /*
2746 * New tasks start with FORK_PREEMPT_COUNT, see there and
2747 * finish_task_switch() for details.
2748 *
2749 * finish_task_switch() will drop rq->lock() and lower preempt_count
2750 * and the preempt_enable() will end up enabling preemption (on
2751 * PREEMPT_COUNT kernels).
2752 */
2753
2754 rq = finish_task_switch(prev);
2755 balance_callback(rq);
2756 preempt_enable();
2757
2758 if (current->set_child_tid)
2759 put_user(task_pid_vnr(current), current->set_child_tid);
2760 }
2761
2762 /*
2763 * context_switch - switch to the new MM and the new thread's register state.
2764 */
2765 static inline struct rq *
2766 context_switch(struct rq *rq, struct task_struct *prev,
2767 struct task_struct *next)
2768 {
2769 struct mm_struct *mm, *oldmm;
2770
2771 prepare_task_switch(rq, prev, next);
2772
2773 mm = next->mm;
2774 oldmm = prev->active_mm;
2775 /*
2776 * For paravirt, this is coupled with an exit in switch_to to
2777 * combine the page table reload and the switch backend into
2778 * one hypercall.
2779 */
2780 arch_start_context_switch(prev);
2781
2782 if (!mm) {
2783 next->active_mm = oldmm;
2784 atomic_inc(&oldmm->mm_count);
2785 enter_lazy_tlb(oldmm, next);
2786 } else
2787 switch_mm(oldmm, mm, next);
2788
2789 if (!prev->mm) {
2790 prev->active_mm = NULL;
2791 rq->prev_mm = oldmm;
2792 }
2793 /*
2794 * Since the runqueue lock will be released by the next
2795 * task (which is an invalid locking op but in the case
2796 * of the scheduler it's an obvious special-case), so we
2797 * do an early lockdep release here:
2798 */
2799 lockdep_unpin_lock(&rq->lock);
2800 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2801
2802 /* Here we just switch the register state and the stack. */
2803 switch_to(prev, next, prev);
2804 barrier();
2805
2806 return finish_task_switch(prev);
2807 }
2808
2809 /*
2810 * nr_running and nr_context_switches:
2811 *
2812 * externally visible scheduler statistics: current number of runnable
2813 * threads, total number of context switches performed since bootup.
2814 */
2815 unsigned long nr_running(void)
2816 {
2817 unsigned long i, sum = 0;
2818
2819 for_each_online_cpu(i)
2820 sum += cpu_rq(i)->nr_running;
2821
2822 return sum;
2823 }
2824
2825 /*
2826 * Check if only the current task is running on the cpu.
2827 *
2828 * Caution: this function does not check that the caller has disabled
2829 * preemption, thus the result might have a time-of-check-to-time-of-use
2830 * race. The caller is responsible to use it correctly, for example:
2831 *
2832 * - from a non-preemptable section (of course)
2833 *
2834 * - from a thread that is bound to a single CPU
2835 *
2836 * - in a loop with very short iterations (e.g. a polling loop)
2837 */
2838 bool single_task_running(void)
2839 {
2840 return raw_rq()->nr_running == 1;
2841 }
2842 EXPORT_SYMBOL(single_task_running);
2843
2844 unsigned long long nr_context_switches(void)
2845 {
2846 int i;
2847 unsigned long long sum = 0;
2848
2849 for_each_possible_cpu(i)
2850 sum += cpu_rq(i)->nr_switches;
2851
2852 return sum;
2853 }
2854
2855 unsigned long nr_iowait(void)
2856 {
2857 unsigned long i, sum = 0;
2858
2859 for_each_possible_cpu(i)
2860 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2861
2862 return sum;
2863 }
2864
2865 unsigned long nr_iowait_cpu(int cpu)
2866 {
2867 struct rq *this = cpu_rq(cpu);
2868 return atomic_read(&this->nr_iowait);
2869 }
2870
2871 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2872 {
2873 struct rq *rq = this_rq();
2874 *nr_waiters = atomic_read(&rq->nr_iowait);
2875 *load = rq->load.weight;
2876 }
2877
2878 #ifdef CONFIG_SMP
2879
2880 /*
2881 * sched_exec - execve() is a valuable balancing opportunity, because at
2882 * this point the task has the smallest effective memory and cache footprint.
2883 */
2884 void sched_exec(void)
2885 {
2886 struct task_struct *p = current;
2887 unsigned long flags;
2888 int dest_cpu;
2889
2890 raw_spin_lock_irqsave(&p->pi_lock, flags);
2891 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2892 if (dest_cpu == smp_processor_id())
2893 goto unlock;
2894
2895 if (likely(cpu_active(dest_cpu))) {
2896 struct migration_arg arg = { p, dest_cpu };
2897
2898 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2899 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2900 return;
2901 }
2902 unlock:
2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904 }
2905
2906 #endif
2907
2908 DEFINE_PER_CPU(struct kernel_stat, kstat);
2909 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2910
2911 EXPORT_PER_CPU_SYMBOL(kstat);
2912 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2913
2914 /*
2915 * Return accounted runtime for the task.
2916 * In case the task is currently running, return the runtime plus current's
2917 * pending runtime that have not been accounted yet.
2918 */
2919 unsigned long long task_sched_runtime(struct task_struct *p)
2920 {
2921 unsigned long flags;
2922 struct rq *rq;
2923 u64 ns;
2924
2925 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2926 /*
2927 * 64-bit doesn't need locks to atomically read a 64bit value.
2928 * So we have a optimization chance when the task's delta_exec is 0.
2929 * Reading ->on_cpu is racy, but this is ok.
2930 *
2931 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2932 * If we race with it entering cpu, unaccounted time is 0. This is
2933 * indistinguishable from the read occurring a few cycles earlier.
2934 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2935 * been accounted, so we're correct here as well.
2936 */
2937 if (!p->on_cpu || !task_on_rq_queued(p))
2938 return p->se.sum_exec_runtime;
2939 #endif
2940
2941 rq = task_rq_lock(p, &flags);
2942 /*
2943 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2944 * project cycles that may never be accounted to this
2945 * thread, breaking clock_gettime().
2946 */
2947 if (task_current(rq, p) && task_on_rq_queued(p)) {
2948 update_rq_clock(rq);
2949 p->sched_class->update_curr(rq);
2950 }
2951 ns = p->se.sum_exec_runtime;
2952 task_rq_unlock(rq, p, &flags);
2953
2954 return ns;
2955 }
2956
2957 /*
2958 * This function gets called by the timer code, with HZ frequency.
2959 * We call it with interrupts disabled.
2960 */
2961 void scheduler_tick(void)
2962 {
2963 int cpu = smp_processor_id();
2964 struct rq *rq = cpu_rq(cpu);
2965 struct task_struct *curr = rq->curr;
2966
2967 sched_clock_tick();
2968
2969 raw_spin_lock(&rq->lock);
2970 update_rq_clock(rq);
2971 curr->sched_class->task_tick(rq, curr, 0);
2972 update_cpu_load_active(rq);
2973 calc_global_load_tick(rq);
2974 raw_spin_unlock(&rq->lock);
2975
2976 perf_event_task_tick();
2977
2978 #ifdef CONFIG_SMP
2979 rq->idle_balance = idle_cpu(cpu);
2980 trigger_load_balance(rq);
2981 #endif
2982 rq_last_tick_reset(rq);
2983 }
2984
2985 #ifdef CONFIG_NO_HZ_FULL
2986 /**
2987 * scheduler_tick_max_deferment
2988 *
2989 * Keep at least one tick per second when a single
2990 * active task is running because the scheduler doesn't
2991 * yet completely support full dynticks environment.
2992 *
2993 * This makes sure that uptime, CFS vruntime, load
2994 * balancing, etc... continue to move forward, even
2995 * with a very low granularity.
2996 *
2997 * Return: Maximum deferment in nanoseconds.
2998 */
2999 u64 scheduler_tick_max_deferment(void)
3000 {
3001 struct rq *rq = this_rq();
3002 unsigned long next, now = READ_ONCE(jiffies);
3003
3004 next = rq->last_sched_tick + HZ;
3005
3006 if (time_before_eq(next, now))
3007 return 0;
3008
3009 return jiffies_to_nsecs(next - now);
3010 }
3011 #endif
3012
3013 notrace unsigned long get_parent_ip(unsigned long addr)
3014 {
3015 if (in_lock_functions(addr)) {
3016 addr = CALLER_ADDR2;
3017 if (in_lock_functions(addr))
3018 addr = CALLER_ADDR3;
3019 }
3020 return addr;
3021 }
3022
3023 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3024 defined(CONFIG_PREEMPT_TRACER))
3025
3026 void preempt_count_add(int val)
3027 {
3028 #ifdef CONFIG_DEBUG_PREEMPT
3029 /*
3030 * Underflow?
3031 */
3032 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3033 return;
3034 #endif
3035 __preempt_count_add(val);
3036 #ifdef CONFIG_DEBUG_PREEMPT
3037 /*
3038 * Spinlock count overflowing soon?
3039 */
3040 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3041 PREEMPT_MASK - 10);
3042 #endif
3043 if (preempt_count() == val) {
3044 unsigned long ip = get_parent_ip(CALLER_ADDR1);
3045 #ifdef CONFIG_DEBUG_PREEMPT
3046 current->preempt_disable_ip = ip;
3047 #endif
3048 trace_preempt_off(CALLER_ADDR0, ip);
3049 }
3050 }
3051 EXPORT_SYMBOL(preempt_count_add);
3052 NOKPROBE_SYMBOL(preempt_count_add);
3053
3054 void preempt_count_sub(int val)
3055 {
3056 #ifdef CONFIG_DEBUG_PREEMPT
3057 /*
3058 * Underflow?
3059 */
3060 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3061 return;
3062 /*
3063 * Is the spinlock portion underflowing?
3064 */
3065 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3066 !(preempt_count() & PREEMPT_MASK)))
3067 return;
3068 #endif
3069
3070 if (preempt_count() == val)
3071 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3072 __preempt_count_sub(val);
3073 }
3074 EXPORT_SYMBOL(preempt_count_sub);
3075 NOKPROBE_SYMBOL(preempt_count_sub);
3076
3077 #endif
3078
3079 /*
3080 * Print scheduling while atomic bug:
3081 */
3082 static noinline void __schedule_bug(struct task_struct *prev)
3083 {
3084 if (oops_in_progress)
3085 return;
3086
3087 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3088 prev->comm, prev->pid, preempt_count());
3089
3090 debug_show_held_locks(prev);
3091 print_modules();
3092 if (irqs_disabled())
3093 print_irqtrace_events(prev);
3094 #ifdef CONFIG_DEBUG_PREEMPT
3095 if (in_atomic_preempt_off()) {
3096 pr_err("Preemption disabled at:");
3097 print_ip_sym(current->preempt_disable_ip);
3098 pr_cont("\n");
3099 }
3100 #endif
3101 dump_stack();
3102 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3103 }
3104
3105 /*
3106 * Various schedule()-time debugging checks and statistics:
3107 */
3108 static inline void schedule_debug(struct task_struct *prev)
3109 {
3110 #ifdef CONFIG_SCHED_STACK_END_CHECK
3111 BUG_ON(task_stack_end_corrupted(prev));
3112 #endif
3113
3114 if (unlikely(in_atomic_preempt_off())) {
3115 __schedule_bug(prev);
3116 preempt_count_set(PREEMPT_DISABLED);
3117 }
3118 rcu_sleep_check();
3119
3120 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3121
3122 schedstat_inc(this_rq(), sched_count);
3123 }
3124
3125 /*
3126 * Pick up the highest-prio task:
3127 */
3128 static inline struct task_struct *
3129 pick_next_task(struct rq *rq, struct task_struct *prev)
3130 {
3131 const struct sched_class *class = &fair_sched_class;
3132 struct task_struct *p;
3133
3134 /*
3135 * Optimization: we know that if all tasks are in
3136 * the fair class we can call that function directly:
3137 */
3138 if (likely(prev->sched_class == class &&
3139 rq->nr_running == rq->cfs.h_nr_running)) {
3140 p = fair_sched_class.pick_next_task(rq, prev);
3141 if (unlikely(p == RETRY_TASK))
3142 goto again;
3143
3144 /* assumes fair_sched_class->next == idle_sched_class */
3145 if (unlikely(!p))
3146 p = idle_sched_class.pick_next_task(rq, prev);
3147
3148 return p;
3149 }
3150
3151 again:
3152 for_each_class(class) {
3153 p = class->pick_next_task(rq, prev);
3154 if (p) {
3155 if (unlikely(p == RETRY_TASK))
3156 goto again;
3157 return p;
3158 }
3159 }
3160
3161 BUG(); /* the idle class will always have a runnable task */
3162 }
3163
3164 /*
3165 * __schedule() is the main scheduler function.
3166 *
3167 * The main means of driving the scheduler and thus entering this function are:
3168 *
3169 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3170 *
3171 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3172 * paths. For example, see arch/x86/entry_64.S.
3173 *
3174 * To drive preemption between tasks, the scheduler sets the flag in timer
3175 * interrupt handler scheduler_tick().
3176 *
3177 * 3. Wakeups don't really cause entry into schedule(). They add a
3178 * task to the run-queue and that's it.
3179 *
3180 * Now, if the new task added to the run-queue preempts the current
3181 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3182 * called on the nearest possible occasion:
3183 *
3184 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3185 *
3186 * - in syscall or exception context, at the next outmost
3187 * preempt_enable(). (this might be as soon as the wake_up()'s
3188 * spin_unlock()!)
3189 *
3190 * - in IRQ context, return from interrupt-handler to
3191 * preemptible context
3192 *
3193 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3194 * then at the next:
3195 *
3196 * - cond_resched() call
3197 * - explicit schedule() call
3198 * - return from syscall or exception to user-space
3199 * - return from interrupt-handler to user-space
3200 *
3201 * WARNING: must be called with preemption disabled!
3202 */
3203 static void __sched notrace __schedule(bool preempt)
3204 {
3205 struct task_struct *prev, *next;
3206 unsigned long *switch_count;
3207 struct rq *rq;
3208 int cpu;
3209
3210 cpu = smp_processor_id();
3211 rq = cpu_rq(cpu);
3212 prev = rq->curr;
3213
3214 /*
3215 * do_exit() calls schedule() with preemption disabled as an exception;
3216 * however we must fix that up, otherwise the next task will see an
3217 * inconsistent (higher) preempt count.
3218 *
3219 * It also avoids the below schedule_debug() test from complaining
3220 * about this.
3221 */
3222 if (unlikely(prev->state == TASK_DEAD))
3223 preempt_enable_no_resched_notrace();
3224
3225 schedule_debug(prev);
3226
3227 if (sched_feat(HRTICK))
3228 hrtick_clear(rq);
3229
3230 local_irq_disable();
3231 rcu_note_context_switch();
3232
3233 /*
3234 * Make sure that signal_pending_state()->signal_pending() below
3235 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3236 * done by the caller to avoid the race with signal_wake_up().
3237 */
3238 smp_mb__before_spinlock();
3239 raw_spin_lock(&rq->lock);
3240 lockdep_pin_lock(&rq->lock);
3241
3242 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3243
3244 switch_count = &prev->nivcsw;
3245 if (!preempt && prev->state) {
3246 if (unlikely(signal_pending_state(prev->state, prev))) {
3247 prev->state = TASK_RUNNING;
3248 } else {
3249 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3250 prev->on_rq = 0;
3251
3252 /*
3253 * If a worker went to sleep, notify and ask workqueue
3254 * whether it wants to wake up a task to maintain
3255 * concurrency.
3256 */
3257 if (prev->flags & PF_WQ_WORKER) {
3258 struct task_struct *to_wakeup;
3259
3260 to_wakeup = wq_worker_sleeping(prev, cpu);
3261 if (to_wakeup)
3262 try_to_wake_up_local(to_wakeup);
3263 }
3264 }
3265 switch_count = &prev->nvcsw;
3266 }
3267
3268 if (task_on_rq_queued(prev))
3269 update_rq_clock(rq);
3270
3271 next = pick_next_task(rq, prev);
3272 clear_tsk_need_resched(prev);
3273 clear_preempt_need_resched();
3274 rq->clock_skip_update = 0;
3275
3276 if (likely(prev != next)) {
3277 rq->nr_switches++;
3278 rq->curr = next;
3279 ++*switch_count;
3280
3281 trace_sched_switch(preempt, prev, next);
3282 rq = context_switch(rq, prev, next); /* unlocks the rq */
3283 cpu = cpu_of(rq);
3284 } else {
3285 lockdep_unpin_lock(&rq->lock);
3286 raw_spin_unlock_irq(&rq->lock);
3287 }
3288
3289 balance_callback(rq);
3290 }
3291
3292 static inline void sched_submit_work(struct task_struct *tsk)
3293 {
3294 if (!tsk->state || tsk_is_pi_blocked(tsk))
3295 return;
3296 /*
3297 * If we are going to sleep and we have plugged IO queued,
3298 * make sure to submit it to avoid deadlocks.
3299 */
3300 if (blk_needs_flush_plug(tsk))
3301 blk_schedule_flush_plug(tsk);
3302 }
3303
3304 asmlinkage __visible void __sched schedule(void)
3305 {
3306 struct task_struct *tsk = current;
3307
3308 sched_submit_work(tsk);
3309 do {
3310 preempt_disable();
3311 __schedule(false);
3312 sched_preempt_enable_no_resched();
3313 } while (need_resched());
3314 }
3315 EXPORT_SYMBOL(schedule);
3316
3317 #ifdef CONFIG_CONTEXT_TRACKING
3318 asmlinkage __visible void __sched schedule_user(void)
3319 {
3320 /*
3321 * If we come here after a random call to set_need_resched(),
3322 * or we have been woken up remotely but the IPI has not yet arrived,
3323 * we haven't yet exited the RCU idle mode. Do it here manually until
3324 * we find a better solution.
3325 *
3326 * NB: There are buggy callers of this function. Ideally we
3327 * should warn if prev_state != CONTEXT_USER, but that will trigger
3328 * too frequently to make sense yet.
3329 */
3330 enum ctx_state prev_state = exception_enter();
3331 schedule();
3332 exception_exit(prev_state);
3333 }
3334 #endif
3335
3336 /**
3337 * schedule_preempt_disabled - called with preemption disabled
3338 *
3339 * Returns with preemption disabled. Note: preempt_count must be 1
3340 */
3341 void __sched schedule_preempt_disabled(void)
3342 {
3343 sched_preempt_enable_no_resched();
3344 schedule();
3345 preempt_disable();
3346 }
3347
3348 static void __sched notrace preempt_schedule_common(void)
3349 {
3350 do {
3351 preempt_disable_notrace();
3352 __schedule(true);
3353 preempt_enable_no_resched_notrace();
3354
3355 /*
3356 * Check again in case we missed a preemption opportunity
3357 * between schedule and now.
3358 */
3359 } while (need_resched());
3360 }
3361
3362 #ifdef CONFIG_PREEMPT
3363 /*
3364 * this is the entry point to schedule() from in-kernel preemption
3365 * off of preempt_enable. Kernel preemptions off return from interrupt
3366 * occur there and call schedule directly.
3367 */
3368 asmlinkage __visible void __sched notrace preempt_schedule(void)
3369 {
3370 /*
3371 * If there is a non-zero preempt_count or interrupts are disabled,
3372 * we do not want to preempt the current task. Just return..
3373 */
3374 if (likely(!preemptible()))
3375 return;
3376
3377 preempt_schedule_common();
3378 }
3379 NOKPROBE_SYMBOL(preempt_schedule);
3380 EXPORT_SYMBOL(preempt_schedule);
3381
3382 /**
3383 * preempt_schedule_notrace - preempt_schedule called by tracing
3384 *
3385 * The tracing infrastructure uses preempt_enable_notrace to prevent
3386 * recursion and tracing preempt enabling caused by the tracing
3387 * infrastructure itself. But as tracing can happen in areas coming
3388 * from userspace or just about to enter userspace, a preempt enable
3389 * can occur before user_exit() is called. This will cause the scheduler
3390 * to be called when the system is still in usermode.
3391 *
3392 * To prevent this, the preempt_enable_notrace will use this function
3393 * instead of preempt_schedule() to exit user context if needed before
3394 * calling the scheduler.
3395 */
3396 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3397 {
3398 enum ctx_state prev_ctx;
3399
3400 if (likely(!preemptible()))
3401 return;
3402
3403 do {
3404 preempt_disable_notrace();
3405 /*
3406 * Needs preempt disabled in case user_exit() is traced
3407 * and the tracer calls preempt_enable_notrace() causing
3408 * an infinite recursion.
3409 */
3410 prev_ctx = exception_enter();
3411 __schedule(true);
3412 exception_exit(prev_ctx);
3413
3414 preempt_enable_no_resched_notrace();
3415 } while (need_resched());
3416 }
3417 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3418
3419 #endif /* CONFIG_PREEMPT */
3420
3421 /*
3422 * this is the entry point to schedule() from kernel preemption
3423 * off of irq context.
3424 * Note, that this is called and return with irqs disabled. This will
3425 * protect us against recursive calling from irq.
3426 */
3427 asmlinkage __visible void __sched preempt_schedule_irq(void)
3428 {
3429 enum ctx_state prev_state;
3430
3431 /* Catch callers which need to be fixed */
3432 BUG_ON(preempt_count() || !irqs_disabled());
3433
3434 prev_state = exception_enter();
3435
3436 do {
3437 preempt_disable();
3438 local_irq_enable();
3439 __schedule(true);
3440 local_irq_disable();
3441 sched_preempt_enable_no_resched();
3442 } while (need_resched());
3443
3444 exception_exit(prev_state);
3445 }
3446
3447 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3448 void *key)
3449 {
3450 return try_to_wake_up(curr->private, mode, wake_flags);
3451 }
3452 EXPORT_SYMBOL(default_wake_function);
3453
3454 #ifdef CONFIG_RT_MUTEXES
3455
3456 /*
3457 * rt_mutex_setprio - set the current priority of a task
3458 * @p: task
3459 * @prio: prio value (kernel-internal form)
3460 *
3461 * This function changes the 'effective' priority of a task. It does
3462 * not touch ->normal_prio like __setscheduler().
3463 *
3464 * Used by the rt_mutex code to implement priority inheritance
3465 * logic. Call site only calls if the priority of the task changed.
