mm: workingset: fix crash in shadow node shrinker caused by replace_page_cache_page()
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
148 }
149 }
150 radix_tree_replace_slot(slot, page);
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
154 /*
155 * Don't track node that contains actual pages.
156 *
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
161 */
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
165 }
166 return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
171 {
172 struct radix_tree_node *node;
173 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
174
175 VM_BUG_ON_PAGE(!PageLocked(page), page);
176 VM_BUG_ON_PAGE(PageTail(page), page);
177 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
178
179 if (shadow) {
180 mapping->nrexceptional += nr;
181 /*
182 * Make sure the nrexceptional update is committed before
183 * the nrpages update so that final truncate racing
184 * with reclaim does not see both counters 0 at the
185 * same time and miss a shadow entry.
186 */
187 smp_wmb();
188 }
189 mapping->nrpages -= nr;
190
191 for (i = 0; i < nr; i++) {
192 node = radix_tree_replace_clear_tags(&mapping->page_tree,
193 page->index + i, shadow);
194 if (!node) {
195 VM_BUG_ON_PAGE(nr != 1, page);
196 return;
197 }
198
199 workingset_node_pages_dec(node);
200 if (shadow)
201 workingset_node_shadows_inc(node);
202 else
203 if (__radix_tree_delete_node(&mapping->page_tree, node))
204 continue;
205
206 /*
207 * Track node that only contains shadow entries. DAX mappings
208 * contain no shadow entries and may contain other exceptional
209 * entries so skip those.
210 *
211 * Avoid acquiring the list_lru lock if already tracked.
212 * The list_empty() test is safe as node->private_list is
213 * protected by mapping->tree_lock.
214 */
215 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
216 list_empty(&node->private_list)) {
217 node->private_data = mapping;
218 list_lru_add(&workingset_shadow_nodes,
219 &node->private_list);
220 }
221 }
222 }
223
224 /*
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the mapping's tree_lock.
228 */
229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 struct address_space *mapping = page->mapping;
232 int nr = hpage_nr_pages(page);
233
234 trace_mm_filemap_delete_from_page_cache(page);
235 /*
236 * if we're uptodate, flush out into the cleancache, otherwise
237 * invalidate any existing cleancache entries. We can't leave
238 * stale data around in the cleancache once our page is gone
239 */
240 if (PageUptodate(page) && PageMappedToDisk(page))
241 cleancache_put_page(page);
242 else
243 cleancache_invalidate_page(mapping, page);
244
245 VM_BUG_ON_PAGE(PageTail(page), page);
246 VM_BUG_ON_PAGE(page_mapped(page), page);
247 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
248 int mapcount;
249
250 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 dump_page(page, "still mapped when deleted");
253 dump_stack();
254 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
255
256 mapcount = page_mapcount(page);
257 if (mapping_exiting(mapping) &&
258 page_count(page) >= mapcount + 2) {
259 /*
260 * All vmas have already been torn down, so it's
261 * a good bet that actually the page is unmapped,
262 * and we'd prefer not to leak it: if we're wrong,
263 * some other bad page check should catch it later.
264 */
265 page_mapcount_reset(page);
266 page_ref_sub(page, mapcount);
267 }
268 }
269
270 page_cache_tree_delete(mapping, page, shadow);
271
272 page->mapping = NULL;
273 /* Leave page->index set: truncation lookup relies upon it */
274
275 /* hugetlb pages do not participate in page cache accounting. */
276 if (!PageHuge(page))
277 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
278 if (PageSwapBacked(page)) {
279 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
280 if (PageTransHuge(page))
281 __dec_node_page_state(page, NR_SHMEM_THPS);
282 } else {
283 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
284 }
285
286 /*
287 * At this point page must be either written or cleaned by truncate.
288 * Dirty page here signals a bug and loss of unwritten data.
289 *
290 * This fixes dirty accounting after removing the page entirely but
291 * leaves PageDirty set: it has no effect for truncated page and
292 * anyway will be cleared before returning page into buddy allocator.
293 */
294 if (WARN_ON_ONCE(PageDirty(page)))
295 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
296 }
297
298 /**
299 * delete_from_page_cache - delete page from page cache
300 * @page: the page which the kernel is trying to remove from page cache
301 *
302 * This must be called only on pages that have been verified to be in the page
303 * cache and locked. It will never put the page into the free list, the caller
304 * has a reference on the page.
305 */
306 void delete_from_page_cache(struct page *page)
307 {
308 struct address_space *mapping = page_mapping(page);
309 unsigned long flags;
310 void (*freepage)(struct page *);
311
312 BUG_ON(!PageLocked(page));
313
314 freepage = mapping->a_ops->freepage;
315
316 spin_lock_irqsave(&mapping->tree_lock, flags);
317 __delete_from_page_cache(page, NULL);
318 spin_unlock_irqrestore(&mapping->tree_lock, flags);
319
320 if (freepage)
321 freepage(page);
322
323 if (PageTransHuge(page) && !PageHuge(page)) {
324 page_ref_sub(page, HPAGE_PMD_NR);
325 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
326 } else {
327 put_page(page);
328 }
329 }
330 EXPORT_SYMBOL(delete_from_page_cache);
331
332 int filemap_check_errors(struct address_space *mapping)
333 {
334 int ret = 0;
335 /* Check for outstanding write errors */
336 if (test_bit(AS_ENOSPC, &mapping->flags) &&
337 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
338 ret = -ENOSPC;
339 if (test_bit(AS_EIO, &mapping->flags) &&
340 test_and_clear_bit(AS_EIO, &mapping->flags))
341 ret = -EIO;
342 return ret;
343 }
344 EXPORT_SYMBOL(filemap_check_errors);
345
346 /**
347 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
348 * @mapping: address space structure to write
349 * @start: offset in bytes where the range starts
350 * @end: offset in bytes where the range ends (inclusive)
351 * @sync_mode: enable synchronous operation
352 *
353 * Start writeback against all of a mapping's dirty pages that lie
354 * within the byte offsets <start, end> inclusive.
355 *
356 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
357 * opposed to a regular memory cleansing writeback. The difference between
358 * these two operations is that if a dirty page/buffer is encountered, it must
359 * be waited upon, and not just skipped over.
360 */
361 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
362 loff_t end, int sync_mode)
363 {
364 int ret;
365 struct writeback_control wbc = {
366 .sync_mode = sync_mode,
367 .nr_to_write = LONG_MAX,
368 .range_start = start,
369 .range_end = end,
370 };
371
372 if (!mapping_cap_writeback_dirty(mapping))
373 return 0;
374
375 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
376 ret = do_writepages(mapping, &wbc);
377 wbc_detach_inode(&wbc);
378 return ret;
379 }
380
381 static inline int __filemap_fdatawrite(struct address_space *mapping,
382 int sync_mode)
383 {
384 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
385 }
386
387 int filemap_fdatawrite(struct address_space *mapping)
388 {
389 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
390 }
391 EXPORT_SYMBOL(filemap_fdatawrite);
392
393 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
394 loff_t end)
395 {
396 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
397 }
398 EXPORT_SYMBOL(filemap_fdatawrite_range);
399
400 /**
401 * filemap_flush - mostly a non-blocking flush
402 * @mapping: target address_space
403 *
404 * This is a mostly non-blocking flush. Not suitable for data-integrity
405 * purposes - I/O may not be started against all dirty pages.
406 */
407 int filemap_flush(struct address_space *mapping)
408 {
409 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
410 }
411 EXPORT_SYMBOL(filemap_flush);
412
413 static int __filemap_fdatawait_range(struct address_space *mapping,
414 loff_t start_byte, loff_t end_byte)
415 {
416 pgoff_t index = start_byte >> PAGE_SHIFT;
417 pgoff_t end = end_byte >> PAGE_SHIFT;
418 struct pagevec pvec;
419 int nr_pages;
420 int ret = 0;
421
422 if (end_byte < start_byte)
423 goto out;
424
425 pagevec_init(&pvec, 0);
426 while ((index <= end) &&
427 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 PAGECACHE_TAG_WRITEBACK,
429 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
430 unsigned i;
431
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434
435 /* until radix tree lookup accepts end_index */
436 if (page->index > end)
437 continue;
438
439 wait_on_page_writeback(page);
440 if (TestClearPageError(page))
441 ret = -EIO;
442 }
443 pagevec_release(&pvec);
444 cond_resched();
445 }
446 out:
447 return ret;
448 }
449
450 /**
451 * filemap_fdatawait_range - wait for writeback to complete
452 * @mapping: address space structure to wait for
453 * @start_byte: offset in bytes where the range starts
454 * @end_byte: offset in bytes where the range ends (inclusive)
455 *
456 * Walk the list of under-writeback pages of the given address space
457 * in the given range and wait for all of them. Check error status of
458 * the address space and return it.
459 *
460 * Since the error status of the address space is cleared by this function,
461 * callers are responsible for checking the return value and handling and/or
462 * reporting the error.
463 */
464 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
465 loff_t end_byte)
466 {
467 int ret, ret2;
468
469 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
470 ret2 = filemap_check_errors(mapping);
471 if (!ret)
472 ret = ret2;
473
474 return ret;
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
481 *
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
485 *
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488 * fsfreeze(8)
489 */
490 void filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
495 return;
496
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
498 }
499
500 /**
501 * filemap_fdatawait - wait for all under-writeback pages to complete
502 * @mapping: address space structure to wait for
503 *
504 * Walk the list of under-writeback pages of the given address space
505 * and wait for all of them. Check error status of the address space
506 * and return it.
507 *
508 * Since the error status of the address space is cleared by this function,
509 * callers are responsible for checking the return value and handling and/or
510 * reporting the error.
511 */
512 int filemap_fdatawait(struct address_space *mapping)
513 {
514 loff_t i_size = i_size_read(mapping->host);
515
516 if (i_size == 0)
517 return 0;
518
519 return filemap_fdatawait_range(mapping, 0, i_size - 1);
520 }
521 EXPORT_SYMBOL(filemap_fdatawait);
522
523 int filemap_write_and_wait(struct address_space *mapping)
524 {
525 int err = 0;
526
527 if ((!dax_mapping(mapping) && mapping->nrpages) ||
528 (dax_mapping(mapping) && mapping->nrexceptional)) {
529 err = filemap_fdatawrite(mapping);
530 /*
531 * Even if the above returned error, the pages may be
532 * written partially (e.g. -ENOSPC), so we wait for it.
533 * But the -EIO is special case, it may indicate the worst
534 * thing (e.g. bug) happened, so we avoid waiting for it.
