mm: simplify lock_page_memcg()
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
121
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
127 mapping->nrexceptional++;
128 /*
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
135 }
136 mapping->nrpages--;
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
174 }
175
176 /*
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * lock_page_memcg().
181 */
182 void __delete_from_page_cache(struct page *page, void *shadow)
183 {
184 struct address_space *mapping = page->mapping;
185
186 trace_mm_filemap_delete_from_page_cache(page);
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
195 cleancache_invalidate_page(mapping, page);
196
197 VM_BUG_ON_PAGE(page_mapped(page), page);
198 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
199 int mapcount;
200
201 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
202 current->comm, page_to_pfn(page));
203 dump_page(page, "still mapped when deleted");
204 dump_stack();
205 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
206
207 mapcount = page_mapcount(page);
208 if (mapping_exiting(mapping) &&
209 page_count(page) >= mapcount + 2) {
210 /*
211 * All vmas have already been torn down, so it's
212 * a good bet that actually the page is unmapped,
213 * and we'd prefer not to leak it: if we're wrong,
214 * some other bad page check should catch it later.
215 */
216 page_mapcount_reset(page);
217 atomic_sub(mapcount, &page->_count);
218 }
219 }
220
221 page_cache_tree_delete(mapping, page, shadow);
222
223 page->mapping = NULL;
224 /* Leave page->index set: truncation lookup relies upon it */
225
226 /* hugetlb pages do not participate in page cache accounting. */
227 if (!PageHuge(page))
228 __dec_zone_page_state(page, NR_FILE_PAGES);
229 if (PageSwapBacked(page))
230 __dec_zone_page_state(page, NR_SHMEM);
231
232 /*
233 * At this point page must be either written or cleaned by truncate.
234 * Dirty page here signals a bug and loss of unwritten data.
235 *
236 * This fixes dirty accounting after removing the page entirely but
237 * leaves PageDirty set: it has no effect for truncated page and
238 * anyway will be cleared before returning page into buddy allocator.
239 */
240 if (WARN_ON_ONCE(PageDirty(page)))
241 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
242 }
243
244 /**
245 * delete_from_page_cache - delete page from page cache
246 * @page: the page which the kernel is trying to remove from page cache
247 *
248 * This must be called only on pages that have been verified to be in the page
249 * cache and locked. It will never put the page into the free list, the caller
250 * has a reference on the page.
251 */
252 void delete_from_page_cache(struct page *page)
253 {
254 struct address_space *mapping = page->mapping;
255 unsigned long flags;
256
257 void (*freepage)(struct page *);
258
259 BUG_ON(!PageLocked(page));
260
261 freepage = mapping->a_ops->freepage;
262
263 lock_page_memcg(page);
264 spin_lock_irqsave(&mapping->tree_lock, flags);
265 __delete_from_page_cache(page, NULL);
266 spin_unlock_irqrestore(&mapping->tree_lock, flags);
267 unlock_page_memcg(page);
268
269 if (freepage)
270 freepage(page);
271 page_cache_release(page);
272 }
273 EXPORT_SYMBOL(delete_from_page_cache);
274
275 static int filemap_check_errors(struct address_space *mapping)
276 {
277 int ret = 0;
278 /* Check for outstanding write errors */
279 if (test_bit(AS_ENOSPC, &mapping->flags) &&
280 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_bit(AS_EIO, &mapping->flags) &&
283 test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
285 return ret;
286 }
287
288 /**
289 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
290 * @mapping: address space structure to write
291 * @start: offset in bytes where the range starts
292 * @end: offset in bytes where the range ends (inclusive)
293 * @sync_mode: enable synchronous operation
294 *
295 * Start writeback against all of a mapping's dirty pages that lie
296 * within the byte offsets <start, end> inclusive.
297 *
298 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
299 * opposed to a regular memory cleansing writeback. The difference between
300 * these two operations is that if a dirty page/buffer is encountered, it must
301 * be waited upon, and not just skipped over.
302 */
303 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
304 loff_t end, int sync_mode)
305 {
306 int ret;
307 struct writeback_control wbc = {
308 .sync_mode = sync_mode,
309 .nr_to_write = LONG_MAX,
310 .range_start = start,
311 .range_end = end,
312 };
313
314 if (!mapping_cap_writeback_dirty(mapping))
315 return 0;
316
317 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
318 ret = do_writepages(mapping, &wbc);
319 wbc_detach_inode(&wbc);
320 return ret;
321 }
322
323 static inline int __filemap_fdatawrite(struct address_space *mapping,
324 int sync_mode)
325 {
326 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
327 }
328
329 int filemap_fdatawrite(struct address_space *mapping)
330 {
331 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
332 }
333 EXPORT_SYMBOL(filemap_fdatawrite);
334
335 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
336 loff_t end)
337 {
338 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
339 }
340 EXPORT_SYMBOL(filemap_fdatawrite_range);
341
342 /**
343 * filemap_flush - mostly a non-blocking flush
344 * @mapping: target address_space
345 *
346 * This is a mostly non-blocking flush. Not suitable for data-integrity
347 * purposes - I/O may not be started against all dirty pages.
348 */
349 int filemap_flush(struct address_space *mapping)
350 {
351 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
352 }
353 EXPORT_SYMBOL(filemap_flush);
354
355 static int __filemap_fdatawait_range(struct address_space *mapping,
356 loff_t start_byte, loff_t end_byte)
357 {
358 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
359 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
360 struct pagevec pvec;
361 int nr_pages;
362 int ret = 0;
363
364 if (end_byte < start_byte)
365 goto out;
366
367 pagevec_init(&pvec, 0);
368 while ((index <= end) &&
369 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
370 PAGECACHE_TAG_WRITEBACK,
371 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
372 unsigned i;
373
374 for (i = 0; i < nr_pages; i++) {
375 struct page *page = pvec.pages[i];
376
377 /* until radix tree lookup accepts end_index */
378 if (page->index > end)
379 continue;
380
381 wait_on_page_writeback(page);
382 if (TestClearPageError(page))
383 ret = -EIO;
384 }
385 pagevec_release(&pvec);
386 cond_resched();
387 }
388 out:
389 return ret;
390 }
391
392 /**
393 * filemap_fdatawait_range - wait for writeback to complete
394 * @mapping: address space structure to wait for
395 * @start_byte: offset in bytes where the range starts
396 * @end_byte: offset in bytes where the range ends (inclusive)
397 *
398 * Walk the list of under-writeback pages of the given address space
399 * in the given range and wait for all of them. Check error status of
400 * the address space and return it.
401 *
402 * Since the error status of the address space is cleared by this function,
403 * callers are responsible for checking the return value and handling and/or
404 * reporting the error.
405 */
406 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
407 loff_t end_byte)
408 {
409 int ret, ret2;
410
411 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
412 ret2 = filemap_check_errors(mapping);
413 if (!ret)
414 ret = ret2;
415
416 return ret;
417 }
418 EXPORT_SYMBOL(filemap_fdatawait_range);
419
420 /**
421 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
422 * @mapping: address space structure to wait for
423 *
424 * Walk the list of under-writeback pages of the given address space
425 * and wait for all of them. Unlike filemap_fdatawait(), this function
426 * does not clear error status of the address space.
427 *
428 * Use this function if callers don't handle errors themselves. Expected
429 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
430 * fsfreeze(8)
431 */
432 void filemap_fdatawait_keep_errors(struct address_space *mapping)
433 {
434 loff_t i_size = i_size_read(mapping->host);
435
436 if (i_size == 0)
437 return;
438
439 __filemap_fdatawait_range(mapping, 0, i_size - 1);
440 }
441
442 /**
443 * filemap_fdatawait - wait for all under-writeback pages to complete
444 * @mapping: address space structure to wait for
445 *
446 * Walk the list of under-writeback pages of the given address space
447 * and wait for all of them. Check error status of the address space
448 * and return it.
449 *
450 * Since the error status of the address space is cleared by this function,
451 * callers are responsible for checking the return value and handling and/or
452 * reporting the error.
