Merge remote-tracking branch 'rcu/rcu/next'
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831 #endif
832
833 rq->clock_task += delta;
834
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869 }
870
871 /*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 return p->static_prio;
877 }
878
879 /*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925 inline int task_curr(const struct task_struct *p)
926 {
927 return cpu_curr(task_cpu(p)) == p;
928 }
929
930 /*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940 {
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973 }
974
975 #ifdef CONFIG_SMP
976 /*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990 /*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013 }
1014
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018 };
1019
1020 /*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041 }
1042
1043 /*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq && task_on_rq_queued(p))
1074 rq = __migrate_task(rq, p, arg->dest_cpu);
1075 raw_spin_unlock(&rq->lock);
1076 raw_spin_unlock(&p->pi_lock);
1077
1078 local_irq_enable();
1079 return 0;
1080 }
1081
1082 /*
1083 * sched_class::set_cpus_allowed must do the below, but is not required to
1084 * actually call this function.
1085 */
1086 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1087 {
1088 cpumask_copy(&p->cpus_allowed, new_mask);
1089 p->nr_cpus_allowed = cpumask_weight(new_mask);
1090 }
1091
1092 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1093 {
1094 struct rq *rq = task_rq(p);
1095 bool queued, running;
1096
1097 lockdep_assert_held(&p->pi_lock);
1098
1099 queued = task_on_rq_queued(p);
1100 running = task_current(rq, p);
1101
1102 if (queued) {
1103 /*
1104 * Because __kthread_bind() calls this on blocked tasks without
1105 * holding rq->lock.
1106 */
1107 lockdep_assert_held(&rq->lock);
1108 dequeue_task(rq, p, DEQUEUE_SAVE);
1109 }
1110 if (running)
1111 put_prev_task(rq, p);
1112
1113 p->sched_class->set_cpus_allowed(p, new_mask);
1114
1115 if (running)
1116 p->sched_class->set_curr_task(rq);
1117 if (queued)
1118 enqueue_task(rq, p, ENQUEUE_RESTORE);
1119 }
1120
1121 /*
1122 * Change a given task's CPU affinity. Migrate the thread to a
1123 * proper CPU and schedule it away if the CPU it's executing on
1124 * is removed from the allowed bitmask.
1125 *
1126 * NOTE: the caller must have a valid reference to the task, the
1127 * task must not exit() & deallocate itself prematurely. The
1128 * call is not atomic; no spinlocks may be held.
1129 */
1130 static int __set_cpus_allowed_ptr(struct task_struct *p,
1131 const struct cpumask *new_mask, bool check)
1132 {
1133 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1134 unsigned int dest_cpu;
1135 struct rq_flags rf;
1136 struct rq *rq;
1137 int ret = 0;
1138
1139 rq = task_rq_lock(p, &rf);
1140
1141 if (p->flags & PF_KTHREAD) {
1142 /*
1143 * Kernel threads are allowed on online && !active CPUs
1144 */
1145 cpu_valid_mask = cpu_online_mask;
1146 }
1147
1148 /*
1149 * Must re-check here, to close a race against __kthread_bind(),
1150 * sched_setaffinity() is not guaranteed to observe the flag.
1151 */
1152 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 if (cpumask_equal(&p->cpus_allowed, new_mask))
1158 goto out;
1159
1160 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1161 ret = -EINVAL;
1162 goto out;
1163 }
1164
1165 do_set_cpus_allowed(p, new_mask);
1166
1167 if (p->flags & PF_KTHREAD) {
1168 /*
1169 * For kernel threads that do indeed end up on online &&
1170 * !active we want to ensure they are strict per-cpu threads.
1171 */
1172 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1173 !cpumask_intersects(new_mask, cpu_active_mask) &&
1174 p->nr_cpus_allowed != 1);
1175 }
1176
1177 /* Can the task run on the task's current CPU? If so, we're done */
1178 if (cpumask_test_cpu(task_cpu(p), new_mask))
1179 goto out;
1180
1181 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1182 if (task_running(rq, p) || p->state == TASK_WAKING) {
1183 struct migration_arg arg = { p, dest_cpu };
1184 /* Need help from migration thread: drop lock and wait. */
1185 task_rq_unlock(rq, p, &rf);
1186 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1187 tlb_migrate_finish(p->mm);
1188 return 0;
1189 } else if (task_on_rq_queued(p)) {
1190 /*
1191 * OK, since we're going to drop the lock immediately
1192 * afterwards anyway.
1193 */
1194 lockdep_unpin_lock(&rq->lock, rf.cookie);
1195 rq = move_queued_task(rq, p, dest_cpu);
1196 lockdep_repin_lock(&rq->lock, rf.cookie);
1197 }
1198 out:
1199 task_rq_unlock(rq, p, &rf);
1200
1201 return ret;
1202 }
1203
1204 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1205 {
1206 return __set_cpus_allowed_ptr(p, new_mask, false);
1207 }
1208 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1209
1210 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1211 {
1212 #ifdef CONFIG_SCHED_DEBUG
1213 /*
1214 * We should never call set_task_cpu() on a blocked task,
1215 * ttwu() will sort out the placement.
1216 */
1217 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1218 !p->on_rq);
1219
1220 /*
1221 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1222 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1223 * time relying on p->on_rq.
1224 */
1225 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1226 p->sched_class == &fair_sched_class &&
1227 (p->on_rq && !task_on_rq_migrating(p)));
1228
1229 #ifdef CONFIG_LOCKDEP
1230 /*
1231 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 *
1234 * sched_move_task() holds both and thus holding either pins the cgroup,
1235 * see task_group().
1236 *
1237 * Furthermore, all task_rq users should acquire both locks, see
1238 * task_rq_lock().
1239 */
1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 lockdep_is_held(&task_rq(p)->lock)));
1242 #endif
1243 #endif
1244
1245 trace_sched_migrate_task(p, new_cpu);
1246
1247 if (task_cpu(p) != new_cpu) {
1248 if (p->sched_class->migrate_task_rq)
1249 p->sched_class->migrate_task_rq(p);
1250 p->se.nr_migrations++;
1251 perf_event_task_migrate(p);
1252 }
1253
1254 __set_task_cpu(p, new_cpu);
1255 }
1256
1257 static void __migrate_swap_task(struct task_struct *p, int cpu)
1258 {
1259 if (task_on_rq_queued(p)) {
1260 struct rq *src_rq, *dst_rq;
1261
1262 src_rq = task_rq(p);
1263 dst_rq = cpu_rq(cpu);
1264
1265 p->on_rq = TASK_ON_RQ_MIGRATING;
1266 deactivate_task(src_rq, p, 0);
1267 set_task_cpu(p, cpu);
1268 activate_task(dst_rq, p, 0);
1269 p->on_rq = TASK_ON_RQ_QUEUED;
1270 check_preempt_curr(dst_rq, p, 0);
1271 } else {
1272 /*
1273 * Task isn't running anymore; make it appear like we migrated
1274 * it before it went to sleep. This means on wakeup we make the
1275 * previous cpu our target instead of where it really is.
1276 */
1277 p->wake_cpu = cpu;
1278 }
1279 }
1280
1281 struct migration_swap_arg {
1282 struct task_struct *src_task, *dst_task;
1283 int src_cpu, dst_cpu;
1284 };
1285
1286 static int migrate_swap_stop(void *data)
1287 {
1288 struct migration_swap_arg *arg = data;
1289 struct rq *src_rq, *dst_rq;
1290 int ret = -EAGAIN;
1291
1292 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1293 return -EAGAIN;
1294
1295 src_rq = cpu_rq(arg->src_cpu);
1296 dst_rq = cpu_rq(arg->dst_cpu);
1297
1298 double_raw_lock(&arg->src_task->pi_lock,
1299 &arg->dst_task->pi_lock);
1300 double_rq_lock(src_rq, dst_rq);
1301
1302 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1303 goto unlock;
1304
1305 if (task_cpu(arg->src_task) != arg->src_cpu)
1306 goto unlock;
1307
1308 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1309 goto unlock;
1310
1311 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1312 goto unlock;
1313
1314 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1315 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1316
1317 ret = 0;
1318
1319 unlock:
1320 double_rq_unlock(src_rq, dst_rq);
1321 raw_spin_unlock(&arg->dst_task->pi_lock);
1322 raw_spin_unlock(&arg->src_task->pi_lock);
1323
1324 return ret;
1325 }
1326
1327 /*
1328 * Cross migrate two tasks
1329 */
1330 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1331 {
1332 struct migration_swap_arg arg;
1333 int ret = -EINVAL;
1334
1335 arg = (struct migration_swap_arg){
1336 .src_task = cur,
1337 .src_cpu = task_cpu(cur),
1338 .dst_task = p,
1339 .dst_cpu = task_cpu(p),
1340 };
1341
1342 if (arg.src_cpu == arg.dst_cpu)
1343 goto out;
1344
1345 /*
1346 * These three tests are all lockless; this is OK since all of them
1347 * will be re-checked with proper locks held further down the line.
1348 */
1349 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1350 goto out;
1351
1352 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1353 goto out;
1354
1355 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1356 goto out;
1357
1358 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1359 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1360
1361 out:
1362 return ret;
1363 }
1364
1365 /*
1366 * wait_task_inactive - wait for a thread to unschedule.
1367 *
1368 * If @match_state is nonzero, it's the @p->state value just checked and
1369 * not expected to change. If it changes, i.e. @p might have woken up,
1370 * then return zero. When we succeed in waiting for @p to be off its CPU,
1371 * we return a positive number (its total switch count). If a second call
1372 * a short while later returns the same number, the caller can be sure that
1373 * @p has remained unscheduled the whole time.
1374 *
1375 * The caller must ensure that the task *will* unschedule sometime soon,
1376 * else this function might spin for a *long* time. This function can't
1377 * be called with interrupts off, or it may introduce deadlock with
1378 * smp_call_function() if an IPI is sent by the same process we are
1379 * waiting to become inactive.
1380 */
1381 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1382 {
1383 int running, queued;
1384 struct rq_flags rf;
1385 unsigned long ncsw;
1386 struct rq *rq;
1387
1388 for (;;) {
1389 /*
1390 * We do the initial early heuristics without holding
1391 * any task-queue locks at all. We'll only try to get
1392 * the runqueue lock when things look like they will
1393 * work out!
1394 */
1395 rq = task_rq(p);
1396
1397 /*
1398 * If the task is actively running on another CPU
1399 * still, just relax and busy-wait without holding
1400 * any locks.
1401 *
1402 * NOTE! Since we don't hold any locks, it's not
1403 * even sure that "rq" stays as the right runqueue!
1404 * But we don't care, since "task_running()" will
1405 * return false if the runqueue has changed and p
1406 * is actually now running somewhere else!
1407 */
1408 while (task_running(rq, p)) {
1409 if (match_state && unlikely(p->state != match_state))
1410 return 0;
1411 cpu_relax();
1412 }
1413
1414 /*
1415 * Ok, time to look more closely! We need the rq
1416 * lock now, to be *sure*. If we're wrong, we'll
1417 * just go back and repeat.
1418 */
1419 rq = task_rq_lock(p, &rf);
1420 trace_sched_wait_task(p);
1421 running = task_running(rq, p);
1422 queued = task_on_rq_queued(p);
1423 ncsw = 0;
1424 if (!match_state || p->state == match_state)
1425 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1426 task_rq_unlock(rq, p, &rf);
1427
1428 /*
1429 * If it changed from the expected state, bail out now.
1430 */
1431 if (unlikely(!ncsw))
1432 break;
1433
1434 /*
1435 * Was it really running after all now that we
1436 * checked with the proper locks actually held?
1437 *
1438 * Oops. Go back and try again..
1439 */
1440 if (unlikely(running)) {
1441 cpu_relax();
1442 continue;
1443 }
1444
1445 /*
1446 * It's not enough that it's not actively running,
1447 * it must be off the runqueue _entirely_, and not
1448 * preempted!
1449 *
1450 * So if it was still runnable (but just not actively
1451 * running right now), it's preempted, and we should
1452 * yield - it could be a while.
1453 */
1454 if (unlikely(queued)) {
1455 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1456
1457 set_current_state(TASK_UNINTERRUPTIBLE);
1458 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1459 continue;
1460 }
1461
1462 /*
1463 * Ahh, all good. It wasn't running, and it wasn't
1464 * runnable, which means that it will never become
1465 * running in the future either. We're all done!
1466 */
1467 break;
1468 }
1469
1470 return ncsw;
1471 }
1472
1473 /***
1474 * kick_process - kick a running thread to enter/exit the kernel
1475 * @p: the to-be-kicked thread
1476 *
1477 * Cause a process which is running on another CPU to enter
1478 * kernel-mode, without any delay. (to get signals handled.)
1479 *
1480 * NOTE: this function doesn't have to take the runqueue lock,
1481 * because all it wants to ensure is that the remote task enters
1482 * the kernel. If the IPI races and the task has been migrated
1483 * to another CPU then no harm is done and the purpose has been
1484 * achieved as well.
1485 */
1486 void kick_process(struct task_struct *p)
1487 {
1488 int cpu;
1489
1490 preempt_disable();
1491 cpu = task_cpu(p);
1492 if ((cpu != smp_processor_id()) && task_curr(p))
1493 smp_send_reschedule(cpu);
1494 preempt_enable();
1495 }
1496 EXPORT_SYMBOL_GPL(kick_process);
1497
1498 /*
1499 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1500 *
1501 * A few notes on cpu_active vs cpu_online:
1502 *
1503 * - cpu_active must be a subset of cpu_online
1504 *
1505 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1506 * see __set_cpus_allowed_ptr(). At this point the newly online
1507 * cpu isn't yet part of the sched domains, and balancing will not
1508 * see it.
1509 *
1510 * - on cpu-down we clear cpu_active() to mask the sched domains and
1511 * avoid the load balancer to place new tasks on the to be removed
1512 * cpu. Existing tasks will remain running there and will be taken
1513 * off.
1514 *
1515 * This means that fallback selection must not select !active CPUs.
1516 * And can assume that any active CPU must be online. Conversely
1517 * select_task_rq() below may allow selection of !active CPUs in order
1518 * to satisfy the above rules.
1519 */
1520 static int select_fallback_rq(int cpu, struct task_struct *p)
1521 {
1522 int nid = cpu_to_node(cpu);
1523 const struct cpumask *nodemask = NULL;
1524 enum { cpuset, possible, fail } state = cpuset;
1525 int dest_cpu;
1526
1527 /*
1528 * If the node that the cpu is on has been offlined, cpu_to_node()
1529 * will return -1. There is no cpu on the node, and we should
1530 * select the cpu on the other node.
1531 */
1532 if (nid != -1) {
1533 nodemask = cpumask_of_node(nid);
1534
1535 /* Look for allowed, online CPU in same node. */
1536 for_each_cpu(dest_cpu, nodemask) {
1537 if (!cpu_active(dest_cpu))
1538 continue;
1539 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1540 return dest_cpu;
1541 }
1542 }
1543
1544 for (;;) {
1545 /* Any allowed, online CPU? */
1546 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1547 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1548 continue;
1549 if (!cpu_online(dest_cpu))
1550 continue;
1551 goto out;
1552 }
1553
1554 /* No more Mr. Nice Guy. */
1555 switch (state) {
1556 case cpuset:
1557 if (IS_ENABLED(CONFIG_CPUSETS)) {
1558 cpuset_cpus_allowed_fallback(p);
1559 state = possible;
1560 break;
1561 }
1562 /* fall-through */
1563 case possible:
1564 do_set_cpus_allowed(p, cpu_possible_mask);
1565 state = fail;
1566 break;
1567
1568 case fail:
1569 BUG();
1570 break;
1571 }
1572 }
1573
1574 out:
1575 if (state != cpuset) {
1576 /*
1577 * Don't tell them about moving exiting tasks or
1578 * kernel threads (both mm NULL), since they never
1579 * leave kernel.
1580 */
1581 if (p->mm && printk_ratelimit()) {
1582 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1583 task_pid_nr(p), p->comm, cpu);
1584 }
1585 }
1586
1587 return dest_cpu;
1588 }
1589
1590 /*
1591 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1592 */
1593 static inline
1594 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1595 {
1596 lockdep_assert_held(&p->pi_lock);
1597
1598 if (tsk_nr_cpus_allowed(p) > 1)
1599 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1600 else
1601 cpu = cpumask_any(tsk_cpus_allowed(p));
1602
1603 /*
1604 * In order not to call set_task_cpu() on a blocking task we need
1605 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1606 * cpu.
1607 *
1608 * Since this is common to all placement strategies, this lives here.
1609 *
1610 * [ this allows ->select_task() to simply return task_cpu(p) and
1611 * not worry about this generic constraint ]
1612 */
1613 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1614 !cpu_online(cpu)))
1615 cpu = select_fallback_rq(task_cpu(p), p);
1616
1617 return cpu;
1618 }
1619
1620 static void update_avg(u64 *avg, u64 sample)
1621 {
1622 s64 diff = sample - *avg;
1623 *avg += diff >> 3;
1624 }
1625
1626 #else
1627
1628 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630 {
1631 return set_cpus_allowed_ptr(p, new_mask);
1632 }
1633
1634 #endif /* CONFIG_SMP */
1635
1636 static void
1637 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1638 {
1639 struct rq *rq;
1640
1641 if (!schedstat_enabled())
1642 return;
1643
1644 rq = this_rq();
1645
1646 #ifdef CONFIG_SMP
1647 if (cpu == rq->cpu) {
1648 schedstat_inc(rq->ttwu_local);
1649 schedstat_inc(p->se.statistics.nr_wakeups_local);
1650 } else {
1651 struct sched_domain *sd;
1652
1653 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1654 rcu_read_lock();
1655 for_each_domain(rq->cpu, sd) {
1656 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1657 schedstat_inc(sd->ttwu_wake_remote);
1658 break;
1659 }
1660 }
1661 rcu_read_unlock();
1662 }
1663
1664 if (wake_flags & WF_MIGRATED)
1665 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1666 #endif /* CONFIG_SMP */
1667
1668 schedstat_inc(rq->ttwu_count);
1669 schedstat_inc(p->se.statistics.nr_wakeups);
1670
1671 if (wake_flags & WF_SYNC)
1672 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1673 }
1674
1675 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1676 {
1677 activate_task(rq, p, en_flags);
1678 p->on_rq = TASK_ON_RQ_QUEUED;
1679
1680 /* if a worker is waking up, notify workqueue */
1681 if (p->flags & PF_WQ_WORKER)
1682 wq_worker_waking_up(p, cpu_of(rq));
1683 }
1684
1685 /*
1686 * Mark the task runnable and perform wakeup-preemption.
1687 */
1688 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1689 struct pin_cookie cookie)
1690 {
1691 check_preempt_curr(rq, p, wake_flags);
1692 p->state = TASK_RUNNING;
1693 trace_sched_wakeup(p);
1694
1695 #ifdef CONFIG_SMP
1696 if (p->sched_class->task_woken) {
1697 /*
1698 * Our task @p is fully woken up and running; so its safe to
1699 * drop the rq->lock, hereafter rq is only used for statistics.
1700 */
1701 lockdep_unpin_lock(&rq->lock, cookie);
1702 p->sched_class->task_woken(rq, p);
1703 lockdep_repin_lock(&rq->lock, cookie);
1704 }
1705
1706 if (rq->idle_stamp) {
1707 u64 delta = rq_clock(rq) - rq->idle_stamp;
1708 u64 max = 2*rq->max_idle_balance_cost;
1709
1710 update_avg(&rq->avg_idle, delta);
1711
1712 if (rq->avg_idle > max)
1713 rq->avg_idle = max;
1714
1715 rq->idle_stamp = 0;
1716 }
1717 #endif
1718 }
1719
1720 static void
1721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1722 struct pin_cookie cookie)
1723 {
1724 int en_flags = ENQUEUE_WAKEUP;
1725
1726 lockdep_assert_held(&rq->lock);
1727
1728 #ifdef CONFIG_SMP
1729 if (p->sched_contributes_to_load)
1730 rq->nr_uninterruptible--;
1731
1732 if (wake_flags & WF_MIGRATED)
1733 en_flags |= ENQUEUE_MIGRATED;
1734 #endif
1735
1736 ttwu_activate(rq, p, en_flags);
1737 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1738 }
1739
1740 /*
1741 * Called in case the task @p isn't fully descheduled from its runqueue,
1742 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1743 * since all we need to do is flip p->state to TASK_RUNNING, since
1744 * the task is still ->on_rq.
1745 */
1746 static int ttwu_remote(struct task_struct *p, int wake_flags)
1747 {
1748 struct rq_flags rf;
1749 struct rq *rq;
1750 int ret = 0;
1751
1752 rq = __task_rq_lock(p, &rf);
1753 if (task_on_rq_queued(p)) {
1754 /* check_preempt_curr() may use rq clock */
1755 update_rq_clock(rq);
1756 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1757 ret = 1;
1758 }
1759 __task_rq_unlock(rq, &rf);
1760
1761 return ret;
1762 }
1763
1764 #ifdef CONFIG_SMP
1765 void sched_ttwu_pending(void)
1766 {
1767 struct rq *rq = this_rq();
1768 struct llist_node *llist = llist_del_all(&rq->wake_list);
1769 struct pin_cookie cookie;
1770 struct task_struct *p;
1771 unsigned long flags;
1772
1773 if (!llist)
1774 return;
1775
1776 raw_spin_lock_irqsave(&rq->lock, flags);
1777 cookie = lockdep_pin_lock(&rq->lock);
1778
1779 while (llist) {
1780 int wake_flags = 0;
1781
1782 p = llist_entry(llist, struct task_struct, wake_entry);
1783 llist = llist_next(llist);
1784
1785 if (p->sched_remote_wakeup)
1786 wake_flags = WF_MIGRATED;
1787
1788 ttwu_do_activate(rq, p, wake_flags, cookie);
1789 }
1790
1791 lockdep_unpin_lock(&rq->lock, cookie);
1792 raw_spin_unlock_irqrestore(&rq->lock, flags);
1793 }
1794
1795 void scheduler_ipi(void)
1796 {
1797 /*
1798 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1799 * TIF_NEED_RESCHED remotely (for the first time) will also send
1800 * this IPI.
1801 */
1802 preempt_fold_need_resched();
1803
1804 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1805 return;
1806
1807 /*
1808 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1809 * traditionally all their work was done from the interrupt return
1810 * path. Now that we actually do some work, we need to make sure
1811 * we do call them.
1812 *
1813 * Some archs already do call them, luckily irq_enter/exit nest
1814 * properly.
1815 *
1816 * Arguably we should visit all archs and update all handlers,
1817 * however a fair share of IPIs are still resched only so this would
1818 * somewhat pessimize the simple resched case.
1819 */
1820 irq_enter();
1821 sched_ttwu_pending();
1822
1823 /*
1824 * Check if someone kicked us for doing the nohz idle load balance.
1825 */
1826 if (unlikely(got_nohz_idle_kick())) {
1827 this_rq()->idle_balance = 1;
1828 raise_softirq_irqoff(SCHED_SOFTIRQ);
1829 }
1830 irq_exit();
1831 }
1832
1833 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1834 {
1835 struct rq *rq = cpu_rq(cpu);
1836
1837 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1838
1839 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1840 if (!set_nr_if_polling(rq->idle))
1841 smp_send_reschedule(cpu);
1842 else
1843 trace_sched_wake_idle_without_ipi(cpu);
1844 }
1845 }
1846
1847 void wake_up_if_idle(int cpu)
1848 {
1849 struct rq *rq = cpu_rq(cpu);
1850 unsigned long flags;
1851
1852 rcu_read_lock();
1853
1854 if (!is_idle_task(rcu_dereference(rq->curr)))
1855 goto out;
1856
1857 if (set_nr_if_polling(rq->idle)) {
1858 trace_sched_wake_idle_without_ipi(cpu);
1859 } else {
1860 raw_spin_lock_irqsave(&rq->lock, flags);
1861 if (is_idle_task(rq->curr))
1862 smp_send_reschedule(cpu);
1863 /* Else cpu is not in idle, do nothing here */
1864 raw_spin_unlock_irqrestore(&rq->lock, flags);
1865 }
1866
1867 out:
1868 rcu_read_unlock();
1869 }
1870
1871 bool cpus_share_cache(int this_cpu, int that_cpu)
1872 {
1873 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1874 }
1875 #endif /* CONFIG_SMP */
1876
1877 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1878 {
1879 struct rq *rq = cpu_rq(cpu);
1880 struct pin_cookie cookie;
1881
1882 #if defined(CONFIG_SMP)
1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1885 ttwu_queue_remote(p, cpu, wake_flags);
1886 return;
1887 }
1888 #endif
1889
1890 raw_spin_lock(&rq->lock);
1891 cookie = lockdep_pin_lock(&rq->lock);
1892 ttwu_do_activate(rq, p, wake_flags, cookie);
1893 lockdep_unpin_lock(&rq->lock, cookie);
1894 raw_spin_unlock(&rq->lock);
1895 }
1896
1897 /*
1898 * Notes on Program-Order guarantees on SMP systems.
1899 *
1900 * MIGRATION
1901 *
1902 * The basic program-order guarantee on SMP systems is that when a task [t]
1903 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1904 * execution on its new cpu [c1].
1905 *
1906 * For migration (of runnable tasks) this is provided by the following means:
1907 *
1908 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1909 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1910 * rq(c1)->lock (if not at the same time, then in that order).
1911 * C) LOCK of the rq(c1)->lock scheduling in task
1912 *
1913 * Transitivity guarantees that B happens after A and C after B.
1914 * Note: we only require RCpc transitivity.
1915 * Note: the cpu doing B need not be c0 or c1
1916 *
1917 * Example:
1918 *
1919 * CPU0 CPU1 CPU2
1920 *
1921 * LOCK rq(0)->lock
1922 * sched-out X
1923 * sched-in Y
1924 * UNLOCK rq(0)->lock
1925 *
1926 * LOCK rq(0)->lock // orders against CPU0
1927 * dequeue X
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(1)->lock
1931 * enqueue X
1932 * UNLOCK rq(1)->lock
1933 *
1934 * LOCK rq(1)->lock // orders against CPU2
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(1)->lock
1938 *
1939 *
1940 * BLOCKING -- aka. SLEEP + WAKEUP
1941 *
1942 * For blocking we (obviously) need to provide the same guarantee as for
1943 * migration. However the means are completely different as there is no lock
1944 * chain to provide order. Instead we do:
1945 *
1946 * 1) smp_store_release(X->on_cpu, 0)
1947 * 2) smp_cond_load_acquire(!X->on_cpu)
1948 *
1949 * Example:
1950 *
1951 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1952 *
1953 * LOCK rq(0)->lock LOCK X->pi_lock
1954 * dequeue X
1955 * sched-out X
1956 * smp_store_release(X->on_cpu, 0);
1957 *
1958 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1959 * X->state = WAKING
1960 * set_task_cpu(X,2)
1961 *
1962 * LOCK rq(2)->lock
1963 * enqueue X
1964 * X->state = RUNNING
1965 * UNLOCK rq(2)->lock
1966 *
1967 * LOCK rq(2)->lock // orders against CPU1
1968 * sched-out Z
1969 * sched-in X
1970 * UNLOCK rq(2)->lock
1971 *
1972 * UNLOCK X->pi_lock
1973 * UNLOCK rq(0)->lock
1974 *
1975 *
1976 * However; for wakeups there is a second guarantee we must provide, namely we
1977 * must observe the state that lead to our wakeup. That is, not only must our
1978 * task observe its own prior state, it must also observe the stores prior to
1979 * its wakeup.
1980 *
1981 * This means that any means of doing remote wakeups must order the CPU doing
1982 * the wakeup against the CPU the task is going to end up running on. This,
1983 * however, is already required for the regular Program-Order guarantee above,
1984 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1985 *
1986 */
1987
1988 /**
1989 * try_to_wake_up - wake up a thread
1990 * @p: the thread to be awakened
1991 * @state: the mask of task states that can be woken
1992 * @wake_flags: wake modifier flags (WF_*)
1993 *
1994 * Put it on the run-queue if it's not already there. The "current"
1995 * thread is always on the run-queue (except when the actual
1996 * re-schedule is in progress), and as such you're allowed to do
1997 * the simpler "current->state = TASK_RUNNING" to mark yourself
1998 * runnable without the overhead of this.
1999 *
2000 * Return: %true if @p was woken up, %false if it was already running.
2001 * or @state didn't match @p's state.