535 */
536 if (err != -EIO) {
537 int err2 = filemap_fdatawait(mapping);
538 if (!err)
539 err = err2;
540 }
541 } else {
542 err = filemap_check_errors(mapping);
543 }
544 return err;
545 }
546 EXPORT_SYMBOL(filemap_write_and_wait);
547
548 /**
549 * filemap_write_and_wait_range - write out & wait on a file range
550 * @mapping: the address_space for the pages
551 * @lstart: offset in bytes where the range starts
552 * @lend: offset in bytes where the range ends (inclusive)
553 *
554 * Write out and wait upon file offsets lstart->lend, inclusive.
555 *
556 * Note that `lend' is inclusive (describes the last byte to be written) so
557 * that this function can be used to write to the very end-of-file (end = -1).
558 */
559 int filemap_write_and_wait_range(struct address_space *mapping,
560 loff_t lstart, loff_t lend)
561 {
562 int err = 0;
563
564 if ((!dax_mapping(mapping) && mapping->nrpages) ||
565 (dax_mapping(mapping) && mapping->nrexceptional)) {
566 err = __filemap_fdatawrite_range(mapping, lstart, lend,
567 WB_SYNC_ALL);
568 /* See comment of filemap_write_and_wait() */
569 if (err != -EIO) {
570 int err2 = filemap_fdatawait_range(mapping,
571 lstart, lend);
572 if (!err)
573 err = err2;
574 }
575 } else {
576 err = filemap_check_errors(mapping);
577 }
578 return err;
579 }
580 EXPORT_SYMBOL(filemap_write_and_wait_range);
581
582 /**
583 * replace_page_cache_page - replace a pagecache page with a new one
584 * @old: page to be replaced
585 * @new: page to replace with
586 * @gfp_mask: allocation mode
587 *
588 * This function replaces a page in the pagecache with a new one. On
589 * success it acquires the pagecache reference for the new page and
590 * drops it for the old page. Both the old and new pages must be
591 * locked. This function does not add the new page to the LRU, the
592 * caller must do that.
593 *
594 * The remove + add is atomic. The only way this function can fail is
595 * memory allocation failure.
596 */
597 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
598 {
599 int error;
600
601 VM_BUG_ON_PAGE(!PageLocked(old), old);
602 VM_BUG_ON_PAGE(!PageLocked(new), new);
603 VM_BUG_ON_PAGE(new->mapping, new);
604
605 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
606 if (!error) {
607 struct address_space *mapping = old->mapping;
608 void (*freepage)(struct page *);
609 unsigned long flags;
610
611 pgoff_t offset = old->index;
612 freepage = mapping->a_ops->freepage;
613
614 get_page(new);
615 new->mapping = mapping;
616 new->index = offset;
617
618 spin_lock_irqsave(&mapping->tree_lock, flags);
619 __delete_from_page_cache(old, NULL);
620 error = page_cache_tree_insert(mapping, new, NULL);
621 BUG_ON(error);
622 mapping->nrpages++;
623
624 /*
625 * hugetlb pages do not participate in page cache accounting.
626 */
627 if (!PageHuge(new))
628 __inc_node_page_state(new, NR_FILE_PAGES);
629 if (PageSwapBacked(new))
630 __inc_node_page_state(new, NR_SHMEM);
631 spin_unlock_irqrestore(&mapping->tree_lock, flags);
632 mem_cgroup_migrate(old, new);
633 radix_tree_preload_end();
634 if (freepage)
635 freepage(old);
636 put_page(old);
637 }
638
639 return error;
640 }
641 EXPORT_SYMBOL_GPL(replace_page_cache_page);
642
643 static int __add_to_page_cache_locked(struct page *page,
644 struct address_space *mapping,
645 pgoff_t offset, gfp_t gfp_mask,
646 void **shadowp)
647 {
648 int huge = PageHuge(page);
649 struct mem_cgroup *memcg;
650 int error;
651
652 VM_BUG_ON_PAGE(!PageLocked(page), page);
653 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
654
655 if (!huge) {
656 error = mem_cgroup_try_charge(page, current->mm,
657 gfp_mask, &memcg, false);
658 if (error)
659 return error;
660 }
661
662 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
663 if (error) {
664 if (!huge)
665 mem_cgroup_cancel_charge(page, memcg, false);
666 return error;
667 }
668
669 get_page(page);
670 page->mapping = mapping;
671 page->index = offset;
672
673 spin_lock_irq(&mapping->tree_lock);
674 error = page_cache_tree_insert(mapping, page, shadowp);
675 radix_tree_preload_end();
676 if (unlikely(error))
677 goto err_insert;
678
679 /* hugetlb pages do not participate in page cache accounting. */
680 if (!huge)
681 __inc_node_page_state(page, NR_FILE_PAGES);
682 spin_unlock_irq(&mapping->tree_lock);
683 if (!huge)
684 mem_cgroup_commit_charge(page, memcg, false, false);
685 trace_mm_filemap_add_to_page_cache(page);
686 return 0;
687 err_insert:
688 page->mapping = NULL;
689 /* Leave page->index set: truncation relies upon it */
690 spin_unlock_irq(&mapping->tree_lock);
691 if (!huge)
692 mem_cgroup_cancel_charge(page, memcg, false);
693 put_page(page);
694 return error;
695 }
696
697 /**
698 * add_to_page_cache_locked - add a locked page to the pagecache
699 * @page: page to add
700 * @mapping: the page's address_space
701 * @offset: page index
702 * @gfp_mask: page allocation mode
703 *
704 * This function is used to add a page to the pagecache. It must be locked.
705 * This function does not add the page to the LRU. The caller must do that.
706 */
707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708 pgoff_t offset, gfp_t gfp_mask)
709 {
710 return __add_to_page_cache_locked(page, mapping, offset,
711 gfp_mask, NULL);
712 }
713 EXPORT_SYMBOL(add_to_page_cache_locked);
714
715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
716 pgoff_t offset, gfp_t gfp_mask)
717 {
718 void *shadow = NULL;
719 int ret;
720
721 __SetPageLocked(page);
722 ret = __add_to_page_cache_locked(page, mapping, offset,
723 gfp_mask, &shadow);
724 if (unlikely(ret))
725 __ClearPageLocked(page);
726 else {
727 /*
728 * The page might have been evicted from cache only
729 * recently, in which case it should be activated like
730 * any other repeatedly accessed page.
731 * The exception is pages getting rewritten; evicting other
732 * data from the working set, only to cache data that will
733 * get overwritten with something else, is a waste of memory.
734 */
735 if (!(gfp_mask & __GFP_WRITE) &&
736 shadow && workingset_refault(shadow)) {
737 SetPageActive(page);
738 workingset_activation(page);
739 } else
740 ClearPageActive(page);
741 lru_cache_add(page);
742 }
743 return ret;
744 }
745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
746
747 #ifdef CONFIG_NUMA
748 struct page *__page_cache_alloc(gfp_t gfp)
749 {
750 int n;
751 struct page *page;
752
753 if (cpuset_do_page_mem_spread()) {
754 unsigned int cpuset_mems_cookie;
755 do {
756 cpuset_mems_cookie = read_mems_allowed_begin();
757 n = cpuset_mem_spread_node();
758 page = __alloc_pages_node(n, gfp, 0);
759 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
760
761 return page;
762 }
763 return alloc_pages(gfp, 0);
764 }
765 EXPORT_SYMBOL(__page_cache_alloc);
766 #endif
767
768 /*
769 * In order to wait for pages to become available there must be
770 * waitqueues associated with pages. By using a hash table of
771 * waitqueues where the bucket discipline is to maintain all
772 * waiters on the same queue and wake all when any of the pages
773 * become available, and for the woken contexts to check to be
774 * sure the appropriate page became available, this saves space
775 * at a cost of "thundering herd" phenomena during rare hash
776 * collisions.
777 */
778 wait_queue_head_t *page_waitqueue(struct page *page)
779 {
780 const struct zone *zone = page_zone(page);
781
782 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
783 }
784 EXPORT_SYMBOL(page_waitqueue);
785
786 void wait_on_page_bit(struct page *page, int bit_nr)
787 {
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790 if (test_bit(bit_nr, &page->flags))
791 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
792 TASK_UNINTERRUPTIBLE);
793 }
794 EXPORT_SYMBOL(wait_on_page_bit);
795
796 int wait_on_page_bit_killable(struct page *page, int bit_nr)
797 {
798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800 if (!test_bit(bit_nr, &page->flags))
801 return 0;
802
803 return __wait_on_bit(page_waitqueue(page), &wait,
804 bit_wait_io, TASK_KILLABLE);
805 }
806
807 int wait_on_page_bit_killable_timeout(struct page *page,
808 int bit_nr, unsigned long timeout)
809 {
810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812 wait.key.timeout = jiffies + timeout;
813 if (!test_bit(bit_nr, &page->flags))
814 return 0;
815 return __wait_on_bit(page_waitqueue(page), &wait,
816 bit_wait_io_timeout, TASK_KILLABLE);
817 }
818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
819
820 /**
821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
822 * @page: Page defining the wait queue of interest
823 * @waiter: Waiter to add to the queue
824 *
825 * Add an arbitrary @waiter to the wait queue for the nominated @page.
826 */
827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
828 {
829 wait_queue_head_t *q = page_waitqueue(page);
830 unsigned long flags;
831
832 spin_lock_irqsave(&q->lock, flags);
833 __add_wait_queue(q, waiter);
834 spin_unlock_irqrestore(&q->lock, flags);
835 }
836 EXPORT_SYMBOL_GPL(add_page_wait_queue);
837
838 /**
839 * unlock_page - unlock a locked page
840 * @page: the page
841 *
842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
844 * mechanism between PageLocked pages and PageWriteback pages is shared.
845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
846 *
847 * The mb is necessary to enforce ordering between the clear_bit and the read
848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
849 */
850 void unlock_page(struct page *page)
851 {
852 page = compound_head(page);
853 VM_BUG_ON_PAGE(!PageLocked(page), page);
854 clear_bit_unlock(PG_locked, &page->flags);
855 smp_mb__after_atomic();
856 wake_up_page(page, PG_locked);
857 }
858 EXPORT_SYMBOL(unlock_page);
859
860 /**
861 * end_page_writeback - end writeback against a page
862 * @page: the page
863 */
864 void end_page_writeback(struct page *page)
865 {
866 /*
867 * TestClearPageReclaim could be used here but it is an atomic
868 * operation and overkill in this particular case. Failing to
869 * shuffle a page marked for immediate reclaim is too mild to
870 * justify taking an atomic operation penalty at the end of
871 * ever page writeback.
