Merge remote-tracking branch 'cgroup/for-next'
[deliverable/linux.git] / kernel / sched / debug.c
1 /*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19 #include <linux/debugfs.h>
20
21 #include "sched.h"
22
23 static DEFINE_SPINLOCK(sched_debug_lock);
24
25 /*
26 * This allows printing both to /proc/sched_debug and
27 * to the console
28 */
29 #define SEQ_printf(m, x...) \
30 do { \
31 if (m) \
32 seq_printf(m, x); \
33 else \
34 printk(x); \
35 } while (0)
36
37 /*
38 * Ease the printing of nsec fields:
39 */
40 static long long nsec_high(unsigned long long nsec)
41 {
42 if ((long long)nsec < 0) {
43 nsec = -nsec;
44 do_div(nsec, 1000000);
45 return -nsec;
46 }
47 do_div(nsec, 1000000);
48
49 return nsec;
50 }
51
52 static unsigned long nsec_low(unsigned long long nsec)
53 {
54 if ((long long)nsec < 0)
55 nsec = -nsec;
56
57 return do_div(nsec, 1000000);
58 }
59
60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
61
62 #define SCHED_FEAT(name, enabled) \
63 #name ,
64
65 static const char * const sched_feat_names[] = {
66 #include "features.h"
67 };
68
69 #undef SCHED_FEAT
70
71 static int sched_feat_show(struct seq_file *m, void *v)
72 {
73 int i;
74
75 for (i = 0; i < __SCHED_FEAT_NR; i++) {
76 if (!(sysctl_sched_features & (1UL << i)))
77 seq_puts(m, "NO_");
78 seq_printf(m, "%s ", sched_feat_names[i]);
79 }
80 seq_puts(m, "\n");
81
82 return 0;
83 }
84
85 #ifdef HAVE_JUMP_LABEL
86
87 #define jump_label_key__true STATIC_KEY_INIT_TRUE
88 #define jump_label_key__false STATIC_KEY_INIT_FALSE
89
90 #define SCHED_FEAT(name, enabled) \
91 jump_label_key__##enabled ,
92
93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
94 #include "features.h"
95 };
96
97 #undef SCHED_FEAT
98
99 static void sched_feat_disable(int i)
100 {
101 static_key_disable(&sched_feat_keys[i]);
102 }
103
104 static void sched_feat_enable(int i)
105 {
106 static_key_enable(&sched_feat_keys[i]);
107 }
108 #else
109 static void sched_feat_disable(int i) { };
110 static void sched_feat_enable(int i) { };
111 #endif /* HAVE_JUMP_LABEL */
112
113 static int sched_feat_set(char *cmp)
114 {
115 int i;
116 int neg = 0;
117
118 if (strncmp(cmp, "NO_", 3) == 0) {
119 neg = 1;
120 cmp += 3;
121 }
122
123 for (i = 0; i < __SCHED_FEAT_NR; i++) {
124 if (strcmp(cmp, sched_feat_names[i]) == 0) {
125 if (neg) {
126 sysctl_sched_features &= ~(1UL << i);
127 sched_feat_disable(i);
128 } else {
129 sysctl_sched_features |= (1UL << i);
130 sched_feat_enable(i);
131 }
132 break;
133 }
134 }
135
136 return i;
137 }
138
139 static ssize_t
140 sched_feat_write(struct file *filp, const char __user *ubuf,
141 size_t cnt, loff_t *ppos)
142 {
143 char buf[64];
144 char *cmp;
145 int i;
146 struct inode *inode;
147
148 if (cnt > 63)
149 cnt = 63;
150
151 if (copy_from_user(&buf, ubuf, cnt))
152 return -EFAULT;
153
154 buf[cnt] = 0;
155 cmp = strstrip(buf);
156
157 /* Ensure the static_key remains in a consistent state */
158 inode = file_inode(filp);
159 inode_lock(inode);
160 i = sched_feat_set(cmp);
161 inode_unlock(inode);
162 if (i == __SCHED_FEAT_NR)
163 return -EINVAL;
164
165 *ppos += cnt;
166
167 return cnt;
168 }
169
170 static int sched_feat_open(struct inode *inode, struct file *filp)
171 {
172 return single_open(filp, sched_feat_show, NULL);
173 }
174
175 static const struct file_operations sched_feat_fops = {
176 .open = sched_feat_open,
177 .write = sched_feat_write,
178 .read = seq_read,
179 .llseek = seq_lseek,
180 .release = single_release,
181 };
182
183 static __init int sched_init_debug(void)
184 {
185 debugfs_create_file("sched_features", 0644, NULL, NULL,
186 &sched_feat_fops);
187
188 return 0;
189 }
190 late_initcall(sched_init_debug);
191
192 #ifdef CONFIG_SMP
193
194 #ifdef CONFIG_SYSCTL
195
196 static struct ctl_table sd_ctl_dir[] = {
