Merge remote-tracking branch 'tip/auto-latest'
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17
18 struct rq;
19 struct cpuidle_state;
20
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED 1
23 #define TASK_ON_RQ_MIGRATING 2
24
25 extern __read_mostly int scheduler_running;
26
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
32
33 #ifdef CONFIG_SMP
34 extern void cpu_load_update_active(struct rq *this_rq);
35 #else
36 static inline void cpu_load_update_active(struct rq *this_rq) { }
37 #endif
38
39 /*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
44 /*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
57 */
58 #ifdef CONFIG_64BIT
59 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
62 #else
63 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
66 #endif
67
68 /*
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
76 */
77 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
78
79 /*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84 #define DL_SCALE (10)
85
86 /*
87 * These are the 'tuning knobs' of the scheduler:
88 */
89
90 /*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93 #define RUNTIME_INF ((u64)~0ULL)
94
95 static inline int idle_policy(int policy)
96 {
97 return policy == SCHED_IDLE;
98 }
99 static inline int fair_policy(int policy)
100 {
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102 }
103
104 static inline int rt_policy(int policy)
105 {
106 return policy == SCHED_FIFO || policy == SCHED_RR;
107 }
108
109 static inline int dl_policy(int policy)
110 {
111 return policy == SCHED_DEADLINE;
112 }
113 static inline bool valid_policy(int policy)
114 {
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117 }
118
119 static inline int task_has_rt_policy(struct task_struct *p)
120 {
121 return rt_policy(p->policy);
122 }
123
124 static inline int task_has_dl_policy(struct task_struct *p)
125 {
126 return dl_policy(p->policy);
127 }
128
129 /*
130 * Tells if entity @a should preempt entity @b.
131 */
132 static inline bool
133 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
134 {
135 return dl_time_before(a->deadline, b->deadline);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 unsigned int rt_period_active;
153 };
154
155 void __dl_clear_params(struct task_struct *p);
156
157 /*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181 struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185 };
186
187 static inline int dl_bandwidth_enabled(void)
188 {
189 return sysctl_sched_rt_runtime >= 0;
190 }
191
192 extern struct dl_bw *dl_bw_of(int i);
193
194 struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197 };
198
199 static inline
200 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201 {
202 dl_b->total_bw -= tsk_bw;
203 }
204
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207 {
208 dl_b->total_bw += tsk_bw;
209 }
210
211 static inline
212 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213 {
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216 }
217
218 extern struct mutex sched_domains_mutex;
219
220 #ifdef CONFIG_CGROUP_SCHED
221
222 #include <linux/cgroup.h>
223
224 struct cfs_rq;
225 struct rt_rq;
226
227 extern struct list_head task_groups;
228
229 struct cfs_bandwidth {
230 #ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
234 s64 hierarchical_quota;
235 u64 runtime_expires;
236
237 int idle, period_active;
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244 #endif
245 };
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 #ifdef CONFIG_SMP
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
265 #endif
266 #endif
267
268 #ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273 #endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284 #endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287 };
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292 /*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300 #define MIN_SHARES (1UL << 1)
301 #define MAX_SHARES (1UL << 18)
302 #endif
303
304 typedef int (*tg_visitor)(struct task_group *, void *);
305
306 extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309 /*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316 {
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318 }
319
320 extern int tg_nop(struct task_group *tg, void *data);
321
322 extern void free_fair_sched_group(struct task_group *tg);
323 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void online_fair_sched_group(struct task_group *tg);
325 extern void unregister_fair_sched_group(struct task_group *tg);
326 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 struct sched_entity *se, int cpu,
328 struct sched_entity *parent);
329 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
330
331 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
332 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
333 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334
335 extern void free_rt_sched_group(struct task_group *tg);
336 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 struct sched_rt_entity *rt_se, int cpu,
339 struct sched_rt_entity *parent);
340
341 extern struct task_group *sched_create_group(struct task_group *parent);
342 extern void sched_online_group(struct task_group *tg,
343 struct task_group *parent);
344 extern void sched_destroy_group(struct task_group *tg);
345 extern void sched_offline_group(struct task_group *tg);
346
347 extern void sched_move_task(struct task_struct *tsk);
348
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
351
352 #ifdef CONFIG_SMP
353 extern void set_task_rq_fair(struct sched_entity *se,
354 struct cfs_rq *prev, struct cfs_rq *next);
355 #else /* !CONFIG_SMP */
356 static inline void set_task_rq_fair(struct sched_entity *se,
357 struct cfs_rq *prev, struct cfs_rq *next) { }
358 #endif /* CONFIG_SMP */
359 #endif /* CONFIG_FAIR_GROUP_SCHED */
360
361 #else /* CONFIG_CGROUP_SCHED */
362
363 struct cfs_bandwidth { };
364
365 #endif /* CONFIG_CGROUP_SCHED */
366
367 /* CFS-related fields in a runqueue */
368 struct cfs_rq {
369 struct load_weight load;
370 unsigned int nr_running, h_nr_running;
371
372 u64 exec_clock;
373 u64 min_vruntime;
374 #ifndef CONFIG_64BIT
375 u64 min_vruntime_copy;
376 #endif
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next, *last, *skip;
386
387 #ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over;
389 #endif
390
391 #ifdef CONFIG_SMP
392 /*
393 * CFS load tracking
394 */
395 struct sched_avg avg;
396 u64 runnable_load_sum;
397 unsigned long runnable_load_avg;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 unsigned long tg_load_avg_contrib;
400 #endif
401 atomic_long_t removed_load_avg, removed_util_avg;
402 #ifndef CONFIG_64BIT
403 u64 load_last_update_time_copy;
404 #endif
405
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 /*
408 * h_load = weight * f(tg)
409 *
410 * Where f(tg) is the recursive weight fraction assigned to
411 * this group.