872 */
873 if (PageReclaim(page)) {
874 ClearPageReclaim(page);
875 rotate_reclaimable_page(page);
876 }
877
878 if (!test_clear_page_writeback(page))
879 BUG();
880
881 smp_mb__after_atomic();
882 wake_up_page(page, PG_writeback);
883 }
884 EXPORT_SYMBOL(end_page_writeback);
885
886 /*
887 * After completing I/O on a page, call this routine to update the page
888 * flags appropriately
889 */
890 void page_endio(struct page *page, bool is_write, int err)
891 {
892 if (!is_write) {
893 if (!err) {
894 SetPageUptodate(page);
895 } else {
896 ClearPageUptodate(page);
897 SetPageError(page);
898 }
899 unlock_page(page);
900 } else {
901 if (err) {
902 SetPageError(page);
903 if (page->mapping)
904 mapping_set_error(page->mapping, err);
905 }
906 end_page_writeback(page);
907 }
908 }
909 EXPORT_SYMBOL_GPL(page_endio);
910
911 /**
912 * __lock_page - get a lock on the page, assuming we need to sleep to get it
913 * @page: the page to lock
914 */
915 void __lock_page(struct page *page)
916 {
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919
920 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
921 TASK_UNINTERRUPTIBLE);
922 }
923 EXPORT_SYMBOL(__lock_page);
924
925 int __lock_page_killable(struct page *page)
926 {
927 struct page *page_head = compound_head(page);
928 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
929
930 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
931 bit_wait_io, TASK_KILLABLE);
932 }
933 EXPORT_SYMBOL_GPL(__lock_page_killable);
934
935 /*
936 * Return values:
937 * 1 - page is locked; mmap_sem is still held.
938 * 0 - page is not locked.
939 * mmap_sem has been released (up_read()), unless flags had both
940 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941 * which case mmap_sem is still held.
942 *
943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944 * with the page locked and the mmap_sem unperturbed.
945 */
946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
947 unsigned int flags)
948 {
949 if (flags & FAULT_FLAG_ALLOW_RETRY) {
950 /*
951 * CAUTION! In this case, mmap_sem is not released
952 * even though return 0.
953 */
954 if (flags & FAULT_FLAG_RETRY_NOWAIT)
955 return 0;
956
957 up_read(&mm->mmap_sem);
958 if (flags & FAULT_FLAG_KILLABLE)
959 wait_on_page_locked_killable(page);
960 else
961 wait_on_page_locked(page);
962 return 0;
963 } else {
964 if (flags & FAULT_FLAG_KILLABLE) {
965 int ret;
966
967 ret = __lock_page_killable(page);
968 if (ret) {
969 up_read(&mm->mmap_sem);
970 return 0;
971 }
972 } else
973 __lock_page(page);
974 return 1;
975 }
976 }
977
978 /**
979 * page_cache_next_hole - find the next hole (not-present entry)
980 * @mapping: mapping
981 * @index: index
982 * @max_scan: maximum range to search
983 *
984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985 * lowest indexed hole.
986 *
987 * Returns: the index of the hole if found, otherwise returns an index
988 * outside of the set specified (in which case 'return - index >=
989 * max_scan' will be true). In rare cases of index wrap-around, 0 will
990 * be returned.
991 *
992 * page_cache_next_hole may be called under rcu_read_lock. However,
993 * like radix_tree_gang_lookup, this will not atomically search a
994 * snapshot of the tree at a single point in time. For example, if a
995 * hole is created at index 5, then subsequently a hole is created at
996 * index 10, page_cache_next_hole covering both indexes may return 10
997 * if called under rcu_read_lock.
998 */
999 pgoff_t page_cache_next_hole(struct address_space *mapping,
1000 pgoff_t index, unsigned long max_scan)
1001 {
1002 unsigned long i;
1003
1004 for (i = 0; i < max_scan; i++) {
1005 struct page *page;
1006
1007 page = radix_tree_lookup(&mapping->page_tree, index);
1008 if (!page || radix_tree_exceptional_entry(page))
1009 break;
1010 index++;
1011 if (index == 0)
1012 break;
1013 }
1014
1015 return index;
1016 }
1017 EXPORT_SYMBOL(page_cache_next_hole);
1018
1019 /**
1020 * page_cache_prev_hole - find the prev hole (not-present entry)
1021 * @mapping: mapping
1022 * @index: index
1023 * @max_scan: maximum range to search
1024 *
1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026 * the first hole.
1027 *
1028 * Returns: the index of the hole if found, otherwise returns an index
1029 * outside of the set specified (in which case 'index - return >=
1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031 * will be returned.
1032 *
1033 * page_cache_prev_hole may be called under rcu_read_lock. However,
1034 * like radix_tree_gang_lookup, this will not atomically search a
1035 * snapshot of the tree at a single point in time. For example, if a
1036 * hole is created at index 10, then subsequently a hole is created at
1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038 * called under rcu_read_lock.
1039 */
1040 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041 pgoff_t index, unsigned long max_scan)
1042 {
1043 unsigned long i;
1044
1045 for (i = 0; i < max_scan; i++) {
1046 struct page *page;
1047
1048 page = radix_tree_lookup(&mapping->page_tree, index);
1049 if (!page || radix_tree_exceptional_entry(page))
1050 break;
1051 index--;
1052 if (index == ULONG_MAX)
1053 break;
1054 }
1055
1056 return index;
1057 }
1058 EXPORT_SYMBOL(page_cache_prev_hole);
1059
1060 /**
1061 * find_get_entry - find and get a page cache entry
1062 * @mapping: the address_space to search
1063 * @offset: the page cache index
1064 *
1065 * Looks up the page cache slot at @mapping & @offset. If there is a
1066 * page cache page, it is returned with an increased refcount.
1067 *
1068 * If the slot holds a shadow entry of a previously evicted page, or a
1069 * swap entry from shmem/tmpfs, it is returned.
1070 *
1071 * Otherwise, %NULL is returned.
1072 */
1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1074 {
1075 void **pagep;
1076 struct page *head, *page;
1077
1078 rcu_read_lock();
1079 repeat:
1080 page = NULL;
1081 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082 if (pagep) {
1083 page = radix_tree_deref_slot(pagep);
1084 if (unlikely(!page))
1085 goto out;
1086 if (radix_tree_exception(page)) {
1087 if (radix_tree_deref_retry(page))
1088 goto repeat;
1089 /*
1090 * A shadow entry of a recently evicted page,
1091 * or a swap entry from shmem/tmpfs. Return
1092 * it without attempting to raise page count.
1093 */
1094 goto out;
1095 }
1096
1097 head = compound_head(page);
1098 if (!page_cache_get_speculative(head))
1099 goto repeat;
1100
1101 /* The page was split under us? */
1102 if (compound_head(page) != head) {
1103 put_page(head);
1104 goto repeat;
1105 }
1106
1107 /*
1108 * Has the page moved?
1109 * This is part of the lockless pagecache protocol. See
1110 * include/linux/pagemap.h for details.
1111 */
1112 if (unlikely(page != *pagep)) {
1113 put_page(head);
1114 goto repeat;
1115 }
1116 }
1117 out:
1118 rcu_read_unlock();
1119
1120 return page;
1121 }
1122 EXPORT_SYMBOL(find_get_entry);
1123
1124 /**
1125 * find_lock_entry - locate, pin and lock a page cache entry
1126 * @mapping: the address_space to search
1127 * @offset: the page cache index
1128 *
1129 * Looks up the page cache slot at @mapping & @offset. If there is a
1130 * page cache page, it is returned locked and with an increased
1131 * refcount.
1132 *
1133 * If the slot holds a shadow entry of a previously evicted page, or a
1134 * swap entry from shmem/tmpfs, it is returned.
1135 *
1136 * Otherwise, %NULL is returned.
1137 *
1138 * find_lock_entry() may sleep.
1139 */
1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1141 {
1142 struct page *page;
1143
1144 repeat:
1145 page = find_get_entry(mapping, offset);
1146 if (page && !radix_tree_exception(page)) {
1147 lock_page(page);
1148 /* Has the page been truncated? */
1149 if (unlikely(page_mapping(page) != mapping)) {
1150 unlock_page(page);
1151 put_page(page);
1152 goto repeat;
1153 }
1154 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1155 }
1156 return page;
1157 }
1158 EXPORT_SYMBOL(find_lock_entry);
1159
1160 /**
1161 * pagecache_get_page - find and get a page reference
1162 * @mapping: the address_space to search
1163 * @offset: the page index
1164 * @fgp_flags: PCG flags
1165 * @gfp_mask: gfp mask to use for the page cache data page allocation
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.
1168 *
1169 * PCG flags modify how the page is returned.
1170 *
1171 * FGP_ACCESSED: the page will be marked accessed
1172 * FGP_LOCK: Page is return locked
1173 * FGP_CREAT: If page is not present then a new page is allocated using
1174 * @gfp_mask and added to the page cache and the VM's LRU
1175 * list. The page is returned locked and with an increased
1176 * refcount. Otherwise, %NULL is returned.
1177 *
1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179 * if the GFP flags specified for FGP_CREAT are atomic.
1180 *
1181 * If there is a page cache page, it is returned with an increased refcount.
