timekeeping: Fix __ktime_get_fast_ns() regression
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216 }
217 #endif
218
219 /**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
264 ((u64) interval * clock->mult) >> clock->shift;
265
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
270 tk->tkr_mono.xtime_nsec >>= -shift_change;
271 else
272 tk->tkr_mono.xtime_nsec <<= shift_change;
273 }
274 tk->tkr_raw.xtime_nsec = 0;
275
276 tk->tkr_mono.shift = clock->shift;
277 tk->tkr_raw.shift = clock->shift;
278
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
288 tk->tkr_mono.mult = clock->mult;
289 tk->tkr_raw.mult = clock->mult;
290 tk->ntp_err_mult = 0;
291 }
292
293 /* Timekeeper helper functions. */
294
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304 {
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312 }
313
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 cycle_t delta;
317
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324 {
325 cycle_t delta;
326
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
330 }
331
332 /**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
339 * Employ the latch technique; see @raw_write_seqcount_latch.
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 struct tk_read_base *base = tkf->base;
349
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf->seq);
352
353 /* Update base[0] */
354 memcpy(base, tkr, sizeof(*base));
355
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf->seq);
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361 }
362
363 /**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
402 seq = raw_read_seqcount_latch(&tkf->seq);
403 tkr = tkf->base + (seq & 0x01);
404 now = ktime_to_ns(tkr->base);
405
406 now += timekeeping_delta_to_ns(tkr,
407 clocksource_delta(
408 tkr->read(tkr->clock),
409 tkr->cycle_last,
410 tkr->mask));
411 } while (read_seqcount_retry(&tkf->seq, seq));
412
413 return now;
414 }
415
416 u64 ktime_get_mono_fast_ns(void)
417 {
418 return __ktime_get_fast_ns(&tk_fast_mono);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421
422 u64 ktime_get_raw_fast_ns(void)
423 {
424 return __ktime_get_fast_ns(&tk_fast_raw);
425 }
426 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427
428 /* Suspend-time cycles value for halted fast timekeeper. */
429 static cycle_t cycles_at_suspend;
430
431 static cycle_t dummy_clock_read(struct clocksource *cs)
432 {
433 return cycles_at_suspend;
434 }
435
436 /**
437 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
438 * @tk: Timekeeper to snapshot.
439 *
440 * It generally is unsafe to access the clocksource after timekeeping has been
441 * suspended, so take a snapshot of the readout base of @tk and use it as the
442 * fast timekeeper's readout base while suspended. It will return the same
443 * number of cycles every time until timekeeping is resumed at which time the
444 * proper readout base for the fast timekeeper will be restored automatically.
445 */
446 static void halt_fast_timekeeper(struct timekeeper *tk)
447 {
448 static struct tk_read_base tkr_dummy;
449 struct tk_read_base *tkr = &tk->tkr_mono;
450
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 cycles_at_suspend = tkr->read(tkr->clock);
453 tkr_dummy.read = dummy_clock_read;
454 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
455
456 tkr = &tk->tkr_raw;
457 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
458 tkr_dummy.read = dummy_clock_read;
459 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
460 }
461
462 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463
464 static inline void update_vsyscall(struct timekeeper *tk)
465 {
466 struct timespec xt, wm;
467
468 xt = timespec64_to_timespec(tk_xtime(tk));
469 wm = timespec64_to_timespec(tk->wall_to_monotonic);
470 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
471 tk->tkr_mono.cycle_last);
472 }
473
474 static inline void old_vsyscall_fixup(struct timekeeper *tk)
475 {
476 s64 remainder;
477
478 /*
479 * Store only full nanoseconds into xtime_nsec after rounding
480 * it up and add the remainder to the error difference.
481 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
482 * by truncating the remainder in vsyscalls. However, it causes
483 * additional work to be done in timekeeping_adjust(). Once
484 * the vsyscall implementations are converted to use xtime_nsec
485 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
486 * users are removed, this can be killed.
487 */
488 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
489 if (remainder != 0) {
490 tk->tkr_mono.xtime_nsec -= remainder;
491 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
492 tk->ntp_error += remainder << tk->ntp_error_shift;
493 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
494 }
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506
507 /**
508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509 */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512 struct timekeeper *tk = &tk_core.timekeeper;
513 unsigned long flags;
514 int ret;
515
516 raw_spin_lock_irqsave(&timekeeper_lock, flags);
517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518 update_pvclock_gtod(tk, true);
519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520
521 return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525 /**
526 * pvclock_gtod_unregister_notifier - unregister a pvclock
527 * timedata update listener
528 */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531 unsigned long flags;
532 int ret;
533
534 raw_spin_lock_irqsave(&timekeeper_lock, flags);
535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537
538 return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
542 /*
543 * tk_update_leap_state - helper to update the next_leap_ktime
544 */
545 static inline void tk_update_leap_state(struct timekeeper *tk)
546 {
547 tk->next_leap_ktime = ntp_get_next_leap();
548 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549 /* Convert to monotonic time */
550 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 }
552
553 /*
554 * Update the ktime_t based scalar nsec members of the timekeeper
555 */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558 u64 seconds;
559 u32 nsec;
560
561 /*
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 */
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572 /* Update the monotonic raw base */
573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575 /*
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
579 */
580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589 if (action & TK_CLEAR_NTP) {
590 tk->ntp_error = 0;
591 ntp_clear();
592 }
593
594 tk_update_leap_state(tk);
595 tk_update_ktime_data(tk);
596
597 update_vsyscall(tk);
598 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599
600 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
601 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
602
603 if (action & TK_CLOCK_WAS_SET)
604 tk->clock_was_set_seq++;
605 /*
606 * The mirroring of the data to the shadow-timekeeper needs
607 * to happen last here to ensure we don't over-write the
608 * timekeeper structure on the next update with stale data
609 */
610 if (action & TK_MIRROR)
611 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612 sizeof(tk_core.timekeeper));
613 }
614
615 /**
616 * timekeeping_forward_now - update clock to the current time
617 *
618 * Forward the current clock to update its state since the last call to
619 * update_wall_time(). This is useful before significant clock changes,
620 * as it avoids having to deal with this time offset explicitly.
621 */
622 static void timekeeping_forward_now(struct timekeeper *tk)
623 {
624 struct clocksource *clock = tk->tkr_mono.clock;
625 cycle_t cycle_now, delta;
626 s64 nsec;
627
628 cycle_now = tk->tkr_mono.read(clock);
629 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630 tk->tkr_mono.cycle_last = cycle_now;
631 tk->tkr_raw.cycle_last = cycle_now;
632
633 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634
635 /* If arch requires, add in get_arch_timeoffset() */
636 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637
638 tk_normalize_xtime(tk);
639
640 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641 timespec64_add_ns(&tk->raw_time, nsec);
642 }
643
644 /**
645 * __getnstimeofday64 - Returns the time of day in a timespec64.
646 * @ts: pointer to the timespec to be set
647 *
648 * Updates the time of day in the timespec.
649 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650 */
651 int __getnstimeofday64(struct timespec64 *ts)
652 {
653 struct timekeeper *tk = &tk_core.timekeeper;
654 unsigned long seq;
655 s64 nsecs = 0;
656
657 do {
658 seq = read_seqcount_begin(&tk_core.seq);
659
660 ts->tv_sec = tk->xtime_sec;
661 nsecs = timekeeping_get_ns(&tk->tkr_mono);
662
663 } while (read_seqcount_retry(&tk_core.seq, seq));
664
665 ts->tv_nsec = 0;
666 timespec64_add_ns(ts, nsecs);
667
668 /*
669 * Do not bail out early, in case there were callers still using
670 * the value, even in the face of the WARN_ON.
