timekeeping: Avoid taking lock in NMI path with CONFIG_DEBUG_TIMEKEEPING
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216 }
217 #endif
218
219 /**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
264 ((u64) interval * clock->mult) >> clock->shift;
265
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
270 tk->tkr_mono.xtime_nsec >>= -shift_change;
271 else
272 tk->tkr_mono.xtime_nsec <<= shift_change;
273 }
274 tk->tkr_raw.xtime_nsec = 0;
275
276 tk->tkr_mono.shift = clock->shift;
277 tk->tkr_raw.shift = clock->shift;
278
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
288 tk->tkr_mono.mult = clock->mult;
289 tk->tkr_raw.mult = clock->mult;
290 tk->ntp_err_mult = 0;
291 }
292
293 /* Timekeeper helper functions. */
294
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304 {
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312 }
313
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 cycle_t delta;
317
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324 {
325 cycle_t delta;
326
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
330 }
331
332 /**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
339 * Employ the latch technique; see @raw_write_seqcount_latch.
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 struct tk_read_base *base = tkf->base;
349
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf->seq);
352
353 /* Update base[0] */
354 memcpy(base, tkr, sizeof(*base));
355
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf->seq);
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361 }
362
363 /**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
402 seq = raw_read_seqcount_latch(&tkf->seq);
403 tkr = tkf->base + (seq & 0x01);
404 now = ktime_to_ns(tkr->base);
405
406 now += clocksource_delta(tkr->read(tkr->clock),
407 tkr->cycle_last, tkr->mask);
408 } while (read_seqcount_retry(&tkf->seq, seq));
409
410 return now;
411 }
412
413 u64 ktime_get_mono_fast_ns(void)
414 {
415 return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419 u64 ktime_get_raw_fast_ns(void)
420 {
421 return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425 /* Suspend-time cycles value for halted fast timekeeper. */
426 static cycle_t cycles_at_suspend;
427
428 static cycle_t dummy_clock_read(struct clocksource *cs)
429 {
430 return cycles_at_suspend;
431 }
432
433 /**
434 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
435 * @tk: Timekeeper to snapshot.
436 *
437 * It generally is unsafe to access the clocksource after timekeeping has been
438 * suspended, so take a snapshot of the readout base of @tk and use it as the
439 * fast timekeeper's readout base while suspended. It will return the same
440 * number of cycles every time until timekeeping is resumed at which time the
441 * proper readout base for the fast timekeeper will be restored automatically.
442 */
443 static void halt_fast_timekeeper(struct timekeeper *tk)
444 {
445 static struct tk_read_base tkr_dummy;
446 struct tk_read_base *tkr = &tk->tkr_mono;
447
448 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
449 cycles_at_suspend = tkr->read(tkr->clock);
450 tkr_dummy.read = dummy_clock_read;
451 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
452
453 tkr = &tk->tkr_raw;
454 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
455 tkr_dummy.read = dummy_clock_read;
456 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
457 }
458
459 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
460
461 static inline void update_vsyscall(struct timekeeper *tk)
462 {
463 struct timespec xt, wm;
464
465 xt = timespec64_to_timespec(tk_xtime(tk));
466 wm = timespec64_to_timespec(tk->wall_to_monotonic);
467 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
468 tk->tkr_mono.cycle_last);
469 }
470
471 static inline void old_vsyscall_fixup(struct timekeeper *tk)
472 {
473 s64 remainder;
474
475 /*
476 * Store only full nanoseconds into xtime_nsec after rounding
477 * it up and add the remainder to the error difference.
478 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
479 * by truncating the remainder in vsyscalls. However, it causes
480 * additional work to be done in timekeeping_adjust(). Once
481 * the vsyscall implementations are converted to use xtime_nsec
482 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
483 * users are removed, this can be killed.
484 */
485 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
486 if (remainder != 0) {
487 tk->tkr_mono.xtime_nsec -= remainder;
488 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
489 tk->ntp_error += remainder << tk->ntp_error_shift;
490 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
491 }
492 }
493 #else
494 #define old_vsyscall_fixup(tk)
495 #endif
496
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
498
499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
500 {
501 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
502 }
503
504 /**
505 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
506 */
507 int pvclock_gtod_register_notifier(struct notifier_block *nb)
508 {
509 struct timekeeper *tk = &tk_core.timekeeper;
510 unsigned long flags;
511 int ret;
512
513 raw_spin_lock_irqsave(&timekeeper_lock, flags);
514 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515 update_pvclock_gtod(tk, true);
516 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
517
518 return ret;
519 }
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
521
522 /**
523 * pvclock_gtod_unregister_notifier - unregister a pvclock
524 * timedata update listener
525 */
526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
527 {
528 unsigned long flags;
529 int ret;
530
531 raw_spin_lock_irqsave(&timekeeper_lock, flags);
532 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534
535 return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
538
539 /*
540 * tk_update_leap_state - helper to update the next_leap_ktime
541 */
542 static inline void tk_update_leap_state(struct timekeeper *tk)
543 {
544 tk->next_leap_ktime = ntp_get_next_leap();
545 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
546 /* Convert to monotonic time */
547 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
548 }
549
550 /*
551 * Update the ktime_t based scalar nsec members of the timekeeper
552 */
553 static inline void tk_update_ktime_data(struct timekeeper *tk)
554 {
555 u64 seconds;
556 u32 nsec;
557
558 /*
559 * The xtime based monotonic readout is:
560 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561 * The ktime based monotonic readout is:
562 * nsec = base_mono + now();
563 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
564 */
565 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
566 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
568
569 /* Update the monotonic raw base */
570 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
571
572 /*
573 * The sum of the nanoseconds portions of xtime and
574 * wall_to_monotonic can be greater/equal one second. Take
575 * this into account before updating tk->ktime_sec.
576 */
577 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578 if (nsec >= NSEC_PER_SEC)
579 seconds++;
580 tk->ktime_sec = seconds;
581 }
582
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
585 {
586 if (action & TK_CLEAR_NTP) {
587 tk->ntp_error = 0;
588 ntp_clear();
589 }
590
591 tk_update_leap_state(tk);
592 tk_update_ktime_data(tk);
593
594 update_vsyscall(tk);
595 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
596
597 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
598 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
599
600 if (action & TK_CLOCK_WAS_SET)
601 tk->clock_was_set_seq++;
602 /*
603 * The mirroring of the data to the shadow-timekeeper needs
604 * to happen last here to ensure we don't over-write the
605 * timekeeper structure on the next update with stale data
606 */
607 if (action & TK_MIRROR)
608 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
609 sizeof(tk_core.timekeeper));
610 }
611
612 /**
613 * timekeeping_forward_now - update clock to the current time
614 *
615 * Forward the current clock to update its state since the last call to
616 * update_wall_time(). This is useful before significant clock changes,
617 * as it avoids having to deal with this time offset explicitly.
618 */
619 static void timekeeping_forward_now(struct timekeeper *tk)
620 {
621 struct clocksource *clock = tk->tkr_mono.clock;
622 cycle_t cycle_now, delta;
623 s64 nsec;
624
625 cycle_now = tk->tkr_mono.read(clock);
626 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
627 tk->tkr_mono.cycle_last = cycle_now;
628 tk->tkr_raw.cycle_last = cycle_now;
629
630 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
631
632 /* If arch requires, add in get_arch_timeoffset() */
633 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
634
635 tk_normalize_xtime(tk);
636
637 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638 timespec64_add_ns(&tk->raw_time, nsec);
639 }
640
641 /**
642 * __getnstimeofday64 - Returns the time of day in a timespec64.