412 */
413 unsigned long h_load;
414 u64 last_h_load_update;
415 struct sched_entity *h_load_next;
416 #endif /* CONFIG_FAIR_GROUP_SCHED */
417 #endif /* CONFIG_SMP */
418
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
421
422 /*
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
426 *
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
429 */
430 int on_list;
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
434 #ifdef CONFIG_CFS_BANDWIDTH
435 int runtime_enabled;
436 u64 runtime_expires;
437 s64 runtime_remaining;
438
439 u64 throttled_clock, throttled_clock_task;
440 u64 throttled_clock_task_time;
441 int throttled, throttle_count;
442 struct list_head throttled_list;
443 #endif /* CONFIG_CFS_BANDWIDTH */
444 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 };
446
447 static inline int rt_bandwidth_enabled(void)
448 {
449 return sysctl_sched_rt_runtime >= 0;
450 }
451
452 /* RT IPI pull logic requires IRQ_WORK */
453 #ifdef CONFIG_IRQ_WORK
454 # define HAVE_RT_PUSH_IPI
455 #endif
456
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned int rt_nr_running;
461 unsigned int rr_nr_running;
462 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 struct {
464 int curr; /* highest queued rt task prio */
465 #ifdef CONFIG_SMP
466 int next; /* next highest */
467 #endif
468 } highest_prio;
469 #endif
470 #ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 unsigned long rt_nr_total;
473 int overloaded;
474 struct plist_head pushable_tasks;
475 #ifdef HAVE_RT_PUSH_IPI
476 int push_flags;
477 int push_cpu;
478 struct irq_work push_work;
479 raw_spinlock_t push_lock;
480 #endif
481 #endif /* CONFIG_SMP */
482 int rt_queued;
483
484 int rt_throttled;
485 u64 rt_time;
486 u64 rt_runtime;
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock;
489
490 #ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted;
492
493 struct rq *rq;
494 struct task_group *tg;
495 #endif
496 };
497
498 /* Deadline class' related fields in a runqueue */
499 struct dl_rq {
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root;
502 struct rb_node *rb_leftmost;
503
504 unsigned long dl_nr_running;
505
506 #ifdef CONFIG_SMP
507 /*
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
512 */
513 struct {
514 u64 curr;
515 u64 next;
516 } earliest_dl;
517
518 unsigned long dl_nr_migratory;
519 int overloaded;
520
521 /*
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
525 */
526 struct rb_root pushable_dl_tasks_root;
527 struct rb_node *pushable_dl_tasks_leftmost;
528 #else
529 struct dl_bw dl_bw;
530 #endif
531 };
532
533 #ifdef CONFIG_SMP
534
535 /*
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
542 */
543 struct root_domain {
544 atomic_t refcount;
545 atomic_t rto_count;
546 struct rcu_head rcu;
547 cpumask_var_t span;
548 cpumask_var_t online;
549
550 /* Indicate more than one runnable task for any CPU */
551 bool overload;
552
553 /*
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
556 */
557 cpumask_var_t dlo_mask;
558 atomic_t dlo_count;
559 struct dl_bw dl_bw;
560 struct cpudl cpudl;
561
562 /*
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
565 */
566 cpumask_var_t rto_mask;
567 struct cpupri cpupri;
568
569 unsigned long max_cpu_capacity;
570 };
571
572 extern struct root_domain def_root_domain;
573
574 #endif /* CONFIG_SMP */
575
576 /*
577 * This is the main, per-CPU runqueue data structure.
578 *
579 * Locking rule: those places that want to lock multiple runqueues
580 * (such as the load balancing or the thread migration code), lock
581 * acquire operations must be ordered by ascending &runqueue.
582 */
583 struct rq {
584 /* runqueue lock: */
585 raw_spinlock_t lock;
586
587 /*
588 * nr_running and cpu_load should be in the same cacheline because
589 * remote CPUs use both these fields when doing load calculation.