453 */
454 int filemap_fdatawait(struct address_space *mapping)
455 {
456 loff_t i_size = i_size_read(mapping->host);
457
458 if (i_size == 0)
459 return 0;
460
461 return filemap_fdatawait_range(mapping, 0, i_size - 1);
462 }
463 EXPORT_SYMBOL(filemap_fdatawait);
464
465 int filemap_write_and_wait(struct address_space *mapping)
466 {
467 int err = 0;
468
469 if ((!dax_mapping(mapping) && mapping->nrpages) ||
470 (dax_mapping(mapping) && mapping->nrexceptional)) {
471 err = filemap_fdatawrite(mapping);
472 /*
473 * Even if the above returned error, the pages may be
474 * written partially (e.g. -ENOSPC), so we wait for it.
475 * But the -EIO is special case, it may indicate the worst
476 * thing (e.g. bug) happened, so we avoid waiting for it.
477 */
478 if (err != -EIO) {
479 int err2 = filemap_fdatawait(mapping);
480 if (!err)
481 err = err2;
482 }
483 } else {
484 err = filemap_check_errors(mapping);
485 }
486 return err;
487 }
488 EXPORT_SYMBOL(filemap_write_and_wait);
489
490 /**
491 * filemap_write_and_wait_range - write out & wait on a file range
492 * @mapping: the address_space for the pages
493 * @lstart: offset in bytes where the range starts
494 * @lend: offset in bytes where the range ends (inclusive)
495 *
496 * Write out and wait upon file offsets lstart->lend, inclusive.
497 *
498 * Note that `lend' is inclusive (describes the last byte to be written) so
499 * that this function can be used to write to the very end-of-file (end = -1).
500 */
501 int filemap_write_and_wait_range(struct address_space *mapping,
502 loff_t lstart, loff_t lend)
503 {
504 int err = 0;
505
506 if ((!dax_mapping(mapping) && mapping->nrpages) ||
507 (dax_mapping(mapping) && mapping->nrexceptional)) {
508 err = __filemap_fdatawrite_range(mapping, lstart, lend,
509 WB_SYNC_ALL);
510 /* See comment of filemap_write_and_wait() */
511 if (err != -EIO) {
512 int err2 = filemap_fdatawait_range(mapping,
513 lstart, lend);
514 if (!err)
515 err = err2;
516 }
517 } else {
518 err = filemap_check_errors(mapping);
519 }
520 return err;
521 }
522 EXPORT_SYMBOL(filemap_write_and_wait_range);
523
524 /**
525 * replace_page_cache_page - replace a pagecache page with a new one
526 * @old: page to be replaced
527 * @new: page to replace with
528 * @gfp_mask: allocation mode
529 *
530 * This function replaces a page in the pagecache with a new one. On
531 * success it acquires the pagecache reference for the new page and
532 * drops it for the old page. Both the old and new pages must be
533 * locked. This function does not add the new page to the LRU, the
534 * caller must do that.
535 *
536 * The remove + add is atomic. The only way this function can fail is
537 * memory allocation failure.
538 */
539 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
540 {
541 int error;
542
543 VM_BUG_ON_PAGE(!PageLocked(old), old);
544 VM_BUG_ON_PAGE(!PageLocked(new), new);
545 VM_BUG_ON_PAGE(new->mapping, new);
546
547 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
548 if (!error) {
549 struct address_space *mapping = old->mapping;
550 void (*freepage)(struct page *);
551 unsigned long flags;
552
553 pgoff_t offset = old->index;
554 freepage = mapping->a_ops->freepage;
555
556 page_cache_get(new);
557 new->mapping = mapping;
558 new->index = offset;
559
560 lock_page_memcg(old);
561 spin_lock_irqsave(&mapping->tree_lock, flags);
562 __delete_from_page_cache(old, NULL);
563 error = radix_tree_insert(&mapping->page_tree, offset, new);
564 BUG_ON(error);
565 mapping->nrpages++;
566
567 /*
568 * hugetlb pages do not participate in page cache accounting.
569 */
570 if (!PageHuge(new))
571 __inc_zone_page_state(new, NR_FILE_PAGES);
572 if (PageSwapBacked(new))
573 __inc_zone_page_state(new, NR_SHMEM);
574 spin_unlock_irqrestore(&mapping->tree_lock, flags);
575 unlock_page_memcg(old);
576 mem_cgroup_migrate(old, new);
577 radix_tree_preload_end();
578 if (freepage)
579 freepage(old);
580 page_cache_release(old);
581 }
582
583 return error;
584 }
585 EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
587 static int page_cache_tree_insert(struct address_space *mapping,
588 struct page *page, void **shadowp)
589 {
590 struct radix_tree_node *node;
591 void **slot;
592 int error;
593
594 error = __radix_tree_create(&mapping->page_tree, page->index,
595 &node, &slot);
596 if (error)
597 return error;
598 if (*slot) {
599 void *p;
600
601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602 if (!radix_tree_exceptional_entry(p))
603 return -EEXIST;
604
605 if (WARN_ON(dax_mapping(mapping)))
606 return -EINVAL;
607
608 if (shadowp)
609 *shadowp = p;
610 mapping->nrexceptional--;
611 if (node)
612 workingset_node_shadows_dec(node);
613 }
614 radix_tree_replace_slot(slot, page);
615 mapping->nrpages++;
616 if (node) {
617 workingset_node_pages_inc(node);
618 /*
619 * Don't track node that contains actual pages.
620 *
621 * Avoid acquiring the list_lru lock if already
622 * untracked. The list_empty() test is safe as
623 * node->private_list is protected by
624 * mapping->tree_lock.
625 */
626 if (!list_empty(&node->private_list))
627 list_lru_del(&workingset_shadow_nodes,
628 &node->private_list);
629 }
630 return 0;
631 }
632
633 static int __add_to_page_cache_locked(struct page *page,
634 struct address_space *mapping,
635 pgoff_t offset, gfp_t gfp_mask,
636 void **shadowp)
637 {
638 int huge = PageHuge(page);
639 struct mem_cgroup *memcg;
640 int error;
641
642 VM_BUG_ON_PAGE(!PageLocked(page), page);
643 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
644
645 if (!huge) {
646 error = mem_cgroup_try_charge(page, current->mm,
647 gfp_mask, &memcg, false);
648 if (error)
649 return error;
650 }
651
652 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
653 if (error) {
654 if (!huge)
655 mem_cgroup_cancel_charge(page, memcg, false);
656 return error;
657 }
658
659 page_cache_get(page);
660 page->mapping = mapping;
661 page->index = offset;
662
663 spin_lock_irq(&mapping->tree_lock);
664 error = page_cache_tree_insert(mapping, page, shadowp);
665 radix_tree_preload_end();
666 if (unlikely(error))
667 goto err_insert;
668
669 /* hugetlb pages do not participate in page cache accounting. */
670 if (!huge)
671 __inc_zone_page_state(page, NR_FILE_PAGES);
672 spin_unlock_irq(&mapping->tree_lock);
673 if (!huge)
674 mem_cgroup_commit_charge(page, memcg, false, false);
675 trace_mm_filemap_add_to_page_cache(page);
676 return 0;
677 err_insert:
678 page->mapping = NULL;
679 /* Leave page->index set: truncation relies upon it */
680 spin_unlock_irq(&mapping->tree_lock);
681 if (!huge)
682 mem_cgroup_cancel_charge(page, memcg, false);
683 page_cache_release(page);
684 return error;
685 }
686
687 /**
688 * add_to_page_cache_locked - add a locked page to the pagecache
689 * @page: page to add
690 * @mapping: the page's address_space
691 * @offset: page index
692 * @gfp_mask: page allocation mode
693 *
694 * This function is used to add a page to the pagecache. It must be locked.
695 * This function does not add the page to the LRU. The caller must do that.
696 */
697 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
698 pgoff_t offset, gfp_t gfp_mask)
699 {
700 return __add_to_page_cache_locked(page, mapping, offset,
701 gfp_mask, NULL);
702 }
703 EXPORT_SYMBOL(add_to_page_cache_locked);
704
705 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
706 pgoff_t offset, gfp_t gfp_mask)
707 {
708 void *shadow = NULL;
709 int ret;
710
711 __SetPageLocked(page);
712 ret = __add_to_page_cache_locked(page, mapping, offset,
713 gfp_mask, &shadow);
714 if (unlikely(ret))
715 __ClearPageLocked(page);
716 else {
717 /*
718 * The page might have been evicted from cache only
719 * recently, in which case it should be activated like
720 * any other repeatedly accessed page.