643 * @ts: pointer to the timespec to be set
644 *
645 * Updates the time of day in the timespec.
646 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
647 */
648 int __getnstimeofday64(struct timespec64 *ts)
649 {
650 struct timekeeper *tk = &tk_core.timekeeper;
651 unsigned long seq;
652 s64 nsecs = 0;
653
654 do {
655 seq = read_seqcount_begin(&tk_core.seq);
656
657 ts->tv_sec = tk->xtime_sec;
658 nsecs = timekeeping_get_ns(&tk->tkr_mono);
659
660 } while (read_seqcount_retry(&tk_core.seq, seq));
661
662 ts->tv_nsec = 0;
663 timespec64_add_ns(ts, nsecs);
664
665 /*
666 * Do not bail out early, in case there were callers still using
667 * the value, even in the face of the WARN_ON.
668 */
669 if (unlikely(timekeeping_suspended))
670 return -EAGAIN;
671 return 0;
672 }
673 EXPORT_SYMBOL(__getnstimeofday64);
674
675 /**
676 * getnstimeofday64 - Returns the time of day in a timespec64.
677 * @ts: pointer to the timespec64 to be set
678 *
679 * Returns the time of day in a timespec64 (WARN if suspended).
680 */
681 void getnstimeofday64(struct timespec64 *ts)
682 {
683 WARN_ON(__getnstimeofday64(ts));
684 }
685 EXPORT_SYMBOL(getnstimeofday64);
686
687 ktime_t ktime_get(void)
688 {
689 struct timekeeper *tk = &tk_core.timekeeper;
690 unsigned int seq;
691 ktime_t base;
692 s64 nsecs;
693
694 WARN_ON(timekeeping_suspended);
695
696 do {
697 seq = read_seqcount_begin(&tk_core.seq);
698 base = tk->tkr_mono.base;
699 nsecs = timekeeping_get_ns(&tk->tkr_mono);
700
701 } while (read_seqcount_retry(&tk_core.seq, seq));
702
703 return ktime_add_ns(base, nsecs);
704 }
705 EXPORT_SYMBOL_GPL(ktime_get);
706
707 u32 ktime_get_resolution_ns(void)
708 {
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned int seq;
711 u32 nsecs;
712
713 WARN_ON(timekeeping_suspended);
714
715 do {
716 seq = read_seqcount_begin(&tk_core.seq);
717 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
718 } while (read_seqcount_retry(&tk_core.seq, seq));
719
720 return nsecs;
721 }
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
723
724 static ktime_t *offsets[TK_OFFS_MAX] = {
725 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
726 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
727 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
728 };
729
730 ktime_t ktime_get_with_offset(enum tk_offsets offs)
731 {
732 struct timekeeper *tk = &tk_core.timekeeper;
733 unsigned int seq;
734 ktime_t base, *offset = offsets[offs];
735 s64 nsecs;
736
737 WARN_ON(timekeeping_suspended);
738
739 do {
740 seq = read_seqcount_begin(&tk_core.seq);
741 base = ktime_add(tk->tkr_mono.base, *offset);
742 nsecs = timekeeping_get_ns(&tk->tkr_mono);
743
744 } while (read_seqcount_retry(&tk_core.seq, seq));
745
746 return ktime_add_ns(base, nsecs);
747
748 }
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
750
751 /**
752 * ktime_mono_to_any() - convert mononotic time to any other time
753 * @tmono: time to convert.
754 * @offs: which offset to use
755 */
756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
757 {
758 ktime_t *offset = offsets[offs];
759 unsigned long seq;
760 ktime_t tconv;
761
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
764 tconv = ktime_add(tmono, *offset);
765 } while (read_seqcount_retry(&tk_core.seq, seq));
766
767 return tconv;
768 }
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
770
771 /**
772 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
773 */
774 ktime_t ktime_get_raw(void)
775 {
776 struct timekeeper *tk = &tk_core.timekeeper;
777 unsigned int seq;
778 ktime_t base;
779 s64 nsecs;
780
781 do {
782 seq = read_seqcount_begin(&tk_core.seq);
783 base = tk->tkr_raw.base;
784 nsecs = timekeeping_get_ns(&tk->tkr_raw);
785
786 } while (read_seqcount_retry(&tk_core.seq, seq));
787
788 return ktime_add_ns(base, nsecs);
789 }
790 EXPORT_SYMBOL_GPL(ktime_get_raw);
791
792 /**
793 * ktime_get_ts64 - get the monotonic clock in timespec64 format
794 * @ts: pointer to timespec variable
795 *
796 * The function calculates the monotonic clock from the realtime
797 * clock and the wall_to_monotonic offset and stores the result
798 * in normalized timespec64 format in the variable pointed to by @ts.
799 */
800 void ktime_get_ts64(struct timespec64 *ts)
801 {
802 struct timekeeper *tk = &tk_core.timekeeper;
803 struct timespec64 tomono;
804 s64 nsec;
805 unsigned int seq;
806
807 WARN_ON(timekeeping_suspended);
808
809 do {
810 seq = read_seqcount_begin(&tk_core.seq);
811 ts->tv_sec = tk->xtime_sec;
812 nsec = timekeeping_get_ns(&tk->tkr_mono);
813 tomono = tk->wall_to_monotonic;
814
815 } while (read_seqcount_retry(&tk_core.seq, seq));
816
817 ts->tv_sec += tomono.tv_sec;
818 ts->tv_nsec = 0;
819 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_ts64);
822
823 /**
824 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
825 *
826 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828 * works on both 32 and 64 bit systems. On 32 bit systems the readout
829 * covers ~136 years of uptime which should be enough to prevent
830 * premature wrap arounds.
831 */
832 time64_t ktime_get_seconds(void)
833 {
834 struct timekeeper *tk = &tk_core.timekeeper;
835
836 WARN_ON(timekeeping_suspended);
837 return tk->ktime_sec;
838 }
839 EXPORT_SYMBOL_GPL(ktime_get_seconds);
840
841 /**
842 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
843 *
844 * Returns the wall clock seconds since 1970. This replaces the
845 * get_seconds() interface which is not y2038 safe on 32bit systems.
846 *
847 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848 * 32bit systems the access must be protected with the sequence
849 * counter to provide "atomic" access to the 64bit tk->xtime_sec
850 * value.
851 */
852 time64_t ktime_get_real_seconds(void)
853 {
854 struct timekeeper *tk = &tk_core.timekeeper;
855 time64_t seconds;
856 unsigned int seq;
857
858 if (IS_ENABLED(CONFIG_64BIT))
859 return tk->xtime_sec;
860
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 seconds = tk->xtime_sec;
864
865 } while (read_seqcount_retry(&tk_core.seq, seq));
866
867 return seconds;
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
870
871 /**
872 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
873 * but without the sequence counter protect. This internal function
874 * is called just when timekeeping lock is already held.