590 */
591 unsigned int nr_running;
592 #ifdef CONFIG_NUMA_BALANCING
593 unsigned int nr_numa_running;
594 unsigned int nr_preferred_running;
595 #endif
596 #define CPU_LOAD_IDX_MAX 5
597 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
598 #ifdef CONFIG_NO_HZ_COMMON
599 #ifdef CONFIG_SMP
600 unsigned long last_load_update_tick;
601 #endif /* CONFIG_SMP */
602 unsigned long nohz_flags;
603 #endif /* CONFIG_NO_HZ_COMMON */
604 #ifdef CONFIG_NO_HZ_FULL
605 unsigned long last_sched_tick;
606 #endif
607 /* capture load from *all* tasks on this cpu: */
608 struct load_weight load;
609 unsigned long nr_load_updates;
610 u64 nr_switches;
611
612 struct cfs_rq cfs;
613 struct rt_rq rt;
614 struct dl_rq dl;
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif /* CONFIG_FAIR_GROUP_SCHED */
620
621 /*
622 * This is part of a global counter where only the total sum
623 * over all CPUs matters. A task can increase this counter on
624 * one CPU and if it got migrated afterwards it may decrease
625 * it on another CPU. Always updated under the runqueue lock:
626 */
627 unsigned long nr_uninterruptible;
628
629 struct task_struct *curr, *idle, *stop;
630 unsigned long next_balance;
631 struct mm_struct *prev_mm;
632
633 unsigned int clock_skip_update;
634 u64 clock;
635 u64 clock_task;
636
637 atomic_t nr_iowait;
638
639 #ifdef CONFIG_SMP
640 struct root_domain *rd;
641 struct sched_domain *sd;
642
643 unsigned long cpu_capacity;
644 unsigned long cpu_capacity_orig;
645
646 struct callback_head *balance_callback;
647
648 unsigned char idle_balance;
649 /* For active balancing */
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
657 struct list_head cfs_tasks;
658
659 u64 rt_avg;
660 u64 age_stamp;
661 u64 idle_stamp;
662 u64 avg_idle;
663
664 /* This is used to determine avg_idle's max value */
665 u64 max_idle_balance_cost;
666 #endif
667
668 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
669 u64 prev_irq_time;
670 #endif
671 #ifdef CONFIG_PARAVIRT
672 u64 prev_steal_time;
673 #endif
674 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
675 u64 prev_steal_time_rq;
676 #endif
677
678 /* calc_load related fields */
679 unsigned long calc_load_update;
680 long calc_load_active;
681
682 #ifdef CONFIG_SCHED_HRTICK
683 #ifdef CONFIG_SMP
684 int hrtick_csd_pending;
685 struct call_single_data hrtick_csd;
686 #endif
687 struct hrtimer hrtick_timer;
688 #endif
689
690 #ifdef CONFIG_SCHEDSTATS
691 /* latency stats */
692 struct sched_info rq_sched_info;
693 unsigned long long rq_cpu_time;
694 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
695
696 /* sys_sched_yield() stats */
697 unsigned int yld_count;
698
699 /* schedule() stats */
700 unsigned int sched_count;
701 unsigned int sched_goidle;
702
703 /* try_to_wake_up() stats */
704 unsigned int ttwu_count;
705 unsigned int ttwu_local;
706 #endif
707
708 #ifdef CONFIG_SMP
709 struct llist_head wake_list;
710 #endif
711
712 #ifdef CONFIG_CPU_IDLE
713 /* Must be inspected within a rcu lock section */
714 struct cpuidle_state *idle_state;
715 #endif
716 };
717
718 static inline int cpu_of(struct rq *rq)
719 {
720 #ifdef CONFIG_SMP
721 return rq->cpu;
722 #else
723 return 0;
724 #endif
725 }
726
727 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
728
729 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
730 #define this_rq() this_cpu_ptr(&runqueues)
731 #define task_rq(p) cpu_rq(task_cpu(p))
732 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
733 #define raw_rq() raw_cpu_ptr(&runqueues)
734
735 static inline u64 __rq_clock_broken(struct rq *rq)
736 {
737 return READ_ONCE(rq->clock);
738 }
739
740 static inline u64 rq_clock(struct rq *rq)
741 {
742 lockdep_assert_held(&rq->lock);
743 return rq->clock;
744 }
745
746 static inline u64 rq_clock_task(struct rq *rq)
747 {
748 lockdep_assert_held(&rq->lock);
749 return rq->clock_task;
750 }
751
752 #define RQCF_REQ_SKIP 0x01
753 #define RQCF_ACT_SKIP 0x02
754
755 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
756 {
757 lockdep_assert_held(&rq->lock);
758 if (skip)
759 rq->clock_skip_update |= RQCF_REQ_SKIP;
760 else
761 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
762 }
763
764 #ifdef CONFIG_NUMA
765 enum numa_topology_type {
766 NUMA_DIRECT,
767 NUMA_GLUELESS_MESH,
768 NUMA_BACKPLANE,
769 };
770 extern enum numa_topology_type sched_numa_topology_type;
771 extern int sched_max_numa_distance;
772 extern bool find_numa_distance(int distance);
773 #endif
774
775 #ifdef CONFIG_NUMA_BALANCING
776 /* The regions in numa_faults array from task_struct */
777 enum numa_faults_stats {
778 NUMA_MEM = 0,
779 NUMA_CPU,
780 NUMA_MEMBUF,
781 NUMA_CPUBUF
782 };
783 extern void sched_setnuma(struct task_struct *p, int node);
784 extern int migrate_task_to(struct task_struct *p, int cpu);
785 extern int migrate_swap(struct task_struct *, struct task_struct *);
786 #endif /* CONFIG_NUMA_BALANCING */
787
788 #ifdef CONFIG_SMP
789
790 static inline void
791 queue_balance_callback(struct rq *rq,
792 struct callback_head *head,
793 void (*func)(struct rq *rq))
794 {
795 lockdep_assert_held(&rq->lock);
796
797 if (unlikely(head->next))
798 return;
799
800 head->func = (void (*)(struct callback_head *))func;
801 head->next = rq->balance_callback;
802 rq->balance_callback = head;
803 }
804
805 extern void sched_ttwu_pending(void);
806
807 #define rcu_dereference_check_sched_domain(p) \
808 rcu_dereference_check((p), \
809 lockdep_is_held(&sched_domains_mutex))
810
811 /*
812 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
813 * See detach_destroy_domains: synchronize_sched for details.
814 *
815 * The domain tree of any CPU may only be accessed from within
816 * preempt-disabled sections.
817 */
818 #define for_each_domain(cpu, __sd) \
819 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
820 __sd; __sd = __sd->parent)
821
822 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
823
824 /**
825 * highest_flag_domain - Return highest sched_domain containing flag.
826 * @cpu: The cpu whose highest level of sched domain is to
827 * be returned.
828 * @flag: The flag to check for the highest sched_domain
829 * for the given cpu.
830 *
831 * Returns the highest sched_domain of a cpu which contains the given flag.