2002 */
2003 static int
2004 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2005 {
2006 unsigned long flags;
2007 int cpu, success = 0;
2008
2009 /*
2010 * If we are going to wake up a thread waiting for CONDITION we
2011 * need to ensure that CONDITION=1 done by the caller can not be
2012 * reordered with p->state check below. This pairs with mb() in
2013 * set_current_state() the waiting thread does.
2014 */
2015 smp_mb__before_spinlock();
2016 raw_spin_lock_irqsave(&p->pi_lock, flags);
2017 if (!(p->state & state))
2018 goto out;
2019
2020 trace_sched_waking(p);
2021
2022 success = 1; /* we're going to change ->state */
2023 cpu = task_cpu(p);
2024
2025 /*
2026 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2027 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2028 * in smp_cond_load_acquire() below.
2029 *
2030 * sched_ttwu_pending() try_to_wake_up()
2031 * [S] p->on_rq = 1; [L] P->state
2032 * UNLOCK rq->lock -----.
2033 * \
2034 * +--- RMB
2035 * schedule() /
2036 * LOCK rq->lock -----'
2037 * UNLOCK rq->lock
2038 *
2039 * [task p]
2040 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2041 *
2042 * Pairs with the UNLOCK+LOCK on rq->lock from the
2043 * last wakeup of our task and the schedule that got our task
2044 * current.
2045 */
2046 smp_rmb();
2047 if (p->on_rq && ttwu_remote(p, wake_flags))
2048 goto stat;
2049
2050 #ifdef CONFIG_SMP
2051 /*
2052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 * possible to, falsely, observe p->on_cpu == 0.
2054 *
2055 * One must be running (->on_cpu == 1) in order to remove oneself
2056 * from the runqueue.
2057 *
2058 * [S] ->on_cpu = 1; [L] ->on_rq
2059 * UNLOCK rq->lock
2060 * RMB
2061 * LOCK rq->lock
2062 * [S] ->on_rq = 0; [L] ->on_cpu
2063 *
2064 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 * from the consecutive calls to schedule(); the first switching to our
2066 * task, the second putting it to sleep.
2067 */
2068 smp_rmb();
2069
2070 /*
2071 * If the owning (remote) cpu is still in the middle of schedule() with
2072 * this task as prev, wait until its done referencing the task.
2073 *
2074 * Pairs with the smp_store_release() in finish_lock_switch().
2075 *
2076 * This ensures that tasks getting woken will be fully ordered against
2077 * their previous state and preserve Program Order.
2078 */
2079 smp_cond_load_acquire(&p->on_cpu, !VAL);
2080
2081 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2082 p->state = TASK_WAKING;
2083
2084 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2085 if (task_cpu(p) != cpu) {
2086 wake_flags |= WF_MIGRATED;
2087 set_task_cpu(p, cpu);
2088 }
2089 #endif /* CONFIG_SMP */
2090
2091 ttwu_queue(p, cpu, wake_flags);
2092 stat:
2093 ttwu_stat(p, cpu, wake_flags);
2094 out:
2095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2096
2097 return success;
2098 }
2099
2100 /**
2101 * try_to_wake_up_local - try to wake up a local task with rq lock held
2102 * @p: the thread to be awakened
2103 * @cookie: context's cookie for pinning
2104 *
2105 * Put @p on the run-queue if it's not already there. The caller must
2106 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2107 * the current task.
2108 */
2109 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2110 {
2111 struct rq *rq = task_rq(p);
2112
2113 if (WARN_ON_ONCE(rq != this_rq()) ||
2114 WARN_ON_ONCE(p == current))
2115 return;
2116
2117 lockdep_assert_held(&rq->lock);
2118
2119 if (!raw_spin_trylock(&p->pi_lock)) {
2120 /*
2121 * This is OK, because current is on_cpu, which avoids it being
2122 * picked for load-balance and preemption/IRQs are still
2123 * disabled avoiding further scheduler activity on it and we've
2124 * not yet picked a replacement task.
2125 */
2126 lockdep_unpin_lock(&rq->lock, cookie);
2127 raw_spin_unlock(&rq->lock);
2128 raw_spin_lock(&p->pi_lock);
2129 raw_spin_lock(&rq->lock);
2130 lockdep_repin_lock(&rq->lock, cookie);
2131 }
2132
2133 if (!(p->state & TASK_NORMAL))
2134 goto out;
2135
2136 trace_sched_waking(p);
2137
2138 if (!task_on_rq_queued(p))
2139 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2140
2141 ttwu_do_wakeup(rq, p, 0, cookie);
2142 ttwu_stat(p, smp_processor_id(), 0);
2143 out:
2144 raw_spin_unlock(&p->pi_lock);
2145 }
2146
2147 /**
2148 * wake_up_process - Wake up a specific process
2149 * @p: The process to be woken up.
2150 *
2151 * Attempt to wake up the nominated process and move it to the set of runnable
2152 * processes.
2153 *
2154 * Return: 1 if the process was woken up, 0 if it was already running.
2155 *
2156 * It may be assumed that this function implies a write memory barrier before
2157 * changing the task state if and only if any tasks are woken up.
2158 */
2159 int wake_up_process(struct task_struct *p)
2160 {
2161 return try_to_wake_up(p, TASK_NORMAL, 0);
2162 }
2163 EXPORT_SYMBOL(wake_up_process);
2164
2165 int wake_up_state(struct task_struct *p, unsigned int state)
2166 {
2167 return try_to_wake_up(p, state, 0);
2168 }
2169
2170 /*
2171 * This function clears the sched_dl_entity static params.
2172 */
2173 void __dl_clear_params(struct task_struct *p)
2174 {
2175 struct sched_dl_entity *dl_se = &p->dl;
2176
2177 dl_se->dl_runtime = 0;
2178 dl_se->dl_deadline = 0;
2179 dl_se->dl_period = 0;
2180 dl_se->flags = 0;
2181 dl_se->dl_bw = 0;
2182
2183 dl_se->dl_throttled = 0;
2184 dl_se->dl_yielded = 0;
2185 }
2186
2187 /*
2188 * Perform scheduler related setup for a newly forked process p.
2189 * p is forked by current.
2190 *
2191 * __sched_fork() is basic setup used by init_idle() too:
2192 */
2193 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2194 {
2195 p->on_rq = 0;
2196
2197 p->se.on_rq = 0;
2198 p->se.exec_start = 0;
2199 p->se.sum_exec_runtime = 0;
2200 p->se.prev_sum_exec_runtime = 0;
2201 p->se.nr_migrations = 0;
2202 p->se.vruntime = 0;
2203 INIT_LIST_HEAD(&p->se.group_node);
2204
2205 #ifdef CONFIG_FAIR_GROUP_SCHED
2206 p->se.cfs_rq = NULL;
2207 #endif
2208
2209 #ifdef CONFIG_SCHEDSTATS
2210 /* Even if schedstat is disabled, there should not be garbage */
2211 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2212 #endif
2213
2214 RB_CLEAR_NODE(&p->dl.rb_node);
2215 init_dl_task_timer(&p->dl);
2216 __dl_clear_params(p);
2217
2218 INIT_LIST_HEAD(&p->rt.run_list);
2219 p->rt.timeout = 0;
2220 p->rt.time_slice = sched_rr_timeslice;
2221 p->rt.on_rq = 0;
2222 p->rt.on_list = 0;
2223
2224 #ifdef CONFIG_PREEMPT_NOTIFIERS
2225 INIT_HLIST_HEAD(&p->preempt_notifiers);
2226 #endif
2227
2228 #ifdef CONFIG_NUMA_BALANCING
2229 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2230 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2231 p->mm->numa_scan_seq = 0;
2232 }
2233
2234 if (clone_flags & CLONE_VM)
2235 p->numa_preferred_nid = current->numa_preferred_nid;
2236 else
2237 p->numa_preferred_nid = -1;
2238
2239 p->node_stamp = 0ULL;
2240 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2241 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2242 p->numa_work.next = &p->numa_work;
2243 p->numa_faults = NULL;
2244 p->last_task_numa_placement = 0;
2245 p->last_sum_exec_runtime = 0;
2246
2247 p->numa_group = NULL;
2248 #endif /* CONFIG_NUMA_BALANCING */
2249 }
2250
2251 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2252
2253 #ifdef CONFIG_NUMA_BALANCING
2254
2255 void set_numabalancing_state(bool enabled)
2256 {
2257 if (enabled)
2258 static_branch_enable(&sched_numa_balancing);
2259 else
2260 static_branch_disable(&sched_numa_balancing);
2261 }
2262
2263 #ifdef CONFIG_PROC_SYSCTL
2264 int sysctl_numa_balancing(struct ctl_table *table, int write,
2265 void __user *buffer, size_t *lenp, loff_t *ppos)
2266 {
2267 struct ctl_table t;
2268 int err;
2269 int state = static_branch_likely(&sched_numa_balancing);
2270
2271 if (write && !capable(CAP_SYS_ADMIN))
2272 return -EPERM;
2273
2274 t = *table;
2275 t.data = &state;
2276 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2277 if (err < 0)
2278 return err;
2279 if (write)
2280 set_numabalancing_state(state);
2281 return err;
2282 }
2283 #endif
2284 #endif
2285
2286 #ifdef CONFIG_SCHEDSTATS
2287
2288 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2289 static bool __initdata __sched_schedstats = false;
2290
2291 static void set_schedstats(bool enabled)
2292 {
2293 if (enabled)
2294 static_branch_enable(&sched_schedstats);
2295 else
2296 static_branch_disable(&sched_schedstats);
2297 }
2298
2299 void force_schedstat_enabled(void)
2300 {
2301 if (!schedstat_enabled()) {
2302 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2303 static_branch_enable(&sched_schedstats);
2304 }
2305 }
2306
2307 static int __init setup_schedstats(char *str)
2308 {
2309 int ret = 0;
2310 if (!str)
2311 goto out;
2312
2313 /*
2314 * This code is called before jump labels have been set up, so we can't
2315 * change the static branch directly just yet. Instead set a temporary
2316 * variable so init_schedstats() can do it later.
2317 */
2318 if (!strcmp(str, "enable")) {
2319 __sched_schedstats = true;
2320 ret = 1;
2321 } else if (!strcmp(str, "disable")) {
2322 __sched_schedstats = false;
2323 ret = 1;
2324 }
2325 out:
2326 if (!ret)
2327 pr_warn("Unable to parse schedstats=\n");
2328
2329 return ret;
2330 }
2331 __setup("schedstats=", setup_schedstats);
2332
2333 static void __init init_schedstats(void)
2334 {
2335 set_schedstats(__sched_schedstats);
2336 }
2337
2338 #ifdef CONFIG_PROC_SYSCTL
2339 int sysctl_schedstats(struct ctl_table *table, int write,
2340 void __user *buffer, size_t *lenp, loff_t *ppos)
2341 {
2342 struct ctl_table t;
2343 int err;
2344 int state = static_branch_likely(&sched_schedstats);
2345
2346 if (write && !capable(CAP_SYS_ADMIN))
2347 return -EPERM;
2348
2349 t = *table;
2350 t.data = &state;
2351 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2352 if (err < 0)
2353 return err;
2354 if (write)
2355 set_schedstats(state);
2356 return err;
2357 }
2358 #endif /* CONFIG_PROC_SYSCTL */
2359 #else /* !CONFIG_SCHEDSTATS */
2360 static inline void init_schedstats(void) {}
2361 #endif /* CONFIG_SCHEDSTATS */
2362
2363 /*
2364 * fork()/clone()-time setup:
2365 */
2366 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2367 {
2368 unsigned long flags;
2369 int cpu = get_cpu();
2370
2371 __sched_fork(clone_flags, p);
2372 /*
2373 * We mark the process as NEW here. This guarantees that
2374 * nobody will actually run it, and a signal or other external
2375 * event cannot wake it up and insert it on the runqueue either.
2376 */
2377 p->state = TASK_NEW;
2378
2379 /*
2380 * Make sure we do not leak PI boosting priority to the child.
2381 */
2382 p->prio = current->normal_prio;
2383
2384 /*
2385 * Revert to default priority/policy on fork if requested.
2386 */
2387 if (unlikely(p->sched_reset_on_fork)) {
2388 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2389 p->policy = SCHED_NORMAL;
2390 p->static_prio = NICE_TO_PRIO(0);
2391 p->rt_priority = 0;
2392 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2393 p->static_prio = NICE_TO_PRIO(0);
2394
2395 p->prio = p->normal_prio = __normal_prio(p);
2396 set_load_weight(p);
2397
2398 /*
2399 * We don't need the reset flag anymore after the fork. It has
2400 * fulfilled its duty:
2401 */
2402 p->sched_reset_on_fork = 0;
2403 }
2404
2405 if (dl_prio(p->prio)) {
2406 put_cpu();
2407 return -EAGAIN;
2408 } else if (rt_prio(p->prio)) {
2409 p->sched_class = &rt_sched_class;
2410 } else {
2411 p->sched_class = &fair_sched_class;
2412 }
2413
2414 init_entity_runnable_average(&p->se);
2415
2416 /*
2417 * The child is not yet in the pid-hash so no cgroup attach races,
2418 * and the cgroup is pinned to this child due to cgroup_fork()
2419 * is ran before sched_fork().
2420 *
2421 * Silence PROVE_RCU.
2422 */
2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
2424 /*
2425 * We're setting the cpu for the first time, we don't migrate,
2426 * so use __set_task_cpu().
2427 */
2428 __set_task_cpu(p, cpu);
2429 if (p->sched_class->task_fork)
2430 p->sched_class->task_fork(p);
2431 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2432
2433 #ifdef CONFIG_SCHED_INFO
2434 if (likely(sched_info_on()))
2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436 #endif
2437 #if defined(CONFIG_SMP)
2438 p->on_cpu = 0;
2439 #endif
2440 init_task_preempt_count(p);
2441 #ifdef CONFIG_SMP
2442 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2443 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2444 #endif
2445
2446 put_cpu();
2447 return 0;
2448 }
2449
2450 unsigned long to_ratio(u64 period, u64 runtime)
2451 {
2452 if (runtime == RUNTIME_INF)
2453 return 1ULL << 20;
2454
2455 /*
2456 * Doing this here saves a lot of checks in all
2457 * the calling paths, and returning zero seems
2458 * safe for them anyway.
2459 */
2460 if (period == 0)
2461 return 0;
2462
2463 return div64_u64(runtime << 20, period);
2464 }
2465
2466 #ifdef CONFIG_SMP
2467 inline struct dl_bw *dl_bw_of(int i)
2468 {
2469 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2470 "sched RCU must be held");
2471 return &cpu_rq(i)->rd->dl_bw;
2472 }
2473
2474 static inline int dl_bw_cpus(int i)
2475 {
2476 struct root_domain *rd = cpu_rq(i)->rd;
2477 int cpus = 0;
2478
2479 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2480 "sched RCU must be held");
2481 for_each_cpu_and(i, rd->span, cpu_active_mask)
2482 cpus++;
2483
2484 return cpus;
2485 }
2486 #else
2487 inline struct dl_bw *dl_bw_of(int i)
2488 {
2489 return &cpu_rq(i)->dl.dl_bw;
2490 }
2491
2492 static inline int dl_bw_cpus(int i)
2493 {
2494 return 1;
2495 }
2496 #endif
2497
2498 /*
2499 * We must be sure that accepting a new task (or allowing changing the
2500 * parameters of an existing one) is consistent with the bandwidth
2501 * constraints. If yes, this function also accordingly updates the currently
2502 * allocated bandwidth to reflect the new situation.
2503 *
2504 * This function is called while holding p's rq->lock.
2505 *
2506 * XXX we should delay bw change until the task's 0-lag point, see
2507 * __setparam_dl().
2508 */
2509 static int dl_overflow(struct task_struct *p, int policy,
2510 const struct sched_attr *attr)
2511 {
2512
2513 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2514 u64 period = attr->sched_period ?: attr->sched_deadline;
2515 u64 runtime = attr->sched_runtime;
2516 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2517 int cpus, err = -1;
2518
2519 /* !deadline task may carry old deadline bandwidth */
2520 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2521 return 0;
2522
2523 /*
2524 * Either if a task, enters, leave, or stays -deadline but changes
2525 * its parameters, we may need to update accordingly the total
2526 * allocated bandwidth of the container.
2527 */
2528 raw_spin_lock(&dl_b->lock);
2529 cpus = dl_bw_cpus(task_cpu(p));
2530 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2531 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2536 __dl_clear(dl_b, p->dl.dl_bw);
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2540 __dl_clear(dl_b, p->dl.dl_bw);
2541 err = 0;
2542 }
2543 raw_spin_unlock(&dl_b->lock);
2544
2545 return err;
2546 }
2547
2548 extern void init_dl_bw(struct dl_bw *dl_b);
2549
2550 /*
2551 * wake_up_new_task - wake up a newly created task for the first time.
2552 *
2553 * This function will do some initial scheduler statistics housekeeping
2554 * that must be done for every newly created context, then puts the task
2555 * on the runqueue and wakes it.
2556 */
2557 void wake_up_new_task(struct task_struct *p)
2558 {
2559 struct rq_flags rf;
2560 struct rq *rq;
2561
2562 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2563 p->state = TASK_RUNNING;
2564 #ifdef CONFIG_SMP
2565 /*
2566 * Fork balancing, do it here and not earlier because:
2567 * - cpus_allowed can change in the fork path
2568 * - any previously selected cpu might disappear through hotplug
2569 *
2570 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2571 * as we're not fully set-up yet.
2572 */
2573 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2574 #endif
2575 rq = __task_rq_lock(p, &rf);
2576 post_init_entity_util_avg(&p->se);
2577
2578 activate_task(rq, p, 0);
2579 p->on_rq = TASK_ON_RQ_QUEUED;
2580 trace_sched_wakeup_new(p);
2581 check_preempt_curr(rq, p, WF_FORK);
2582 #ifdef CONFIG_SMP
2583 if (p->sched_class->task_woken) {
2584 /*
2585 * Nothing relies on rq->lock after this, so its fine to
2586 * drop it.
2587 */
2588 lockdep_unpin_lock(&rq->lock, rf.cookie);
2589 p->sched_class->task_woken(rq, p);
2590 lockdep_repin_lock(&rq->lock, rf.cookie);
2591 }
2592 #endif
2593 task_rq_unlock(rq, p, &rf);
2594 }
2595
2596 #ifdef CONFIG_PREEMPT_NOTIFIERS
2597
2598 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2599
2600 void preempt_notifier_inc(void)
2601 {
2602 static_key_slow_inc(&preempt_notifier_key);
2603 }
2604 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2605
2606 void preempt_notifier_dec(void)
2607 {
2608 static_key_slow_dec(&preempt_notifier_key);
2609 }
2610 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2611
2612 /**
2613 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2614 * @notifier: notifier struct to register
2615 */
2616 void preempt_notifier_register(struct preempt_notifier *notifier)
2617 {
2618 if (!static_key_false(&preempt_notifier_key))
2619 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2620
2621 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2622 }
2623 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624
2625 /**
2626 * preempt_notifier_unregister - no longer interested in preemption notifications
2627 * @notifier: notifier struct to unregister
2628 *
2629 * This is *not* safe to call from within a preemption notifier.
2630 */
2631 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2632 {
2633 hlist_del(&notifier->link);
2634 }
2635 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2636
2637 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638 {
2639 struct preempt_notifier *notifier;
2640
2641 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2642 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2643 }
2644
2645 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646 {
2647 if (static_key_false(&preempt_notifier_key))
2648 __fire_sched_in_preempt_notifiers(curr);
2649 }
2650
2651 static void
2652 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654 {
2655 struct preempt_notifier *notifier;
2656
2657 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2658 notifier->ops->sched_out(notifier, next);
2659 }
2660
2661 static __always_inline void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664 {
2665 if (static_key_false(&preempt_notifier_key))
2666 __fire_sched_out_preempt_notifiers(curr, next);
2667 }
2668
2669 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2670
2671 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672 {
2673 }
2674
2675 static inline void
2676 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2677 struct task_struct *next)
2678 {
2679 }
2680
2681 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2682
2683 /**
2684 * prepare_task_switch - prepare to switch tasks
2685 * @rq: the runqueue preparing to switch
2686 * @prev: the current task that is being switched out
2687 * @next: the task we are going to switch to.
2688 *
2689 * This is called with the rq lock held and interrupts off. It must
2690 * be paired with a subsequent finish_task_switch after the context
2691 * switch.
2692 *
2693 * prepare_task_switch sets up locking and calls architecture specific
2694 * hooks.
2695 */
2696 static inline void
2697 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2698 struct task_struct *next)
2699 {
2700 sched_info_switch(rq, prev, next);
2701 perf_event_task_sched_out(prev, next);
2702 fire_sched_out_preempt_notifiers(prev, next);
2703 prepare_lock_switch(rq, next);
2704 prepare_arch_switch(next);
2705 }
2706
2707 /**
2708 * finish_task_switch - clean up after a task-switch
2709 * @prev: the thread we just switched away from.
2710 *
2711 * finish_task_switch must be called after the context switch, paired
2712 * with a prepare_task_switch call before the context switch.
2713 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2714 * and do any other architecture-specific cleanup actions.
2715 *
2716 * Note that we may have delayed dropping an mm in context_switch(). If
2717 * so, we finish that here outside of the runqueue lock. (Doing it
2718 * with the lock held can cause deadlocks; see schedule() for
2719 * details.)
2720 *
2721 * The context switch have flipped the stack from under us and restored the
2722 * local variables which were saved when this task called schedule() in the
2723 * past. prev == current is still correct but we need to recalculate this_rq
2724 * because prev may have moved to another CPU.
2725 */
2726 static struct rq *finish_task_switch(struct task_struct *prev)
2727 __releases(rq->lock)
2728 {
2729 struct rq *rq = this_rq();
2730 struct mm_struct *mm = rq->prev_mm;
2731 long prev_state;
2732
2733 /*
2734 * The previous task will have left us with a preempt_count of 2
2735 * because it left us after:
2736 *
2737 * schedule()
2738 * preempt_disable(); // 1
2739 * __schedule()
2740 * raw_spin_lock_irq(&rq->lock) // 2
2741 *
2742 * Also, see FORK_PREEMPT_COUNT.
2743 */
2744 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2745 "corrupted preempt_count: %s/%d/0x%x\n",
2746 current->comm, current->pid, preempt_count()))
2747 preempt_count_set(FORK_PREEMPT_COUNT);
2748
2749 rq->prev_mm = NULL;
2750
2751 /*
2752 * A task struct has one reference for the use as "current".
2753 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2754 * schedule one last time. The schedule call will never return, and
2755 * the scheduled task must drop that reference.
2756 *
2757 * We must observe prev->state before clearing prev->on_cpu (in
2758 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2759 * running on another CPU and we could rave with its RUNNING -> DEAD
2760 * transition, resulting in a double drop.
2761 */
2762 prev_state = prev->state;
2763 vtime_task_switch(prev);
2764 perf_event_task_sched_in(prev, current);
2765 finish_lock_switch(rq, prev);
2766 finish_arch_post_lock_switch();
2767
2768 fire_sched_in_preempt_notifiers(current);
2769 if (mm)
2770 mmdrop(mm);
2771 if (unlikely(prev_state == TASK_DEAD)) {
2772 if (prev->sched_class->task_dead)
2773 prev->sched_class->task_dead(prev);
2774
2775 /*
2776 * Remove function-return probe instances associated with this
2777 * task and put them back on the free list.
2778 */
2779 kprobe_flush_task(prev);
2780 put_task_struct(prev);
2781 }
2782
2783 tick_nohz_task_switch();
2784 return rq;
2785 }
2786
2787 #ifdef CONFIG_SMP
2788
2789 /* rq->lock is NOT held, but preemption is disabled */
2790 static void __balance_callback(struct rq *rq)
2791 {
2792 struct callback_head *head, *next;
2793 void (*func)(struct rq *rq);
2794 unsigned long flags;
2795
2796 raw_spin_lock_irqsave(&rq->lock, flags);
2797 head = rq->balance_callback;
2798 rq->balance_callback = NULL;
2799 while (head) {
2800 func = (void (*)(struct rq *))head->func;
2801 next = head->next;
2802 head->next = NULL;
2803 head = next;
2804
2805 func(rq);
2806 }
2807 raw_spin_unlock_irqrestore(&rq->lock, flags);
2808 }
2809
2810 static inline void balance_callback(struct rq *rq)
2811 {
2812 if (unlikely(rq->balance_callback))
2813 __balance_callback(rq);
2814 }
2815
2816 #else
2817
2818 static inline void balance_callback(struct rq *rq)
2819 {
2820 }
2821
2822 #endif
2823
2824 /**
2825 * schedule_tail - first thing a freshly forked thread must call.
2826 * @prev: the thread we just switched away from.
2827 */
2828 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2829 __releases(rq->lock)
2830 {
2831 struct rq *rq;
2832
2833 /*
2834 * New tasks start with FORK_PREEMPT_COUNT, see there and
2835 * finish_task_switch() for details.
2836 *
2837 * finish_task_switch() will drop rq->lock() and lower preempt_count
2838 * and the preempt_enable() will end up enabling preemption (on
2839 * PREEMPT_COUNT kernels).
2840 */
2841
2842 rq = finish_task_switch(prev);
2843 balance_callback(rq);
2844 preempt_enable();
2845
2846 if (current->set_child_tid)
2847 put_user(task_pid_vnr(current), current->set_child_tid);
2848 }
2849
2850 /*
2851 * context_switch - switch to the new MM and the new thread's register state.
2852 */
2853 static __always_inline struct rq *
2854 context_switch(struct rq *rq, struct task_struct *prev,
2855 struct task_struct *next, struct pin_cookie cookie)
2856 {
2857 struct mm_struct *mm, *oldmm;
2858
2859 prepare_task_switch(rq, prev, next);
2860
2861 mm = next->mm;
2862 oldmm = prev->active_mm;
2863 /*
2864 * For paravirt, this is coupled with an exit in switch_to to
2865 * combine the page table reload and the switch backend into
2866 * one hypercall.
2867 */
2868 arch_start_context_switch(prev);
2869
2870 if (!mm) {
2871 next->active_mm = oldmm;
2872 atomic_inc(&oldmm->mm_count);
2873 enter_lazy_tlb(oldmm, next);
2874 } else
2875 switch_mm_irqs_off(oldmm, mm, next);
2876
2877 if (!prev->mm) {
2878 prev->active_mm = NULL;
2879 rq->prev_mm = oldmm;
2880 }
2881 /*
2882 * Since the runqueue lock will be released by the next
2883 * task (which is an invalid locking op but in the case
2884 * of the scheduler it's an obvious special-case), so we
2885 * do an early lockdep release here:
2886 */
2887 lockdep_unpin_lock(&rq->lock, cookie);
2888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2889
2890 /* Here we just switch the register state and the stack. */
2891 switch_to(prev, next, prev);
2892 barrier();
2893
2894 return finish_task_switch(prev);
2895 }
2896
2897 /*
2898 * nr_running and nr_context_switches:
2899 *
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, total number of context switches performed since bootup.
2902 */
2903 unsigned long nr_running(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_online_cpu(i)
2908 sum += cpu_rq(i)->nr_running;
2909
2910 return sum;
2911 }
2912
2913 /*
2914 * Check if only the current task is running on the cpu.
2915 *
2916 * Caution: this function does not check that the caller has disabled
2917 * preemption, thus the result might have a time-of-check-to-time-of-use
2918 * race. The caller is responsible to use it correctly, for example:
2919 *
2920 * - from a non-preemptable section (of course)
2921 *
2922 * - from a thread that is bound to a single CPU
2923 *
2924 * - in a loop with very short iterations (e.g. a polling loop)
2925 */
2926 bool single_task_running(void)
2927 {
2928 return raw_rq()->nr_running == 1;
2929 }
2930 EXPORT_SYMBOL(single_task_running);
2931
2932 unsigned long long nr_context_switches(void)
2933 {
2934 int i;
2935 unsigned long long sum = 0;
2936
2937 for_each_possible_cpu(i)
2938 sum += cpu_rq(i)->nr_switches;
2939
2940 return sum;
2941 }
2942
2943 unsigned long nr_iowait(void)
2944 {
2945 unsigned long i, sum = 0;
2946
2947 for_each_possible_cpu(i)
2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2949
2950 return sum;
2951 }
2952
2953 unsigned long nr_iowait_cpu(int cpu)
2954 {
2955 struct rq *this = cpu_rq(cpu);
2956 return atomic_read(&this->nr_iowait);
2957 }
2958
2959 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2960 {
2961 struct rq *rq = this_rq();
2962 *nr_waiters = atomic_read(&rq->nr_iowait);
2963 *load = rq->load.weight;
2964 }
2965
2966 #ifdef CONFIG_SMP
2967
2968 /*
2969 * sched_exec - execve() is a valuable balancing opportunity, because at
2970 * this point the task has the smallest effective memory and cache footprint.