875 */
876 time64_t __ktime_get_real_seconds(void)
877 {
878 struct timekeeper *tk = &tk_core.timekeeper;
879
880 return tk->xtime_sec;
881 }
882
883 /**
884 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
885 * @systime_snapshot: pointer to struct receiving the system time snapshot
886 */
887 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
888 {
889 struct timekeeper *tk = &tk_core.timekeeper;
890 unsigned long seq;
891 ktime_t base_raw;
892 ktime_t base_real;
893 s64 nsec_raw;
894 s64 nsec_real;
895 cycle_t now;
896
897 WARN_ON_ONCE(timekeeping_suspended);
898
899 do {
900 seq = read_seqcount_begin(&tk_core.seq);
901
902 now = tk->tkr_mono.read(tk->tkr_mono.clock);
903 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
904 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
905 base_real = ktime_add(tk->tkr_mono.base,
906 tk_core.timekeeper.offs_real);
907 base_raw = tk->tkr_raw.base;
908 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
909 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
910 } while (read_seqcount_retry(&tk_core.seq, seq));
911
912 systime_snapshot->cycles = now;
913 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
914 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
917
918 /* Scale base by mult/div checking for overflow */
919 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
920 {
921 u64 tmp, rem;
922
923 tmp = div64_u64_rem(*base, div, &rem);
924
925 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
926 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
927 return -EOVERFLOW;
928 tmp *= mult;
929 rem *= mult;
930
931 do_div(rem, div);
932 *base = tmp + rem;
933 return 0;
934 }
935
936 /**
937 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
938 * @history: Snapshot representing start of history
939 * @partial_history_cycles: Cycle offset into history (fractional part)
940 * @total_history_cycles: Total history length in cycles
941 * @discontinuity: True indicates clock was set on history period
942 * @ts: Cross timestamp that should be adjusted using
943 * partial/total ratio
944 *
945 * Helper function used by get_device_system_crosststamp() to correct the
946 * crosstimestamp corresponding to the start of the current interval to the
947 * system counter value (timestamp point) provided by the driver. The
948 * total_history_* quantities are the total history starting at the provided
949 * reference point and ending at the start of the current interval. The cycle
950 * count between the driver timestamp point and the start of the current
951 * interval is partial_history_cycles.
952 */
953 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
954 cycle_t partial_history_cycles,
955 cycle_t total_history_cycles,
956 bool discontinuity,
957 struct system_device_crosststamp *ts)
958 {
959 struct timekeeper *tk = &tk_core.timekeeper;
960 u64 corr_raw, corr_real;
961 bool interp_forward;
962 int ret;
963
964 if (total_history_cycles == 0 || partial_history_cycles == 0)
965 return 0;
966
967 /* Interpolate shortest distance from beginning or end of history */
968 interp_forward = partial_history_cycles > total_history_cycles/2 ?
969 true : false;
970 partial_history_cycles = interp_forward ?
971 total_history_cycles - partial_history_cycles :
972 partial_history_cycles;
973
974 /*
975 * Scale the monotonic raw time delta by:
976 * partial_history_cycles / total_history_cycles
977 */
978 corr_raw = (u64)ktime_to_ns(
979 ktime_sub(ts->sys_monoraw, history->raw));
980 ret = scale64_check_overflow(partial_history_cycles,
981 total_history_cycles, &corr_raw);
982 if (ret)
983 return ret;
984
985 /*
986 * If there is a discontinuity in the history, scale monotonic raw
987 * correction by:
988 * mult(real)/mult(raw) yielding the realtime correction
989 * Otherwise, calculate the realtime correction similar to monotonic
990 * raw calculation
991 */
992 if (discontinuity) {
993 corr_real = mul_u64_u32_div
994 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
995 } else {
996 corr_real = (u64)ktime_to_ns(
997 ktime_sub(ts->sys_realtime, history->real));
998 ret = scale64_check_overflow(partial_history_cycles,
999 total_history_cycles, &corr_real);
1000 if (ret)
1001 return ret;
1002 }
1003
1004 /* Fixup monotonic raw and real time time values */
1005 if (interp_forward) {
1006 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1007 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1008 } else {
1009 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1010 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1011 }
1012
1013 return 0;
1014 }
1015
1016 /*
1017 * cycle_between - true if test occurs chronologically between before and after
1018 */
1019 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1020 {
1021 if (test > before && test < after)
1022 return true;
1023 if (test < before && before > after)
1024 return true;
1025 return false;
1026 }
1027
1028 /**
1029 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1030 * @get_time_fn: Callback to get simultaneous device time and
1031 * system counter from the device driver
1032 * @ctx: Context passed to get_time_fn()
1033 * @history_begin: Historical reference point used to interpolate system
1034 * time when counter provided by the driver is before the current interval
1035 * @xtstamp: Receives simultaneously captured system and device time
1036 *
1037 * Reads a timestamp from a device and correlates it to system time
1038 */
1039 int get_device_system_crosststamp(int (*get_time_fn)
1040 (ktime_t *device_time,
1041 struct system_counterval_t *sys_counterval,
1042 void *ctx),
1043 void *ctx,
1044 struct system_time_snapshot *history_begin,
1045 struct system_device_crosststamp *xtstamp)
1046 {
1047 struct system_counterval_t system_counterval;
1048 struct timekeeper *tk = &tk_core.timekeeper;
1049 cycle_t cycles, now, interval_start;
1050 unsigned int clock_was_set_seq = 0;
1051 ktime_t base_real, base_raw;
1052 s64 nsec_real, nsec_raw;
1053 u8 cs_was_changed_seq;
1054 unsigned long seq;
1055 bool do_interp;
1056 int ret;
1057
1058 do {
1059 seq = read_seqcount_begin(&tk_core.seq);
1060 /*
1061 * Try to synchronously capture device time and a system
1062 * counter value calling back into the device driver
1063 */
1064 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1065 if (ret)
1066 return ret;
1067
1068 /*
1069 * Verify that the clocksource associated with the captured
1070 * system counter value is the same as the currently installed
1071 * timekeeper clocksource
1072 */
1073 if (tk->tkr_mono.clock != system_counterval.cs)
1074 return -ENODEV;
1075 cycles = system_counterval.cycles;
1076
1077 /*
1078 * Check whether the system counter value provided by the
1079 * device driver is on the current timekeeping interval.
1080 */
1081 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1082 interval_start = tk->tkr_mono.cycle_last;
1083 if (!cycle_between(interval_start, cycles, now)) {
1084 clock_was_set_seq = tk->clock_was_set_seq;
1085 cs_was_changed_seq = tk->cs_was_changed_seq;
1086 cycles = interval_start;
1087 do_interp = true;
1088 } else {
1089 do_interp = false;
1090 }
1091
1092 base_real = ktime_add(tk->tkr_mono.base,
1093 tk_core.timekeeper.offs_real);
1094 base_raw = tk->tkr_raw.base;
1095
1096 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1097 system_counterval.cycles);
1098 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1099 system_counterval.cycles);
1100 } while (read_seqcount_retry(&tk_core.seq, seq));
1101
1102 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1103 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1104
1105 /*
1106 * Interpolate if necessary, adjusting back from the start of the
1107 * current interval
1108 */
1109 if (do_interp) {
1110 cycle_t partial_history_cycles, total_history_cycles;
1111 bool discontinuity;
1112
1113 /*
1114 * Check that the counter value occurs after the provided
1115 * history reference and that the history doesn't cross a
1116 * clocksource change
1117 */
1118 if (!history_begin ||
1119 !cycle_between(history_begin->cycles,
1120 system_counterval.cycles, cycles) ||
1121 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1122 return -EINVAL;
1123 partial_history_cycles = cycles - system_counterval.cycles;
1124 total_history_cycles = cycles - history_begin->cycles;
1125 discontinuity =
1126 history_begin->clock_was_set_seq != clock_was_set_seq;
1127
1128 ret = adjust_historical_crosststamp(history_begin,
1129 partial_history_cycles,
1130 total_history_cycles,
1131 discontinuity, xtstamp);
1132 if (ret)
1133 return ret;
1134 }
1135
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1139
1140 /**
1141 * do_gettimeofday - Returns the time of day in a timeval
1142 * @tv: pointer to the timeval to be set
1143 *
1144 * NOTE: Users should be converted to using getnstimeofday()
1145 */
1146 void do_gettimeofday(struct timeval *tv)
1147 {
1148 struct timespec64 now;
1149
1150 getnstimeofday64(&now);
1151 tv->tv_sec = now.tv_sec;
1152 tv->tv_usec = now.tv_nsec/1000;
1153 }
1154 EXPORT_SYMBOL(do_gettimeofday);
1155
1156 /**
1157 * do_settimeofday64 - Sets the time of day.