721 */
722 if (shadow && workingset_refault(shadow)) {
723 SetPageActive(page);
724 workingset_activation(page);
725 } else
726 ClearPageActive(page);
727 lru_cache_add(page);
728 }
729 return ret;
730 }
731 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
732
733 #ifdef CONFIG_NUMA
734 struct page *__page_cache_alloc(gfp_t gfp)
735 {
736 int n;
737 struct page *page;
738
739 if (cpuset_do_page_mem_spread()) {
740 unsigned int cpuset_mems_cookie;
741 do {
742 cpuset_mems_cookie = read_mems_allowed_begin();
743 n = cpuset_mem_spread_node();
744 page = __alloc_pages_node(n, gfp, 0);
745 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
746
747 return page;
748 }
749 return alloc_pages(gfp, 0);
750 }
751 EXPORT_SYMBOL(__page_cache_alloc);
752 #endif
753
754 /*
755 * In order to wait for pages to become available there must be
756 * waitqueues associated with pages. By using a hash table of
757 * waitqueues where the bucket discipline is to maintain all
758 * waiters on the same queue and wake all when any of the pages
759 * become available, and for the woken contexts to check to be
760 * sure the appropriate page became available, this saves space
761 * at a cost of "thundering herd" phenomena during rare hash
762 * collisions.
763 */
764 wait_queue_head_t *page_waitqueue(struct page *page)
765 {
766 const struct zone *zone = page_zone(page);
767
768 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
769 }
770 EXPORT_SYMBOL(page_waitqueue);
771
772 void wait_on_page_bit(struct page *page, int bit_nr)
773 {
774 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
775
776 if (test_bit(bit_nr, &page->flags))
777 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
778 TASK_UNINTERRUPTIBLE);
779 }
780 EXPORT_SYMBOL(wait_on_page_bit);
781
782 int wait_on_page_bit_killable(struct page *page, int bit_nr)
783 {
784 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
785
786 if (!test_bit(bit_nr, &page->flags))
787 return 0;
788
789 return __wait_on_bit(page_waitqueue(page), &wait,
790 bit_wait_io, TASK_KILLABLE);
791 }
792
793 int wait_on_page_bit_killable_timeout(struct page *page,
794 int bit_nr, unsigned long timeout)
795 {
796 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
797
798 wait.key.timeout = jiffies + timeout;
799 if (!test_bit(bit_nr, &page->flags))
800 return 0;
801 return __wait_on_bit(page_waitqueue(page), &wait,
802 bit_wait_io_timeout, TASK_KILLABLE);
803 }
804 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
805
806 /**
807 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
808 * @page: Page defining the wait queue of interest
809 * @waiter: Waiter to add to the queue
810 *
811 * Add an arbitrary @waiter to the wait queue for the nominated @page.
812 */
813 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
814 {
815 wait_queue_head_t *q = page_waitqueue(page);
816 unsigned long flags;
817
818 spin_lock_irqsave(&q->lock, flags);
819 __add_wait_queue(q, waiter);
820 spin_unlock_irqrestore(&q->lock, flags);
821 }
822 EXPORT_SYMBOL_GPL(add_page_wait_queue);
823
824 /**
825 * unlock_page - unlock a locked page
826 * @page: the page
827 *
828 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
829 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
830 * mechanism between PageLocked pages and PageWriteback pages is shared.
831 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
832 *
833 * The mb is necessary to enforce ordering between the clear_bit and the read
834 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
835 */
836 void unlock_page(struct page *page)
837 {
838 page = compound_head(page);
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 clear_bit_unlock(PG_locked, &page->flags);
841 smp_mb__after_atomic();
842 wake_up_page(page, PG_locked);
843 }
844 EXPORT_SYMBOL(unlock_page);
845
846 /**
847 * end_page_writeback - end writeback against a page
848 * @page: the page
849 */
850 void end_page_writeback(struct page *page)
851 {
852 /*
853 * TestClearPageReclaim could be used here but it is an atomic
854 * operation and overkill in this particular case. Failing to
855 * shuffle a page marked for immediate reclaim is too mild to
856 * justify taking an atomic operation penalty at the end of
857 * ever page writeback.
858 */
859 if (PageReclaim(page)) {
860 ClearPageReclaim(page);
861 rotate_reclaimable_page(page);
862 }
863
864 if (!test_clear_page_writeback(page))
865 BUG();
866
867 smp_mb__after_atomic();
868 wake_up_page(page, PG_writeback);
869 }
870 EXPORT_SYMBOL(end_page_writeback);
871
872 /*
873 * After completing I/O on a page, call this routine to update the page
874 * flags appropriately
875 */
876 void page_endio(struct page *page, int rw, int err)
877 {
878 if (rw == READ) {
879 if (!err) {
880 SetPageUptodate(page);
881 } else {
882 ClearPageUptodate(page);
883 SetPageError(page);
884 }
885 unlock_page(page);
886 } else { /* rw == WRITE */
887 if (err) {
888 SetPageError(page);
889 if (page->mapping)
890 mapping_set_error(page->mapping, err);
891 }
892 end_page_writeback(page);
893 }
894 }
895 EXPORT_SYMBOL_GPL(page_endio);
896
897 /**
898 * __lock_page - get a lock on the page, assuming we need to sleep to get it
899 * @page: the page to lock
900 */
901 void __lock_page(struct page *page)
902 {
903 struct page *page_head = compound_head(page);
904 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
905
906 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
907 TASK_UNINTERRUPTIBLE);
908 }
909 EXPORT_SYMBOL(__lock_page);
910
911 int __lock_page_killable(struct page *page)
912 {
913 struct page *page_head = compound_head(page);
914 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
915
916 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
917 bit_wait_io, TASK_KILLABLE);
918 }
919 EXPORT_SYMBOL_GPL(__lock_page_killable);
920
921 /*
922 * Return values:
923 * 1 - page is locked; mmap_sem is still held.
924 * 0 - page is not locked.
925 * mmap_sem has been released (up_read()), unless flags had both
926 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
927 * which case mmap_sem is still held.
928 *
929 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
930 * with the page locked and the mmap_sem unperturbed.
931 */
932 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
933 unsigned int flags)
934 {
935 if (flags & FAULT_FLAG_ALLOW_RETRY) {
936 /*
937 * CAUTION! In this case, mmap_sem is not released
938 * even though return 0.
939 */
940 if (flags & FAULT_FLAG_RETRY_NOWAIT)
941 return 0;
942
943 up_read(&mm->mmap_sem);
944 if (flags & FAULT_FLAG_KILLABLE)
945 wait_on_page_locked_killable(page);
946 else
947 wait_on_page_locked(page);
948 return 0;
949 } else {
950 if (flags & FAULT_FLAG_KILLABLE) {
951 int ret;
952
953 ret = __lock_page_killable(page);
954 if (ret) {
955 up_read(&mm->mmap_sem);
956 return 0;
957 }
958 } else
959 __lock_page(page);
960 return 1;
961 }
962 }
963
964 /**
965 * page_cache_next_hole - find the next hole (not-present entry)
966 * @mapping: mapping
967 * @index: index
968 * @max_scan: maximum range to search
969 *
970 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
971 * lowest indexed hole.
972 *
973 * Returns: the index of the hole if found, otherwise returns an index
974 * outside of the set specified (in which case 'return - index >=
975 * max_scan' will be true). In rare cases of index wrap-around, 0 will
976 * be returned.
977 *
978 * page_cache_next_hole may be called under rcu_read_lock. However,
979 * like radix_tree_gang_lookup, this will not atomically search a
980 * snapshot of the tree at a single point in time. For example, if a
981 * hole is created at index 5, then subsequently a hole is created at
982 * index 10, page_cache_next_hole covering both indexes may return 10
983 * if called under rcu_read_lock.
984 */
985 pgoff_t page_cache_next_hole(struct address_space *mapping,
986 pgoff_t index, unsigned long max_scan)
987 {
988 unsigned long i;
989
990 for (i = 0; i < max_scan; i++) {
991 struct page *page;
992
993 page = radix_tree_lookup(&mapping->page_tree, index);
994 if (!page || radix_tree_exceptional_entry(page))
995 break;
996 index++;
997 if (index == 0)
998 break;
999 }
1000
1001 return index;
1002 }
1003 EXPORT_SYMBOL(page_cache_next_hole);
1004
1005 /**
1006 * page_cache_prev_hole - find the prev hole (not-present entry)
1007 * @mapping: mapping
1008 * @index: index
1009 * @max_scan: maximum range to search
1010 *
1011 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1012 * the first hole.