2971 */
2972 void sched_exec(void)
2973 {
2974 struct task_struct *p = current;
2975 unsigned long flags;
2976 int dest_cpu;
2977
2978 raw_spin_lock_irqsave(&p->pi_lock, flags);
2979 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2980 if (dest_cpu == smp_processor_id())
2981 goto unlock;
2982
2983 if (likely(cpu_active(dest_cpu))) {
2984 struct migration_arg arg = { p, dest_cpu };
2985
2986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2987 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2988 return;
2989 }
2990 unlock:
2991 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2992 }
2993
2994 #endif
2995
2996 DEFINE_PER_CPU(struct kernel_stat, kstat);
2997 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2998
2999 EXPORT_PER_CPU_SYMBOL(kstat);
3000 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3001
3002 /*
3003 * The function fair_sched_class.update_curr accesses the struct curr
3004 * and its field curr->exec_start; when called from task_sched_runtime(),
3005 * we observe a high rate of cache misses in practice.
3006 * Prefetching this data results in improved performance.
3007 */
3008 static inline void prefetch_curr_exec_start(struct task_struct *p)
3009 {
3010 #ifdef CONFIG_FAIR_GROUP_SCHED
3011 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3012 #else
3013 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3014 #endif
3015 prefetch(curr);
3016 prefetch(&curr->exec_start);
3017 }
3018
3019 /*
3020 * Return accounted runtime for the task.
3021 * In case the task is currently running, return the runtime plus current's
3022 * pending runtime that have not been accounted yet.
3023 */
3024 unsigned long long task_sched_runtime(struct task_struct *p)
3025 {
3026 struct rq_flags rf;
3027 struct rq *rq;
3028 u64 ns;
3029
3030 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3031 /*
3032 * 64-bit doesn't need locks to atomically read a 64bit value.
3033 * So we have a optimization chance when the task's delta_exec is 0.
3034 * Reading ->on_cpu is racy, but this is ok.
3035 *
3036 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3037 * If we race with it entering cpu, unaccounted time is 0. This is
3038 * indistinguishable from the read occurring a few cycles earlier.
3039 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3040 * been accounted, so we're correct here as well.
3041 */
3042 if (!p->on_cpu || !task_on_rq_queued(p))
3043 return p->se.sum_exec_runtime;
3044 #endif
3045
3046 rq = task_rq_lock(p, &rf);
3047 /*
3048 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3049 * project cycles that may never be accounted to this
3050 * thread, breaking clock_gettime().
3051 */
3052 if (task_current(rq, p) && task_on_rq_queued(p)) {
3053 prefetch_curr_exec_start(p);
3054 update_rq_clock(rq);
3055 p->sched_class->update_curr(rq);
3056 }
3057 ns = p->se.sum_exec_runtime;
3058 task_rq_unlock(rq, p, &rf);
3059
3060 return ns;
3061 }
3062
3063 /*
3064 * This function gets called by the timer code, with HZ frequency.
3065 * We call it with interrupts disabled.
3066 */
3067 void scheduler_tick(void)
3068 {
3069 int cpu = smp_processor_id();
3070 struct rq *rq = cpu_rq(cpu);
3071 struct task_struct *curr = rq->curr;
3072
3073 sched_clock_tick();
3074
3075 raw_spin_lock(&rq->lock);
3076 update_rq_clock(rq);
3077 curr->sched_class->task_tick(rq, curr, 0);
3078 cpu_load_update_active(rq);
3079 calc_global_load_tick(rq);
3080 raw_spin_unlock(&rq->lock);
3081
3082 perf_event_task_tick();
3083
3084 #ifdef CONFIG_SMP
3085 rq->idle_balance = idle_cpu(cpu);
3086 trigger_load_balance(rq);
3087 #endif
3088 rq_last_tick_reset(rq);
3089 }
3090
3091 #ifdef CONFIG_NO_HZ_FULL
3092 /**
3093 * scheduler_tick_max_deferment
3094 *
3095 * Keep at least one tick per second when a single
3096 * active task is running because the scheduler doesn't
3097 * yet completely support full dynticks environment.
3098 *
3099 * This makes sure that uptime, CFS vruntime, load
3100 * balancing, etc... continue to move forward, even
3101 * with a very low granularity.
3102 *
3103 * Return: Maximum deferment in nanoseconds.
3104 */
3105 u64 scheduler_tick_max_deferment(void)
3106 {
3107 struct rq *rq = this_rq();
3108 unsigned long next, now = READ_ONCE(jiffies);
3109
3110 next = rq->last_sched_tick + HZ;
3111
3112 if (time_before_eq(next, now))
3113 return 0;
3114
3115 return jiffies_to_nsecs(next - now);
3116 }
3117 #endif
3118
3119 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3120 defined(CONFIG_PREEMPT_TRACER))
3121 /*
3122 * If the value passed in is equal to the current preempt count
3123 * then we just disabled preemption. Start timing the latency.
3124 */
3125 static inline void preempt_latency_start(int val)
3126 {
3127 if (preempt_count() == val) {
3128 unsigned long ip = get_lock_parent_ip();
3129 #ifdef CONFIG_DEBUG_PREEMPT
3130 current->preempt_disable_ip = ip;
3131 #endif
3132 trace_preempt_off(CALLER_ADDR0, ip);
3133 }
3134 }
3135
3136 void preempt_count_add(int val)
3137 {
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 /*
3140 * Underflow?
3141 */
3142 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3143 return;
3144 #endif
3145 __preempt_count_add(val);
3146 #ifdef CONFIG_DEBUG_PREEMPT
3147 /*
3148 * Spinlock count overflowing soon?
3149 */
3150 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3151 PREEMPT_MASK - 10);
3152 #endif
3153 preempt_latency_start(val);
3154 }
3155 EXPORT_SYMBOL(preempt_count_add);
3156 NOKPROBE_SYMBOL(preempt_count_add);
3157
3158 /*
3159 * If the value passed in equals to the current preempt count
3160 * then we just enabled preemption. Stop timing the latency.
3161 */
3162 static inline void preempt_latency_stop(int val)
3163 {
3164 if (preempt_count() == val)
3165 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3166 }
3167
3168 void preempt_count_sub(int val)
3169 {
3170 #ifdef CONFIG_DEBUG_PREEMPT
3171 /*
3172 * Underflow?
3173 */
3174 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3175 return;
3176 /*
3177 * Is the spinlock portion underflowing?
3178 */
3179 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3180 !(preempt_count() & PREEMPT_MASK)))
3181 return;
3182 #endif
3183
3184 preempt_latency_stop(val);
3185 __preempt_count_sub(val);
3186 }
3187 EXPORT_SYMBOL(preempt_count_sub);
3188 NOKPROBE_SYMBOL(preempt_count_sub);
3189
3190 #else
3191 static inline void preempt_latency_start(int val) { }
3192 static inline void preempt_latency_stop(int val) { }
3193 #endif
3194
3195 /*
3196 * Print scheduling while atomic bug:
3197 */
3198 static noinline void __schedule_bug(struct task_struct *prev)
3199 {
3200 /* Save this before calling printk(), since that will clobber it */
3201 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3202
3203 if (oops_in_progress)
3204 return;
3205
3206 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3207 prev->comm, prev->pid, preempt_count());
3208
3209 debug_show_held_locks(prev);
3210 print_modules();
3211 if (irqs_disabled())
3212 print_irqtrace_events(prev);
3213 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3214 && in_atomic_preempt_off()) {
3215 pr_err("Preemption disabled at:");
3216 print_ip_sym(preempt_disable_ip);
3217 pr_cont("\n");
3218 }
3219 if (panic_on_warn)
3220 panic("scheduling while atomic\n");
3221
3222 dump_stack();
3223 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3224 }
3225
3226 /*
3227 * Various schedule()-time debugging checks and statistics:
3228 */
3229 static inline void schedule_debug(struct task_struct *prev)
3230 {
3231 #ifdef CONFIG_SCHED_STACK_END_CHECK
3232 if (task_stack_end_corrupted(prev))
3233 panic("corrupted stack end detected inside scheduler\n");
3234 #endif
3235
3236 if (unlikely(in_atomic_preempt_off())) {
3237 __schedule_bug(prev);
3238 preempt_count_set(PREEMPT_DISABLED);
3239 }
3240 rcu_sleep_check();
3241
3242 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3243
3244 schedstat_inc(this_rq()->sched_count);
3245 }
3246
3247 /*
3248 * Pick up the highest-prio task:
3249 */
3250 static inline struct task_struct *
3251 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3252 {
3253 const struct sched_class *class = &fair_sched_class;
3254 struct task_struct *p;
3255
3256 /*
3257 * Optimization: we know that if all tasks are in
3258 * the fair class we can call that function directly:
3259 */
3260 if (likely(prev->sched_class == class &&
3261 rq->nr_running == rq->cfs.h_nr_running)) {
3262 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3263 if (unlikely(p == RETRY_TASK))
3264 goto again;
3265
3266 /* assumes fair_sched_class->next == idle_sched_class */
3267 if (unlikely(!p))
3268 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3269
3270 return p;
3271 }
3272
3273 again:
3274 for_each_class(class) {
3275 p = class->pick_next_task(rq, prev, cookie);
3276 if (p) {
3277 if (unlikely(p == RETRY_TASK))
3278 goto again;
3279 return p;
3280 }
3281 }
3282
3283 BUG(); /* the idle class will always have a runnable task */
3284 }
3285
3286 /*
3287 * __schedule() is the main scheduler function.
3288 *
3289 * The main means of driving the scheduler and thus entering this function are:
3290 *
3291 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3292 *
3293 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3294 * paths. For example, see arch/x86/entry_64.S.
3295 *
3296 * To drive preemption between tasks, the scheduler sets the flag in timer
3297 * interrupt handler scheduler_tick().
3298 *
3299 * 3. Wakeups don't really cause entry into schedule(). They add a
3300 * task to the run-queue and that's it.
3301 *
3302 * Now, if the new task added to the run-queue preempts the current
3303 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3304 * called on the nearest possible occasion:
3305 *
3306 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3307 *
3308 * - in syscall or exception context, at the next outmost
3309 * preempt_enable(). (this might be as soon as the wake_up()'s
3310 * spin_unlock()!)
3311 *
3312 * - in IRQ context, return from interrupt-handler to
3313 * preemptible context
3314 *
3315 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3316 * then at the next:
3317 *
3318 * - cond_resched() call
3319 * - explicit schedule() call
3320 * - return from syscall or exception to user-space
3321 * - return from interrupt-handler to user-space
3322 *
3323 * WARNING: must be called with preemption disabled!
3324 */
3325 static void __sched notrace __schedule(bool preempt)
3326 {
3327 struct task_struct *prev, *next;
3328 unsigned long *switch_count;
3329 struct pin_cookie cookie;
3330 struct rq *rq;
3331 int cpu;
3332
3333 cpu = smp_processor_id();
3334 rq = cpu_rq(cpu);
3335 prev = rq->curr;
3336
3337 /*
3338 * do_exit() calls schedule() with preemption disabled as an exception;
3339 * however we must fix that up, otherwise the next task will see an
3340 * inconsistent (higher) preempt count.
3341 *
3342 * It also avoids the below schedule_debug() test from complaining
3343 * about this.
3344 */
3345 if (unlikely(prev->state == TASK_DEAD))
3346 preempt_enable_no_resched_notrace();
3347
3348 schedule_debug(prev);
3349
3350 if (sched_feat(HRTICK))
3351 hrtick_clear(rq);
3352
3353 local_irq_disable();
3354 rcu_note_context_switch();
3355
3356 /*
3357 * Make sure that signal_pending_state()->signal_pending() below
3358 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3359 * done by the caller to avoid the race with signal_wake_up().
3360 */
3361 smp_mb__before_spinlock();
3362 raw_spin_lock(&rq->lock);
3363 cookie = lockdep_pin_lock(&rq->lock);
3364
3365 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3366
3367 switch_count = &prev->nivcsw;
3368 if (!preempt && prev->state) {
3369 if (unlikely(signal_pending_state(prev->state, prev))) {
3370 prev->state = TASK_RUNNING;
3371 } else {
3372 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3373 prev->on_rq = 0;
3374
3375 /*
3376 * If a worker went to sleep, notify and ask workqueue
3377 * whether it wants to wake up a task to maintain
3378 * concurrency.
3379 */
3380 if (prev->flags & PF_WQ_WORKER) {
3381 struct task_struct *to_wakeup;
3382
3383 to_wakeup = wq_worker_sleeping(prev);
3384 if (to_wakeup)
3385 try_to_wake_up_local(to_wakeup, cookie);
3386 }
3387 }
3388 switch_count = &prev->nvcsw;
3389 }
3390
3391 if (task_on_rq_queued(prev))
3392 update_rq_clock(rq);
3393
3394 next = pick_next_task(rq, prev, cookie);
3395 clear_tsk_need_resched(prev);
3396 clear_preempt_need_resched();
3397 rq->clock_skip_update = 0;
3398
3399 if (likely(prev != next)) {
3400 rq->nr_switches++;
3401 rq->curr = next;
3402 ++*switch_count;
3403
3404 trace_sched_switch(preempt, prev, next);
3405 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3406 } else {
3407 lockdep_unpin_lock(&rq->lock, cookie);
3408 raw_spin_unlock_irq(&rq->lock);
3409 }
3410
3411 balance_callback(rq);
3412 }
3413
3414 static inline void sched_submit_work(struct task_struct *tsk)
3415 {
3416 if (!tsk->state || tsk_is_pi_blocked(tsk))
3417 return;
3418 /*
3419 * If we are going to sleep and we have plugged IO queued,
3420 * make sure to submit it to avoid deadlocks.
3421 */
3422 if (blk_needs_flush_plug(tsk))
3423 blk_schedule_flush_plug(tsk);
3424 }
3425
3426 asmlinkage __visible void __sched schedule(void)
3427 {
3428 struct task_struct *tsk = current;
3429
3430 sched_submit_work(tsk);
3431 do {
3432 preempt_disable();
3433 __schedule(false);
3434 sched_preempt_enable_no_resched();
3435 } while (need_resched());
3436 }
3437 EXPORT_SYMBOL(schedule);
3438
3439 #ifdef CONFIG_CONTEXT_TRACKING
3440 asmlinkage __visible void __sched schedule_user(void)
3441 {
3442 /*
3443 * If we come here after a random call to set_need_resched(),
3444 * or we have been woken up remotely but the IPI has not yet arrived,
3445 * we haven't yet exited the RCU idle mode. Do it here manually until
3446 * we find a better solution.
3447 *
3448 * NB: There are buggy callers of this function. Ideally we
3449 * should warn if prev_state != CONTEXT_USER, but that will trigger
3450 * too frequently to make sense yet.
3451 */
3452 enum ctx_state prev_state = exception_enter();
3453 schedule();
3454 exception_exit(prev_state);
3455 }
3456 #endif
3457
3458 /**
3459 * schedule_preempt_disabled - called with preemption disabled
3460 *
3461 * Returns with preemption disabled. Note: preempt_count must be 1
3462 */
3463 void __sched schedule_preempt_disabled(void)
3464 {
3465 sched_preempt_enable_no_resched();
3466 schedule();
3467 preempt_disable();
3468 }
3469
3470 static void __sched notrace preempt_schedule_common(void)
3471 {
3472 do {
3473 /*
3474 * Because the function tracer can trace preempt_count_sub()
3475 * and it also uses preempt_enable/disable_notrace(), if
3476 * NEED_RESCHED is set, the preempt_enable_notrace() called
3477 * by the function tracer will call this function again and
3478 * cause infinite recursion.
3479 *
3480 * Preemption must be disabled here before the function
3481 * tracer can trace. Break up preempt_disable() into two
3482 * calls. One to disable preemption without fear of being
3483 * traced. The other to still record the preemption latency,
3484 * which can also be traced by the function tracer.
3485 */
3486 preempt_disable_notrace();
3487 preempt_latency_start(1);
3488 __schedule(true);
3489 preempt_latency_stop(1);
3490 preempt_enable_no_resched_notrace();
3491
3492 /*
3493 * Check again in case we missed a preemption opportunity
3494 * between schedule and now.
3495 */
3496 } while (need_resched());
3497 }
3498
3499 #ifdef CONFIG_PREEMPT
3500 /*
3501 * this is the entry point to schedule() from in-kernel preemption
3502 * off of preempt_enable. Kernel preemptions off return from interrupt
3503 * occur there and call schedule directly.
3504 */
3505 asmlinkage __visible void __sched notrace preempt_schedule(void)
3506 {
3507 /*
3508 * If there is a non-zero preempt_count or interrupts are disabled,
3509 * we do not want to preempt the current task. Just return..
3510 */
3511 if (likely(!preemptible()))
3512 return;
3513
3514 preempt_schedule_common();
3515 }
3516 NOKPROBE_SYMBOL(preempt_schedule);
3517 EXPORT_SYMBOL(preempt_schedule);
3518
3519 /**
3520 * preempt_schedule_notrace - preempt_schedule called by tracing
3521 *
3522 * The tracing infrastructure uses preempt_enable_notrace to prevent
3523 * recursion and tracing preempt enabling caused by the tracing
3524 * infrastructure itself. But as tracing can happen in areas coming
3525 * from userspace or just about to enter userspace, a preempt enable
3526 * can occur before user_exit() is called. This will cause the scheduler
3527 * to be called when the system is still in usermode.
3528 *
3529 * To prevent this, the preempt_enable_notrace will use this function
3530 * instead of preempt_schedule() to exit user context if needed before
3531 * calling the scheduler.
3532 */
3533 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3534 {
3535 enum ctx_state prev_ctx;
3536
3537 if (likely(!preemptible()))
3538 return;
3539
3540 do {
3541 /*
3542 * Because the function tracer can trace preempt_count_sub()
3543 * and it also uses preempt_enable/disable_notrace(), if
3544 * NEED_RESCHED is set, the preempt_enable_notrace() called
3545 * by the function tracer will call this function again and
3546 * cause infinite recursion.
3547 *
3548 * Preemption must be disabled here before the function
3549 * tracer can trace. Break up preempt_disable() into two
3550 * calls. One to disable preemption without fear of being
3551 * traced. The other to still record the preemption latency,
3552 * which can also be traced by the function tracer.
3553 */
3554 preempt_disable_notrace();
3555 preempt_latency_start(1);
3556 /*
3557 * Needs preempt disabled in case user_exit() is traced
3558 * and the tracer calls preempt_enable_notrace() causing
3559 * an infinite recursion.
3560 */
3561 prev_ctx = exception_enter();
3562 __schedule(true);
3563 exception_exit(prev_ctx);
3564
3565 preempt_latency_stop(1);
3566 preempt_enable_no_resched_notrace();
3567 } while (need_resched());
3568 }
3569 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3570
3571 #endif /* CONFIG_PREEMPT */
3572
3573 /*
3574 * this is the entry point to schedule() from kernel preemption
3575 * off of irq context.
3576 * Note, that this is called and return with irqs disabled. This will
3577 * protect us against recursive calling from irq.
3578 */
3579 asmlinkage __visible void __sched preempt_schedule_irq(void)
3580 {
3581 enum ctx_state prev_state;
3582
3583 /* Catch callers which need to be fixed */
3584 BUG_ON(preempt_count() || !irqs_disabled());
3585
3586 prev_state = exception_enter();
3587
3588 do {
3589 preempt_disable();
3590 local_irq_enable();
3591 __schedule(true);
3592 local_irq_disable();
3593 sched_preempt_enable_no_resched();
3594 } while (need_resched());
3595
3596 exception_exit(prev_state);
3597 }
3598
3599 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3600 void *key)
3601 {
3602 return try_to_wake_up(curr->private, mode, wake_flags);
3603 }
3604 EXPORT_SYMBOL(default_wake_function);
3605
3606 #ifdef CONFIG_RT_MUTEXES
3607
3608 /*
3609 * rt_mutex_setprio - set the current priority of a task
3610 * @p: task
3611 * @prio: prio value (kernel-internal form)
3612 *
3613 * This function changes the 'effective' priority of a task. It does
3614 * not touch ->normal_prio like __setscheduler().
3615 *
3616 * Used by the rt_mutex code to implement priority inheritance
3617 * logic. Call site only calls if the priority of the task changed.
3618 */
3619 void rt_mutex_setprio(struct task_struct *p, int prio)
3620 {
3621 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3622 const struct sched_class *prev_class;
3623 struct rq_flags rf;
3624 struct rq *rq;
3625
3626 BUG_ON(prio > MAX_PRIO);
3627
3628 rq = __task_rq_lock(p, &rf);
3629
3630 /*
3631 * Idle task boosting is a nono in general. There is one
3632 * exception, when PREEMPT_RT and NOHZ is active:
3633 *
3634 * The idle task calls get_next_timer_interrupt() and holds
3635 * the timer wheel base->lock on the CPU and another CPU wants
3636 * to access the timer (probably to cancel it). We can safely
3637 * ignore the boosting request, as the idle CPU runs this code
3638 * with interrupts disabled and will complete the lock
3639 * protected section without being interrupted. So there is no
3640 * real need to boost.
3641 */
3642 if (unlikely(p == rq->idle)) {
3643 WARN_ON(p != rq->curr);
3644 WARN_ON(p->pi_blocked_on);
3645 goto out_unlock;
3646 }
3647
3648 trace_sched_pi_setprio(p, prio);
3649 oldprio = p->prio;
3650
3651 if (oldprio == prio)
3652 queue_flag &= ~DEQUEUE_MOVE;
3653
3654 prev_class = p->sched_class;
3655 queued = task_on_rq_queued(p);
3656 running = task_current(rq, p);
3657 if (queued)
3658 dequeue_task(rq, p, queue_flag);
3659 if (running)
3660 put_prev_task(rq, p);
3661
3662 /*
3663 * Boosting condition are:
3664 * 1. -rt task is running and holds mutex A
3665 * --> -dl task blocks on mutex A
3666 *
3667 * 2. -dl task is running and holds mutex A
3668 * --> -dl task blocks on mutex A and could preempt the
3669 * running task
3670 */
3671 if (dl_prio(prio)) {
3672 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3673 if (!dl_prio(p->normal_prio) ||
3674 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3675 p->dl.dl_boosted = 1;
3676 queue_flag |= ENQUEUE_REPLENISH;
3677 } else
3678 p->dl.dl_boosted = 0;
3679 p->sched_class = &dl_sched_class;
3680 } else if (rt_prio(prio)) {
3681 if (dl_prio(oldprio))
3682 p->dl.dl_boosted = 0;
3683 if (oldprio < prio)
3684 queue_flag |= ENQUEUE_HEAD;
3685 p->sched_class = &rt_sched_class;
3686 } else {
3687 if (dl_prio(oldprio))
3688 p->dl.dl_boosted = 0;
3689 if (rt_prio(oldprio))
3690 p->rt.timeout = 0;
3691 p->sched_class = &fair_sched_class;
3692 }
3693
3694 p->prio = prio;
3695
3696 if (running)
3697 p->sched_class->set_curr_task(rq);
3698 if (queued)
3699 enqueue_task(rq, p, queue_flag);
3700
3701 check_class_changed(rq, p, prev_class, oldprio);
3702 out_unlock:
3703 preempt_disable(); /* avoid rq from going away on us */
3704 __task_rq_unlock(rq, &rf);
3705
3706 balance_callback(rq);
3707 preempt_enable();
3708 }
3709 #endif
3710
3711 void set_user_nice(struct task_struct *p, long nice)
3712 {
3713 int old_prio, delta, queued;
3714 struct rq_flags rf;
3715 struct rq *rq;
3716
3717 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3718 return;
3719 /*
3720 * We have to be careful, if called from sys_setpriority(),
3721 * the task might be in the middle of scheduling on another CPU.
3722 */
3723 rq = task_rq_lock(p, &rf);
3724 /*
3725 * The RT priorities are set via sched_setscheduler(), but we still
3726 * allow the 'normal' nice value to be set - but as expected
3727 * it wont have any effect on scheduling until the task is
3728 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3729 */
3730 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3731 p->static_prio = NICE_TO_PRIO(nice);
3732 goto out_unlock;
3733 }
3734 queued = task_on_rq_queued(p);
3735 if (queued)
3736 dequeue_task(rq, p, DEQUEUE_SAVE);
3737
3738 p->static_prio = NICE_TO_PRIO(nice);
3739 set_load_weight(p);
3740 old_prio = p->prio;
3741 p->prio = effective_prio(p);
3742 delta = p->prio - old_prio;
3743
3744 if (queued) {
3745 enqueue_task(rq, p, ENQUEUE_RESTORE);
3746 /*
3747 * If the task increased its priority or is running and
3748 * lowered its priority, then reschedule its CPU:
3749 */
3750 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3751 resched_curr(rq);
3752 }
3753 out_unlock:
3754 task_rq_unlock(rq, p, &rf);
3755 }
3756 EXPORT_SYMBOL(set_user_nice);
3757
3758 /*
3759 * can_nice - check if a task can reduce its nice value
3760 * @p: task
3761 * @nice: nice value
3762 */
3763 int can_nice(const struct task_struct *p, const int nice)
3764 {
3765 /* convert nice value [19,-20] to rlimit style value [1,40] */
3766 int nice_rlim = nice_to_rlimit(nice);
3767
3768 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3769 capable(CAP_SYS_NICE));
3770 }
3771
3772 #ifdef __ARCH_WANT_SYS_NICE
3773
3774 /*
3775 * sys_nice - change the priority of the current process.
3776 * @increment: priority increment
3777 *
3778 * sys_setpriority is a more generic, but much slower function that
3779 * does similar things.
3780 */
3781 SYSCALL_DEFINE1(nice, int, increment)
3782 {
3783 long nice, retval;
3784
3785 /*
3786 * Setpriority might change our priority at the same moment.
3787 * We don't have to worry. Conceptually one call occurs first
3788 * and we have a single winner.
3789 */
3790 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3791 nice = task_nice(current) + increment;
3792
3793 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3794 if (increment < 0 && !can_nice(current, nice))
3795 return -EPERM;
3796
3797 retval = security_task_setnice(current, nice);
3798 if (retval)
3799 return retval;
3800
3801 set_user_nice(current, nice);
3802 return 0;
3803 }
3804
3805 #endif
3806
3807 /**
3808 * task_prio - return the priority value of a given task.
3809 * @p: the task in question.
3810 *
3811 * Return: The priority value as seen by users in /proc.
3812 * RT tasks are offset by -200. Normal tasks are centered
3813 * around 0, value goes from -16 to +15.
3814 */
3815 int task_prio(const struct task_struct *p)
3816 {
3817 return p->prio - MAX_RT_PRIO;
3818 }
3819
3820 /**
3821 * idle_cpu - is a given cpu idle currently?
3822 * @cpu: the processor in question.
3823 *
3824 * Return: 1 if the CPU is currently idle. 0 otherwise.
3825 */
3826 int idle_cpu(int cpu)
3827 {
3828 struct rq *rq = cpu_rq(cpu);
3829
3830 if (rq->curr != rq->idle)
3831 return 0;
3832
3833 if (rq->nr_running)
3834 return 0;
3835
3836 #ifdef CONFIG_SMP
3837 if (!llist_empty(&rq->wake_list))
3838 return 0;
3839 #endif
3840
3841 return 1;
3842 }
3843
3844 /**
3845 * idle_task - return the idle task for a given cpu.
3846 * @cpu: the processor in question.
3847 *
3848 * Return: The idle task for the cpu @cpu.
3849 */
3850 struct task_struct *idle_task(int cpu)
3851 {
3852 return cpu_rq(cpu)->idle;
3853 }
3854
3855 /**
3856 * find_process_by_pid - find a process with a matching PID value.
3857 * @pid: the pid in question.
3858 *
3859 * The task of @pid, if found. %NULL otherwise.
3860 */
3861 static struct task_struct *find_process_by_pid(pid_t pid)
3862 {
3863 return pid ? find_task_by_vpid(pid) : current;
3864 }
3865
3866 /*
3867 * This function initializes the sched_dl_entity of a newly becoming
3868 * SCHED_DEADLINE task.
3869 *
3870 * Only the static values are considered here, the actual runtime and the
3871 * absolute deadline will be properly calculated when the task is enqueued
3872 * for the first time with its new policy.