197 {
198 .procname = "sched_domain",
199 .mode = 0555,
200 },
201 {}
202 };
203
204 static struct ctl_table sd_ctl_root[] = {
205 {
206 .procname = "kernel",
207 .mode = 0555,
208 .child = sd_ctl_dir,
209 },
210 {}
211 };
212
213 static struct ctl_table *sd_alloc_ctl_entry(int n)
214 {
215 struct ctl_table *entry =
216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
217
218 return entry;
219 }
220
221 static void sd_free_ctl_entry(struct ctl_table **tablep)
222 {
223 struct ctl_table *entry;
224
225 /*
226 * In the intermediate directories, both the child directory and
227 * procname are dynamically allocated and could fail but the mode
228 * will always be set. In the lowest directory the names are
229 * static strings and all have proc handlers.
230 */
231 for (entry = *tablep; entry->mode; entry++) {
232 if (entry->child)
233 sd_free_ctl_entry(&entry->child);
234 if (entry->proc_handler == NULL)
235 kfree(entry->procname);
236 }
237
238 kfree(*tablep);
239 *tablep = NULL;
240 }
241
242 static int min_load_idx = 0;
243 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
244
245 static void
246 set_table_entry(struct ctl_table *entry,
247 const char *procname, void *data, int maxlen,
248 umode_t mode, proc_handler *proc_handler,
249 bool load_idx)
250 {
251 entry->procname = procname;
252 entry->data = data;
253 entry->maxlen = maxlen;
254 entry->mode = mode;
255 entry->proc_handler = proc_handler;
256
257 if (load_idx) {
258 entry->extra1 = &min_load_idx;
259 entry->extra2 = &max_load_idx;
260 }
261 }
262
263 static struct ctl_table *
264 sd_alloc_ctl_domain_table(struct sched_domain *sd)
265 {
266 struct ctl_table *table = sd_alloc_ctl_entry(14);
267
268 if (table == NULL)
269 return NULL;
270
271 set_table_entry(&table[0], "min_interval", &sd->min_interval,
272 sizeof(long), 0644, proc_doulongvec_minmax, false);
273 set_table_entry(&table[1], "max_interval", &sd->max_interval,
274 sizeof(long), 0644, proc_doulongvec_minmax, false);
275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
276 sizeof(int), 0644, proc_dointvec_minmax, true);
277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
278 sizeof(int), 0644, proc_dointvec_minmax, true);
279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
280 sizeof(int), 0644, proc_dointvec_minmax, true);
281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
282 sizeof(int), 0644, proc_dointvec_minmax, true);
283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
284 sizeof(int), 0644, proc_dointvec_minmax, true);
285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
286 sizeof(int), 0644, proc_dointvec_minmax, false);
287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
288 sizeof(int), 0644, proc_dointvec_minmax, false);
289 set_table_entry(&table[9], "cache_nice_tries",
290 &sd->cache_nice_tries,
291 sizeof(int), 0644, proc_dointvec_minmax, false);
292 set_table_entry(&table[10], "flags", &sd->flags,
293 sizeof(int), 0644, proc_dointvec_minmax, false);
294 set_table_entry(&table[11], "max_newidle_lb_cost",
295 &sd->max_newidle_lb_cost,
296 sizeof(long), 0644, proc_doulongvec_minmax, false);
297 set_table_entry(&table[12], "name", sd->name,
298 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
299 /* &table[13] is terminator */
300
301 return table;
302 }
303
304 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
305 {
306 struct ctl_table *entry, *table;
307 struct sched_domain *sd;
308 int domain_num = 0, i;
309 char buf[32];
310
311 for_each_domain(cpu, sd)
312 domain_num++;
313 entry = table = sd_alloc_ctl_entry(domain_num + 1);
314 if (table == NULL)
315 return NULL;
316
317 i = 0;
318 for_each_domain(cpu, sd) {
319 snprintf(buf, 32, "domain%d", i);
320 entry->procname = kstrdup(buf, GFP_KERNEL);
321 entry->mode = 0555;