671 */
672 if (unlikely(timekeeping_suspended))
673 return -EAGAIN;
674 return 0;
675 }
676 EXPORT_SYMBOL(__getnstimeofday64);
677
678 /**
679 * getnstimeofday64 - Returns the time of day in a timespec64.
680 * @ts: pointer to the timespec64 to be set
681 *
682 * Returns the time of day in a timespec64 (WARN if suspended).
683 */
684 void getnstimeofday64(struct timespec64 *ts)
685 {
686 WARN_ON(__getnstimeofday64(ts));
687 }
688 EXPORT_SYMBOL(getnstimeofday64);
689
690 ktime_t ktime_get(void)
691 {
692 struct timekeeper *tk = &tk_core.timekeeper;
693 unsigned int seq;
694 ktime_t base;
695 s64 nsecs;
696
697 WARN_ON(timekeeping_suspended);
698
699 do {
700 seq = read_seqcount_begin(&tk_core.seq);
701 base = tk->tkr_mono.base;
702 nsecs = timekeeping_get_ns(&tk->tkr_mono);
703
704 } while (read_seqcount_retry(&tk_core.seq, seq));
705
706 return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get);
709
710 u32 ktime_get_resolution_ns(void)
711 {
712 struct timekeeper *tk = &tk_core.timekeeper;
713 unsigned int seq;
714 u32 nsecs;
715
716 WARN_ON(timekeeping_suspended);
717
718 do {
719 seq = read_seqcount_begin(&tk_core.seq);
720 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721 } while (read_seqcount_retry(&tk_core.seq, seq));
722
723 return nsecs;
724 }
725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726
727 static ktime_t *offsets[TK_OFFS_MAX] = {
728 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
729 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
730 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
731 };
732
733 ktime_t ktime_get_with_offset(enum tk_offsets offs)
734 {
735 struct timekeeper *tk = &tk_core.timekeeper;
736 unsigned int seq;
737 ktime_t base, *offset = offsets[offs];
738 s64 nsecs;
739
740 WARN_ON(timekeeping_suspended);
741
742 do {
743 seq = read_seqcount_begin(&tk_core.seq);
744 base = ktime_add(tk->tkr_mono.base, *offset);
745 nsecs = timekeeping_get_ns(&tk->tkr_mono);
746
747 } while (read_seqcount_retry(&tk_core.seq, seq));
748
749 return ktime_add_ns(base, nsecs);
750
751 }
752 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753
754 /**
755 * ktime_mono_to_any() - convert mononotic time to any other time
756 * @tmono: time to convert.
757 * @offs: which offset to use
758 */
759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760 {
761 ktime_t *offset = offsets[offs];
762 unsigned long seq;
763 ktime_t tconv;
764
765 do {
766 seq = read_seqcount_begin(&tk_core.seq);
767 tconv = ktime_add(tmono, *offset);
768 } while (read_seqcount_retry(&tk_core.seq, seq));
769
770 return tconv;
771 }
772 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773
774 /**
775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776 */
777 ktime_t ktime_get_raw(void)
778 {
779 struct timekeeper *tk = &tk_core.timekeeper;
780 unsigned int seq;
781 ktime_t base;
782 s64 nsecs;
783
784 do {
785 seq = read_seqcount_begin(&tk_core.seq);
786 base = tk->tkr_raw.base;
787 nsecs = timekeeping_get_ns(&tk->tkr_raw);
788
789 } while (read_seqcount_retry(&tk_core.seq, seq));
790
791 return ktime_add_ns(base, nsecs);
792 }
793 EXPORT_SYMBOL_GPL(ktime_get_raw);
794
795 /**
796 * ktime_get_ts64 - get the monotonic clock in timespec64 format
797 * @ts: pointer to timespec variable
798 *
799 * The function calculates the monotonic clock from the realtime
800 * clock and the wall_to_monotonic offset and stores the result
801 * in normalized timespec64 format in the variable pointed to by @ts.
802 */
803 void ktime_get_ts64(struct timespec64 *ts)
804 {
805 struct timekeeper *tk = &tk_core.timekeeper;
806 struct timespec64 tomono;
807 s64 nsec;
808 unsigned int seq;
809
810 WARN_ON(timekeeping_suspended);
811
812 do {
813 seq = read_seqcount_begin(&tk_core.seq);
814 ts->tv_sec = tk->xtime_sec;
815 nsec = timekeeping_get_ns(&tk->tkr_mono);
816 tomono = tk->wall_to_monotonic;
817
818 } while (read_seqcount_retry(&tk_core.seq, seq));
819
820 ts->tv_sec += tomono.tv_sec;
821 ts->tv_nsec = 0;
822 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_ts64);
825
826 /**
827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828 *
829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831 * works on both 32 and 64 bit systems. On 32 bit systems the readout
832 * covers ~136 years of uptime which should be enough to prevent
833 * premature wrap arounds.
834 */
835 time64_t ktime_get_seconds(void)
836 {
837 struct timekeeper *tk = &tk_core.timekeeper;
838
839 WARN_ON(timekeeping_suspended);
840 return tk->ktime_sec;
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_seconds);
843
844 /**
845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846 *
847 * Returns the wall clock seconds since 1970. This replaces the
848 * get_seconds() interface which is not y2038 safe on 32bit systems.
849 *
850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851 * 32bit systems the access must be protected with the sequence
852 * counter to provide "atomic" access to the 64bit tk->xtime_sec
853 * value.
854 */
855 time64_t ktime_get_real_seconds(void)
856 {
857 struct timekeeper *tk = &tk_core.timekeeper;
858 time64_t seconds;
859 unsigned int seq;
860
861 if (IS_ENABLED(CONFIG_64BIT))
862 return tk->xtime_sec;
863
864 do {
865 seq = read_seqcount_begin(&tk_core.seq);
866 seconds = tk->xtime_sec;
867
868 } while (read_seqcount_retry(&tk_core.seq, seq));
869
870 return seconds;
871 }
872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873
874 /**
875 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
876 * but without the sequence counter protect. This internal function
877 * is called just when timekeeping lock is already held.
878 */
879 time64_t __ktime_get_real_seconds(void)
880 {
881 struct timekeeper *tk = &tk_core.timekeeper;
882
883 return tk->xtime_sec;
884 }
885
886 /**
887 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
888 * @systime_snapshot: pointer to struct receiving the system time snapshot
889 */
890 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
891 {
892 struct timekeeper *tk = &tk_core.timekeeper;
893 unsigned long seq;
894 ktime_t base_raw;
895 ktime_t base_real;
896 s64 nsec_raw;
897 s64 nsec_real;
898 cycle_t now;
899
900 WARN_ON_ONCE(timekeeping_suspended);
901
902 do {
903 seq = read_seqcount_begin(&tk_core.seq);
904
905 now = tk->tkr_mono.read(tk->tkr_mono.clock);
906 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
907 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
908 base_real = ktime_add(tk->tkr_mono.base,
909 tk_core.timekeeper.offs_real);
910 base_raw = tk->tkr_raw.base;
911 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
912 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
913 } while (read_seqcount_retry(&tk_core.seq, seq));
914
915 systime_snapshot->cycles = now;
916 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
917 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
920
921 /* Scale base by mult/div checking for overflow */
922 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
923 {
924 u64 tmp, rem;
925
926 tmp = div64_u64_rem(*base, div, &rem);
927
928 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
929 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
930 return -EOVERFLOW;
931 tmp *= mult;
932 rem *= mult;
933
934 do_div(rem, div);
935 *base = tmp + rem;
936 return 0;
937 }
938
939 /**
940 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
941 * @history: Snapshot representing start of history
942 * @partial_history_cycles: Cycle offset into history (fractional part)
943 * @total_history_cycles: Total history length in cycles
944 * @discontinuity: True indicates clock was set on history period
945 * @ts: Cross timestamp that should be adjusted using
946 * partial/total ratio
947 *
948 * Helper function used by get_device_system_crosststamp() to correct the
949 * crosstimestamp corresponding to the start of the current interval to the
950 * system counter value (timestamp point) provided by the driver. The
951 * total_history_* quantities are the total history starting at the provided
952 * reference point and ending at the start of the current interval. The cycle
953 * count between the driver timestamp point and the start of the current
954 * interval is partial_history_cycles.