1182 */
1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184 int fgp_flags, gfp_t gfp_mask)
1185 {
1186 struct page *page;
1187
1188 repeat:
1189 page = find_get_entry(mapping, offset);
1190 if (radix_tree_exceptional_entry(page))
1191 page = NULL;
1192 if (!page)
1193 goto no_page;
1194
1195 if (fgp_flags & FGP_LOCK) {
1196 if (fgp_flags & FGP_NOWAIT) {
1197 if (!trylock_page(page)) {
1198 put_page(page);
1199 return NULL;
1200 }
1201 } else {
1202 lock_page(page);
1203 }
1204
1205 /* Has the page been truncated? */
1206 if (unlikely(page->mapping != mapping)) {
1207 unlock_page(page);
1208 put_page(page);
1209 goto repeat;
1210 }
1211 VM_BUG_ON_PAGE(page->index != offset, page);
1212 }
1213
1214 if (page && (fgp_flags & FGP_ACCESSED))
1215 mark_page_accessed(page);
1216
1217 no_page:
1218 if (!page && (fgp_flags & FGP_CREAT)) {
1219 int err;
1220 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221 gfp_mask |= __GFP_WRITE;
1222 if (fgp_flags & FGP_NOFS)
1223 gfp_mask &= ~__GFP_FS;
1224
1225 page = __page_cache_alloc(gfp_mask);
1226 if (!page)
1227 return NULL;
1228
1229 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230 fgp_flags |= FGP_LOCK;
1231
1232 /* Init accessed so avoid atomic mark_page_accessed later */
1233 if (fgp_flags & FGP_ACCESSED)
1234 __SetPageReferenced(page);
1235
1236 err = add_to_page_cache_lru(page, mapping, offset,
1237 gfp_mask & GFP_RECLAIM_MASK);
1238 if (unlikely(err)) {
1239 put_page(page);
1240 page = NULL;
1241 if (err == -EEXIST)
1242 goto repeat;
1243 }
1244 }
1245
1246 return page;
1247 }
1248 EXPORT_SYMBOL(pagecache_get_page);
1249
1250 /**
1251 * find_get_entries - gang pagecache lookup
1252 * @mapping: The address_space to search
1253 * @start: The starting page cache index
1254 * @nr_entries: The maximum number of entries
1255 * @entries: Where the resulting entries are placed
1256 * @indices: The cache indices corresponding to the entries in @entries
1257 *
1258 * find_get_entries() will search for and return a group of up to
1259 * @nr_entries entries in the mapping. The entries are placed at
1260 * @entries. find_get_entries() takes a reference against any actual
1261 * pages it returns.
1262 *
1263 * The search returns a group of mapping-contiguous page cache entries
1264 * with ascending indexes. There may be holes in the indices due to
1265 * not-present pages.
1266 *
1267 * Any shadow entries of evicted pages, or swap entries from
1268 * shmem/tmpfs, are included in the returned array.
1269 *
1270 * find_get_entries() returns the number of pages and shadow entries
1271 * which were found.
1272 */
1273 unsigned find_get_entries(struct address_space *mapping,
1274 pgoff_t start, unsigned int nr_entries,
1275 struct page **entries, pgoff_t *indices)
1276 {
1277 void **slot;
1278 unsigned int ret = 0;
1279 struct radix_tree_iter iter;
1280
1281 if (!nr_entries)
1282 return 0;
1283
1284 rcu_read_lock();
1285 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286 struct page *head, *page;
1287 repeat:
1288 page = radix_tree_deref_slot(slot);
1289 if (unlikely(!page))
1290 continue;
1291 if (radix_tree_exception(page)) {
1292 if (radix_tree_deref_retry(page)) {
1293 slot = radix_tree_iter_retry(&iter);
1294 continue;
1295 }
1296 /*
1297 * A shadow entry of a recently evicted page, a swap
1298 * entry from shmem/tmpfs or a DAX entry. Return it
1299 * without attempting to raise page count.
1300 */
1301 goto export;
1302 }
1303
1304 head = compound_head(page);
1305 if (!page_cache_get_speculative(head))
1306 goto repeat;
1307
1308 /* The page was split under us? */
1309 if (compound_head(page) != head) {
1310 put_page(head);
1311 goto repeat;
1312 }
1313
1314 /* Has the page moved? */
1315 if (unlikely(page != *slot)) {
1316 put_page(head);
1317 goto repeat;
1318 }
1319 export:
1320 indices[ret] = iter.index;
1321 entries[ret] = page;
1322 if (++ret == nr_entries)
1323 break;
1324 }
1325 rcu_read_unlock();
1326 return ret;
1327 }
1328
1329 /**
1330 * find_get_pages - gang pagecache lookup
1331 * @mapping: The address_space to search
1332 * @start: The starting page index
1333 * @nr_pages: The maximum number of pages
1334 * @pages: Where the resulting pages are placed
1335 *
1336 * find_get_pages() will search for and return a group of up to
1337 * @nr_pages pages in the mapping. The pages are placed at @pages.
1338 * find_get_pages() takes a reference against the returned pages.
1339 *
1340 * The search returns a group of mapping-contiguous pages with ascending
1341 * indexes. There may be holes in the indices due to not-present pages.
1342 *
1343 * find_get_pages() returns the number of pages which were found.
1344 */
1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346 unsigned int nr_pages, struct page **pages)
1347 {
1348 struct radix_tree_iter iter;
1349 void **slot;
1350 unsigned ret = 0;
1351
1352 if (unlikely(!nr_pages))
1353 return 0;
1354
1355 rcu_read_lock();
1356 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357 struct page *head, *page;
1358 repeat:
1359 page = radix_tree_deref_slot(slot);
1360 if (unlikely(!page))
1361 continue;
1362
1363 if (radix_tree_exception(page)) {
1364 if (radix_tree_deref_retry(page)) {
1365 slot = radix_tree_iter_retry(&iter);
1366 continue;
1367 }
1368 /*
1369 * A shadow entry of a recently evicted page,
1370 * or a swap entry from shmem/tmpfs. Skip
1371 * over it.
1372 */
1373 continue;
1374 }
1375
1376 head = compound_head(page);
1377 if (!page_cache_get_speculative(head))
1378 goto repeat;
1379
1380 /* The page was split under us? */
1381 if (compound_head(page) != head) {
1382 put_page(head);
1383 goto repeat;
1384 }
1385
1386 /* Has the page moved? */
1387 if (unlikely(page != *slot)) {
1388 put_page(head);
1389 goto repeat;
1390 }
1391
1392 pages[ret] = page;
1393 if (++ret == nr_pages)
1394 break;
1395 }
1396
1397 rcu_read_unlock();
1398 return ret;
1399 }
1400
1401 /**
1402 * find_get_pages_contig - gang contiguous pagecache lookup
1403 * @mapping: The address_space to search
1404 * @index: The starting page index
1405 * @nr_pages: The maximum number of pages
1406 * @pages: Where the resulting pages are placed
1407 *
1408 * find_get_pages_contig() works exactly like find_get_pages(), except
1409 * that the returned number of pages are guaranteed to be contiguous.
1410 *
1411 * find_get_pages_contig() returns the number of pages which were found.
1412 */
1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414 unsigned int nr_pages, struct page **pages)
1415 {
1416 struct radix_tree_iter iter;
1417 void **slot;
1418 unsigned int ret = 0;
1419
1420 if (unlikely(!nr_pages))
1421 return 0;
1422
1423 rcu_read_lock();
1424 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425 struct page *head, *page;
1426 repeat:
1427 page = radix_tree_deref_slot(slot);
1428 /* The hole, there no reason to continue */
1429 if (unlikely(!page))
1430 break;
1431
1432 if (radix_tree_exception(page)) {
1433 if (radix_tree_deref_retry(page)) {
1434 slot = radix_tree_iter_retry(&iter);
1435 continue;
1436 }
1437 /*
1438 * A shadow entry of a recently evicted page,
1439 * or a swap entry from shmem/tmpfs. Stop
1440 * looking for contiguous pages.
1441 */
1442 break;
1443 }
1444
1445 head = compound_head(page);
1446 if (!page_cache_get_speculative(head))
1447 goto repeat;
1448
1449 /* The page was split under us? */
1450 if (compound_head(page) != head) {
1451 put_page(head);
1452 goto repeat;
1453 }
1454
1455 /* Has the page moved? */
1456 if (unlikely(page != *slot)) {
1457 put_page(head);
1458 goto repeat;
1459 }
1460
1461 /*
1462 * must check mapping and index after taking the ref.
1463 * otherwise we can get both false positives and false
1464 * negatives, which is just confusing to the caller.
1465 */
1466 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1467 put_page(page);
1468 break;
1469 }
1470
1471 pages[ret] = page;
1472 if (++ret == nr_pages)
1473 break;
1474 }
1475 rcu_read_unlock();
1476 return ret;
1477 }
1478 EXPORT_SYMBOL(find_get_pages_contig);
1479
1480 /**
1481 * find_get_pages_tag - find and return pages that match @tag
1482 * @mapping: the address_space to search
1483 * @index: the starting page index
1484 * @tag: the tag index
1485 * @nr_pages: the maximum number of pages
1486 * @pages: where the resulting pages are placed
1487 *
1488 * Like find_get_pages, except we only return pages which are tagged with
1489 * @tag. We update @index to index the next page for the traversal.
1490 */
1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492 int tag, unsigned int nr_pages, struct page **pages)
1493 {
1494 struct radix_tree_iter iter;
1495 void **slot;
1496 unsigned ret = 0;
1497
1498 if (unlikely(!nr_pages))
1499 return 0;
1500
1501 rcu_read_lock();
1502 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503 &iter, *index, tag) {
1504 struct page *head, *page;
1505 repeat:
1506 page = radix_tree_deref_slot(slot);
1507 if (unlikely(!page))
1508 continue;
1509
1510 if (radix_tree_exception(page)) {
1511 if (radix_tree_deref_retry(page)) {
1512 slot = radix_tree_iter_retry(&iter);
1513 continue;
1514 }
1515 /*
1516 * A shadow entry of a recently evicted page.
1517 *
1518 * Those entries should never be tagged, but
1519 * this tree walk is lockless and the tags are
1520 * looked up in bulk, one radix tree node at a
1521 * time, so there is a sizable window for page
1522 * reclaim to evict a page we saw tagged.
1523 *
1524 * Skip over it.
1525 */
1526 continue;
1527 }
1528
1529 head = compound_head(page);
1530 if (!page_cache_get_speculative(head))
1531 goto repeat;
1532
1533 /* The page was split under us? */
1534 if (compound_head(page) != head) {
1535 put_page(head);
1536 goto repeat;
1537 }
1538
1539 /* Has the page moved? */
1540 if (unlikely(page != *slot)) {
1541 put_page(head);
1542 goto repeat;
1543 }
1544
1545 pages[ret] = page;
1546 if (++ret == nr_pages)
1547 break;
1548 }
1549
1550 rcu_read_unlock();
1551
1552 if (ret)
1553 *index = pages[ret - 1]->index + 1;
1554
1555 return ret;
1556 }
1557 EXPORT_SYMBOL(find_get_pages_tag);
1558
1559 /**
1560 * find_get_entries_tag - find and return entries that match @tag
1561 * @mapping: the address_space to search
1562 * @start: the starting page cache index
1563 * @tag: the tag index
1564 * @nr_entries: the maximum number of entries
1565 * @entries: where the resulting entries are placed
1566 * @indices: the cache indices corresponding to the entries in @entries
1567 *
1568 * Like find_get_entries, except we only return entries which are tagged with
1569 * @tag.