1013 *
1014 * Returns: the index of the hole if found, otherwise returns an index
1015 * outside of the set specified (in which case 'index - return >=
1016 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1017 * will be returned.
1018 *
1019 * page_cache_prev_hole may be called under rcu_read_lock. However,
1020 * like radix_tree_gang_lookup, this will not atomically search a
1021 * snapshot of the tree at a single point in time. For example, if a
1022 * hole is created at index 10, then subsequently a hole is created at
1023 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1024 * called under rcu_read_lock.
1025 */
1026 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1027 pgoff_t index, unsigned long max_scan)
1028 {
1029 unsigned long i;
1030
1031 for (i = 0; i < max_scan; i++) {
1032 struct page *page;
1033
1034 page = radix_tree_lookup(&mapping->page_tree, index);
1035 if (!page || radix_tree_exceptional_entry(page))
1036 break;
1037 index--;
1038 if (index == ULONG_MAX)
1039 break;
1040 }
1041
1042 return index;
1043 }
1044 EXPORT_SYMBOL(page_cache_prev_hole);
1045
1046 /**
1047 * find_get_entry - find and get a page cache entry
1048 * @mapping: the address_space to search
1049 * @offset: the page cache index
1050 *
1051 * Looks up the page cache slot at @mapping & @offset. If there is a
1052 * page cache page, it is returned with an increased refcount.
1053 *
1054 * If the slot holds a shadow entry of a previously evicted page, or a
1055 * swap entry from shmem/tmpfs, it is returned.
1056 *
1057 * Otherwise, %NULL is returned.
1058 */
1059 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1060 {
1061 void **pagep;
1062 struct page *page;
1063
1064 rcu_read_lock();
1065 repeat:
1066 page = NULL;
1067 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1068 if (pagep) {
1069 page = radix_tree_deref_slot(pagep);
1070 if (unlikely(!page))
1071 goto out;
1072 if (radix_tree_exception(page)) {
1073 if (radix_tree_deref_retry(page))
1074 goto repeat;
1075 /*
1076 * A shadow entry of a recently evicted page,
1077 * or a swap entry from shmem/tmpfs. Return
1078 * it without attempting to raise page count.
1079 */
1080 goto out;
1081 }
1082 if (!page_cache_get_speculative(page))
1083 goto repeat;
1084
1085 /*
1086 * Has the page moved?
1087 * This is part of the lockless pagecache protocol. See
1088 * include/linux/pagemap.h for details.
1089 */
1090 if (unlikely(page != *pagep)) {
1091 page_cache_release(page);
1092 goto repeat;
1093 }
1094 }
1095 out:
1096 rcu_read_unlock();
1097
1098 return page;
1099 }
1100 EXPORT_SYMBOL(find_get_entry);
1101
1102 /**
1103 * find_lock_entry - locate, pin and lock a page cache entry
1104 * @mapping: the address_space to search
1105 * @offset: the page cache index
1106 *
1107 * Looks up the page cache slot at @mapping & @offset. If there is a
1108 * page cache page, it is returned locked and with an increased
1109 * refcount.
1110 *
1111 * If the slot holds a shadow entry of a previously evicted page, or a
1112 * swap entry from shmem/tmpfs, it is returned.
1113 *
1114 * Otherwise, %NULL is returned.
1115 *
1116 * find_lock_entry() may sleep.
1117 */
1118 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1119 {
1120 struct page *page;
1121
1122 repeat:
1123 page = find_get_entry(mapping, offset);
1124 if (page && !radix_tree_exception(page)) {
1125 lock_page(page);
1126 /* Has the page been truncated? */
1127 if (unlikely(page->mapping != mapping)) {
1128 unlock_page(page);
1129 page_cache_release(page);
1130 goto repeat;
1131 }
1132 VM_BUG_ON_PAGE(page->index != offset, page);
1133 }
1134 return page;
1135 }
1136 EXPORT_SYMBOL(find_lock_entry);
1137
1138 /**
1139 * pagecache_get_page - find and get a page reference
1140 * @mapping: the address_space to search
1141 * @offset: the page index
1142 * @fgp_flags: PCG flags
1143 * @gfp_mask: gfp mask to use for the page cache data page allocation
1144 *
1145 * Looks up the page cache slot at @mapping & @offset.
1146 *
1147 * PCG flags modify how the page is returned.
1148 *
1149 * FGP_ACCESSED: the page will be marked accessed
1150 * FGP_LOCK: Page is return locked
1151 * FGP_CREAT: If page is not present then a new page is allocated using
1152 * @gfp_mask and added to the page cache and the VM's LRU
1153 * list. The page is returned locked and with an increased
1154 * refcount. Otherwise, %NULL is returned.
1155 *
1156 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1157 * if the GFP flags specified for FGP_CREAT are atomic.
1158 *
1159 * If there is a page cache page, it is returned with an increased refcount.
1160 */
1161 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1162 int fgp_flags, gfp_t gfp_mask)
1163 {
1164 struct page *page;
1165
1166 repeat:
1167 page = find_get_entry(mapping, offset);
1168 if (radix_tree_exceptional_entry(page))
1169 page = NULL;
1170 if (!page)
1171 goto no_page;
1172
1173 if (fgp_flags & FGP_LOCK) {
1174 if (fgp_flags & FGP_NOWAIT) {
1175 if (!trylock_page(page)) {
1176 page_cache_release(page);
1177 return NULL;
1178 }
1179 } else {
1180 lock_page(page);
1181 }
1182
1183 /* Has the page been truncated? */
1184 if (unlikely(page->mapping != mapping)) {
1185 unlock_page(page);
1186 page_cache_release(page);
1187 goto repeat;
1188 }
1189 VM_BUG_ON_PAGE(page->index != offset, page);
1190 }
1191
1192 if (page && (fgp_flags & FGP_ACCESSED))
1193 mark_page_accessed(page);
1194
1195 no_page:
1196 if (!page && (fgp_flags & FGP_CREAT)) {
1197 int err;
1198 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1199 gfp_mask |= __GFP_WRITE;
1200 if (fgp_flags & FGP_NOFS)
1201 gfp_mask &= ~__GFP_FS;
1202
1203 page = __page_cache_alloc(gfp_mask);
1204 if (!page)
1205 return NULL;
1206
1207 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1208 fgp_flags |= FGP_LOCK;
1209
1210 /* Init accessed so avoid atomic mark_page_accessed later */
1211 if (fgp_flags & FGP_ACCESSED)
1212 __SetPageReferenced(page);
1213
1214 err = add_to_page_cache_lru(page, mapping, offset,
1215 gfp_mask & GFP_RECLAIM_MASK);
1216 if (unlikely(err)) {
1217 page_cache_release(page);
1218 page = NULL;
1219 if (err == -EEXIST)
1220 goto repeat;
1221 }
1222 }
1223
1224 return page;
1225 }
1226 EXPORT_SYMBOL(pagecache_get_page);
1227
1228 /**
1229 * find_get_entries - gang pagecache lookup
1230 * @mapping: The address_space to search
1231 * @start: The starting page cache index
1232 * @nr_entries: The maximum number of entries
1233 * @entries: Where the resulting entries are placed
1234 * @indices: The cache indices corresponding to the entries in @entries
1235 *
1236 * find_get_entries() will search for and return a group of up to
1237 * @nr_entries entries in the mapping. The entries are placed at
1238 * @entries. find_get_entries() takes a reference against any actual
1239 * pages it returns.
1240 *
1241 * The search returns a group of mapping-contiguous page cache entries
1242 * with ascending indexes. There may be holes in the indices due to
1243 * not-present pages.
1244 *
1245 * Any shadow entries of evicted pages, or swap entries from
1246 * shmem/tmpfs, are included in the returned array.
1247 *
1248 * find_get_entries() returns the number of pages and shadow entries
1249 * which were found.
1250 */
1251 unsigned find_get_entries(struct address_space *mapping,
1252 pgoff_t start, unsigned int nr_entries,
1253 struct page **entries, pgoff_t *indices)
1254 {
1255 void **slot;
1256 unsigned int ret = 0;
1257 struct radix_tree_iter iter;
1258
1259 if (!nr_entries)
1260 return 0;
1261
1262 rcu_read_lock();
1263 restart:
1264 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1265 struct page *page;
1266 repeat:
1267 page = radix_tree_deref_slot(slot);
1268 if (unlikely(!page))
1269 continue;
1270 if (radix_tree_exception(page)) {
1271 if (radix_tree_deref_retry(page))
1272 goto restart;
1273 /*
1274 * A shadow entry of a recently evicted page, a swap
1275 * entry from shmem/tmpfs or a DAX entry. Return it
1276 * without attempting to raise page count.