322 entry->child = sd_alloc_ctl_domain_table(sd);
323 entry++;
324 i++;
325 }
326 return table;
327 }
328
329 static struct ctl_table_header *sd_sysctl_header;
330 void register_sched_domain_sysctl(void)
331 {
332 int i, cpu_num = num_possible_cpus();
333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
334 char buf[32];
335
336 WARN_ON(sd_ctl_dir[0].child);
337 sd_ctl_dir[0].child = entry;
338
339 if (entry == NULL)
340 return;
341
342 for_each_possible_cpu(i) {
343 snprintf(buf, 32, "cpu%d", i);
344 entry->procname = kstrdup(buf, GFP_KERNEL);
345 entry->mode = 0555;
346 entry->child = sd_alloc_ctl_cpu_table(i);
347 entry++;
348 }
349
350 WARN_ON(sd_sysctl_header);
351 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
352 }
353
354 /* may be called multiple times per register */
355 void unregister_sched_domain_sysctl(void)
356 {
357 unregister_sysctl_table(sd_sysctl_header);
358 sd_sysctl_header = NULL;
359 if (sd_ctl_dir[0].child)
360 sd_free_ctl_entry(&sd_ctl_dir[0].child);
361 }
362 #endif /* CONFIG_SYSCTL */
363 #endif /* CONFIG_SMP */
364
365 #ifdef CONFIG_FAIR_GROUP_SCHED
366 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
367 {
368 struct sched_entity *se = tg->se[cpu];
369
370 #define P(F) \
371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
372 #define P_SCHEDSTAT(F) \
373 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
374 #define PN(F) \
375 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
376 #define PN_SCHEDSTAT(F) \
377 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
378
379 if (!se)
380 return;
381
382 PN(se->exec_start);
383 PN(se->vruntime);
384 PN(se->sum_exec_runtime);
385 if (schedstat_enabled()) {
386 PN_SCHEDSTAT(se->statistics.wait_start);
387 PN_SCHEDSTAT(se->statistics.sleep_start);
388 PN_SCHEDSTAT(se->statistics.block_start);
389 PN_SCHEDSTAT(se->statistics.sleep_max);
390 PN_SCHEDSTAT(se->statistics.block_max);
391 PN_SCHEDSTAT(se->statistics.exec_max);
392 PN_SCHEDSTAT(se->statistics.slice_max);
393 PN_SCHEDSTAT(se->statistics.wait_max);
394 PN_SCHEDSTAT(se->statistics.wait_sum);
395 P_SCHEDSTAT(se->statistics.wait_count);
396 }
397 P(se->load.weight);
398 #ifdef CONFIG_SMP
399 P(se->avg.load_avg);
400 P(se->avg.util_avg);
401 #endif
402
403 #undef PN_SCHEDSTAT
404 #undef PN
405 #undef P_SCHEDSTAT
406 #undef P
407 }
408 #endif
409
410 #ifdef CONFIG_CGROUP_SCHED
411 static char group_path[PATH_MAX];
412
413 static char *task_group_path(struct task_group *tg)
414 {
415 if (autogroup_path(tg, group_path, PATH_MAX))
416 return group_path;
417
418 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
419 return group_path;
420 }
421 #endif
422
423 static void
424 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
425 {
426 if (rq->curr == p)
427 SEQ_printf(m, "R");
428 else
429 SEQ_printf(m, " ");
430
431 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
432 p->comm, task_pid_nr(p),
433 SPLIT_NS(p->se.vruntime),
434 (long long)(p->nvcsw + p->nivcsw),
435 p->prio);
436
437 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
438 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
439 SPLIT_NS(p->se.sum_exec_runtime),
440 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
441
442 #ifdef CONFIG_NUMA_BALANCING
443 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
444 #endif
445 #ifdef CONFIG_CGROUP_SCHED
446 SEQ_printf(m, " %s", task_group_path(task_group(p)));
447 #endif
448
449 SEQ_printf(m, "\n");
450 }
451
452 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
453 {
454 struct task_struct *g, *p;
455
456 SEQ_printf(m,
457 "\nrunnable tasks:\n"
458 " task PID tree-key switches prio"
459 " wait-time sum-exec sum-sleep\n"
460 "------------------------------------------------------"
461 "----------------------------------------------------\n");