1570 */
1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572 int tag, unsigned int nr_entries,
1573 struct page **entries, pgoff_t *indices)
1574 {
1575 void **slot;
1576 unsigned int ret = 0;
1577 struct radix_tree_iter iter;
1578
1579 if (!nr_entries)
1580 return 0;
1581
1582 rcu_read_lock();
1583 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584 &iter, start, tag) {
1585 struct page *head, *page;
1586 repeat:
1587 page = radix_tree_deref_slot(slot);
1588 if (unlikely(!page))
1589 continue;
1590 if (radix_tree_exception(page)) {
1591 if (radix_tree_deref_retry(page)) {
1592 slot = radix_tree_iter_retry(&iter);
1593 continue;
1594 }
1595
1596 /*
1597 * A shadow entry of a recently evicted page, a swap
1598 * entry from shmem/tmpfs or a DAX entry. Return it
1599 * without attempting to raise page count.
1600 */
1601 goto export;
1602 }
1603
1604 head = compound_head(page);
1605 if (!page_cache_get_speculative(head))
1606 goto repeat;
1607
1608 /* The page was split under us? */
1609 if (compound_head(page) != head) {
1610 put_page(head);
1611 goto repeat;
1612 }
1613
1614 /* Has the page moved? */
1615 if (unlikely(page != *slot)) {
1616 put_page(head);
1617 goto repeat;
1618 }
1619 export:
1620 indices[ret] = iter.index;
1621 entries[ret] = page;
1622 if (++ret == nr_entries)
1623 break;
1624 }
1625 rcu_read_unlock();
1626 return ret;
1627 }
1628 EXPORT_SYMBOL(find_get_entries_tag);
1629
1630 /*
1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632 * a _large_ part of the i/o request. Imagine the worst scenario:
1633 *
1634 * ---R__________________________________________B__________
1635 * ^ reading here ^ bad block(assume 4k)
1636 *
1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638 * => failing the whole request => read(R) => read(R+1) =>
1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642 *
1643 * It is going insane. Fix it by quickly scaling down the readahead size.
1644 */
1645 static void shrink_readahead_size_eio(struct file *filp,
1646 struct file_ra_state *ra)
1647 {
1648 ra->ra_pages /= 4;
1649 }
1650
1651 /**
1652 * do_generic_file_read - generic file read routine
1653 * @filp: the file to read
1654 * @ppos: current file position
1655 * @iter: data destination
1656 * @written: already copied
1657 *
1658 * This is a generic file read routine, and uses the
1659 * mapping->a_ops->readpage() function for the actual low-level stuff.
1660 *
1661 * This is really ugly. But the goto's actually try to clarify some
1662 * of the logic when it comes to error handling etc.
1663 */
1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665 struct iov_iter *iter, ssize_t written)
1666 {
1667 struct address_space *mapping = filp->f_mapping;
1668 struct inode *inode = mapping->host;
1669 struct file_ra_state *ra = &filp->f_ra;
1670 pgoff_t index;
1671 pgoff_t last_index;
1672 pgoff_t prev_index;
1673 unsigned long offset; /* offset into pagecache page */
1674 unsigned int prev_offset;
1675 int error = 0;
1676
1677 index = *ppos >> PAGE_SHIFT;
1678 prev_index = ra->prev_pos >> PAGE_SHIFT;
1679 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681 offset = *ppos & ~PAGE_MASK;
1682
1683 for (;;) {
1684 struct page *page;
1685 pgoff_t end_index;
1686 loff_t isize;
1687 unsigned long nr, ret;
1688
1689 cond_resched();
1690 find_page:
1691 page = find_get_page(mapping, index);
1692 if (!page) {
1693 page_cache_sync_readahead(mapping,
1694 ra, filp,
1695 index, last_index - index);
1696 page = find_get_page(mapping, index);
1697 if (unlikely(page == NULL))
1698 goto no_cached_page;
1699 }
1700 if (PageReadahead(page)) {
1701 page_cache_async_readahead(mapping,
1702 ra, filp, page,
1703 index, last_index - index);
1704 }
1705 if (!PageUptodate(page)) {
1706 /*
1707 * See comment in do_read_cache_page on why
1708 * wait_on_page_locked is used to avoid unnecessarily
1709 * serialisations and why it's safe.
1710 */
1711 wait_on_page_locked_killable(page);
1712 if (PageUptodate(page))
1713 goto page_ok;
1714
1715 if (inode->i_blkbits == PAGE_SHIFT ||
1716 !mapping->a_ops->is_partially_uptodate)
1717 goto page_not_up_to_date;
1718 if (!trylock_page(page))
1719 goto page_not_up_to_date;
1720 /* Did it get truncated before we got the lock? */
1721 if (!page->mapping)
1722 goto page_not_up_to_date_locked;
1723 if (!mapping->a_ops->is_partially_uptodate(page,
1724 offset, iter->count))
1725 goto page_not_up_to_date_locked;
1726 unlock_page(page);
1727 }
1728 page_ok:
1729 /*
1730 * i_size must be checked after we know the page is Uptodate.
1731 *
1732 * Checking i_size after the check allows us to calculate
1733 * the correct value for "nr", which means the zero-filled
1734 * part of the page is not copied back to userspace (unless
1735 * another truncate extends the file - this is desired though).
1736 */
1737
1738 isize = i_size_read(inode);
1739 end_index = (isize - 1) >> PAGE_SHIFT;
1740 if (unlikely(!isize || index > end_index)) {
1741 put_page(page);
1742 goto out;
1743 }
1744
1745 /* nr is the maximum number of bytes to copy from this page */
1746 nr = PAGE_SIZE;
1747 if (index == end_index) {
1748 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1749 if (nr <= offset) {
1750 put_page(page);
1751 goto out;
1752 }
1753 }
1754 nr = nr - offset;
1755
1756 /* If users can be writing to this page using arbitrary
1757 * virtual addresses, take care about potential aliasing
1758 * before reading the page on the kernel side.
1759 */
1760 if (mapping_writably_mapped(mapping))
1761 flush_dcache_page(page);
1762
1763 /*
1764 * When a sequential read accesses a page several times,
1765 * only mark it as accessed the first time.
1766 */
1767 if (prev_index != index || offset != prev_offset)
1768 mark_page_accessed(page);
1769 prev_index = index;
1770
1771 /*
1772 * Ok, we have the page, and it's up-to-date, so
1773 * now we can copy it to user space...
1774 */
1775
1776 ret = copy_page_to_iter(page, offset, nr, iter);
1777 offset += ret;
1778 index += offset >> PAGE_SHIFT;
1779 offset &= ~PAGE_MASK;
1780 prev_offset = offset;
1781
1782 put_page(page);
1783 written += ret;
1784 if (!iov_iter_count(iter))
1785 goto out;
1786 if (ret < nr) {
1787 error = -EFAULT;
1788 goto out;
1789 }
1790 continue;
1791
1792 page_not_up_to_date:
1793 /* Get exclusive access to the page ... */
1794 error = lock_page_killable(page);
1795 if (unlikely(error))
1796 goto readpage_error;
1797
1798 page_not_up_to_date_locked:
1799 /* Did it get truncated before we got the lock? */
1800 if (!page->mapping) {
1801 unlock_page(page);
1802 put_page(page);
1803 continue;
1804 }
1805
1806 /* Did somebody else fill it already? */
1807 if (PageUptodate(page)) {
1808 unlock_page(page);
1809 goto page_ok;
1810 }
1811
1812 readpage:
1813 /*
1814 * A previous I/O error may have been due to temporary
1815 * failures, eg. multipath errors.
1816 * PG_error will be set again if readpage fails.
1817 */
1818 ClearPageError(page);
1819 /* Start the actual read. The read will unlock the page. */
1820 error = mapping->a_ops->readpage(filp, page);
1821
1822 if (unlikely(error)) {
1823 if (error == AOP_TRUNCATED_PAGE) {
1824 put_page(page);
1825 error = 0;
1826 goto find_page;
1827 }
1828 goto readpage_error;
1829 }
1830
1831 if (!PageUptodate(page)) {
1832 error = lock_page_killable(page);
1833 if (unlikely(error))
1834 goto readpage_error;
1835 if (!PageUptodate(page)) {
1836 if (page->mapping == NULL) {
1837 /*
1838 * invalidate_mapping_pages got it
1839 */
1840 unlock_page(page);
1841 put_page(page);
1842 goto find_page;
1843 }
1844 unlock_page(page);
1845 shrink_readahead_size_eio(filp, ra);
1846 error = -EIO;
1847 goto readpage_error;
1848 }
1849 unlock_page(page);
1850 }
1851
1852 goto page_ok;
1853
1854 readpage_error:
1855 /* UHHUH! A synchronous read error occurred. Report it */
1856 put_page(page);
1857 goto out;
1858
1859 no_cached_page:
1860 /*
1861 * Ok, it wasn't cached, so we need to create a new
1862 * page..
1863 */
1864 page = page_cache_alloc_cold(mapping);
1865 if (!page) {
1866 error = -ENOMEM;
1867 goto out;
1868 }
1869 error = add_to_page_cache_lru(page, mapping, index,
1870 mapping_gfp_constraint(mapping, GFP_KERNEL));
1871 if (error) {
1872 put_page(page);
1873 if (error == -EEXIST) {
1874 error = 0;
1875 goto find_page;
1876 }
1877 goto out;
1878 }
1879 goto readpage;
1880 }
1881
1882 out:
1883 ra->prev_pos = prev_index;
1884 ra->prev_pos <<= PAGE_SHIFT;
1885 ra->prev_pos |= prev_offset;
1886
1887 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1888 file_accessed(filp);
1889 return written ? written : error;
1890 }
1891
1892 /**
1893 * generic_file_read_iter - generic filesystem read routine
1894 * @iocb: kernel I/O control block
1895 * @iter: destination for the data read
1896 *
1897 * This is the "read_iter()" routine for all filesystems
1898 * that can use the page cache directly.