1158 * @ts: pointer to the timespec64 variable containing the new time
1159 *
1160 * Sets the time of day to the new time and update NTP and notify hrtimers
1161 */
1162 int do_settimeofday64(const struct timespec64 *ts)
1163 {
1164 struct timekeeper *tk = &tk_core.timekeeper;
1165 struct timespec64 ts_delta, xt;
1166 unsigned long flags;
1167 int ret = 0;
1168
1169 if (!timespec64_valid_strict(ts))
1170 return -EINVAL;
1171
1172 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1173 write_seqcount_begin(&tk_core.seq);
1174
1175 timekeeping_forward_now(tk);
1176
1177 xt = tk_xtime(tk);
1178 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1179 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1180
1181 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1182 ret = -EINVAL;
1183 goto out;
1184 }
1185
1186 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1187
1188 tk_set_xtime(tk, ts);
1189 out:
1190 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1191
1192 write_seqcount_end(&tk_core.seq);
1193 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1194
1195 /* signal hrtimers about time change */
1196 clock_was_set();
1197
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(do_settimeofday64);
1201
1202 /**
1203 * timekeeping_inject_offset - Adds or subtracts from the current time.
1204 * @tv: pointer to the timespec variable containing the offset
1205 *
1206 * Adds or subtracts an offset value from the current time.
1207 */
1208 int timekeeping_inject_offset(struct timespec *ts)
1209 {
1210 struct timekeeper *tk = &tk_core.timekeeper;
1211 unsigned long flags;
1212 struct timespec64 ts64, tmp;
1213 int ret = 0;
1214
1215 if (!timespec_inject_offset_valid(ts))
1216 return -EINVAL;
1217
1218 ts64 = timespec_to_timespec64(*ts);
1219
1220 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1221 write_seqcount_begin(&tk_core.seq);
1222
1223 timekeeping_forward_now(tk);
1224
1225 /* Make sure the proposed value is valid */
1226 tmp = timespec64_add(tk_xtime(tk), ts64);
1227 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1228 !timespec64_valid_strict(&tmp)) {
1229 ret = -EINVAL;
1230 goto error;
1231 }
1232
1233 tk_xtime_add(tk, &ts64);
1234 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1235
1236 error: /* even if we error out, we forwarded the time, so call update */
1237 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238
1239 write_seqcount_end(&tk_core.seq);
1240 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241
1242 /* signal hrtimers about time change */
1243 clock_was_set();
1244
1245 return ret;
1246 }
1247 EXPORT_SYMBOL(timekeeping_inject_offset);
1248
1249
1250 /**
1251 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1252 *
1253 */
1254 s32 timekeeping_get_tai_offset(void)
1255 {
1256 struct timekeeper *tk = &tk_core.timekeeper;
1257 unsigned int seq;
1258 s32 ret;
1259
1260 do {
1261 seq = read_seqcount_begin(&tk_core.seq);
1262 ret = tk->tai_offset;
1263 } while (read_seqcount_retry(&tk_core.seq, seq));
1264
1265 return ret;
1266 }
1267
1268 /**
1269 * __timekeeping_set_tai_offset - Lock free worker function
1270 *
1271 */
1272 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1273 {
1274 tk->tai_offset = tai_offset;
1275 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1276 }
1277
1278 /**
1279 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1280 *
1281 */
1282 void timekeeping_set_tai_offset(s32 tai_offset)
1283 {
1284 struct timekeeper *tk = &tk_core.timekeeper;
1285 unsigned long flags;
1286
1287 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288 write_seqcount_begin(&tk_core.seq);
1289 __timekeeping_set_tai_offset(tk, tai_offset);
1290 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1291 write_seqcount_end(&tk_core.seq);
1292 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1293 clock_was_set();
1294 }
1295
1296 /**
1297 * change_clocksource - Swaps clocksources if a new one is available
1298 *
1299 * Accumulates current time interval and initializes new clocksource
1300 */
1301 static int change_clocksource(void *data)
1302 {
1303 struct timekeeper *tk = &tk_core.timekeeper;
1304 struct clocksource *new, *old;
1305 unsigned long flags;
1306
1307 new = (struct clocksource *) data;
1308
1309 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310 write_seqcount_begin(&tk_core.seq);
1311
1312 timekeeping_forward_now(tk);
1313 /*
1314 * If the cs is in module, get a module reference. Succeeds
1315 * for built-in code (owner == NULL) as well.
1316 */
1317 if (try_module_get(new->owner)) {
1318 if (!new->enable || new->enable(new) == 0) {
1319 old = tk->tkr_mono.clock;
1320 tk_setup_internals(tk, new);
1321 if (old->disable)
1322 old->disable(old);
1323 module_put(old->owner);
1324 } else {
1325 module_put(new->owner);
1326 }
1327 }
1328 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1329
1330 write_seqcount_end(&tk_core.seq);
1331 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * timekeeping_notify - Install a new clock source
1338 * @clock: pointer to the clock source
1339 *
1340 * This function is called from clocksource.c after a new, better clock
1341 * source has been registered. The caller holds the clocksource_mutex.
1342 */
1343 int timekeeping_notify(struct clocksource *clock)
1344 {
1345 struct timekeeper *tk = &tk_core.timekeeper;
1346
1347 if (tk->tkr_mono.clock == clock)
1348 return 0;
1349 stop_machine(change_clocksource, clock, NULL);
1350 tick_clock_notify();
1351 return tk->tkr_mono.clock == clock ? 0 : -1;
1352 }
1353
1354 /**
1355 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1356 * @ts: pointer to the timespec64 to be set
1357 *
1358 * Returns the raw monotonic time (completely un-modified by ntp)
1359 */
1360 void getrawmonotonic64(struct timespec64 *ts)
1361 {
1362 struct timekeeper *tk = &tk_core.timekeeper;
1363 struct timespec64 ts64;
1364 unsigned long seq;
1365 s64 nsecs;
1366
1367 do {
1368 seq = read_seqcount_begin(&tk_core.seq);
1369 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1370 ts64 = tk->raw_time;
1371
1372 } while (read_seqcount_retry(&tk_core.seq, seq));
1373
1374 timespec64_add_ns(&ts64, nsecs);
1375 *ts = ts64;
1376 }
1377 EXPORT_SYMBOL(getrawmonotonic64);
1378
1379
1380 /**
1381 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1382 */
1383 int timekeeping_valid_for_hres(void)
1384 {
1385 struct timekeeper *tk = &tk_core.timekeeper;
1386 unsigned long seq;
1387 int ret;
1388
1389 do {
1390 seq = read_seqcount_begin(&tk_core.seq);
1391
1392 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1393
1394 } while (read_seqcount_retry(&tk_core.seq, seq));
1395
1396 return ret;
1397 }
1398
1399 /**
1400 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1401 */
1402 u64 timekeeping_max_deferment(void)
1403 {
1404 struct timekeeper *tk = &tk_core.timekeeper;
1405 unsigned long seq;
1406 u64 ret;
1407
1408 do {
1409 seq = read_seqcount_begin(&tk_core.seq);
1410
1411 ret = tk->tkr_mono.clock->max_idle_ns;
1412
1413 } while (read_seqcount_retry(&tk_core.seq, seq));
1414
1415 return ret;
1416 }
1417
1418 /**
1419 * read_persistent_clock - Return time from the persistent clock.