462
463 rcu_read_lock();
464 for_each_process_thread(g, p) {
465 if (task_cpu(p) != rq_cpu)
466 continue;
467
468 print_task(m, rq, p);
469 }
470 rcu_read_unlock();
471 }
472
473 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
474 {
475 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
476 spread, rq0_min_vruntime, spread0;
477 struct rq *rq = cpu_rq(cpu);
478 struct sched_entity *last;
479 unsigned long flags;
480
481 #ifdef CONFIG_FAIR_GROUP_SCHED
482 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
483 #else
484 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
485 #endif
486 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
487 SPLIT_NS(cfs_rq->exec_clock));
488
489 raw_spin_lock_irqsave(&rq->lock, flags);
490 if (cfs_rq->rb_leftmost)
491 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
492 last = __pick_last_entity(cfs_rq);
493 if (last)
494 max_vruntime = last->vruntime;
495 min_vruntime = cfs_rq->min_vruntime;
496 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
497 raw_spin_unlock_irqrestore(&rq->lock, flags);
498 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
499 SPLIT_NS(MIN_vruntime));
500 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
501 SPLIT_NS(min_vruntime));
502 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
503 SPLIT_NS(max_vruntime));
504 spread = max_vruntime - MIN_vruntime;
505 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
506 SPLIT_NS(spread));
507 spread0 = min_vruntime - rq0_min_vruntime;
508 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
509 SPLIT_NS(spread0));
510 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
511 cfs_rq->nr_spread_over);
512 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
513 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
514 #ifdef CONFIG_SMP
515 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
516 cfs_rq->avg.load_avg);
517 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
518 cfs_rq->runnable_load_avg);
519 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
520 cfs_rq->avg.util_avg);
521 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
522 atomic_long_read(&cfs_rq->removed_load_avg));
523 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
524 atomic_long_read(&cfs_rq->removed_util_avg));
525 #ifdef CONFIG_FAIR_GROUP_SCHED
526 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
527 cfs_rq->tg_load_avg_contrib);
528 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
529 atomic_long_read(&cfs_rq->tg->load_avg));
530 #endif
531 #endif
532 #ifdef CONFIG_CFS_BANDWIDTH
533 SEQ_printf(m, " .%-30s: %d\n", "throttled",
534 cfs_rq->throttled);
535 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
536 cfs_rq->throttle_count);
537 #endif
538
539 #ifdef CONFIG_FAIR_GROUP_SCHED
540 print_cfs_group_stats(m, cpu, cfs_rq->tg);
541 #endif
542 }
543
544 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
545 {
546 #ifdef CONFIG_RT_GROUP_SCHED
547 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
548 #else
549 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
550 #endif
551
552 #define P(x) \
553 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
554 #define PN(x) \
555 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
556
557 P(rt_nr_running);
558 P(rt_throttled);
559 PN(rt_time);
560 PN(rt_runtime);
561
562 #undef PN
563 #undef P
564 }
565
566 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
567 {
568 struct dl_bw *dl_bw;
569
570 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
571 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
572 #ifdef CONFIG_SMP
573 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
574 #else
575 dl_bw = &dl_rq->dl_bw;
576 #endif
577 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