1899 */
1900 ssize_t
1901 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1902 {
1903 struct file *file = iocb->ki_filp;
1904 ssize_t retval = 0;
1905 size_t count = iov_iter_count(iter);
1906
1907 if (!count)
1908 goto out; /* skip atime */
1909
1910 if (iocb->ki_flags & IOCB_DIRECT) {
1911 struct address_space *mapping = file->f_mapping;
1912 struct inode *inode = mapping->host;
1913 loff_t size;
1914
1915 size = i_size_read(inode);
1916 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1917 iocb->ki_pos + count - 1);
1918 if (!retval) {
1919 struct iov_iter data = *iter;
1920 retval = mapping->a_ops->direct_IO(iocb, &data);
1921 }
1922
1923 if (retval > 0) {
1924 iocb->ki_pos += retval;
1925 iov_iter_advance(iter, retval);
1926 }
1927
1928 /*
1929 * Btrfs can have a short DIO read if we encounter
1930 * compressed extents, so if there was an error, or if
1931 * we've already read everything we wanted to, or if
1932 * there was a short read because we hit EOF, go ahead
1933 * and return. Otherwise fallthrough to buffered io for
1934 * the rest of the read. Buffered reads will not work for
1935 * DAX files, so don't bother trying.
1936 */
1937 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1938 IS_DAX(inode)) {
1939 file_accessed(file);
1940 goto out;
1941 }
1942 }
1943
1944 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1945 out:
1946 return retval;
1947 }
1948 EXPORT_SYMBOL(generic_file_read_iter);
1949
1950 #ifdef CONFIG_MMU
1951 /**
1952 * page_cache_read - adds requested page to the page cache if not already there
1953 * @file: file to read
1954 * @offset: page index
1955 * @gfp_mask: memory allocation flags
1956 *
1957 * This adds the requested page to the page cache if it isn't already there,
1958 * and schedules an I/O to read in its contents from disk.
1959 */
1960 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1961 {
1962 struct address_space *mapping = file->f_mapping;
1963 struct page *page;
1964 int ret;
1965
1966 do {
1967 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1968 if (!page)
1969 return -ENOMEM;
1970
1971 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1972 if (ret == 0)
1973 ret = mapping->a_ops->readpage(file, page);
1974 else if (ret == -EEXIST)
1975 ret = 0; /* losing race to add is OK */
1976
1977 put_page(page);
1978
1979 } while (ret == AOP_TRUNCATED_PAGE);
1980
1981 return ret;
1982 }
1983
1984 #define MMAP_LOTSAMISS (100)
1985
1986 /*
1987 * Synchronous readahead happens when we don't even find
1988 * a page in the page cache at all.
1989 */
1990 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1991 struct file_ra_state *ra,
1992 struct file *file,
1993 pgoff_t offset)
1994 {
1995 struct address_space *mapping = file->f_mapping;
1996
1997 /* If we don't want any read-ahead, don't bother */
1998 if (vma->vm_flags & VM_RAND_READ)
1999 return;
2000 if (!ra->ra_pages)
2001 return;
2002
2003 if (vma->vm_flags & VM_SEQ_READ) {
2004 page_cache_sync_readahead(mapping, ra, file, offset,
2005 ra->ra_pages);
2006 return;
2007 }
2008
2009 /* Avoid banging the cache line if not needed */
2010 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2011 ra->mmap_miss++;
2012
2013 /*
2014 * Do we miss much more than hit in this file? If so,
2015 * stop bothering with read-ahead. It will only hurt.
2016 */
2017 if (ra->mmap_miss > MMAP_LOTSAMISS)
2018 return;
2019
2020 /*
2021 * mmap read-around
2022 */
2023 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2024 ra->size = ra->ra_pages;
2025 ra->async_size = ra->ra_pages / 4;
2026 ra_submit(ra, mapping, file);
2027 }
2028
2029 /*
2030 * Asynchronous readahead happens when we find the page and PG_readahead,
2031 * so we want to possibly extend the readahead further..
2032 */
2033 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2034 struct file_ra_state *ra,
2035 struct file *file,
2036 struct page *page,
2037 pgoff_t offset)
2038 {
2039 struct address_space *mapping = file->f_mapping;
2040
2041 /* If we don't want any read-ahead, don't bother */
2042 if (vma->vm_flags & VM_RAND_READ)
2043 return;
2044 if (ra->mmap_miss > 0)
2045 ra->mmap_miss--;
2046 if (PageReadahead(page))
2047 page_cache_async_readahead(mapping, ra, file,
2048 page, offset, ra->ra_pages);
2049 }
2050
2051 /**
2052 * filemap_fault - read in file data for page fault handling
2053 * @vma: vma in which the fault was taken
2054 * @vmf: struct vm_fault containing details of the fault
2055 *
2056 * filemap_fault() is invoked via the vma operations vector for a
2057 * mapped memory region to read in file data during a page fault.
2058 *
2059 * The goto's are kind of ugly, but this streamlines the normal case of having
2060 * it in the page cache, and handles the special cases reasonably without
2061 * having a lot of duplicated code.
2062 *
2063 * vma->vm_mm->mmap_sem must be held on entry.
2064 *
2065 * If our return value has VM_FAULT_RETRY set, it's because
2066 * lock_page_or_retry() returned 0.
2067 * The mmap_sem has usually been released in this case.
2068 * See __lock_page_or_retry() for the exception.
2069 *
2070 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2071 * has not been released.
2072 *
2073 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2074 */
2075 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2076 {
2077 int error;
2078 struct file *file = vma->vm_file;
2079 struct address_space *mapping = file->f_mapping;
2080 struct file_ra_state *ra = &file->f_ra;
2081 struct inode *inode = mapping->host;
2082 pgoff_t offset = vmf->pgoff;
2083 struct page *page;
2084 loff_t size;
2085 int ret = 0;
2086
2087 size = round_up(i_size_read(inode), PAGE_SIZE);
2088 if (offset >= size >> PAGE_SHIFT)
2089 return VM_FAULT_SIGBUS;
2090
2091 /*
2092 * Do we have something in the page cache already?
2093 */
2094 page = find_get_page(mapping, offset);
2095 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2096 /*
2097 * We found the page, so try async readahead before
2098 * waiting for the lock.
2099 */
2100 do_async_mmap_readahead(vma, ra, file, page, offset);
2101 } else if (!page) {
2102 /* No page in the page cache at all */
2103 do_sync_mmap_readahead(vma, ra, file, offset);
2104 count_vm_event(PGMAJFAULT);
2105 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2106 ret = VM_FAULT_MAJOR;
2107 retry_find:
2108 page = find_get_page(mapping, offset);
2109 if (!page)
2110 goto no_cached_page;
2111 }
2112
2113 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2114 put_page(page);
2115 return ret | VM_FAULT_RETRY;
2116 }
2117
2118 /* Did it get truncated? */
2119 if (unlikely(page->mapping != mapping)) {
2120 unlock_page(page);
2121 put_page(page);
2122 goto retry_find;
2123 }
2124 VM_BUG_ON_PAGE(page->index != offset, page);
2125
2126 /*
2127 * We have a locked page in the page cache, now we need to check
2128 * that it's up-to-date. If not, it is going to be due to an error.
2129 */
2130 if (unlikely(!PageUptodate(page)))
2131 goto page_not_uptodate;
2132
2133 /*
2134 * Found the page and have a reference on it.
2135 * We must recheck i_size under page lock.
2136 */
2137 size = round_up(i_size_read(inode), PAGE_SIZE);
2138 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2139 unlock_page(page);
2140 put_page(page);
2141 return VM_FAULT_SIGBUS;
2142 }
2143
2144 vmf->page = page;
2145 return ret | VM_FAULT_LOCKED;
2146
2147 no_cached_page:
2148 /*
2149 * We're only likely to ever get here if MADV_RANDOM is in
2150 * effect.
2151 */
2152 error = page_cache_read(file, offset, vmf->gfp_mask);
2153
2154 /*
2155 * The page we want has now been added to the page cache.
2156 * In the unlikely event that someone removed it in the
2157 * meantime, we'll just come back here and read it again.
2158 */
2159 if (error >= 0)
2160 goto retry_find;
2161
2162 /*
2163 * An error return from page_cache_read can result if the
2164 * system is low on memory, or a problem occurs while trying
2165 * to schedule I/O.
2166 */
2167 if (error == -ENOMEM)
2168 return VM_FAULT_OOM;
2169 return VM_FAULT_SIGBUS;
2170
2171 page_not_uptodate:
2172 /*
2173 * Umm, take care of errors if the page isn't up-to-date.
2174 * Try to re-read it _once_. We do this synchronously,
2175 * because there really aren't any performance issues here
2176 * and we need to check for errors.
2177 */
2178 ClearPageError(page);
2179 error = mapping->a_ops->readpage(file, page);
2180 if (!error) {
2181 wait_on_page_locked(page);
2182 if (!PageUptodate(page))
2183 error = -EIO;
2184 }
2185 put_page(page);
2186
2187 if (!error || error == AOP_TRUNCATED_PAGE)
2188 goto retry_find;
2189
2190 /* Things didn't work out. Return zero to tell the mm layer so. */
2191 shrink_readahead_size_eio(file, ra);
2192 return VM_FAULT_SIGBUS;
2193 }
2194 EXPORT_SYMBOL(filemap_fault);
2195
2196 void filemap_map_pages(struct fault_env *fe,
2197 pgoff_t start_pgoff, pgoff_t end_pgoff)
2198 {
2199 struct radix_tree_iter iter;
2200 void **slot;
2201 struct file *file = fe->vma->vm_file;
2202 struct address_space *mapping = file->f_mapping;
2203 pgoff_t last_pgoff = start_pgoff;
2204 loff_t size;
2205 struct page *head, *page;
2206
2207 rcu_read_lock();
2208 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2209 start_pgoff) {
2210 if (iter.index > end_pgoff)
2211 break;
2212 repeat:
2213 page = radix_tree_deref_slot(slot);
2214 if (unlikely(!page))
2215 goto next;
2216 if (radix_tree_exception(page)) {
2217 if (radix_tree_deref_retry(page)) {
2218 slot = radix_tree_iter_retry(&iter);
2219 continue;
2220 }
2221 goto next;
2222 }
2223
2224 head = compound_head(page);
2225 if (!page_cache_get_speculative(head))
2226 goto repeat;
2227
2228 /* The page was split under us? */
2229 if (compound_head(page) != head) {
2230 put_page(head);
2231 goto repeat;
2232 }
2233
2234 /* Has the page moved? */
2235 if (unlikely(page != *slot)) {
2236 put_page(head);
2237 goto repeat;
2238 }
2239
2240 if (!PageUptodate(page) ||
2241 PageReadahead(page) ||
2242 PageHWPoison(page))
2243 goto skip;
2244 if (!trylock_page(page))
2245 goto skip;
2246
2247 if (page->mapping != mapping || !PageUptodate(page))
2248 goto unlock;
2249
2250 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2251 if (page->index >= size >> PAGE_SHIFT)
2252 goto unlock;
2253
2254 if (file->f_ra.mmap_miss > 0)
2255 file->f_ra.mmap_miss--;
2256
2257 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2258 if (fe->pte)
2259 fe->pte += iter.index - last_pgoff;
2260 last_pgoff = iter.index;
2261 if (alloc_set_pte(fe, NULL, page))
2262 goto unlock;
2263 unlock_page(page);
2264 goto next;
2265 unlock:
2266 unlock_page(page);
2267 skip:
2268 put_page(page);
2269 next:
2270 /* Huge page is mapped? No need to proceed. */
2271 if (pmd_trans_huge(*fe->pmd))
2272 break;
2273 if (iter.index == end_pgoff)
2274 break;
2275 }
2276 rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(filemap_map_pages);
2279
2280 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2281 {
2282 struct page *page = vmf->page;
2283 struct inode *inode = file_inode(vma->vm_file);
2284 int ret = VM_FAULT_LOCKED;
2285
2286 sb_start_pagefault(inode->i_sb);
2287 file_update_time(vma->vm_file);
2288 lock_page(page);
2289 if (page->mapping != inode->i_mapping) {
2290 unlock_page(page);
2291 ret = VM_FAULT_NOPAGE;
2292 goto out;
2293 }
2294 /*
2295 * We mark the page dirty already here so that when freeze is in
2296 * progress, we are guaranteed that writeback during freezing will
2297 * see the dirty page and writeprotect it again.