955 */
956 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
957 cycle_t partial_history_cycles,
958 cycle_t total_history_cycles,
959 bool discontinuity,
960 struct system_device_crosststamp *ts)
961 {
962 struct timekeeper *tk = &tk_core.timekeeper;
963 u64 corr_raw, corr_real;
964 bool interp_forward;
965 int ret;
966
967 if (total_history_cycles == 0 || partial_history_cycles == 0)
968 return 0;
969
970 /* Interpolate shortest distance from beginning or end of history */
971 interp_forward = partial_history_cycles > total_history_cycles/2 ?
972 true : false;
973 partial_history_cycles = interp_forward ?
974 total_history_cycles - partial_history_cycles :
975 partial_history_cycles;
976
977 /*
978 * Scale the monotonic raw time delta by:
979 * partial_history_cycles / total_history_cycles
980 */
981 corr_raw = (u64)ktime_to_ns(
982 ktime_sub(ts->sys_monoraw, history->raw));
983 ret = scale64_check_overflow(partial_history_cycles,
984 total_history_cycles, &corr_raw);
985 if (ret)
986 return ret;
987
988 /*
989 * If there is a discontinuity in the history, scale monotonic raw
990 * correction by:
991 * mult(real)/mult(raw) yielding the realtime correction
992 * Otherwise, calculate the realtime correction similar to monotonic
993 * raw calculation
994 */
995 if (discontinuity) {
996 corr_real = mul_u64_u32_div
997 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
998 } else {
999 corr_real = (u64)ktime_to_ns(
1000 ktime_sub(ts->sys_realtime, history->real));
1001 ret = scale64_check_overflow(partial_history_cycles,
1002 total_history_cycles, &corr_real);
1003 if (ret)
1004 return ret;
1005 }
1006
1007 /* Fixup monotonic raw and real time time values */
1008 if (interp_forward) {
1009 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1010 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1011 } else {
1012 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1013 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1014 }
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * cycle_between - true if test occurs chronologically between before and after
1021 */
1022 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1023 {
1024 if (test > before && test < after)
1025 return true;
1026 if (test < before && before > after)
1027 return true;
1028 return false;
1029 }
1030
1031 /**
1032 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1033 * @get_time_fn: Callback to get simultaneous device time and
1034 * system counter from the device driver
1035 * @ctx: Context passed to get_time_fn()
1036 * @history_begin: Historical reference point used to interpolate system
1037 * time when counter provided by the driver is before the current interval
1038 * @xtstamp: Receives simultaneously captured system and device time
1039 *
1040 * Reads a timestamp from a device and correlates it to system time
1041 */
1042 int get_device_system_crosststamp(int (*get_time_fn)
1043 (ktime_t *device_time,
1044 struct system_counterval_t *sys_counterval,
1045 void *ctx),
1046 void *ctx,
1047 struct system_time_snapshot *history_begin,
1048 struct system_device_crosststamp *xtstamp)
1049 {
1050 struct system_counterval_t system_counterval;
1051 struct timekeeper *tk = &tk_core.timekeeper;
1052 cycle_t cycles, now, interval_start;
1053 unsigned int clock_was_set_seq = 0;
1054 ktime_t base_real, base_raw;
1055 s64 nsec_real, nsec_raw;
1056 u8 cs_was_changed_seq;
1057 unsigned long seq;
1058 bool do_interp;
1059 int ret;
1060
1061 do {
1062 seq = read_seqcount_begin(&tk_core.seq);
1063 /*
1064 * Try to synchronously capture device time and a system
1065 * counter value calling back into the device driver
1066 */
1067 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1068 if (ret)
1069 return ret;
1070
1071 /*
1072 * Verify that the clocksource associated with the captured
1073 * system counter value is the same as the currently installed
1074 * timekeeper clocksource
1075 */
1076 if (tk->tkr_mono.clock != system_counterval.cs)
1077 return -ENODEV;
1078 cycles = system_counterval.cycles;
1079
1080 /*
1081 * Check whether the system counter value provided by the
1082 * device driver is on the current timekeeping interval.
1083 */
1084 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1085 interval_start = tk->tkr_mono.cycle_last;
1086 if (!cycle_between(interval_start, cycles, now)) {
1087 clock_was_set_seq = tk->clock_was_set_seq;
1088 cs_was_changed_seq = tk->cs_was_changed_seq;
1089 cycles = interval_start;
1090 do_interp = true;
1091 } else {
1092 do_interp = false;
1093 }
1094
1095 base_real = ktime_add(tk->tkr_mono.base,
1096 tk_core.timekeeper.offs_real);
1097 base_raw = tk->tkr_raw.base;
1098
1099 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1100 system_counterval.cycles);
1101 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1102 system_counterval.cycles);
1103 } while (read_seqcount_retry(&tk_core.seq, seq));
1104
1105 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1106 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1107
1108 /*
1109 * Interpolate if necessary, adjusting back from the start of the
1110 * current interval
1111 */
1112 if (do_interp) {
1113 cycle_t partial_history_cycles, total_history_cycles;
1114 bool discontinuity;
1115
1116 /*
1117 * Check that the counter value occurs after the provided
1118 * history reference and that the history doesn't cross a
1119 * clocksource change
1120 */
1121 if (!history_begin ||
1122 !cycle_between(history_begin->cycles,
1123 system_counterval.cycles, cycles) ||
1124 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1125 return -EINVAL;
1126 partial_history_cycles = cycles - system_counterval.cycles;
1127 total_history_cycles = cycles - history_begin->cycles;
1128 discontinuity =
1129 history_begin->clock_was_set_seq != clock_was_set_seq;
1130
1131 ret = adjust_historical_crosststamp(history_begin,
1132 partial_history_cycles,
1133 total_history_cycles,
1134 discontinuity, xtstamp);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1142
1143 /**
1144 * do_gettimeofday - Returns the time of day in a timeval
1145 * @tv: pointer to the timeval to be set
1146 *
1147 * NOTE: Users should be converted to using getnstimeofday()
1148 */
1149 void do_gettimeofday(struct timeval *tv)
1150 {
1151 struct timespec64 now;
1152
1153 getnstimeofday64(&now);
1154 tv->tv_sec = now.tv_sec;
1155 tv->tv_usec = now.tv_nsec/1000;
1156 }
1157 EXPORT_SYMBOL(do_gettimeofday);
1158
1159 /**
1160 * do_settimeofday64 - Sets the time of day.