578 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
579 }
580
581 extern __read_mostly int sched_clock_running;
582
583 static void print_cpu(struct seq_file *m, int cpu)
584 {
585 struct rq *rq = cpu_rq(cpu);
586 unsigned long flags;
587
588 #ifdef CONFIG_X86
589 {
590 unsigned int freq = cpu_khz ? : 1;
591
592 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
593 cpu, freq / 1000, (freq % 1000));
594 }
595 #else
596 SEQ_printf(m, "cpu#%d\n", cpu);
597 #endif
598
599 #define P(x) \
600 do { \
601 if (sizeof(rq->x) == 4) \
602 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
603 else \
604 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
605 } while (0)
606
607 #define PN(x) \
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
609
610 P(nr_running);
611 SEQ_printf(m, " .%-30s: %lu\n", "load",
612 rq->load.weight);
613 P(nr_switches);
614 P(nr_load_updates);
615 P(nr_uninterruptible);
616 PN(next_balance);
617 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
618 PN(clock);
619 PN(clock_task);
620 P(cpu_load[0]);
621 P(cpu_load[1]);
622 P(cpu_load[2]);
623 P(cpu_load[3]);
624 P(cpu_load[4]);
625 #undef P
626 #undef PN
627
628 #ifdef CONFIG_SMP
629 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
630 P64(avg_idle);
631 P64(max_idle_balance_cost);
632 #undef P64
633 #endif
634
635 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
636 if (schedstat_enabled()) {
637 P(yld_count);
638 P(sched_count);
639 P(sched_goidle);
640 P(ttwu_count);
641 P(ttwu_local);
642 }
643 #undef P
644
645 spin_lock_irqsave(&sched_debug_lock, flags);
646 print_cfs_stats(m, cpu);
647 print_rt_stats(m, cpu);
648 print_dl_stats(m, cpu);
649
650 print_rq(m, rq, cpu);
651 spin_unlock_irqrestore(&sched_debug_lock, flags);
652 SEQ_printf(m, "\n");
653 }
654
655 static const char *sched_tunable_scaling_names[] = {
656 "none",
657 "logaritmic",
658 "linear"
659 };
660
661 static void sched_debug_header(struct seq_file *m)
662 {
663 u64 ktime, sched_clk, cpu_clk;
664 unsigned long flags;
665
666 local_irq_save(flags);
667 ktime = ktime_to_ns(ktime_get());
668 sched_clk = sched_clock();
669 cpu_clk = local_clock();
670 local_irq_restore(flags);
671
672 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
673 init_utsname()->release,
674 (int)strcspn(init_utsname()->version, " "),
675 init_utsname()->version);
676
677 #define P(x) \
678 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
679 #define PN(x) \
680 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
681 PN(ktime);
682 PN(sched_clk);
683 PN(cpu_clk);
684 P(jiffies);
685 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
686 P(sched_clock_stable());
687 #endif
688 #undef PN
689 #undef P
690
691 SEQ_printf(m, "\n");
692 SEQ_printf(m, "sysctl_sched\n");
693
694 #define P(x) \
695 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
696 #define PN(x) \
697 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
698 PN(sysctl_sched_latency);
699 PN(sysctl_sched_min_granularity);
700 PN(sysctl_sched_wakeup_granularity);
701 P(sysctl_sched_child_runs_first);
702 P(sysctl_sched_features);
703 #undef PN
704 #undef P
705
706 SEQ_printf(m, " .%-40s: %d (%s)\n",
707 "sysctl_sched_tunable_scaling",
708 sysctl_sched_tunable_scaling,
709 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
710 SEQ_printf(m, "\n");
711 }
712
713 static int sched_debug_show(struct seq_file *m, void *v)
714 {
715 int cpu = (unsigned long)(v - 2);
716
717 if (cpu != -1)
718 print_cpu(m, cpu);
719 else
720 sched_debug_header(m);
721
722 return 0;
723 }
724
725 void sysrq_sched_debug_show(void)
726 {
727 int cpu;
728
729 sched_debug_header(NULL);
730 for_each_online_cpu(cpu)
731 print_cpu(NULL, cpu);
732
733 }
734
735 /*
736 * This itererator needs some explanation.