2298 */
2299 set_page_dirty(page);
2300 wait_for_stable_page(page);
2301 out:
2302 sb_end_pagefault(inode->i_sb);
2303 return ret;
2304 }
2305 EXPORT_SYMBOL(filemap_page_mkwrite);
2306
2307 const struct vm_operations_struct generic_file_vm_ops = {
2308 .fault = filemap_fault,
2309 .map_pages = filemap_map_pages,
2310 .page_mkwrite = filemap_page_mkwrite,
2311 };
2312
2313 /* This is used for a general mmap of a disk file */
2314
2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2316 {
2317 struct address_space *mapping = file->f_mapping;
2318
2319 if (!mapping->a_ops->readpage)
2320 return -ENOEXEC;
2321 file_accessed(file);
2322 vma->vm_ops = &generic_file_vm_ops;
2323 return 0;
2324 }
2325
2326 /*
2327 * This is for filesystems which do not implement ->writepage.
2328 */
2329 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2330 {
2331 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2332 return -EINVAL;
2333 return generic_file_mmap(file, vma);
2334 }
2335 #else
2336 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2337 {
2338 return -ENOSYS;
2339 }
2340 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2341 {
2342 return -ENOSYS;
2343 }
2344 #endif /* CONFIG_MMU */
2345
2346 EXPORT_SYMBOL(generic_file_mmap);
2347 EXPORT_SYMBOL(generic_file_readonly_mmap);
2348
2349 static struct page *wait_on_page_read(struct page *page)
2350 {
2351 if (!IS_ERR(page)) {
2352 wait_on_page_locked(page);
2353 if (!PageUptodate(page)) {
2354 put_page(page);
2355 page = ERR_PTR(-EIO);
2356 }
2357 }
2358 return page;
2359 }
2360
2361 static struct page *do_read_cache_page(struct address_space *mapping,
2362 pgoff_t index,
2363 int (*filler)(void *, struct page *),
2364 void *data,
2365 gfp_t gfp)
2366 {
2367 struct page *page;
2368 int err;
2369 repeat:
2370 page = find_get_page(mapping, index);
2371 if (!page) {
2372 page = __page_cache_alloc(gfp | __GFP_COLD);
2373 if (!page)
2374 return ERR_PTR(-ENOMEM);
2375 err = add_to_page_cache_lru(page, mapping, index, gfp);
2376 if (unlikely(err)) {
2377 put_page(page);
2378 if (err == -EEXIST)
2379 goto repeat;
2380 /* Presumably ENOMEM for radix tree node */
2381 return ERR_PTR(err);
2382 }
2383
2384 filler:
2385 err = filler(data, page);
2386 if (err < 0) {
2387 put_page(page);
2388 return ERR_PTR(err);
2389 }
2390
2391 page = wait_on_page_read(page);
2392 if (IS_ERR(page))
2393 return page;
2394 goto out;
2395 }
2396 if (PageUptodate(page))
2397 goto out;
2398
2399 /*
2400 * Page is not up to date and may be locked due one of the following
2401 * case a: Page is being filled and the page lock is held
2402 * case b: Read/write error clearing the page uptodate status
2403 * case c: Truncation in progress (page locked)
2404 * case d: Reclaim in progress
2405 *
2406 * Case a, the page will be up to date when the page is unlocked.
2407 * There is no need to serialise on the page lock here as the page
2408 * is pinned so the lock gives no additional protection. Even if the
2409 * the page is truncated, the data is still valid if PageUptodate as
2410 * it's a race vs truncate race.
2411 * Case b, the page will not be up to date
2412 * Case c, the page may be truncated but in itself, the data may still
2413 * be valid after IO completes as it's a read vs truncate race. The
2414 * operation must restart if the page is not uptodate on unlock but
2415 * otherwise serialising on page lock to stabilise the mapping gives
2416 * no additional guarantees to the caller as the page lock is
2417 * released before return.
2418 * Case d, similar to truncation. If reclaim holds the page lock, it
2419 * will be a race with remove_mapping that determines if the mapping
2420 * is valid on unlock but otherwise the data is valid and there is
2421 * no need to serialise with page lock.
2422 *
2423 * As the page lock gives no additional guarantee, we optimistically
2424 * wait on the page to be unlocked and check if it's up to date and
2425 * use the page if it is. Otherwise, the page lock is required to
2426 * distinguish between the different cases. The motivation is that we
2427 * avoid spurious serialisations and wakeups when multiple processes
2428 * wait on the same page for IO to complete.
2429 */
2430 wait_on_page_locked(page);
2431 if (PageUptodate(page))
2432 goto out;
2433
2434 /* Distinguish between all the cases under the safety of the lock */
2435 lock_page(page);
2436
2437 /* Case c or d, restart the operation */
2438 if (!page->mapping) {
2439 unlock_page(page);
2440 put_page(page);
2441 goto repeat;
2442 }
2443
2444 /* Someone else locked and filled the page in a very small window */
2445 if (PageUptodate(page)) {
2446 unlock_page(page);
2447 goto out;
2448 }
2449 goto filler;
2450
2451 out:
2452 mark_page_accessed(page);
2453 return page;
2454 }
2455
2456 /**
2457 * read_cache_page - read into page cache, fill it if needed
2458 * @mapping: the page's address_space
2459 * @index: the page index
2460 * @filler: function to perform the read
2461 * @data: first arg to filler(data, page) function, often left as NULL
2462 *
2463 * Read into the page cache. If a page already exists, and PageUptodate() is
2464 * not set, try to fill the page and wait for it to become unlocked.
2465 *
2466 * If the page does not get brought uptodate, return -EIO.
2467 */
2468 struct page *read_cache_page(struct address_space *mapping,
2469 pgoff_t index,
2470 int (*filler)(void *, struct page *),
2471 void *data)
2472 {
2473 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2474 }
2475 EXPORT_SYMBOL(read_cache_page);
2476
2477 /**
2478 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2479 * @mapping: the page's address_space
2480 * @index: the page index
2481 * @gfp: the page allocator flags to use if allocating
2482 *
2483 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2484 * any new page allocations done using the specified allocation flags.
2485 *
2486 * If the page does not get brought uptodate, return -EIO.
2487 */
2488 struct page *read_cache_page_gfp(struct address_space *mapping,
2489 pgoff_t index,
2490 gfp_t gfp)
2491 {
2492 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2493
2494 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2495 }
2496 EXPORT_SYMBOL(read_cache_page_gfp);
2497
2498 /*
2499 * Performs necessary checks before doing a write
2500 *
2501 * Can adjust writing position or amount of bytes to write.
2502 * Returns appropriate error code that caller should return or
2503 * zero in case that write should be allowed.
2504 */
2505 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2506 {
2507 struct file *file = iocb->ki_filp;
2508 struct inode *inode = file->f_mapping->host;
2509 unsigned long limit = rlimit(RLIMIT_FSIZE);
2510 loff_t pos;
2511
2512 if (!iov_iter_count(from))
2513 return 0;
2514
2515 /* FIXME: this is for backwards compatibility with 2.4 */
2516 if (iocb->ki_flags & IOCB_APPEND)
2517 iocb->ki_pos = i_size_read(inode);
2518
2519 pos = iocb->ki_pos;
2520
2521 if (limit != RLIM_INFINITY) {
2522 if (iocb->ki_pos >= limit) {
2523 send_sig(SIGXFSZ, current, 0);
2524 return -EFBIG;
2525 }
2526 iov_iter_truncate(from, limit - (unsigned long)pos);
2527 }
2528
2529 /*
2530 * LFS rule
2531 */
2532 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2533 !(file->f_flags & O_LARGEFILE))) {
2534 if (pos >= MAX_NON_LFS)
2535 return -EFBIG;
2536 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2537 }
2538
2539 /*
2540 * Are we about to exceed the fs block limit ?
2541 *
2542 * If we have written data it becomes a short write. If we have
2543 * exceeded without writing data we send a signal and return EFBIG.
2544 * Linus frestrict idea will clean these up nicely..
2545 */
2546 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2547 return -EFBIG;
2548
2549 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2550 return iov_iter_count(from);
2551 }
2552 EXPORT_SYMBOL(generic_write_checks);
2553
2554 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2555 loff_t pos, unsigned len, unsigned flags,
2556 struct page **pagep, void **fsdata)
2557 {
2558 const struct address_space_operations *aops = mapping->a_ops;
2559
2560 return aops->write_begin(file, mapping, pos, len, flags,
2561 pagep, fsdata);
2562 }
2563 EXPORT_SYMBOL(pagecache_write_begin);
2564
2565 int pagecache_write_end(struct file *file, struct address_space *mapping,
2566 loff_t pos, unsigned len, unsigned copied,
2567 struct page *page, void *fsdata)
2568 {
2569 const struct address_space_operations *aops = mapping->a_ops;
2570
2571 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2572 }
2573 EXPORT_SYMBOL(pagecache_write_end);
2574
2575 ssize_t
2576 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2577 {
2578 struct file *file = iocb->ki_filp;
2579 struct address_space *mapping = file->f_mapping;
2580 struct inode *inode = mapping->host;
2581 loff_t pos = iocb->ki_pos;
2582 ssize_t written;
2583 size_t write_len;
2584 pgoff_t end;
2585 struct iov_iter data;
2586
2587 write_len = iov_iter_count(from);
2588 end = (pos + write_len - 1) >> PAGE_SHIFT;
2589
2590 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2591 if (written)
2592 goto out;
2593
2594 /*
2595 * After a write we want buffered reads to be sure to go to disk to get
2596 * the new data. We invalidate clean cached page from the region we're
2597 * about to write. We do this *before* the write so that we can return
2598 * without clobbering -EIOCBQUEUED from ->direct_IO().