1161 * @ts: pointer to the timespec64 variable containing the new time
1162 *
1163 * Sets the time of day to the new time and update NTP and notify hrtimers
1164 */
1165 int do_settimeofday64(const struct timespec64 *ts)
1166 {
1167 struct timekeeper *tk = &tk_core.timekeeper;
1168 struct timespec64 ts_delta, xt;
1169 unsigned long flags;
1170 int ret = 0;
1171
1172 if (!timespec64_valid_strict(ts))
1173 return -EINVAL;
1174
1175 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1176 write_seqcount_begin(&tk_core.seq);
1177
1178 timekeeping_forward_now(tk);
1179
1180 xt = tk_xtime(tk);
1181 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1182 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1183
1184 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1185 ret = -EINVAL;
1186 goto out;
1187 }
1188
1189 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1190
1191 tk_set_xtime(tk, ts);
1192 out:
1193 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1194
1195 write_seqcount_end(&tk_core.seq);
1196 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197
1198 /* signal hrtimers about time change */
1199 clock_was_set();
1200
1201 return ret;
1202 }
1203 EXPORT_SYMBOL(do_settimeofday64);
1204
1205 /**
1206 * timekeeping_inject_offset - Adds or subtracts from the current time.
1207 * @tv: pointer to the timespec variable containing the offset
1208 *
1209 * Adds or subtracts an offset value from the current time.
1210 */
1211 int timekeeping_inject_offset(struct timespec *ts)
1212 {
1213 struct timekeeper *tk = &tk_core.timekeeper;
1214 unsigned long flags;
1215 struct timespec64 ts64, tmp;
1216 int ret = 0;
1217
1218 if (!timespec_inject_offset_valid(ts))
1219 return -EINVAL;
1220
1221 ts64 = timespec_to_timespec64(*ts);
1222
1223 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224 write_seqcount_begin(&tk_core.seq);
1225
1226 timekeeping_forward_now(tk);
1227
1228 /* Make sure the proposed value is valid */
1229 tmp = timespec64_add(tk_xtime(tk), ts64);
1230 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1231 !timespec64_valid_strict(&tmp)) {
1232 ret = -EINVAL;
1233 goto error;
1234 }
1235
1236 tk_xtime_add(tk, &ts64);
1237 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1238
1239 error: /* even if we error out, we forwarded the time, so call update */
1240 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241
1242 write_seqcount_end(&tk_core.seq);
1243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244
1245 /* signal hrtimers about time change */
1246 clock_was_set();
1247
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(timekeeping_inject_offset);
1251
1252
1253 /**
1254 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1255 *
1256 */
1257 s32 timekeeping_get_tai_offset(void)
1258 {
1259 struct timekeeper *tk = &tk_core.timekeeper;
1260 unsigned int seq;
1261 s32 ret;
1262
1263 do {
1264 seq = read_seqcount_begin(&tk_core.seq);
1265 ret = tk->tai_offset;
1266 } while (read_seqcount_retry(&tk_core.seq, seq));
1267
1268 return ret;
1269 }
1270
1271 /**
1272 * __timekeeping_set_tai_offset - Lock free worker function
1273 *
1274 */
1275 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1276 {
1277 tk->tai_offset = tai_offset;
1278 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1279 }
1280
1281 /**
1282 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1283 *
1284 */
1285 void timekeeping_set_tai_offset(s32 tai_offset)
1286 {
1287 struct timekeeper *tk = &tk_core.timekeeper;
1288 unsigned long flags;
1289
1290 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291 write_seqcount_begin(&tk_core.seq);
1292 __timekeeping_set_tai_offset(tk, tai_offset);
1293 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1294 write_seqcount_end(&tk_core.seq);
1295 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296 clock_was_set();
1297 }
1298
1299 /**
1300 * change_clocksource - Swaps clocksources if a new one is available
1301 *
1302 * Accumulates current time interval and initializes new clocksource
1303 */
1304 static int change_clocksource(void *data)
1305 {
1306 struct timekeeper *tk = &tk_core.timekeeper;
1307 struct clocksource *new, *old;
1308 unsigned long flags;
1309
1310 new = (struct clocksource *) data;
1311
1312 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1313 write_seqcount_begin(&tk_core.seq);
1314
1315 timekeeping_forward_now(tk);
1316 /*
1317 * If the cs is in module, get a module reference. Succeeds
1318 * for built-in code (owner == NULL) as well.
1319 */
1320 if (try_module_get(new->owner)) {
1321 if (!new->enable || new->enable(new) == 0) {
1322 old = tk->tkr_mono.clock;
1323 tk_setup_internals(tk, new);
1324 if (old->disable)
1325 old->disable(old);
1326 module_put(old->owner);
1327 } else {
1328 module_put(new->owner);
1329 }
1330 }
1331 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1332
1333 write_seqcount_end(&tk_core.seq);
1334 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1335
1336 return 0;
1337 }
1338
1339 /**
1340 * timekeeping_notify - Install a new clock source
1341 * @clock: pointer to the clock source
1342 *
1343 * This function is called from clocksource.c after a new, better clock
1344 * source has been registered. The caller holds the clocksource_mutex.
1345 */
1346 int timekeeping_notify(struct clocksource *clock)
1347 {
1348 struct timekeeper *tk = &tk_core.timekeeper;
1349
1350 if (tk->tkr_mono.clock == clock)
1351 return 0;
1352 stop_machine(change_clocksource, clock, NULL);
1353 tick_clock_notify();
1354 return tk->tkr_mono.clock == clock ? 0 : -1;
1355 }
1356
1357 /**
1358 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1359 * @ts: pointer to the timespec64 to be set
1360 *
1361 * Returns the raw monotonic time (completely un-modified by ntp)
1362 */
1363 void getrawmonotonic64(struct timespec64 *ts)
1364 {
1365 struct timekeeper *tk = &tk_core.timekeeper;
1366 struct timespec64 ts64;
1367 unsigned long seq;
1368 s64 nsecs;
1369
1370 do {
1371 seq = read_seqcount_begin(&tk_core.seq);
1372 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1373 ts64 = tk->raw_time;
1374
1375 } while (read_seqcount_retry(&tk_core.seq, seq));
1376
1377 timespec64_add_ns(&ts64, nsecs);
1378 *ts = ts64;
1379 }
1380 EXPORT_SYMBOL(getrawmonotonic64);
1381
1382
1383 /**
1384 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1385 */
1386 int timekeeping_valid_for_hres(void)
1387 {
1388 struct timekeeper *tk = &tk_core.timekeeper;
1389 unsigned long seq;
1390 int ret;
1391
1392 do {
1393 seq = read_seqcount_begin(&tk_core.seq);
1394
1395 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1396
1397 } while (read_seqcount_retry(&tk_core.seq, seq));
1398
1399 return ret;
1400 }
1401
1402 /**
1403 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1404 */
1405 u64 timekeeping_max_deferment(void)
1406 {
1407 struct timekeeper *tk = &tk_core.timekeeper;
1408 unsigned long seq;
1409 u64 ret;
1410
1411 do {
1412 seq = read_seqcount_begin(&tk_core.seq);
1413
1414 ret = tk->tkr_mono.clock->max_idle_ns;
1415
1416 } while (read_seqcount_retry(&tk_core.seq, seq));
1417
1418 return ret;
1419 }
1420
1421 /**
1422 * read_persistent_clock - Return time from the persistent clock.
1423 *
1424 * Weak dummy function for arches that do not yet support it.