832 */
833 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
834 {
835 struct sched_domain *sd, *hsd = NULL;
836
837 for_each_domain(cpu, sd) {
838 if (!(sd->flags & flag))
839 break;
840 hsd = sd;
841 }
842
843 return hsd;
844 }
845
846 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
847 {
848 struct sched_domain *sd;
849
850 for_each_domain(cpu, sd) {
851 if (sd->flags & flag)
852 break;
853 }
854
855 return sd;
856 }
857
858 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
859 DECLARE_PER_CPU(int, sd_llc_size);
860 DECLARE_PER_CPU(int, sd_llc_id);
861 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
862 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
863 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
864
865 struct sched_group_capacity {
866 atomic_t ref;
867 /*
868 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
869 * for a single CPU.
870 */
871 unsigned int capacity;
872 unsigned long next_update;
873 int imbalance; /* XXX unrelated to capacity but shared group state */
874 /*
875 * Number of busy cpus in this group.
876 */
877 atomic_t nr_busy_cpus;
878
879 unsigned long cpumask[0]; /* iteration mask */
880 };
881
882 struct sched_group {
883 struct sched_group *next; /* Must be a circular list */
884 atomic_t ref;
885
886 unsigned int group_weight;
887 struct sched_group_capacity *sgc;
888
889 /*
890 * The CPUs this group covers.
891 *
892 * NOTE: this field is variable length. (Allocated dynamically
893 * by attaching extra space to the end of the structure,
894 * depending on how many CPUs the kernel has booted up with)
895 */
896 unsigned long cpumask[0];
897 };
898
899 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
900 {
901 return to_cpumask(sg->cpumask);
902 }
903
904 /*
905 * cpumask masking which cpus in the group are allowed to iterate up the domain
906 * tree.
907 */
908 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
909 {
910 return to_cpumask(sg->sgc->cpumask);
911 }
912
913 /**
914 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
915 * @group: The group whose first cpu is to be returned.
916 */
917 static inline unsigned int group_first_cpu(struct sched_group *group)
918 {
919 return cpumask_first(sched_group_cpus(group));
920 }
921
922 extern int group_balance_cpu(struct sched_group *sg);
923
924 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
925 void register_sched_domain_sysctl(void);
926 void unregister_sched_domain_sysctl(void);
927 #else
928 static inline void register_sched_domain_sysctl(void)
929 {
930 }
931 static inline void unregister_sched_domain_sysctl(void)
932 {
933 }
934 #endif
935
936 #else
937
938 static inline void sched_ttwu_pending(void) { }
939
940 #endif /* CONFIG_SMP */
941
942 #include "stats.h"
943 #include "auto_group.h"
944
945 #ifdef CONFIG_CGROUP_SCHED
946
947 /*
948 * Return the group to which this tasks belongs.
949 *
950 * We cannot use task_css() and friends because the cgroup subsystem
951 * changes that value before the cgroup_subsys::attach() method is called,
952 * therefore we cannot pin it and might observe the wrong value.
953 *
954 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
955 * core changes this before calling sched_move_task().
956 *
957 * Instead we use a 'copy' which is updated from sched_move_task() while
958 * holding both task_struct::pi_lock and rq::lock.
959 */
960 static inline struct task_group *task_group(struct task_struct *p)
961 {
962 return p->sched_task_group;
963 }
964
965 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
966 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
967 {
968 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
969 struct task_group *tg = task_group(p);
970 #endif
971
972 #ifdef CONFIG_FAIR_GROUP_SCHED
973 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
974 p->se.cfs_rq = tg->cfs_rq[cpu];
975 p->se.parent = tg->se[cpu];
976 #endif
977
978 #ifdef CONFIG_RT_GROUP_SCHED
979 p->rt.rt_rq = tg->rt_rq[cpu];
980 p->rt.parent = tg->rt_se[cpu];
981 #endif
982 }
983
984 #else /* CONFIG_CGROUP_SCHED */
985
986 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
987 static inline struct task_group *task_group(struct task_struct *p)
988 {
989 return NULL;
990 }
991
992 #endif /* CONFIG_CGROUP_SCHED */
993
994 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
995 {
996 set_task_rq(p, cpu);
997 #ifdef CONFIG_SMP
998 /*
999 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1000 * successfuly executed on another CPU. We must ensure that updates of
1001 * per-task data have been completed by this moment.