3873 */
3874 static void
3875 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3876 {
3877 struct sched_dl_entity *dl_se = &p->dl;
3878
3879 dl_se->dl_runtime = attr->sched_runtime;
3880 dl_se->dl_deadline = attr->sched_deadline;
3881 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3882 dl_se->flags = attr->sched_flags;
3883 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3884
3885 /*
3886 * Changing the parameters of a task is 'tricky' and we're not doing
3887 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3888 *
3889 * What we SHOULD do is delay the bandwidth release until the 0-lag
3890 * point. This would include retaining the task_struct until that time
3891 * and change dl_overflow() to not immediately decrement the current
3892 * amount.
3893 *
3894 * Instead we retain the current runtime/deadline and let the new
3895 * parameters take effect after the current reservation period lapses.
3896 * This is safe (albeit pessimistic) because the 0-lag point is always
3897 * before the current scheduling deadline.
3898 *
3899 * We can still have temporary overloads because we do not delay the
3900 * change in bandwidth until that time; so admission control is
3901 * not on the safe side. It does however guarantee tasks will never
3902 * consume more than promised.
3903 */
3904 }
3905
3906 /*
3907 * sched_setparam() passes in -1 for its policy, to let the functions
3908 * it calls know not to change it.
3909 */
3910 #define SETPARAM_POLICY -1
3911
3912 static void __setscheduler_params(struct task_struct *p,
3913 const struct sched_attr *attr)
3914 {
3915 int policy = attr->sched_policy;
3916
3917 if (policy == SETPARAM_POLICY)
3918 policy = p->policy;
3919
3920 p->policy = policy;
3921
3922 if (dl_policy(policy))
3923 __setparam_dl(p, attr);
3924 else if (fair_policy(policy))
3925 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3926
3927 /*
3928 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3929 * !rt_policy. Always setting this ensures that things like
3930 * getparam()/getattr() don't report silly values for !rt tasks.
3931 */
3932 p->rt_priority = attr->sched_priority;
3933 p->normal_prio = normal_prio(p);
3934 set_load_weight(p);
3935 }
3936
3937 /* Actually do priority change: must hold pi & rq lock. */
3938 static void __setscheduler(struct rq *rq, struct task_struct *p,
3939 const struct sched_attr *attr, bool keep_boost)
3940 {
3941 __setscheduler_params(p, attr);
3942
3943 /*
3944 * Keep a potential priority boosting if called from
3945 * sched_setscheduler().
3946 */
3947 if (keep_boost)
3948 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3949 else
3950 p->prio = normal_prio(p);
3951
3952 if (dl_prio(p->prio))
3953 p->sched_class = &dl_sched_class;
3954 else if (rt_prio(p->prio))
3955 p->sched_class = &rt_sched_class;
3956 else
3957 p->sched_class = &fair_sched_class;
3958 }
3959
3960 static void
3961 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3962 {
3963 struct sched_dl_entity *dl_se = &p->dl;
3964
3965 attr->sched_priority = p->rt_priority;
3966 attr->sched_runtime = dl_se->dl_runtime;
3967 attr->sched_deadline = dl_se->dl_deadline;
3968 attr->sched_period = dl_se->dl_period;
3969 attr->sched_flags = dl_se->flags;
3970 }
3971
3972 /*
3973 * This function validates the new parameters of a -deadline task.
3974 * We ask for the deadline not being zero, and greater or equal
3975 * than the runtime, as well as the period of being zero or
3976 * greater than deadline. Furthermore, we have to be sure that
3977 * user parameters are above the internal resolution of 1us (we
3978 * check sched_runtime only since it is always the smaller one) and
3979 * below 2^63 ns (we have to check both sched_deadline and
3980 * sched_period, as the latter can be zero).
3981 */
3982 static bool
3983 __checkparam_dl(const struct sched_attr *attr)
3984 {
3985 /* deadline != 0 */
3986 if (attr->sched_deadline == 0)
3987 return false;
3988
3989 /*
3990 * Since we truncate DL_SCALE bits, make sure we're at least
3991 * that big.
3992 */
3993 if (attr->sched_runtime < (1ULL << DL_SCALE))
3994 return false;
3995
3996 /*
3997 * Since we use the MSB for wrap-around and sign issues, make
3998 * sure it's not set (mind that period can be equal to zero).
3999 */
4000 if (attr->sched_deadline & (1ULL << 63) ||
4001 attr->sched_period & (1ULL << 63))
4002 return false;
4003
4004 /* runtime <= deadline <= period (if period != 0) */
4005 if ((attr->sched_period != 0 &&
4006 attr->sched_period < attr->sched_deadline) ||
4007 attr->sched_deadline < attr->sched_runtime)
4008 return false;
4009
4010 return true;
4011 }
4012
4013 /*
4014 * check the target process has a UID that matches the current process's
4015 */
4016 static bool check_same_owner(struct task_struct *p)
4017 {
4018 const struct cred *cred = current_cred(), *pcred;
4019 bool match;
4020
4021 rcu_read_lock();
4022 pcred = __task_cred(p);
4023 match = (uid_eq(cred->euid, pcred->euid) ||
4024 uid_eq(cred->euid, pcred->uid));
4025 rcu_read_unlock();
4026 return match;
4027 }
4028
4029 static bool dl_param_changed(struct task_struct *p,
4030 const struct sched_attr *attr)
4031 {
4032 struct sched_dl_entity *dl_se = &p->dl;
4033
4034 if (dl_se->dl_runtime != attr->sched_runtime ||
4035 dl_se->dl_deadline != attr->sched_deadline ||
4036 dl_se->dl_period != attr->sched_period ||
4037 dl_se->flags != attr->sched_flags)
4038 return true;
4039
4040 return false;
4041 }
4042
4043 static int __sched_setscheduler(struct task_struct *p,
4044 const struct sched_attr *attr,
4045 bool user, bool pi)
4046 {
4047 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4048 MAX_RT_PRIO - 1 - attr->sched_priority;
4049 int retval, oldprio, oldpolicy = -1, queued, running;
4050 int new_effective_prio, policy = attr->sched_policy;
4051 const struct sched_class *prev_class;
4052 struct rq_flags rf;
4053 int reset_on_fork;
4054 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4055 struct rq *rq;
4056
4057 /* may grab non-irq protected spin_locks */
4058 BUG_ON(in_interrupt());
4059 recheck:
4060 /* double check policy once rq lock held */
4061 if (policy < 0) {
4062 reset_on_fork = p->sched_reset_on_fork;
4063 policy = oldpolicy = p->policy;
4064 } else {
4065 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4066
4067 if (!valid_policy(policy))
4068 return -EINVAL;
4069 }
4070
4071 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4072 return -EINVAL;
4073
4074 /*
4075 * Valid priorities for SCHED_FIFO and SCHED_RR are
4076 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4077 * SCHED_BATCH and SCHED_IDLE is 0.
4078 */
4079 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4080 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4081 return -EINVAL;
4082 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4083 (rt_policy(policy) != (attr->sched_priority != 0)))
4084 return -EINVAL;
4085
4086 /*
4087 * Allow unprivileged RT tasks to decrease priority:
4088 */
4089 if (user && !capable(CAP_SYS_NICE)) {
4090 if (fair_policy(policy)) {
4091 if (attr->sched_nice < task_nice(p) &&
4092 !can_nice(p, attr->sched_nice))
4093 return -EPERM;
4094 }
4095
4096 if (rt_policy(policy)) {
4097 unsigned long rlim_rtprio =
4098 task_rlimit(p, RLIMIT_RTPRIO);
4099
4100 /* can't set/change the rt policy */
4101 if (policy != p->policy && !rlim_rtprio)
4102 return -EPERM;
4103
4104 /* can't increase priority */
4105 if (attr->sched_priority > p->rt_priority &&
4106 attr->sched_priority > rlim_rtprio)
4107 return -EPERM;
4108 }
4109
4110 /*
4111 * Can't set/change SCHED_DEADLINE policy at all for now
4112 * (safest behavior); in the future we would like to allow
4113 * unprivileged DL tasks to increase their relative deadline
4114 * or reduce their runtime (both ways reducing utilization)
4115 */
4116 if (dl_policy(policy))
4117 return -EPERM;
4118
4119 /*
4120 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4121 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4122 */
4123 if (idle_policy(p->policy) && !idle_policy(policy)) {
4124 if (!can_nice(p, task_nice(p)))
4125 return -EPERM;
4126 }
4127
4128 /* can't change other user's priorities */
4129 if (!check_same_owner(p))
4130 return -EPERM;
4131
4132 /* Normal users shall not reset the sched_reset_on_fork flag */
4133 if (p->sched_reset_on_fork && !reset_on_fork)
4134 return -EPERM;
4135 }
4136
4137 if (user) {
4138 retval = security_task_setscheduler(p);
4139 if (retval)
4140 return retval;
4141 }
4142
4143 /*
4144 * make sure no PI-waiters arrive (or leave) while we are
4145 * changing the priority of the task:
4146 *
4147 * To be able to change p->policy safely, the appropriate
4148 * runqueue lock must be held.
4149 */
4150 rq = task_rq_lock(p, &rf);
4151
4152 /*
4153 * Changing the policy of the stop threads its a very bad idea
4154 */
4155 if (p == rq->stop) {
4156 task_rq_unlock(rq, p, &rf);
4157 return -EINVAL;
4158 }
4159
4160 /*
4161 * If not changing anything there's no need to proceed further,
4162 * but store a possible modification of reset_on_fork.
4163 */
4164 if (unlikely(policy == p->policy)) {
4165 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4166 goto change;
4167 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4168 goto change;
4169 if (dl_policy(policy) && dl_param_changed(p, attr))
4170 goto change;
4171
4172 p->sched_reset_on_fork = reset_on_fork;
4173 task_rq_unlock(rq, p, &rf);
4174 return 0;
4175 }
4176 change:
4177
4178 if (user) {
4179 #ifdef CONFIG_RT_GROUP_SCHED
4180 /*
4181 * Do not allow realtime tasks into groups that have no runtime
4182 * assigned.
4183 */
4184 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4185 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4186 !task_group_is_autogroup(task_group(p))) {
4187 task_rq_unlock(rq, p, &rf);
4188 return -EPERM;
4189 }
4190 #endif
4191 #ifdef CONFIG_SMP
4192 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4193 cpumask_t *span = rq->rd->span;
4194
4195 /*
4196 * Don't allow tasks with an affinity mask smaller than
4197 * the entire root_domain to become SCHED_DEADLINE. We
4198 * will also fail if there's no bandwidth available.
4199 */
4200 if (!cpumask_subset(span, &p->cpus_allowed) ||
4201 rq->rd->dl_bw.bw == 0) {
4202 task_rq_unlock(rq, p, &rf);
4203 return -EPERM;
4204 }
4205 }
4206 #endif
4207 }
4208
4209 /* recheck policy now with rq lock held */
4210 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4211 policy = oldpolicy = -1;
4212 task_rq_unlock(rq, p, &rf);
4213 goto recheck;
4214 }
4215
4216 /*
4217 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4218 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4219 * is available.
4220 */
4221 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4222 task_rq_unlock(rq, p, &rf);
4223 return -EBUSY;
4224 }
4225
4226 p->sched_reset_on_fork = reset_on_fork;
4227 oldprio = p->prio;
4228
4229 if (pi) {
4230 /*
4231 * Take priority boosted tasks into account. If the new
4232 * effective priority is unchanged, we just store the new
4233 * normal parameters and do not touch the scheduler class and
4234 * the runqueue. This will be done when the task deboost
4235 * itself.
4236 */
4237 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4238 if (new_effective_prio == oldprio)
4239 queue_flags &= ~DEQUEUE_MOVE;
4240 }
4241
4242 queued = task_on_rq_queued(p);
4243 running = task_current(rq, p);
4244 if (queued)
4245 dequeue_task(rq, p, queue_flags);
4246 if (running)
4247 put_prev_task(rq, p);
4248
4249 prev_class = p->sched_class;
4250 __setscheduler(rq, p, attr, pi);
4251
4252 if (running)
4253 p->sched_class->set_curr_task(rq);
4254 if (queued) {
4255 /*
4256 * We enqueue to tail when the priority of a task is
4257 * increased (user space view).
4258 */
4259 if (oldprio < p->prio)
4260 queue_flags |= ENQUEUE_HEAD;
4261
4262 enqueue_task(rq, p, queue_flags);
4263 }
4264
4265 check_class_changed(rq, p, prev_class, oldprio);
4266 preempt_disable(); /* avoid rq from going away on us */
4267 task_rq_unlock(rq, p, &rf);
4268
4269 if (pi)
4270 rt_mutex_adjust_pi(p);
4271
4272 /*
4273 * Run balance callbacks after we've adjusted the PI chain.
4274 */
4275 balance_callback(rq);
4276 preempt_enable();
4277
4278 return 0;
4279 }
4280
4281 static int _sched_setscheduler(struct task_struct *p, int policy,
4282 const struct sched_param *param, bool check)
4283 {
4284 struct sched_attr attr = {
4285 .sched_policy = policy,
4286 .sched_priority = param->sched_priority,
4287 .sched_nice = PRIO_TO_NICE(p->static_prio),
4288 };
4289
4290 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4291 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4292 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4293 policy &= ~SCHED_RESET_ON_FORK;
4294 attr.sched_policy = policy;
4295 }
4296
4297 return __sched_setscheduler(p, &attr, check, true);
4298 }
4299 /**
4300 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4301 * @p: the task in question.
4302 * @policy: new policy.
4303 * @param: structure containing the new RT priority.
4304 *
4305 * Return: 0 on success. An error code otherwise.
4306 *
4307 * NOTE that the task may be already dead.
4308 */
4309 int sched_setscheduler(struct task_struct *p, int policy,
4310 const struct sched_param *param)
4311 {
4312 return _sched_setscheduler(p, policy, param, true);
4313 }
4314 EXPORT_SYMBOL_GPL(sched_setscheduler);
4315
4316 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4317 {
4318 return __sched_setscheduler(p, attr, true, true);
4319 }
4320 EXPORT_SYMBOL_GPL(sched_setattr);
4321
4322 /**
4323 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4324 * @p: the task in question.
4325 * @policy: new policy.
4326 * @param: structure containing the new RT priority.
4327 *
4328 * Just like sched_setscheduler, only don't bother checking if the
4329 * current context has permission. For example, this is needed in
4330 * stop_machine(): we create temporary high priority worker threads,
4331 * but our caller might not have that capability.
4332 *
4333 * Return: 0 on success. An error code otherwise.
4334 */
4335 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4336 const struct sched_param *param)
4337 {
4338 return _sched_setscheduler(p, policy, param, false);
4339 }
4340 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4341
4342 static int
4343 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4344 {
4345 struct sched_param lparam;
4346 struct task_struct *p;
4347 int retval;
4348
4349 if (!param || pid < 0)
4350 return -EINVAL;
4351 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4352 return -EFAULT;
4353
4354 rcu_read_lock();
4355 retval = -ESRCH;
4356 p = find_process_by_pid(pid);
4357 if (p != NULL)
4358 retval = sched_setscheduler(p, policy, &lparam);
4359 rcu_read_unlock();
4360
4361 return retval;
4362 }
4363
4364 /*
4365 * Mimics kernel/events/core.c perf_copy_attr().
4366 */
4367 static int sched_copy_attr(struct sched_attr __user *uattr,
4368 struct sched_attr *attr)
4369 {
4370 u32 size;
4371 int ret;
4372
4373 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4374 return -EFAULT;
4375
4376 /*
4377 * zero the full structure, so that a short copy will be nice.
4378 */
4379 memset(attr, 0, sizeof(*attr));
4380
4381 ret = get_user(size, &uattr->size);
4382 if (ret)
4383 return ret;
4384
4385 if (size > PAGE_SIZE) /* silly large */
4386 goto err_size;
4387
4388 if (!size) /* abi compat */
4389 size = SCHED_ATTR_SIZE_VER0;
4390
4391 if (size < SCHED_ATTR_SIZE_VER0)
4392 goto err_size;
4393
4394 /*
4395 * If we're handed a bigger struct than we know of,
4396 * ensure all the unknown bits are 0 - i.e. new
4397 * user-space does not rely on any kernel feature
4398 * extensions we dont know about yet.
4399 */
4400 if (size > sizeof(*attr)) {
4401 unsigned char __user *addr;
4402 unsigned char __user *end;
4403 unsigned char val;
4404
4405 addr = (void __user *)uattr + sizeof(*attr);
4406 end = (void __user *)uattr + size;
4407
4408 for (; addr < end; addr++) {
4409 ret = get_user(val, addr);
4410 if (ret)
4411 return ret;
4412 if (val)
4413 goto err_size;
4414 }
4415 size = sizeof(*attr);
4416 }
4417
4418 ret = copy_from_user(attr, uattr, size);
4419 if (ret)
4420 return -EFAULT;
4421
4422 /*
4423 * XXX: do we want to be lenient like existing syscalls; or do we want
4424 * to be strict and return an error on out-of-bounds values?
4425 */
4426 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4427
4428 return 0;
4429
4430 err_size:
4431 put_user(sizeof(*attr), &uattr->size);
4432 return -E2BIG;
4433 }
4434
4435 /**
4436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4437 * @pid: the pid in question.
4438 * @policy: new policy.
4439 * @param: structure containing the new RT priority.
4440 *
4441 * Return: 0 on success. An error code otherwise.
4442 */
4443 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4444 struct sched_param __user *, param)
4445 {
4446 /* negative values for policy are not valid */
4447 if (policy < 0)
4448 return -EINVAL;
4449
4450 return do_sched_setscheduler(pid, policy, param);
4451 }
4452
4453 /**
4454 * sys_sched_setparam - set/change the RT priority of a thread
4455 * @pid: the pid in question.
4456 * @param: structure containing the new RT priority.
4457 *
4458 * Return: 0 on success. An error code otherwise.
4459 */
4460 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4461 {
4462 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4463 }
4464
4465 /**
4466 * sys_sched_setattr - same as above, but with extended sched_attr
4467 * @pid: the pid in question.
4468 * @uattr: structure containing the extended parameters.
4469 * @flags: for future extension.
4470 */
4471 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4472 unsigned int, flags)
4473 {
4474 struct sched_attr attr;
4475 struct task_struct *p;
4476 int retval;
4477
4478 if (!uattr || pid < 0 || flags)
4479 return -EINVAL;
4480
4481 retval = sched_copy_attr(uattr, &attr);
4482 if (retval)
4483 return retval;
4484
4485 if ((int)attr.sched_policy < 0)
4486 return -EINVAL;
4487
4488 rcu_read_lock();
4489 retval = -ESRCH;
4490 p = find_process_by_pid(pid);
4491 if (p != NULL)
4492 retval = sched_setattr(p, &attr);
4493 rcu_read_unlock();
4494
4495 return retval;
4496 }
4497
4498 /**
4499 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4500 * @pid: the pid in question.
4501 *
4502 * Return: On success, the policy of the thread. Otherwise, a negative error
4503 * code.
4504 */
4505 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4506 {
4507 struct task_struct *p;
4508 int retval;
4509
4510 if (pid < 0)
4511 return -EINVAL;
4512
4513 retval = -ESRCH;
4514 rcu_read_lock();
4515 p = find_process_by_pid(pid);
4516 if (p) {
4517 retval = security_task_getscheduler(p);
4518 if (!retval)
4519 retval = p->policy
4520 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4521 }
4522 rcu_read_unlock();
4523 return retval;
4524 }
4525
4526 /**
4527 * sys_sched_getparam - get the RT priority of a thread
4528 * @pid: the pid in question.
4529 * @param: structure containing the RT priority.
4530 *
4531 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4532 * code.
4533 */
4534 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4535 {
4536 struct sched_param lp = { .sched_priority = 0 };
4537 struct task_struct *p;
4538 int retval;
4539
4540 if (!param || pid < 0)
4541 return -EINVAL;
4542
4543 rcu_read_lock();
4544 p = find_process_by_pid(pid);
4545 retval = -ESRCH;
4546 if (!p)
4547 goto out_unlock;
4548
4549 retval = security_task_getscheduler(p);
4550 if (retval)
4551 goto out_unlock;
4552
4553 if (task_has_rt_policy(p))
4554 lp.sched_priority = p->rt_priority;
4555 rcu_read_unlock();
4556
4557 /*
4558 * This one might sleep, we cannot do it with a spinlock held ...
4559 */
4560 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4561
4562 return retval;
4563
4564 out_unlock:
4565 rcu_read_unlock();
4566 return retval;
4567 }
4568
4569 static int sched_read_attr(struct sched_attr __user *uattr,
4570 struct sched_attr *attr,
4571 unsigned int usize)
4572 {
4573 int ret;
4574
4575 if (!access_ok(VERIFY_WRITE, uattr, usize))
4576 return -EFAULT;
4577
4578 /*
4579 * If we're handed a smaller struct than we know of,
4580 * ensure all the unknown bits are 0 - i.e. old
4581 * user-space does not get uncomplete information.
4582 */
4583 if (usize < sizeof(*attr)) {
4584 unsigned char *addr;
4585 unsigned char *end;
4586
4587 addr = (void *)attr + usize;
4588 end = (void *)attr + sizeof(*attr);
4589
4590 for (; addr < end; addr++) {
4591 if (*addr)
4592 return -EFBIG;
4593 }
4594
4595 attr->size = usize;
4596 }
4597
4598 ret = copy_to_user(uattr, attr, attr->size);
4599 if (ret)
4600 return -EFAULT;
4601
4602 return 0;
4603 }
4604
4605 /**
4606 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4607 * @pid: the pid in question.
4608 * @uattr: structure containing the extended parameters.
4609 * @size: sizeof(attr) for fwd/bwd comp.
4610 * @flags: for future extension.
4611 */
4612 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4613 unsigned int, size, unsigned int, flags)
4614 {
4615 struct sched_attr attr = {
4616 .size = sizeof(struct sched_attr),
4617 };
4618 struct task_struct *p;
4619 int retval;
4620
4621 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4622 size < SCHED_ATTR_SIZE_VER0 || flags)
4623 return -EINVAL;
4624
4625 rcu_read_lock();
4626 p = find_process_by_pid(pid);
4627 retval = -ESRCH;
4628 if (!p)
4629 goto out_unlock;
4630
4631 retval = security_task_getscheduler(p);
4632 if (retval)
4633 goto out_unlock;
4634
4635 attr.sched_policy = p->policy;
4636 if (p->sched_reset_on_fork)
4637 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4638 if (task_has_dl_policy(p))
4639 __getparam_dl(p, &attr);
4640 else if (task_has_rt_policy(p))
4641 attr.sched_priority = p->rt_priority;
4642 else
4643 attr.sched_nice = task_nice(p);
4644
4645 rcu_read_unlock();
4646
4647 retval = sched_read_attr(uattr, &attr, size);
4648 return retval;
4649
4650 out_unlock:
4651 rcu_read_unlock();
4652 return retval;
4653 }
4654
4655 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4656 {
4657 cpumask_var_t cpus_allowed, new_mask;
4658 struct task_struct *p;
4659 int retval;
4660
4661 rcu_read_lock();
4662
4663 p = find_process_by_pid(pid);
4664 if (!p) {
4665 rcu_read_unlock();
4666 return -ESRCH;
4667 }
4668
4669 /* Prevent p going away */
4670 get_task_struct(p);
4671 rcu_read_unlock();
4672
4673 if (p->flags & PF_NO_SETAFFINITY) {
4674 retval = -EINVAL;
4675 goto out_put_task;
4676 }
4677 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4678 retval = -ENOMEM;
4679 goto out_put_task;
4680 }
4681 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4682 retval = -ENOMEM;
4683 goto out_free_cpus_allowed;
4684 }
4685 retval = -EPERM;
4686 if (!check_same_owner(p)) {
4687 rcu_read_lock();
4688 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4689 rcu_read_unlock();
4690 goto out_free_new_mask;
4691 }
4692 rcu_read_unlock();
4693 }
4694
4695 retval = security_task_setscheduler(p);
4696 if (retval)
4697 goto out_free_new_mask;
4698
4699
4700 cpuset_cpus_allowed(p, cpus_allowed);
4701 cpumask_and(new_mask, in_mask, cpus_allowed);
4702
4703 /*
4704 * Since bandwidth control happens on root_domain basis,
4705 * if admission test is enabled, we only admit -deadline
4706 * tasks allowed to run on all the CPUs in the task's
4707 * root_domain.
4708 */
4709 #ifdef CONFIG_SMP
4710 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4711 rcu_read_lock();
4712 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4713 retval = -EBUSY;
4714 rcu_read_unlock();
4715 goto out_free_new_mask;
4716 }
4717 rcu_read_unlock();
4718 }
4719 #endif
4720 again:
4721 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4722
4723 if (!retval) {
4724 cpuset_cpus_allowed(p, cpus_allowed);
4725 if (!cpumask_subset(new_mask, cpus_allowed)) {
4726 /*
4727 * We must have raced with a concurrent cpuset
4728 * update. Just reset the cpus_allowed to the
4729 * cpuset's cpus_allowed
4730 */
4731 cpumask_copy(new_mask, cpus_allowed);
4732 goto again;
4733 }
4734 }
4735 out_free_new_mask:
4736 free_cpumask_var(new_mask);
4737 out_free_cpus_allowed:
4738 free_cpumask_var(cpus_allowed);
4739 out_put_task:
4740 put_task_struct(p);
4741 return retval;
4742 }
4743
4744 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4745 struct cpumask *new_mask)
4746 {
4747 if (len < cpumask_size())
4748 cpumask_clear(new_mask);
4749 else if (len > cpumask_size())
4750 len = cpumask_size();
4751
4752 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4753 }
4754
4755 /**
4756 * sys_sched_setaffinity - set the cpu affinity of a process
4757 * @pid: pid of the process
4758 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4759 * @user_mask_ptr: user-space pointer to the new cpu mask
4760 *
4761 * Return: 0 on success. An error code otherwise.
4762 */
4763 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4764 unsigned long __user *, user_mask_ptr)
4765 {
4766 cpumask_var_t new_mask;
4767 int retval;
4768
4769 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4770 return -ENOMEM;
4771
4772 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4773 if (retval == 0)
4774 retval = sched_setaffinity(pid, new_mask);
4775 free_cpumask_var(new_mask);
4776 return retval;
4777 }
4778
4779 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4780 {
4781 struct task_struct *p;
4782 unsigned long flags;
4783 int retval;
4784
4785 rcu_read_lock();
4786
4787 retval = -ESRCH;
4788 p = find_process_by_pid(pid);
4789 if (!p)
4790 goto out_unlock;
4791
4792 retval = security_task_getscheduler(p);
4793 if (retval)
4794 goto out_unlock;
4795
4796 raw_spin_lock_irqsave(&p->pi_lock, flags);
4797 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4798 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4799
4800 out_unlock:
4801 rcu_read_unlock();
4802
4803 return retval;
4804 }
4805
4806 /**
4807 * sys_sched_getaffinity - get the cpu affinity of a process
4808 * @pid: pid of the process
4809 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4810 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4811 *
4812 * Return: size of CPU mask copied to user_mask_ptr on success. An
4813 * error code otherwise.
4814 */
4815 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4816 unsigned long __user *, user_mask_ptr)
4817 {
4818 int ret;
4819 cpumask_var_t mask;
4820
4821 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4822 return -EINVAL;
4823 if (len & (sizeof(unsigned long)-1))
4824 return -EINVAL;
4825
4826 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4827 return -ENOMEM;
4828
4829 ret = sched_getaffinity(pid, mask);
4830 if (ret == 0) {
4831 size_t retlen = min_t(size_t, len, cpumask_size());
4832
4833 if (copy_to_user(user_mask_ptr, mask, retlen))
4834 ret = -EFAULT;
4835 else
4836 ret = retlen;
4837 }
4838 free_cpumask_var(mask);
4839
4840 return ret;
4841 }
4842
4843 /**
4844 * sys_sched_yield - yield the current processor to other threads.
4845 *
4846 * This function yields the current CPU to other tasks. If there are no
4847 * other threads running on this CPU then this function will return.
4848 *
4849 * Return: 0.
4850 */
4851 SYSCALL_DEFINE0(sched_yield)
4852 {
4853 struct rq *rq = this_rq_lock();
4854
4855 schedstat_inc(rq->yld_count);
4856 current->sched_class->yield_task(rq);
4857
4858 /*
4859 * Since we are going to call schedule() anyway, there's
4860 * no need to preempt or enable interrupts:
4861 */
4862 __release(rq->lock);
4863 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4864 do_raw_spin_unlock(&rq->lock);
4865 sched_preempt_enable_no_resched();
4866
4867 schedule();
4868
4869 return 0;
4870 }
4871
4872 int __sched _cond_resched(void)
4873 {
4874 if (should_resched(0)) {
4875 preempt_schedule_common();
4876 return 1;
4877 }
4878 return 0;
4879 }
4880 EXPORT_SYMBOL(_cond_resched);
4881
4882 /*
4883 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4884 * call schedule, and on return reacquire the lock.