1425 * Reads the time from the battery backed persistent clock.
1426 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1427 *
1428 * XXX - Do be sure to remove it once all arches implement it.
1429 */
1430 void __weak read_persistent_clock(struct timespec *ts)
1431 {
1432 ts->tv_sec = 0;
1433 ts->tv_nsec = 0;
1434 }
1435
1436 void __weak read_persistent_clock64(struct timespec64 *ts64)
1437 {
1438 struct timespec ts;
1439
1440 read_persistent_clock(&ts);
1441 *ts64 = timespec_to_timespec64(ts);
1442 }
1443
1444 /**
1445 * read_boot_clock64 - Return time of the system start.
1446 *
1447 * Weak dummy function for arches that do not yet support it.
1448 * Function to read the exact time the system has been started.
1449 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1450 *
1451 * XXX - Do be sure to remove it once all arches implement it.
1452 */
1453 void __weak read_boot_clock64(struct timespec64 *ts)
1454 {
1455 ts->tv_sec = 0;
1456 ts->tv_nsec = 0;
1457 }
1458
1459 /* Flag for if timekeeping_resume() has injected sleeptime */
1460 static bool sleeptime_injected;
1461
1462 /* Flag for if there is a persistent clock on this platform */
1463 static bool persistent_clock_exists;
1464
1465 /*
1466 * timekeeping_init - Initializes the clocksource and common timekeeping values
1467 */
1468 void __init timekeeping_init(void)
1469 {
1470 struct timekeeper *tk = &tk_core.timekeeper;
1471 struct clocksource *clock;
1472 unsigned long flags;
1473 struct timespec64 now, boot, tmp;
1474
1475 read_persistent_clock64(&now);
1476 if (!timespec64_valid_strict(&now)) {
1477 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1478 " Check your CMOS/BIOS settings.\n");
1479 now.tv_sec = 0;
1480 now.tv_nsec = 0;
1481 } else if (now.tv_sec || now.tv_nsec)
1482 persistent_clock_exists = true;
1483
1484 read_boot_clock64(&boot);
1485 if (!timespec64_valid_strict(&boot)) {
1486 pr_warn("WARNING: Boot clock returned invalid value!\n"
1487 " Check your CMOS/BIOS settings.\n");
1488 boot.tv_sec = 0;
1489 boot.tv_nsec = 0;
1490 }
1491
1492 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1493 write_seqcount_begin(&tk_core.seq);
1494 ntp_init();
1495
1496 clock = clocksource_default_clock();
1497 if (clock->enable)
1498 clock->enable(clock);
1499 tk_setup_internals(tk, clock);
1500
1501 tk_set_xtime(tk, &now);
1502 tk->raw_time.tv_sec = 0;
1503 tk->raw_time.tv_nsec = 0;
1504 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1505 boot = tk_xtime(tk);
1506
1507 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1508 tk_set_wall_to_mono(tk, tmp);
1509
1510 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1511
1512 write_seqcount_end(&tk_core.seq);
1513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1514 }
1515
1516 /* time in seconds when suspend began for persistent clock */
1517 static struct timespec64 timekeeping_suspend_time;
1518
1519 /**
1520 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1521 * @delta: pointer to a timespec delta value
1522 *
1523 * Takes a timespec offset measuring a suspend interval and properly
1524 * adds the sleep offset to the timekeeping variables.
1525 */
1526 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1527 struct timespec64 *delta)
1528 {
1529 if (!timespec64_valid_strict(delta)) {
1530 printk_deferred(KERN_WARNING
1531 "__timekeeping_inject_sleeptime: Invalid "
1532 "sleep delta value!\n");
1533 return;
1534 }
1535 tk_xtime_add(tk, delta);
1536 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1537 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1538 tk_debug_account_sleep_time(delta);
1539 }
1540
1541 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1542 /**
1543 * We have three kinds of time sources to use for sleep time
1544 * injection, the preference order is:
1545 * 1) non-stop clocksource
1546 * 2) persistent clock (ie: RTC accessible when irqs are off)
1547 * 3) RTC
1548 *
1549 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1550 * If system has neither 1) nor 2), 3) will be used finally.
1551 *
1552 *
1553 * If timekeeping has injected sleeptime via either 1) or 2),
1554 * 3) becomes needless, so in this case we don't need to call
1555 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1556 * means.
1557 */
1558 bool timekeeping_rtc_skipresume(void)
1559 {
1560 return sleeptime_injected;
1561 }
1562
1563 /**
1564 * 1) can be determined whether to use or not only when doing
1565 * timekeeping_resume() which is invoked after rtc_suspend(),
1566 * so we can't skip rtc_suspend() surely if system has 1).
1567 *
1568 * But if system has 2), 2) will definitely be used, so in this
1569 * case we don't need to call rtc_suspend(), and this is what
1570 * timekeeping_rtc_skipsuspend() means.
1571 */
1572 bool timekeeping_rtc_skipsuspend(void)
1573 {
1574 return persistent_clock_exists;
1575 }
1576
1577 /**
1578 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1579 * @delta: pointer to a timespec64 delta value
1580 *
1581 * This hook is for architectures that cannot support read_persistent_clock64
1582 * because their RTC/persistent clock is only accessible when irqs are enabled.
1583 * and also don't have an effective nonstop clocksource.
1584 *
1585 * This function should only be called by rtc_resume(), and allows
1586 * a suspend offset to be injected into the timekeeping values.
1587 */
1588 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1589 {
1590 struct timekeeper *tk = &tk_core.timekeeper;
1591 unsigned long flags;
1592
1593 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1594 write_seqcount_begin(&tk_core.seq);
1595
1596 timekeeping_forward_now(tk);
1597
1598 __timekeeping_inject_sleeptime(tk, delta);
1599
1600 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1601
1602 write_seqcount_end(&tk_core.seq);
1603 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604
1605 /* signal hrtimers about time change */
1606 clock_was_set();
1607 }
1608 #endif
1609
1610 /**
1611 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1612 */
1613 void timekeeping_resume(void)
1614 {
1615 struct timekeeper *tk = &tk_core.timekeeper;
1616 struct clocksource *clock = tk->tkr_mono.clock;
1617 unsigned long flags;
1618 struct timespec64 ts_new, ts_delta;
1619 cycle_t cycle_now, cycle_delta;
1620
1621 sleeptime_injected = false;
1622 read_persistent_clock64(&ts_new);
1623
1624 clockevents_resume();
1625 clocksource_resume();
1626
1627 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628 write_seqcount_begin(&tk_core.seq);
1629
1630 /*
1631 * After system resumes, we need to calculate the suspended time and
1632 * compensate it for the OS time. There are 3 sources that could be
1633 * used: Nonstop clocksource during suspend, persistent clock and rtc
1634 * device.
1635 *
1636 * One specific platform may have 1 or 2 or all of them, and the
1637 * preference will be:
1638 * suspend-nonstop clocksource -> persistent clock -> rtc
1639 * The less preferred source will only be tried if there is no better
1640 * usable source. The rtc part is handled separately in rtc core code.