1277 */
1278 goto export;
1279 }
1280 if (!page_cache_get_speculative(page))
1281 goto repeat;
1282
1283 /* Has the page moved? */
1284 if (unlikely(page != *slot)) {
1285 page_cache_release(page);
1286 goto repeat;
1287 }
1288 export:
1289 indices[ret] = iter.index;
1290 entries[ret] = page;
1291 if (++ret == nr_entries)
1292 break;
1293 }
1294 rcu_read_unlock();
1295 return ret;
1296 }
1297
1298 /**
1299 * find_get_pages - gang pagecache lookup
1300 * @mapping: The address_space to search
1301 * @start: The starting page index
1302 * @nr_pages: The maximum number of pages
1303 * @pages: Where the resulting pages are placed
1304 *
1305 * find_get_pages() will search for and return a group of up to
1306 * @nr_pages pages in the mapping. The pages are placed at @pages.
1307 * find_get_pages() takes a reference against the returned pages.
1308 *
1309 * The search returns a group of mapping-contiguous pages with ascending
1310 * indexes. There may be holes in the indices due to not-present pages.
1311 *
1312 * find_get_pages() returns the number of pages which were found.
1313 */
1314 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1315 unsigned int nr_pages, struct page **pages)
1316 {
1317 struct radix_tree_iter iter;
1318 void **slot;
1319 unsigned ret = 0;
1320
1321 if (unlikely(!nr_pages))
1322 return 0;
1323
1324 rcu_read_lock();
1325 restart:
1326 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1327 struct page *page;
1328 repeat:
1329 page = radix_tree_deref_slot(slot);
1330 if (unlikely(!page))
1331 continue;
1332
1333 if (radix_tree_exception(page)) {
1334 if (radix_tree_deref_retry(page)) {
1335 /*
1336 * Transient condition which can only trigger
1337 * when entry at index 0 moves out of or back
1338 * to root: none yet gotten, safe to restart.
1339 */
1340 WARN_ON(iter.index);
1341 goto restart;
1342 }
1343 /*
1344 * A shadow entry of a recently evicted page,
1345 * or a swap entry from shmem/tmpfs. Skip
1346 * over it.
1347 */
1348 continue;
1349 }
1350
1351 if (!page_cache_get_speculative(page))
1352 goto repeat;
1353
1354 /* Has the page moved? */
1355 if (unlikely(page != *slot)) {
1356 page_cache_release(page);
1357 goto repeat;
1358 }
1359
1360 pages[ret] = page;
1361 if (++ret == nr_pages)
1362 break;
1363 }
1364
1365 rcu_read_unlock();
1366 return ret;
1367 }
1368
1369 /**
1370 * find_get_pages_contig - gang contiguous pagecache lookup
1371 * @mapping: The address_space to search
1372 * @index: The starting page index
1373 * @nr_pages: The maximum number of pages
1374 * @pages: Where the resulting pages are placed
1375 *
1376 * find_get_pages_contig() works exactly like find_get_pages(), except
1377 * that the returned number of pages are guaranteed to be contiguous.
1378 *
1379 * find_get_pages_contig() returns the number of pages which were found.
1380 */
1381 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1382 unsigned int nr_pages, struct page **pages)
1383 {
1384 struct radix_tree_iter iter;
1385 void **slot;
1386 unsigned int ret = 0;
1387
1388 if (unlikely(!nr_pages))
1389 return 0;
1390
1391 rcu_read_lock();
1392 restart:
1393 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1394 struct page *page;
1395 repeat:
1396 page = radix_tree_deref_slot(slot);
1397 /* The hole, there no reason to continue */
1398 if (unlikely(!page))
1399 break;
1400
1401 if (radix_tree_exception(page)) {
1402 if (radix_tree_deref_retry(page)) {
1403 /*
1404 * Transient condition which can only trigger
1405 * when entry at index 0 moves out of or back
1406 * to root: none yet gotten, safe to restart.
1407 */
1408 goto restart;
1409 }
1410 /*
1411 * A shadow entry of a recently evicted page,
1412 * or a swap entry from shmem/tmpfs. Stop
1413 * looking for contiguous pages.
1414 */
1415 break;
1416 }
1417
1418 if (!page_cache_get_speculative(page))
1419 goto repeat;
1420
1421 /* Has the page moved? */
1422 if (unlikely(page != *slot)) {
1423 page_cache_release(page);
1424 goto repeat;
1425 }
1426
1427 /*
1428 * must check mapping and index after taking the ref.
1429 * otherwise we can get both false positives and false
1430 * negatives, which is just confusing to the caller.
1431 */
1432 if (page->mapping == NULL || page->index != iter.index) {
1433 page_cache_release(page);
1434 break;
1435 }
1436
1437 pages[ret] = page;
1438 if (++ret == nr_pages)
1439 break;
1440 }
1441 rcu_read_unlock();
1442 return ret;
1443 }
1444 EXPORT_SYMBOL(find_get_pages_contig);
1445
1446 /**
1447 * find_get_pages_tag - find and return pages that match @tag
1448 * @mapping: the address_space to search
1449 * @index: the starting page index
1450 * @tag: the tag index
1451 * @nr_pages: the maximum number of pages
1452 * @pages: where the resulting pages are placed
1453 *
1454 * Like find_get_pages, except we only return pages which are tagged with
1455 * @tag. We update @index to index the next page for the traversal.
1456 */
1457 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1458 int tag, unsigned int nr_pages, struct page **pages)
1459 {
1460 struct radix_tree_iter iter;
1461 void **slot;
1462 unsigned ret = 0;
1463
1464 if (unlikely(!nr_pages))
1465 return 0;
1466
1467 rcu_read_lock();
1468 restart:
1469 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1470 &iter, *index, tag) {
1471 struct page *page;
1472 repeat:
1473 page = radix_tree_deref_slot(slot);
1474 if (unlikely(!page))
1475 continue;
1476
1477 if (radix_tree_exception(page)) {
1478 if (radix_tree_deref_retry(page)) {
1479 /*
1480 * Transient condition which can only trigger
1481 * when entry at index 0 moves out of or back
1482 * to root: none yet gotten, safe to restart.
1483 */
1484 goto restart;
1485 }
1486 /*
1487 * A shadow entry of a recently evicted page.
1488 *
1489 * Those entries should never be tagged, but
1490 * this tree walk is lockless and the tags are
1491 * looked up in bulk, one radix tree node at a
1492 * time, so there is a sizable window for page
1493 * reclaim to evict a page we saw tagged.
1494 *
1495 * Skip over it.
1496 */
1497 continue;
1498 }
1499
1500 if (!page_cache_get_speculative(page))
1501 goto repeat;
1502
1503 /* Has the page moved? */
1504 if (unlikely(page != *slot)) {
1505 page_cache_release(page);
1506 goto repeat;
1507 }
1508
1509 pages[ret] = page;
1510 if (++ret == nr_pages)
1511 break;
1512 }
1513
1514 rcu_read_unlock();
1515
1516 if (ret)
1517 *index = pages[ret - 1]->index + 1;
1518
1519 return ret;
1520 }
1521 EXPORT_SYMBOL(find_get_pages_tag);
1522
1523 /**
1524 * find_get_entries_tag - find and return entries that match @tag
1525 * @mapping: the address_space to search
1526 * @start: the starting page cache index
1527 * @tag: the tag index
1528 * @nr_entries: the maximum number of entries
1529 * @entries: where the resulting entries are placed
1530 * @indices: the cache indices corresponding to the entries in @entries
1531 *
1532 * Like find_get_entries, except we only return entries which are tagged with
1533 * @tag.
1534 */
1535 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1536 int tag, unsigned int nr_entries,
1537 struct page **entries, pgoff_t *indices)
1538 {
1539 void **slot;
1540 unsigned int ret = 0;
1541 struct radix_tree_iter iter;
1542
1543 if (!nr_entries)
1544 return 0;
1545
1546 rcu_read_lock();
1547 restart:
1548 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1549 &iter, start, tag) {
1550 struct page *page;
1551 repeat:
1552 page = radix_tree_deref_slot(slot);
1553 if (unlikely(!page))
1554 continue;
1555 if (radix_tree_exception(page)) {
1556 if (radix_tree_deref_retry(page)) {
1557 /*
1558 * Transient condition which can only trigger
1559 * when entry at index 0 moves out of or back
1560 * to root: none yet gotten, safe to restart.