4885 *
4886 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4887 * operations here to prevent schedule() from being called twice (once via
4888 * spin_unlock(), once by hand).
4889 */
4890 int __cond_resched_lock(spinlock_t *lock)
4891 {
4892 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4893 int ret = 0;
4894
4895 lockdep_assert_held(lock);
4896
4897 if (spin_needbreak(lock) || resched) {
4898 spin_unlock(lock);
4899 if (resched)
4900 preempt_schedule_common();
4901 else
4902 cpu_relax();
4903 ret = 1;
4904 spin_lock(lock);
4905 }
4906 return ret;
4907 }
4908 EXPORT_SYMBOL(__cond_resched_lock);
4909
4910 int __sched __cond_resched_softirq(void)
4911 {
4912 BUG_ON(!in_softirq());
4913
4914 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4915 local_bh_enable();
4916 preempt_schedule_common();
4917 local_bh_disable();
4918 return 1;
4919 }
4920 return 0;
4921 }
4922 EXPORT_SYMBOL(__cond_resched_softirq);
4923
4924 /**
4925 * yield - yield the current processor to other threads.
4926 *
4927 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4928 *
4929 * The scheduler is at all times free to pick the calling task as the most
4930 * eligible task to run, if removing the yield() call from your code breaks
4931 * it, its already broken.
4932 *
4933 * Typical broken usage is:
4934 *
4935 * while (!event)
4936 * yield();
4937 *
4938 * where one assumes that yield() will let 'the other' process run that will
4939 * make event true. If the current task is a SCHED_FIFO task that will never
4940 * happen. Never use yield() as a progress guarantee!!
4941 *
4942 * If you want to use yield() to wait for something, use wait_event().
4943 * If you want to use yield() to be 'nice' for others, use cond_resched().
4944 * If you still want to use yield(), do not!
4945 */
4946 void __sched yield(void)
4947 {
4948 set_current_state(TASK_RUNNING);
4949 sys_sched_yield();
4950 }
4951 EXPORT_SYMBOL(yield);
4952
4953 /**
4954 * yield_to - yield the current processor to another thread in
4955 * your thread group, or accelerate that thread toward the
4956 * processor it's on.
4957 * @p: target task
4958 * @preempt: whether task preemption is allowed or not
4959 *
4960 * It's the caller's job to ensure that the target task struct
4961 * can't go away on us before we can do any checks.
4962 *
4963 * Return:
4964 * true (>0) if we indeed boosted the target task.
4965 * false (0) if we failed to boost the target.
4966 * -ESRCH if there's no task to yield to.
4967 */
4968 int __sched yield_to(struct task_struct *p, bool preempt)
4969 {
4970 struct task_struct *curr = current;
4971 struct rq *rq, *p_rq;
4972 unsigned long flags;
4973 int yielded = 0;
4974
4975 local_irq_save(flags);
4976 rq = this_rq();
4977
4978 again:
4979 p_rq = task_rq(p);
4980 /*
4981 * If we're the only runnable task on the rq and target rq also
4982 * has only one task, there's absolutely no point in yielding.
4983 */
4984 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4985 yielded = -ESRCH;
4986 goto out_irq;
4987 }
4988
4989 double_rq_lock(rq, p_rq);
4990 if (task_rq(p) != p_rq) {
4991 double_rq_unlock(rq, p_rq);
4992 goto again;
4993 }
4994
4995 if (!curr->sched_class->yield_to_task)
4996 goto out_unlock;
4997
4998 if (curr->sched_class != p->sched_class)
4999 goto out_unlock;
5000
5001 if (task_running(p_rq, p) || p->state)
5002 goto out_unlock;
5003
5004 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5005 if (yielded) {
5006 schedstat_inc(rq->yld_count);
5007 /*
5008 * Make p's CPU reschedule; pick_next_entity takes care of
5009 * fairness.
5010 */
5011 if (preempt && rq != p_rq)
5012 resched_curr(p_rq);
5013 }
5014
5015 out_unlock:
5016 double_rq_unlock(rq, p_rq);
5017 out_irq:
5018 local_irq_restore(flags);
5019
5020 if (yielded > 0)
5021 schedule();
5022
5023 return yielded;
5024 }
5025 EXPORT_SYMBOL_GPL(yield_to);
5026
5027 /*
5028 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5029 * that process accounting knows that this is a task in IO wait state.
5030 */
5031 long __sched io_schedule_timeout(long timeout)
5032 {
5033 int old_iowait = current->in_iowait;
5034 struct rq *rq;
5035 long ret;
5036
5037 current->in_iowait = 1;
5038 blk_schedule_flush_plug(current);
5039
5040 delayacct_blkio_start();
5041 rq = raw_rq();
5042 atomic_inc(&rq->nr_iowait);
5043 ret = schedule_timeout(timeout);
5044 current->in_iowait = old_iowait;
5045 atomic_dec(&rq->nr_iowait);
5046 delayacct_blkio_end();
5047
5048 return ret;
5049 }
5050 EXPORT_SYMBOL(io_schedule_timeout);
5051
5052 /**
5053 * sys_sched_get_priority_max - return maximum RT priority.
5054 * @policy: scheduling class.
5055 *
5056 * Return: On success, this syscall returns the maximum
5057 * rt_priority that can be used by a given scheduling class.
5058 * On failure, a negative error code is returned.
5059 */
5060 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5061 {
5062 int ret = -EINVAL;
5063
5064 switch (policy) {
5065 case SCHED_FIFO:
5066 case SCHED_RR:
5067 ret = MAX_USER_RT_PRIO-1;
5068 break;
5069 case SCHED_DEADLINE:
5070 case SCHED_NORMAL:
5071 case SCHED_BATCH:
5072 case SCHED_IDLE:
5073 ret = 0;
5074 break;
5075 }
5076 return ret;
5077 }
5078
5079 /**
5080 * sys_sched_get_priority_min - return minimum RT priority.
5081 * @policy: scheduling class.
5082 *
5083 * Return: On success, this syscall returns the minimum
5084 * rt_priority that can be used by a given scheduling class.
5085 * On failure, a negative error code is returned.
5086 */
5087 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5088 {
5089 int ret = -EINVAL;
5090
5091 switch (policy) {
5092 case SCHED_FIFO:
5093 case SCHED_RR:
5094 ret = 1;
5095 break;
5096 case SCHED_DEADLINE:
5097 case SCHED_NORMAL:
5098 case SCHED_BATCH:
5099 case SCHED_IDLE:
5100 ret = 0;
5101 }
5102 return ret;
5103 }
5104
5105 /**
5106 * sys_sched_rr_get_interval - return the default timeslice of a process.
5107 * @pid: pid of the process.
5108 * @interval: userspace pointer to the timeslice value.
5109 *
5110 * this syscall writes the default timeslice value of a given process
5111 * into the user-space timespec buffer. A value of '0' means infinity.
5112 *
5113 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5114 * an error code.
5115 */
5116 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5117 struct timespec __user *, interval)
5118 {
5119 struct task_struct *p;
5120 unsigned int time_slice;
5121 struct rq_flags rf;
5122 struct timespec t;
5123 struct rq *rq;
5124 int retval;
5125
5126 if (pid < 0)
5127 return -EINVAL;
5128
5129 retval = -ESRCH;
5130 rcu_read_lock();
5131 p = find_process_by_pid(pid);
5132 if (!p)
5133 goto out_unlock;
5134
5135 retval = security_task_getscheduler(p);
5136 if (retval)
5137 goto out_unlock;
5138
5139 rq = task_rq_lock(p, &rf);
5140 time_slice = 0;
5141 if (p->sched_class->get_rr_interval)
5142 time_slice = p->sched_class->get_rr_interval(rq, p);
5143 task_rq_unlock(rq, p, &rf);
5144
5145 rcu_read_unlock();
5146 jiffies_to_timespec(time_slice, &t);
5147 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5148 return retval;
5149
5150 out_unlock:
5151 rcu_read_unlock();
5152 return retval;
5153 }
5154
5155 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5156
5157 void sched_show_task(struct task_struct *p)
5158 {
5159 unsigned long free = 0;
5160 int ppid;
5161 unsigned long state = p->state;
5162
5163 if (state)
5164 state = __ffs(state) + 1;
5165 printk(KERN_INFO "%-15.15s %c", p->comm,
5166 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5167 #if BITS_PER_LONG == 32
5168 if (state == TASK_RUNNING)
5169 printk(KERN_CONT " running ");
5170 else
5171 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5172 #else
5173 if (state == TASK_RUNNING)
5174 printk(KERN_CONT " running task ");
5175 else
5176 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5177 #endif
5178 #ifdef CONFIG_DEBUG_STACK_USAGE
5179 free = stack_not_used(p);
5180 #endif
5181 ppid = 0;
5182 rcu_read_lock();
5183 if (pid_alive(p))
5184 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5185 rcu_read_unlock();
5186 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5187 task_pid_nr(p), ppid,
5188 (unsigned long)task_thread_info(p)->flags);
5189
5190 print_worker_info(KERN_INFO, p);
5191 show_stack(p, NULL);
5192 }
5193
5194 void show_state_filter(unsigned long state_filter)
5195 {
5196 struct task_struct *g, *p;
5197
5198 #if BITS_PER_LONG == 32
5199 printk(KERN_INFO
5200 " task PC stack pid father\n");
5201 #else
5202 printk(KERN_INFO
5203 " task PC stack pid father\n");
5204 #endif
5205 rcu_read_lock();
5206 for_each_process_thread(g, p) {
5207 /*
5208 * reset the NMI-timeout, listing all files on a slow
5209 * console might take a lot of time:
5210 * Also, reset softlockup watchdogs on all CPUs, because
5211 * another CPU might be blocked waiting for us to process
5212 * an IPI.
5213 */
5214 touch_nmi_watchdog();
5215 touch_all_softlockup_watchdogs();
5216 if (!state_filter || (p->state & state_filter))
5217 sched_show_task(p);
5218 }
5219
5220 #ifdef CONFIG_SCHED_DEBUG
5221 if (!state_filter)
5222 sysrq_sched_debug_show();
5223 #endif
5224 rcu_read_unlock();
5225 /*
5226 * Only show locks if all tasks are dumped:
5227 */
5228 if (!state_filter)
5229 debug_show_all_locks();
5230 }
5231
5232 void init_idle_bootup_task(struct task_struct *idle)
5233 {
5234 idle->sched_class = &idle_sched_class;
5235 }
5236
5237 /**
5238 * init_idle - set up an idle thread for a given CPU
5239 * @idle: task in question
5240 * @cpu: cpu the idle task belongs to
5241 *
5242 * NOTE: this function does not set the idle thread's NEED_RESCHED
5243 * flag, to make booting more robust.
5244 */
5245 void init_idle(struct task_struct *idle, int cpu)
5246 {
5247 struct rq *rq = cpu_rq(cpu);
5248 unsigned long flags;
5249
5250 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5251 raw_spin_lock(&rq->lock);
5252
5253 __sched_fork(0, idle);
5254 idle->state = TASK_RUNNING;
5255 idle->se.exec_start = sched_clock();
5256
5257 kasan_unpoison_task_stack(idle);
5258
5259 #ifdef CONFIG_SMP
5260 /*
5261 * Its possible that init_idle() gets called multiple times on a task,
5262 * in that case do_set_cpus_allowed() will not do the right thing.
5263 *
5264 * And since this is boot we can forgo the serialization.
5265 */
5266 set_cpus_allowed_common(idle, cpumask_of(cpu));
5267 #endif
5268 /*
5269 * We're having a chicken and egg problem, even though we are
5270 * holding rq->lock, the cpu isn't yet set to this cpu so the
5271 * lockdep check in task_group() will fail.
5272 *
5273 * Similar case to sched_fork(). / Alternatively we could
5274 * use task_rq_lock() here and obtain the other rq->lock.
5275 *
5276 * Silence PROVE_RCU
5277 */
5278 rcu_read_lock();
5279 __set_task_cpu(idle, cpu);
5280 rcu_read_unlock();
5281
5282 rq->curr = rq->idle = idle;
5283 idle->on_rq = TASK_ON_RQ_QUEUED;
5284 #ifdef CONFIG_SMP
5285 idle->on_cpu = 1;
5286 #endif
5287 raw_spin_unlock(&rq->lock);
5288 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5289
5290 /* Set the preempt count _outside_ the spinlocks! */
5291 init_idle_preempt_count(idle, cpu);
5292
5293 /*
5294 * The idle tasks have their own, simple scheduling class:
5295 */
5296 idle->sched_class = &idle_sched_class;
5297 ftrace_graph_init_idle_task(idle, cpu);
5298 vtime_init_idle(idle, cpu);
5299 #ifdef CONFIG_SMP
5300 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5301 #endif
5302 }
5303
5304 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5305 const struct cpumask *trial)
5306 {
5307 int ret = 1, trial_cpus;
5308 struct dl_bw *cur_dl_b;
5309 unsigned long flags;
5310
5311 if (!cpumask_weight(cur))
5312 return ret;
5313
5314 rcu_read_lock_sched();
5315 cur_dl_b = dl_bw_of(cpumask_any(cur));
5316 trial_cpus = cpumask_weight(trial);
5317
5318 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5319 if (cur_dl_b->bw != -1 &&
5320 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5321 ret = 0;
5322 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5323 rcu_read_unlock_sched();
5324
5325 return ret;
5326 }
5327
5328 int task_can_attach(struct task_struct *p,
5329 const struct cpumask *cs_cpus_allowed)
5330 {
5331 int ret = 0;
5332
5333 /*
5334 * Kthreads which disallow setaffinity shouldn't be moved
5335 * to a new cpuset; we don't want to change their cpu
5336 * affinity and isolating such threads by their set of
5337 * allowed nodes is unnecessary. Thus, cpusets are not
5338 * applicable for such threads. This prevents checking for
5339 * success of set_cpus_allowed_ptr() on all attached tasks
5340 * before cpus_allowed may be changed.
5341 */
5342 if (p->flags & PF_NO_SETAFFINITY) {
5343 ret = -EINVAL;
5344 goto out;
5345 }
5346
5347 #ifdef CONFIG_SMP
5348 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5349 cs_cpus_allowed)) {
5350 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5351 cs_cpus_allowed);
5352 struct dl_bw *dl_b;
5353 bool overflow;
5354 int cpus;
5355 unsigned long flags;
5356
5357 rcu_read_lock_sched();
5358 dl_b = dl_bw_of(dest_cpu);
5359 raw_spin_lock_irqsave(&dl_b->lock, flags);
5360 cpus = dl_bw_cpus(dest_cpu);
5361 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5362 if (overflow)
5363 ret = -EBUSY;
5364 else {
5365 /*
5366 * We reserve space for this task in the destination
5367 * root_domain, as we can't fail after this point.
5368 * We will free resources in the source root_domain
5369 * later on (see set_cpus_allowed_dl()).
5370 */
5371 __dl_add(dl_b, p->dl.dl_bw);
5372 }
5373 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5374 rcu_read_unlock_sched();
5375
5376 }
5377 #endif
5378 out:
5379 return ret;
5380 }
5381
5382 #ifdef CONFIG_SMP
5383
5384 static bool sched_smp_initialized __read_mostly;
5385
5386 #ifdef CONFIG_NUMA_BALANCING
5387 /* Migrate current task p to target_cpu */
5388 int migrate_task_to(struct task_struct *p, int target_cpu)
5389 {
5390 struct migration_arg arg = { p, target_cpu };
5391 int curr_cpu = task_cpu(p);
5392
5393 if (curr_cpu == target_cpu)
5394 return 0;
5395
5396 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5397 return -EINVAL;
5398
5399 /* TODO: This is not properly updating schedstats */
5400
5401 trace_sched_move_numa(p, curr_cpu, target_cpu);
5402 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5403 }
5404
5405 /*
5406 * Requeue a task on a given node and accurately track the number of NUMA
5407 * tasks on the runqueues
5408 */
5409 void sched_setnuma(struct task_struct *p, int nid)
5410 {
5411 bool queued, running;
5412 struct rq_flags rf;
5413 struct rq *rq;
5414
5415 rq = task_rq_lock(p, &rf);
5416 queued = task_on_rq_queued(p);
5417 running = task_current(rq, p);
5418
5419 if (queued)
5420 dequeue_task(rq, p, DEQUEUE_SAVE);
5421 if (running)
5422 put_prev_task(rq, p);
5423
5424 p->numa_preferred_nid = nid;
5425
5426 if (running)
5427 p->sched_class->set_curr_task(rq);
5428 if (queued)
5429 enqueue_task(rq, p, ENQUEUE_RESTORE);
5430 task_rq_unlock(rq, p, &rf);
5431 }
5432 #endif /* CONFIG_NUMA_BALANCING */
5433
5434 #ifdef CONFIG_HOTPLUG_CPU
5435 /*
5436 * Ensures that the idle task is using init_mm right before its cpu goes
5437 * offline.
5438 */
5439 void idle_task_exit(void)
5440 {
5441 struct mm_struct *mm = current->active_mm;
5442
5443 BUG_ON(cpu_online(smp_processor_id()));
5444
5445 if (mm != &init_mm) {
5446 switch_mm_irqs_off(mm, &init_mm, current);
5447 finish_arch_post_lock_switch();
5448 }
5449 mmdrop(mm);
5450 }
5451
5452 /*
5453 * Since this CPU is going 'away' for a while, fold any nr_active delta
5454 * we might have. Assumes we're called after migrate_tasks() so that the
5455 * nr_active count is stable. We need to take the teardown thread which
5456 * is calling this into account, so we hand in adjust = 1 to the load
5457 * calculation.
5458 *
5459 * Also see the comment "Global load-average calculations".
5460 */
5461 static void calc_load_migrate(struct rq *rq)
5462 {
5463 long delta = calc_load_fold_active(rq, 1);
5464 if (delta)
5465 atomic_long_add(delta, &calc_load_tasks);
5466 }
5467
5468 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5469 {
5470 }
5471
5472 static const struct sched_class fake_sched_class = {
5473 .put_prev_task = put_prev_task_fake,
5474 };
5475
5476 static struct task_struct fake_task = {
5477 /*
5478 * Avoid pull_{rt,dl}_task()
5479 */
5480 .prio = MAX_PRIO + 1,
5481 .sched_class = &fake_sched_class,
5482 };
5483
5484 /*
5485 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5486 * try_to_wake_up()->select_task_rq().
5487 *
5488 * Called with rq->lock held even though we'er in stop_machine() and
5489 * there's no concurrency possible, we hold the required locks anyway
5490 * because of lock validation efforts.
5491 */
5492 static void migrate_tasks(struct rq *dead_rq)
5493 {
5494 struct rq *rq = dead_rq;
5495 struct task_struct *next, *stop = rq->stop;
5496 struct pin_cookie cookie;
5497 int dest_cpu;
5498
5499 /*
5500 * Fudge the rq selection such that the below task selection loop
5501 * doesn't get stuck on the currently eligible stop task.
5502 *
5503 * We're currently inside stop_machine() and the rq is either stuck
5504 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5505 * either way we should never end up calling schedule() until we're
5506 * done here.
5507 */
5508 rq->stop = NULL;
5509
5510 /*
5511 * put_prev_task() and pick_next_task() sched
5512 * class method both need to have an up-to-date
5513 * value of rq->clock[_task]
5514 */
5515 update_rq_clock(rq);
5516
5517 for (;;) {
5518 /*
5519 * There's this thread running, bail when that's the only
5520 * remaining thread.
5521 */
5522 if (rq->nr_running == 1)
5523 break;
5524
5525 /*
5526 * pick_next_task assumes pinned rq->lock.
5527 */
5528 cookie = lockdep_pin_lock(&rq->lock);
5529 next = pick_next_task(rq, &fake_task, cookie);
5530 BUG_ON(!next);
5531 next->sched_class->put_prev_task(rq, next);
5532
5533 /*
5534 * Rules for changing task_struct::cpus_allowed are holding
5535 * both pi_lock and rq->lock, such that holding either
5536 * stabilizes the mask.
5537 *
5538 * Drop rq->lock is not quite as disastrous as it usually is
5539 * because !cpu_active at this point, which means load-balance
5540 * will not interfere. Also, stop-machine.
5541 */
5542 lockdep_unpin_lock(&rq->lock, cookie);
5543 raw_spin_unlock(&rq->lock);
5544 raw_spin_lock(&next->pi_lock);
5545 raw_spin_lock(&rq->lock);
5546
5547 /*
5548 * Since we're inside stop-machine, _nothing_ should have
5549 * changed the task, WARN if weird stuff happened, because in
5550 * that case the above rq->lock drop is a fail too.
5551 */
5552 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5553 raw_spin_unlock(&next->pi_lock);
5554 continue;
5555 }
5556
5557 /* Find suitable destination for @next, with force if needed. */
5558 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5559
5560 rq = __migrate_task(rq, next, dest_cpu);
5561 if (rq != dead_rq) {
5562 raw_spin_unlock(&rq->lock);
5563 rq = dead_rq;
5564 raw_spin_lock(&rq->lock);
5565 }
5566 raw_spin_unlock(&next->pi_lock);
5567 }
5568
5569 rq->stop = stop;
5570 }
5571 #endif /* CONFIG_HOTPLUG_CPU */
5572
5573 static void set_rq_online(struct rq *rq)
5574 {
5575 if (!rq->online) {
5576 const struct sched_class *class;
5577
5578 cpumask_set_cpu(rq->cpu, rq->rd->online);
5579 rq->online = 1;
5580
5581 for_each_class(class) {
5582 if (class->rq_online)
5583 class->rq_online(rq);
5584 }
5585 }
5586 }
5587
5588 static void set_rq_offline(struct rq *rq)
5589 {
5590 if (rq->online) {
5591 const struct sched_class *class;
5592
5593 for_each_class(class) {
5594 if (class->rq_offline)
5595 class->rq_offline(rq);
5596 }
5597
5598 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5599 rq->online = 0;
5600 }
5601 }
5602
5603 static void set_cpu_rq_start_time(unsigned int cpu)
5604 {
5605 struct rq *rq = cpu_rq(cpu);
5606
5607 rq->age_stamp = sched_clock_cpu(cpu);
5608 }
5609
5610 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5611
5612 #ifdef CONFIG_SCHED_DEBUG
5613
5614 static __read_mostly int sched_debug_enabled;
5615
5616 static int __init sched_debug_setup(char *str)
5617 {
5618 sched_debug_enabled = 1;
5619
5620 return 0;
5621 }
5622 early_param("sched_debug", sched_debug_setup);
5623
5624 static inline bool sched_debug(void)
5625 {
5626 return sched_debug_enabled;
5627 }
5628
5629 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5630 struct cpumask *groupmask)
5631 {
5632 struct sched_group *group = sd->groups;
5633
5634 cpumask_clear(groupmask);
5635
5636 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5637
5638 if (!(sd->flags & SD_LOAD_BALANCE)) {
5639 printk("does not load-balance\n");
5640 if (sd->parent)
5641 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5642 " has parent");
5643 return -1;
5644 }
5645
5646 printk(KERN_CONT "span %*pbl level %s\n",
5647 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5648
5649 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5650 printk(KERN_ERR "ERROR: domain->span does not contain "
5651 "CPU%d\n", cpu);
5652 }
5653 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5654 printk(KERN_ERR "ERROR: domain->groups does not contain"
5655 " CPU%d\n", cpu);
5656 }
5657
5658 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5659 do {
5660 if (!group) {
5661 printk("\n");
5662 printk(KERN_ERR "ERROR: group is NULL\n");
5663 break;
5664 }
5665
5666 if (!cpumask_weight(sched_group_cpus(group))) {
5667 printk(KERN_CONT "\n");
5668 printk(KERN_ERR "ERROR: empty group\n");
5669 break;
5670 }
5671
5672 if (!(sd->flags & SD_OVERLAP) &&
5673 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5674 printk(KERN_CONT "\n");
5675 printk(KERN_ERR "ERROR: repeated CPUs\n");
5676 break;
5677 }
5678
5679 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5680
5681 printk(KERN_CONT " %*pbl",
5682 cpumask_pr_args(sched_group_cpus(group)));
5683 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5684 printk(KERN_CONT " (cpu_capacity = %d)",
5685 group->sgc->capacity);
5686 }
5687
5688 group = group->next;
5689 } while (group != sd->groups);
5690 printk(KERN_CONT "\n");
5691
5692 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5693 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5694
5695 if (sd->parent &&
5696 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5697 printk(KERN_ERR "ERROR: parent span is not a superset "
5698 "of domain->span\n");
5699 return 0;
5700 }
5701
5702 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5703 {
5704 int level = 0;
5705
5706 if (!sched_debug_enabled)
5707 return;
5708
5709 if (!sd) {
5710 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5711 return;
5712 }
5713
5714 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5715
5716 for (;;) {
5717 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5718 break;
5719 level++;
5720 sd = sd->parent;
5721 if (!sd)
5722 break;
5723 }
5724 }
5725 #else /* !CONFIG_SCHED_DEBUG */
5726 # define sched_domain_debug(sd, cpu) do { } while (0)
5727 static inline bool sched_debug(void)
5728 {
5729 return false;
5730 }
5731 #endif /* CONFIG_SCHED_DEBUG */
5732
5733 static int sd_degenerate(struct sched_domain *sd)
5734 {
5735 if (cpumask_weight(sched_domain_span(sd)) == 1)
5736 return 1;
5737
5738 /* Following flags need at least 2 groups */
5739 if (sd->flags & (SD_LOAD_BALANCE |
5740 SD_BALANCE_NEWIDLE |
5741 SD_BALANCE_FORK |
5742 SD_BALANCE_EXEC |
5743 SD_SHARE_CPUCAPACITY |
5744 SD_ASYM_CPUCAPACITY |
5745 SD_SHARE_PKG_RESOURCES |
5746 SD_SHARE_POWERDOMAIN)) {
5747 if (sd->groups != sd->groups->next)
5748 return 0;
5749 }
5750
5751 /* Following flags don't use groups */
5752 if (sd->flags & (SD_WAKE_AFFINE))
5753 return 0;
5754
5755 return 1;
5756 }
5757
5758 static int
5759 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5760 {
5761 unsigned long cflags = sd->flags, pflags = parent->flags;
5762
5763 if (sd_degenerate(parent))
5764 return 1;
5765
5766 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5767 return 0;
5768
5769 /* Flags needing groups don't count if only 1 group in parent */
5770 if (parent->groups == parent->groups->next) {
5771 pflags &= ~(SD_LOAD_BALANCE |
5772 SD_BALANCE_NEWIDLE |
5773 SD_BALANCE_FORK |
5774 SD_BALANCE_EXEC |
5775 SD_ASYM_CPUCAPACITY |
5776 SD_SHARE_CPUCAPACITY |
5777 SD_SHARE_PKG_RESOURCES |
5778 SD_PREFER_SIBLING |
5779 SD_SHARE_POWERDOMAIN);
5780 if (nr_node_ids == 1)
5781 pflags &= ~SD_SERIALIZE;
5782 }
5783 if (~cflags & pflags)
5784 return 0;
5785
5786 return 1;
5787 }
5788
5789 static void free_rootdomain(struct rcu_head *rcu)
5790 {
5791 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5792
5793 cpupri_cleanup(&rd->cpupri);
5794 cpudl_cleanup(&rd->cpudl);
5795 free_cpumask_var(rd->dlo_mask);
5796 free_cpumask_var(rd->rto_mask);
5797 free_cpumask_var(rd->online);
5798 free_cpumask_var(rd->span);
5799 kfree(rd);
5800 }
5801
5802 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5803 {
5804 struct root_domain *old_rd = NULL;
5805 unsigned long flags;
5806
5807 raw_spin_lock_irqsave(&rq->lock, flags);
5808
5809 if (rq->rd) {
5810 old_rd = rq->rd;
5811
5812 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5813 set_rq_offline(rq);
5814
5815 cpumask_clear_cpu(rq->cpu, old_rd->span);
5816
5817 /*
5818 * If we dont want to free the old_rd yet then
5819 * set old_rd to NULL to skip the freeing later
5820 * in this function:
5821 */
5822 if (!atomic_dec_and_test(&old_rd->refcount))
5823 old_rd = NULL;
5824 }
5825
5826 atomic_inc(&rd->refcount);
5827 rq->rd = rd;
5828
5829 cpumask_set_cpu(rq->cpu, rd->span);
5830 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5831 set_rq_online(rq);
5832
5833 raw_spin_unlock_irqrestore(&rq->lock, flags);
5834
5835 if (old_rd)
5836 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5837 }
5838
5839 static int init_rootdomain(struct root_domain *rd)
5840 {
5841 memset(rd, 0, sizeof(*rd));
5842
5843 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5844 goto out;
5845 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5846 goto free_span;
5847 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5848 goto free_online;
5849 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5850 goto free_dlo_mask;
5851
5852 init_dl_bw(&rd->dl_bw);
5853 if (cpudl_init(&rd->cpudl) != 0)
5854 goto free_dlo_mask;
5855
5856 if (cpupri_init(&rd->cpupri) != 0)
5857 goto free_rto_mask;
5858 return 0;
5859
5860 free_rto_mask:
5861 free_cpumask_var(rd->rto_mask);
5862 free_dlo_mask:
5863 free_cpumask_var(rd->dlo_mask);
5864 free_online:
5865 free_cpumask_var(rd->online);
5866 free_span:
5867 free_cpumask_var(rd->span);
5868 out:
5869 return -ENOMEM;
5870 }
5871
5872 /*
5873 * By default the system creates a single root-domain with all cpus as
5874 * members (mimicking the global state we have today).