3466 */
3467 void rt_mutex_setprio(struct task_struct *p, int prio)
3468 {
3469 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3470 struct rq *rq;
3471 const struct sched_class *prev_class;
3472
3473 BUG_ON(prio > MAX_PRIO);
3474
3475 rq = __task_rq_lock(p);
3476
3477 /*
3478 * Idle task boosting is a nono in general. There is one
3479 * exception, when PREEMPT_RT and NOHZ is active:
3480 *
3481 * The idle task calls get_next_timer_interrupt() and holds
3482 * the timer wheel base->lock on the CPU and another CPU wants
3483 * to access the timer (probably to cancel it). We can safely
3484 * ignore the boosting request, as the idle CPU runs this code
3485 * with interrupts disabled and will complete the lock
3486 * protected section without being interrupted. So there is no
3487 * real need to boost.
3488 */
3489 if (unlikely(p == rq->idle)) {
3490 WARN_ON(p != rq->curr);
3491 WARN_ON(p->pi_blocked_on);
3492 goto out_unlock;
3493 }
3494
3495 trace_sched_pi_setprio(p, prio);
3496 oldprio = p->prio;
3497 prev_class = p->sched_class;
3498 queued = task_on_rq_queued(p);
3499 running = task_current(rq, p);
3500 if (queued)
3501 dequeue_task(rq, p, DEQUEUE_SAVE);
3502 if (running)
3503 put_prev_task(rq, p);
3504
3505 /*
3506 * Boosting condition are:
3507 * 1. -rt task is running and holds mutex A
3508 * --> -dl task blocks on mutex A
3509 *
3510 * 2. -dl task is running and holds mutex A
3511 * --> -dl task blocks on mutex A and could preempt the
3512 * running task
3513 */
3514 if (dl_prio(prio)) {
3515 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3516 if (!dl_prio(p->normal_prio) ||
3517 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3518 p->dl.dl_boosted = 1;
3519 enqueue_flag |= ENQUEUE_REPLENISH;
3520 } else
3521 p->dl.dl_boosted = 0;
3522 p->sched_class = &dl_sched_class;
3523 } else if (rt_prio(prio)) {
3524 if (dl_prio(oldprio))
3525 p->dl.dl_boosted = 0;
3526 if (oldprio < prio)
3527 enqueue_flag |= ENQUEUE_HEAD;
3528 p->sched_class = &rt_sched_class;
3529 } else {
3530 if (dl_prio(oldprio))
3531 p->dl.dl_boosted = 0;
3532 if (rt_prio(oldprio))
3533 p->rt.timeout = 0;
3534 p->sched_class = &fair_sched_class;
3535 }
3536
3537 p->prio = prio;
3538
3539 if (running)
3540 p->sched_class->set_curr_task(rq);
3541 if (queued)
3542 enqueue_task(rq, p, enqueue_flag);
3543
3544 check_class_changed(rq, p, prev_class, oldprio);
3545 out_unlock:
3546 preempt_disable(); /* avoid rq from going away on us */
3547 __task_rq_unlock(rq);
3548
3549 balance_callback(rq);
3550 preempt_enable();
3551 }
3552 #endif
3553
3554 void set_user_nice(struct task_struct *p, long nice)
3555 {
3556 int old_prio, delta, queued;
3557 unsigned long flags;
3558 struct rq *rq;
3559
3560 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3561 return;
3562 /*
3563 * We have to be careful, if called from sys_setpriority(),
3564 * the task might be in the middle of scheduling on another CPU.
3565 */
3566 rq = task_rq_lock(p, &flags);
3567 /*
3568 * The RT priorities are set via sched_setscheduler(), but we still
3569 * allow the 'normal' nice value to be set - but as expected
3570 * it wont have any effect on scheduling until the task is
3571 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3572 */
3573 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3574 p->static_prio = NICE_TO_PRIO(nice);
3575 goto out_unlock;
3576 }
3577 queued = task_on_rq_queued(p);
3578 if (queued)
3579 dequeue_task(rq, p, DEQUEUE_SAVE);
3580
3581 p->static_prio = NICE_TO_PRIO(nice);
3582 set_load_weight(p);
3583 old_prio = p->prio;
3584 p->prio = effective_prio(p);
3585 delta = p->prio - old_prio;
3586
3587 if (queued) {
3588 enqueue_task(rq, p, ENQUEUE_RESTORE);
3589 /*
3590 * If the task increased its priority or is running and
3591 * lowered its priority, then reschedule its CPU:
3592 */
3593 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3594 resched_curr(rq);
3595 }
3596 out_unlock:
3597 task_rq_unlock(rq, p, &flags);
3598 }
3599 EXPORT_SYMBOL(set_user_nice);
3600
3601 /*
3602 * can_nice - check if a task can reduce its nice value
3603 * @p: task
3604 * @nice: nice value
3605 */
3606 int can_nice(const struct task_struct *p, const int nice)
3607 {
3608 /* convert nice value [19,-20] to rlimit style value [1,40] */
3609 int nice_rlim = nice_to_rlimit(nice);
3610
3611 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3612 capable(CAP_SYS_NICE));
3613 }
3614
3615 #ifdef __ARCH_WANT_SYS_NICE
3616
3617 /*
3618 * sys_nice - change the priority of the current process.
3619 * @increment: priority increment
3620 *
3621 * sys_setpriority is a more generic, but much slower function that
3622 * does similar things.
3623 */
3624 SYSCALL_DEFINE1(nice, int, increment)
3625 {
3626 long nice, retval;
3627
3628 /*
3629 * Setpriority might change our priority at the same moment.
3630 * We don't have to worry. Conceptually one call occurs first
3631 * and we have a single winner.
3632 */
3633 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3634 nice = task_nice(current) + increment;
3635
3636 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3637 if (increment < 0 && !can_nice(current, nice))
3638 return -EPERM;
3639
3640 retval = security_task_setnice(current, nice);
3641 if (retval)
3642 return retval;
3643
3644 set_user_nice(current, nice);
3645 return 0;
3646 }
3647
3648 #endif
3649
3650 /**
3651 * task_prio - return the priority value of a given task.
3652 * @p: the task in question.
3653 *
3654 * Return: The priority value as seen by users in /proc.
3655 * RT tasks are offset by -200. Normal tasks are centered
3656 * around 0, value goes from -16 to +15.
3657 */
3658 int task_prio(const struct task_struct *p)
3659 {
3660 return p->prio - MAX_RT_PRIO;
3661 }
3662
3663 /**
3664 * idle_cpu - is a given cpu idle currently?
3665 * @cpu: the processor in question.
3666 *
3667 * Return: 1 if the CPU is currently idle. 0 otherwise.
3668 */
3669 int idle_cpu(int cpu)
3670 {
3671 struct rq *rq = cpu_rq(cpu);
3672
3673 if (rq->curr != rq->idle)
3674 return 0;
3675
3676 if (rq->nr_running)
3677 return 0;
3678
3679 #ifdef CONFIG_SMP
3680 if (!llist_empty(&rq->wake_list))
3681 return 0;
3682 #endif
3683
3684 return 1;
3685 }
3686
3687 /**
3688 * idle_task - return the idle task for a given cpu.
3689 * @cpu: the processor in question.
3690 *
3691 * Return: The idle task for the cpu @cpu.
3692 */
3693 struct task_struct *idle_task(int cpu)
3694 {
3695 return cpu_rq(cpu)->idle;
3696 }
3697
3698 /**
3699 * find_process_by_pid - find a process with a matching PID value.
3700 * @pid: the pid in question.
3701 *
3702 * The task of @pid, if found. %NULL otherwise.
3703 */
3704 static struct task_struct *find_process_by_pid(pid_t pid)
3705 {
3706 return pid ? find_task_by_vpid(pid) : current;
3707 }
3708
3709 /*
3710 * This function initializes the sched_dl_entity of a newly becoming
3711 * SCHED_DEADLINE task.
3712 *
3713 * Only the static values are considered here, the actual runtime and the
3714 * absolute deadline will be properly calculated when the task is enqueued
3715 * for the first time with its new policy.
3716 */
3717 static void
3718 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3719 {
3720 struct sched_dl_entity *dl_se = &p->dl;
3721
3722 dl_se->dl_runtime = attr->sched_runtime;
3723 dl_se->dl_deadline = attr->sched_deadline;
3724 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3725 dl_se->flags = attr->sched_flags;
3726 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3727
3728 /*
3729 * Changing the parameters of a task is 'tricky' and we're not doing
3730 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3731 *
3732 * What we SHOULD do is delay the bandwidth release until the 0-lag
3733 * point. This would include retaining the task_struct until that time
3734 * and change dl_overflow() to not immediately decrement the current
3735 * amount.
3736 *
3737 * Instead we retain the current runtime/deadline and let the new
3738 * parameters take effect after the current reservation period lapses.
3739 * This is safe (albeit pessimistic) because the 0-lag point is always
3740 * before the current scheduling deadline.
3741 *
3742 * We can still have temporary overloads because we do not delay the
3743 * change in bandwidth until that time; so admission control is
3744 * not on the safe side. It does however guarantee tasks will never
3745 * consume more than promised.
3746 */
3747 }
3748
3749 /*
3750 * sched_setparam() passes in -1 for its policy, to let the functions
3751 * it calls know not to change it.
3752 */
3753 #define SETPARAM_POLICY -1
3754
3755 static void __setscheduler_params(struct task_struct *p,
3756 const struct sched_attr *attr)
3757 {
3758 int policy = attr->sched_policy;
3759
3760 if (policy == SETPARAM_POLICY)
3761 policy = p->policy;
3762
3763 p->policy = policy;
3764
3765 if (dl_policy(policy))
3766 __setparam_dl(p, attr);
3767 else if (fair_policy(policy))
3768 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3769
3770 /*
3771 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3772 * !rt_policy. Always setting this ensures that things like
3773 * getparam()/getattr() don't report silly values for !rt tasks.
3774 */
3775 p->rt_priority = attr->sched_priority;
3776 p->normal_prio = normal_prio(p);
3777 set_load_weight(p);
3778 }
3779
3780 /* Actually do priority change: must hold pi & rq lock. */
3781 static void __setscheduler(struct rq *rq, struct task_struct *p,
3782 const struct sched_attr *attr, bool keep_boost)
3783 {
3784 __setscheduler_params(p, attr);
3785
3786 /*
3787 * Keep a potential priority boosting if called from
3788 * sched_setscheduler().
3789 */
3790 if (keep_boost)
3791 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3792 else
3793 p->prio = normal_prio(p);
3794
3795 if (dl_prio(p->prio))
3796 p->sched_class = &dl_sched_class;
3797 else if (rt_prio(p->prio))
3798 p->sched_class = &rt_sched_class;
3799 else
3800 p->sched_class = &fair_sched_class;
3801 }
3802
3803 static void
3804 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3805 {
3806 struct sched_dl_entity *dl_se = &p->dl;
3807
3808 attr->sched_priority = p->rt_priority;
3809 attr->sched_runtime = dl_se->dl_runtime;
3810 attr->sched_deadline = dl_se->dl_deadline;
3811 attr->sched_period = dl_se->dl_period;
3812 attr->sched_flags = dl_se->flags;
3813 }
3814
3815 /*
3816 * This function validates the new parameters of a -deadline task.
3817 * We ask for the deadline not being zero, and greater or equal
3818 * than the runtime, as well as the period of being zero or
3819 * greater than deadline. Furthermore, we have to be sure that
3820 * user parameters are above the internal resolution of 1us (we
3821 * check sched_runtime only since it is always the smaller one) and
3822 * below 2^63 ns (we have to check both sched_deadline and
3823 * sched_period, as the latter can be zero).
3824 */
3825 static bool
3826 __checkparam_dl(const struct sched_attr *attr)
3827 {
3828 /* deadline != 0 */
3829 if (attr->sched_deadline == 0)
3830 return false;
3831
3832 /*
3833 * Since we truncate DL_SCALE bits, make sure we're at least
3834 * that big.
3835 */
3836 if (attr->sched_runtime < (1ULL << DL_SCALE))
3837 return false;
3838
3839 /*
3840 * Since we use the MSB for wrap-around and sign issues, make
3841 * sure it's not set (mind that period can be equal to zero).
3842 */
3843 if (attr->sched_deadline & (1ULL << 63) ||
3844 attr->sched_period & (1ULL << 63))
3845 return false;
3846
3847 /* runtime <= deadline <= period (if period != 0) */
3848 if ((attr->sched_period != 0 &&
3849 attr->sched_period < attr->sched_deadline) ||
3850 attr->sched_deadline < attr->sched_runtime)
3851 return false;
3852
3853 return true;
3854 }
3855
3856 /*
3857 * check the target process has a UID that matches the current process's
3858 */
3859 static bool check_same_owner(struct task_struct *p)
3860 {
3861 const struct cred *cred = current_cred(), *pcred;
3862 bool match;
3863
3864 rcu_read_lock();
3865 pcred = __task_cred(p);
3866 match = (uid_eq(cred->euid, pcred->euid) ||
3867 uid_eq(cred->euid, pcred->uid));
3868 rcu_read_unlock();
3869 return match;
3870 }
3871
3872 static bool dl_param_changed(struct task_struct *p,
3873 const struct sched_attr *attr)
3874 {
3875 struct sched_dl_entity *dl_se = &p->dl;
3876
3877 if (dl_se->dl_runtime != attr->sched_runtime ||
3878 dl_se->dl_deadline != attr->sched_deadline ||
3879 dl_se->dl_period != attr->sched_period ||
3880 dl_se->flags != attr->sched_flags)
3881 return true;
3882
3883 return false;
3884 }
3885
3886 static int __sched_setscheduler(struct task_struct *p,
3887 const struct sched_attr *attr,
3888 bool user, bool pi)
3889 {
3890 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3891 MAX_RT_PRIO - 1 - attr->sched_priority;
3892 int retval, oldprio, oldpolicy = -1, queued, running;
3893 int new_effective_prio, policy = attr->sched_policy;
3894 unsigned long flags;
3895 const struct sched_class *prev_class;
3896 struct rq *rq;
3897 int reset_on_fork;
3898
3899 /* may grab non-irq protected spin_locks */
3900 BUG_ON(in_interrupt());
3901 recheck:
3902 /* double check policy once rq lock held */
3903 if (policy < 0) {
3904 reset_on_fork = p->sched_reset_on_fork;
3905 policy = oldpolicy = p->policy;
3906 } else {
3907 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3908
3909 if (!valid_policy(policy))
3910 return -EINVAL;
3911 }
3912
3913 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3914 return -EINVAL;
3915
3916 /*
3917 * Valid priorities for SCHED_FIFO and SCHED_RR are
3918 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3919 * SCHED_BATCH and SCHED_IDLE is 0.
3920 */
3921 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3922 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3923 return -EINVAL;
3924 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3925 (rt_policy(policy) != (attr->sched_priority != 0)))
3926 return -EINVAL;
3927
3928 /*
3929 * Allow unprivileged RT tasks to decrease priority:
3930 */
3931 if (user && !capable(CAP_SYS_NICE)) {
3932 if (fair_policy(policy)) {
3933 if (attr->sched_nice < task_nice(p) &&
3934 !can_nice(p, attr->sched_nice))
3935 return -EPERM;
3936 }
3937
3938 if (rt_policy(policy)) {
3939 unsigned long rlim_rtprio =
3940 task_rlimit(p, RLIMIT_RTPRIO);
3941
3942 /* can't set/change the rt policy */
3943 if (policy != p->policy && !rlim_rtprio)
3944 return -EPERM;
3945
3946 /* can't increase priority */
3947 if (attr->sched_priority > p->rt_priority &&
3948 attr->sched_priority > rlim_rtprio)
3949 return -EPERM;
3950 }
3951
3952 /*
3953 * Can't set/change SCHED_DEADLINE policy at all for now
3954 * (safest behavior); in the future we would like to allow
3955 * unprivileged DL tasks to increase their relative deadline
3956 * or reduce their runtime (both ways reducing utilization)
3957 */
3958 if (dl_policy(policy))
3959 return -EPERM;
3960
3961 /*
3962 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3963 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3964 */
3965 if (idle_policy(p->policy) && !idle_policy(policy)) {
3966 if (!can_nice(p, task_nice(p)))
3967 return -EPERM;
3968 }
3969
3970 /* can't change other user's priorities */
3971 if (!check_same_owner(p))
3972 return -EPERM;
3973
3974 /* Normal users shall not reset the sched_reset_on_fork flag */
3975 if (p->sched_reset_on_fork && !reset_on_fork)
3976 return -EPERM;
3977 }
3978
3979 if (user) {
3980 retval = security_task_setscheduler(p);
3981 if (retval)
3982 return retval;
3983 }
3984
3985 /*
3986 * make sure no PI-waiters arrive (or leave) while we are
3987 * changing the priority of the task:
3988 *
3989 * To be able to change p->policy safely, the appropriate
3990 * runqueue lock must be held.
3991 */
3992 rq = task_rq_lock(p, &flags);
3993
3994 /*
3995 * Changing the policy of the stop threads its a very bad idea
3996 */
3997 if (p == rq->stop) {
3998 task_rq_unlock(rq, p, &flags);
3999 return -EINVAL;
4000 }
4001
4002 /*
4003 * If not changing anything there's no need to proceed further,
4004 * but store a possible modification of reset_on_fork.
4005 */
4006 if (unlikely(policy == p->policy)) {
4007 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4008 goto change;
4009 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4010 goto change;
4011 if (dl_policy(policy) && dl_param_changed(p, attr))
4012 goto change;
4013
4014 p->sched_reset_on_fork = reset_on_fork;
4015 task_rq_unlock(rq, p, &flags);
4016 return 0;
4017 }
4018 change:
4019
4020 if (user) {
4021 #ifdef CONFIG_RT_GROUP_SCHED
4022 /*
4023 * Do not allow realtime tasks into groups that have no runtime
4024 * assigned.
4025 */
4026 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4027 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4028 !task_group_is_autogroup(task_group(p))) {
4029 task_rq_unlock(rq, p, &flags);
4030 return -EPERM;
4031 }
4032 #endif
4033 #ifdef CONFIG_SMP
4034 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4035 cpumask_t *span = rq->rd->span;
4036
4037 /*
4038 * Don't allow tasks with an affinity mask smaller than
4039 * the entire root_domain to become SCHED_DEADLINE. We
4040 * will also fail if there's no bandwidth available.
4041 */
4042 if (!cpumask_subset(span, &p->cpus_allowed) ||
4043 rq->rd->dl_bw.bw == 0) {
4044 task_rq_unlock(rq, p, &flags);
4045 return -EPERM;
4046 }
4047 }
4048 #endif
4049 }
4050
4051 /* recheck policy now with rq lock held */
4052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4053 policy = oldpolicy = -1;
4054 task_rq_unlock(rq, p, &flags);
4055 goto recheck;
4056 }
4057
4058 /*
4059 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4060 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4061 * is available.
4062 */
4063 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4064 task_rq_unlock(rq, p, &flags);
4065 return -EBUSY;
4066 }
4067
4068 p->sched_reset_on_fork = reset_on_fork;
4069 oldprio = p->prio;
4070
4071 if (pi) {
4072 /*
4073 * Take priority boosted tasks into account. If the new
4074 * effective priority is unchanged, we just store the new
4075 * normal parameters and do not touch the scheduler class and
4076 * the runqueue. This will be done when the task deboost
4077 * itself.
4078 */
4079 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4080 if (new_effective_prio == oldprio) {
4081 __setscheduler_params(p, attr);
4082 task_rq_unlock(rq, p, &flags);
4083 return 0;
4084 }
4085 }
4086
4087 queued = task_on_rq_queued(p);
4088 running = task_current(rq, p);
4089 if (queued)
4090 dequeue_task(rq, p, DEQUEUE_SAVE);
4091 if (running)
4092 put_prev_task(rq, p);
4093
4094 prev_class = p->sched_class;
4095 __setscheduler(rq, p, attr, pi);
4096
4097 if (running)
4098 p->sched_class->set_curr_task(rq);
4099 if (queued) {
4100 int enqueue_flags = ENQUEUE_RESTORE;
4101 /*
4102 * We enqueue to tail when the priority of a task is
4103 * increased (user space view).
4104 */
4105 if (oldprio <= p->prio)
4106 enqueue_flags |= ENQUEUE_HEAD;
4107
4108 enqueue_task(rq, p, enqueue_flags);
4109 }
4110
4111 check_class_changed(rq, p, prev_class, oldprio);
4112 preempt_disable(); /* avoid rq from going away on us */
4113 task_rq_unlock(rq, p, &flags);
4114
4115 if (pi)
4116 rt_mutex_adjust_pi(p);
4117
4118 /*
4119 * Run balance callbacks after we've adjusted the PI chain.
4120 */
4121 balance_callback(rq);
4122 preempt_enable();
4123
4124 return 0;
4125 }
4126
4127 static int _sched_setscheduler(struct task_struct *p, int policy,
4128 const struct sched_param *param, bool check)
4129 {
4130 struct sched_attr attr = {
4131 .sched_policy = policy,
4132 .sched_priority = param->sched_priority,
4133 .sched_nice = PRIO_TO_NICE(p->static_prio),
4134 };
4135
4136 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4137 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4138 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4139 policy &= ~SCHED_RESET_ON_FORK;
4140 attr.sched_policy = policy;
4141 }
4142
4143 return __sched_setscheduler(p, &attr, check, true);
4144 }
4145 /**
4146 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4147 * @p: the task in question.
4148 * @policy: new policy.
4149 * @param: structure containing the new RT priority.
4150 *
4151 * Return: 0 on success. An error code otherwise.
4152 *
4153 * NOTE that the task may be already dead.
4154 */
4155 int sched_setscheduler(struct task_struct *p, int policy,
4156 const struct sched_param *param)
4157 {
4158 return _sched_setscheduler(p, policy, param, true);
4159 }
4160 EXPORT_SYMBOL_GPL(sched_setscheduler);
4161
4162 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4163 {
4164 return __sched_setscheduler(p, attr, true, true);
4165 }
4166 EXPORT_SYMBOL_GPL(sched_setattr);
4167
4168 /**
4169 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4170 * @p: the task in question.
4171 * @policy: new policy.
4172 * @param: structure containing the new RT priority.