1561 */
1562 goto restart;
1563 }
1564
1565 /*
1566 * A shadow entry of a recently evicted page, a swap
1567 * entry from shmem/tmpfs or a DAX entry. Return it
1568 * without attempting to raise page count.
1569 */
1570 goto export;
1571 }
1572 if (!page_cache_get_speculative(page))
1573 goto repeat;
1574
1575 /* Has the page moved? */
1576 if (unlikely(page != *slot)) {
1577 page_cache_release(page);
1578 goto repeat;
1579 }
1580 export:
1581 indices[ret] = iter.index;
1582 entries[ret] = page;
1583 if (++ret == nr_entries)
1584 break;
1585 }
1586 rcu_read_unlock();
1587 return ret;
1588 }
1589 EXPORT_SYMBOL(find_get_entries_tag);
1590
1591 /*
1592 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1593 * a _large_ part of the i/o request. Imagine the worst scenario:
1594 *
1595 * ---R__________________________________________B__________
1596 * ^ reading here ^ bad block(assume 4k)
1597 *
1598 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1599 * => failing the whole request => read(R) => read(R+1) =>
1600 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1601 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1602 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1603 *
1604 * It is going insane. Fix it by quickly scaling down the readahead size.
1605 */
1606 static void shrink_readahead_size_eio(struct file *filp,
1607 struct file_ra_state *ra)
1608 {
1609 ra->ra_pages /= 4;
1610 }
1611
1612 /**
1613 * do_generic_file_read - generic file read routine
1614 * @filp: the file to read
1615 * @ppos: current file position
1616 * @iter: data destination
1617 * @written: already copied
1618 *
1619 * This is a generic file read routine, and uses the
1620 * mapping->a_ops->readpage() function for the actual low-level stuff.
1621 *
1622 * This is really ugly. But the goto's actually try to clarify some
1623 * of the logic when it comes to error handling etc.
1624 */
1625 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1626 struct iov_iter *iter, ssize_t written)
1627 {
1628 struct address_space *mapping = filp->f_mapping;
1629 struct inode *inode = mapping->host;
1630 struct file_ra_state *ra = &filp->f_ra;
1631 pgoff_t index;
1632 pgoff_t last_index;
1633 pgoff_t prev_index;
1634 unsigned long offset; /* offset into pagecache page */
1635 unsigned int prev_offset;
1636 int error = 0;
1637
1638 index = *ppos >> PAGE_CACHE_SHIFT;
1639 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1640 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1641 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1642 offset = *ppos & ~PAGE_CACHE_MASK;
1643
1644 for (;;) {
1645 struct page *page;
1646 pgoff_t end_index;
1647 loff_t isize;
1648 unsigned long nr, ret;
1649
1650 cond_resched();
1651 find_page:
1652 page = find_get_page(mapping, index);
1653 if (!page) {
1654 page_cache_sync_readahead(mapping,
1655 ra, filp,
1656 index, last_index - index);
1657 page = find_get_page(mapping, index);
1658 if (unlikely(page == NULL))
1659 goto no_cached_page;
1660 }
1661 if (PageReadahead(page)) {
1662 page_cache_async_readahead(mapping,
1663 ra, filp, page,
1664 index, last_index - index);
1665 }
1666 if (!PageUptodate(page)) {
1667 /*
1668 * See comment in do_read_cache_page on why
1669 * wait_on_page_locked is used to avoid unnecessarily
1670 * serialisations and why it's safe.
1671 */
1672 wait_on_page_locked_killable(page);
1673 if (PageUptodate(page))
1674 goto page_ok;
1675
1676 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1677 !mapping->a_ops->is_partially_uptodate)
1678 goto page_not_up_to_date;
1679 if (!trylock_page(page))
1680 goto page_not_up_to_date;
1681 /* Did it get truncated before we got the lock? */
1682 if (!page->mapping)
1683 goto page_not_up_to_date_locked;
1684 if (!mapping->a_ops->is_partially_uptodate(page,
1685 offset, iter->count))
1686 goto page_not_up_to_date_locked;
1687 unlock_page(page);
1688 }
1689 page_ok:
1690 /*
1691 * i_size must be checked after we know the page is Uptodate.
1692 *
1693 * Checking i_size after the check allows us to calculate
1694 * the correct value for "nr", which means the zero-filled
1695 * part of the page is not copied back to userspace (unless
1696 * another truncate extends the file - this is desired though).
1697 */
1698
1699 isize = i_size_read(inode);
1700 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1701 if (unlikely(!isize || index > end_index)) {
1702 page_cache_release(page);
1703 goto out;
1704 }
1705
1706 /* nr is the maximum number of bytes to copy from this page */
1707 nr = PAGE_CACHE_SIZE;
1708 if (index == end_index) {
1709 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710 if (nr <= offset) {
1711 page_cache_release(page);
1712 goto out;
1713 }
1714 }
1715 nr = nr - offset;
1716
1717 /* If users can be writing to this page using arbitrary
1718 * virtual addresses, take care about potential aliasing
1719 * before reading the page on the kernel side.
1720 */
1721 if (mapping_writably_mapped(mapping))
1722 flush_dcache_page(page);
1723
1724 /*
1725 * When a sequential read accesses a page several times,
1726 * only mark it as accessed the first time.
1727 */
1728 if (prev_index != index || offset != prev_offset)
1729 mark_page_accessed(page);
1730 prev_index = index;
1731
1732 /*
1733 * Ok, we have the page, and it's up-to-date, so
1734 * now we can copy it to user space...
1735 */
1736
1737 ret = copy_page_to_iter(page, offset, nr, iter);
1738 offset += ret;
1739 index += offset >> PAGE_CACHE_SHIFT;
1740 offset &= ~PAGE_CACHE_MASK;
1741 prev_offset = offset;
1742
1743 page_cache_release(page);
1744 written += ret;
1745 if (!iov_iter_count(iter))
1746 goto out;
1747 if (ret < nr) {
1748 error = -EFAULT;
1749 goto out;
1750 }
1751 continue;
1752
1753 page_not_up_to_date:
1754 /* Get exclusive access to the page ... */
1755 error = lock_page_killable(page);
1756 if (unlikely(error))
1757 goto readpage_error;
1758
1759 page_not_up_to_date_locked:
1760 /* Did it get truncated before we got the lock? */
1761 if (!page->mapping) {
1762 unlock_page(page);
1763 page_cache_release(page);
1764 continue;
1765 }
1766
1767 /* Did somebody else fill it already? */
1768 if (PageUptodate(page)) {
1769 unlock_page(page);
1770 goto page_ok;
1771 }
1772
1773 readpage:
1774 /*
1775 * A previous I/O error may have been due to temporary
1776 * failures, eg. multipath errors.
1777 * PG_error will be set again if readpage fails.
1778 */
1779 ClearPageError(page);
1780 /* Start the actual read. The read will unlock the page. */
1781 error = mapping->a_ops->readpage(filp, page);
1782
1783 if (unlikely(error)) {
1784 if (error == AOP_TRUNCATED_PAGE) {
1785 page_cache_release(page);
1786 error = 0;
1787 goto find_page;
1788 }
1789 goto readpage_error;
1790 }
1791
1792 if (!PageUptodate(page)) {
1793 error = lock_page_killable(page);
1794 if (unlikely(error))
1795 goto readpage_error;
1796 if (!PageUptodate(page)) {
1797 if (page->mapping == NULL) {
1798 /*
1799 * invalidate_mapping_pages got it
1800 */
1801 unlock_page(page);
1802 page_cache_release(page);
1803 goto find_page;
1804 }
1805 unlock_page(page);
1806 shrink_readahead_size_eio(filp, ra);
1807 error = -EIO;
1808 goto readpage_error;
1809 }
1810 unlock_page(page);
1811 }
1812
1813 goto page_ok;
1814
1815 readpage_error:
1816 /* UHHUH! A synchronous read error occurred. Report it */
1817 page_cache_release(page);
1818 goto out;
1819
1820 no_cached_page:
1821 /*
1822 * Ok, it wasn't cached, so we need to create a new
1823 * page..