1641 */
1642 cycle_now = tk->tkr_mono.read(clock);
1643 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1644 cycle_now > tk->tkr_mono.cycle_last) {
1645 u64 num, max = ULLONG_MAX;
1646 u32 mult = clock->mult;
1647 u32 shift = clock->shift;
1648 s64 nsec = 0;
1649
1650 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1651 tk->tkr_mono.mask);
1652
1653 /*
1654 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1655 * suspended time is too long. In that case we need do the
1656 * 64 bits math carefully
1657 */
1658 do_div(max, mult);
1659 if (cycle_delta > max) {
1660 num = div64_u64(cycle_delta, max);
1661 nsec = (((u64) max * mult) >> shift) * num;
1662 cycle_delta -= num * max;
1663 }
1664 nsec += ((u64) cycle_delta * mult) >> shift;
1665
1666 ts_delta = ns_to_timespec64(nsec);
1667 sleeptime_injected = true;
1668 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1669 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1670 sleeptime_injected = true;
1671 }
1672
1673 if (sleeptime_injected)
1674 __timekeeping_inject_sleeptime(tk, &ts_delta);
1675
1676 /* Re-base the last cycle value */
1677 tk->tkr_mono.cycle_last = cycle_now;
1678 tk->tkr_raw.cycle_last = cycle_now;
1679
1680 tk->ntp_error = 0;
1681 timekeeping_suspended = 0;
1682 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1683 write_seqcount_end(&tk_core.seq);
1684 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1685
1686 touch_softlockup_watchdog();
1687
1688 tick_resume();
1689 hrtimers_resume();
1690 }
1691
1692 int timekeeping_suspend(void)
1693 {
1694 struct timekeeper *tk = &tk_core.timekeeper;
1695 unsigned long flags;
1696 struct timespec64 delta, delta_delta;
1697 static struct timespec64 old_delta;
1698
1699 read_persistent_clock64(&timekeeping_suspend_time);
1700
1701 /*
1702 * On some systems the persistent_clock can not be detected at
1703 * timekeeping_init by its return value, so if we see a valid
1704 * value returned, update the persistent_clock_exists flag.
1705 */
1706 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1707 persistent_clock_exists = true;
1708
1709 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710 write_seqcount_begin(&tk_core.seq);
1711 timekeeping_forward_now(tk);
1712 timekeeping_suspended = 1;
1713
1714 if (persistent_clock_exists) {
1715 /*
1716 * To avoid drift caused by repeated suspend/resumes,
1717 * which each can add ~1 second drift error,
1718 * try to compensate so the difference in system time
1719 * and persistent_clock time stays close to constant.
1720 */
1721 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1722 delta_delta = timespec64_sub(delta, old_delta);
1723 if (abs(delta_delta.tv_sec) >= 2) {
1724 /*
1725 * if delta_delta is too large, assume time correction
1726 * has occurred and set old_delta to the current delta.
1727 */
1728 old_delta = delta;
1729 } else {
1730 /* Otherwise try to adjust old_system to compensate */
1731 timekeeping_suspend_time =
1732 timespec64_add(timekeeping_suspend_time, delta_delta);
1733 }
1734 }
1735
1736 timekeeping_update(tk, TK_MIRROR);
1737 halt_fast_timekeeper(tk);
1738 write_seqcount_end(&tk_core.seq);
1739 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740
1741 tick_suspend();
1742 clocksource_suspend();
1743 clockevents_suspend();
1744
1745 return 0;
1746 }
1747
1748 /* sysfs resume/suspend bits for timekeeping */
1749 static struct syscore_ops timekeeping_syscore_ops = {
1750 .resume = timekeeping_resume,
1751 .suspend = timekeeping_suspend,
1752 };
1753
1754 static int __init timekeeping_init_ops(void)
1755 {
1756 register_syscore_ops(&timekeeping_syscore_ops);
1757 return 0;
1758 }
1759 device_initcall(timekeeping_init_ops);
1760
1761 /*
1762 * Apply a multiplier adjustment to the timekeeper
1763 */
1764 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1765 s64 offset,
1766 bool negative,
1767 int adj_scale)
1768 {
1769 s64 interval = tk->cycle_interval;
1770 s32 mult_adj = 1;
1771
1772 if (negative) {
1773 mult_adj = -mult_adj;
1774 interval = -interval;
1775 offset = -offset;
1776 }
1777 mult_adj <<= adj_scale;
1778 interval <<= adj_scale;
1779 offset <<= adj_scale;
1780
1781 /*
1782 * So the following can be confusing.
1783 *
1784 * To keep things simple, lets assume mult_adj == 1 for now.
1785 *
1786 * When mult_adj != 1, remember that the interval and offset values
1787 * have been appropriately scaled so the math is the same.
1788 *
1789 * The basic idea here is that we're increasing the multiplier
1790 * by one, this causes the xtime_interval to be incremented by
1791 * one cycle_interval. This is because:
1792 * xtime_interval = cycle_interval * mult
1793 * So if mult is being incremented by one:
1794 * xtime_interval = cycle_interval * (mult + 1)
1795 * Its the same as:
1796 * xtime_interval = (cycle_interval * mult) + cycle_interval
1797 * Which can be shortened to:
1798 * xtime_interval += cycle_interval
1799 *
1800 * So offset stores the non-accumulated cycles. Thus the current
1801 * time (in shifted nanoseconds) is:
1802 * now = (offset * adj) + xtime_nsec
1803 * Now, even though we're adjusting the clock frequency, we have
1804 * to keep time consistent. In other words, we can't jump back
1805 * in time, and we also want to avoid jumping forward in time.
1806 *
1807 * So given the same offset value, we need the time to be the same
1808 * both before and after the freq adjustment.
1809 * now = (offset * adj_1) + xtime_nsec_1
1810 * now = (offset * adj_2) + xtime_nsec_2
1811 * So:
1812 * (offset * adj_1) + xtime_nsec_1 =
1813 * (offset * adj_2) + xtime_nsec_2
1814 * And we know:
1815 * adj_2 = adj_1 + 1
1816 * So:
1817 * (offset * adj_1) + xtime_nsec_1 =
1818 * (offset * (adj_1+1)) + xtime_nsec_2
1819 * (offset * adj_1) + xtime_nsec_1 =
1820 * (offset * adj_1) + offset + xtime_nsec_2
1821 * Canceling the sides:
1822 * xtime_nsec_1 = offset + xtime_nsec_2
1823 * Which gives us:
1824 * xtime_nsec_2 = xtime_nsec_1 - offset
1825 * Which simplfies to:
1826 * xtime_nsec -= offset
1827 *
1828 * XXX - TODO: Doc ntp_error calculation.
1829 */
1830 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1831 /* NTP adjustment caused clocksource mult overflow */
1832 WARN_ON_ONCE(1);
1833 return;
1834 }
1835
1836 tk->tkr_mono.mult += mult_adj;
1837 tk->xtime_interval += interval;
1838 tk->tkr_mono.xtime_nsec -= offset;
1839 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1840 }
1841
1842 /*
1843 * Calculate the multiplier adjustment needed to match the frequency
1844 * specified by NTP
1845 */
1846 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1847 s64 offset)
1848 {
1849 s64 interval = tk->cycle_interval;
1850 s64 xinterval = tk->xtime_interval;
1851 u32 base = tk->tkr_mono.clock->mult;
1852 u32 max = tk->tkr_mono.clock->maxadj;
1853 u32 cur_adj = tk->tkr_mono.mult;
1854 s64 tick_error;
1855 bool negative;
1856 u32 adj_scale;
1857
1858 /* Remove any current error adj from freq calculation */
1859 if (tk->ntp_err_mult)
1860 xinterval -= tk->cycle_interval;
1861
1862 tk->ntp_tick = ntp_tick_length();
1863
1864 /* Calculate current error per tick */
1865 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1866 tick_error -= (xinterval + tk->xtime_remainder);
1867
1868 /* Don't worry about correcting it if its small */
1869 if (likely((tick_error >= 0) && (tick_error <= interval)))
1870 return;
1871
1872 /* preserve the direction of correction */
1873 negative = (tick_error < 0);
1874
1875 /* If any adjustment would pass the max, just return */
1876 if (negative && (cur_adj - 1) <= (base - max))
1877 return;
1878 if (!negative && (cur_adj + 1) >= (base + max))
1879 return;
1880 /*
1881 * Sort out the magnitude of the correction, but
1882 * avoid making so large a correction that we go
1883 * over the max adjustment.