1002 */
1003 smp_wmb();
1004 task_thread_info(p)->cpu = cpu;
1005 p->wake_cpu = cpu;
1006 #endif
1007 }
1008
1009 /*
1010 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1011 */
1012 #ifdef CONFIG_SCHED_DEBUG
1013 # include <linux/static_key.h>
1014 # define const_debug __read_mostly
1015 #else
1016 # define const_debug const
1017 #endif
1018
1019 extern const_debug unsigned int sysctl_sched_features;
1020
1021 #define SCHED_FEAT(name, enabled) \
1022 __SCHED_FEAT_##name ,
1023
1024 enum {
1025 #include "features.h"
1026 __SCHED_FEAT_NR,
1027 };
1028
1029 #undef SCHED_FEAT
1030
1031 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1032 #define SCHED_FEAT(name, enabled) \
1033 static __always_inline bool static_branch_##name(struct static_key *key) \
1034 { \
1035 return static_key_##enabled(key); \
1036 }
1037
1038 #include "features.h"
1039
1040 #undef SCHED_FEAT
1041
1042 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1043 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1044 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1045 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1046 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1047
1048 extern struct static_key_false sched_numa_balancing;
1049 extern struct static_key_false sched_schedstats;
1050
1051 static inline u64 global_rt_period(void)
1052 {
1053 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1054 }
1055
1056 static inline u64 global_rt_runtime(void)
1057 {
1058 if (sysctl_sched_rt_runtime < 0)
1059 return RUNTIME_INF;
1060
1061 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1062 }
1063
1064 static inline int task_current(struct rq *rq, struct task_struct *p)
1065 {
1066 return rq->curr == p;
1067 }
1068
1069 static inline int task_running(struct rq *rq, struct task_struct *p)
1070 {
1071 #ifdef CONFIG_SMP
1072 return p->on_cpu;
1073 #else
1074 return task_current(rq, p);
1075 #endif
1076 }
1077
1078 static inline int task_on_rq_queued(struct task_struct *p)
1079 {
1080 return p->on_rq == TASK_ON_RQ_QUEUED;
1081 }
1082
1083 static inline int task_on_rq_migrating(struct task_struct *p)
1084 {
1085 return p->on_rq == TASK_ON_RQ_MIGRATING;
1086 }
1087
1088 #ifndef prepare_arch_switch
1089 # define prepare_arch_switch(next) do { } while (0)
1090 #endif
1091 #ifndef finish_arch_post_lock_switch
1092 # define finish_arch_post_lock_switch() do { } while (0)
1093 #endif
1094
1095 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1096 {
1097 #ifdef CONFIG_SMP
1098 /*
1099 * We can optimise this out completely for !SMP, because the
1100 * SMP rebalancing from interrupt is the only thing that cares
1101 * here.
1102 */
1103 next->on_cpu = 1;
1104 #endif
1105 }
1106
1107 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1108 {
1109 #ifdef CONFIG_SMP
1110 /*
1111 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1112 * We must ensure this doesn't happen until the switch is completely
1113 * finished.
1114 *
1115 * In particular, the load of prev->state in finish_task_switch() must
1116 * happen before this.
1117 *
1118 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1119 */
1120 smp_store_release(&prev->on_cpu, 0);
1121 #endif
1122 #ifdef CONFIG_DEBUG_SPINLOCK
1123 /* this is a valid case when another task releases the spinlock */
1124 rq->lock.owner = current;
1125 #endif
1126 /*
1127 * If we are tracking spinlock dependencies then we have to
1128 * fix up the runqueue lock - which gets 'carried over' from
1129 * prev into current:
1130 */
1131 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1132
1133 raw_spin_unlock_irq(&rq->lock);
1134 }
1135
1136 /*
1137 * wake flags
1138 */
1139 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1140 #define WF_FORK 0x02 /* child wakeup after fork */
1141 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1142
1143 /*
1144 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1145 * of tasks with abnormal "nice" values across CPUs the contribution that
1146 * each task makes to its run queue's load is weighted according to its
1147 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1148 * scaled version of the new time slice allocation that they receive on time
1149 * slice expiry etc.
1150 */
1151
1152 #define WEIGHT_IDLEPRIO 3
1153 #define WMULT_IDLEPRIO 1431655765
1154
1155 extern const int sched_prio_to_weight[40];
1156 extern const u32 sched_prio_to_wmult[40];
1157
1158 /*
1159 * {de,en}queue flags:
1160 *
1161 * DEQUEUE_SLEEP - task is no longer runnable
1162 * ENQUEUE_WAKEUP - task just became runnable
1163 *
1164 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1165 * are in a known state which allows modification. Such pairs
1166 * should preserve as much state as possible.
1167 *
1168 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1169 * in the runqueue.
1170 *
1171 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1172 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1173 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1174 *
1175 */
1176
1177 #define DEQUEUE_SLEEP 0x01
1178 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1179 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1180
1181 #define ENQUEUE_WAKEUP 0x01
1182 #define ENQUEUE_RESTORE 0x02
1183 #define ENQUEUE_MOVE 0x04
1184
1185 #define ENQUEUE_HEAD 0x08
1186 #define ENQUEUE_REPLENISH 0x10
1187 #ifdef CONFIG_SMP
1188 #define ENQUEUE_MIGRATED 0x20
1189 #else
1190 #define ENQUEUE_MIGRATED 0x00
1191 #endif
1192
1193 #define RETRY_TASK ((void *)-1UL)
1194
1195 struct sched_class {
1196 const struct sched_class *next;
1197
1198 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1199 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1200 void (*yield_task) (struct rq *rq);
1201 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1202
1203 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1204
1205 /*
1206 * It is the responsibility of the pick_next_task() method that will
1207 * return the next task to call put_prev_task() on the @prev task or
1208 * something equivalent.
1209 *
1210 * May return RETRY_TASK when it finds a higher prio class has runnable
1211 * tasks.
1212 */
1213 struct task_struct * (*pick_next_task) (struct rq *rq,
1214 struct task_struct *prev,
1215 struct pin_cookie cookie);
1216 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1217
1218 #ifdef CONFIG_SMP
1219 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1220 void (*migrate_task_rq)(struct task_struct *p);
1221
1222 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1223
1224 void (*set_cpus_allowed)(struct task_struct *p,
1225 const struct cpumask *newmask);
1226
1227 void (*rq_online)(struct rq *rq);
1228 void (*rq_offline)(struct rq *rq);
1229 #endif
1230
1231 void (*set_curr_task) (struct rq *rq);
1232 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1233 void (*task_fork) (struct task_struct *p);
1234 void (*task_dead) (struct task_struct *p);
1235
1236 /*
1237 * The switched_from() call is allowed to drop rq->lock, therefore we
1238 * cannot assume the switched_from/switched_to pair is serliazed by
1239 * rq->lock. They are however serialized by p->pi_lock.