1824 */
1825 page = page_cache_alloc_cold(mapping);
1826 if (!page) {
1827 error = -ENOMEM;
1828 goto out;
1829 }
1830 error = add_to_page_cache_lru(page, mapping, index,
1831 mapping_gfp_constraint(mapping, GFP_KERNEL));
1832 if (error) {
1833 page_cache_release(page);
1834 if (error == -EEXIST) {
1835 error = 0;
1836 goto find_page;
1837 }
1838 goto out;
1839 }
1840 goto readpage;
1841 }
1842
1843 out:
1844 ra->prev_pos = prev_index;
1845 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1846 ra->prev_pos |= prev_offset;
1847
1848 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1849 file_accessed(filp);
1850 return written ? written : error;
1851 }
1852
1853 /**
1854 * generic_file_read_iter - generic filesystem read routine
1855 * @iocb: kernel I/O control block
1856 * @iter: destination for the data read
1857 *
1858 * This is the "read_iter()" routine for all filesystems
1859 * that can use the page cache directly.
1860 */
1861 ssize_t
1862 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1863 {
1864 struct file *file = iocb->ki_filp;
1865 ssize_t retval = 0;
1866 loff_t *ppos = &iocb->ki_pos;
1867 loff_t pos = *ppos;
1868
1869 if (iocb->ki_flags & IOCB_DIRECT) {
1870 struct address_space *mapping = file->f_mapping;
1871 struct inode *inode = mapping->host;
1872 size_t count = iov_iter_count(iter);
1873 loff_t size;
1874
1875 if (!count)
1876 goto out; /* skip atime */
1877 size = i_size_read(inode);
1878 retval = filemap_write_and_wait_range(mapping, pos,
1879 pos + count - 1);
1880 if (!retval) {
1881 struct iov_iter data = *iter;
1882 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1883 }
1884
1885 if (retval > 0) {
1886 *ppos = pos + retval;
1887 iov_iter_advance(iter, retval);
1888 }
1889
1890 /*
1891 * Btrfs can have a short DIO read if we encounter
1892 * compressed extents, so if there was an error, or if
1893 * we've already read everything we wanted to, or if
1894 * there was a short read because we hit EOF, go ahead
1895 * and return. Otherwise fallthrough to buffered io for
1896 * the rest of the read. Buffered reads will not work for
1897 * DAX files, so don't bother trying.
1898 */
1899 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1900 IS_DAX(inode)) {
1901 file_accessed(file);
1902 goto out;
1903 }
1904 }
1905
1906 retval = do_generic_file_read(file, ppos, iter, retval);
1907 out:
1908 return retval;
1909 }
1910 EXPORT_SYMBOL(generic_file_read_iter);
1911
1912 #ifdef CONFIG_MMU
1913 /**
1914 * page_cache_read - adds requested page to the page cache if not already there
1915 * @file: file to read
1916 * @offset: page index
1917 * @gfp_mask: memory allocation flags
1918 *
1919 * This adds the requested page to the page cache if it isn't already there,
1920 * and schedules an I/O to read in its contents from disk.
1921 */
1922 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1923 {
1924 struct address_space *mapping = file->f_mapping;
1925 struct page *page;
1926 int ret;
1927
1928 do {
1929 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1930 if (!page)
1931 return -ENOMEM;
1932
1933 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1934 if (ret == 0)
1935 ret = mapping->a_ops->readpage(file, page);
1936 else if (ret == -EEXIST)
1937 ret = 0; /* losing race to add is OK */
1938
1939 page_cache_release(page);
1940
1941 } while (ret == AOP_TRUNCATED_PAGE);
1942
1943 return ret;
1944 }
1945
1946 #define MMAP_LOTSAMISS (100)
1947
1948 /*
1949 * Synchronous readahead happens when we don't even find
1950 * a page in the page cache at all.
1951 */
1952 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1953 struct file_ra_state *ra,
1954 struct file *file,
1955 pgoff_t offset)
1956 {
1957 struct address_space *mapping = file->f_mapping;
1958
1959 /* If we don't want any read-ahead, don't bother */
1960 if (vma->vm_flags & VM_RAND_READ)
1961 return;
1962 if (!ra->ra_pages)
1963 return;
1964
1965 if (vma->vm_flags & VM_SEQ_READ) {
1966 page_cache_sync_readahead(mapping, ra, file, offset,
1967 ra->ra_pages);
1968 return;
1969 }
1970
1971 /* Avoid banging the cache line if not needed */
1972 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1973 ra->mmap_miss++;
1974
1975 /*
1976 * Do we miss much more than hit in this file? If so,
1977 * stop bothering with read-ahead. It will only hurt.
1978 */
1979 if (ra->mmap_miss > MMAP_LOTSAMISS)
1980 return;
1981
1982 /*
1983 * mmap read-around
1984 */
1985 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1986 ra->size = ra->ra_pages;
1987 ra->async_size = ra->ra_pages / 4;
1988 ra_submit(ra, mapping, file);
1989 }
1990
1991 /*
1992 * Asynchronous readahead happens when we find the page and PG_readahead,
1993 * so we want to possibly extend the readahead further..
1994 */
1995 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1996 struct file_ra_state *ra,
1997 struct file *file,
1998 struct page *page,
1999 pgoff_t offset)
2000 {
2001 struct address_space *mapping = file->f_mapping;
2002
2003 /* If we don't want any read-ahead, don't bother */
2004 if (vma->vm_flags & VM_RAND_READ)
2005 return;
2006 if (ra->mmap_miss > 0)
2007 ra->mmap_miss--;
2008 if (PageReadahead(page))
2009 page_cache_async_readahead(mapping, ra, file,
2010 page, offset, ra->ra_pages);
2011 }
2012
2013 /**
2014 * filemap_fault - read in file data for page fault handling
2015 * @vma: vma in which the fault was taken
2016 * @vmf: struct vm_fault containing details of the fault
2017 *
2018 * filemap_fault() is invoked via the vma operations vector for a
2019 * mapped memory region to read in file data during a page fault.
2020 *
2021 * The goto's are kind of ugly, but this streamlines the normal case of having
2022 * it in the page cache, and handles the special cases reasonably without
2023 * having a lot of duplicated code.
2024 *
2025 * vma->vm_mm->mmap_sem must be held on entry.
2026 *
2027 * If our return value has VM_FAULT_RETRY set, it's because
2028 * lock_page_or_retry() returned 0.
2029 * The mmap_sem has usually been released in this case.
2030 * See __lock_page_or_retry() for the exception.
2031 *
2032 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2033 * has not been released.
2034 *
2035 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2036 */
2037 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2038 {
2039 int error;
2040 struct file *file = vma->vm_file;
2041 struct address_space *mapping = file->f_mapping;
2042 struct file_ra_state *ra = &file->f_ra;
2043 struct inode *inode = mapping->host;
2044 pgoff_t offset = vmf->pgoff;
2045 struct page *page;
2046 loff_t size;
2047 int ret = 0;
2048
2049 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2050 if (offset >= size >> PAGE_CACHE_SHIFT)
2051 return VM_FAULT_SIGBUS;
2052
2053 /*
2054 * Do we have something in the page cache already?
2055 */
2056 page = find_get_page(mapping, offset);
2057 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2058 /*
2059 * We found the page, so try async readahead before
2060 * waiting for the lock.
2061 */
2062 do_async_mmap_readahead(vma, ra, file, page, offset);
2063 } else if (!page) {
2064 /* No page in the page cache at all */
2065 do_sync_mmap_readahead(vma, ra, file, offset);
2066 count_vm_event(PGMAJFAULT);
2067 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2068 ret = VM_FAULT_MAJOR;
2069 retry_find:
2070 page = find_get_page(mapping, offset);
2071 if (!page)
2072 goto no_cached_page;
2073 }
2074
2075 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2076 page_cache_release(page);
2077 return ret | VM_FAULT_RETRY;
2078 }
2079
2080 /* Did it get truncated? */
2081 if (unlikely(page->mapping != mapping)) {
2082 unlock_page(page);
2083 put_page(page);
2084 goto retry_find;
2085 }
2086 VM_BUG_ON_PAGE(page->index != offset, page);
2087
2088 /*
2089 * We have a locked page in the page cache, now we need to check
2090 * that it's up-to-date. If not, it is going to be due to an error.