1884 */
1885 adj_scale = 0;
1886 tick_error = abs(tick_error);
1887 while (tick_error > interval) {
1888 u32 adj = 1 << (adj_scale + 1);
1889
1890 /* Check if adjustment gets us within 1 unit from the max */
1891 if (negative && (cur_adj - adj) <= (base - max))
1892 break;
1893 if (!negative && (cur_adj + adj) >= (base + max))
1894 break;
1895
1896 adj_scale++;
1897 tick_error >>= 1;
1898 }
1899
1900 /* scale the corrections */
1901 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1902 }
1903
1904 /*
1905 * Adjust the timekeeper's multiplier to the correct frequency
1906 * and also to reduce the accumulated error value.
1907 */
1908 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1909 {
1910 /* Correct for the current frequency error */
1911 timekeeping_freqadjust(tk, offset);
1912
1913 /* Next make a small adjustment to fix any cumulative error */
1914 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1915 tk->ntp_err_mult = 1;
1916 timekeeping_apply_adjustment(tk, offset, 0, 0);
1917 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1918 /* Undo any existing error adjustment */
1919 timekeeping_apply_adjustment(tk, offset, 1, 0);
1920 tk->ntp_err_mult = 0;
1921 }
1922
1923 if (unlikely(tk->tkr_mono.clock->maxadj &&
1924 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1925 > tk->tkr_mono.clock->maxadj))) {
1926 printk_once(KERN_WARNING
1927 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1928 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1929 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1930 }
1931
1932 /*
1933 * It may be possible that when we entered this function, xtime_nsec
1934 * was very small. Further, if we're slightly speeding the clocksource
1935 * in the code above, its possible the required corrective factor to
1936 * xtime_nsec could cause it to underflow.
1937 *
1938 * Now, since we already accumulated the second, cannot simply roll
1939 * the accumulated second back, since the NTP subsystem has been
1940 * notified via second_overflow. So instead we push xtime_nsec forward
1941 * by the amount we underflowed, and add that amount into the error.
1942 *
1943 * We'll correct this error next time through this function, when
1944 * xtime_nsec is not as small.
1945 */
1946 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1948 tk->tkr_mono.xtime_nsec = 0;
1949 tk->ntp_error += neg << tk->ntp_error_shift;
1950 }
1951 }
1952
1953 /**
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 *
1956 * Helper function that accumulates the nsecs greater than a second
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1959 *
1960 */
1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962 {
1963 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964 unsigned int clock_set = 0;
1965
1966 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 int leap;
1968
1969 tk->tkr_mono.xtime_nsec -= nsecps;
1970 tk->xtime_sec++;
1971
1972 /* Figure out if its a leap sec and apply if needed */
1973 leap = second_overflow(tk->xtime_sec);
1974 if (unlikely(leap)) {
1975 struct timespec64 ts;
1976
1977 tk->xtime_sec += leap;
1978
1979 ts.tv_sec = leap;
1980 ts.tv_nsec = 0;
1981 tk_set_wall_to_mono(tk,
1982 timespec64_sub(tk->wall_to_monotonic, ts));
1983
1984 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985
1986 clock_set = TK_CLOCK_WAS_SET;
1987 }
1988 }
1989 return clock_set;
1990 }
1991
1992 /**
1993 * logarithmic_accumulation - shifted accumulation of cycles
1994 *
1995 * This functions accumulates a shifted interval of cycles into
1996 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1997 * loop.
1998 *
1999 * Returns the unconsumed cycles.
2000 */
2001 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2002 u32 shift,
2003 unsigned int *clock_set)
2004 {
2005 cycle_t interval = tk->cycle_interval << shift;
2006 u64 raw_nsecs;
2007
2008 /* If the offset is smaller than a shifted interval, do nothing */
2009 if (offset < interval)
2010 return offset;
2011
2012 /* Accumulate one shifted interval */
2013 offset -= interval;
2014 tk->tkr_mono.cycle_last += interval;
2015 tk->tkr_raw.cycle_last += interval;
2016
2017 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018 *clock_set |= accumulate_nsecs_to_secs(tk);
2019
2020 /* Accumulate raw time */
2021 raw_nsecs = (u64)tk->raw_interval << shift;
2022 raw_nsecs += tk->raw_time.tv_nsec;
2023 if (raw_nsecs >= NSEC_PER_SEC) {
2024 u64 raw_secs = raw_nsecs;
2025 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2026 tk->raw_time.tv_sec += raw_secs;
2027 }
2028 tk->raw_time.tv_nsec = raw_nsecs;
2029
2030 /* Accumulate error between NTP and clock interval */
2031 tk->ntp_error += tk->ntp_tick << shift;
2032 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033 (tk->ntp_error_shift + shift);
2034
2035 return offset;
2036 }
2037
2038 /**
2039 * update_wall_time - Uses the current clocksource to increment the wall time
2040 *
2041 */
2042 void update_wall_time(void)
2043 {
2044 struct timekeeper *real_tk = &tk_core.timekeeper;
2045 struct timekeeper *tk = &shadow_timekeeper;
2046 cycle_t offset;
2047 int shift = 0, maxshift;
2048 unsigned int clock_set = 0;
2049 unsigned long flags;
2050
2051 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052
2053 /* Make sure we're fully resumed: */
2054 if (unlikely(timekeeping_suspended))
2055 goto out;
2056
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058 offset = real_tk->cycle_interval;
2059 #else
2060 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2061 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 #endif
2063
2064 /* Check if there's really nothing to do */
2065 if (offset < real_tk->cycle_interval)
2066 goto out;
2067
2068 /* Do some additional sanity checking */
2069 timekeeping_check_update(real_tk, offset);
2070
2071 /*
2072 * With NO_HZ we may have to accumulate many cycle_intervals
2073 * (think "ticks") worth of time at once. To do this efficiently,
2074 * we calculate the largest doubling multiple of cycle_intervals
2075 * that is smaller than the offset. We then accumulate that
2076 * chunk in one go, and then try to consume the next smaller
2077 * doubled multiple.
2078 */
2079 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080 shift = max(0, shift);
2081 /* Bound shift to one less than what overflows tick_length */
2082 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083 shift = min(shift, maxshift);
2084 while (offset >= tk->cycle_interval) {
2085 offset = logarithmic_accumulation(tk, offset, shift,
2086 &clock_set);
2087 if (offset < tk->cycle_interval<<shift)
2088 shift--;
2089 }
2090
2091 /* correct the clock when NTP error is too big */
2092 timekeeping_adjust(tk, offset);
2093
2094 /*
2095 * XXX This can be killed once everyone converts
2096 * to the new update_vsyscall.
2097 */
2098 old_vsyscall_fixup(tk);
2099
2100 /*
2101 * Finally, make sure that after the rounding
2102 * xtime_nsec isn't larger than NSEC_PER_SEC
2103 */
2104 clock_set |= accumulate_nsecs_to_secs(tk);
2105
2106 write_seqcount_begin(&tk_core.seq);
2107 /*
2108 * Update the real timekeeper.