2599 */
2600 if (mapping->nrpages) {
2601 written = invalidate_inode_pages2_range(mapping,
2602 pos >> PAGE_SHIFT, end);
2603 /*
2604 * If a page can not be invalidated, return 0 to fall back
2605 * to buffered write.
2606 */
2607 if (written) {
2608 if (written == -EBUSY)
2609 return 0;
2610 goto out;
2611 }
2612 }
2613
2614 data = *from;
2615 written = mapping->a_ops->direct_IO(iocb, &data);
2616
2617 /*
2618 * Finally, try again to invalidate clean pages which might have been
2619 * cached by non-direct readahead, or faulted in by get_user_pages()
2620 * if the source of the write was an mmap'ed region of the file
2621 * we're writing. Either one is a pretty crazy thing to do,
2622 * so we don't support it 100%. If this invalidation
2623 * fails, tough, the write still worked...
2624 */
2625 if (mapping->nrpages) {
2626 invalidate_inode_pages2_range(mapping,
2627 pos >> PAGE_SHIFT, end);
2628 }
2629
2630 if (written > 0) {
2631 pos += written;
2632 iov_iter_advance(from, written);
2633 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2634 i_size_write(inode, pos);
2635 mark_inode_dirty(inode);
2636 }
2637 iocb->ki_pos = pos;
2638 }
2639 out:
2640 return written;
2641 }
2642 EXPORT_SYMBOL(generic_file_direct_write);
2643
2644 /*
2645 * Find or create a page at the given pagecache position. Return the locked
2646 * page. This function is specifically for buffered writes.
2647 */
2648 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2649 pgoff_t index, unsigned flags)
2650 {
2651 struct page *page;
2652 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2653
2654 if (flags & AOP_FLAG_NOFS)
2655 fgp_flags |= FGP_NOFS;
2656
2657 page = pagecache_get_page(mapping, index, fgp_flags,
2658 mapping_gfp_mask(mapping));
2659 if (page)
2660 wait_for_stable_page(page);
2661
2662 return page;
2663 }
2664 EXPORT_SYMBOL(grab_cache_page_write_begin);
2665
2666 ssize_t generic_perform_write(struct file *file,
2667 struct iov_iter *i, loff_t pos)
2668 {
2669 struct address_space *mapping = file->f_mapping;
2670 const struct address_space_operations *a_ops = mapping->a_ops;
2671 long status = 0;
2672 ssize_t written = 0;
2673 unsigned int flags = 0;
2674
2675 /*
2676 * Copies from kernel address space cannot fail (NFSD is a big user).
2677 */
2678 if (!iter_is_iovec(i))
2679 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2680
2681 do {
2682 struct page *page;
2683 unsigned long offset; /* Offset into pagecache page */
2684 unsigned long bytes; /* Bytes to write to page */
2685 size_t copied; /* Bytes copied from user */
2686 void *fsdata;
2687
2688 offset = (pos & (PAGE_SIZE - 1));
2689 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2690 iov_iter_count(i));
2691
2692 again:
2693 /*
2694 * Bring in the user page that we will copy from _first_.
2695 * Otherwise there's a nasty deadlock on copying from the
2696 * same page as we're writing to, without it being marked
2697 * up-to-date.
2698 *
2699 * Not only is this an optimisation, but it is also required
2700 * to check that the address is actually valid, when atomic
2701 * usercopies are used, below.
2702 */
2703 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2704 status = -EFAULT;
2705 break;
2706 }
2707
2708 if (fatal_signal_pending(current)) {
2709 status = -EINTR;
2710 break;
2711 }
2712
2713 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2714 &page, &fsdata);
2715 if (unlikely(status < 0))
2716 break;
2717
2718 if (mapping_writably_mapped(mapping))
2719 flush_dcache_page(page);
2720
2721 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2722 flush_dcache_page(page);
2723
2724 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2725 page, fsdata);
2726 if (unlikely(status < 0))
2727 break;
2728 copied = status;
2729
2730 cond_resched();
2731
2732 iov_iter_advance(i, copied);
2733 if (unlikely(copied == 0)) {
2734 /*
2735 * If we were unable to copy any data at all, we must
2736 * fall back to a single segment length write.
2737 *
2738 * If we didn't fallback here, we could livelock
2739 * because not all segments in the iov can be copied at
2740 * once without a pagefault.
2741 */
2742 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2743 iov_iter_single_seg_count(i));
2744 goto again;
2745 }
2746 pos += copied;
2747 written += copied;
2748
2749 balance_dirty_pages_ratelimited(mapping);
2750 } while (iov_iter_count(i));
2751
2752 return written ? written : status;
2753 }
2754 EXPORT_SYMBOL(generic_perform_write);
2755
2756 /**
2757 * __generic_file_write_iter - write data to a file
2758 * @iocb: IO state structure (file, offset, etc.)
2759 * @from: iov_iter with data to write
2760 *
2761 * This function does all the work needed for actually writing data to a
2762 * file. It does all basic checks, removes SUID from the file, updates
2763 * modification times and calls proper subroutines depending on whether we
2764 * do direct IO or a standard buffered write.
2765 *
2766 * It expects i_mutex to be grabbed unless we work on a block device or similar
2767 * object which does not need locking at all.
2768 *
2769 * This function does *not* take care of syncing data in case of O_SYNC write.
2770 * A caller has to handle it. This is mainly due to the fact that we want to
2771 * avoid syncing under i_mutex.
2772 */
2773 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2774 {
2775 struct file *file = iocb->ki_filp;
2776 struct address_space * mapping = file->f_mapping;
2777 struct inode *inode = mapping->host;
2778 ssize_t written = 0;
2779 ssize_t err;
2780 ssize_t status;
2781
2782 /* We can write back this queue in page reclaim */
2783 current->backing_dev_info = inode_to_bdi(inode);
2784 err = file_remove_privs(file);
2785 if (err)
2786 goto out;
2787
2788 err = file_update_time(file);
2789 if (err)
2790 goto out;
2791
2792 if (iocb->ki_flags & IOCB_DIRECT) {
2793 loff_t pos, endbyte;
2794
2795 written = generic_file_direct_write(iocb, from);
2796 /*
2797 * If the write stopped short of completing, fall back to
2798 * buffered writes. Some filesystems do this for writes to
2799 * holes, for example. For DAX files, a buffered write will
2800 * not succeed (even if it did, DAX does not handle dirty
2801 * page-cache pages correctly).
2802 */
2803 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2804 goto out;
2805
2806 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2807 /*
2808 * If generic_perform_write() returned a synchronous error
2809 * then we want to return the number of bytes which were
2810 * direct-written, or the error code if that was zero. Note
2811 * that this differs from normal direct-io semantics, which
2812 * will return -EFOO even if some bytes were written.
2813 */
2814 if (unlikely(status < 0)) {
2815 err = status;
2816 goto out;
2817 }
2818 /*
2819 * We need to ensure that the page cache pages are written to
2820 * disk and invalidated to preserve the expected O_DIRECT
2821 * semantics.
2822 */
2823 endbyte = pos + status - 1;
2824 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2825 if (err == 0) {
2826 iocb->ki_pos = endbyte + 1;
2827 written += status;
2828 invalidate_mapping_pages(mapping,
2829 pos >> PAGE_SHIFT,
2830 endbyte >> PAGE_SHIFT);
2831 } else {
2832 /*
2833 * We don't know how much we wrote, so just return
2834 * the number of bytes which were direct-written
2835 */
2836 }
2837 } else {
2838 written = generic_perform_write(file, from, iocb->ki_pos);
2839 if (likely(written > 0))
2840 iocb->ki_pos += written;
2841 }
2842 out:
2843 current->backing_dev_info = NULL;
2844 return written ? written : err;
2845 }
2846 EXPORT_SYMBOL(__generic_file_write_iter);
2847
2848 /**
2849 * generic_file_write_iter - write data to a file
2850 * @iocb: IO state structure
2851 * @from: iov_iter with data to write
2852 *
2853 * This is a wrapper around __generic_file_write_iter() to be used by most
2854 * filesystems. It takes care of syncing the file in case of O_SYNC file
2855 * and acquires i_mutex as needed.
2856 */
2857 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2858 {
2859 struct file *file = iocb->ki_filp;
2860 struct inode *inode = file->f_mapping->host;
2861 ssize_t ret;
2862
2863 inode_lock(inode);
2864 ret = generic_write_checks(iocb, from);
2865 if (ret > 0)
2866 ret = __generic_file_write_iter(iocb, from);
2867 inode_unlock(inode);
2868
2869 if (ret > 0)
2870 ret = generic_write_sync(iocb, ret);
2871 return ret;
2872 }
2873 EXPORT_SYMBOL(generic_file_write_iter);
2874
2875 /**
2876 * try_to_release_page() - release old fs-specific metadata on a page
2877 *
2878 * @page: the page which the kernel is trying to free
2879 * @gfp_mask: memory allocation flags (and I/O mode)
2880 *
2881 * The address_space is to try to release any data against the page
2882 * (presumably at page->private). If the release was successful, return `1'.
2883 * Otherwise return zero.
2884 *
2885 * This may also be called if PG_fscache is set on a page, indicating that the
2886 * page is known to the local caching routines.
2887 *
2888 * The @gfp_mask argument specifies whether I/O may be performed to release
2889 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2890 *
2891 */
2892 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2893 {
2894 struct address_space * const mapping = page->mapping;
2895
2896 BUG_ON(!PageLocked(page));
2897 if (PageWriteback(page))
2898 return 0;
2899
2900 if (mapping && mapping->a_ops->releasepage)
2901 return mapping->a_ops->releasepage(page, gfp_mask);
2902 return try_to_free_buffers(page);
2903 }
2904
2905 EXPORT_SYMBOL(try_to_release_page);
This page took 0.120477 seconds and 5 git commands to generate.