4173 *
4174 * Just like sched_setscheduler, only don't bother checking if the
4175 * current context has permission. For example, this is needed in
4176 * stop_machine(): we create temporary high priority worker threads,
4177 * but our caller might not have that capability.
4178 *
4179 * Return: 0 on success. An error code otherwise.
4180 */
4181 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4182 const struct sched_param *param)
4183 {
4184 return _sched_setscheduler(p, policy, param, false);
4185 }
4186 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4187
4188 static int
4189 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4190 {
4191 struct sched_param lparam;
4192 struct task_struct *p;
4193 int retval;
4194
4195 if (!param || pid < 0)
4196 return -EINVAL;
4197 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4198 return -EFAULT;
4199
4200 rcu_read_lock();
4201 retval = -ESRCH;
4202 p = find_process_by_pid(pid);
4203 if (p != NULL)
4204 retval = sched_setscheduler(p, policy, &lparam);
4205 rcu_read_unlock();
4206
4207 return retval;
4208 }
4209
4210 /*
4211 * Mimics kernel/events/core.c perf_copy_attr().
4212 */
4213 static int sched_copy_attr(struct sched_attr __user *uattr,
4214 struct sched_attr *attr)
4215 {
4216 u32 size;
4217 int ret;
4218
4219 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4220 return -EFAULT;
4221
4222 /*
4223 * zero the full structure, so that a short copy will be nice.
4224 */
4225 memset(attr, 0, sizeof(*attr));
4226
4227 ret = get_user(size, &uattr->size);
4228 if (ret)
4229 return ret;
4230
4231 if (size > PAGE_SIZE) /* silly large */
4232 goto err_size;
4233
4234 if (!size) /* abi compat */
4235 size = SCHED_ATTR_SIZE_VER0;
4236
4237 if (size < SCHED_ATTR_SIZE_VER0)
4238 goto err_size;
4239
4240 /*
4241 * If we're handed a bigger struct than we know of,
4242 * ensure all the unknown bits are 0 - i.e. new
4243 * user-space does not rely on any kernel feature
4244 * extensions we dont know about yet.
4245 */
4246 if (size > sizeof(*attr)) {
4247 unsigned char __user *addr;
4248 unsigned char __user *end;
4249 unsigned char val;
4250
4251 addr = (void __user *)uattr + sizeof(*attr);
4252 end = (void __user *)uattr + size;
4253
4254 for (; addr < end; addr++) {
4255 ret = get_user(val, addr);
4256 if (ret)
4257 return ret;
4258 if (val)
4259 goto err_size;
4260 }
4261 size = sizeof(*attr);
4262 }
4263
4264 ret = copy_from_user(attr, uattr, size);
4265 if (ret)
4266 return -EFAULT;
4267
4268 /*
4269 * XXX: do we want to be lenient like existing syscalls; or do we want
4270 * to be strict and return an error on out-of-bounds values?
4271 */
4272 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4273
4274 return 0;
4275
4276 err_size:
4277 put_user(sizeof(*attr), &uattr->size);
4278 return -E2BIG;
4279 }
4280
4281 /**
4282 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4283 * @pid: the pid in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4286 *
4287 * Return: 0 on success. An error code otherwise.
4288 */
4289 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4290 struct sched_param __user *, param)
4291 {
4292 /* negative values for policy are not valid */
4293 if (policy < 0)
4294 return -EINVAL;
4295
4296 return do_sched_setscheduler(pid, policy, param);
4297 }
4298
4299 /**
4300 * sys_sched_setparam - set/change the RT priority of a thread
4301 * @pid: the pid in question.
4302 * @param: structure containing the new RT priority.
4303 *
4304 * Return: 0 on success. An error code otherwise.
4305 */
4306 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4307 {
4308 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4309 }
4310
4311 /**
4312 * sys_sched_setattr - same as above, but with extended sched_attr
4313 * @pid: the pid in question.
4314 * @uattr: structure containing the extended parameters.
4315 * @flags: for future extension.
4316 */
4317 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4318 unsigned int, flags)
4319 {
4320 struct sched_attr attr;
4321 struct task_struct *p;
4322 int retval;
4323
4324 if (!uattr || pid < 0 || flags)
4325 return -EINVAL;
4326
4327 retval = sched_copy_attr(uattr, &attr);
4328 if (retval)
4329 return retval;
4330
4331 if ((int)attr.sched_policy < 0)
4332 return -EINVAL;
4333
4334 rcu_read_lock();
4335 retval = -ESRCH;
4336 p = find_process_by_pid(pid);
4337 if (p != NULL)
4338 retval = sched_setattr(p, &attr);
4339 rcu_read_unlock();
4340
4341 return retval;
4342 }
4343
4344 /**
4345 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4346 * @pid: the pid in question.
4347 *
4348 * Return: On success, the policy of the thread. Otherwise, a negative error
4349 * code.
4350 */
4351 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4352 {
4353 struct task_struct *p;
4354 int retval;
4355
4356 if (pid < 0)
4357 return -EINVAL;
4358
4359 retval = -ESRCH;
4360 rcu_read_lock();
4361 p = find_process_by_pid(pid);
4362 if (p) {
4363 retval = security_task_getscheduler(p);
4364 if (!retval)
4365 retval = p->policy
4366 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4367 }
4368 rcu_read_unlock();
4369 return retval;
4370 }
4371
4372 /**
4373 * sys_sched_getparam - get the RT priority of a thread
4374 * @pid: the pid in question.
4375 * @param: structure containing the RT priority.
4376 *
4377 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4378 * code.
4379 */
4380 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4381 {
4382 struct sched_param lp = { .sched_priority = 0 };
4383 struct task_struct *p;
4384 int retval;
4385
4386 if (!param || pid < 0)
4387 return -EINVAL;
4388
4389 rcu_read_lock();
4390 p = find_process_by_pid(pid);
4391 retval = -ESRCH;
4392 if (!p)
4393 goto out_unlock;
4394
4395 retval = security_task_getscheduler(p);
4396 if (retval)
4397 goto out_unlock;
4398
4399 if (task_has_rt_policy(p))
4400 lp.sched_priority = p->rt_priority;
4401 rcu_read_unlock();
4402
4403 /*
4404 * This one might sleep, we cannot do it with a spinlock held ...
4405 */
4406 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4407
4408 return retval;
4409
4410 out_unlock:
4411 rcu_read_unlock();
4412 return retval;
4413 }
4414
4415 static int sched_read_attr(struct sched_attr __user *uattr,
4416 struct sched_attr *attr,
4417 unsigned int usize)
4418 {
4419 int ret;
4420
4421 if (!access_ok(VERIFY_WRITE, uattr, usize))
4422 return -EFAULT;
4423
4424 /*
4425 * If we're handed a smaller struct than we know of,
4426 * ensure all the unknown bits are 0 - i.e. old
4427 * user-space does not get uncomplete information.
4428 */
4429 if (usize < sizeof(*attr)) {
4430 unsigned char *addr;
4431 unsigned char *end;
4432
4433 addr = (void *)attr + usize;
4434 end = (void *)attr + sizeof(*attr);
4435
4436 for (; addr < end; addr++) {
4437 if (*addr)
4438 return -EFBIG;
4439 }
4440
4441 attr->size = usize;
4442 }
4443
4444 ret = copy_to_user(uattr, attr, attr->size);
4445 if (ret)
4446 return -EFAULT;
4447
4448 return 0;
4449 }
4450
4451 /**
4452 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4453 * @pid: the pid in question.
4454 * @uattr: structure containing the extended parameters.
4455 * @size: sizeof(attr) for fwd/bwd comp.
4456 * @flags: for future extension.
4457 */
4458 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4459 unsigned int, size, unsigned int, flags)
4460 {
4461 struct sched_attr attr = {
4462 .size = sizeof(struct sched_attr),
4463 };
4464 struct task_struct *p;
4465 int retval;
4466
4467 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4468 size < SCHED_ATTR_SIZE_VER0 || flags)
4469 return -EINVAL;
4470
4471 rcu_read_lock();
4472 p = find_process_by_pid(pid);
4473 retval = -ESRCH;
4474 if (!p)
4475 goto out_unlock;
4476
4477 retval = security_task_getscheduler(p);
4478 if (retval)
4479 goto out_unlock;
4480
4481 attr.sched_policy = p->policy;
4482 if (p->sched_reset_on_fork)
4483 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4484 if (task_has_dl_policy(p))
4485 __getparam_dl(p, &attr);
4486 else if (task_has_rt_policy(p))
4487 attr.sched_priority = p->rt_priority;
4488 else
4489 attr.sched_nice = task_nice(p);
4490
4491 rcu_read_unlock();
4492
4493 retval = sched_read_attr(uattr, &attr, size);
4494 return retval;
4495
4496 out_unlock:
4497 rcu_read_unlock();
4498 return retval;
4499 }
4500
4501 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4502 {
4503 cpumask_var_t cpus_allowed, new_mask;
4504 struct task_struct *p;
4505 int retval;
4506
4507 rcu_read_lock();
4508
4509 p = find_process_by_pid(pid);
4510 if (!p) {
4511 rcu_read_unlock();
4512 return -ESRCH;
4513 }
4514
4515 /* Prevent p going away */
4516 get_task_struct(p);
4517 rcu_read_unlock();
4518
4519 if (p->flags & PF_NO_SETAFFINITY) {
4520 retval = -EINVAL;
4521 goto out_put_task;
4522 }
4523 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4524 retval = -ENOMEM;
4525 goto out_put_task;
4526 }
4527 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4528 retval = -ENOMEM;
4529 goto out_free_cpus_allowed;
4530 }
4531 retval = -EPERM;
4532 if (!check_same_owner(p)) {
4533 rcu_read_lock();
4534 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4535 rcu_read_unlock();
4536 goto out_free_new_mask;
4537 }
4538 rcu_read_unlock();
4539 }
4540
4541 retval = security_task_setscheduler(p);
4542 if (retval)
4543 goto out_free_new_mask;
4544
4545
4546 cpuset_cpus_allowed(p, cpus_allowed);
4547 cpumask_and(new_mask, in_mask, cpus_allowed);
4548
4549 /*
4550 * Since bandwidth control happens on root_domain basis,
4551 * if admission test is enabled, we only admit -deadline
4552 * tasks allowed to run on all the CPUs in the task's
4553 * root_domain.
4554 */
4555 #ifdef CONFIG_SMP
4556 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4557 rcu_read_lock();
4558 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4559 retval = -EBUSY;
4560 rcu_read_unlock();
4561 goto out_free_new_mask;
4562 }
4563 rcu_read_unlock();
4564 }
4565 #endif
4566 again:
4567 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4568
4569 if (!retval) {
4570 cpuset_cpus_allowed(p, cpus_allowed);
4571 if (!cpumask_subset(new_mask, cpus_allowed)) {
4572 /*
4573 * We must have raced with a concurrent cpuset
4574 * update. Just reset the cpus_allowed to the
4575 * cpuset's cpus_allowed
4576 */
4577 cpumask_copy(new_mask, cpus_allowed);
4578 goto again;
4579 }
4580 }
4581 out_free_new_mask:
4582 free_cpumask_var(new_mask);
4583 out_free_cpus_allowed:
4584 free_cpumask_var(cpus_allowed);
4585 out_put_task:
4586 put_task_struct(p);
4587 return retval;
4588 }
4589
4590 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4591 struct cpumask *new_mask)
4592 {
4593 if (len < cpumask_size())
4594 cpumask_clear(new_mask);
4595 else if (len > cpumask_size())
4596 len = cpumask_size();
4597
4598 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4599 }
4600
4601 /**
4602 * sys_sched_setaffinity - set the cpu affinity of a process
4603 * @pid: pid of the process
4604 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4605 * @user_mask_ptr: user-space pointer to the new cpu mask
4606 *
4607 * Return: 0 on success. An error code otherwise.
4608 */
4609 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4610 unsigned long __user *, user_mask_ptr)
4611 {
4612 cpumask_var_t new_mask;
4613 int retval;
4614
4615 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4616 return -ENOMEM;
4617
4618 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4619 if (retval == 0)
4620 retval = sched_setaffinity(pid, new_mask);
4621 free_cpumask_var(new_mask);
4622 return retval;
4623 }
4624
4625 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4626 {
4627 struct task_struct *p;
4628 unsigned long flags;
4629 int retval;
4630
4631 rcu_read_lock();
4632
4633 retval = -ESRCH;
4634 p = find_process_by_pid(pid);
4635 if (!p)
4636 goto out_unlock;
4637
4638 retval = security_task_getscheduler(p);
4639 if (retval)
4640 goto out_unlock;
4641
4642 raw_spin_lock_irqsave(&p->pi_lock, flags);
4643 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4644 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4645
4646 out_unlock:
4647 rcu_read_unlock();
4648
4649 return retval;
4650 }
4651
4652 /**
4653 * sys_sched_getaffinity - get the cpu affinity of a process
4654 * @pid: pid of the process
4655 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4656 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4657 *
4658 * Return: 0 on success. An error code otherwise.
4659 */
4660 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4661 unsigned long __user *, user_mask_ptr)
4662 {
4663 int ret;
4664 cpumask_var_t mask;
4665
4666 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4667 return -EINVAL;
4668 if (len & (sizeof(unsigned long)-1))
4669 return -EINVAL;
4670
4671 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4672 return -ENOMEM;
4673
4674 ret = sched_getaffinity(pid, mask);
4675 if (ret == 0) {
4676 size_t retlen = min_t(size_t, len, cpumask_size());
4677
4678 if (copy_to_user(user_mask_ptr, mask, retlen))
4679 ret = -EFAULT;
4680 else
4681 ret = retlen;
4682 }
4683 free_cpumask_var(mask);
4684
4685 return ret;
4686 }
4687
4688 /**
4689 * sys_sched_yield - yield the current processor to other threads.
4690 *
4691 * This function yields the current CPU to other tasks. If there are no
4692 * other threads running on this CPU then this function will return.
4693 *
4694 * Return: 0.
4695 */
4696 SYSCALL_DEFINE0(sched_yield)
4697 {
4698 struct rq *rq = this_rq_lock();
4699
4700 schedstat_inc(rq, yld_count);
4701 current->sched_class->yield_task(rq);
4702
4703 /*
4704 * Since we are going to call schedule() anyway, there's
4705 * no need to preempt or enable interrupts:
4706 */
4707 __release(rq->lock);
4708 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4709 do_raw_spin_unlock(&rq->lock);
4710 sched_preempt_enable_no_resched();
4711
4712 schedule();
4713
4714 return 0;
4715 }
4716
4717 int __sched _cond_resched(void)
4718 {
4719 if (should_resched(0)) {
4720 preempt_schedule_common();
4721 return 1;
4722 }
4723 return 0;
4724 }
4725 EXPORT_SYMBOL(_cond_resched);
4726
4727 /*
4728 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4729 * call schedule, and on return reacquire the lock.
4730 *
4731 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4732 * operations here to prevent schedule() from being called twice (once via
4733 * spin_unlock(), once by hand).
4734 */
4735 int __cond_resched_lock(spinlock_t *lock)
4736 {
4737 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4738 int ret = 0;
4739
4740 lockdep_assert_held(lock);
4741
4742 if (spin_needbreak(lock) || resched) {
4743 spin_unlock(lock);
4744 if (resched)
4745 preempt_schedule_common();
4746 else
4747 cpu_relax();
4748 ret = 1;
4749 spin_lock(lock);
4750 }
4751 return ret;
4752 }
4753 EXPORT_SYMBOL(__cond_resched_lock);
4754
4755 int __sched __cond_resched_softirq(void)
4756 {
4757 BUG_ON(!in_softirq());
4758
4759 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4760 local_bh_enable();
4761 preempt_schedule_common();
4762 local_bh_disable();
4763 return 1;
4764 }
4765 return 0;
4766 }
4767 EXPORT_SYMBOL(__cond_resched_softirq);
4768
4769 /**
4770 * yield - yield the current processor to other threads.
4771 *
4772 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4773 *
4774 * The scheduler is at all times free to pick the calling task as the most
4775 * eligible task to run, if removing the yield() call from your code breaks
4776 * it, its already broken.
4777 *
4778 * Typical broken usage is:
4779 *
4780 * while (!event)
4781 * yield();
4782 *
4783 * where one assumes that yield() will let 'the other' process run that will
4784 * make event true. If the current task is a SCHED_FIFO task that will never
4785 * happen. Never use yield() as a progress guarantee!!
4786 *
4787 * If you want to use yield() to wait for something, use wait_event().
4788 * If you want to use yield() to be 'nice' for others, use cond_resched().
4789 * If you still want to use yield(), do not!
4790 */
4791 void __sched yield(void)
4792 {
4793 set_current_state(TASK_RUNNING);
4794 sys_sched_yield();
4795 }
4796 EXPORT_SYMBOL(yield);
4797
4798 /**
4799 * yield_to - yield the current processor to another thread in
4800 * your thread group, or accelerate that thread toward the
4801 * processor it's on.
4802 * @p: target task
4803 * @preempt: whether task preemption is allowed or not
4804 *
4805 * It's the caller's job to ensure that the target task struct
4806 * can't go away on us before we can do any checks.
4807 *
4808 * Return:
4809 * true (>0) if we indeed boosted the target task.
4810 * false (0) if we failed to boost the target.
4811 * -ESRCH if there's no task to yield to.
4812 */
4813 int __sched yield_to(struct task_struct *p, bool preempt)
4814 {
4815 struct task_struct *curr = current;
4816 struct rq *rq, *p_rq;
4817 unsigned long flags;
4818 int yielded = 0;
4819
4820 local_irq_save(flags);
4821 rq = this_rq();
4822
4823 again:
4824 p_rq = task_rq(p);
4825 /*
4826 * If we're the only runnable task on the rq and target rq also
4827 * has only one task, there's absolutely no point in yielding.
4828 */
4829 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4830 yielded = -ESRCH;
4831 goto out_irq;
4832 }
4833
4834 double_rq_lock(rq, p_rq);
4835 if (task_rq(p) != p_rq) {
4836 double_rq_unlock(rq, p_rq);
4837 goto again;
4838 }
4839
4840 if (!curr->sched_class->yield_to_task)
4841 goto out_unlock;
4842
4843 if (curr->sched_class != p->sched_class)
4844 goto out_unlock;
4845
4846 if (task_running(p_rq, p) || p->state)
4847 goto out_unlock;
4848
4849 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4850 if (yielded) {
4851 schedstat_inc(rq, yld_count);
4852 /*
4853 * Make p's CPU reschedule; pick_next_entity takes care of
4854 * fairness.
4855 */
4856 if (preempt && rq != p_rq)
4857 resched_curr(p_rq);
4858 }
4859
4860 out_unlock:
4861 double_rq_unlock(rq, p_rq);
4862 out_irq:
4863 local_irq_restore(flags);
4864
4865 if (yielded > 0)
4866 schedule();
4867
4868 return yielded;
4869 }
4870 EXPORT_SYMBOL_GPL(yield_to);
4871
4872 /*
4873 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4874 * that process accounting knows that this is a task in IO wait state.
4875 */
4876 long __sched io_schedule_timeout(long timeout)
4877 {
4878 int old_iowait = current->in_iowait;
4879 struct rq *rq;
4880 long ret;
4881
4882 current->in_iowait = 1;
4883 blk_schedule_flush_plug(current);
4884
4885 delayacct_blkio_start();
4886 rq = raw_rq();
4887 atomic_inc(&rq->nr_iowait);
4888 ret = schedule_timeout(timeout);
4889 current->in_iowait = old_iowait;
4890 atomic_dec(&rq->nr_iowait);
4891 delayacct_blkio_end();
4892
4893 return ret;
4894 }
4895 EXPORT_SYMBOL(io_schedule_timeout);
4896
4897 /**
4898 * sys_sched_get_priority_max - return maximum RT priority.
4899 * @policy: scheduling class.
4900 *
4901 * Return: On success, this syscall returns the maximum
4902 * rt_priority that can be used by a given scheduling class.
4903 * On failure, a negative error code is returned.
4904 */
4905 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4906 {
4907 int ret = -EINVAL;
4908
4909 switch (policy) {
4910 case SCHED_FIFO:
4911 case SCHED_RR:
4912 ret = MAX_USER_RT_PRIO-1;
4913 break;
4914 case SCHED_DEADLINE:
4915 case SCHED_NORMAL:
4916 case SCHED_BATCH:
4917 case SCHED_IDLE:
4918 ret = 0;
4919 break;
4920 }
4921 return ret;
4922 }
4923
4924 /**
4925 * sys_sched_get_priority_min - return minimum RT priority.
4926 * @policy: scheduling class.
4927 *
4928 * Return: On success, this syscall returns the minimum
4929 * rt_priority that can be used by a given scheduling class.
4930 * On failure, a negative error code is returned.
4931 */
4932 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4933 {
4934 int ret = -EINVAL;
4935
4936 switch (policy) {
4937 case SCHED_FIFO:
4938 case SCHED_RR:
4939 ret = 1;
4940 break;
4941 case SCHED_DEADLINE:
4942 case SCHED_NORMAL:
4943 case SCHED_BATCH:
4944 case SCHED_IDLE:
4945 ret = 0;
4946 }
4947 return ret;
4948 }
4949
4950 /**
4951 * sys_sched_rr_get_interval - return the default timeslice of a process.
4952 * @pid: pid of the process.
4953 * @interval: userspace pointer to the timeslice value.
4954 *
4955 * this syscall writes the default timeslice value of a given process
4956 * into the user-space timespec buffer. A value of '0' means infinity.
4957 *
4958 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4959 * an error code.