1420 *
1421 * Weak dummy function for arches that do not yet support it.
1422 * Reads the time from the battery backed persistent clock.
1423 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1424 *
1425 * XXX - Do be sure to remove it once all arches implement it.
1426 */
1427 void __weak read_persistent_clock(struct timespec *ts)
1428 {
1429 ts->tv_sec = 0;
1430 ts->tv_nsec = 0;
1431 }
1432
1433 void __weak read_persistent_clock64(struct timespec64 *ts64)
1434 {
1435 struct timespec ts;
1436
1437 read_persistent_clock(&ts);
1438 *ts64 = timespec_to_timespec64(ts);
1439 }
1440
1441 /**
1442 * read_boot_clock64 - Return time of the system start.
1443 *
1444 * Weak dummy function for arches that do not yet support it.
1445 * Function to read the exact time the system has been started.
1446 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1447 *
1448 * XXX - Do be sure to remove it once all arches implement it.
1449 */
1450 void __weak read_boot_clock64(struct timespec64 *ts)
1451 {
1452 ts->tv_sec = 0;
1453 ts->tv_nsec = 0;
1454 }
1455
1456 /* Flag for if timekeeping_resume() has injected sleeptime */
1457 static bool sleeptime_injected;
1458
1459 /* Flag for if there is a persistent clock on this platform */
1460 static bool persistent_clock_exists;
1461
1462 /*
1463 * timekeeping_init - Initializes the clocksource and common timekeeping values
1464 */
1465 void __init timekeeping_init(void)
1466 {
1467 struct timekeeper *tk = &tk_core.timekeeper;
1468 struct clocksource *clock;
1469 unsigned long flags;
1470 struct timespec64 now, boot, tmp;
1471
1472 read_persistent_clock64(&now);
1473 if (!timespec64_valid_strict(&now)) {
1474 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1475 " Check your CMOS/BIOS settings.\n");
1476 now.tv_sec = 0;
1477 now.tv_nsec = 0;
1478 } else if (now.tv_sec || now.tv_nsec)
1479 persistent_clock_exists = true;
1480
1481 read_boot_clock64(&boot);
1482 if (!timespec64_valid_strict(&boot)) {
1483 pr_warn("WARNING: Boot clock returned invalid value!\n"
1484 " Check your CMOS/BIOS settings.\n");
1485 boot.tv_sec = 0;
1486 boot.tv_nsec = 0;
1487 }
1488
1489 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1490 write_seqcount_begin(&tk_core.seq);
1491 ntp_init();
1492
1493 clock = clocksource_default_clock();
1494 if (clock->enable)
1495 clock->enable(clock);
1496 tk_setup_internals(tk, clock);
1497
1498 tk_set_xtime(tk, &now);
1499 tk->raw_time.tv_sec = 0;
1500 tk->raw_time.tv_nsec = 0;
1501 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1502 boot = tk_xtime(tk);
1503
1504 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1505 tk_set_wall_to_mono(tk, tmp);
1506
1507 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1508
1509 write_seqcount_end(&tk_core.seq);
1510 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1511 }
1512
1513 /* time in seconds when suspend began for persistent clock */
1514 static struct timespec64 timekeeping_suspend_time;
1515
1516 /**
1517 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1518 * @delta: pointer to a timespec delta value
1519 *
1520 * Takes a timespec offset measuring a suspend interval and properly
1521 * adds the sleep offset to the timekeeping variables.
1522 */
1523 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1524 struct timespec64 *delta)
1525 {
1526 if (!timespec64_valid_strict(delta)) {
1527 printk_deferred(KERN_WARNING
1528 "__timekeeping_inject_sleeptime: Invalid "
1529 "sleep delta value!\n");
1530 return;
1531 }
1532 tk_xtime_add(tk, delta);
1533 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1534 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1535 tk_debug_account_sleep_time(delta);
1536 }
1537
1538 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1539 /**
1540 * We have three kinds of time sources to use for sleep time
1541 * injection, the preference order is:
1542 * 1) non-stop clocksource
1543 * 2) persistent clock (ie: RTC accessible when irqs are off)
1544 * 3) RTC
1545 *
1546 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1547 * If system has neither 1) nor 2), 3) will be used finally.
1548 *
1549 *
1550 * If timekeeping has injected sleeptime via either 1) or 2),
1551 * 3) becomes needless, so in this case we don't need to call
1552 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1553 * means.
1554 */
1555 bool timekeeping_rtc_skipresume(void)
1556 {
1557 return sleeptime_injected;
1558 }
1559
1560 /**
1561 * 1) can be determined whether to use or not only when doing
1562 * timekeeping_resume() which is invoked after rtc_suspend(),
1563 * so we can't skip rtc_suspend() surely if system has 1).
1564 *
1565 * But if system has 2), 2) will definitely be used, so in this
1566 * case we don't need to call rtc_suspend(), and this is what
1567 * timekeeping_rtc_skipsuspend() means.
1568 */
1569 bool timekeeping_rtc_skipsuspend(void)
1570 {
1571 return persistent_clock_exists;
1572 }
1573
1574 /**
1575 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1576 * @delta: pointer to a timespec64 delta value
1577 *
1578 * This hook is for architectures that cannot support read_persistent_clock64
1579 * because their RTC/persistent clock is only accessible when irqs are enabled.
1580 * and also don't have an effective nonstop clocksource.
1581 *
1582 * This function should only be called by rtc_resume(), and allows
1583 * a suspend offset to be injected into the timekeeping values.
1584 */
1585 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1586 {
1587 struct timekeeper *tk = &tk_core.timekeeper;
1588 unsigned long flags;
1589
1590 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1591 write_seqcount_begin(&tk_core.seq);
1592
1593 timekeeping_forward_now(tk);
1594
1595 __timekeeping_inject_sleeptime(tk, delta);
1596
1597 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1598
1599 write_seqcount_end(&tk_core.seq);
1600 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601
1602 /* signal hrtimers about time change */
1603 clock_was_set();
1604 }
1605 #endif
1606
1607 /**
1608 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1609 */
1610 void timekeeping_resume(void)
1611 {
1612 struct timekeeper *tk = &tk_core.timekeeper;
1613 struct clocksource *clock = tk->tkr_mono.clock;
1614 unsigned long flags;
1615 struct timespec64 ts_new, ts_delta;
1616 cycle_t cycle_now, cycle_delta;
1617
1618 sleeptime_injected = false;
1619 read_persistent_clock64(&ts_new);
1620
1621 clockevents_resume();
1622 clocksource_resume();
1623
1624 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1625 write_seqcount_begin(&tk_core.seq);
1626
1627 /*
1628 * After system resumes, we need to calculate the suspended time and
1629 * compensate it for the OS time. There are 3 sources that could be
1630 * used: Nonstop clocksource during suspend, persistent clock and rtc
1631 * device.
1632 *
1633 * One specific platform may have 1 or 2 or all of them, and the
1634 * preference will be:
1635 * suspend-nonstop clocksource -> persistent clock -> rtc
1636 * The less preferred source will only be tried if there is no better
1637 * usable source. The rtc part is handled separately in rtc core code.