5875 */
5876 struct root_domain def_root_domain;
5877
5878 static void init_defrootdomain(void)
5879 {
5880 init_rootdomain(&def_root_domain);
5881
5882 atomic_set(&def_root_domain.refcount, 1);
5883 }
5884
5885 static struct root_domain *alloc_rootdomain(void)
5886 {
5887 struct root_domain *rd;
5888
5889 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5890 if (!rd)
5891 return NULL;
5892
5893 if (init_rootdomain(rd) != 0) {
5894 kfree(rd);
5895 return NULL;
5896 }
5897
5898 return rd;
5899 }
5900
5901 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5902 {
5903 struct sched_group *tmp, *first;
5904
5905 if (!sg)
5906 return;
5907
5908 first = sg;
5909 do {
5910 tmp = sg->next;
5911
5912 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5913 kfree(sg->sgc);
5914
5915 kfree(sg);
5916 sg = tmp;
5917 } while (sg != first);
5918 }
5919
5920 static void free_sched_domain(struct rcu_head *rcu)
5921 {
5922 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5923
5924 /*
5925 * If its an overlapping domain it has private groups, iterate and
5926 * nuke them all.
5927 */
5928 if (sd->flags & SD_OVERLAP) {
5929 free_sched_groups(sd->groups, 1);
5930 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5931 kfree(sd->groups->sgc);
5932 kfree(sd->groups);
5933 }
5934 kfree(sd);
5935 }
5936
5937 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5938 {
5939 call_rcu(&sd->rcu, free_sched_domain);
5940 }
5941
5942 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5943 {
5944 for (; sd; sd = sd->parent)
5945 destroy_sched_domain(sd, cpu);
5946 }
5947
5948 /*
5949 * Keep a special pointer to the highest sched_domain that has
5950 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5951 * allows us to avoid some pointer chasing select_idle_sibling().
5952 *
5953 * Also keep a unique ID per domain (we use the first cpu number in
5954 * the cpumask of the domain), this allows us to quickly tell if
5955 * two cpus are in the same cache domain, see cpus_share_cache().
5956 */
5957 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5958 DEFINE_PER_CPU(int, sd_llc_size);
5959 DEFINE_PER_CPU(int, sd_llc_id);
5960 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5961 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5962 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5963
5964 static void update_top_cache_domain(int cpu)
5965 {
5966 struct sched_domain *sd;
5967 struct sched_domain *busy_sd = NULL;
5968 int id = cpu;
5969 int size = 1;
5970
5971 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5972 if (sd) {
5973 id = cpumask_first(sched_domain_span(sd));
5974 size = cpumask_weight(sched_domain_span(sd));
5975 busy_sd = sd->parent; /* sd_busy */
5976 }
5977 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5978
5979 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5980 per_cpu(sd_llc_size, cpu) = size;
5981 per_cpu(sd_llc_id, cpu) = id;
5982
5983 sd = lowest_flag_domain(cpu, SD_NUMA);
5984 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5985
5986 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5987 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5988 }
5989
5990 /*
5991 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5992 * hold the hotplug lock.
5993 */
5994 static void
5995 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5996 {
5997 struct rq *rq = cpu_rq(cpu);
5998 struct sched_domain *tmp;
5999
6000 /* Remove the sched domains which do not contribute to scheduling. */
6001 for (tmp = sd; tmp; ) {
6002 struct sched_domain *parent = tmp->parent;
6003 if (!parent)
6004 break;
6005
6006 if (sd_parent_degenerate(tmp, parent)) {
6007 tmp->parent = parent->parent;
6008 if (parent->parent)
6009 parent->parent->child = tmp;
6010 /*
6011 * Transfer SD_PREFER_SIBLING down in case of a
6012 * degenerate parent; the spans match for this
6013 * so the property transfers.
6014 */
6015 if (parent->flags & SD_PREFER_SIBLING)
6016 tmp->flags |= SD_PREFER_SIBLING;
6017 destroy_sched_domain(parent, cpu);
6018 } else
6019 tmp = tmp->parent;
6020 }
6021
6022 if (sd && sd_degenerate(sd)) {
6023 tmp = sd;
6024 sd = sd->parent;
6025 destroy_sched_domain(tmp, cpu);
6026 if (sd)
6027 sd->child = NULL;
6028 }
6029
6030 sched_domain_debug(sd, cpu);
6031
6032 rq_attach_root(rq, rd);
6033 tmp = rq->sd;
6034 rcu_assign_pointer(rq->sd, sd);
6035 destroy_sched_domains(tmp, cpu);
6036
6037 update_top_cache_domain(cpu);
6038 }
6039
6040 /* Setup the mask of cpus configured for isolated domains */
6041 static int __init isolated_cpu_setup(char *str)
6042 {
6043 int ret;
6044
6045 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6046 ret = cpulist_parse(str, cpu_isolated_map);
6047 if (ret) {
6048 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6049 return 0;
6050 }
6051 return 1;
6052 }
6053 __setup("isolcpus=", isolated_cpu_setup);
6054
6055 struct s_data {
6056 struct sched_domain ** __percpu sd;
6057 struct root_domain *rd;
6058 };
6059
6060 enum s_alloc {
6061 sa_rootdomain,
6062 sa_sd,
6063 sa_sd_storage,
6064 sa_none,
6065 };
6066
6067 /*
6068 * Build an iteration mask that can exclude certain CPUs from the upwards
6069 * domain traversal.
6070 *
6071 * Asymmetric node setups can result in situations where the domain tree is of
6072 * unequal depth, make sure to skip domains that already cover the entire
6073 * range.
6074 *
6075 * In that case build_sched_domains() will have terminated the iteration early
6076 * and our sibling sd spans will be empty. Domains should always include the
6077 * cpu they're built on, so check that.
6078 *
6079 */
6080 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6081 {
6082 const struct cpumask *span = sched_domain_span(sd);
6083 struct sd_data *sdd = sd->private;
6084 struct sched_domain *sibling;
6085 int i;
6086
6087 for_each_cpu(i, span) {
6088 sibling = *per_cpu_ptr(sdd->sd, i);
6089 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6090 continue;
6091
6092 cpumask_set_cpu(i, sched_group_mask(sg));
6093 }
6094 }
6095
6096 /*
6097 * Return the canonical balance cpu for this group, this is the first cpu
6098 * of this group that's also in the iteration mask.
6099 */
6100 int group_balance_cpu(struct sched_group *sg)
6101 {
6102 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6103 }
6104
6105 static int
6106 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6107 {
6108 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6109 const struct cpumask *span = sched_domain_span(sd);
6110 struct cpumask *covered = sched_domains_tmpmask;
6111 struct sd_data *sdd = sd->private;
6112 struct sched_domain *sibling;
6113 int i;
6114
6115 cpumask_clear(covered);
6116
6117 for_each_cpu(i, span) {
6118 struct cpumask *sg_span;
6119
6120 if (cpumask_test_cpu(i, covered))
6121 continue;
6122
6123 sibling = *per_cpu_ptr(sdd->sd, i);
6124
6125 /* See the comment near build_group_mask(). */
6126 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6127 continue;
6128
6129 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6130 GFP_KERNEL, cpu_to_node(cpu));
6131
6132 if (!sg)
6133 goto fail;
6134
6135 sg_span = sched_group_cpus(sg);
6136 if (sibling->child)
6137 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6138 else
6139 cpumask_set_cpu(i, sg_span);
6140
6141 cpumask_or(covered, covered, sg_span);
6142
6143 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6144 if (atomic_inc_return(&sg->sgc->ref) == 1)
6145 build_group_mask(sd, sg);
6146
6147 /*
6148 * Initialize sgc->capacity such that even if we mess up the
6149 * domains and no possible iteration will get us here, we won't
6150 * die on a /0 trap.
6151 */
6152 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6153
6154 /*
6155 * Make sure the first group of this domain contains the
6156 * canonical balance cpu. Otherwise the sched_domain iteration
6157 * breaks. See update_sg_lb_stats().
6158 */
6159 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6160 group_balance_cpu(sg) == cpu)
6161 groups = sg;
6162
6163 if (!first)
6164 first = sg;
6165 if (last)
6166 last->next = sg;
6167 last = sg;
6168 last->next = first;
6169 }
6170 sd->groups = groups;
6171
6172 return 0;
6173
6174 fail:
6175 free_sched_groups(first, 0);
6176
6177 return -ENOMEM;
6178 }
6179
6180 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6181 {
6182 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6183 struct sched_domain *child = sd->child;
6184
6185 if (child)
6186 cpu = cpumask_first(sched_domain_span(child));
6187
6188 if (sg) {
6189 *sg = *per_cpu_ptr(sdd->sg, cpu);
6190 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6191 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6192 }
6193
6194 return cpu;
6195 }
6196
6197 /*
6198 * build_sched_groups will build a circular linked list of the groups
6199 * covered by the given span, and will set each group's ->cpumask correctly,
6200 * and ->cpu_capacity to 0.
6201 *
6202 * Assumes the sched_domain tree is fully constructed
6203 */
6204 static int
6205 build_sched_groups(struct sched_domain *sd, int cpu)
6206 {
6207 struct sched_group *first = NULL, *last = NULL;
6208 struct sd_data *sdd = sd->private;
6209 const struct cpumask *span = sched_domain_span(sd);
6210 struct cpumask *covered;
6211 int i;
6212
6213 get_group(cpu, sdd, &sd->groups);
6214 atomic_inc(&sd->groups->ref);
6215
6216 if (cpu != cpumask_first(span))
6217 return 0;
6218
6219 lockdep_assert_held(&sched_domains_mutex);
6220 covered = sched_domains_tmpmask;
6221
6222 cpumask_clear(covered);
6223
6224 for_each_cpu(i, span) {
6225 struct sched_group *sg;
6226 int group, j;
6227
6228 if (cpumask_test_cpu(i, covered))
6229 continue;
6230
6231 group = get_group(i, sdd, &sg);
6232 cpumask_setall(sched_group_mask(sg));
6233
6234 for_each_cpu(j, span) {
6235 if (get_group(j, sdd, NULL) != group)
6236 continue;
6237
6238 cpumask_set_cpu(j, covered);
6239 cpumask_set_cpu(j, sched_group_cpus(sg));
6240 }
6241
6242 if (!first)
6243 first = sg;
6244 if (last)
6245 last->next = sg;
6246 last = sg;
6247 }
6248 last->next = first;
6249
6250 return 0;
6251 }
6252
6253 /*
6254 * Initialize sched groups cpu_capacity.
6255 *
6256 * cpu_capacity indicates the capacity of sched group, which is used while
6257 * distributing the load between different sched groups in a sched domain.
6258 * Typically cpu_capacity for all the groups in a sched domain will be same
6259 * unless there are asymmetries in the topology. If there are asymmetries,
6260 * group having more cpu_capacity will pickup more load compared to the
6261 * group having less cpu_capacity.
6262 */
6263 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6264 {
6265 struct sched_group *sg = sd->groups;
6266
6267 WARN_ON(!sg);
6268
6269 do {
6270 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6271 sg = sg->next;
6272 } while (sg != sd->groups);
6273
6274 if (cpu != group_balance_cpu(sg))
6275 return;
6276
6277 update_group_capacity(sd, cpu);
6278 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6279 }
6280
6281 /*
6282 * Initializers for schedule domains
6283 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6284 */
6285
6286 static int default_relax_domain_level = -1;
6287 int sched_domain_level_max;
6288
6289 static int __init setup_relax_domain_level(char *str)
6290 {
6291 if (kstrtoint(str, 0, &default_relax_domain_level))
6292 pr_warn("Unable to set relax_domain_level\n");
6293
6294 return 1;
6295 }
6296 __setup("relax_domain_level=", setup_relax_domain_level);
6297
6298 static void set_domain_attribute(struct sched_domain *sd,
6299 struct sched_domain_attr *attr)
6300 {
6301 int request;
6302
6303 if (!attr || attr->relax_domain_level < 0) {
6304 if (default_relax_domain_level < 0)
6305 return;
6306 else
6307 request = default_relax_domain_level;
6308 } else
6309 request = attr->relax_domain_level;
6310 if (request < sd->level) {
6311 /* turn off idle balance on this domain */
6312 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6313 } else {
6314 /* turn on idle balance on this domain */
6315 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6316 }
6317 }
6318
6319 static void __sdt_free(const struct cpumask *cpu_map);
6320 static int __sdt_alloc(const struct cpumask *cpu_map);
6321
6322 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6323 const struct cpumask *cpu_map)
6324 {
6325 switch (what) {
6326 case sa_rootdomain:
6327 if (!atomic_read(&d->rd->refcount))
6328 free_rootdomain(&d->rd->rcu); /* fall through */
6329 case sa_sd:
6330 free_percpu(d->sd); /* fall through */
6331 case sa_sd_storage:
6332 __sdt_free(cpu_map); /* fall through */
6333 case sa_none:
6334 break;
6335 }
6336 }
6337
6338 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6339 const struct cpumask *cpu_map)
6340 {
6341 memset(d, 0, sizeof(*d));
6342
6343 if (__sdt_alloc(cpu_map))
6344 return sa_sd_storage;
6345 d->sd = alloc_percpu(struct sched_domain *);
6346 if (!d->sd)
6347 return sa_sd_storage;
6348 d->rd = alloc_rootdomain();
6349 if (!d->rd)
6350 return sa_sd;
6351 return sa_rootdomain;
6352 }
6353
6354 /*
6355 * NULL the sd_data elements we've used to build the sched_domain and
6356 * sched_group structure so that the subsequent __free_domain_allocs()
6357 * will not free the data we're using.
6358 */
6359 static void claim_allocations(int cpu, struct sched_domain *sd)
6360 {
6361 struct sd_data *sdd = sd->private;
6362
6363 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6364 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6365
6366 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6367 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6368
6369 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6370 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6371 }
6372
6373 #ifdef CONFIG_NUMA
6374 static int sched_domains_numa_levels;
6375 enum numa_topology_type sched_numa_topology_type;
6376 static int *sched_domains_numa_distance;
6377 int sched_max_numa_distance;
6378 static struct cpumask ***sched_domains_numa_masks;
6379 static int sched_domains_curr_level;
6380 #endif
6381
6382 /*
6383 * SD_flags allowed in topology descriptions.
6384 *
6385 * These flags are purely descriptive of the topology and do not prescribe
6386 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6387 * function:
6388 *
6389 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6390 * SD_SHARE_PKG_RESOURCES - describes shared caches
6391 * SD_NUMA - describes NUMA topologies
6392 * SD_SHARE_POWERDOMAIN - describes shared power domain
6393 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6394 *
6395 * Odd one out, which beside describing the topology has a quirk also
6396 * prescribes the desired behaviour that goes along with it:
6397 *
6398 * SD_ASYM_PACKING - describes SMT quirks
6399 */
6400 #define TOPOLOGY_SD_FLAGS \
6401 (SD_SHARE_CPUCAPACITY | \
6402 SD_SHARE_PKG_RESOURCES | \
6403 SD_NUMA | \
6404 SD_ASYM_PACKING | \
6405 SD_ASYM_CPUCAPACITY | \
6406 SD_SHARE_POWERDOMAIN)
6407
6408 static struct sched_domain *
6409 sd_init(struct sched_domain_topology_level *tl,
6410 struct sched_domain *child, int cpu)
6411 {
6412 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6413 int sd_weight, sd_flags = 0;
6414
6415 #ifdef CONFIG_NUMA
6416 /*
6417 * Ugly hack to pass state to sd_numa_mask()...
6418 */
6419 sched_domains_curr_level = tl->numa_level;
6420 #endif
6421
6422 sd_weight = cpumask_weight(tl->mask(cpu));
6423
6424 if (tl->sd_flags)
6425 sd_flags = (*tl->sd_flags)();
6426 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6427 "wrong sd_flags in topology description\n"))
6428 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6429
6430 *sd = (struct sched_domain){
6431 .min_interval = sd_weight,
6432 .max_interval = 2*sd_weight,
6433 .busy_factor = 32,
6434 .imbalance_pct = 125,
6435
6436 .cache_nice_tries = 0,
6437 .busy_idx = 0,
6438 .idle_idx = 0,
6439 .newidle_idx = 0,
6440 .wake_idx = 0,
6441 .forkexec_idx = 0,
6442
6443 .flags = 1*SD_LOAD_BALANCE
6444 | 1*SD_BALANCE_NEWIDLE
6445 | 1*SD_BALANCE_EXEC
6446 | 1*SD_BALANCE_FORK
6447 | 0*SD_BALANCE_WAKE
6448 | 1*SD_WAKE_AFFINE
6449 | 0*SD_SHARE_CPUCAPACITY
6450 | 0*SD_SHARE_PKG_RESOURCES
6451 | 0*SD_SERIALIZE
6452 | 0*SD_PREFER_SIBLING
6453 | 0*SD_NUMA
6454 | sd_flags
6455 ,
6456
6457 .last_balance = jiffies,
6458 .balance_interval = sd_weight,
6459 .smt_gain = 0,
6460 .max_newidle_lb_cost = 0,
6461 .next_decay_max_lb_cost = jiffies,
6462 .child = child,
6463 #ifdef CONFIG_SCHED_DEBUG
6464 .name = tl->name,
6465 #endif
6466 };
6467
6468 /*
6469 * Convert topological properties into behaviour.
6470 */
6471
6472 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6473 struct sched_domain *t = sd;
6474
6475 for_each_lower_domain(t)
6476 t->flags |= SD_BALANCE_WAKE;
6477 }
6478
6479 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6480 sd->flags |= SD_PREFER_SIBLING;
6481 sd->imbalance_pct = 110;
6482 sd->smt_gain = 1178; /* ~15% */
6483
6484 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6485 sd->imbalance_pct = 117;
6486 sd->cache_nice_tries = 1;
6487 sd->busy_idx = 2;
6488
6489 #ifdef CONFIG_NUMA
6490 } else if (sd->flags & SD_NUMA) {
6491 sd->cache_nice_tries = 2;
6492 sd->busy_idx = 3;
6493 sd->idle_idx = 2;
6494
6495 sd->flags |= SD_SERIALIZE;
6496 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6497 sd->flags &= ~(SD_BALANCE_EXEC |
6498 SD_BALANCE_FORK |
6499 SD_WAKE_AFFINE);
6500 }
6501
6502 #endif
6503 } else {
6504 sd->flags |= SD_PREFER_SIBLING;
6505 sd->cache_nice_tries = 1;
6506 sd->busy_idx = 2;
6507 sd->idle_idx = 1;
6508 }
6509
6510 sd->private = &tl->data;
6511
6512 return sd;
6513 }
6514
6515 /*
6516 * Topology list, bottom-up.
6517 */
6518 static struct sched_domain_topology_level default_topology[] = {
6519 #ifdef CONFIG_SCHED_SMT
6520 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6521 #endif
6522 #ifdef CONFIG_SCHED_MC
6523 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6524 #endif
6525 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6526 { NULL, },
6527 };
6528
6529 static struct sched_domain_topology_level *sched_domain_topology =
6530 default_topology;
6531
6532 #define for_each_sd_topology(tl) \
6533 for (tl = sched_domain_topology; tl->mask; tl++)
6534
6535 void set_sched_topology(struct sched_domain_topology_level *tl)
6536 {
6537 sched_domain_topology = tl;
6538 }
6539
6540 #ifdef CONFIG_NUMA
6541
6542 static const struct cpumask *sd_numa_mask(int cpu)
6543 {
6544 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6545 }
6546
6547 static void sched_numa_warn(const char *str)
6548 {
6549 static int done = false;
6550 int i,j;
6551
6552 if (done)
6553 return;
6554
6555 done = true;
6556
6557 printk(KERN_WARNING "ERROR: %s\n\n", str);
6558
6559 for (i = 0; i < nr_node_ids; i++) {
6560 printk(KERN_WARNING " ");
6561 for (j = 0; j < nr_node_ids; j++)
6562 printk(KERN_CONT "%02d ", node_distance(i,j));
6563 printk(KERN_CONT "\n");
6564 }
6565 printk(KERN_WARNING "\n");
6566 }
6567
6568 bool find_numa_distance(int distance)
6569 {
6570 int i;
6571
6572 if (distance == node_distance(0, 0))
6573 return true;
6574
6575 for (i = 0; i < sched_domains_numa_levels; i++) {
6576 if (sched_domains_numa_distance[i] == distance)
6577 return true;
6578 }
6579
6580 return false;
6581 }
6582
6583 /*
6584 * A system can have three types of NUMA topology:
6585 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6586 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6587 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6588 *
6589 * The difference between a glueless mesh topology and a backplane
6590 * topology lies in whether communication between not directly
6591 * connected nodes goes through intermediary nodes (where programs
6592 * could run), or through backplane controllers. This affects
6593 * placement of programs.
6594 *
6595 * The type of topology can be discerned with the following tests:
6596 * - If the maximum distance between any nodes is 1 hop, the system
6597 * is directly connected.
6598 * - If for two nodes A and B, located N > 1 hops away from each other,
6599 * there is an intermediary node C, which is < N hops away from both
6600 * nodes A and B, the system is a glueless mesh.
6601 */
6602 static void init_numa_topology_type(void)
6603 {
6604 int a, b, c, n;
6605
6606 n = sched_max_numa_distance;
6607
6608 if (sched_domains_numa_levels <= 1) {
6609 sched_numa_topology_type = NUMA_DIRECT;
6610 return;
6611 }
6612
6613 for_each_online_node(a) {
6614 for_each_online_node(b) {
6615 /* Find two nodes furthest removed from each other. */
6616 if (node_distance(a, b) < n)
6617 continue;
6618
6619 /* Is there an intermediary node between a and b? */
6620 for_each_online_node(c) {
6621 if (node_distance(a, c) < n &&
6622 node_distance(b, c) < n) {
6623 sched_numa_topology_type =
6624 NUMA_GLUELESS_MESH;
6625 return;
6626 }
6627 }
6628
6629 sched_numa_topology_type = NUMA_BACKPLANE;
6630 return;
6631 }
6632 }
6633 }
6634
6635 static void sched_init_numa(void)
6636 {
6637 int next_distance, curr_distance = node_distance(0, 0);
6638 struct sched_domain_topology_level *tl;
6639 int level = 0;
6640 int i, j, k;
6641
6642 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6643 if (!sched_domains_numa_distance)
6644 return;
6645
6646 /*
6647 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6648 * unique distances in the node_distance() table.
6649 *
6650 * Assumes node_distance(0,j) includes all distances in
6651 * node_distance(i,j) in order to avoid cubic time.
6652 */
6653 next_distance = curr_distance;
6654 for (i = 0; i < nr_node_ids; i++) {
6655 for (j = 0; j < nr_node_ids; j++) {
6656 for (k = 0; k < nr_node_ids; k++) {
6657 int distance = node_distance(i, k);
6658
6659 if (distance > curr_distance &&
6660 (distance < next_distance ||
6661 next_distance == curr_distance))
6662 next_distance = distance;
6663
6664 /*
6665 * While not a strong assumption it would be nice to know
6666 * about cases where if node A is connected to B, B is not
6667 * equally connected to A.
6668 */
6669 if (sched_debug() && node_distance(k, i) != distance)
6670 sched_numa_warn("Node-distance not symmetric");
6671
6672 if (sched_debug() && i && !find_numa_distance(distance))
6673 sched_numa_warn("Node-0 not representative");
6674 }
6675 if (next_distance != curr_distance) {
6676 sched_domains_numa_distance[level++] = next_distance;
6677 sched_domains_numa_levels = level;
6678 curr_distance = next_distance;
6679 } else break;
6680 }
6681
6682 /*
6683 * In case of sched_debug() we verify the above assumption.
6684 */
6685 if (!sched_debug())
6686 break;
6687 }
6688
6689 if (!level)
6690 return;
6691
6692 /*
6693 * 'level' contains the number of unique distances, excluding the
6694 * identity distance node_distance(i,i).
6695 *
6696 * The sched_domains_numa_distance[] array includes the actual distance
6697 * numbers.
6698 */
6699
6700 /*
6701 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6702 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6703 * the array will contain less then 'level' members. This could be
6704 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6705 * in other functions.
6706 *
6707 * We reset it to 'level' at the end of this function.
6708 */
6709 sched_domains_numa_levels = 0;
6710
6711 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6712 if (!sched_domains_numa_masks)
6713 return;
6714
6715 /*
6716 * Now for each level, construct a mask per node which contains all
6717 * cpus of nodes that are that many hops away from us.
6718 */
6719 for (i = 0; i < level; i++) {
6720 sched_domains_numa_masks[i] =
6721 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6722 if (!sched_domains_numa_masks[i])
6723 return;
6724
6725 for (j = 0; j < nr_node_ids; j++) {
6726 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6727 if (!mask)
6728 return;
6729
6730 sched_domains_numa_masks[i][j] = mask;
6731
6732 for_each_node(k) {
6733 if (node_distance(j, k) > sched_domains_numa_distance[i])
6734 continue;
6735
6736 cpumask_or(mask, mask, cpumask_of_node(k));
6737 }
6738 }
6739 }
6740
6741 /* Compute default topology size */
6742 for (i = 0; sched_domain_topology[i].mask; i++);
6743
6744 tl = kzalloc((i + level + 1) *
6745 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6746 if (!tl)
6747 return;
6748
6749 /*
6750 * Copy the default topology bits..
6751 */
6752 for (i = 0; sched_domain_topology[i].mask; i++)
6753 tl[i] = sched_domain_topology[i];
6754
6755 /*
6756 * .. and append 'j' levels of NUMA goodness.