4960 */
4961 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4962 struct timespec __user *, interval)
4963 {
4964 struct task_struct *p;
4965 unsigned int time_slice;
4966 unsigned long flags;
4967 struct rq *rq;
4968 int retval;
4969 struct timespec t;
4970
4971 if (pid < 0)
4972 return -EINVAL;
4973
4974 retval = -ESRCH;
4975 rcu_read_lock();
4976 p = find_process_by_pid(pid);
4977 if (!p)
4978 goto out_unlock;
4979
4980 retval = security_task_getscheduler(p);
4981 if (retval)
4982 goto out_unlock;
4983
4984 rq = task_rq_lock(p, &flags);
4985 time_slice = 0;
4986 if (p->sched_class->get_rr_interval)
4987 time_slice = p->sched_class->get_rr_interval(rq, p);
4988 task_rq_unlock(rq, p, &flags);
4989
4990 rcu_read_unlock();
4991 jiffies_to_timespec(time_slice, &t);
4992 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4993 return retval;
4994
4995 out_unlock:
4996 rcu_read_unlock();
4997 return retval;
4998 }
4999
5000 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5001
5002 void sched_show_task(struct task_struct *p)
5003 {
5004 unsigned long free = 0;
5005 int ppid;
5006 unsigned long state = p->state;
5007
5008 if (state)
5009 state = __ffs(state) + 1;
5010 printk(KERN_INFO "%-15.15s %c", p->comm,
5011 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5012 #if BITS_PER_LONG == 32
5013 if (state == TASK_RUNNING)
5014 printk(KERN_CONT " running ");
5015 else
5016 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5017 #else
5018 if (state == TASK_RUNNING)
5019 printk(KERN_CONT " running task ");
5020 else
5021 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5022 #endif
5023 #ifdef CONFIG_DEBUG_STACK_USAGE
5024 free = stack_not_used(p);
5025 #endif
5026 ppid = 0;
5027 rcu_read_lock();
5028 if (pid_alive(p))
5029 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5030 rcu_read_unlock();
5031 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5032 task_pid_nr(p), ppid,
5033 (unsigned long)task_thread_info(p)->flags);
5034
5035 print_worker_info(KERN_INFO, p);
5036 show_stack(p, NULL);
5037 }
5038
5039 void show_state_filter(unsigned long state_filter)
5040 {
5041 struct task_struct *g, *p;
5042
5043 #if BITS_PER_LONG == 32
5044 printk(KERN_INFO
5045 " task PC stack pid father\n");
5046 #else
5047 printk(KERN_INFO
5048 " task PC stack pid father\n");
5049 #endif
5050 rcu_read_lock();
5051 for_each_process_thread(g, p) {
5052 /*
5053 * reset the NMI-timeout, listing all files on a slow
5054 * console might take a lot of time:
5055 */
5056 touch_nmi_watchdog();
5057 if (!state_filter || (p->state & state_filter))
5058 sched_show_task(p);
5059 }
5060
5061 touch_all_softlockup_watchdogs();
5062
5063 #ifdef CONFIG_SCHED_DEBUG
5064 sysrq_sched_debug_show();
5065 #endif
5066 rcu_read_unlock();
5067 /*
5068 * Only show locks if all tasks are dumped:
5069 */
5070 if (!state_filter)
5071 debug_show_all_locks();
5072 }
5073
5074 void init_idle_bootup_task(struct task_struct *idle)
5075 {
5076 idle->sched_class = &idle_sched_class;
5077 }
5078
5079 /**
5080 * init_idle - set up an idle thread for a given CPU
5081 * @idle: task in question
5082 * @cpu: cpu the idle task belongs to
5083 *
5084 * NOTE: this function does not set the idle thread's NEED_RESCHED
5085 * flag, to make booting more robust.
5086 */
5087 void init_idle(struct task_struct *idle, int cpu)
5088 {
5089 struct rq *rq = cpu_rq(cpu);
5090 unsigned long flags;
5091
5092 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5093 raw_spin_lock(&rq->lock);
5094
5095 __sched_fork(0, idle);
5096 idle->state = TASK_RUNNING;
5097 idle->se.exec_start = sched_clock();
5098
5099 #ifdef CONFIG_SMP
5100 /*
5101 * Its possible that init_idle() gets called multiple times on a task,
5102 * in that case do_set_cpus_allowed() will not do the right thing.
5103 *
5104 * And since this is boot we can forgo the serialization.
5105 */
5106 set_cpus_allowed_common(idle, cpumask_of(cpu));
5107 #endif
5108 /*
5109 * We're having a chicken and egg problem, even though we are
5110 * holding rq->lock, the cpu isn't yet set to this cpu so the
5111 * lockdep check in task_group() will fail.
5112 *
5113 * Similar case to sched_fork(). / Alternatively we could
5114 * use task_rq_lock() here and obtain the other rq->lock.
5115 *
5116 * Silence PROVE_RCU
5117 */
5118 rcu_read_lock();
5119 __set_task_cpu(idle, cpu);
5120 rcu_read_unlock();
5121
5122 rq->curr = rq->idle = idle;
5123 idle->on_rq = TASK_ON_RQ_QUEUED;
5124 #ifdef CONFIG_SMP
5125 idle->on_cpu = 1;
5126 #endif
5127 raw_spin_unlock(&rq->lock);
5128 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5129
5130 /* Set the preempt count _outside_ the spinlocks! */
5131 init_idle_preempt_count(idle, cpu);
5132
5133 /*
5134 * The idle tasks have their own, simple scheduling class:
5135 */
5136 idle->sched_class = &idle_sched_class;
5137 ftrace_graph_init_idle_task(idle, cpu);
5138 vtime_init_idle(idle, cpu);
5139 #ifdef CONFIG_SMP
5140 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141 #endif
5142 }
5143
5144 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5145 const struct cpumask *trial)
5146 {
5147 int ret = 1, trial_cpus;
5148 struct dl_bw *cur_dl_b;
5149 unsigned long flags;
5150
5151 if (!cpumask_weight(cur))
5152 return ret;
5153
5154 rcu_read_lock_sched();
5155 cur_dl_b = dl_bw_of(cpumask_any(cur));
5156 trial_cpus = cpumask_weight(trial);
5157
5158 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5159 if (cur_dl_b->bw != -1 &&
5160 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5161 ret = 0;
5162 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5163 rcu_read_unlock_sched();
5164
5165 return ret;
5166 }
5167
5168 int task_can_attach(struct task_struct *p,
5169 const struct cpumask *cs_cpus_allowed)
5170 {
5171 int ret = 0;
5172
5173 /*
5174 * Kthreads which disallow setaffinity shouldn't be moved
5175 * to a new cpuset; we don't want to change their cpu
5176 * affinity and isolating such threads by their set of
5177 * allowed nodes is unnecessary. Thus, cpusets are not
5178 * applicable for such threads. This prevents checking for
5179 * success of set_cpus_allowed_ptr() on all attached tasks
5180 * before cpus_allowed may be changed.
5181 */
5182 if (p->flags & PF_NO_SETAFFINITY) {
5183 ret = -EINVAL;
5184 goto out;
5185 }
5186
5187 #ifdef CONFIG_SMP
5188 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5189 cs_cpus_allowed)) {
5190 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5191 cs_cpus_allowed);
5192 struct dl_bw *dl_b;
5193 bool overflow;
5194 int cpus;
5195 unsigned long flags;
5196
5197 rcu_read_lock_sched();
5198 dl_b = dl_bw_of(dest_cpu);
5199 raw_spin_lock_irqsave(&dl_b->lock, flags);
5200 cpus = dl_bw_cpus(dest_cpu);
5201 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5202 if (overflow)
5203 ret = -EBUSY;
5204 else {
5205 /*
5206 * We reserve space for this task in the destination
5207 * root_domain, as we can't fail after this point.
5208 * We will free resources in the source root_domain
5209 * later on (see set_cpus_allowed_dl()).
5210 */
5211 __dl_add(dl_b, p->dl.dl_bw);
5212 }
5213 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5214 rcu_read_unlock_sched();
5215
5216 }
5217 #endif
5218 out:
5219 return ret;
5220 }
5221
5222 #ifdef CONFIG_SMP
5223
5224 #ifdef CONFIG_NUMA_BALANCING
5225 /* Migrate current task p to target_cpu */
5226 int migrate_task_to(struct task_struct *p, int target_cpu)
5227 {
5228 struct migration_arg arg = { p, target_cpu };
5229 int curr_cpu = task_cpu(p);
5230
5231 if (curr_cpu == target_cpu)
5232 return 0;
5233
5234 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5235 return -EINVAL;
5236
5237 /* TODO: This is not properly updating schedstats */
5238
5239 trace_sched_move_numa(p, curr_cpu, target_cpu);
5240 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5241 }
5242
5243 /*
5244 * Requeue a task on a given node and accurately track the number of NUMA
5245 * tasks on the runqueues
5246 */
5247 void sched_setnuma(struct task_struct *p, int nid)
5248 {
5249 struct rq *rq;
5250 unsigned long flags;
5251 bool queued, running;
5252
5253 rq = task_rq_lock(p, &flags);
5254 queued = task_on_rq_queued(p);
5255 running = task_current(rq, p);
5256
5257 if (queued)
5258 dequeue_task(rq, p, DEQUEUE_SAVE);
5259 if (running)
5260 put_prev_task(rq, p);
5261
5262 p->numa_preferred_nid = nid;
5263
5264 if (running)
5265 p->sched_class->set_curr_task(rq);
5266 if (queued)
5267 enqueue_task(rq, p, ENQUEUE_RESTORE);
5268 task_rq_unlock(rq, p, &flags);
5269 }
5270 #endif /* CONFIG_NUMA_BALANCING */
5271
5272 #ifdef CONFIG_HOTPLUG_CPU
5273 /*
5274 * Ensures that the idle task is using init_mm right before its cpu goes
5275 * offline.
5276 */
5277 void idle_task_exit(void)
5278 {
5279 struct mm_struct *mm = current->active_mm;
5280
5281 BUG_ON(cpu_online(smp_processor_id()));
5282
5283 if (mm != &init_mm) {
5284 switch_mm(mm, &init_mm, current);
5285 finish_arch_post_lock_switch();
5286 }
5287 mmdrop(mm);
5288 }
5289
5290 /*
5291 * Since this CPU is going 'away' for a while, fold any nr_active delta
5292 * we might have. Assumes we're called after migrate_tasks() so that the
5293 * nr_active count is stable.
5294 *
5295 * Also see the comment "Global load-average calculations".
5296 */
5297 static void calc_load_migrate(struct rq *rq)
5298 {
5299 long delta = calc_load_fold_active(rq);
5300 if (delta)
5301 atomic_long_add(delta, &calc_load_tasks);
5302 }
5303
5304 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5305 {
5306 }
5307
5308 static const struct sched_class fake_sched_class = {
5309 .put_prev_task = put_prev_task_fake,
5310 };
5311
5312 static struct task_struct fake_task = {
5313 /*
5314 * Avoid pull_{rt,dl}_task()
5315 */
5316 .prio = MAX_PRIO + 1,
5317 .sched_class = &fake_sched_class,
5318 };
5319
5320 /*
5321 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5322 * try_to_wake_up()->select_task_rq().
5323 *
5324 * Called with rq->lock held even though we'er in stop_machine() and
5325 * there's no concurrency possible, we hold the required locks anyway
5326 * because of lock validation efforts.
5327 */
5328 static void migrate_tasks(struct rq *dead_rq)
5329 {
5330 struct rq *rq = dead_rq;
5331 struct task_struct *next, *stop = rq->stop;
5332 int dest_cpu;
5333
5334 /*
5335 * Fudge the rq selection such that the below task selection loop
5336 * doesn't get stuck on the currently eligible stop task.
5337 *
5338 * We're currently inside stop_machine() and the rq is either stuck
5339 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5340 * either way we should never end up calling schedule() until we're
5341 * done here.
5342 */
5343 rq->stop = NULL;
5344
5345 /*
5346 * put_prev_task() and pick_next_task() sched
5347 * class method both need to have an up-to-date
5348 * value of rq->clock[_task]
5349 */
5350 update_rq_clock(rq);
5351
5352 for (;;) {
5353 /*
5354 * There's this thread running, bail when that's the only
5355 * remaining thread.
5356 */
5357 if (rq->nr_running == 1)
5358 break;
5359
5360 /*
5361 * pick_next_task assumes pinned rq->lock.
5362 */
5363 lockdep_pin_lock(&rq->lock);
5364 next = pick_next_task(rq, &fake_task);
5365 BUG_ON(!next);
5366 next->sched_class->put_prev_task(rq, next);
5367
5368 /*
5369 * Rules for changing task_struct::cpus_allowed are holding
5370 * both pi_lock and rq->lock, such that holding either
5371 * stabilizes the mask.
5372 *
5373 * Drop rq->lock is not quite as disastrous as it usually is
5374 * because !cpu_active at this point, which means load-balance
5375 * will not interfere. Also, stop-machine.
5376 */
5377 lockdep_unpin_lock(&rq->lock);
5378 raw_spin_unlock(&rq->lock);
5379 raw_spin_lock(&next->pi_lock);
5380 raw_spin_lock(&rq->lock);
5381
5382 /*
5383 * Since we're inside stop-machine, _nothing_ should have
5384 * changed the task, WARN if weird stuff happened, because in
5385 * that case the above rq->lock drop is a fail too.
5386 */
5387 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5388 raw_spin_unlock(&next->pi_lock);
5389 continue;
5390 }
5391
5392 /* Find suitable destination for @next, with force if needed. */
5393 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5394
5395 rq = __migrate_task(rq, next, dest_cpu);
5396 if (rq != dead_rq) {
5397 raw_spin_unlock(&rq->lock);
5398 rq = dead_rq;
5399 raw_spin_lock(&rq->lock);
5400 }
5401 raw_spin_unlock(&next->pi_lock);
5402 }
5403
5404 rq->stop = stop;
5405 }
5406 #endif /* CONFIG_HOTPLUG_CPU */
5407
5408 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5409
5410 static struct ctl_table sd_ctl_dir[] = {
5411 {
5412 .procname = "sched_domain",
5413 .mode = 0555,
5414 },
5415 {}
5416 };
5417
5418 static struct ctl_table sd_ctl_root[] = {
5419 {
5420 .procname = "kernel",
5421 .mode = 0555,
5422 .child = sd_ctl_dir,
5423 },
5424 {}
5425 };
5426
5427 static struct ctl_table *sd_alloc_ctl_entry(int n)
5428 {
5429 struct ctl_table *entry =
5430 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5431
5432 return entry;
5433 }
5434
5435 static void sd_free_ctl_entry(struct ctl_table **tablep)
5436 {
5437 struct ctl_table *entry;
5438
5439 /*
5440 * In the intermediate directories, both the child directory and
5441 * procname are dynamically allocated and could fail but the mode
5442 * will always be set. In the lowest directory the names are
5443 * static strings and all have proc handlers.
5444 */
5445 for (entry = *tablep; entry->mode; entry++) {
5446 if (entry->child)
5447 sd_free_ctl_entry(&entry->child);
5448 if (entry->proc_handler == NULL)
5449 kfree(entry->procname);
5450 }
5451
5452 kfree(*tablep);
5453 *tablep = NULL;
5454 }
5455
5456 static int min_load_idx = 0;
5457 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5458
5459 static void
5460 set_table_entry(struct ctl_table *entry,
5461 const char *procname, void *data, int maxlen,
5462 umode_t mode, proc_handler *proc_handler,
5463 bool load_idx)
5464 {
5465 entry->procname = procname;
5466 entry->data = data;
5467 entry->maxlen = maxlen;
5468 entry->mode = mode;
5469 entry->proc_handler = proc_handler;
5470
5471 if (load_idx) {
5472 entry->extra1 = &min_load_idx;
5473 entry->extra2 = &max_load_idx;
5474 }
5475 }
5476
5477 static struct ctl_table *
5478 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5479 {
5480 struct ctl_table *table = sd_alloc_ctl_entry(14);
5481
5482 if (table == NULL)
5483 return NULL;
5484
5485 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5486 sizeof(long), 0644, proc_doulongvec_minmax, false);
5487 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5488 sizeof(long), 0644, proc_doulongvec_minmax, false);
5489 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5490 sizeof(int), 0644, proc_dointvec_minmax, true);
5491 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5492 sizeof(int), 0644, proc_dointvec_minmax, true);
5493 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5494 sizeof(int), 0644, proc_dointvec_minmax, true);
5495 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5496 sizeof(int), 0644, proc_dointvec_minmax, true);
5497 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5498 sizeof(int), 0644, proc_dointvec_minmax, true);
5499 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5500 sizeof(int), 0644, proc_dointvec_minmax, false);
5501 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5502 sizeof(int), 0644, proc_dointvec_minmax, false);
5503 set_table_entry(&table[9], "cache_nice_tries",
5504 &sd->cache_nice_tries,
5505 sizeof(int), 0644, proc_dointvec_minmax, false);
5506 set_table_entry(&table[10], "flags", &sd->flags,
5507 sizeof(int), 0644, proc_dointvec_minmax, false);
5508 set_table_entry(&table[11], "max_newidle_lb_cost",
5509 &sd->max_newidle_lb_cost,
5510 sizeof(long), 0644, proc_doulongvec_minmax, false);
5511 set_table_entry(&table[12], "name", sd->name,
5512 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5513 /* &table[13] is terminator */
5514
5515 return table;
5516 }
5517
5518 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5519 {
5520 struct ctl_table *entry, *table;
5521 struct sched_domain *sd;
5522 int domain_num = 0, i;
5523 char buf[32];
5524
5525 for_each_domain(cpu, sd)
5526 domain_num++;
5527 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5528 if (table == NULL)
5529 return NULL;
5530
5531 i = 0;
5532 for_each_domain(cpu, sd) {
5533 snprintf(buf, 32, "domain%d", i);
5534 entry->procname = kstrdup(buf, GFP_KERNEL);
5535 entry->mode = 0555;
5536 entry->child = sd_alloc_ctl_domain_table(sd);
5537 entry++;
5538 i++;
5539 }
5540 return table;
5541 }
5542
5543 static struct ctl_table_header *sd_sysctl_header;
5544 static void register_sched_domain_sysctl(void)
5545 {
5546 int i, cpu_num = num_possible_cpus();
5547 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5548 char buf[32];
5549
5550 WARN_ON(sd_ctl_dir[0].child);
5551 sd_ctl_dir[0].child = entry;
5552
5553 if (entry == NULL)
5554 return;
5555
5556 for_each_possible_cpu(i) {
5557 snprintf(buf, 32, "cpu%d", i);
5558 entry->procname = kstrdup(buf, GFP_KERNEL);
5559 entry->mode = 0555;
5560 entry->child = sd_alloc_ctl_cpu_table(i);
5561 entry++;
5562 }
5563
5564 WARN_ON(sd_sysctl_header);
5565 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5566 }
5567
5568 /* may be called multiple times per register */
5569 static void unregister_sched_domain_sysctl(void)
5570 {
5571 unregister_sysctl_table(sd_sysctl_header);
5572 sd_sysctl_header = NULL;
5573 if (sd_ctl_dir[0].child)
5574 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5575 }
5576 #else
5577 static void register_sched_domain_sysctl(void)
5578 {
5579 }
5580 static void unregister_sched_domain_sysctl(void)
5581 {
5582 }
5583 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5584
5585 static void set_rq_online(struct rq *rq)
5586 {
5587 if (!rq->online) {
5588 const struct sched_class *class;
5589
5590 cpumask_set_cpu(rq->cpu, rq->rd->online);
5591 rq->online = 1;
5592
5593 for_each_class(class) {
5594 if (class->rq_online)
5595 class->rq_online(rq);
5596 }
5597 }
5598 }
5599
5600 static void set_rq_offline(struct rq *rq)
5601 {
5602 if (rq->online) {
5603 const struct sched_class *class;
5604
5605 for_each_class(class) {
5606 if (class->rq_offline)
5607 class->rq_offline(rq);
5608 }
5609
5610 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5611 rq->online = 0;
5612 }
5613 }
5614
5615 /*
5616 * migration_call - callback that gets triggered when a CPU is added.
5617 * Here we can start up the necessary migration thread for the new CPU.
5618 */
5619 static int
5620 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5621 {
5622 int cpu = (long)hcpu;
5623 unsigned long flags;
5624 struct rq *rq = cpu_rq(cpu);
5625
5626 switch (action & ~CPU_TASKS_FROZEN) {
5627
5628 case CPU_UP_PREPARE:
5629 rq->calc_load_update = calc_load_update;
5630 break;
5631
5632 case CPU_ONLINE:
5633 /* Update our root-domain */
5634 raw_spin_lock_irqsave(&rq->lock, flags);
5635 if (rq->rd) {
5636 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5637
5638 set_rq_online(rq);
5639 }
5640 raw_spin_unlock_irqrestore(&rq->lock, flags);
5641 break;
5642
5643 #ifdef CONFIG_HOTPLUG_CPU
5644 case CPU_DYING:
5645 sched_ttwu_pending();
5646 /* Update our root-domain */
5647 raw_spin_lock_irqsave(&rq->lock, flags);
5648 if (rq->rd) {
5649 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5650 set_rq_offline(rq);
5651 }
5652 migrate_tasks(rq);
5653 BUG_ON(rq->nr_running != 1); /* the migration thread */
5654 raw_spin_unlock_irqrestore(&rq->lock, flags);
5655 break;
5656
5657 case CPU_DEAD:
5658 calc_load_migrate(rq);
5659 break;
5660 #endif
5661 }
5662
5663 update_max_interval();
5664
5665 return NOTIFY_OK;
5666 }
5667
5668 /*
5669 * Register at high priority so that task migration (migrate_all_tasks)
5670 * happens before everything else. This has to be lower priority than
5671 * the notifier in the perf_event subsystem, though.
5672 */
5673 static struct notifier_block migration_notifier = {
5674 .notifier_call = migration_call,
5675 .priority = CPU_PRI_MIGRATION,
5676 };
5677
5678 static void set_cpu_rq_start_time(void)
5679 {
5680 int cpu = smp_processor_id();
5681 struct rq *rq = cpu_rq(cpu);
5682 rq->age_stamp = sched_clock_cpu(cpu);
5683 }
5684
5685 static int sched_cpu_active(struct notifier_block *nfb,
5686 unsigned long action, void *hcpu)
5687 {
5688 int cpu = (long)hcpu;
5689
5690 switch (action & ~CPU_TASKS_FROZEN) {
5691 case CPU_STARTING:
5692 set_cpu_rq_start_time();
5693 return NOTIFY_OK;
5694
5695 case CPU_ONLINE:
5696 /*
5697 * At this point a starting CPU has marked itself as online via
5698 * set_cpu_online(). But it might not yet have marked itself
5699 * as active, which is essential from here on.