1638 */
1639 cycle_now = tk->tkr_mono.read(clock);
1640 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1641 cycle_now > tk->tkr_mono.cycle_last) {
1642 u64 num, max = ULLONG_MAX;
1643 u32 mult = clock->mult;
1644 u32 shift = clock->shift;
1645 s64 nsec = 0;
1646
1647 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1648 tk->tkr_mono.mask);
1649
1650 /*
1651 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1652 * suspended time is too long. In that case we need do the
1653 * 64 bits math carefully
1654 */
1655 do_div(max, mult);
1656 if (cycle_delta > max) {
1657 num = div64_u64(cycle_delta, max);
1658 nsec = (((u64) max * mult) >> shift) * num;
1659 cycle_delta -= num * max;
1660 }
1661 nsec += ((u64) cycle_delta * mult) >> shift;
1662
1663 ts_delta = ns_to_timespec64(nsec);
1664 sleeptime_injected = true;
1665 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1666 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1667 sleeptime_injected = true;
1668 }
1669
1670 if (sleeptime_injected)
1671 __timekeeping_inject_sleeptime(tk, &ts_delta);
1672
1673 /* Re-base the last cycle value */
1674 tk->tkr_mono.cycle_last = cycle_now;
1675 tk->tkr_raw.cycle_last = cycle_now;
1676
1677 tk->ntp_error = 0;
1678 timekeeping_suspended = 0;
1679 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1680 write_seqcount_end(&tk_core.seq);
1681 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1682
1683 touch_softlockup_watchdog();
1684
1685 tick_resume();
1686 hrtimers_resume();
1687 }
1688
1689 int timekeeping_suspend(void)
1690 {
1691 struct timekeeper *tk = &tk_core.timekeeper;
1692 unsigned long flags;
1693 struct timespec64 delta, delta_delta;
1694 static struct timespec64 old_delta;
1695
1696 read_persistent_clock64(&timekeeping_suspend_time);
1697
1698 /*
1699 * On some systems the persistent_clock can not be detected at
1700 * timekeeping_init by its return value, so if we see a valid
1701 * value returned, update the persistent_clock_exists flag.
1702 */
1703 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1704 persistent_clock_exists = true;
1705
1706 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1707 write_seqcount_begin(&tk_core.seq);
1708 timekeeping_forward_now(tk);
1709 timekeeping_suspended = 1;
1710
1711 if (persistent_clock_exists) {
1712 /*
1713 * To avoid drift caused by repeated suspend/resumes,
1714 * which each can add ~1 second drift error,
1715 * try to compensate so the difference in system time
1716 * and persistent_clock time stays close to constant.
1717 */
1718 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1719 delta_delta = timespec64_sub(delta, old_delta);
1720 if (abs(delta_delta.tv_sec) >= 2) {
1721 /*
1722 * if delta_delta is too large, assume time correction
1723 * has occurred and set old_delta to the current delta.
1724 */
1725 old_delta = delta;
1726 } else {
1727 /* Otherwise try to adjust old_system to compensate */
1728 timekeeping_suspend_time =
1729 timespec64_add(timekeeping_suspend_time, delta_delta);
1730 }
1731 }
1732
1733 timekeeping_update(tk, TK_MIRROR);
1734 halt_fast_timekeeper(tk);
1735 write_seqcount_end(&tk_core.seq);
1736 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737
1738 tick_suspend();
1739 clocksource_suspend();
1740 clockevents_suspend();
1741
1742 return 0;
1743 }
1744
1745 /* sysfs resume/suspend bits for timekeeping */
1746 static struct syscore_ops timekeeping_syscore_ops = {
1747 .resume = timekeeping_resume,
1748 .suspend = timekeeping_suspend,
1749 };
1750
1751 static int __init timekeeping_init_ops(void)
1752 {
1753 register_syscore_ops(&timekeeping_syscore_ops);
1754 return 0;
1755 }
1756 device_initcall(timekeeping_init_ops);
1757
1758 /*
1759 * Apply a multiplier adjustment to the timekeeper
1760 */
1761 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1762 s64 offset,
1763 bool negative,
1764 int adj_scale)
1765 {
1766 s64 interval = tk->cycle_interval;
1767 s32 mult_adj = 1;
1768
1769 if (negative) {
1770 mult_adj = -mult_adj;
1771 interval = -interval;
1772 offset = -offset;
1773 }
1774 mult_adj <<= adj_scale;
1775 interval <<= adj_scale;
1776 offset <<= adj_scale;
1777
1778 /*
1779 * So the following can be confusing.
1780 *
1781 * To keep things simple, lets assume mult_adj == 1 for now.
1782 *
1783 * When mult_adj != 1, remember that the interval and offset values
1784 * have been appropriately scaled so the math is the same.
1785 *
1786 * The basic idea here is that we're increasing the multiplier
1787 * by one, this causes the xtime_interval to be incremented by
1788 * one cycle_interval. This is because:
1789 * xtime_interval = cycle_interval * mult
1790 * So if mult is being incremented by one:
1791 * xtime_interval = cycle_interval * (mult + 1)
1792 * Its the same as:
1793 * xtime_interval = (cycle_interval * mult) + cycle_interval
1794 * Which can be shortened to:
1795 * xtime_interval += cycle_interval
1796 *
1797 * So offset stores the non-accumulated cycles. Thus the current
1798 * time (in shifted nanoseconds) is:
1799 * now = (offset * adj) + xtime_nsec
1800 * Now, even though we're adjusting the clock frequency, we have
1801 * to keep time consistent. In other words, we can't jump back
1802 * in time, and we also want to avoid jumping forward in time.
1803 *
1804 * So given the same offset value, we need the time to be the same
1805 * both before and after the freq adjustment.
1806 * now = (offset * adj_1) + xtime_nsec_1
1807 * now = (offset * adj_2) + xtime_nsec_2
1808 * So:
1809 * (offset * adj_1) + xtime_nsec_1 =
1810 * (offset * adj_2) + xtime_nsec_2
1811 * And we know:
1812 * adj_2 = adj_1 + 1
1813 * So:
1814 * (offset * adj_1) + xtime_nsec_1 =
1815 * (offset * (adj_1+1)) + xtime_nsec_2
1816 * (offset * adj_1) + xtime_nsec_1 =
1817 * (offset * adj_1) + offset + xtime_nsec_2
1818 * Canceling the sides:
1819 * xtime_nsec_1 = offset + xtime_nsec_2
1820 * Which gives us:
1821 * xtime_nsec_2 = xtime_nsec_1 - offset
1822 * Which simplfies to:
1823 * xtime_nsec -= offset
1824 *
1825 * XXX - TODO: Doc ntp_error calculation.
1826 */
1827 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1828 /* NTP adjustment caused clocksource mult overflow */
1829 WARN_ON_ONCE(1);
1830 return;
1831 }
1832
1833 tk->tkr_mono.mult += mult_adj;
1834 tk->xtime_interval += interval;
1835 tk->tkr_mono.xtime_nsec -= offset;
1836 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1837 }
1838
1839 /*
1840 * Calculate the multiplier adjustment needed to match the frequency
1841 * specified by NTP
1842 */
1843 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1844 s64 offset)
1845 {
1846 s64 interval = tk->cycle_interval;
1847 s64 xinterval = tk->xtime_interval;
1848 u32 base = tk->tkr_mono.clock->mult;
1849 u32 max = tk->tkr_mono.clock->maxadj;
1850 u32 cur_adj = tk->tkr_mono.mult;
1851 s64 tick_error;
1852 bool negative;
1853 u32 adj_scale;
1854
1855 /* Remove any current error adj from freq calculation */
1856 if (tk->ntp_err_mult)
1857 xinterval -= tk->cycle_interval;
1858
1859 tk->ntp_tick = ntp_tick_length();
1860
1861 /* Calculate current error per tick */
1862 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1863 tick_error -= (xinterval + tk->xtime_remainder);
1864
1865 /* Don't worry about correcting it if its small */
1866 if (likely((tick_error >= 0) && (tick_error <= interval)))
1867 return;
1868
1869 /* preserve the direction of correction */
1870 negative = (tick_error < 0);
1871
1872 /* If any adjustment would pass the max, just return */
1873 if (negative && (cur_adj - 1) <= (base - max))
1874 return;
1875 if (!negative && (cur_adj + 1) >= (base + max))
1876 return;
1877 /*
1878 * Sort out the magnitude of the correction, but
1879 * avoid making so large a correction that we go
1880 * over the max adjustment.