6757 */
6758 for (j = 0; j < level; i++, j++) {
6759 tl[i] = (struct sched_domain_topology_level){
6760 .mask = sd_numa_mask,
6761 .sd_flags = cpu_numa_flags,
6762 .flags = SDTL_OVERLAP,
6763 .numa_level = j,
6764 SD_INIT_NAME(NUMA)
6765 };
6766 }
6767
6768 sched_domain_topology = tl;
6769
6770 sched_domains_numa_levels = level;
6771 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6772
6773 init_numa_topology_type();
6774 }
6775
6776 static void sched_domains_numa_masks_set(unsigned int cpu)
6777 {
6778 int node = cpu_to_node(cpu);
6779 int i, j;
6780
6781 for (i = 0; i < sched_domains_numa_levels; i++) {
6782 for (j = 0; j < nr_node_ids; j++) {
6783 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6784 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6785 }
6786 }
6787 }
6788
6789 static void sched_domains_numa_masks_clear(unsigned int cpu)
6790 {
6791 int i, j;
6792
6793 for (i = 0; i < sched_domains_numa_levels; i++) {
6794 for (j = 0; j < nr_node_ids; j++)
6795 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6796 }
6797 }
6798
6799 #else
6800 static inline void sched_init_numa(void) { }
6801 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6802 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6803 #endif /* CONFIG_NUMA */
6804
6805 static int __sdt_alloc(const struct cpumask *cpu_map)
6806 {
6807 struct sched_domain_topology_level *tl;
6808 int j;
6809
6810 for_each_sd_topology(tl) {
6811 struct sd_data *sdd = &tl->data;
6812
6813 sdd->sd = alloc_percpu(struct sched_domain *);
6814 if (!sdd->sd)
6815 return -ENOMEM;
6816
6817 sdd->sg = alloc_percpu(struct sched_group *);
6818 if (!sdd->sg)
6819 return -ENOMEM;
6820
6821 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6822 if (!sdd->sgc)
6823 return -ENOMEM;
6824
6825 for_each_cpu(j, cpu_map) {
6826 struct sched_domain *sd;
6827 struct sched_group *sg;
6828 struct sched_group_capacity *sgc;
6829
6830 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6831 GFP_KERNEL, cpu_to_node(j));
6832 if (!sd)
6833 return -ENOMEM;
6834
6835 *per_cpu_ptr(sdd->sd, j) = sd;
6836
6837 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6838 GFP_KERNEL, cpu_to_node(j));
6839 if (!sg)
6840 return -ENOMEM;
6841
6842 sg->next = sg;
6843
6844 *per_cpu_ptr(sdd->sg, j) = sg;
6845
6846 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6847 GFP_KERNEL, cpu_to_node(j));
6848 if (!sgc)
6849 return -ENOMEM;
6850
6851 *per_cpu_ptr(sdd->sgc, j) = sgc;
6852 }
6853 }
6854
6855 return 0;
6856 }
6857
6858 static void __sdt_free(const struct cpumask *cpu_map)
6859 {
6860 struct sched_domain_topology_level *tl;
6861 int j;
6862
6863 for_each_sd_topology(tl) {
6864 struct sd_data *sdd = &tl->data;
6865
6866 for_each_cpu(j, cpu_map) {
6867 struct sched_domain *sd;
6868
6869 if (sdd->sd) {
6870 sd = *per_cpu_ptr(sdd->sd, j);
6871 if (sd && (sd->flags & SD_OVERLAP))
6872 free_sched_groups(sd->groups, 0);
6873 kfree(*per_cpu_ptr(sdd->sd, j));
6874 }
6875
6876 if (sdd->sg)
6877 kfree(*per_cpu_ptr(sdd->sg, j));
6878 if (sdd->sgc)
6879 kfree(*per_cpu_ptr(sdd->sgc, j));
6880 }
6881 free_percpu(sdd->sd);
6882 sdd->sd = NULL;
6883 free_percpu(sdd->sg);
6884 sdd->sg = NULL;
6885 free_percpu(sdd->sgc);
6886 sdd->sgc = NULL;
6887 }
6888 }
6889
6890 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6891 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6892 struct sched_domain *child, int cpu)
6893 {
6894 struct sched_domain *sd = sd_init(tl, child, cpu);
6895
6896 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6897 if (child) {
6898 sd->level = child->level + 1;
6899 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6900 child->parent = sd;
6901
6902 if (!cpumask_subset(sched_domain_span(child),
6903 sched_domain_span(sd))) {
6904 pr_err("BUG: arch topology borken\n");
6905 #ifdef CONFIG_SCHED_DEBUG
6906 pr_err(" the %s domain not a subset of the %s domain\n",
6907 child->name, sd->name);
6908 #endif
6909 /* Fixup, ensure @sd has at least @child cpus. */
6910 cpumask_or(sched_domain_span(sd),
6911 sched_domain_span(sd),
6912 sched_domain_span(child));
6913 }
6914
6915 }
6916 set_domain_attribute(sd, attr);
6917
6918 return sd;
6919 }
6920
6921 /*
6922 * Build sched domains for a given set of cpus and attach the sched domains
6923 * to the individual cpus
6924 */
6925 static int build_sched_domains(const struct cpumask *cpu_map,
6926 struct sched_domain_attr *attr)
6927 {
6928 enum s_alloc alloc_state;
6929 struct sched_domain *sd;
6930 struct s_data d;
6931 struct rq *rq = NULL;
6932 int i, ret = -ENOMEM;
6933
6934 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6935 if (alloc_state != sa_rootdomain)
6936 goto error;
6937
6938 /* Set up domains for cpus specified by the cpu_map. */
6939 for_each_cpu(i, cpu_map) {
6940 struct sched_domain_topology_level *tl;
6941
6942 sd = NULL;
6943 for_each_sd_topology(tl) {
6944 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6945 if (tl == sched_domain_topology)
6946 *per_cpu_ptr(d.sd, i) = sd;
6947 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6948 sd->flags |= SD_OVERLAP;
6949 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6950 break;
6951 }
6952 }
6953
6954 /* Build the groups for the domains */
6955 for_each_cpu(i, cpu_map) {
6956 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6957 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6958 if (sd->flags & SD_OVERLAP) {
6959 if (build_overlap_sched_groups(sd, i))
6960 goto error;
6961 } else {
6962 if (build_sched_groups(sd, i))
6963 goto error;
6964 }
6965 }
6966 }
6967
6968 /* Calculate CPU capacity for physical packages and nodes */
6969 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6970 if (!cpumask_test_cpu(i, cpu_map))
6971 continue;
6972
6973 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6974 claim_allocations(i, sd);
6975 init_sched_groups_capacity(i, sd);
6976 }
6977 }
6978
6979 /* Attach the domains */
6980 rcu_read_lock();
6981 for_each_cpu(i, cpu_map) {
6982 rq = cpu_rq(i);
6983 sd = *per_cpu_ptr(d.sd, i);
6984
6985 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
6986 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
6987 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
6988
6989 cpu_attach_domain(sd, d.rd, i);
6990 }
6991 rcu_read_unlock();
6992
6993 if (rq) {
6994 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
6995 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
6996 }
6997
6998 ret = 0;
6999 error:
7000 __free_domain_allocs(&d, alloc_state, cpu_map);
7001 return ret;
7002 }
7003
7004 static cpumask_var_t *doms_cur; /* current sched domains */
7005 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7006 static struct sched_domain_attr *dattr_cur;
7007 /* attribues of custom domains in 'doms_cur' */
7008
7009 /*
7010 * Special case: If a kmalloc of a doms_cur partition (array of
7011 * cpumask) fails, then fallback to a single sched domain,
7012 * as determined by the single cpumask fallback_doms.
7013 */
7014 static cpumask_var_t fallback_doms;
7015
7016 /*
7017 * arch_update_cpu_topology lets virtualized architectures update the
7018 * cpu core maps. It is supposed to return 1 if the topology changed
7019 * or 0 if it stayed the same.
7020 */
7021 int __weak arch_update_cpu_topology(void)
7022 {
7023 return 0;
7024 }
7025
7026 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7027 {
7028 int i;
7029 cpumask_var_t *doms;
7030
7031 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7032 if (!doms)
7033 return NULL;
7034 for (i = 0; i < ndoms; i++) {
7035 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7036 free_sched_domains(doms, i);
7037 return NULL;
7038 }
7039 }
7040 return doms;
7041 }
7042
7043 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7044 {
7045 unsigned int i;
7046 for (i = 0; i < ndoms; i++)
7047 free_cpumask_var(doms[i]);
7048 kfree(doms);
7049 }
7050
7051 /*
7052 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7053 * For now this just excludes isolated cpus, but could be used to
7054 * exclude other special cases in the future.
7055 */
7056 static int init_sched_domains(const struct cpumask *cpu_map)
7057 {
7058 int err;
7059
7060 arch_update_cpu_topology();
7061 ndoms_cur = 1;
7062 doms_cur = alloc_sched_domains(ndoms_cur);
7063 if (!doms_cur)
7064 doms_cur = &fallback_doms;
7065 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7066 err = build_sched_domains(doms_cur[0], NULL);
7067 register_sched_domain_sysctl();
7068
7069 return err;
7070 }
7071
7072 /*
7073 * Detach sched domains from a group of cpus specified in cpu_map
7074 * These cpus will now be attached to the NULL domain
7075 */
7076 static void detach_destroy_domains(const struct cpumask *cpu_map)
7077 {
7078 int i;
7079
7080 rcu_read_lock();
7081 for_each_cpu(i, cpu_map)
7082 cpu_attach_domain(NULL, &def_root_domain, i);
7083 rcu_read_unlock();
7084 }
7085
7086 /* handle null as "default" */
7087 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7088 struct sched_domain_attr *new, int idx_new)
7089 {
7090 struct sched_domain_attr tmp;
7091
7092 /* fast path */
7093 if (!new && !cur)
7094 return 1;
7095
7096 tmp = SD_ATTR_INIT;
7097 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7098 new ? (new + idx_new) : &tmp,
7099 sizeof(struct sched_domain_attr));
7100 }
7101
7102 /*
7103 * Partition sched domains as specified by the 'ndoms_new'
7104 * cpumasks in the array doms_new[] of cpumasks. This compares
7105 * doms_new[] to the current sched domain partitioning, doms_cur[].
7106 * It destroys each deleted domain and builds each new domain.
7107 *
7108 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7109 * The masks don't intersect (don't overlap.) We should setup one
7110 * sched domain for each mask. CPUs not in any of the cpumasks will
7111 * not be load balanced. If the same cpumask appears both in the
7112 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7113 * it as it is.
7114 *
7115 * The passed in 'doms_new' should be allocated using
7116 * alloc_sched_domains. This routine takes ownership of it and will
7117 * free_sched_domains it when done with it. If the caller failed the
7118 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7119 * and partition_sched_domains() will fallback to the single partition
7120 * 'fallback_doms', it also forces the domains to be rebuilt.
7121 *
7122 * If doms_new == NULL it will be replaced with cpu_online_mask.
7123 * ndoms_new == 0 is a special case for destroying existing domains,
7124 * and it will not create the default domain.
7125 *
7126 * Call with hotplug lock held
7127 */
7128 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7129 struct sched_domain_attr *dattr_new)
7130 {
7131 int i, j, n;
7132 int new_topology;
7133
7134 mutex_lock(&sched_domains_mutex);
7135
7136 /* always unregister in case we don't destroy any domains */
7137 unregister_sched_domain_sysctl();
7138
7139 /* Let architecture update cpu core mappings. */
7140 new_topology = arch_update_cpu_topology();
7141
7142 n = doms_new ? ndoms_new : 0;
7143
7144 /* Destroy deleted domains */
7145 for (i = 0; i < ndoms_cur; i++) {
7146 for (j = 0; j < n && !new_topology; j++) {
7147 if (cpumask_equal(doms_cur[i], doms_new[j])
7148 && dattrs_equal(dattr_cur, i, dattr_new, j))
7149 goto match1;
7150 }
7151 /* no match - a current sched domain not in new doms_new[] */
7152 detach_destroy_domains(doms_cur[i]);
7153 match1:
7154 ;
7155 }
7156
7157 n = ndoms_cur;
7158 if (doms_new == NULL) {
7159 n = 0;
7160 doms_new = &fallback_doms;
7161 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7162 WARN_ON_ONCE(dattr_new);
7163 }
7164
7165 /* Build new domains */
7166 for (i = 0; i < ndoms_new; i++) {
7167 for (j = 0; j < n && !new_topology; j++) {
7168 if (cpumask_equal(doms_new[i], doms_cur[j])
7169 && dattrs_equal(dattr_new, i, dattr_cur, j))
7170 goto match2;
7171 }
7172 /* no match - add a new doms_new */
7173 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7174 match2:
7175 ;
7176 }
7177
7178 /* Remember the new sched domains */
7179 if (doms_cur != &fallback_doms)
7180 free_sched_domains(doms_cur, ndoms_cur);
7181 kfree(dattr_cur); /* kfree(NULL) is safe */
7182 doms_cur = doms_new;
7183 dattr_cur = dattr_new;
7184 ndoms_cur = ndoms_new;
7185
7186 register_sched_domain_sysctl();
7187
7188 mutex_unlock(&sched_domains_mutex);
7189 }
7190
7191 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7192
7193 /*
7194 * Update cpusets according to cpu_active mask. If cpusets are
7195 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7196 * around partition_sched_domains().
7197 *
7198 * If we come here as part of a suspend/resume, don't touch cpusets because we
7199 * want to restore it back to its original state upon resume anyway.
7200 */
7201 static void cpuset_cpu_active(void)
7202 {
7203 if (cpuhp_tasks_frozen) {
7204 /*
7205 * num_cpus_frozen tracks how many CPUs are involved in suspend
7206 * resume sequence. As long as this is not the last online
7207 * operation in the resume sequence, just build a single sched
7208 * domain, ignoring cpusets.
7209 */
7210 num_cpus_frozen--;
7211 if (likely(num_cpus_frozen)) {
7212 partition_sched_domains(1, NULL, NULL);
7213 return;
7214 }
7215 /*
7216 * This is the last CPU online operation. So fall through and
7217 * restore the original sched domains by considering the
7218 * cpuset configurations.
7219 */
7220 }
7221 cpuset_update_active_cpus(true);
7222 }
7223
7224 static int cpuset_cpu_inactive(unsigned int cpu)
7225 {
7226 unsigned long flags;
7227 struct dl_bw *dl_b;
7228 bool overflow;
7229 int cpus;
7230
7231 if (!cpuhp_tasks_frozen) {
7232 rcu_read_lock_sched();
7233 dl_b = dl_bw_of(cpu);
7234
7235 raw_spin_lock_irqsave(&dl_b->lock, flags);
7236 cpus = dl_bw_cpus(cpu);
7237 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7238 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7239
7240 rcu_read_unlock_sched();
7241
7242 if (overflow)
7243 return -EBUSY;
7244 cpuset_update_active_cpus(false);
7245 } else {
7246 num_cpus_frozen++;
7247 partition_sched_domains(1, NULL, NULL);
7248 }
7249 return 0;
7250 }
7251
7252 int sched_cpu_activate(unsigned int cpu)
7253 {
7254 struct rq *rq = cpu_rq(cpu);
7255 unsigned long flags;
7256
7257 set_cpu_active(cpu, true);
7258
7259 if (sched_smp_initialized) {
7260 sched_domains_numa_masks_set(cpu);
7261 cpuset_cpu_active();
7262 }
7263
7264 /*
7265 * Put the rq online, if not already. This happens:
7266 *
7267 * 1) In the early boot process, because we build the real domains
7268 * after all cpus have been brought up.
7269 *
7270 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7271 * domains.
7272 */
7273 raw_spin_lock_irqsave(&rq->lock, flags);
7274 if (rq->rd) {
7275 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7276 set_rq_online(rq);
7277 }
7278 raw_spin_unlock_irqrestore(&rq->lock, flags);
7279
7280 update_max_interval();
7281
7282 return 0;
7283 }
7284
7285 int sched_cpu_deactivate(unsigned int cpu)
7286 {
7287 int ret;
7288
7289 set_cpu_active(cpu, false);
7290 /*
7291 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7292 * users of this state to go away such that all new such users will
7293 * observe it.
7294 *
7295 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7296 * not imply sync_sched(), so wait for both.
7297 *
7298 * Do sync before park smpboot threads to take care the rcu boost case.
7299 */
7300 if (IS_ENABLED(CONFIG_PREEMPT))
7301 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7302 else
7303 synchronize_rcu();
7304
7305 if (!sched_smp_initialized)
7306 return 0;
7307
7308 ret = cpuset_cpu_inactive(cpu);
7309 if (ret) {
7310 set_cpu_active(cpu, true);
7311 return ret;
7312 }
7313 sched_domains_numa_masks_clear(cpu);
7314 return 0;
7315 }
7316
7317 static void sched_rq_cpu_starting(unsigned int cpu)
7318 {
7319 struct rq *rq = cpu_rq(cpu);
7320
7321 rq->calc_load_update = calc_load_update;
7322 update_max_interval();
7323 }
7324
7325 int sched_cpu_starting(unsigned int cpu)
7326 {
7327 set_cpu_rq_start_time(cpu);
7328 sched_rq_cpu_starting(cpu);
7329 return 0;
7330 }
7331
7332 #ifdef CONFIG_HOTPLUG_CPU
7333 int sched_cpu_dying(unsigned int cpu)
7334 {
7335 struct rq *rq = cpu_rq(cpu);
7336 unsigned long flags;
7337
7338 /* Handle pending wakeups and then migrate everything off */
7339 sched_ttwu_pending();
7340 raw_spin_lock_irqsave(&rq->lock, flags);
7341 if (rq->rd) {
7342 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7343 set_rq_offline(rq);
7344 }
7345 migrate_tasks(rq);
7346 BUG_ON(rq->nr_running != 1);
7347 raw_spin_unlock_irqrestore(&rq->lock, flags);
7348 calc_load_migrate(rq);
7349 update_max_interval();
7350 nohz_balance_exit_idle(cpu);
7351 hrtick_clear(rq);
7352 return 0;
7353 }
7354 #endif
7355
7356 void __init sched_init_smp(void)
7357 {
7358 cpumask_var_t non_isolated_cpus;
7359
7360 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7361 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7362
7363 sched_init_numa();
7364
7365 /*
7366 * There's no userspace yet to cause hotplug operations; hence all the
7367 * cpu masks are stable and all blatant races in the below code cannot
7368 * happen.
7369 */
7370 mutex_lock(&sched_domains_mutex);
7371 init_sched_domains(cpu_active_mask);
7372 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7373 if (cpumask_empty(non_isolated_cpus))
7374 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7375 mutex_unlock(&sched_domains_mutex);
7376
7377 /* Move init over to a non-isolated CPU */
7378 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7379 BUG();
7380 sched_init_granularity();
7381 free_cpumask_var(non_isolated_cpus);
7382
7383 init_sched_rt_class();
7384 init_sched_dl_class();
7385 sched_smp_initialized = true;
7386 }
7387
7388 static int __init migration_init(void)
7389 {
7390 sched_rq_cpu_starting(smp_processor_id());
7391 return 0;
7392 }
7393 early_initcall(migration_init);
7394
7395 #else
7396 void __init sched_init_smp(void)
7397 {
7398 sched_init_granularity();
7399 }
7400 #endif /* CONFIG_SMP */
7401
7402 int in_sched_functions(unsigned long addr)
7403 {
7404 return in_lock_functions(addr) ||
7405 (addr >= (unsigned long)__sched_text_start
7406 && addr < (unsigned long)__sched_text_end);
7407 }
7408
7409 #ifdef CONFIG_CGROUP_SCHED
7410 /*
7411 * Default task group.
7412 * Every task in system belongs to this group at bootup.
7413 */
7414 struct task_group root_task_group;
7415 LIST_HEAD(task_groups);
7416
7417 /* Cacheline aligned slab cache for task_group */
7418 static struct kmem_cache *task_group_cache __read_mostly;
7419 #endif
7420
7421 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7422
7423 void __init sched_init(void)
7424 {
7425 int i, j;
7426 unsigned long alloc_size = 0, ptr;
7427
7428 #ifdef CONFIG_FAIR_GROUP_SCHED
7429 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7430 #endif
7431 #ifdef CONFIG_RT_GROUP_SCHED
7432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7433 #endif
7434 if (alloc_size) {
7435 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7436
7437 #ifdef CONFIG_FAIR_GROUP_SCHED
7438 root_task_group.se = (struct sched_entity **)ptr;
7439 ptr += nr_cpu_ids * sizeof(void **);
7440
7441 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7442 ptr += nr_cpu_ids * sizeof(void **);
7443
7444 #endif /* CONFIG_FAIR_GROUP_SCHED */
7445 #ifdef CONFIG_RT_GROUP_SCHED
7446 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7447 ptr += nr_cpu_ids * sizeof(void **);
7448
7449 root_task_group.rt_rq = (struct rt_rq **)ptr;
7450 ptr += nr_cpu_ids * sizeof(void **);
7451
7452 #endif /* CONFIG_RT_GROUP_SCHED */
7453 }
7454 #ifdef CONFIG_CPUMASK_OFFSTACK
7455 for_each_possible_cpu(i) {
7456 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7457 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7458 }
7459 #endif /* CONFIG_CPUMASK_OFFSTACK */
7460
7461 init_rt_bandwidth(&def_rt_bandwidth,
7462 global_rt_period(), global_rt_runtime());
7463 init_dl_bandwidth(&def_dl_bandwidth,
7464 global_rt_period(), global_rt_runtime());
7465
7466 #ifdef CONFIG_SMP
7467 init_defrootdomain();
7468 #endif
7469
7470 #ifdef CONFIG_RT_GROUP_SCHED
7471 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7472 global_rt_period(), global_rt_runtime());
7473 #endif /* CONFIG_RT_GROUP_SCHED */
7474
7475 #ifdef CONFIG_CGROUP_SCHED
7476 task_group_cache = KMEM_CACHE(task_group, 0);
7477
7478 list_add(&root_task_group.list, &task_groups);
7479 INIT_LIST_HEAD(&root_task_group.children);
7480 INIT_LIST_HEAD(&root_task_group.siblings);
7481 autogroup_init(&init_task);
7482 #endif /* CONFIG_CGROUP_SCHED */
7483
7484 for_each_possible_cpu(i) {
7485 struct rq *rq;
7486
7487 rq = cpu_rq(i);
7488 raw_spin_lock_init(&rq->lock);
7489 rq->nr_running = 0;
7490 rq->calc_load_active = 0;
7491 rq->calc_load_update = jiffies + LOAD_FREQ;
7492 init_cfs_rq(&rq->cfs);
7493 init_rt_rq(&rq->rt);
7494 init_dl_rq(&rq->dl);
7495 #ifdef CONFIG_FAIR_GROUP_SCHED
7496 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7497 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7498 /*
7499 * How much cpu bandwidth does root_task_group get?
7500 *
7501 * In case of task-groups formed thr' the cgroup filesystem, it
7502 * gets 100% of the cpu resources in the system. This overall
7503 * system cpu resource is divided among the tasks of
7504 * root_task_group and its child task-groups in a fair manner,
7505 * based on each entity's (task or task-group's) weight
7506 * (se->load.weight).
7507 *
7508 * In other words, if root_task_group has 10 tasks of weight
7509 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7510 * then A0's share of the cpu resource is:
7511 *
7512 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7513 *
7514 * We achieve this by letting root_task_group's tasks sit
7515 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7516 */
7517 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7518 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7519 #endif /* CONFIG_FAIR_GROUP_SCHED */
7520
7521 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7522 #ifdef CONFIG_RT_GROUP_SCHED
7523 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7524 #endif
7525
7526 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7527 rq->cpu_load[j] = 0;
7528
7529 #ifdef CONFIG_SMP
7530 rq->sd = NULL;
7531 rq->rd = NULL;
7532 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7533 rq->balance_callback = NULL;
7534 rq->active_balance = 0;
7535 rq->next_balance = jiffies;
7536 rq->push_cpu = 0;
7537 rq->cpu = i;
7538 rq->online = 0;
7539 rq->idle_stamp = 0;
7540 rq->avg_idle = 2*sysctl_sched_migration_cost;
7541 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7542
7543 INIT_LIST_HEAD(&rq->cfs_tasks);
7544
7545 rq_attach_root(rq, &def_root_domain);
7546 #ifdef CONFIG_NO_HZ_COMMON
7547 rq->last_load_update_tick = jiffies;
7548 rq->nohz_flags = 0;
7549 #endif
7550 #ifdef CONFIG_NO_HZ_FULL
7551 rq->last_sched_tick = 0;
7552 #endif
7553 #endif /* CONFIG_SMP */
7554 init_rq_hrtick(rq);
7555 atomic_set(&rq->nr_iowait, 0);
7556 }
7557
7558 set_load_weight(&init_task);
7559
7560 /*
7561 * The boot idle thread does lazy MMU switching as well:
7562 */
7563 atomic_inc(&init_mm.mm_count);
7564 enter_lazy_tlb(&init_mm, current);
7565
7566 /*
7567 * During early bootup we pretend to be a normal task:
7568 */
7569 current->sched_class = &fair_sched_class;
7570
7571 /*
7572 * Make us the idle thread. Technically, schedule() should not be
7573 * called from this thread, however somewhere below it might be,
7574 * but because we are the idle thread, we just pick up running again
7575 * when this runqueue becomes "idle".
7576 */
7577 init_idle(current, smp_processor_id());
7578
7579 calc_load_update = jiffies + LOAD_FREQ;
7580
7581 #ifdef CONFIG_SMP
7582 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7583 /* May be allocated at isolcpus cmdline parse time */
7584 if (cpu_isolated_map == NULL)
7585 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7586 idle_thread_set_boot_cpu();
7587 set_cpu_rq_start_time(smp_processor_id());
7588 #endif
7589 init_sched_fair_class();
7590
7591 init_schedstats();
7592
7593 scheduler_running = 1;
7594 }
7595
7596 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7597 static inline int preempt_count_equals(int preempt_offset)
7598 {
7599 int nested = preempt_count() + rcu_preempt_depth();
7600
7601 return (nested == preempt_offset);
7602 }
7603
7604 void __might_sleep(const char *file, int line, int preempt_offset)
7605 {
7606 /*
7607 * Blocking primitives will set (and therefore destroy) current->state,
7608 * since we will exit with TASK_RUNNING make sure we enter with it,
7609 * otherwise we will destroy state.
7610 */
7611 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7612 "do not call blocking ops when !TASK_RUNNING; "
7613 "state=%lx set at [<%p>] %pS\n",
7614 current->state,
7615 (void *)current->task_state_change,
7616 (void *)current->task_state_change);
7617
7618 ___might_sleep(file, line, preempt_offset);
7619 }
7620 EXPORT_SYMBOL(__might_sleep);
7621
7622 void ___might_sleep(const char *file, int line, int preempt_offset)
7623 {
7624 static unsigned long prev_jiffy; /* ratelimiting */
7625 unsigned long preempt_disable_ip;
7626
7627 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7628 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7629 !is_idle_task(current)) ||
7630 system_state != SYSTEM_RUNNING || oops_in_progress)
7631 return;
7632 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7633 return;
7634 prev_jiffy = jiffies;
7635
7636 /* Save this before calling printk(), since that will clobber it */
7637 preempt_disable_ip = get_preempt_disable_ip(current);
7638
7639 printk(KERN_ERR
7640 "BUG: sleeping function called from invalid context at %s:%d\n",
7641 file, line);
7642 printk(KERN_ERR
7643 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7644 in_atomic(), irqs_disabled(),
7645 current->pid, current->comm);
7646
7647 if (task_stack_end_corrupted(current))
7648 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7649
7650 debug_show_held_locks(current);
7651 if (irqs_disabled())
7652 print_irqtrace_events(current);
7653 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7654 && !preempt_count_equals(preempt_offset)) {
7655 pr_err("Preemption disabled at:");
7656 print_ip_sym(preempt_disable_ip);
7657 pr_cont("\n");
7658 }
7659 dump_stack();
7660 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7661 }
7662 EXPORT_SYMBOL(___might_sleep);
7663 #endif
7664
7665 #ifdef CONFIG_MAGIC_SYSRQ
7666 void normalize_rt_tasks(void)
7667 {
7668 struct task_struct *g, *p;
7669 struct sched_attr attr = {
7670 .sched_policy = SCHED_NORMAL,
7671 };
7672
7673 read_lock(&tasklist_lock);
7674 for_each_process_thread(g, p) {
7675 /*
7676 * Only normalize user tasks:
7677 */
7678 if (p->flags & PF_KTHREAD)
7679 continue;
7680
7681 p->se.exec_start = 0;
7682 schedstat_set(p->se.statistics.wait_start, 0);
7683 schedstat_set(p->se.statistics.sleep_start, 0);
7684 schedstat_set(p->se.statistics.block_start, 0);
7685
7686 if (!dl_task(p) && !rt_task(p)) {
7687 /*
7688 * Renice negative nice level userspace
7689 * tasks back to 0:
7690 */
7691 if (task_nice(p) < 0)
7692 set_user_nice(p, 0);
7693 continue;
7694 }
7695
7696 __sched_setscheduler(p, &attr, false, false);
7697 }
7698 read_unlock(&tasklist_lock);
7699 }
7700
7701 #endif /* CONFIG_MAGIC_SYSRQ */
7702
7703 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7704 /*
7705 * These functions are only useful for the IA64 MCA handling, or kdb.
7706 *
7707 * They can only be called when the whole system has been
7708 * stopped - every CPU needs to be quiescent, and no scheduling
7709 * activity can take place. Using them for anything else would
7710 * be a serious bug, and as a result, they aren't even visible
7711 * under any other configuration.
7712 */
7713
7714 /**
7715 * curr_task - return the current task for a given cpu.
7716 * @cpu: the processor in question.
7717 *
7718 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7719 *
7720 * Return: The current task for @cpu.
7721 */
7722 struct task_struct *curr_task(int cpu)
7723 {
7724 return cpu_curr(cpu);
7725 }
7726
7727 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7728
7729 #ifdef CONFIG_IA64
7730 /**
7731 * set_curr_task - set the current task for a given cpu.
7732 * @cpu: the processor in question.
7733 * @p: the task pointer to set.
7734 *
7735 * Description: This function must only be used when non-maskable interrupts
7736 * are serviced on a separate stack. It allows the architecture to switch the
7737 * notion of the current task on a cpu in a non-blocking manner. This function
7738 * must be called with all CPU's synchronized, and interrupts disabled, the
7739 * and caller must save the original value of the current task (see
7740 * curr_task() above) and restore that value before reenabling interrupts and
7741 * re-starting the system.