1240 */
1241 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1242 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1243 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1244 int oldprio);
1245
1246 unsigned int (*get_rr_interval) (struct rq *rq,
1247 struct task_struct *task);
1248
1249 void (*update_curr) (struct rq *rq);
1250
1251 #define TASK_SET_GROUP 0
1252 #define TASK_MOVE_GROUP 1
1253
1254 #ifdef CONFIG_FAIR_GROUP_SCHED
1255 void (*task_change_group) (struct task_struct *p, int type);
1256 #endif
1257 };
1258
1259 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1260 {
1261 prev->sched_class->put_prev_task(rq, prev);
1262 }
1263
1264 #define sched_class_highest (&stop_sched_class)
1265 #define for_each_class(class) \
1266 for (class = sched_class_highest; class; class = class->next)
1267
1268 extern const struct sched_class stop_sched_class;
1269 extern const struct sched_class dl_sched_class;
1270 extern const struct sched_class rt_sched_class;
1271 extern const struct sched_class fair_sched_class;
1272 extern const struct sched_class idle_sched_class;
1273
1274
1275 #ifdef CONFIG_SMP
1276
1277 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1278
1279 extern void trigger_load_balance(struct rq *rq);
1280
1281 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1282
1283 #endif
1284
1285 #ifdef CONFIG_CPU_IDLE
1286 static inline void idle_set_state(struct rq *rq,
1287 struct cpuidle_state *idle_state)
1288 {
1289 rq->idle_state = idle_state;
1290 }
1291
1292 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1293 {
1294 WARN_ON(!rcu_read_lock_held());
1295 return rq->idle_state;
1296 }
1297 #else
1298 static inline void idle_set_state(struct rq *rq,
1299 struct cpuidle_state *idle_state)
1300 {
1301 }
1302
1303 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1304 {
1305 return NULL;
1306 }
1307 #endif
1308
1309 extern void sysrq_sched_debug_show(void);
1310 extern void sched_init_granularity(void);
1311 extern void update_max_interval(void);
1312
1313 extern void init_sched_dl_class(void);
1314 extern void init_sched_rt_class(void);
1315 extern void init_sched_fair_class(void);
1316
1317 extern void resched_curr(struct rq *rq);
1318 extern void resched_cpu(int cpu);
1319
1320 extern struct rt_bandwidth def_rt_bandwidth;
1321 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1322
1323 extern struct dl_bandwidth def_dl_bandwidth;
1324 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1325 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1326
1327 unsigned long to_ratio(u64 period, u64 runtime);
1328
1329 extern void init_entity_runnable_average(struct sched_entity *se);
1330 extern void post_init_entity_util_avg(struct sched_entity *se);
1331
1332 #ifdef CONFIG_NO_HZ_FULL
1333 extern bool sched_can_stop_tick(struct rq *rq);
1334
1335 /*
1336 * Tick may be needed by tasks in the runqueue depending on their policy and
1337 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1338 * nohz mode if necessary.
1339 */
1340 static inline void sched_update_tick_dependency(struct rq *rq)
1341 {
1342 int cpu;
1343
1344 if (!tick_nohz_full_enabled())
1345 return;
1346
1347 cpu = cpu_of(rq);
1348
1349 if (!tick_nohz_full_cpu(cpu))
1350 return;
1351
1352 if (sched_can_stop_tick(rq))
1353 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1354 else
1355 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1356 }
1357 #else
1358 static inline void sched_update_tick_dependency(struct rq *rq) { }
1359 #endif
1360
1361 static inline void add_nr_running(struct rq *rq, unsigned count)
1362 {
1363 unsigned prev_nr = rq->nr_running;
1364
1365 rq->nr_running = prev_nr + count;
1366
1367 if (prev_nr < 2 && rq->nr_running >= 2) {
1368 #ifdef CONFIG_SMP
1369 if (!rq->rd->overload)
1370 rq->rd->overload = true;
1371 #endif
1372 }
1373
1374 sched_update_tick_dependency(rq);
1375 }
1376
1377 static inline void sub_nr_running(struct rq *rq, unsigned count)
1378 {
1379 rq->nr_running -= count;
1380 /* Check if we still need preemption */
1381 sched_update_tick_dependency(rq);
1382 }
1383
1384 static inline void rq_last_tick_reset(struct rq *rq)
1385 {
1386 #ifdef CONFIG_NO_HZ_FULL
1387 rq->last_sched_tick = jiffies;
1388 #endif
1389 }
1390
1391 extern void update_rq_clock(struct rq *rq);
1392
1393 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1394 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1395
1396 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1397
1398 extern const_debug unsigned int sysctl_sched_time_avg;
1399 extern const_debug unsigned int sysctl_sched_nr_migrate;
1400 extern const_debug unsigned int sysctl_sched_migration_cost;
1401
1402 static inline u64 sched_avg_period(void)
1403 {
1404 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1405 }
1406
1407 #ifdef CONFIG_SCHED_HRTICK
1408
1409 /*
1410 * Use hrtick when:
1411 * - enabled by features
1412 * - hrtimer is actually high res
1413 */
1414 static inline int hrtick_enabled(struct rq *rq)
1415 {
1416 if (!sched_feat(HRTICK))
1417 return 0;
1418 if (!cpu_active(cpu_of(rq)))
1419 return 0;
1420 return hrtimer_is_hres_active(&rq->hrtick_timer);
1421 }
1422
1423 void hrtick_start(struct rq *rq, u64 delay);
1424
1425 #else
1426
1427 static inline int hrtick_enabled(struct rq *rq)
1428 {
1429 return 0;
1430 }
1431
1432 #endif /* CONFIG_SCHED_HRTICK */
1433
1434 #ifdef CONFIG_SMP
1435 extern void sched_avg_update(struct rq *rq);