1881 */
1882 adj_scale = 0;
1883 tick_error = abs(tick_error);
1884 while (tick_error > interval) {
1885 u32 adj = 1 << (adj_scale + 1);
1886
1887 /* Check if adjustment gets us within 1 unit from the max */
1888 if (negative && (cur_adj - adj) <= (base - max))
1889 break;
1890 if (!negative && (cur_adj + adj) >= (base + max))
1891 break;
1892
1893 adj_scale++;
1894 tick_error >>= 1;
1895 }
1896
1897 /* scale the corrections */
1898 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1899 }
1900
1901 /*
1902 * Adjust the timekeeper's multiplier to the correct frequency
1903 * and also to reduce the accumulated error value.
1904 */
1905 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1906 {
1907 /* Correct for the current frequency error */
1908 timekeeping_freqadjust(tk, offset);
1909
1910 /* Next make a small adjustment to fix any cumulative error */
1911 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1912 tk->ntp_err_mult = 1;
1913 timekeeping_apply_adjustment(tk, offset, 0, 0);
1914 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1915 /* Undo any existing error adjustment */
1916 timekeeping_apply_adjustment(tk, offset, 1, 0);
1917 tk->ntp_err_mult = 0;
1918 }
1919
1920 if (unlikely(tk->tkr_mono.clock->maxadj &&
1921 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922 > tk->tkr_mono.clock->maxadj))) {
1923 printk_once(KERN_WARNING
1924 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1925 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927 }
1928
1929 /*
1930 * It may be possible that when we entered this function, xtime_nsec
1931 * was very small. Further, if we're slightly speeding the clocksource
1932 * in the code above, its possible the required corrective factor to
1933 * xtime_nsec could cause it to underflow.
1934 *
1935 * Now, since we already accumulated the second, cannot simply roll
1936 * the accumulated second back, since the NTP subsystem has been
1937 * notified via second_overflow. So instead we push xtime_nsec forward
1938 * by the amount we underflowed, and add that amount into the error.
1939 *
1940 * We'll correct this error next time through this function, when
1941 * xtime_nsec is not as small.
1942 */
1943 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1945 tk->tkr_mono.xtime_nsec = 0;
1946 tk->ntp_error += neg << tk->ntp_error_shift;
1947 }
1948 }
1949
1950 /**
1951 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1952 *
1953 * Helper function that accumulates the nsecs greater than a second
1954 * from the xtime_nsec field to the xtime_secs field.
1955 * It also calls into the NTP code to handle leapsecond processing.
1956 *
1957 */
1958 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1959 {
1960 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1961 unsigned int clock_set = 0;
1962
1963 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1964 int leap;
1965
1966 tk->tkr_mono.xtime_nsec -= nsecps;
1967 tk->xtime_sec++;
1968
1969 /* Figure out if its a leap sec and apply if needed */
1970 leap = second_overflow(tk->xtime_sec);
1971 if (unlikely(leap)) {
1972 struct timespec64 ts;
1973
1974 tk->xtime_sec += leap;
1975
1976 ts.tv_sec = leap;
1977 ts.tv_nsec = 0;
1978 tk_set_wall_to_mono(tk,
1979 timespec64_sub(tk->wall_to_monotonic, ts));
1980
1981 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1982
1983 clock_set = TK_CLOCK_WAS_SET;
1984 }
1985 }
1986 return clock_set;
1987 }
1988
1989 /**
1990 * logarithmic_accumulation - shifted accumulation of cycles
1991 *
1992 * This functions accumulates a shifted interval of cycles into
1993 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1994 * loop.
1995 *
1996 * Returns the unconsumed cycles.
1997 */
1998 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1999 u32 shift,
2000 unsigned int *clock_set)
2001 {
2002 cycle_t interval = tk->cycle_interval << shift;
2003 u64 raw_nsecs;
2004
2005 /* If the offset is smaller than a shifted interval, do nothing */
2006 if (offset < interval)
2007 return offset;
2008
2009 /* Accumulate one shifted interval */
2010 offset -= interval;
2011 tk->tkr_mono.cycle_last += interval;
2012 tk->tkr_raw.cycle_last += interval;
2013
2014 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2015 *clock_set |= accumulate_nsecs_to_secs(tk);
2016
2017 /* Accumulate raw time */
2018 raw_nsecs = (u64)tk->raw_interval << shift;
2019 raw_nsecs += tk->raw_time.tv_nsec;
2020 if (raw_nsecs >= NSEC_PER_SEC) {
2021 u64 raw_secs = raw_nsecs;
2022 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2023 tk->raw_time.tv_sec += raw_secs;
2024 }
2025 tk->raw_time.tv_nsec = raw_nsecs;
2026
2027 /* Accumulate error between NTP and clock interval */
2028 tk->ntp_error += tk->ntp_tick << shift;
2029 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2030 (tk->ntp_error_shift + shift);
2031
2032 return offset;
2033 }
2034
2035 /**
2036 * update_wall_time - Uses the current clocksource to increment the wall time
2037 *
2038 */
2039 void update_wall_time(void)
2040 {
2041 struct timekeeper *real_tk = &tk_core.timekeeper;
2042 struct timekeeper *tk = &shadow_timekeeper;
2043 cycle_t offset;
2044 int shift = 0, maxshift;
2045 unsigned int clock_set = 0;
2046 unsigned long flags;
2047
2048 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049
2050 /* Make sure we're fully resumed: */
2051 if (unlikely(timekeeping_suspended))
2052 goto out;
2053
2054 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2055 offset = real_tk->cycle_interval;
2056 #else
2057 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2058 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059 #endif
2060
2061 /* Check if there's really nothing to do */
2062 if (offset < real_tk->cycle_interval)
2063 goto out;
2064
2065 /* Do some additional sanity checking */
2066 timekeeping_check_update(real_tk, offset);
2067
2068 /*
2069 * With NO_HZ we may have to accumulate many cycle_intervals
2070 * (think "ticks") worth of time at once. To do this efficiently,
2071 * we calculate the largest doubling multiple of cycle_intervals
2072 * that is smaller than the offset. We then accumulate that
2073 * chunk in one go, and then try to consume the next smaller
2074 * doubled multiple.
2075 */
2076 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077 shift = max(0, shift);
2078 /* Bound shift to one less than what overflows tick_length */
2079 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080 shift = min(shift, maxshift);
2081 while (offset >= tk->cycle_interval) {
2082 offset = logarithmic_accumulation(tk, offset, shift,
2083 &clock_set);
2084 if (offset < tk->cycle_interval<<shift)
2085 shift--;
2086 }
2087
2088 /* correct the clock when NTP error is too big */
2089 timekeeping_adjust(tk, offset);
2090
2091 /*
2092 * XXX This can be killed once everyone converts
2093 * to the new update_vsyscall.