737 * It returns 1 for the header position.
738 * This means 2 is cpu 0.
739 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
740 * to use cpumask_* to iterate over the cpus.
741 */
742 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
743 {
744 unsigned long n = *offset;
745
746 if (n == 0)
747 return (void *) 1;
748
749 n--;
750
751 if (n > 0)
752 n = cpumask_next(n - 1, cpu_online_mask);
753 else
754 n = cpumask_first(cpu_online_mask);
755
756 *offset = n + 1;
757
758 if (n < nr_cpu_ids)
759 return (void *)(unsigned long)(n + 2);
760 return NULL;
761 }
762
763 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
764 {
765 (*offset)++;
766 return sched_debug_start(file, offset);
767 }
768
769 static void sched_debug_stop(struct seq_file *file, void *data)
770 {
771 }
772
773 static const struct seq_operations sched_debug_sops = {
774 .start = sched_debug_start,
775 .next = sched_debug_next,
776 .stop = sched_debug_stop,
777 .show = sched_debug_show,
778 };
779
780 static int sched_debug_release(struct inode *inode, struct file *file)
781 {
782 seq_release(inode, file);
783
784 return 0;
785 }
786
787 static int sched_debug_open(struct inode *inode, struct file *filp)
788 {
789 int ret = 0;
790
791 ret = seq_open(filp, &sched_debug_sops);
792
793 return ret;
794 }
795
796 static const struct file_operations sched_debug_fops = {
797 .open = sched_debug_open,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = sched_debug_release,
801 };
802
803 static int __init init_sched_debug_procfs(void)
804 {
805 struct proc_dir_entry *pe;
806
807 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
808 if (!pe)
809 return -ENOMEM;
810 return 0;
811 }
812
813 __initcall(init_sched_debug_procfs);
814
815 #define __P(F) \
816 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
817 #define P(F) \
818 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
819 #define __PN(F) \
820 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
821 #define PN(F) \
822 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
823
824
825 #ifdef CONFIG_NUMA_BALANCING
826 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
827 unsigned long tpf, unsigned long gsf, unsigned long gpf)
828 {
829 SEQ_printf(m, "numa_faults node=%d ", node);
830 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
831 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
832 }
833 #endif
834
835
836 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
837 {
838 #ifdef CONFIG_NUMA_BALANCING
839 struct mempolicy *pol;
840
841 if (p->mm)
842 P(mm->numa_scan_seq);
843
844 task_lock(p);
845 pol = p->mempolicy;
846 if (pol && !(pol->flags & MPOL_F_MORON))
847 pol = NULL;
848 mpol_get(pol);
849 task_unlock(p);
850
851 P(numa_pages_migrated);
852 P(numa_preferred_nid);
853 P(total_numa_faults);
854 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
855 task_node(p), task_numa_group_id(p));
856 show_numa_stats(p, m);
857 mpol_put(pol);
858 #endif
859 }
860
861 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
862 {
863 unsigned long nr_switches;
864
865 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
866 get_nr_threads(p));
867 SEQ_printf(m,
868 "---------------------------------------------------------"
869 "----------\n");
870 #define __P(F) \
871 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
872 #define P(F) \