5700 */
5701 set_cpu_active(cpu, true);
5702 stop_machine_unpark(cpu);
5703 return NOTIFY_OK;
5704
5705 case CPU_DOWN_FAILED:
5706 set_cpu_active(cpu, true);
5707 return NOTIFY_OK;
5708
5709 default:
5710 return NOTIFY_DONE;
5711 }
5712 }
5713
5714 static int sched_cpu_inactive(struct notifier_block *nfb,
5715 unsigned long action, void *hcpu)
5716 {
5717 switch (action & ~CPU_TASKS_FROZEN) {
5718 case CPU_DOWN_PREPARE:
5719 set_cpu_active((long)hcpu, false);
5720 return NOTIFY_OK;
5721 default:
5722 return NOTIFY_DONE;
5723 }
5724 }
5725
5726 static int __init migration_init(void)
5727 {
5728 void *cpu = (void *)(long)smp_processor_id();
5729 int err;
5730
5731 /* Initialize migration for the boot CPU */
5732 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5733 BUG_ON(err == NOTIFY_BAD);
5734 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5735 register_cpu_notifier(&migration_notifier);
5736
5737 /* Register cpu active notifiers */
5738 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5739 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5740
5741 return 0;
5742 }
5743 early_initcall(migration_init);
5744
5745 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5746
5747 #ifdef CONFIG_SCHED_DEBUG
5748
5749 static __read_mostly int sched_debug_enabled;
5750
5751 static int __init sched_debug_setup(char *str)
5752 {
5753 sched_debug_enabled = 1;
5754
5755 return 0;
5756 }
5757 early_param("sched_debug", sched_debug_setup);
5758
5759 static inline bool sched_debug(void)
5760 {
5761 return sched_debug_enabled;
5762 }
5763
5764 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5765 struct cpumask *groupmask)
5766 {
5767 struct sched_group *group = sd->groups;
5768
5769 cpumask_clear(groupmask);
5770
5771 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5772
5773 if (!(sd->flags & SD_LOAD_BALANCE)) {
5774 printk("does not load-balance\n");
5775 if (sd->parent)
5776 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5777 " has parent");
5778 return -1;
5779 }
5780
5781 printk(KERN_CONT "span %*pbl level %s\n",
5782 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5783
5784 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5785 printk(KERN_ERR "ERROR: domain->span does not contain "
5786 "CPU%d\n", cpu);
5787 }
5788 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5789 printk(KERN_ERR "ERROR: domain->groups does not contain"
5790 " CPU%d\n", cpu);
5791 }
5792
5793 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5794 do {
5795 if (!group) {
5796 printk("\n");
5797 printk(KERN_ERR "ERROR: group is NULL\n");
5798 break;
5799 }
5800
5801 if (!cpumask_weight(sched_group_cpus(group))) {
5802 printk(KERN_CONT "\n");
5803 printk(KERN_ERR "ERROR: empty group\n");
5804 break;
5805 }
5806
5807 if (!(sd->flags & SD_OVERLAP) &&
5808 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5809 printk(KERN_CONT "\n");
5810 printk(KERN_ERR "ERROR: repeated CPUs\n");
5811 break;
5812 }
5813
5814 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5815
5816 printk(KERN_CONT " %*pbl",
5817 cpumask_pr_args(sched_group_cpus(group)));
5818 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5819 printk(KERN_CONT " (cpu_capacity = %d)",
5820 group->sgc->capacity);
5821 }
5822
5823 group = group->next;
5824 } while (group != sd->groups);
5825 printk(KERN_CONT "\n");
5826
5827 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5828 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5829
5830 if (sd->parent &&
5831 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5832 printk(KERN_ERR "ERROR: parent span is not a superset "
5833 "of domain->span\n");
5834 return 0;
5835 }
5836
5837 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5838 {
5839 int level = 0;
5840
5841 if (!sched_debug_enabled)
5842 return;
5843
5844 if (!sd) {
5845 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5846 return;
5847 }
5848
5849 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5850
5851 for (;;) {
5852 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5853 break;
5854 level++;
5855 sd = sd->parent;
5856 if (!sd)
5857 break;
5858 }
5859 }
5860 #else /* !CONFIG_SCHED_DEBUG */
5861 # define sched_domain_debug(sd, cpu) do { } while (0)
5862 static inline bool sched_debug(void)
5863 {
5864 return false;
5865 }
5866 #endif /* CONFIG_SCHED_DEBUG */
5867
5868 static int sd_degenerate(struct sched_domain *sd)
5869 {
5870 if (cpumask_weight(sched_domain_span(sd)) == 1)
5871 return 1;
5872
5873 /* Following flags need at least 2 groups */
5874 if (sd->flags & (SD_LOAD_BALANCE |
5875 SD_BALANCE_NEWIDLE |
5876 SD_BALANCE_FORK |
5877 SD_BALANCE_EXEC |
5878 SD_SHARE_CPUCAPACITY |
5879 SD_SHARE_PKG_RESOURCES |
5880 SD_SHARE_POWERDOMAIN)) {
5881 if (sd->groups != sd->groups->next)
5882 return 0;
5883 }
5884
5885 /* Following flags don't use groups */
5886 if (sd->flags & (SD_WAKE_AFFINE))
5887 return 0;
5888
5889 return 1;
5890 }
5891
5892 static int
5893 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5894 {
5895 unsigned long cflags = sd->flags, pflags = parent->flags;
5896
5897 if (sd_degenerate(parent))
5898 return 1;
5899
5900 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5901 return 0;
5902
5903 /* Flags needing groups don't count if only 1 group in parent */
5904 if (parent->groups == parent->groups->next) {
5905 pflags &= ~(SD_LOAD_BALANCE |
5906 SD_BALANCE_NEWIDLE |
5907 SD_BALANCE_FORK |
5908 SD_BALANCE_EXEC |
5909 SD_SHARE_CPUCAPACITY |
5910 SD_SHARE_PKG_RESOURCES |
5911 SD_PREFER_SIBLING |
5912 SD_SHARE_POWERDOMAIN);
5913 if (nr_node_ids == 1)
5914 pflags &= ~SD_SERIALIZE;
5915 }
5916 if (~cflags & pflags)
5917 return 0;
5918
5919 return 1;
5920 }
5921
5922 static void free_rootdomain(struct rcu_head *rcu)
5923 {
5924 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5925
5926 cpupri_cleanup(&rd->cpupri);
5927 cpudl_cleanup(&rd->cpudl);
5928 free_cpumask_var(rd->dlo_mask);
5929 free_cpumask_var(rd->rto_mask);
5930 free_cpumask_var(rd->online);
5931 free_cpumask_var(rd->span);
5932 kfree(rd);
5933 }
5934
5935 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5936 {
5937 struct root_domain *old_rd = NULL;
5938 unsigned long flags;
5939
5940 raw_spin_lock_irqsave(&rq->lock, flags);
5941
5942 if (rq->rd) {
5943 old_rd = rq->rd;
5944
5945 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5946 set_rq_offline(rq);
5947
5948 cpumask_clear_cpu(rq->cpu, old_rd->span);
5949
5950 /*
5951 * If we dont want to free the old_rd yet then
5952 * set old_rd to NULL to skip the freeing later
5953 * in this function:
5954 */
5955 if (!atomic_dec_and_test(&old_rd->refcount))
5956 old_rd = NULL;
5957 }
5958
5959 atomic_inc(&rd->refcount);
5960 rq->rd = rd;
5961
5962 cpumask_set_cpu(rq->cpu, rd->span);
5963 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5964 set_rq_online(rq);
5965
5966 raw_spin_unlock_irqrestore(&rq->lock, flags);
5967
5968 if (old_rd)
5969 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5970 }
5971
5972 static int init_rootdomain(struct root_domain *rd)
5973 {
5974 memset(rd, 0, sizeof(*rd));
5975
5976 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5977 goto out;
5978 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5979 goto free_span;
5980 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5981 goto free_online;
5982 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5983 goto free_dlo_mask;
5984
5985 init_dl_bw(&rd->dl_bw);
5986 if (cpudl_init(&rd->cpudl) != 0)
5987 goto free_dlo_mask;
5988
5989 if (cpupri_init(&rd->cpupri) != 0)
5990 goto free_rto_mask;
5991 return 0;
5992
5993 free_rto_mask:
5994 free_cpumask_var(rd->rto_mask);
5995 free_dlo_mask:
5996 free_cpumask_var(rd->dlo_mask);
5997 free_online:
5998 free_cpumask_var(rd->online);
5999 free_span:
6000 free_cpumask_var(rd->span);
6001 out:
6002 return -ENOMEM;
6003 }
6004
6005 /*
6006 * By default the system creates a single root-domain with all cpus as
6007 * members (mimicking the global state we have today).
6008 */
6009 struct root_domain def_root_domain;
6010
6011 static void init_defrootdomain(void)
6012 {
6013 init_rootdomain(&def_root_domain);
6014
6015 atomic_set(&def_root_domain.refcount, 1);
6016 }
6017
6018 static struct root_domain *alloc_rootdomain(void)
6019 {
6020 struct root_domain *rd;
6021
6022 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6023 if (!rd)
6024 return NULL;
6025
6026 if (init_rootdomain(rd) != 0) {
6027 kfree(rd);
6028 return NULL;
6029 }
6030
6031 return rd;
6032 }
6033
6034 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6035 {
6036 struct sched_group *tmp, *first;
6037
6038 if (!sg)
6039 return;
6040
6041 first = sg;
6042 do {
6043 tmp = sg->next;
6044
6045 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6046 kfree(sg->sgc);
6047
6048 kfree(sg);
6049 sg = tmp;
6050 } while (sg != first);
6051 }
6052
6053 static void free_sched_domain(struct rcu_head *rcu)
6054 {
6055 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6056
6057 /*
6058 * If its an overlapping domain it has private groups, iterate and
6059 * nuke them all.
6060 */
6061 if (sd->flags & SD_OVERLAP) {
6062 free_sched_groups(sd->groups, 1);
6063 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6064 kfree(sd->groups->sgc);
6065 kfree(sd->groups);
6066 }
6067 kfree(sd);
6068 }
6069
6070 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6071 {
6072 call_rcu(&sd->rcu, free_sched_domain);
6073 }
6074
6075 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6076 {
6077 for (; sd; sd = sd->parent)
6078 destroy_sched_domain(sd, cpu);
6079 }
6080
6081 /*
6082 * Keep a special pointer to the highest sched_domain that has
6083 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6084 * allows us to avoid some pointer chasing select_idle_sibling().
6085 *
6086 * Also keep a unique ID per domain (we use the first cpu number in
6087 * the cpumask of the domain), this allows us to quickly tell if
6088 * two cpus are in the same cache domain, see cpus_share_cache().
6089 */
6090 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6091 DEFINE_PER_CPU(int, sd_llc_size);
6092 DEFINE_PER_CPU(int, sd_llc_id);
6093 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6094 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6095 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6096
6097 static void update_top_cache_domain(int cpu)
6098 {
6099 struct sched_domain *sd;
6100 struct sched_domain *busy_sd = NULL;
6101 int id = cpu;
6102 int size = 1;
6103
6104 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6105 if (sd) {
6106 id = cpumask_first(sched_domain_span(sd));
6107 size = cpumask_weight(sched_domain_span(sd));
6108 busy_sd = sd->parent; /* sd_busy */
6109 }
6110 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6111
6112 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6113 per_cpu(sd_llc_size, cpu) = size;
6114 per_cpu(sd_llc_id, cpu) = id;
6115
6116 sd = lowest_flag_domain(cpu, SD_NUMA);
6117 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6118
6119 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6120 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6121 }
6122
6123 /*
6124 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6125 * hold the hotplug lock.
6126 */
6127 static void
6128 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6129 {
6130 struct rq *rq = cpu_rq(cpu);
6131 struct sched_domain *tmp;
6132
6133 /* Remove the sched domains which do not contribute to scheduling. */
6134 for (tmp = sd; tmp; ) {
6135 struct sched_domain *parent = tmp->parent;
6136 if (!parent)
6137 break;
6138
6139 if (sd_parent_degenerate(tmp, parent)) {
6140 tmp->parent = parent->parent;
6141 if (parent->parent)
6142 parent->parent->child = tmp;
6143 /*
6144 * Transfer SD_PREFER_SIBLING down in case of a
6145 * degenerate parent; the spans match for this
6146 * so the property transfers.
6147 */
6148 if (parent->flags & SD_PREFER_SIBLING)
6149 tmp->flags |= SD_PREFER_SIBLING;
6150 destroy_sched_domain(parent, cpu);
6151 } else
6152 tmp = tmp->parent;
6153 }
6154
6155 if (sd && sd_degenerate(sd)) {
6156 tmp = sd;
6157 sd = sd->parent;
6158 destroy_sched_domain(tmp, cpu);
6159 if (sd)
6160 sd->child = NULL;
6161 }
6162
6163 sched_domain_debug(sd, cpu);
6164
6165 rq_attach_root(rq, rd);
6166 tmp = rq->sd;
6167 rcu_assign_pointer(rq->sd, sd);
6168 destroy_sched_domains(tmp, cpu);
6169
6170 update_top_cache_domain(cpu);
6171 }
6172
6173 /* Setup the mask of cpus configured for isolated domains */
6174 static int __init isolated_cpu_setup(char *str)
6175 {
6176 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6177 cpulist_parse(str, cpu_isolated_map);
6178 return 1;
6179 }
6180
6181 __setup("isolcpus=", isolated_cpu_setup);
6182
6183 struct s_data {
6184 struct sched_domain ** __percpu sd;
6185 struct root_domain *rd;
6186 };
6187
6188 enum s_alloc {
6189 sa_rootdomain,
6190 sa_sd,
6191 sa_sd_storage,
6192 sa_none,
6193 };
6194
6195 /*
6196 * Build an iteration mask that can exclude certain CPUs from the upwards
6197 * domain traversal.
6198 *
6199 * Asymmetric node setups can result in situations where the domain tree is of
6200 * unequal depth, make sure to skip domains that already cover the entire
6201 * range.
6202 *
6203 * In that case build_sched_domains() will have terminated the iteration early
6204 * and our sibling sd spans will be empty. Domains should always include the
6205 * cpu they're built on, so check that.
6206 *
6207 */
6208 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6209 {
6210 const struct cpumask *span = sched_domain_span(sd);
6211 struct sd_data *sdd = sd->private;
6212 struct sched_domain *sibling;
6213 int i;
6214
6215 for_each_cpu(i, span) {
6216 sibling = *per_cpu_ptr(sdd->sd, i);
6217 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6218 continue;
6219
6220 cpumask_set_cpu(i, sched_group_mask(sg));
6221 }
6222 }
6223
6224 /*
6225 * Return the canonical balance cpu for this group, this is the first cpu
6226 * of this group that's also in the iteration mask.
6227 */
6228 int group_balance_cpu(struct sched_group *sg)
6229 {
6230 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6231 }
6232
6233 static int
6234 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6235 {
6236 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6237 const struct cpumask *span = sched_domain_span(sd);
6238 struct cpumask *covered = sched_domains_tmpmask;
6239 struct sd_data *sdd = sd->private;
6240 struct sched_domain *sibling;
6241 int i;
6242
6243 cpumask_clear(covered);
6244
6245 for_each_cpu(i, span) {
6246 struct cpumask *sg_span;
6247
6248 if (cpumask_test_cpu(i, covered))
6249 continue;
6250
6251 sibling = *per_cpu_ptr(sdd->sd, i);
6252
6253 /* See the comment near build_group_mask(). */
6254 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6255 continue;
6256
6257 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6258 GFP_KERNEL, cpu_to_node(cpu));
6259
6260 if (!sg)
6261 goto fail;
6262
6263 sg_span = sched_group_cpus(sg);
6264 if (sibling->child)
6265 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6266 else
6267 cpumask_set_cpu(i, sg_span);
6268
6269 cpumask_or(covered, covered, sg_span);
6270
6271 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6272 if (atomic_inc_return(&sg->sgc->ref) == 1)
6273 build_group_mask(sd, sg);
6274
6275 /*
6276 * Initialize sgc->capacity such that even if we mess up the
6277 * domains and no possible iteration will get us here, we won't
6278 * die on a /0 trap.
6279 */
6280 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6281
6282 /*
6283 * Make sure the first group of this domain contains the
6284 * canonical balance cpu. Otherwise the sched_domain iteration
6285 * breaks. See update_sg_lb_stats().
6286 */
6287 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6288 group_balance_cpu(sg) == cpu)
6289 groups = sg;
6290
6291 if (!first)
6292 first = sg;
6293 if (last)
6294 last->next = sg;
6295 last = sg;
6296 last->next = first;
6297 }
6298 sd->groups = groups;
6299
6300 return 0;
6301
6302 fail:
6303 free_sched_groups(first, 0);
6304
6305 return -ENOMEM;
6306 }
6307
6308 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6309 {
6310 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6311 struct sched_domain *child = sd->child;
6312
6313 if (child)
6314 cpu = cpumask_first(sched_domain_span(child));
6315
6316 if (sg) {
6317 *sg = *per_cpu_ptr(sdd->sg, cpu);
6318 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6319 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6320 }
6321
6322 return cpu;
6323 }
6324
6325 /*
6326 * build_sched_groups will build a circular linked list of the groups
6327 * covered by the given span, and will set each group's ->cpumask correctly,
6328 * and ->cpu_capacity to 0.
6329 *
6330 * Assumes the sched_domain tree is fully constructed
6331 */
6332 static int
6333 build_sched_groups(struct sched_domain *sd, int cpu)
6334 {
6335 struct sched_group *first = NULL, *last = NULL;
6336 struct sd_data *sdd = sd->private;
6337 const struct cpumask *span = sched_domain_span(sd);
6338 struct cpumask *covered;
6339 int i;
6340
6341 get_group(cpu, sdd, &sd->groups);
6342 atomic_inc(&sd->groups->ref);
6343
6344 if (cpu != cpumask_first(span))
6345 return 0;
6346
6347 lockdep_assert_held(&sched_domains_mutex);
6348 covered = sched_domains_tmpmask;
6349
6350 cpumask_clear(covered);
6351
6352 for_each_cpu(i, span) {
6353 struct sched_group *sg;
6354 int group, j;
6355
6356 if (cpumask_test_cpu(i, covered))
6357 continue;
6358
6359 group = get_group(i, sdd, &sg);
6360 cpumask_setall(sched_group_mask(sg));
6361
6362 for_each_cpu(j, span) {
6363 if (get_group(j, sdd, NULL) != group)
6364 continue;
6365
6366 cpumask_set_cpu(j, covered);
6367 cpumask_set_cpu(j, sched_group_cpus(sg));
6368 }
6369
6370 if (!first)
6371 first = sg;
6372 if (last)
6373 last->next = sg;
6374 last = sg;
6375 }
6376 last->next = first;
6377
6378 return 0;
6379 }
6380
6381 /*
6382 * Initialize sched groups cpu_capacity.
6383 *
6384 * cpu_capacity indicates the capacity of sched group, which is used while
6385 * distributing the load between different sched groups in a sched domain.
6386 * Typically cpu_capacity for all the groups in a sched domain will be same
6387 * unless there are asymmetries in the topology. If there are asymmetries,
6388 * group having more cpu_capacity will pickup more load compared to the
6389 * group having less cpu_capacity.
6390 */
6391 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6392 {
6393 struct sched_group *sg = sd->groups;
6394
6395 WARN_ON(!sg);
6396
6397 do {
6398 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6399 sg = sg->next;
6400 } while (sg != sd->groups);
6401
6402 if (cpu != group_balance_cpu(sg))
6403 return;
6404
6405 update_group_capacity(sd, cpu);
6406 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6407 }
6408
6409 /*
6410 * Initializers for schedule domains
6411 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6412 */
6413
6414 static int default_relax_domain_level = -1;
6415 int sched_domain_level_max;
6416
6417 static int __init setup_relax_domain_level(char *str)
6418 {
6419 if (kstrtoint(str, 0, &default_relax_domain_level))
6420 pr_warn("Unable to set relax_domain_level\n");
6421
6422 return 1;
6423 }
6424 __setup("relax_domain_level=", setup_relax_domain_level);
6425
6426 static void set_domain_attribute(struct sched_domain *sd,
6427 struct sched_domain_attr *attr)
6428 {
6429 int request;
6430
6431 if (!attr || attr->relax_domain_level < 0) {
6432 if (default_relax_domain_level < 0)
6433 return;
6434 else
6435 request = default_relax_domain_level;
6436 } else
6437 request = attr->relax_domain_level;
6438 if (request < sd->level) {
6439 /* turn off idle balance on this domain */
6440 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6441 } else {
6442 /* turn on idle balance on this domain */
6443 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6444 }
6445 }
6446
6447 static void __sdt_free(const struct cpumask *cpu_map);
6448 static int __sdt_alloc(const struct cpumask *cpu_map);
6449
6450 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6451 const struct cpumask *cpu_map)
6452 {
6453 switch (what) {
6454 case sa_rootdomain:
6455 if (!atomic_read(&d->rd->refcount))
6456 free_rootdomain(&d->rd->rcu); /* fall through */
6457 case sa_sd:
6458 free_percpu(d->sd); /* fall through */
6459 case sa_sd_storage:
6460 __sdt_free(cpu_map); /* fall through */
6461 case sa_none:
6462 break;
6463 }
6464 }
6465
6466 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6467 const struct cpumask *cpu_map)
6468 {
6469 memset(d, 0, sizeof(*d));
6470
6471 if (__sdt_alloc(cpu_map))
6472 return sa_sd_storage;
6473 d->sd = alloc_percpu(struct sched_domain *);
6474 if (!d->sd)
6475 return sa_sd_storage;
6476 d->rd = alloc_rootdomain();
6477 if (!d->rd)
6478 return sa_sd;
6479 return sa_rootdomain;
6480 }
6481
6482 /*
6483 * NULL the sd_data elements we've used to build the sched_domain and
6484 * sched_group structure so that the subsequent __free_domain_allocs()
6485 * will not free the data we're using.
6486 */
6487 static void claim_allocations(int cpu, struct sched_domain *sd)
6488 {
6489 struct sd_data *sdd = sd->private;
6490
6491 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6492 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6493
6494 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6495 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6496
6497 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6498 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6499 }
6500
6501 #ifdef CONFIG_NUMA
6502 static int sched_domains_numa_levels;
6503 enum numa_topology_type sched_numa_topology_type;
6504 static int *sched_domains_numa_distance;
6505 int sched_max_numa_distance;
6506 static struct cpumask ***sched_domains_numa_masks;
6507 static int sched_domains_curr_level;
6508 #endif
6509
6510 /*
6511 * SD_flags allowed in topology descriptions.