2094 */
2095 old_vsyscall_fixup(tk);
2096
2097 /*
2098 * Finally, make sure that after the rounding
2099 * xtime_nsec isn't larger than NSEC_PER_SEC
2100 */
2101 clock_set |= accumulate_nsecs_to_secs(tk);
2102
2103 write_seqcount_begin(&tk_core.seq);
2104 /*
2105 * Update the real timekeeper.
2106 *
2107 * We could avoid this memcpy by switching pointers, but that
2108 * requires changes to all other timekeeper usage sites as
2109 * well, i.e. move the timekeeper pointer getter into the
2110 * spinlocked/seqcount protected sections. And we trade this
2111 * memcpy under the tk_core.seq against one before we start
2112 * updating.
2113 */
2114 timekeeping_update(tk, clock_set);
2115 memcpy(real_tk, tk, sizeof(*tk));
2116 /* The memcpy must come last. Do not put anything here! */
2117 write_seqcount_end(&tk_core.seq);
2118 out:
2119 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120 if (clock_set)
2121 /* Have to call _delayed version, since in irq context*/
2122 clock_was_set_delayed();
2123 }
2124
2125 /**
2126 * getboottime64 - Return the real time of system boot.
2127 * @ts: pointer to the timespec64 to be set
2128 *
2129 * Returns the wall-time of boot in a timespec64.
2130 *
2131 * This is based on the wall_to_monotonic offset and the total suspend
2132 * time. Calls to settimeofday will affect the value returned (which
2133 * basically means that however wrong your real time clock is at boot time,
2134 * you get the right time here).
2135 */
2136 void getboottime64(struct timespec64 *ts)
2137 {
2138 struct timekeeper *tk = &tk_core.timekeeper;
2139 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2140
2141 *ts = ktime_to_timespec64(t);
2142 }
2143 EXPORT_SYMBOL_GPL(getboottime64);
2144
2145 unsigned long get_seconds(void)
2146 {
2147 struct timekeeper *tk = &tk_core.timekeeper;
2148
2149 return tk->xtime_sec;
2150 }
2151 EXPORT_SYMBOL(get_seconds);
2152
2153 struct timespec __current_kernel_time(void)
2154 {
2155 struct timekeeper *tk = &tk_core.timekeeper;
2156
2157 return timespec64_to_timespec(tk_xtime(tk));
2158 }
2159
2160 struct timespec64 current_kernel_time64(void)
2161 {
2162 struct timekeeper *tk = &tk_core.timekeeper;
2163 struct timespec64 now;
2164 unsigned long seq;
2165
2166 do {
2167 seq = read_seqcount_begin(&tk_core.seq);
2168
2169 now = tk_xtime(tk);
2170 } while (read_seqcount_retry(&tk_core.seq, seq));
2171
2172 return now;
2173 }
2174 EXPORT_SYMBOL(current_kernel_time64);
2175
2176 struct timespec64 get_monotonic_coarse64(void)
2177 {
2178 struct timekeeper *tk = &tk_core.timekeeper;
2179 struct timespec64 now, mono;
2180 unsigned long seq;
2181
2182 do {
2183 seq = read_seqcount_begin(&tk_core.seq);
2184
2185 now = tk_xtime(tk);
2186 mono = tk->wall_to_monotonic;
2187 } while (read_seqcount_retry(&tk_core.seq, seq));
2188
2189 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2190 now.tv_nsec + mono.tv_nsec);
2191
2192 return now;
2193 }
2194 EXPORT_SYMBOL(get_monotonic_coarse64);
2195
2196 /*
2197 * Must hold jiffies_lock
2198 */
2199 void do_timer(unsigned long ticks)
2200 {
2201 jiffies_64 += ticks;
2202 calc_global_load(ticks);
2203 }
2204
2205 /**
2206 * ktime_get_update_offsets_now - hrtimer helper
2207 * @cwsseq: pointer to check and store the clock was set sequence number
2208 * @offs_real: pointer to storage for monotonic -> realtime offset
2209 * @offs_boot: pointer to storage for monotonic -> boottime offset
2210 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2211 *
2212 * Returns current monotonic time and updates the offsets if the
2213 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2214 * different.
2215 *
2216 * Called from hrtimer_interrupt() or retrigger_next_event()
2217 */
2218 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2219 ktime_t *offs_boot, ktime_t *offs_tai)
2220 {
2221 struct timekeeper *tk = &tk_core.timekeeper;
2222 unsigned int seq;
2223 ktime_t base;
2224 u64 nsecs;
2225
2226 do {
2227 seq = read_seqcount_begin(&tk_core.seq);
2228
2229 base = tk->tkr_mono.base;
2230 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2231 base = ktime_add_ns(base, nsecs);
2232
2233 if (*cwsseq != tk->clock_was_set_seq) {
2234 *cwsseq = tk->clock_was_set_seq;
2235 *offs_real = tk->offs_real;
2236 *offs_boot = tk->offs_boot;
2237 *offs_tai = tk->offs_tai;
2238 }
2239
2240 /* Handle leapsecond insertion adjustments */
2241 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2242 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2243
2244 } while (read_seqcount_retry(&tk_core.seq, seq));
2245
2246 return base;
2247 }
2248
2249 /**
2250 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2251 */
2252 int do_adjtimex(struct timex *txc)
2253 {
2254 struct timekeeper *tk = &tk_core.timekeeper;
2255 unsigned long flags;
2256 struct timespec64 ts;
2257 s32 orig_tai, tai;
2258 int ret;
2259
2260 /* Validate the data before disabling interrupts */
2261 ret = ntp_validate_timex(txc);
2262 if (ret)
2263 return ret;
2264
2265 if (txc->modes & ADJ_SETOFFSET) {
2266 struct timespec delta;
2267 delta.tv_sec = txc->time.tv_sec;
2268 delta.tv_nsec = txc->time.tv_usec;
2269 if (!(txc->modes & ADJ_NANO))
2270 delta.tv_nsec *= 1000;
2271 ret = timekeeping_inject_offset(&delta);
2272 if (ret)
2273 return ret;
2274 }
2275
2276 getnstimeofday64(&ts);
2277
2278 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2279 write_seqcount_begin(&tk_core.seq);
2280
2281 orig_tai = tai = tk->tai_offset;
2282 ret = __do_adjtimex(txc, &ts, &tai);
2283
2284 if (tai != orig_tai) {
2285 __timekeeping_set_tai_offset(tk, tai);
2286 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2287 }
2288 tk_update_leap_state(tk);
2289
2290 write_seqcount_end(&tk_core.seq);
2291 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292
2293 if (tai != orig_tai)
2294 clock_was_set();
2295
2296 ntp_notify_cmos_timer();
2297
2298 return ret;
2299 }
2300
2301 #ifdef CONFIG_NTP_PPS
2302 /**
2303 * hardpps() - Accessor function to NTP __hardpps function
2304 */
2305 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2306 {
2307 unsigned long flags;
2308
2309 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2310 write_seqcount_begin(&tk_core.seq);
2311
2312 __hardpps(phase_ts, raw_ts);
2313
2314 write_seqcount_end(&tk_core.seq);
2315 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316 }
2317 EXPORT_SYMBOL(hardpps);
2318 #endif
2319
2320 /**
2321 * xtime_update() - advances the timekeeping infrastructure
2322 * @ticks: number of ticks, that have elapsed since the last call.
2323 *
2324 * Must be called with interrupts disabled.
2325 */
2326 void xtime_update(unsigned long ticks)
2327 {
2328 write_seqlock(&jiffies_lock);
2329 do_timer(ticks);
2330 write_sequnlock(&jiffies_lock);
2331 update_wall_time();
2332 }
This page took 0.089973 seconds and 5 git commands to generate.