2109 *
2110 * We could avoid this memcpy by switching pointers, but that
2111 * requires changes to all other timekeeper usage sites as
2112 * well, i.e. move the timekeeper pointer getter into the
2113 * spinlocked/seqcount protected sections. And we trade this
2114 * memcpy under the tk_core.seq against one before we start
2115 * updating.
2116 */
2117 timekeeping_update(tk, clock_set);
2118 memcpy(real_tk, tk, sizeof(*tk));
2119 /* The memcpy must come last. Do not put anything here! */
2120 write_seqcount_end(&tk_core.seq);
2121 out:
2122 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123 if (clock_set)
2124 /* Have to call _delayed version, since in irq context*/
2125 clock_was_set_delayed();
2126 }
2127
2128 /**
2129 * getboottime64 - Return the real time of system boot.
2130 * @ts: pointer to the timespec64 to be set
2131 *
2132 * Returns the wall-time of boot in a timespec64.
2133 *
2134 * This is based on the wall_to_monotonic offset and the total suspend
2135 * time. Calls to settimeofday will affect the value returned (which
2136 * basically means that however wrong your real time clock is at boot time,
2137 * you get the right time here).
2138 */
2139 void getboottime64(struct timespec64 *ts)
2140 {
2141 struct timekeeper *tk = &tk_core.timekeeper;
2142 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143
2144 *ts = ktime_to_timespec64(t);
2145 }
2146 EXPORT_SYMBOL_GPL(getboottime64);
2147
2148 unsigned long get_seconds(void)
2149 {
2150 struct timekeeper *tk = &tk_core.timekeeper;
2151
2152 return tk->xtime_sec;
2153 }
2154 EXPORT_SYMBOL(get_seconds);
2155
2156 struct timespec __current_kernel_time(void)
2157 {
2158 struct timekeeper *tk = &tk_core.timekeeper;
2159
2160 return timespec64_to_timespec(tk_xtime(tk));
2161 }
2162
2163 struct timespec64 current_kernel_time64(void)
2164 {
2165 struct timekeeper *tk = &tk_core.timekeeper;
2166 struct timespec64 now;
2167 unsigned long seq;
2168
2169 do {
2170 seq = read_seqcount_begin(&tk_core.seq);
2171
2172 now = tk_xtime(tk);
2173 } while (read_seqcount_retry(&tk_core.seq, seq));
2174
2175 return now;
2176 }
2177 EXPORT_SYMBOL(current_kernel_time64);
2178
2179 struct timespec64 get_monotonic_coarse64(void)
2180 {
2181 struct timekeeper *tk = &tk_core.timekeeper;
2182 struct timespec64 now, mono;
2183 unsigned long seq;
2184
2185 do {
2186 seq = read_seqcount_begin(&tk_core.seq);
2187
2188 now = tk_xtime(tk);
2189 mono = tk->wall_to_monotonic;
2190 } while (read_seqcount_retry(&tk_core.seq, seq));
2191
2192 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193 now.tv_nsec + mono.tv_nsec);
2194
2195 return now;
2196 }
2197 EXPORT_SYMBOL(get_monotonic_coarse64);
2198
2199 /*
2200 * Must hold jiffies_lock
2201 */
2202 void do_timer(unsigned long ticks)
2203 {
2204 jiffies_64 += ticks;
2205 calc_global_load(ticks);
2206 }
2207
2208 /**
2209 * ktime_get_update_offsets_now - hrtimer helper
2210 * @cwsseq: pointer to check and store the clock was set sequence number
2211 * @offs_real: pointer to storage for monotonic -> realtime offset
2212 * @offs_boot: pointer to storage for monotonic -> boottime offset
2213 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2214 *
2215 * Returns current monotonic time and updates the offsets if the
2216 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217 * different.
2218 *
2219 * Called from hrtimer_interrupt() or retrigger_next_event()
2220 */
2221 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222 ktime_t *offs_boot, ktime_t *offs_tai)
2223 {
2224 struct timekeeper *tk = &tk_core.timekeeper;
2225 unsigned int seq;
2226 ktime_t base;
2227 u64 nsecs;
2228
2229 do {
2230 seq = read_seqcount_begin(&tk_core.seq);
2231
2232 base = tk->tkr_mono.base;
2233 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234 base = ktime_add_ns(base, nsecs);
2235
2236 if (*cwsseq != tk->clock_was_set_seq) {
2237 *cwsseq = tk->clock_was_set_seq;
2238 *offs_real = tk->offs_real;
2239 *offs_boot = tk->offs_boot;
2240 *offs_tai = tk->offs_tai;
2241 }
2242
2243 /* Handle leapsecond insertion adjustments */
2244 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2245 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246
2247 } while (read_seqcount_retry(&tk_core.seq, seq));
2248
2249 return base;
2250 }
2251
2252 /**
2253 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254 */
2255 int do_adjtimex(struct timex *txc)
2256 {
2257 struct timekeeper *tk = &tk_core.timekeeper;
2258 unsigned long flags;
2259 struct timespec64 ts;
2260 s32 orig_tai, tai;
2261 int ret;
2262
2263 /* Validate the data before disabling interrupts */
2264 ret = ntp_validate_timex(txc);
2265 if (ret)
2266 return ret;
2267
2268 if (txc->modes & ADJ_SETOFFSET) {
2269 struct timespec delta;
2270 delta.tv_sec = txc->time.tv_sec;
2271 delta.tv_nsec = txc->time.tv_usec;
2272 if (!(txc->modes & ADJ_NANO))
2273 delta.tv_nsec *= 1000;
2274 ret = timekeeping_inject_offset(&delta);
2275 if (ret)
2276 return ret;
2277 }
2278
2279 getnstimeofday64(&ts);
2280
2281 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282 write_seqcount_begin(&tk_core.seq);
2283
2284 orig_tai = tai = tk->tai_offset;
2285 ret = __do_adjtimex(txc, &ts, &tai);
2286
2287 if (tai != orig_tai) {
2288 __timekeeping_set_tai_offset(tk, tai);
2289 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290 }
2291 tk_update_leap_state(tk);
2292
2293 write_seqcount_end(&tk_core.seq);
2294 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295
2296 if (tai != orig_tai)
2297 clock_was_set();
2298
2299 ntp_notify_cmos_timer();
2300
2301 return ret;
2302 }
2303
2304 #ifdef CONFIG_NTP_PPS
2305 /**
2306 * hardpps() - Accessor function to NTP __hardpps function
2307 */
2308 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309 {
2310 unsigned long flags;
2311
2312 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313 write_seqcount_begin(&tk_core.seq);
2314
2315 __hardpps(phase_ts, raw_ts);
2316
2317 write_seqcount_end(&tk_core.seq);
2318 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319 }
2320 EXPORT_SYMBOL(hardpps);
2321 #endif
2322
2323 /**
2324 * xtime_update() - advances the timekeeping infrastructure
2325 * @ticks: number of ticks, that have elapsed since the last call.
2326 *
2327 * Must be called with interrupts disabled.
2328 */
2329 void xtime_update(unsigned long ticks)
2330 {
2331 write_seqlock(&jiffies_lock);
2332 do_timer(ticks);
2333 write_sequnlock(&jiffies_lock);
2334 update_wall_time();
2335 }
This page took 0.100707 seconds and 5 git commands to generate.