6512 *
6513 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6514 * SD_SHARE_PKG_RESOURCES - describes shared caches
6515 * SD_NUMA - describes NUMA topologies
6516 * SD_SHARE_POWERDOMAIN - describes shared power domain
6517 *
6518 * Odd one out:
6519 * SD_ASYM_PACKING - describes SMT quirks
6520 */
6521 #define TOPOLOGY_SD_FLAGS \
6522 (SD_SHARE_CPUCAPACITY | \
6523 SD_SHARE_PKG_RESOURCES | \
6524 SD_NUMA | \
6525 SD_ASYM_PACKING | \
6526 SD_SHARE_POWERDOMAIN)
6527
6528 static struct sched_domain *
6529 sd_init(struct sched_domain_topology_level *tl, int cpu)
6530 {
6531 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6532 int sd_weight, sd_flags = 0;
6533
6534 #ifdef CONFIG_NUMA
6535 /*
6536 * Ugly hack to pass state to sd_numa_mask()...
6537 */
6538 sched_domains_curr_level = tl->numa_level;
6539 #endif
6540
6541 sd_weight = cpumask_weight(tl->mask(cpu));
6542
6543 if (tl->sd_flags)
6544 sd_flags = (*tl->sd_flags)();
6545 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6546 "wrong sd_flags in topology description\n"))
6547 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6548
6549 *sd = (struct sched_domain){
6550 .min_interval = sd_weight,
6551 .max_interval = 2*sd_weight,
6552 .busy_factor = 32,
6553 .imbalance_pct = 125,
6554
6555 .cache_nice_tries = 0,
6556 .busy_idx = 0,
6557 .idle_idx = 0,
6558 .newidle_idx = 0,
6559 .wake_idx = 0,
6560 .forkexec_idx = 0,
6561
6562 .flags = 1*SD_LOAD_BALANCE
6563 | 1*SD_BALANCE_NEWIDLE
6564 | 1*SD_BALANCE_EXEC
6565 | 1*SD_BALANCE_FORK
6566 | 0*SD_BALANCE_WAKE
6567 | 1*SD_WAKE_AFFINE
6568 | 0*SD_SHARE_CPUCAPACITY
6569 | 0*SD_SHARE_PKG_RESOURCES
6570 | 0*SD_SERIALIZE
6571 | 0*SD_PREFER_SIBLING
6572 | 0*SD_NUMA
6573 | sd_flags
6574 ,
6575
6576 .last_balance = jiffies,
6577 .balance_interval = sd_weight,
6578 .smt_gain = 0,
6579 .max_newidle_lb_cost = 0,
6580 .next_decay_max_lb_cost = jiffies,
6581 #ifdef CONFIG_SCHED_DEBUG
6582 .name = tl->name,
6583 #endif
6584 };
6585
6586 /*
6587 * Convert topological properties into behaviour.
6588 */
6589
6590 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6591 sd->flags |= SD_PREFER_SIBLING;
6592 sd->imbalance_pct = 110;
6593 sd->smt_gain = 1178; /* ~15% */
6594
6595 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6596 sd->imbalance_pct = 117;
6597 sd->cache_nice_tries = 1;
6598 sd->busy_idx = 2;
6599
6600 #ifdef CONFIG_NUMA
6601 } else if (sd->flags & SD_NUMA) {
6602 sd->cache_nice_tries = 2;
6603 sd->busy_idx = 3;
6604 sd->idle_idx = 2;
6605
6606 sd->flags |= SD_SERIALIZE;
6607 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6608 sd->flags &= ~(SD_BALANCE_EXEC |
6609 SD_BALANCE_FORK |
6610 SD_WAKE_AFFINE);
6611 }
6612
6613 #endif
6614 } else {
6615 sd->flags |= SD_PREFER_SIBLING;
6616 sd->cache_nice_tries = 1;
6617 sd->busy_idx = 2;
6618 sd->idle_idx = 1;
6619 }
6620
6621 sd->private = &tl->data;
6622
6623 return sd;
6624 }
6625
6626 /*
6627 * Topology list, bottom-up.
6628 */
6629 static struct sched_domain_topology_level default_topology[] = {
6630 #ifdef CONFIG_SCHED_SMT
6631 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6632 #endif
6633 #ifdef CONFIG_SCHED_MC
6634 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6635 #endif
6636 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6637 { NULL, },
6638 };
6639
6640 static struct sched_domain_topology_level *sched_domain_topology =
6641 default_topology;
6642
6643 #define for_each_sd_topology(tl) \
6644 for (tl = sched_domain_topology; tl->mask; tl++)
6645
6646 void set_sched_topology(struct sched_domain_topology_level *tl)
6647 {
6648 sched_domain_topology = tl;
6649 }
6650
6651 #ifdef CONFIG_NUMA
6652
6653 static const struct cpumask *sd_numa_mask(int cpu)
6654 {
6655 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6656 }
6657
6658 static void sched_numa_warn(const char *str)
6659 {
6660 static int done = false;
6661 int i,j;
6662
6663 if (done)
6664 return;
6665
6666 done = true;
6667
6668 printk(KERN_WARNING "ERROR: %s\n\n", str);
6669
6670 for (i = 0; i < nr_node_ids; i++) {
6671 printk(KERN_WARNING " ");
6672 for (j = 0; j < nr_node_ids; j++)
6673 printk(KERN_CONT "%02d ", node_distance(i,j));
6674 printk(KERN_CONT "\n");
6675 }
6676 printk(KERN_WARNING "\n");
6677 }
6678
6679 bool find_numa_distance(int distance)
6680 {
6681 int i;
6682
6683 if (distance == node_distance(0, 0))
6684 return true;
6685
6686 for (i = 0; i < sched_domains_numa_levels; i++) {
6687 if (sched_domains_numa_distance[i] == distance)
6688 return true;
6689 }
6690
6691 return false;
6692 }
6693
6694 /*
6695 * A system can have three types of NUMA topology:
6696 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6697 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6698 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6699 *
6700 * The difference between a glueless mesh topology and a backplane
6701 * topology lies in whether communication between not directly
6702 * connected nodes goes through intermediary nodes (where programs
6703 * could run), or through backplane controllers. This affects
6704 * placement of programs.
6705 *
6706 * The type of topology can be discerned with the following tests:
6707 * - If the maximum distance between any nodes is 1 hop, the system
6708 * is directly connected.
6709 * - If for two nodes A and B, located N > 1 hops away from each other,
6710 * there is an intermediary node C, which is < N hops away from both
6711 * nodes A and B, the system is a glueless mesh.
6712 */
6713 static void init_numa_topology_type(void)
6714 {
6715 int a, b, c, n;
6716
6717 n = sched_max_numa_distance;
6718
6719 if (sched_domains_numa_levels <= 1) {
6720 sched_numa_topology_type = NUMA_DIRECT;
6721 return;
6722 }
6723
6724 for_each_online_node(a) {
6725 for_each_online_node(b) {
6726 /* Find two nodes furthest removed from each other. */
6727 if (node_distance(a, b) < n)
6728 continue;
6729
6730 /* Is there an intermediary node between a and b? */
6731 for_each_online_node(c) {
6732 if (node_distance(a, c) < n &&
6733 node_distance(b, c) < n) {
6734 sched_numa_topology_type =
6735 NUMA_GLUELESS_MESH;
6736 return;
6737 }
6738 }
6739
6740 sched_numa_topology_type = NUMA_BACKPLANE;
6741 return;
6742 }
6743 }
6744 }
6745
6746 static void sched_init_numa(void)
6747 {
6748 int next_distance, curr_distance = node_distance(0, 0);
6749 struct sched_domain_topology_level *tl;
6750 int level = 0;
6751 int i, j, k;
6752
6753 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6754 if (!sched_domains_numa_distance)
6755 return;
6756
6757 /*
6758 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6759 * unique distances in the node_distance() table.
6760 *
6761 * Assumes node_distance(0,j) includes all distances in
6762 * node_distance(i,j) in order to avoid cubic time.
6763 */
6764 next_distance = curr_distance;
6765 for (i = 0; i < nr_node_ids; i++) {
6766 for (j = 0; j < nr_node_ids; j++) {
6767 for (k = 0; k < nr_node_ids; k++) {
6768 int distance = node_distance(i, k);
6769
6770 if (distance > curr_distance &&
6771 (distance < next_distance ||
6772 next_distance == curr_distance))
6773 next_distance = distance;
6774
6775 /*
6776 * While not a strong assumption it would be nice to know
6777 * about cases where if node A is connected to B, B is not
6778 * equally connected to A.
6779 */
6780 if (sched_debug() && node_distance(k, i) != distance)
6781 sched_numa_warn("Node-distance not symmetric");
6782
6783 if (sched_debug() && i && !find_numa_distance(distance))
6784 sched_numa_warn("Node-0 not representative");
6785 }
6786 if (next_distance != curr_distance) {
6787 sched_domains_numa_distance[level++] = next_distance;
6788 sched_domains_numa_levels = level;
6789 curr_distance = next_distance;
6790 } else break;
6791 }
6792
6793 /*
6794 * In case of sched_debug() we verify the above assumption.
6795 */
6796 if (!sched_debug())
6797 break;
6798 }
6799
6800 if (!level)
6801 return;
6802
6803 /*
6804 * 'level' contains the number of unique distances, excluding the
6805 * identity distance node_distance(i,i).
6806 *
6807 * The sched_domains_numa_distance[] array includes the actual distance
6808 * numbers.
6809 */
6810
6811 /*
6812 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6813 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6814 * the array will contain less then 'level' members. This could be
6815 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6816 * in other functions.
6817 *
6818 * We reset it to 'level' at the end of this function.
6819 */
6820 sched_domains_numa_levels = 0;
6821
6822 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6823 if (!sched_domains_numa_masks)
6824 return;
6825
6826 /*
6827 * Now for each level, construct a mask per node which contains all
6828 * cpus of nodes that are that many hops away from us.
6829 */
6830 for (i = 0; i < level; i++) {
6831 sched_domains_numa_masks[i] =
6832 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6833 if (!sched_domains_numa_masks[i])
6834 return;
6835
6836 for (j = 0; j < nr_node_ids; j++) {
6837 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6838 if (!mask)
6839 return;
6840
6841 sched_domains_numa_masks[i][j] = mask;
6842
6843 for_each_node(k) {
6844 if (node_distance(j, k) > sched_domains_numa_distance[i])
6845 continue;
6846
6847 cpumask_or(mask, mask, cpumask_of_node(k));
6848 }
6849 }
6850 }
6851
6852 /* Compute default topology size */
6853 for (i = 0; sched_domain_topology[i].mask; i++);
6854
6855 tl = kzalloc((i + level + 1) *
6856 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6857 if (!tl)
6858 return;
6859
6860 /*
6861 * Copy the default topology bits..
6862 */
6863 for (i = 0; sched_domain_topology[i].mask; i++)
6864 tl[i] = sched_domain_topology[i];
6865
6866 /*
6867 * .. and append 'j' levels of NUMA goodness.
6868 */
6869 for (j = 0; j < level; i++, j++) {
6870 tl[i] = (struct sched_domain_topology_level){
6871 .mask = sd_numa_mask,
6872 .sd_flags = cpu_numa_flags,
6873 .flags = SDTL_OVERLAP,
6874 .numa_level = j,
6875 SD_INIT_NAME(NUMA)
6876 };
6877 }
6878
6879 sched_domain_topology = tl;
6880
6881 sched_domains_numa_levels = level;
6882 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6883
6884 init_numa_topology_type();
6885 }
6886
6887 static void sched_domains_numa_masks_set(int cpu)
6888 {
6889 int i, j;
6890 int node = cpu_to_node(cpu);
6891
6892 for (i = 0; i < sched_domains_numa_levels; i++) {
6893 for (j = 0; j < nr_node_ids; j++) {
6894 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6895 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6896 }
6897 }
6898 }
6899
6900 static void sched_domains_numa_masks_clear(int cpu)
6901 {
6902 int i, j;
6903 for (i = 0; i < sched_domains_numa_levels; i++) {
6904 for (j = 0; j < nr_node_ids; j++)
6905 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6906 }
6907 }
6908
6909 /*
6910 * Update sched_domains_numa_masks[level][node] array when new cpus
6911 * are onlined.
6912 */
6913 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6914 unsigned long action,
6915 void *hcpu)
6916 {
6917 int cpu = (long)hcpu;
6918
6919 switch (action & ~CPU_TASKS_FROZEN) {
6920 case CPU_ONLINE:
6921 sched_domains_numa_masks_set(cpu);
6922 break;
6923
6924 case CPU_DEAD:
6925 sched_domains_numa_masks_clear(cpu);
6926 break;
6927
6928 default:
6929 return NOTIFY_DONE;
6930 }
6931
6932 return NOTIFY_OK;
6933 }
6934 #else
6935 static inline void sched_init_numa(void)
6936 {
6937 }
6938
6939 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6940 unsigned long action,
6941 void *hcpu)
6942 {
6943 return 0;
6944 }
6945 #endif /* CONFIG_NUMA */
6946
6947 static int __sdt_alloc(const struct cpumask *cpu_map)
6948 {
6949 struct sched_domain_topology_level *tl;
6950 int j;
6951
6952 for_each_sd_topology(tl) {
6953 struct sd_data *sdd = &tl->data;
6954
6955 sdd->sd = alloc_percpu(struct sched_domain *);
6956 if (!sdd->sd)
6957 return -ENOMEM;
6958
6959 sdd->sg = alloc_percpu(struct sched_group *);
6960 if (!sdd->sg)
6961 return -ENOMEM;
6962
6963 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6964 if (!sdd->sgc)
6965 return -ENOMEM;
6966
6967 for_each_cpu(j, cpu_map) {
6968 struct sched_domain *sd;
6969 struct sched_group *sg;
6970 struct sched_group_capacity *sgc;
6971
6972 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6973 GFP_KERNEL, cpu_to_node(j));
6974 if (!sd)
6975 return -ENOMEM;
6976
6977 *per_cpu_ptr(sdd->sd, j) = sd;
6978
6979 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6980 GFP_KERNEL, cpu_to_node(j));
6981 if (!sg)
6982 return -ENOMEM;
6983
6984 sg->next = sg;
6985
6986 *per_cpu_ptr(sdd->sg, j) = sg;
6987
6988 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6989 GFP_KERNEL, cpu_to_node(j));
6990 if (!sgc)
6991 return -ENOMEM;
6992
6993 *per_cpu_ptr(sdd->sgc, j) = sgc;
6994 }
6995 }
6996
6997 return 0;
6998 }
6999
7000 static void __sdt_free(const struct cpumask *cpu_map)
7001 {
7002 struct sched_domain_topology_level *tl;
7003 int j;
7004
7005 for_each_sd_topology(tl) {
7006 struct sd_data *sdd = &tl->data;
7007
7008 for_each_cpu(j, cpu_map) {
7009 struct sched_domain *sd;
7010
7011 if (sdd->sd) {
7012 sd = *per_cpu_ptr(sdd->sd, j);
7013 if (sd && (sd->flags & SD_OVERLAP))
7014 free_sched_groups(sd->groups, 0);
7015 kfree(*per_cpu_ptr(sdd->sd, j));
7016 }
7017
7018 if (sdd->sg)
7019 kfree(*per_cpu_ptr(sdd->sg, j));
7020 if (sdd->sgc)
7021 kfree(*per_cpu_ptr(sdd->sgc, j));
7022 }
7023 free_percpu(sdd->sd);
7024 sdd->sd = NULL;
7025 free_percpu(sdd->sg);
7026 sdd->sg = NULL;
7027 free_percpu(sdd->sgc);
7028 sdd->sgc = NULL;
7029 }
7030 }
7031
7032 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7033 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7034 struct sched_domain *child, int cpu)
7035 {
7036 struct sched_domain *sd = sd_init(tl, cpu);
7037 if (!sd)
7038 return child;
7039
7040 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7041 if (child) {
7042 sd->level = child->level + 1;
7043 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7044 child->parent = sd;
7045 sd->child = child;
7046
7047 if (!cpumask_subset(sched_domain_span(child),
7048 sched_domain_span(sd))) {
7049 pr_err("BUG: arch topology borken\n");
7050 #ifdef CONFIG_SCHED_DEBUG
7051 pr_err(" the %s domain not a subset of the %s domain\n",
7052 child->name, sd->name);
7053 #endif
7054 /* Fixup, ensure @sd has at least @child cpus. */
7055 cpumask_or(sched_domain_span(sd),
7056 sched_domain_span(sd),
7057 sched_domain_span(child));
7058 }
7059
7060 }
7061 set_domain_attribute(sd, attr);
7062
7063 return sd;
7064 }
7065
7066 /*
7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus
7069 */
7070 static int build_sched_domains(const struct cpumask *cpu_map,
7071 struct sched_domain_attr *attr)
7072 {
7073 enum s_alloc alloc_state;
7074 struct sched_domain *sd;
7075 struct s_data d;
7076 int i, ret = -ENOMEM;
7077
7078 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7079 if (alloc_state != sa_rootdomain)
7080 goto error;
7081
7082 /* Set up domains for cpus specified by the cpu_map. */
7083 for_each_cpu(i, cpu_map) {
7084 struct sched_domain_topology_level *tl;
7085
7086 sd = NULL;
7087 for_each_sd_topology(tl) {
7088 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7089 if (tl == sched_domain_topology)
7090 *per_cpu_ptr(d.sd, i) = sd;
7091 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7092 sd->flags |= SD_OVERLAP;
7093 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7094 break;
7095 }
7096 }
7097
7098 /* Build the groups for the domains */
7099 for_each_cpu(i, cpu_map) {
7100 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7101 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7102 if (sd->flags & SD_OVERLAP) {
7103 if (build_overlap_sched_groups(sd, i))
7104 goto error;
7105 } else {
7106 if (build_sched_groups(sd, i))
7107 goto error;
7108 }
7109 }
7110 }
7111
7112 /* Calculate CPU capacity for physical packages and nodes */
7113 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7114 if (!cpumask_test_cpu(i, cpu_map))
7115 continue;
7116
7117 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7118 claim_allocations(i, sd);
7119 init_sched_groups_capacity(i, sd);
7120 }
7121 }
7122
7123 /* Attach the domains */
7124 rcu_read_lock();
7125 for_each_cpu(i, cpu_map) {
7126 sd = *per_cpu_ptr(d.sd, i);
7127 cpu_attach_domain(sd, d.rd, i);
7128 }
7129 rcu_read_unlock();
7130
7131 ret = 0;
7132 error:
7133 __free_domain_allocs(&d, alloc_state, cpu_map);
7134 return ret;
7135 }
7136
7137 static cpumask_var_t *doms_cur; /* current sched domains */
7138 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7139 static struct sched_domain_attr *dattr_cur;
7140 /* attribues of custom domains in 'doms_cur' */
7141
7142 /*
7143 * Special case: If a kmalloc of a doms_cur partition (array of
7144 * cpumask) fails, then fallback to a single sched domain,
7145 * as determined by the single cpumask fallback_doms.
7146 */
7147 static cpumask_var_t fallback_doms;
7148
7149 /*
7150 * arch_update_cpu_topology lets virtualized architectures update the
7151 * cpu core maps. It is supposed to return 1 if the topology changed
7152 * or 0 if it stayed the same.
7153 */
7154 int __weak arch_update_cpu_topology(void)
7155 {
7156 return 0;
7157 }
7158
7159 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7160 {
7161 int i;
7162 cpumask_var_t *doms;
7163
7164 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7165 if (!doms)
7166 return NULL;
7167 for (i = 0; i < ndoms; i++) {
7168 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7169 free_sched_domains(doms, i);
7170 return NULL;
7171 }
7172 }
7173 return doms;
7174 }
7175
7176 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7177 {
7178 unsigned int i;
7179 for (i = 0; i < ndoms; i++)
7180 free_cpumask_var(doms[i]);
7181 kfree(doms);
7182 }
7183
7184 /*
7185 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7186 * For now this just excludes isolated cpus, but could be used to
7187 * exclude other special cases in the future.
7188 */
7189 static int init_sched_domains(const struct cpumask *cpu_map)
7190 {
7191 int err;
7192
7193 arch_update_cpu_topology();
7194 ndoms_cur = 1;
7195 doms_cur = alloc_sched_domains(ndoms_cur);
7196 if (!doms_cur)
7197 doms_cur = &fallback_doms;
7198 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7199 err = build_sched_domains(doms_cur[0], NULL);
7200 register_sched_domain_sysctl();
7201
7202 return err;
7203 }
7204
7205 /*
7206 * Detach sched domains from a group of cpus specified in cpu_map
7207 * These cpus will now be attached to the NULL domain
7208 */
7209 static void detach_destroy_domains(const struct cpumask *cpu_map)
7210 {
7211 int i;
7212
7213 rcu_read_lock();
7214 for_each_cpu(i, cpu_map)
7215 cpu_attach_domain(NULL, &def_root_domain, i);
7216 rcu_read_unlock();
7217 }
7218
7219 /* handle null as "default" */
7220 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7221 struct sched_domain_attr *new, int idx_new)
7222 {
7223 struct sched_domain_attr tmp;
7224
7225 /* fast path */
7226 if (!new && !cur)
7227 return 1;
7228
7229 tmp = SD_ATTR_INIT;
7230 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7231 new ? (new + idx_new) : &tmp,
7232 sizeof(struct sched_domain_attr));
7233 }
7234
7235 /*
7236 * Partition sched domains as specified by the 'ndoms_new'
7237 * cpumasks in the array doms_new[] of cpumasks. This compares
7238 * doms_new[] to the current sched domain partitioning, doms_cur[].
7239 * It destroys each deleted domain and builds each new domain.
7240 *
7241 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7242 * The masks don't intersect (don't overlap.) We should setup one
7243 * sched domain for each mask. CPUs not in any of the cpumasks will
7244 * not be load balanced. If the same cpumask appears both in the
7245 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7246 * it as it is.
7247 *
7248 * The passed in 'doms_new' should be allocated using
7249 * alloc_sched_domains. This routine takes ownership of it and will
7250 * free_sched_domains it when done with it. If the caller failed the
7251 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7252 * and partition_sched_domains() will fallback to the single partition
7253 * 'fallback_doms', it also forces the domains to be rebuilt.
7254 *
7255 * If doms_new == NULL it will be replaced with cpu_online_mask.