873 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
874 #define P_SCHEDSTAT(F) \
875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
876 #define __PN(F) \
877 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
878 #define PN(F) \
879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
880 #define PN_SCHEDSTAT(F) \
881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
882
883 PN(se.exec_start);
884 PN(se.vruntime);
885 PN(se.sum_exec_runtime);
886
887 nr_switches = p->nvcsw + p->nivcsw;
888
889 P(se.nr_migrations);
890
891 if (schedstat_enabled()) {
892 u64 avg_atom, avg_per_cpu;
893
894 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
895 PN_SCHEDSTAT(se.statistics.wait_start);
896 PN_SCHEDSTAT(se.statistics.sleep_start);
897 PN_SCHEDSTAT(se.statistics.block_start);
898 PN_SCHEDSTAT(se.statistics.sleep_max);
899 PN_SCHEDSTAT(se.statistics.block_max);
900 PN_SCHEDSTAT(se.statistics.exec_max);
901 PN_SCHEDSTAT(se.statistics.slice_max);
902 PN_SCHEDSTAT(se.statistics.wait_max);
903 PN_SCHEDSTAT(se.statistics.wait_sum);
904 P_SCHEDSTAT(se.statistics.wait_count);
905 PN_SCHEDSTAT(se.statistics.iowait_sum);
906 P_SCHEDSTAT(se.statistics.iowait_count);
907 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
908 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
909 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
910 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
911 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
912 P_SCHEDSTAT(se.statistics.nr_wakeups);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
914 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
915 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
916 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
917 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
918 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
919 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
920 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
921
922 avg_atom = p->se.sum_exec_runtime;
923 if (nr_switches)
924 avg_atom = div64_ul(avg_atom, nr_switches);
925 else
926 avg_atom = -1LL;
927
928 avg_per_cpu = p->se.sum_exec_runtime;
929 if (p->se.nr_migrations) {
930 avg_per_cpu = div64_u64(avg_per_cpu,
931 p->se.nr_migrations);
932 } else {
933 avg_per_cpu = -1LL;
934 }
935
936 __PN(avg_atom);
937 __PN(avg_per_cpu);
938 }
939
940 __P(nr_switches);
941 SEQ_printf(m, "%-45s:%21Ld\n",
942 "nr_voluntary_switches", (long long)p->nvcsw);
943 SEQ_printf(m, "%-45s:%21Ld\n",
944 "nr_involuntary_switches", (long long)p->nivcsw);
945
946 P(se.load.weight);
947 #ifdef CONFIG_SMP
948 P(se.avg.load_sum);
949 P(se.avg.util_sum);
950 P(se.avg.load_avg);
951 P(se.avg.util_avg);
952 P(se.avg.last_update_time);
953 #endif
954 P(policy);
955 P(prio);
956 #undef PN_SCHEDSTAT
957 #undef PN
958 #undef __PN
959 #undef P_SCHEDSTAT
960 #undef P
961 #undef __P
962
963 {
964 unsigned int this_cpu = raw_smp_processor_id();
965 u64 t0, t1;
966
967 t0 = cpu_clock(this_cpu);
968 t1 = cpu_clock(this_cpu);
969 SEQ_printf(m, "%-45s:%21Ld\n",
970 "clock-delta", (long long)(t1-t0));
971 }
972
973 sched_show_numa(p, m);
974 }
975
976 void proc_sched_set_task(struct task_struct *p)
977 {
978 #ifdef CONFIG_SCHEDSTATS
979 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
980 #endif
981 }
This page took 0.052581 seconds and 5 git commands to generate.