1436
1437 #ifndef arch_scale_freq_capacity
1438 static __always_inline
1439 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1440 {
1441 return SCHED_CAPACITY_SCALE;
1442 }
1443 #endif
1444
1445 #ifndef arch_scale_cpu_capacity
1446 static __always_inline
1447 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1448 {
1449 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1450 return sd->smt_gain / sd->span_weight;
1451
1452 return SCHED_CAPACITY_SCALE;
1453 }
1454 #endif
1455
1456 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1457 {
1458 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1459 sched_avg_update(rq);
1460 }
1461 #else
1462 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1463 static inline void sched_avg_update(struct rq *rq) { }
1464 #endif
1465
1466 struct rq_flags {
1467 unsigned long flags;
1468 struct pin_cookie cookie;
1469 };
1470
1471 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1472 __acquires(rq->lock);
1473 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1474 __acquires(p->pi_lock)
1475 __acquires(rq->lock);
1476
1477 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1478 __releases(rq->lock)
1479 {
1480 lockdep_unpin_lock(&rq->lock, rf->cookie);
1481 raw_spin_unlock(&rq->lock);
1482 }
1483
1484 static inline void
1485 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1486 __releases(rq->lock)
1487 __releases(p->pi_lock)
1488 {
1489 lockdep_unpin_lock(&rq->lock, rf->cookie);
1490 raw_spin_unlock(&rq->lock);
1491 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1492 }
1493
1494 #ifdef CONFIG_SMP
1495 #ifdef CONFIG_PREEMPT
1496
1497 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1498
1499 /*
1500 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1501 * way at the expense of forcing extra atomic operations in all
1502 * invocations. This assures that the double_lock is acquired using the
1503 * same underlying policy as the spinlock_t on this architecture, which
1504 * reduces latency compared to the unfair variant below. However, it
1505 * also adds more overhead and therefore may reduce throughput.
1506 */
1507 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1508 __releases(this_rq->lock)
1509 __acquires(busiest->lock)
1510 __acquires(this_rq->lock)
1511 {
1512 raw_spin_unlock(&this_rq->lock);
1513 double_rq_lock(this_rq, busiest);
1514
1515 return 1;
1516 }
1517
1518 #else
1519 /*
1520 * Unfair double_lock_balance: Optimizes throughput at the expense of
1521 * latency by eliminating extra atomic operations when the locks are
1522 * already in proper order on entry. This favors lower cpu-ids and will
1523 * grant the double lock to lower cpus over higher ids under contention,
1524 * regardless of entry order into the function.
1525 */
1526 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1527 __releases(this_rq->lock)
1528 __acquires(busiest->lock)
1529 __acquires(this_rq->lock)
1530 {
1531 int ret = 0;
1532
1533 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1534 if (busiest < this_rq) {
1535 raw_spin_unlock(&this_rq->lock);
1536 raw_spin_lock(&busiest->lock);
1537 raw_spin_lock_nested(&this_rq->lock,
1538 SINGLE_DEPTH_NESTING);
1539 ret = 1;
1540 } else
1541 raw_spin_lock_nested(&busiest->lock,
1542 SINGLE_DEPTH_NESTING);
1543 }
1544 return ret;
1545 }
1546
1547 #endif /* CONFIG_PREEMPT */
1548
1549 /*
1550 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1551 */
1552 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1553 {
1554 if (unlikely(!irqs_disabled())) {
1555 /* printk() doesn't work good under rq->lock */
1556 raw_spin_unlock(&this_rq->lock);
1557 BUG_ON(1);
1558 }
1559
1560 return _double_lock_balance(this_rq, busiest);
1561 }
1562
1563 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1564 __releases(busiest->lock)
1565 {
1566 raw_spin_unlock(&busiest->lock);
1567 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1568 }
1569
1570 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1571 {
1572 if (l1 > l2)
1573 swap(l1, l2);
1574
1575 spin_lock(l1);
1576 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1577 }
1578
1579 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1580 {
1581 if (l1 > l2)
1582 swap(l1, l2);
1583
1584 spin_lock_irq(l1);
1585 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1586 }
1587
1588 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1589 {
1590 if (l1 > l2)
1591 swap(l1, l2);
1592
1593 raw_spin_lock(l1);
1594 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1595 }
1596
1597 /*
1598 * double_rq_lock - safely lock two runqueues
1599 *
1600 * Note this does not disable interrupts like task_rq_lock,
1601 * you need to do so manually before calling.
1602 */
1603 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1604 __acquires(rq1->lock)
1605 __acquires(rq2->lock)
1606 {
1607 BUG_ON(!irqs_disabled());
1608 if (rq1 == rq2) {
1609 raw_spin_lock(&rq1->lock);
1610 __acquire(rq2->lock); /* Fake it out ;) */
1611 } else {
1612 if (rq1 < rq2) {
1613 raw_spin_lock(&rq1->lock);
1614 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1615 } else {
1616 raw_spin_lock(&rq2->lock);
1617 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1618 }
1619 }
1620 }
1621
1622 /*
1623 * double_rq_unlock - safely unlock two runqueues
1624 *
1625 * Note this does not restore interrupts like task_rq_unlock,
1626 * you need to do so manually after calling.