7256 * ndoms_new == 0 is a special case for destroying existing domains,
7257 * and it will not create the default domain.
7258 *
7259 * Call with hotplug lock held
7260 */
7261 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7262 struct sched_domain_attr *dattr_new)
7263 {
7264 int i, j, n;
7265 int new_topology;
7266
7267 mutex_lock(&sched_domains_mutex);
7268
7269 /* always unregister in case we don't destroy any domains */
7270 unregister_sched_domain_sysctl();
7271
7272 /* Let architecture update cpu core mappings. */
7273 new_topology = arch_update_cpu_topology();
7274
7275 n = doms_new ? ndoms_new : 0;
7276
7277 /* Destroy deleted domains */
7278 for (i = 0; i < ndoms_cur; i++) {
7279 for (j = 0; j < n && !new_topology; j++) {
7280 if (cpumask_equal(doms_cur[i], doms_new[j])
7281 && dattrs_equal(dattr_cur, i, dattr_new, j))
7282 goto match1;
7283 }
7284 /* no match - a current sched domain not in new doms_new[] */
7285 detach_destroy_domains(doms_cur[i]);
7286 match1:
7287 ;
7288 }
7289
7290 n = ndoms_cur;
7291 if (doms_new == NULL) {
7292 n = 0;
7293 doms_new = &fallback_doms;
7294 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7295 WARN_ON_ONCE(dattr_new);
7296 }
7297
7298 /* Build new domains */
7299 for (i = 0; i < ndoms_new; i++) {
7300 for (j = 0; j < n && !new_topology; j++) {
7301 if (cpumask_equal(doms_new[i], doms_cur[j])
7302 && dattrs_equal(dattr_new, i, dattr_cur, j))
7303 goto match2;
7304 }
7305 /* no match - add a new doms_new */
7306 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7307 match2:
7308 ;
7309 }
7310
7311 /* Remember the new sched domains */
7312 if (doms_cur != &fallback_doms)
7313 free_sched_domains(doms_cur, ndoms_cur);
7314 kfree(dattr_cur); /* kfree(NULL) is safe */
7315 doms_cur = doms_new;
7316 dattr_cur = dattr_new;
7317 ndoms_cur = ndoms_new;
7318
7319 register_sched_domain_sysctl();
7320
7321 mutex_unlock(&sched_domains_mutex);
7322 }
7323
7324 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7325
7326 /*
7327 * Update cpusets according to cpu_active mask. If cpusets are
7328 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7329 * around partition_sched_domains().
7330 *
7331 * If we come here as part of a suspend/resume, don't touch cpusets because we
7332 * want to restore it back to its original state upon resume anyway.
7333 */
7334 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7335 void *hcpu)
7336 {
7337 switch (action) {
7338 case CPU_ONLINE_FROZEN:
7339 case CPU_DOWN_FAILED_FROZEN:
7340
7341 /*
7342 * num_cpus_frozen tracks how many CPUs are involved in suspend
7343 * resume sequence. As long as this is not the last online
7344 * operation in the resume sequence, just build a single sched
7345 * domain, ignoring cpusets.
7346 */
7347 num_cpus_frozen--;
7348 if (likely(num_cpus_frozen)) {
7349 partition_sched_domains(1, NULL, NULL);
7350 break;
7351 }
7352
7353 /*
7354 * This is the last CPU online operation. So fall through and
7355 * restore the original sched domains by considering the
7356 * cpuset configurations.
7357 */
7358
7359 case CPU_ONLINE:
7360 cpuset_update_active_cpus(true);
7361 break;
7362 default:
7363 return NOTIFY_DONE;
7364 }
7365 return NOTIFY_OK;
7366 }
7367
7368 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7369 void *hcpu)
7370 {
7371 unsigned long flags;
7372 long cpu = (long)hcpu;
7373 struct dl_bw *dl_b;
7374 bool overflow;
7375 int cpus;
7376
7377 switch (action) {
7378 case CPU_DOWN_PREPARE:
7379 rcu_read_lock_sched();
7380 dl_b = dl_bw_of(cpu);
7381
7382 raw_spin_lock_irqsave(&dl_b->lock, flags);
7383 cpus = dl_bw_cpus(cpu);
7384 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7385 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7386
7387 rcu_read_unlock_sched();
7388
7389 if (overflow)
7390 return notifier_from_errno(-EBUSY);
7391 cpuset_update_active_cpus(false);
7392 break;
7393 case CPU_DOWN_PREPARE_FROZEN:
7394 num_cpus_frozen++;
7395 partition_sched_domains(1, NULL, NULL);
7396 break;
7397 default:
7398 return NOTIFY_DONE;
7399 }
7400 return NOTIFY_OK;
7401 }
7402
7403 void __init sched_init_smp(void)
7404 {
7405 cpumask_var_t non_isolated_cpus;
7406
7407 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7408 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7409
7410 sched_init_numa();
7411
7412 /*
7413 * There's no userspace yet to cause hotplug operations; hence all the
7414 * cpu masks are stable and all blatant races in the below code cannot
7415 * happen.
7416 */
7417 mutex_lock(&sched_domains_mutex);
7418 init_sched_domains(cpu_active_mask);
7419 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7420 if (cpumask_empty(non_isolated_cpus))
7421 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7422 mutex_unlock(&sched_domains_mutex);
7423
7424 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7425 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7426 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7427
7428 init_hrtick();
7429
7430 /* Move init over to a non-isolated CPU */
7431 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7432 BUG();
7433 sched_init_granularity();
7434 free_cpumask_var(non_isolated_cpus);
7435
7436 init_sched_rt_class();
7437 init_sched_dl_class();
7438 }
7439 #else
7440 void __init sched_init_smp(void)
7441 {
7442 sched_init_granularity();
7443 }
7444 #endif /* CONFIG_SMP */
7445
7446 int in_sched_functions(unsigned long addr)
7447 {
7448 return in_lock_functions(addr) ||
7449 (addr >= (unsigned long)__sched_text_start
7450 && addr < (unsigned long)__sched_text_end);
7451 }
7452
7453 #ifdef CONFIG_CGROUP_SCHED
7454 /*
7455 * Default task group.
7456 * Every task in system belongs to this group at bootup.
7457 */
7458 struct task_group root_task_group;
7459 LIST_HEAD(task_groups);
7460
7461 /* Cacheline aligned slab cache for task_group */
7462 static struct kmem_cache *task_group_cache __read_mostly;
7463 #endif
7464
7465 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7466
7467 void __init sched_init(void)
7468 {
7469 int i, j;
7470 unsigned long alloc_size = 0, ptr;
7471
7472 #ifdef CONFIG_FAIR_GROUP_SCHED
7473 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7474 #endif
7475 #ifdef CONFIG_RT_GROUP_SCHED
7476 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7477 #endif
7478 if (alloc_size) {
7479 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7480
7481 #ifdef CONFIG_FAIR_GROUP_SCHED
7482 root_task_group.se = (struct sched_entity **)ptr;
7483 ptr += nr_cpu_ids * sizeof(void **);
7484
7485 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7486 ptr += nr_cpu_ids * sizeof(void **);
7487
7488 #endif /* CONFIG_FAIR_GROUP_SCHED */
7489 #ifdef CONFIG_RT_GROUP_SCHED
7490 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7491 ptr += nr_cpu_ids * sizeof(void **);
7492
7493 root_task_group.rt_rq = (struct rt_rq **)ptr;
7494 ptr += nr_cpu_ids * sizeof(void **);
7495
7496 #endif /* CONFIG_RT_GROUP_SCHED */
7497 }
7498 #ifdef CONFIG_CPUMASK_OFFSTACK
7499 for_each_possible_cpu(i) {
7500 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7501 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7502 }
7503 #endif /* CONFIG_CPUMASK_OFFSTACK */
7504
7505 init_rt_bandwidth(&def_rt_bandwidth,
7506 global_rt_period(), global_rt_runtime());
7507 init_dl_bandwidth(&def_dl_bandwidth,
7508 global_rt_period(), global_rt_runtime());
7509
7510 #ifdef CONFIG_SMP
7511 init_defrootdomain();
7512 #endif
7513
7514 #ifdef CONFIG_RT_GROUP_SCHED
7515 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7516 global_rt_period(), global_rt_runtime());
7517 #endif /* CONFIG_RT_GROUP_SCHED */
7518
7519 #ifdef CONFIG_CGROUP_SCHED
7520 task_group_cache = KMEM_CACHE(task_group, 0);
7521
7522 list_add(&root_task_group.list, &task_groups);
7523 INIT_LIST_HEAD(&root_task_group.children);
7524 INIT_LIST_HEAD(&root_task_group.siblings);
7525 autogroup_init(&init_task);
7526 #endif /* CONFIG_CGROUP_SCHED */
7527
7528 for_each_possible_cpu(i) {
7529 struct rq *rq;
7530
7531 rq = cpu_rq(i);
7532 raw_spin_lock_init(&rq->lock);
7533 rq->nr_running = 0;
7534 rq->calc_load_active = 0;
7535 rq->calc_load_update = jiffies + LOAD_FREQ;
7536 init_cfs_rq(&rq->cfs);
7537 init_rt_rq(&rq->rt);
7538 init_dl_rq(&rq->dl);
7539 #ifdef CONFIG_FAIR_GROUP_SCHED
7540 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7541 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7542 /*
7543 * How much cpu bandwidth does root_task_group get?
7544 *
7545 * In case of task-groups formed thr' the cgroup filesystem, it
7546 * gets 100% of the cpu resources in the system. This overall
7547 * system cpu resource is divided among the tasks of
7548 * root_task_group and its child task-groups in a fair manner,
7549 * based on each entity's (task or task-group's) weight
7550 * (se->load.weight).
7551 *
7552 * In other words, if root_task_group has 10 tasks of weight
7553 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7554 * then A0's share of the cpu resource is:
7555 *
7556 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7557 *
7558 * We achieve this by letting root_task_group's tasks sit
7559 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7560 */
7561 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7562 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7563 #endif /* CONFIG_FAIR_GROUP_SCHED */
7564
7565 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7566 #ifdef CONFIG_RT_GROUP_SCHED
7567 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7568 #endif
7569
7570 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7571 rq->cpu_load[j] = 0;
7572
7573 rq->last_load_update_tick = jiffies;
7574
7575 #ifdef CONFIG_SMP
7576 rq->sd = NULL;
7577 rq->rd = NULL;
7578 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7579 rq->balance_callback = NULL;
7580 rq->active_balance = 0;
7581 rq->next_balance = jiffies;
7582 rq->push_cpu = 0;
7583 rq->cpu = i;
7584 rq->online = 0;
7585 rq->idle_stamp = 0;
7586 rq->avg_idle = 2*sysctl_sched_migration_cost;
7587 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7588
7589 INIT_LIST_HEAD(&rq->cfs_tasks);
7590
7591 rq_attach_root(rq, &def_root_domain);
7592 #ifdef CONFIG_NO_HZ_COMMON
7593 rq->nohz_flags = 0;
7594 #endif
7595 #ifdef CONFIG_NO_HZ_FULL
7596 rq->last_sched_tick = 0;
7597 #endif
7598 #endif
7599 init_rq_hrtick(rq);
7600 atomic_set(&rq->nr_iowait, 0);
7601 }
7602
7603 set_load_weight(&init_task);
7604
7605 #ifdef CONFIG_PREEMPT_NOTIFIERS
7606 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7607 #endif
7608
7609 /*
7610 * The boot idle thread does lazy MMU switching as well:
7611 */
7612 atomic_inc(&init_mm.mm_count);
7613 enter_lazy_tlb(&init_mm, current);
7614
7615 /*
7616 * During early bootup we pretend to be a normal task:
7617 */
7618 current->sched_class = &fair_sched_class;
7619
7620 /*
7621 * Make us the idle thread. Technically, schedule() should not be
7622 * called from this thread, however somewhere below it might be,
7623 * but because we are the idle thread, we just pick up running again
7624 * when this runqueue becomes "idle".
7625 */
7626 init_idle(current, smp_processor_id());
7627
7628 calc_load_update = jiffies + LOAD_FREQ;
7629
7630 #ifdef CONFIG_SMP
7631 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7632 /* May be allocated at isolcpus cmdline parse time */
7633 if (cpu_isolated_map == NULL)
7634 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7635 idle_thread_set_boot_cpu();
7636 set_cpu_rq_start_time();
7637 #endif
7638 init_sched_fair_class();
7639
7640 scheduler_running = 1;
7641 }
7642
7643 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7644 static inline int preempt_count_equals(int preempt_offset)
7645 {
7646 int nested = preempt_count() + rcu_preempt_depth();
7647
7648 return (nested == preempt_offset);
7649 }
7650
7651 void __might_sleep(const char *file, int line, int preempt_offset)
7652 {
7653 /*
7654 * Blocking primitives will set (and therefore destroy) current->state,
7655 * since we will exit with TASK_RUNNING make sure we enter with it,
7656 * otherwise we will destroy state.
7657 */
7658 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7659 "do not call blocking ops when !TASK_RUNNING; "
7660 "state=%lx set at [<%p>] %pS\n",
7661 current->state,
7662 (void *)current->task_state_change,
7663 (void *)current->task_state_change);
7664
7665 ___might_sleep(file, line, preempt_offset);
7666 }
7667 EXPORT_SYMBOL(__might_sleep);
7668
7669 void ___might_sleep(const char *file, int line, int preempt_offset)
7670 {
7671 static unsigned long prev_jiffy; /* ratelimiting */
7672
7673 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7674 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7675 !is_idle_task(current)) ||
7676 system_state != SYSTEM_RUNNING || oops_in_progress)
7677 return;
7678 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7679 return;
7680 prev_jiffy = jiffies;
7681
7682 printk(KERN_ERR
7683 "BUG: sleeping function called from invalid context at %s:%d\n",
7684 file, line);
7685 printk(KERN_ERR
7686 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7687 in_atomic(), irqs_disabled(),
7688 current->pid, current->comm);
7689
7690 if (task_stack_end_corrupted(current))
7691 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7692
7693 debug_show_held_locks(current);
7694 if (irqs_disabled())
7695 print_irqtrace_events(current);
7696 #ifdef CONFIG_DEBUG_PREEMPT
7697 if (!preempt_count_equals(preempt_offset)) {
7698 pr_err("Preemption disabled at:");
7699 print_ip_sym(current->preempt_disable_ip);
7700 pr_cont("\n");
7701 }
7702 #endif
7703 dump_stack();
7704 }
7705 EXPORT_SYMBOL(___might_sleep);
7706 #endif
7707
7708 #ifdef CONFIG_MAGIC_SYSRQ
7709 void normalize_rt_tasks(void)
7710 {
7711 struct task_struct *g, *p;
7712 struct sched_attr attr = {
7713 .sched_policy = SCHED_NORMAL,
7714 };
7715
7716 read_lock(&tasklist_lock);
7717 for_each_process_thread(g, p) {
7718 /*
7719 * Only normalize user tasks:
7720 */
7721 if (p->flags & PF_KTHREAD)
7722 continue;
7723
7724 p->se.exec_start = 0;
7725 #ifdef CONFIG_SCHEDSTATS
7726 p->se.statistics.wait_start = 0;
7727 p->se.statistics.sleep_start = 0;
7728 p->se.statistics.block_start = 0;
7729 #endif
7730
7731 if (!dl_task(p) && !rt_task(p)) {
7732 /*
7733 * Renice negative nice level userspace
7734 * tasks back to 0:
7735 */
7736 if (task_nice(p) < 0)
7737 set_user_nice(p, 0);
7738 continue;
7739 }
7740
7741 __sched_setscheduler(p, &attr, false, false);
7742 }
7743 read_unlock(&tasklist_lock);
7744 }
7745
7746 #endif /* CONFIG_MAGIC_SYSRQ */
7747
7748 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7749 /*
7750 * These functions are only useful for the IA64 MCA handling, or kdb.
7751 *
7752 * They can only be called when the whole system has been
7753 * stopped - every CPU needs to be quiescent, and no scheduling
7754 * activity can take place. Using them for anything else would
7755 * be a serious bug, and as a result, they aren't even visible
7756 * under any other configuration.
7757 */
7758
7759 /**
7760 * curr_task - return the current task for a given cpu.
7761 * @cpu: the processor in question.
7762 *
7763 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7764 *
7765 * Return: The current task for @cpu.
7766 */
7767 struct task_struct *curr_task(int cpu)
7768 {
7769 return cpu_curr(cpu);
7770 }
7771
7772 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7773
7774 #ifdef CONFIG_IA64
7775 /**
7776 * set_curr_task - set the current task for a given cpu.
7777 * @cpu: the processor in question.
7778 * @p: the task pointer to set.
7779 *
7780 * Description: This function must only be used when non-maskable interrupts
7781 * are serviced on a separate stack. It allows the architecture to switch the
7782 * notion of the current task on a cpu in a non-blocking manner. This function
7783 * must be called with all CPU's synchronized, and interrupts disabled, the
7784 * and caller must save the original value of the current task (see
7785 * curr_task() above) and restore that value before reenabling interrupts and
7786 * re-starting the system.
7787 *
7788 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7789 */
7790 void set_curr_task(int cpu, struct task_struct *p)
7791 {
7792 cpu_curr(cpu) = p;
7793 }
7794
7795 #endif
7796
7797 #ifdef CONFIG_CGROUP_SCHED
7798 /* task_group_lock serializes the addition/removal of task groups */
7799 static DEFINE_SPINLOCK(task_group_lock);
7800
7801 static void free_sched_group(struct task_group *tg)
7802 {
7803 free_fair_sched_group(tg);
7804 free_rt_sched_group(tg);
7805 autogroup_free(tg);
7806 kmem_cache_free(task_group_cache, tg);
7807 }
7808
7809 /* allocate runqueue etc for a new task group */
7810 struct task_group *sched_create_group(struct task_group *parent)
7811 {
7812 struct task_group *tg;
7813
7814 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7815 if (!tg)
7816 return ERR_PTR(-ENOMEM);
7817
7818 if (!alloc_fair_sched_group(tg, parent))
7819 goto err;
7820
7821 if (!alloc_rt_sched_group(tg, parent))
7822 goto err;
7823
7824 return tg;
7825
7826 err:
7827 free_sched_group(tg);
7828 return ERR_PTR(-ENOMEM);
7829 }
7830
7831 void sched_online_group(struct task_group *tg, struct task_group *parent)
7832 {
7833 unsigned long flags;
7834
7835 spin_lock_irqsave(&task_group_lock, flags);
7836 list_add_rcu(&tg->list, &task_groups);
7837
7838 WARN_ON(!parent); /* root should already exist */
7839
7840 tg->parent = parent;
7841 INIT_LIST_HEAD(&tg->children);
7842 list_add_rcu(&tg->siblings, &parent->children);
7843 spin_unlock_irqrestore(&task_group_lock, flags);
7844 }
7845
7846 /* rcu callback to free various structures associated with a task group */
7847 static void free_sched_group_rcu(struct rcu_head *rhp)
7848 {
7849 /* now it should be safe to free those cfs_rqs */
7850 free_sched_group(container_of(rhp, struct task_group, rcu));
7851 }
7852
7853 /* Destroy runqueue etc associated with a task group */
7854 void sched_destroy_group(struct task_group *tg)
7855 {
7856 /* wait for possible concurrent references to cfs_rqs complete */
7857 call_rcu(&tg->rcu, free_sched_group_rcu);
7858 }
7859
7860 void sched_offline_group(struct task_group *tg)
7861 {
7862 unsigned long flags;
7863
7864 /* end participation in shares distribution */
7865 unregister_fair_sched_group(tg);
7866
7867 spin_lock_irqsave(&task_group_lock, flags);
7868 list_del_rcu(&tg->list);
7869 list_del_rcu(&tg->siblings);
7870 spin_unlock_irqrestore(&task_group_lock, flags);
7871 }
7872
7873 /* change task's runqueue when it moves between groups.
7874 * The caller of this function should have put the task in its new group
7875 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7876 * reflect its new group.
7877 */
7878 void sched_move_task(struct task_struct *tsk)
7879 {
7880 struct task_group *tg;
7881 int queued, running;
7882 unsigned long flags;
7883 struct rq *rq;
7884
7885 rq = task_rq_lock(tsk, &flags);
7886
7887 running = task_current(rq, tsk);
7888 queued = task_on_rq_queued(tsk);
7889
7890 if (queued)
7891 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7892 if (unlikely(running))
7893 put_prev_task(rq, tsk);
7894
7895 /*
7896 * All callers are synchronized by task_rq_lock(); we do not use RCU
7897 * which is pointless here. Thus, we pass "true" to task_css_check()
7898 * to prevent lockdep warnings.
7899 */
7900 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7901 struct task_group, css);
7902 tg = autogroup_task_group(tsk, tg);
7903 tsk->sched_task_group = tg;
7904
7905 #ifdef CONFIG_FAIR_GROUP_SCHED
7906 if (tsk->sched_class->task_move_group)
7907 tsk->sched_class->task_move_group(tsk);
7908 else
7909 #endif
7910 set_task_rq(tsk, task_cpu(tsk));
7911
7912 if (unlikely(running))
7913 tsk->sched_class->set_curr_task(rq);
7914 if (queued)
7915 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7916
7917 task_rq_unlock(rq, tsk, &flags);
7918 }
7919 #endif /* CONFIG_CGROUP_SCHED */
7920
7921 #ifdef CONFIG_RT_GROUP_SCHED
7922 /*
7923 * Ensure that the real time constraints are schedulable.
7924 */
7925 static DEFINE_MUTEX(rt_constraints_mutex);
7926
7927 /* Must be called with tasklist_lock held */
7928 static inline int tg_has_rt_tasks(struct task_group *tg)
7929 {
7930 struct task_struct *g, *p;
7931
7932 /*
7933 * Autogroups do not have RT tasks; see autogroup_create().