7742 *
7743 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7744 */
7745 void set_curr_task(int cpu, struct task_struct *p)
7746 {
7747 cpu_curr(cpu) = p;
7748 }
7749
7750 #endif
7751
7752 #ifdef CONFIG_CGROUP_SCHED
7753 /* task_group_lock serializes the addition/removal of task groups */
7754 static DEFINE_SPINLOCK(task_group_lock);
7755
7756 static void sched_free_group(struct task_group *tg)
7757 {
7758 free_fair_sched_group(tg);
7759 free_rt_sched_group(tg);
7760 autogroup_free(tg);
7761 kmem_cache_free(task_group_cache, tg);
7762 }
7763
7764 /* allocate runqueue etc for a new task group */
7765 struct task_group *sched_create_group(struct task_group *parent)
7766 {
7767 struct task_group *tg;
7768
7769 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7770 if (!tg)
7771 return ERR_PTR(-ENOMEM);
7772
7773 if (!alloc_fair_sched_group(tg, parent))
7774 goto err;
7775
7776 if (!alloc_rt_sched_group(tg, parent))
7777 goto err;
7778
7779 return tg;
7780
7781 err:
7782 sched_free_group(tg);
7783 return ERR_PTR(-ENOMEM);
7784 }
7785
7786 void sched_online_group(struct task_group *tg, struct task_group *parent)
7787 {
7788 unsigned long flags;
7789
7790 spin_lock_irqsave(&task_group_lock, flags);
7791 list_add_rcu(&tg->list, &task_groups);
7792
7793 WARN_ON(!parent); /* root should already exist */
7794
7795 tg->parent = parent;
7796 INIT_LIST_HEAD(&tg->children);
7797 list_add_rcu(&tg->siblings, &parent->children);
7798 spin_unlock_irqrestore(&task_group_lock, flags);
7799
7800 online_fair_sched_group(tg);
7801 }
7802
7803 /* rcu callback to free various structures associated with a task group */
7804 static void sched_free_group_rcu(struct rcu_head *rhp)
7805 {
7806 /* now it should be safe to free those cfs_rqs */
7807 sched_free_group(container_of(rhp, struct task_group, rcu));
7808 }
7809
7810 void sched_destroy_group(struct task_group *tg)
7811 {
7812 /* wait for possible concurrent references to cfs_rqs complete */
7813 call_rcu(&tg->rcu, sched_free_group_rcu);
7814 }
7815
7816 void sched_offline_group(struct task_group *tg)
7817 {
7818 unsigned long flags;
7819
7820 /* end participation in shares distribution */
7821 unregister_fair_sched_group(tg);
7822
7823 spin_lock_irqsave(&task_group_lock, flags);
7824 list_del_rcu(&tg->list);
7825 list_del_rcu(&tg->siblings);
7826 spin_unlock_irqrestore(&task_group_lock, flags);
7827 }
7828
7829 static void sched_change_group(struct task_struct *tsk, int type)
7830 {
7831 struct task_group *tg;
7832
7833 /*
7834 * All callers are synchronized by task_rq_lock(); we do not use RCU
7835 * which is pointless here. Thus, we pass "true" to task_css_check()
7836 * to prevent lockdep warnings.
7837 */
7838 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7839 struct task_group, css);
7840 tg = autogroup_task_group(tsk, tg);
7841 tsk->sched_task_group = tg;
7842
7843 #ifdef CONFIG_FAIR_GROUP_SCHED
7844 if (tsk->sched_class->task_change_group)
7845 tsk->sched_class->task_change_group(tsk, type);
7846 else
7847 #endif
7848 set_task_rq(tsk, task_cpu(tsk));
7849 }
7850
7851 /*
7852 * Change task's runqueue when it moves between groups.
7853 *
7854 * The caller of this function should have put the task in its new group by
7855 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7856 * its new group.
7857 */
7858 void sched_move_task(struct task_struct *tsk)
7859 {
7860 int queued, running;
7861 struct rq_flags rf;
7862 struct rq *rq;
7863
7864 rq = task_rq_lock(tsk, &rf);
7865
7866 running = task_current(rq, tsk);
7867 queued = task_on_rq_queued(tsk);
7868
7869 if (queued)
7870 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7871 if (unlikely(running))
7872 put_prev_task(rq, tsk);
7873
7874 sched_change_group(tsk, TASK_MOVE_GROUP);
7875
7876 if (unlikely(running))
7877 tsk->sched_class->set_curr_task(rq);
7878 if (queued)
7879 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7880
7881 task_rq_unlock(rq, tsk, &rf);
7882 }
7883 #endif /* CONFIG_CGROUP_SCHED */
7884
7885 #ifdef CONFIG_RT_GROUP_SCHED
7886 /*
7887 * Ensure that the real time constraints are schedulable.
7888 */
7889 static DEFINE_MUTEX(rt_constraints_mutex);
7890
7891 /* Must be called with tasklist_lock held */
7892 static inline int tg_has_rt_tasks(struct task_group *tg)
7893 {
7894 struct task_struct *g, *p;
7895
7896 /*
7897 * Autogroups do not have RT tasks; see autogroup_create().
7898 */
7899 if (task_group_is_autogroup(tg))
7900 return 0;
7901
7902 for_each_process_thread(g, p) {
7903 if (rt_task(p) && task_group(p) == tg)
7904 return 1;
7905 }
7906
7907 return 0;
7908 }
7909
7910 struct rt_schedulable_data {
7911 struct task_group *tg;
7912 u64 rt_period;
7913 u64 rt_runtime;
7914 };
7915
7916 static int tg_rt_schedulable(struct task_group *tg, void *data)
7917 {
7918 struct rt_schedulable_data *d = data;
7919 struct task_group *child;
7920 unsigned long total, sum = 0;
7921 u64 period, runtime;
7922
7923 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7924 runtime = tg->rt_bandwidth.rt_runtime;
7925
7926 if (tg == d->tg) {
7927 period = d->rt_period;
7928 runtime = d->rt_runtime;
7929 }
7930
7931 /*
7932 * Cannot have more runtime than the period.
7933 */
7934 if (runtime > period && runtime != RUNTIME_INF)
7935 return -EINVAL;
7936
7937 /*
7938 * Ensure we don't starve existing RT tasks.
7939 */
7940 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7941 return -EBUSY;
7942
7943 total = to_ratio(period, runtime);
7944
7945 /*
7946 * Nobody can have more than the global setting allows.
7947 */
7948 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7949 return -EINVAL;
7950
7951 /*
7952 * The sum of our children's runtime should not exceed our own.
7953 */
7954 list_for_each_entry_rcu(child, &tg->children, siblings) {
7955 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7956 runtime = child->rt_bandwidth.rt_runtime;
7957
7958 if (child == d->tg) {
7959 period = d->rt_period;
7960 runtime = d->rt_runtime;
7961 }
7962
7963 sum += to_ratio(period, runtime);
7964 }
7965
7966 if (sum > total)
7967 return -EINVAL;
7968
7969 return 0;
7970 }
7971
7972 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7973 {
7974 int ret;
7975
7976 struct rt_schedulable_data data = {
7977 .tg = tg,
7978 .rt_period = period,
7979 .rt_runtime = runtime,
7980 };
7981
7982 rcu_read_lock();
7983 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7984 rcu_read_unlock();
7985
7986 return ret;
7987 }
7988
7989 static int tg_set_rt_bandwidth(struct task_group *tg,
7990 u64 rt_period, u64 rt_runtime)
7991 {
7992 int i, err = 0;
7993
7994 /*
7995 * Disallowing the root group RT runtime is BAD, it would disallow the
7996 * kernel creating (and or operating) RT threads.
7997 */
7998 if (tg == &root_task_group && rt_runtime == 0)
7999 return -EINVAL;
8000
8001 /* No period doesn't make any sense. */
8002 if (rt_period == 0)
8003 return -EINVAL;
8004
8005 mutex_lock(&rt_constraints_mutex);
8006 read_lock(&tasklist_lock);
8007 err = __rt_schedulable(tg, rt_period, rt_runtime);
8008 if (err)
8009 goto unlock;
8010
8011 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8012 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8013 tg->rt_bandwidth.rt_runtime = rt_runtime;
8014
8015 for_each_possible_cpu(i) {
8016 struct rt_rq *rt_rq = tg->rt_rq[i];
8017
8018 raw_spin_lock(&rt_rq->rt_runtime_lock);
8019 rt_rq->rt_runtime = rt_runtime;
8020 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8021 }
8022 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8023 unlock:
8024 read_unlock(&tasklist_lock);
8025 mutex_unlock(&rt_constraints_mutex);
8026
8027 return err;
8028 }
8029
8030 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8031 {
8032 u64 rt_runtime, rt_period;
8033
8034 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8035 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8036 if (rt_runtime_us < 0)
8037 rt_runtime = RUNTIME_INF;
8038
8039 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8040 }
8041
8042 static long sched_group_rt_runtime(struct task_group *tg)
8043 {
8044 u64 rt_runtime_us;
8045
8046 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8047 return -1;
8048
8049 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8050 do_div(rt_runtime_us, NSEC_PER_USEC);
8051 return rt_runtime_us;
8052 }
8053
8054 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8055 {
8056 u64 rt_runtime, rt_period;
8057
8058 rt_period = rt_period_us * NSEC_PER_USEC;
8059 rt_runtime = tg->rt_bandwidth.rt_runtime;
8060
8061 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8062 }
8063
8064 static long sched_group_rt_period(struct task_group *tg)
8065 {
8066 u64 rt_period_us;
8067
8068 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8069 do_div(rt_period_us, NSEC_PER_USEC);
8070 return rt_period_us;
8071 }
8072 #endif /* CONFIG_RT_GROUP_SCHED */
8073
8074 #ifdef CONFIG_RT_GROUP_SCHED
8075 static int sched_rt_global_constraints(void)
8076 {
8077 int ret = 0;
8078
8079 mutex_lock(&rt_constraints_mutex);
8080 read_lock(&tasklist_lock);
8081 ret = __rt_schedulable(NULL, 0, 0);
8082 read_unlock(&tasklist_lock);
8083 mutex_unlock(&rt_constraints_mutex);
8084
8085 return ret;
8086 }
8087
8088 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8089 {
8090 /* Don't accept realtime tasks when there is no way for them to run */
8091 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8092 return 0;
8093
8094 return 1;
8095 }
8096
8097 #else /* !CONFIG_RT_GROUP_SCHED */
8098 static int sched_rt_global_constraints(void)
8099 {
8100 unsigned long flags;
8101 int i;
8102
8103 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8104 for_each_possible_cpu(i) {
8105 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8106
8107 raw_spin_lock(&rt_rq->rt_runtime_lock);
8108 rt_rq->rt_runtime = global_rt_runtime();
8109 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8110 }
8111 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8112
8113 return 0;
8114 }
8115 #endif /* CONFIG_RT_GROUP_SCHED */
8116
8117 static int sched_dl_global_validate(void)
8118 {
8119 u64 runtime = global_rt_runtime();
8120 u64 period = global_rt_period();
8121 u64 new_bw = to_ratio(period, runtime);
8122 struct dl_bw *dl_b;
8123 int cpu, ret = 0;
8124 unsigned long flags;
8125
8126 /*
8127 * Here we want to check the bandwidth not being set to some
8128 * value smaller than the currently allocated bandwidth in
8129 * any of the root_domains.
8130 *
8131 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8132 * cycling on root_domains... Discussion on different/better
8133 * solutions is welcome!
8134 */
8135 for_each_possible_cpu(cpu) {
8136 rcu_read_lock_sched();
8137 dl_b = dl_bw_of(cpu);
8138
8139 raw_spin_lock_irqsave(&dl_b->lock, flags);
8140 if (new_bw < dl_b->total_bw)
8141 ret = -EBUSY;
8142 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8143
8144 rcu_read_unlock_sched();
8145
8146 if (ret)
8147 break;
8148 }
8149
8150 return ret;
8151 }
8152
8153 static void sched_dl_do_global(void)
8154 {
8155 u64 new_bw = -1;
8156 struct dl_bw *dl_b;
8157 int cpu;
8158 unsigned long flags;
8159
8160 def_dl_bandwidth.dl_period = global_rt_period();
8161 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8162
8163 if (global_rt_runtime() != RUNTIME_INF)
8164 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8165
8166 /*
8167 * FIXME: As above...
8168 */
8169 for_each_possible_cpu(cpu) {
8170 rcu_read_lock_sched();
8171 dl_b = dl_bw_of(cpu);
8172
8173 raw_spin_lock_irqsave(&dl_b->lock, flags);
8174 dl_b->bw = new_bw;
8175 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8176
8177 rcu_read_unlock_sched();
8178 }
8179 }
8180
8181 static int sched_rt_global_validate(void)
8182 {
8183 if (sysctl_sched_rt_period <= 0)
8184 return -EINVAL;
8185
8186 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8187 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8188 return -EINVAL;
8189
8190 return 0;
8191 }
8192
8193 static void sched_rt_do_global(void)
8194 {
8195 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8196 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8197 }
8198
8199 int sched_rt_handler(struct ctl_table *table, int write,
8200 void __user *buffer, size_t *lenp,
8201 loff_t *ppos)
8202 {
8203 int old_period, old_runtime;
8204 static DEFINE_MUTEX(mutex);
8205 int ret;
8206
8207 mutex_lock(&mutex);
8208 old_period = sysctl_sched_rt_period;
8209 old_runtime = sysctl_sched_rt_runtime;
8210
8211 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8212
8213 if (!ret && write) {
8214 ret = sched_rt_global_validate();
8215 if (ret)
8216 goto undo;
8217
8218 ret = sched_dl_global_validate();
8219 if (ret)
8220 goto undo;
8221
8222 ret = sched_rt_global_constraints();
8223 if (ret)
8224 goto undo;
8225
8226 sched_rt_do_global();
8227 sched_dl_do_global();
8228 }
8229 if (0) {
8230 undo:
8231 sysctl_sched_rt_period = old_period;
8232 sysctl_sched_rt_runtime = old_runtime;
8233 }
8234 mutex_unlock(&mutex);
8235
8236 return ret;
8237 }
8238
8239 int sched_rr_handler(struct ctl_table *table, int write,
8240 void __user *buffer, size_t *lenp,
8241 loff_t *ppos)
8242 {
8243 int ret;
8244 static DEFINE_MUTEX(mutex);
8245
8246 mutex_lock(&mutex);
8247 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8248 /* make sure that internally we keep jiffies */
8249 /* also, writing zero resets timeslice to default */
8250 if (!ret && write) {
8251 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8252 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8253 }
8254 mutex_unlock(&mutex);
8255 return ret;
8256 }
8257
8258 #ifdef CONFIG_CGROUP_SCHED
8259
8260 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8261 {
8262 return css ? container_of(css, struct task_group, css) : NULL;
8263 }
8264
8265 static struct cgroup_subsys_state *
8266 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8267 {
8268 struct task_group *parent = css_tg(parent_css);
8269 struct task_group *tg;
8270
8271 if (!parent) {
8272 /* This is early initialization for the top cgroup */
8273 return &root_task_group.css;
8274 }
8275
8276 tg = sched_create_group(parent);
8277 if (IS_ERR(tg))
8278 return ERR_PTR(-ENOMEM);
8279
8280 sched_online_group(tg, parent);
8281
8282 return &tg->css;
8283 }
8284
8285 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8286 {
8287 struct task_group *tg = css_tg(css);
8288
8289 sched_offline_group(tg);
8290 }
8291
8292 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8293 {
8294 struct task_group *tg = css_tg(css);
8295
8296 /*
8297 * Relies on the RCU grace period between css_released() and this.
8298 */
8299 sched_free_group(tg);
8300 }
8301
8302 /*
8303 * This is called before wake_up_new_task(), therefore we really only
8304 * have to set its group bits, all the other stuff does not apply.
8305 */
8306 static void cpu_cgroup_fork(struct task_struct *task)
8307 {
8308 struct rq_flags rf;
8309 struct rq *rq;
8310
8311 rq = task_rq_lock(task, &rf);
8312
8313 sched_change_group(task, TASK_SET_GROUP);
8314
8315 task_rq_unlock(rq, task, &rf);
8316 }
8317
8318 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8319 {
8320 struct task_struct *task;
8321 struct cgroup_subsys_state *css;
8322 int ret = 0;
8323
8324 cgroup_taskset_for_each(task, css, tset) {
8325 #ifdef CONFIG_RT_GROUP_SCHED
8326 if (!sched_rt_can_attach(css_tg(css), task))
8327 return -EINVAL;
8328 #else
8329 /* We don't support RT-tasks being in separate groups */
8330 if (task->sched_class != &fair_sched_class)
8331 return -EINVAL;
8332 #endif
8333 /*
8334 * Serialize against wake_up_new_task() such that if its
8335 * running, we're sure to observe its full state.
8336 */
8337 raw_spin_lock_irq(&task->pi_lock);
8338 /*
8339 * Avoid calling sched_move_task() before wake_up_new_task()
8340 * has happened. This would lead to problems with PELT, due to
8341 * move wanting to detach+attach while we're not attached yet.
8342 */
8343 if (task->state == TASK_NEW)
8344 ret = -EINVAL;
8345 raw_spin_unlock_irq(&task->pi_lock);
8346
8347 if (ret)
8348 break;
8349 }
8350 return ret;
8351 }
8352
8353 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8354 {
8355 struct task_struct *task;
8356 struct cgroup_subsys_state *css;
8357
8358 cgroup_taskset_for_each(task, css, tset)
8359 sched_move_task(task);
8360 }
8361
8362 #ifdef CONFIG_FAIR_GROUP_SCHED
8363 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8364 struct cftype *cftype, u64 shareval)
8365 {
8366 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8367 }
8368
8369 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8370 struct cftype *cft)
8371 {
8372 struct task_group *tg = css_tg(css);
8373
8374 return (u64) scale_load_down(tg->shares);
8375 }
8376
8377 #ifdef CONFIG_CFS_BANDWIDTH
8378 static DEFINE_MUTEX(cfs_constraints_mutex);
8379
8380 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8381 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8382
8383 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8384
8385 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8386 {
8387 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8388 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8389
8390 if (tg == &root_task_group)
8391 return -EINVAL;
8392
8393 /*
8394 * Ensure we have at some amount of bandwidth every period. This is
8395 * to prevent reaching a state of large arrears when throttled via
8396 * entity_tick() resulting in prolonged exit starvation.
8397 */
8398 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8399 return -EINVAL;
8400
8401 /*
8402 * Likewise, bound things on the otherside by preventing insane quota
8403 * periods. This also allows us to normalize in computing quota
8404 * feasibility.
8405 */
8406 if (period > max_cfs_quota_period)
8407 return -EINVAL;
8408
8409 /*
8410 * Prevent race between setting of cfs_rq->runtime_enabled and
8411 * unthrottle_offline_cfs_rqs().
8412 */
8413 get_online_cpus();
8414 mutex_lock(&cfs_constraints_mutex);
8415 ret = __cfs_schedulable(tg, period, quota);
8416 if (ret)
8417 goto out_unlock;
8418
8419 runtime_enabled = quota != RUNTIME_INF;
8420 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8421 /*
8422 * If we need to toggle cfs_bandwidth_used, off->on must occur
8423 * before making related changes, and on->off must occur afterwards
8424 */
8425 if (runtime_enabled && !runtime_was_enabled)
8426 cfs_bandwidth_usage_inc();
8427 raw_spin_lock_irq(&cfs_b->lock);
8428 cfs_b->period = ns_to_ktime(period);
8429 cfs_b->quota = quota;
8430
8431 __refill_cfs_bandwidth_runtime(cfs_b);
8432 /* restart the period timer (if active) to handle new period expiry */
8433 if (runtime_enabled)
8434 start_cfs_bandwidth(cfs_b);
8435 raw_spin_unlock_irq(&cfs_b->lock);
8436
8437 for_each_online_cpu(i) {
8438 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8439 struct rq *rq = cfs_rq->rq;
8440
8441 raw_spin_lock_irq(&rq->lock);
8442 cfs_rq->runtime_enabled = runtime_enabled;
8443 cfs_rq->runtime_remaining = 0;
8444
8445 if (cfs_rq->throttled)
8446 unthrottle_cfs_rq(cfs_rq);
8447 raw_spin_unlock_irq(&rq->lock);
8448 }
8449 if (runtime_was_enabled && !runtime_enabled)
8450 cfs_bandwidth_usage_dec();
8451 out_unlock:
8452 mutex_unlock(&cfs_constraints_mutex);
8453 put_online_cpus();
8454
8455 return ret;
8456 }
8457
8458 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8459 {
8460 u64 quota, period;
8461
8462 period = ktime_to_ns(tg->cfs_bandwidth.period);
8463 if (cfs_quota_us < 0)
8464 quota = RUNTIME_INF;
8465 else
8466 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8467
8468 return tg_set_cfs_bandwidth(tg, period, quota);
8469 }
8470
8471 long tg_get_cfs_quota(struct task_group *tg)
8472 {
8473 u64 quota_us;
8474
8475 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8476 return -1;
8477
8478 quota_us = tg->cfs_bandwidth.quota;
8479 do_div(quota_us, NSEC_PER_USEC);
8480
8481 return quota_us;
8482 }
8483
8484 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8485 {
8486 u64 quota, period;
8487
8488 period = (u64)cfs_period_us * NSEC_PER_USEC;
8489 quota = tg->cfs_bandwidth.quota;
8490
8491 return tg_set_cfs_bandwidth(tg, period, quota);
8492 }
8493
8494 long tg_get_cfs_period(struct task_group *tg)
8495 {
8496 u64 cfs_period_us;
8497
8498 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8499 do_div(cfs_period_us, NSEC_PER_USEC);
8500
8501 return cfs_period_us;
8502 }
8503
8504 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8505 struct cftype *cft)
8506 {
8507 return tg_get_cfs_quota(css_tg(css));
8508 }
8509
8510 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8511 struct cftype *cftype, s64 cfs_quota_us)
8512 {
8513 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8514 }
8515
8516 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8517 struct cftype *cft)
8518 {
8519 return tg_get_cfs_period(css_tg(css));
8520 }
8521
8522 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8523 struct cftype *cftype, u64 cfs_period_us)
8524 {
8525 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8526 }
8527
8528 struct cfs_schedulable_data {
8529 struct task_group *tg;
8530 u64 period, quota;
8531 };
8532
8533 /*
8534 * normalize group quota/period to be quota/max_period
8535 * note: units are usecs
8536 */
8537 static u64 normalize_cfs_quota(struct task_group *tg,
8538 struct cfs_schedulable_data *d)
8539 {
8540 u64 quota, period;
8541
8542 if (tg == d->tg) {
8543 period = d->period;
8544 quota = d->quota;
8545 } else {
8546 period = tg_get_cfs_period(tg);
8547 quota = tg_get_cfs_quota(tg);
8548 }
8549
8550 /* note: these should typically be equivalent */
8551 if (quota == RUNTIME_INF || quota == -1)
8552 return RUNTIME_INF;
8553
8554 return to_ratio(period, quota);
8555 }
8556
8557 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8558 {
8559 struct cfs_schedulable_data *d = data;
8560 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8561 s64 quota = 0, parent_quota = -1;
8562
8563 if (!tg->parent) {
8564 quota = RUNTIME_INF;
8565 } else {
8566 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8567
8568 quota = normalize_cfs_quota(tg, d);
8569 parent_quota = parent_b->hierarchical_quota;
8570
8571 /*
8572 * ensure max(child_quota) <= parent_quota, inherit when no
8573 * limit is set
8574 */
8575 if (quota == RUNTIME_INF)
8576 quota = parent_quota;
8577 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8578 return -EINVAL;
8579 }
8580 cfs_b->hierarchical_quota = quota;
8581
8582 return 0;
8583 }
8584
8585 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8586 {
8587 int ret;
8588 struct cfs_schedulable_data data = {
8589 .tg = tg,
8590 .period = period,
8591 .quota = quota,
8592 };
8593
8594 if (quota != RUNTIME_INF) {
8595 do_div(data.period, NSEC_PER_USEC);
8596 do_div(data.quota, NSEC_PER_USEC);
8597 }
8598
8599 rcu_read_lock();
8600 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8601 rcu_read_unlock();
8602
8603 return ret;
8604 }
8605
8606 static int cpu_stats_show(struct seq_file *sf, void *v)
8607 {
8608 struct task_group *tg = css_tg(seq_css(sf));
8609 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8610
8611 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8612 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8613 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8614
8615 return 0;
8616 }
8617 #endif /* CONFIG_CFS_BANDWIDTH */
8618 #endif /* CONFIG_FAIR_GROUP_SCHED */
8619
8620 #ifdef CONFIG_RT_GROUP_SCHED
8621 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8622 struct cftype *cft, s64 val)
8623 {
8624 return sched_group_set_rt_runtime(css_tg(css), val);
8625 }
8626
8627 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8628 struct cftype *cft)
8629 {
8630 return sched_group_rt_runtime(css_tg(css));
8631 }
8632
8633 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8634 struct cftype *cftype, u64 rt_period_us)
8635 {
8636 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8637 }
8638
8639 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8640 struct cftype *cft)
8641 {
8642 return sched_group_rt_period(css_tg(css));
8643 }
8644 #endif /* CONFIG_RT_GROUP_SCHED */
8645
8646 static struct cftype cpu_files[] = {
8647 #ifdef CONFIG_FAIR_GROUP_SCHED
8648 {
8649 .name = "shares",
8650 .read_u64 = cpu_shares_read_u64,
8651 .write_u64 = cpu_shares_write_u64,
8652 },
8653 #endif
8654 #ifdef CONFIG_CFS_BANDWIDTH
8655 {
8656 .name = "cfs_quota_us",
8657 .read_s64 = cpu_cfs_quota_read_s64,
8658 .write_s64 = cpu_cfs_quota_write_s64,
8659 },
8660 {
8661 .name = "cfs_period_us",
8662 .read_u64 = cpu_cfs_period_read_u64,
8663 .write_u64 = cpu_cfs_period_write_u64,
8664 },
8665 {
8666 .name = "stat",
8667 .seq_show = cpu_stats_show,
8668 },
8669 #endif
8670 #ifdef CONFIG_RT_GROUP_SCHED
8671 {
8672 .name = "rt_runtime_us",
8673 .read_s64 = cpu_rt_runtime_read,
8674 .write_s64 = cpu_rt_runtime_write,
8675 },
8676 {
8677 .name = "rt_period_us",
8678 .read_u64 = cpu_rt_period_read_uint,
8679 .write_u64 = cpu_rt_period_write_uint,
8680 },
8681 #endif
8682 { } /* terminate */
8683 };
8684
8685 struct cgroup_subsys cpu_cgrp_subsys = {
8686 .css_alloc = cpu_cgroup_css_alloc,
8687 .css_released = cpu_cgroup_css_released,
8688 .css_free = cpu_cgroup_css_free,
8689 .fork = cpu_cgroup_fork,
8690 .can_attach = cpu_cgroup_can_attach,
8691 .attach = cpu_cgroup_attach,
8692 .legacy_cftypes = cpu_files,
8693 .early_init = true,
8694 };
8695
8696 #endif /* CONFIG_CGROUP_SCHED */
8697
8698 void dump_cpu_task(int cpu)
8699 {
8700 pr_info("Task dump for CPU %d:\n", cpu);
8701 sched_show_task(cpu_curr(cpu));
8702 }
8703
8704 /*
8705 * Nice levels are multiplicative, with a gentle 10% change for every
8706 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8707 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8708 * that remained on nice 0.
8709 *
8710 * The "10% effect" is relative and cumulative: from _any_ nice level,
8711 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8712 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8713 * If a task goes up by ~10% and another task goes down by ~10% then
8714 * the relative distance between them is ~25%.)
8715 */
8716 const int sched_prio_to_weight[40] = {
8717 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8718 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8719 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8720 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8721 /* 0 */ 1024, 820, 655, 526, 423,
8722 /* 5 */ 335, 272, 215, 172, 137,
8723 /* 10 */ 110, 87, 70, 56, 45,
8724 /* 15 */ 36, 29, 23, 18, 15,
8725 };
8726
8727 /*
8728 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8729 *
8730 * In cases where the weight does not change often, we can use the
8731 * precalculated inverse to speed up arithmetics by turning divisions
8732 * into multiplications:
8733 */
8734 const u32 sched_prio_to_wmult[40] = {
8735 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8736 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8737 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8738 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8739 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8740 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8741 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8742 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8743 };
This page took 0.290121 seconds and 5 git commands to generate.