1627 */
1628 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629 __releases(rq1->lock)
1630 __releases(rq2->lock)
1631 {
1632 raw_spin_unlock(&rq1->lock);
1633 if (rq1 != rq2)
1634 raw_spin_unlock(&rq2->lock);
1635 else
1636 __release(rq2->lock);
1637 }
1638
1639 #else /* CONFIG_SMP */
1640
1641 /*
1642 * double_rq_lock - safely lock two runqueues
1643 *
1644 * Note this does not disable interrupts like task_rq_lock,
1645 * you need to do so manually before calling.
1646 */
1647 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1648 __acquires(rq1->lock)
1649 __acquires(rq2->lock)
1650 {
1651 BUG_ON(!irqs_disabled());
1652 BUG_ON(rq1 != rq2);
1653 raw_spin_lock(&rq1->lock);
1654 __acquire(rq2->lock); /* Fake it out ;) */
1655 }
1656
1657 /*
1658 * double_rq_unlock - safely unlock two runqueues
1659 *
1660 * Note this does not restore interrupts like task_rq_unlock,
1661 * you need to do so manually after calling.
1662 */
1663 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1664 __releases(rq1->lock)
1665 __releases(rq2->lock)
1666 {
1667 BUG_ON(rq1 != rq2);
1668 raw_spin_unlock(&rq1->lock);
1669 __release(rq2->lock);
1670 }
1671
1672 #endif
1673
1674 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1675 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1676
1677 #ifdef CONFIG_SCHED_DEBUG
1678 extern void print_cfs_stats(struct seq_file *m, int cpu);
1679 extern void print_rt_stats(struct seq_file *m, int cpu);
1680 extern void print_dl_stats(struct seq_file *m, int cpu);
1681 extern void
1682 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1683
1684 #ifdef CONFIG_NUMA_BALANCING
1685 extern void
1686 show_numa_stats(struct task_struct *p, struct seq_file *m);
1687 extern void
1688 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1689 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1690 #endif /* CONFIG_NUMA_BALANCING */
1691 #endif /* CONFIG_SCHED_DEBUG */
1692
1693 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1694 extern void init_rt_rq(struct rt_rq *rt_rq);
1695 extern void init_dl_rq(struct dl_rq *dl_rq);
1696
1697 extern void cfs_bandwidth_usage_inc(void);
1698 extern void cfs_bandwidth_usage_dec(void);
1699
1700 #ifdef CONFIG_NO_HZ_COMMON
1701 enum rq_nohz_flag_bits {
1702 NOHZ_TICK_STOPPED,
1703 NOHZ_BALANCE_KICK,
1704 };
1705
1706 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1707
1708 extern void nohz_balance_exit_idle(unsigned int cpu);
1709 #else
1710 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1711 #endif
1712
1713 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1714
1715 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1716 DECLARE_PER_CPU(u64, cpu_softirq_time);
1717
1718 #ifndef CONFIG_64BIT
1719 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1720
1721 static inline void irq_time_write_begin(void)
1722 {
1723 __this_cpu_inc(irq_time_seq.sequence);
1724 smp_wmb();
1725 }
1726
1727 static inline void irq_time_write_end(void)
1728 {
1729 smp_wmb();
1730 __this_cpu_inc(irq_time_seq.sequence);
1731 }
1732
1733 static inline u64 irq_time_read(int cpu)
1734 {
1735 u64 irq_time;
1736 unsigned seq;
1737
1738 do {
1739 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1740 irq_time = per_cpu(cpu_softirq_time, cpu) +
1741 per_cpu(cpu_hardirq_time, cpu);
1742 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1743
1744 return irq_time;
1745 }
1746 #else /* CONFIG_64BIT */
1747 static inline void irq_time_write_begin(void)
1748 {
1749 }
1750
1751 static inline void irq_time_write_end(void)
1752 {
1753 }
1754
1755 static inline u64 irq_time_read(int cpu)
1756 {
1757 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1758 }
1759 #endif /* CONFIG_64BIT */
1760 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1761
1762 #ifdef CONFIG_CPU_FREQ
1763 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1764
1765 /**
1766 * cpufreq_update_util - Take a note about CPU utilization changes.
1767 * @rq: Runqueue to carry out the update for.
1768 * @flags: Update reason flags.
1769 *
1770 * This function is called by the scheduler on the CPU whose utilization is
1771 * being updated.
1772 *
1773 * It can only be called from RCU-sched read-side critical sections.
1774 *
1775 * The way cpufreq is currently arranged requires it to evaluate the CPU
1776 * performance state (frequency/voltage) on a regular basis to prevent it from
1777 * being stuck in a completely inadequate performance level for too long.
1778 * That is not guaranteed to happen if the updates are only triggered from CFS,
1779 * though, because they may not be coming in if RT or deadline tasks are active
1780 * all the time (or there are RT and DL tasks only).
1781 *
1782 * As a workaround for that issue, this function is called by the RT and DL
1783 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1784 * but that really is a band-aid. Going forward it should be replaced with
1785 * solutions targeted more specifically at RT and DL tasks.
1786 */
1787 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1788 {
1789 struct update_util_data *data;
1790
1791 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1792 if (data)
1793 data->func(data, rq_clock(rq), flags);
1794 }
1795
1796 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1797 {
1798 if (cpu_of(rq) == smp_processor_id())
1799 cpufreq_update_util(rq, flags);
1800 }
1801 #else
1802 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1803 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1804 #endif /* CONFIG_CPU_FREQ */
1805
1806 #ifdef arch_scale_freq_capacity
1807 #ifndef arch_scale_freq_invariant
1808 #define arch_scale_freq_invariant() (true)
1809 #endif
1810 #else /* arch_scale_freq_capacity */
1811 #define arch_scale_freq_invariant() (false)
1812 #endif
This page took 0.075434 seconds and 5 git commands to generate.