7934 */
7935 if (task_group_is_autogroup(tg))
7936 return 0;
7937
7938 for_each_process_thread(g, p) {
7939 if (rt_task(p) && task_group(p) == tg)
7940 return 1;
7941 }
7942
7943 return 0;
7944 }
7945
7946 struct rt_schedulable_data {
7947 struct task_group *tg;
7948 u64 rt_period;
7949 u64 rt_runtime;
7950 };
7951
7952 static int tg_rt_schedulable(struct task_group *tg, void *data)
7953 {
7954 struct rt_schedulable_data *d = data;
7955 struct task_group *child;
7956 unsigned long total, sum = 0;
7957 u64 period, runtime;
7958
7959 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7960 runtime = tg->rt_bandwidth.rt_runtime;
7961
7962 if (tg == d->tg) {
7963 period = d->rt_period;
7964 runtime = d->rt_runtime;
7965 }
7966
7967 /*
7968 * Cannot have more runtime than the period.
7969 */
7970 if (runtime > period && runtime != RUNTIME_INF)
7971 return -EINVAL;
7972
7973 /*
7974 * Ensure we don't starve existing RT tasks.
7975 */
7976 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7977 return -EBUSY;
7978
7979 total = to_ratio(period, runtime);
7980
7981 /*
7982 * Nobody can have more than the global setting allows.
7983 */
7984 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7985 return -EINVAL;
7986
7987 /*
7988 * The sum of our children's runtime should not exceed our own.
7989 */
7990 list_for_each_entry_rcu(child, &tg->children, siblings) {
7991 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7992 runtime = child->rt_bandwidth.rt_runtime;
7993
7994 if (child == d->tg) {
7995 period = d->rt_period;
7996 runtime = d->rt_runtime;
7997 }
7998
7999 sum += to_ratio(period, runtime);
8000 }
8001
8002 if (sum > total)
8003 return -EINVAL;
8004
8005 return 0;
8006 }
8007
8008 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8009 {
8010 int ret;
8011
8012 struct rt_schedulable_data data = {
8013 .tg = tg,
8014 .rt_period = period,
8015 .rt_runtime = runtime,
8016 };
8017
8018 rcu_read_lock();
8019 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8020 rcu_read_unlock();
8021
8022 return ret;
8023 }
8024
8025 static int tg_set_rt_bandwidth(struct task_group *tg,
8026 u64 rt_period, u64 rt_runtime)
8027 {
8028 int i, err = 0;
8029
8030 /*
8031 * Disallowing the root group RT runtime is BAD, it would disallow the
8032 * kernel creating (and or operating) RT threads.
8033 */
8034 if (tg == &root_task_group && rt_runtime == 0)
8035 return -EINVAL;
8036
8037 /* No period doesn't make any sense. */
8038 if (rt_period == 0)
8039 return -EINVAL;
8040
8041 mutex_lock(&rt_constraints_mutex);
8042 read_lock(&tasklist_lock);
8043 err = __rt_schedulable(tg, rt_period, rt_runtime);
8044 if (err)
8045 goto unlock;
8046
8047 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8048 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8049 tg->rt_bandwidth.rt_runtime = rt_runtime;
8050
8051 for_each_possible_cpu(i) {
8052 struct rt_rq *rt_rq = tg->rt_rq[i];
8053
8054 raw_spin_lock(&rt_rq->rt_runtime_lock);
8055 rt_rq->rt_runtime = rt_runtime;
8056 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8057 }
8058 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8059 unlock:
8060 read_unlock(&tasklist_lock);
8061 mutex_unlock(&rt_constraints_mutex);
8062
8063 return err;
8064 }
8065
8066 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8067 {
8068 u64 rt_runtime, rt_period;
8069
8070 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8071 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8072 if (rt_runtime_us < 0)
8073 rt_runtime = RUNTIME_INF;
8074
8075 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8076 }
8077
8078 static long sched_group_rt_runtime(struct task_group *tg)
8079 {
8080 u64 rt_runtime_us;
8081
8082 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8083 return -1;
8084
8085 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8086 do_div(rt_runtime_us, NSEC_PER_USEC);
8087 return rt_runtime_us;
8088 }
8089
8090 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8091 {
8092 u64 rt_runtime, rt_period;
8093
8094 rt_period = rt_period_us * NSEC_PER_USEC;
8095 rt_runtime = tg->rt_bandwidth.rt_runtime;
8096
8097 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8098 }
8099
8100 static long sched_group_rt_period(struct task_group *tg)
8101 {
8102 u64 rt_period_us;
8103
8104 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8105 do_div(rt_period_us, NSEC_PER_USEC);
8106 return rt_period_us;
8107 }
8108 #endif /* CONFIG_RT_GROUP_SCHED */
8109
8110 #ifdef CONFIG_RT_GROUP_SCHED
8111 static int sched_rt_global_constraints(void)
8112 {
8113 int ret = 0;
8114
8115 mutex_lock(&rt_constraints_mutex);
8116 read_lock(&tasklist_lock);
8117 ret = __rt_schedulable(NULL, 0, 0);
8118 read_unlock(&tasklist_lock);
8119 mutex_unlock(&rt_constraints_mutex);
8120
8121 return ret;
8122 }
8123
8124 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8125 {
8126 /* Don't accept realtime tasks when there is no way for them to run */
8127 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8128 return 0;
8129
8130 return 1;
8131 }
8132
8133 #else /* !CONFIG_RT_GROUP_SCHED */
8134 static int sched_rt_global_constraints(void)
8135 {
8136 unsigned long flags;
8137 int i, ret = 0;
8138
8139 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8140 for_each_possible_cpu(i) {
8141 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8142
8143 raw_spin_lock(&rt_rq->rt_runtime_lock);
8144 rt_rq->rt_runtime = global_rt_runtime();
8145 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8146 }
8147 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8148
8149 return ret;
8150 }
8151 #endif /* CONFIG_RT_GROUP_SCHED */
8152
8153 static int sched_dl_global_validate(void)
8154 {
8155 u64 runtime = global_rt_runtime();
8156 u64 period = global_rt_period();
8157 u64 new_bw = to_ratio(period, runtime);
8158 struct dl_bw *dl_b;
8159 int cpu, ret = 0;
8160 unsigned long flags;
8161
8162 /*
8163 * Here we want to check the bandwidth not being set to some
8164 * value smaller than the currently allocated bandwidth in
8165 * any of the root_domains.
8166 *
8167 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8168 * cycling on root_domains... Discussion on different/better
8169 * solutions is welcome!
8170 */
8171 for_each_possible_cpu(cpu) {
8172 rcu_read_lock_sched();
8173 dl_b = dl_bw_of(cpu);
8174
8175 raw_spin_lock_irqsave(&dl_b->lock, flags);
8176 if (new_bw < dl_b->total_bw)
8177 ret = -EBUSY;
8178 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8179
8180 rcu_read_unlock_sched();
8181
8182 if (ret)
8183 break;
8184 }
8185
8186 return ret;
8187 }
8188
8189 static void sched_dl_do_global(void)
8190 {
8191 u64 new_bw = -1;
8192 struct dl_bw *dl_b;
8193 int cpu;
8194 unsigned long flags;
8195
8196 def_dl_bandwidth.dl_period = global_rt_period();
8197 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8198
8199 if (global_rt_runtime() != RUNTIME_INF)
8200 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8201
8202 /*
8203 * FIXME: As above...
8204 */
8205 for_each_possible_cpu(cpu) {
8206 rcu_read_lock_sched();
8207 dl_b = dl_bw_of(cpu);
8208
8209 raw_spin_lock_irqsave(&dl_b->lock, flags);
8210 dl_b->bw = new_bw;
8211 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8212
8213 rcu_read_unlock_sched();
8214 }
8215 }
8216
8217 static int sched_rt_global_validate(void)
8218 {
8219 if (sysctl_sched_rt_period <= 0)
8220 return -EINVAL;
8221
8222 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8223 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8224 return -EINVAL;
8225
8226 return 0;
8227 }
8228
8229 static void sched_rt_do_global(void)
8230 {
8231 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8232 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8233 }
8234
8235 int sched_rt_handler(struct ctl_table *table, int write,
8236 void __user *buffer, size_t *lenp,
8237 loff_t *ppos)
8238 {
8239 int old_period, old_runtime;
8240 static DEFINE_MUTEX(mutex);
8241 int ret;
8242
8243 mutex_lock(&mutex);
8244 old_period = sysctl_sched_rt_period;
8245 old_runtime = sysctl_sched_rt_runtime;
8246
8247 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8248
8249 if (!ret && write) {
8250 ret = sched_rt_global_validate();
8251 if (ret)
8252 goto undo;
8253
8254 ret = sched_dl_global_validate();
8255 if (ret)
8256 goto undo;
8257
8258 ret = sched_rt_global_constraints();
8259 if (ret)
8260 goto undo;
8261
8262 sched_rt_do_global();
8263 sched_dl_do_global();
8264 }
8265 if (0) {
8266 undo:
8267 sysctl_sched_rt_period = old_period;
8268 sysctl_sched_rt_runtime = old_runtime;
8269 }
8270 mutex_unlock(&mutex);
8271
8272 return ret;
8273 }
8274
8275 int sched_rr_handler(struct ctl_table *table, int write,
8276 void __user *buffer, size_t *lenp,
8277 loff_t *ppos)
8278 {
8279 int ret;
8280 static DEFINE_MUTEX(mutex);
8281
8282 mutex_lock(&mutex);
8283 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8284 /* make sure that internally we keep jiffies */
8285 /* also, writing zero resets timeslice to default */
8286 if (!ret && write) {
8287 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8288 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8289 }
8290 mutex_unlock(&mutex);
8291 return ret;
8292 }
8293
8294 #ifdef CONFIG_CGROUP_SCHED
8295
8296 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8297 {
8298 return css ? container_of(css, struct task_group, css) : NULL;
8299 }
8300
8301 static struct cgroup_subsys_state *
8302 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8303 {
8304 struct task_group *parent = css_tg(parent_css);
8305 struct task_group *tg;
8306
8307 if (!parent) {
8308 /* This is early initialization for the top cgroup */
8309 return &root_task_group.css;
8310 }
8311
8312 tg = sched_create_group(parent);
8313 if (IS_ERR(tg))
8314 return ERR_PTR(-ENOMEM);
8315
8316 return &tg->css;
8317 }
8318
8319 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8320 {
8321 struct task_group *tg = css_tg(css);
8322 struct task_group *parent = css_tg(css->parent);
8323
8324 if (parent)
8325 sched_online_group(tg, parent);
8326 return 0;
8327 }
8328
8329 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8330 {
8331 struct task_group *tg = css_tg(css);
8332
8333 sched_destroy_group(tg);
8334 }
8335
8336 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8337 {
8338 struct task_group *tg = css_tg(css);
8339
8340 sched_offline_group(tg);
8341 }
8342
8343 static void cpu_cgroup_fork(struct task_struct *task)
8344 {
8345 sched_move_task(task);
8346 }
8347
8348 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8349 {
8350 struct task_struct *task;
8351 struct cgroup_subsys_state *css;
8352
8353 cgroup_taskset_for_each(task, css, tset) {
8354 #ifdef CONFIG_RT_GROUP_SCHED
8355 if (!sched_rt_can_attach(css_tg(css), task))
8356 return -EINVAL;
8357 #else
8358 /* We don't support RT-tasks being in separate groups */
8359 if (task->sched_class != &fair_sched_class)
8360 return -EINVAL;
8361 #endif
8362 }
8363 return 0;
8364 }
8365
8366 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8367 {
8368 struct task_struct *task;
8369 struct cgroup_subsys_state *css;
8370
8371 cgroup_taskset_for_each(task, css, tset)
8372 sched_move_task(task);
8373 }
8374
8375 #ifdef CONFIG_FAIR_GROUP_SCHED
8376 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8377 struct cftype *cftype, u64 shareval)
8378 {
8379 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8380 }
8381
8382 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8383 struct cftype *cft)
8384 {
8385 struct task_group *tg = css_tg(css);
8386
8387 return (u64) scale_load_down(tg->shares);
8388 }
8389
8390 #ifdef CONFIG_CFS_BANDWIDTH
8391 static DEFINE_MUTEX(cfs_constraints_mutex);
8392
8393 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8394 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8395
8396 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8397
8398 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8399 {
8400 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8401 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8402
8403 if (tg == &root_task_group)
8404 return -EINVAL;
8405
8406 /*
8407 * Ensure we have at some amount of bandwidth every period. This is
8408 * to prevent reaching a state of large arrears when throttled via
8409 * entity_tick() resulting in prolonged exit starvation.
8410 */
8411 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8412 return -EINVAL;
8413
8414 /*
8415 * Likewise, bound things on the otherside by preventing insane quota
8416 * periods. This also allows us to normalize in computing quota
8417 * feasibility.
8418 */
8419 if (period > max_cfs_quota_period)
8420 return -EINVAL;
8421
8422 /*
8423 * Prevent race between setting of cfs_rq->runtime_enabled and
8424 * unthrottle_offline_cfs_rqs().
8425 */
8426 get_online_cpus();
8427 mutex_lock(&cfs_constraints_mutex);
8428 ret = __cfs_schedulable(tg, period, quota);
8429 if (ret)
8430 goto out_unlock;
8431
8432 runtime_enabled = quota != RUNTIME_INF;
8433 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8434 /*
8435 * If we need to toggle cfs_bandwidth_used, off->on must occur
8436 * before making related changes, and on->off must occur afterwards
8437 */
8438 if (runtime_enabled && !runtime_was_enabled)
8439 cfs_bandwidth_usage_inc();
8440 raw_spin_lock_irq(&cfs_b->lock);
8441 cfs_b->period = ns_to_ktime(period);
8442 cfs_b->quota = quota;
8443
8444 __refill_cfs_bandwidth_runtime(cfs_b);
8445 /* restart the period timer (if active) to handle new period expiry */
8446 if (runtime_enabled)
8447 start_cfs_bandwidth(cfs_b);
8448 raw_spin_unlock_irq(&cfs_b->lock);
8449
8450 for_each_online_cpu(i) {
8451 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8452 struct rq *rq = cfs_rq->rq;
8453
8454 raw_spin_lock_irq(&rq->lock);
8455 cfs_rq->runtime_enabled = runtime_enabled;
8456 cfs_rq->runtime_remaining = 0;
8457
8458 if (cfs_rq->throttled)
8459 unthrottle_cfs_rq(cfs_rq);
8460 raw_spin_unlock_irq(&rq->lock);
8461 }
8462 if (runtime_was_enabled && !runtime_enabled)
8463 cfs_bandwidth_usage_dec();
8464 out_unlock:
8465 mutex_unlock(&cfs_constraints_mutex);
8466 put_online_cpus();
8467
8468 return ret;
8469 }
8470
8471 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8472 {
8473 u64 quota, period;
8474
8475 period = ktime_to_ns(tg->cfs_bandwidth.period);
8476 if (cfs_quota_us < 0)
8477 quota = RUNTIME_INF;
8478 else
8479 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8480
8481 return tg_set_cfs_bandwidth(tg, period, quota);
8482 }
8483
8484 long tg_get_cfs_quota(struct task_group *tg)
8485 {
8486 u64 quota_us;
8487
8488 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8489 return -1;
8490
8491 quota_us = tg->cfs_bandwidth.quota;
8492 do_div(quota_us, NSEC_PER_USEC);
8493
8494 return quota_us;
8495 }
8496
8497 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8498 {
8499 u64 quota, period;
8500
8501 period = (u64)cfs_period_us * NSEC_PER_USEC;
8502 quota = tg->cfs_bandwidth.quota;
8503
8504 return tg_set_cfs_bandwidth(tg, period, quota);
8505 }
8506
8507 long tg_get_cfs_period(struct task_group *tg)
8508 {
8509 u64 cfs_period_us;
8510
8511 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8512 do_div(cfs_period_us, NSEC_PER_USEC);
8513
8514 return cfs_period_us;
8515 }
8516
8517 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8518 struct cftype *cft)
8519 {
8520 return tg_get_cfs_quota(css_tg(css));
8521 }
8522
8523 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8524 struct cftype *cftype, s64 cfs_quota_us)
8525 {
8526 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8527 }
8528
8529 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8530 struct cftype *cft)
8531 {
8532 return tg_get_cfs_period(css_tg(css));
8533 }
8534
8535 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8536 struct cftype *cftype, u64 cfs_period_us)
8537 {
8538 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8539 }
8540
8541 struct cfs_schedulable_data {
8542 struct task_group *tg;
8543 u64 period, quota;
8544 };
8545
8546 /*
8547 * normalize group quota/period to be quota/max_period
8548 * note: units are usecs
8549 */
8550 static u64 normalize_cfs_quota(struct task_group *tg,
8551 struct cfs_schedulable_data *d)
8552 {
8553 u64 quota, period;
8554
8555 if (tg == d->tg) {
8556 period = d->period;
8557 quota = d->quota;
8558 } else {
8559 period = tg_get_cfs_period(tg);
8560 quota = tg_get_cfs_quota(tg);
8561 }
8562
8563 /* note: these should typically be equivalent */
8564 if (quota == RUNTIME_INF || quota == -1)
8565 return RUNTIME_INF;
8566
8567 return to_ratio(period, quota);
8568 }
8569
8570 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8571 {
8572 struct cfs_schedulable_data *d = data;
8573 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8574 s64 quota = 0, parent_quota = -1;
8575
8576 if (!tg->parent) {
8577 quota = RUNTIME_INF;
8578 } else {
8579 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8580
8581 quota = normalize_cfs_quota(tg, d);
8582 parent_quota = parent_b->hierarchical_quota;
8583
8584 /*
8585 * ensure max(child_quota) <= parent_quota, inherit when no
8586 * limit is set
8587 */
8588 if (quota == RUNTIME_INF)
8589 quota = parent_quota;
8590 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8591 return -EINVAL;
8592 }
8593 cfs_b->hierarchical_quota = quota;
8594
8595 return 0;
8596 }
8597
8598 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8599 {
8600 int ret;
8601 struct cfs_schedulable_data data = {
8602 .tg = tg,
8603 .period = period,
8604 .quota = quota,
8605 };
8606
8607 if (quota != RUNTIME_INF) {
8608 do_div(data.period, NSEC_PER_USEC);
8609 do_div(data.quota, NSEC_PER_USEC);
8610 }
8611
8612 rcu_read_lock();
8613 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8614 rcu_read_unlock();
8615
8616 return ret;
8617 }
8618
8619 static int cpu_stats_show(struct seq_file *sf, void *v)
8620 {
8621 struct task_group *tg = css_tg(seq_css(sf));
8622 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8623
8624 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8625 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8626 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8627
8628 return 0;
8629 }
8630 #endif /* CONFIG_CFS_BANDWIDTH */
8631 #endif /* CONFIG_FAIR_GROUP_SCHED */
8632
8633 #ifdef CONFIG_RT_GROUP_SCHED
8634 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8635 struct cftype *cft, s64 val)
8636 {
8637 return sched_group_set_rt_runtime(css_tg(css), val);
8638 }
8639
8640 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8641 struct cftype *cft)
8642 {
8643 return sched_group_rt_runtime(css_tg(css));
8644 }
8645
8646 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8647 struct cftype *cftype, u64 rt_period_us)
8648 {
8649 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8650 }
8651
8652 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8653 struct cftype *cft)
8654 {
8655 return sched_group_rt_period(css_tg(css));
8656 }
8657 #endif /* CONFIG_RT_GROUP_SCHED */
8658
8659 static struct cftype cpu_files[] = {
8660 #ifdef CONFIG_FAIR_GROUP_SCHED
8661 {
8662 .name = "shares",
8663 .read_u64 = cpu_shares_read_u64,
8664 .write_u64 = cpu_shares_write_u64,
8665 },
8666 #endif
8667 #ifdef CONFIG_CFS_BANDWIDTH
8668 {
8669 .name = "cfs_quota_us",
8670 .read_s64 = cpu_cfs_quota_read_s64,
8671 .write_s64 = cpu_cfs_quota_write_s64,
8672 },
8673 {
8674 .name = "cfs_period_us",
8675 .read_u64 = cpu_cfs_period_read_u64,
8676 .write_u64 = cpu_cfs_period_write_u64,
8677 },
8678 {
8679 .name = "stat",
8680 .seq_show = cpu_stats_show,
8681 },
8682 #endif
8683 #ifdef CONFIG_RT_GROUP_SCHED
8684 {
8685 .name = "rt_runtime_us",
8686 .read_s64 = cpu_rt_runtime_read,
8687 .write_s64 = cpu_rt_runtime_write,
8688 },
8689 {
8690 .name = "rt_period_us",
8691 .read_u64 = cpu_rt_period_read_uint,
8692 .write_u64 = cpu_rt_period_write_uint,
8693 },
8694 #endif
8695 { } /* terminate */
8696 };
8697
8698 struct cgroup_subsys cpu_cgrp_subsys = {
8699 .css_alloc = cpu_cgroup_css_alloc,
8700 .css_free = cpu_cgroup_css_free,
8701 .css_online = cpu_cgroup_css_online,
8702 .css_offline = cpu_cgroup_css_offline,
8703 .fork = cpu_cgroup_fork,
8704 .can_attach = cpu_cgroup_can_attach,
8705 .attach = cpu_cgroup_attach,
8706 .legacy_cftypes = cpu_files,
8707 .early_init = 1,
8708 };
8709
8710 #endif /* CONFIG_CGROUP_SCHED */
8711
8712 void dump_cpu_task(int cpu)
8713 {
8714 pr_info("Task dump for CPU %d:\n", cpu);
8715 sched_show_task(cpu_curr(cpu));
8716 }
8717
8718 /*
8719 * Nice levels are multiplicative, with a gentle 10% change for every
8720 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8721 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8722 * that remained on nice 0.
8723 *
8724 * The "10% effect" is relative and cumulative: from _any_ nice level,
8725 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8726 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8727 * If a task goes up by ~10% and another task goes down by ~10% then
8728 * the relative distance between them is ~25%.)
8729 */
8730 const int sched_prio_to_weight[40] = {
8731 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8732 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8733 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8734 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8735 /* 0 */ 1024, 820, 655, 526, 423,
8736 /* 5 */ 335, 272, 215, 172, 137,
8737 /* 10 */ 110, 87, 70, 56, 45,
8738 /* 15 */ 36, 29, 23, 18, 15,
8739 };
8740
8741 /*
8742 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8743 *
8744 * In cases where the weight does not change often, we can use the
8745 * precalculated inverse to speed up arithmetics by turning divisions
8746 * into multiplications:
8747 */
8748 const u32 sched_prio_to_wmult[40] = {
8749 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8750 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8751 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8752 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8753 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8754 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8755 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8756 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8757 };
This page took 0.223426 seconds and 5 git commands to generate.