2091 */
2092 if (unlikely(!PageUptodate(page)))
2093 goto page_not_uptodate;
2094
2095 /*
2096 * Found the page and have a reference on it.
2097 * We must recheck i_size under page lock.
2098 */
2099 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2100 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2101 unlock_page(page);
2102 page_cache_release(page);
2103 return VM_FAULT_SIGBUS;
2104 }
2105
2106 vmf->page = page;
2107 return ret | VM_FAULT_LOCKED;
2108
2109 no_cached_page:
2110 /*
2111 * We're only likely to ever get here if MADV_RANDOM is in
2112 * effect.
2113 */
2114 error = page_cache_read(file, offset, vmf->gfp_mask);
2115
2116 /*
2117 * The page we want has now been added to the page cache.
2118 * In the unlikely event that someone removed it in the
2119 * meantime, we'll just come back here and read it again.
2120 */
2121 if (error >= 0)
2122 goto retry_find;
2123
2124 /*
2125 * An error return from page_cache_read can result if the
2126 * system is low on memory, or a problem occurs while trying
2127 * to schedule I/O.
2128 */
2129 if (error == -ENOMEM)
2130 return VM_FAULT_OOM;
2131 return VM_FAULT_SIGBUS;
2132
2133 page_not_uptodate:
2134 /*
2135 * Umm, take care of errors if the page isn't up-to-date.
2136 * Try to re-read it _once_. We do this synchronously,
2137 * because there really aren't any performance issues here
2138 * and we need to check for errors.
2139 */
2140 ClearPageError(page);
2141 error = mapping->a_ops->readpage(file, page);
2142 if (!error) {
2143 wait_on_page_locked(page);
2144 if (!PageUptodate(page))
2145 error = -EIO;
2146 }
2147 page_cache_release(page);
2148
2149 if (!error || error == AOP_TRUNCATED_PAGE)
2150 goto retry_find;
2151
2152 /* Things didn't work out. Return zero to tell the mm layer so. */
2153 shrink_readahead_size_eio(file, ra);
2154 return VM_FAULT_SIGBUS;
2155 }
2156 EXPORT_SYMBOL(filemap_fault);
2157
2158 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2159 {
2160 struct radix_tree_iter iter;
2161 void **slot;
2162 struct file *file = vma->vm_file;
2163 struct address_space *mapping = file->f_mapping;
2164 loff_t size;
2165 struct page *page;
2166 unsigned long address = (unsigned long) vmf->virtual_address;
2167 unsigned long addr;
2168 pte_t *pte;
2169
2170 rcu_read_lock();
2171 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2172 if (iter.index > vmf->max_pgoff)
2173 break;
2174 repeat:
2175 page = radix_tree_deref_slot(slot);
2176 if (unlikely(!page))
2177 goto next;
2178 if (radix_tree_exception(page)) {
2179 if (radix_tree_deref_retry(page))
2180 break;
2181 else
2182 goto next;
2183 }
2184
2185 if (!page_cache_get_speculative(page))
2186 goto repeat;
2187
2188 /* Has the page moved? */
2189 if (unlikely(page != *slot)) {
2190 page_cache_release(page);
2191 goto repeat;
2192 }
2193
2194 if (!PageUptodate(page) ||
2195 PageReadahead(page) ||
2196 PageHWPoison(page))
2197 goto skip;
2198 if (!trylock_page(page))
2199 goto skip;
2200
2201 if (page->mapping != mapping || !PageUptodate(page))
2202 goto unlock;
2203
2204 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2205 if (page->index >= size >> PAGE_CACHE_SHIFT)
2206 goto unlock;
2207
2208 pte = vmf->pte + page->index - vmf->pgoff;
2209 if (!pte_none(*pte))
2210 goto unlock;
2211
2212 if (file->f_ra.mmap_miss > 0)
2213 file->f_ra.mmap_miss--;
2214 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2215 do_set_pte(vma, addr, page, pte, false, false);
2216 unlock_page(page);
2217 goto next;
2218 unlock:
2219 unlock_page(page);
2220 skip:
2221 page_cache_release(page);
2222 next:
2223 if (iter.index == vmf->max_pgoff)
2224 break;
2225 }
2226 rcu_read_unlock();
2227 }
2228 EXPORT_SYMBOL(filemap_map_pages);
2229
2230 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2231 {
2232 struct page *page = vmf->page;
2233 struct inode *inode = file_inode(vma->vm_file);
2234 int ret = VM_FAULT_LOCKED;
2235
2236 sb_start_pagefault(inode->i_sb);
2237 file_update_time(vma->vm_file);
2238 lock_page(page);
2239 if (page->mapping != inode->i_mapping) {
2240 unlock_page(page);
2241 ret = VM_FAULT_NOPAGE;
2242 goto out;
2243 }
2244 /*
2245 * We mark the page dirty already here so that when freeze is in
2246 * progress, we are guaranteed that writeback during freezing will
2247 * see the dirty page and writeprotect it again.
2248 */
2249 set_page_dirty(page);
2250 wait_for_stable_page(page);
2251 out:
2252 sb_end_pagefault(inode->i_sb);
2253 return ret;
2254 }
2255 EXPORT_SYMBOL(filemap_page_mkwrite);
2256
2257 const struct vm_operations_struct generic_file_vm_ops = {
2258 .fault = filemap_fault,
2259 .map_pages = filemap_map_pages,
2260 .page_mkwrite = filemap_page_mkwrite,
2261 };
2262
2263 /* This is used for a general mmap of a disk file */
2264
2265 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2266 {
2267 struct address_space *mapping = file->f_mapping;
2268
2269 if (!mapping->a_ops->readpage)
2270 return -ENOEXEC;
2271 file_accessed(file);
2272 vma->vm_ops = &generic_file_vm_ops;
2273 return 0;
2274 }
2275
2276 /*
2277 * This is for filesystems which do not implement ->writepage.
2278 */
2279 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2280 {
2281 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2282 return -EINVAL;
2283 return generic_file_mmap(file, vma);
2284 }
2285 #else
2286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287 {
2288 return -ENOSYS;
2289 }
2290 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2291 {
2292 return -ENOSYS;
2293 }
2294 #endif /* CONFIG_MMU */
2295
2296 EXPORT_SYMBOL(generic_file_mmap);
2297 EXPORT_SYMBOL(generic_file_readonly_mmap);
2298
2299 static struct page *wait_on_page_read(struct page *page)
2300 {
2301 if (!IS_ERR(page)) {
2302 wait_on_page_locked(page);
2303 if (!PageUptodate(page)) {
2304 page_cache_release(page);
2305 page = ERR_PTR(-EIO);
2306 }
2307 }
2308 return page;
2309 }
2310
2311 static struct page *do_read_cache_page(struct address_space *mapping,
2312 pgoff_t index,
2313 int (*filler)(void *, struct page *),
2314 void *data,
2315 gfp_t gfp)
2316 {
2317 struct page *page;
2318 int err;
2319 repeat:
2320 page = find_get_page(mapping, index);
2321 if (!page) {
2322 page = __page_cache_alloc(gfp | __GFP_COLD);
2323 if (!page)
2324 return ERR_PTR(-ENOMEM);
2325 err = add_to_page_cache_lru(page, mapping, index, gfp);
2326 if (unlikely(err)) {
2327 page_cache_release(page);
2328 if (err == -EEXIST)
2329 goto repeat;
2330 /* Presumably ENOMEM for radix tree node */
2331 return ERR_PTR(err);
2332 }
2333
2334 filler:
2335 err = filler(data, page);
2336 if (err < 0) {
2337 page_cache_release(page);
2338 return ERR_PTR(err);
2339 }
2340
2341 page = wait_on_page_read(page);
2342 if (IS_ERR(page))
2343 return page;
2344 goto out;
2345 }
2346 if (PageUptodate(page))
2347 goto out;
2348
2349 /*
2350 * Page is not up to date and may be locked due one of the following
2351 * case a: Page is being filled and the page lock is held
2352 * case b: Read/write error clearing the page uptodate status
2353 * case c: Truncation in progress (page locked)
2354 * case d: Reclaim in progress
2355 *
2356 * Case a, the page will be up to date when the page is unlocked.
2357 * There is no need to serialise on the page lock here as the page
2358 * is pinned so the lock gives no additional protection. Even if the
2359 * the page is truncated, the data is still valid if PageUptodate as
2360 * it's a race vs truncate race.
2361 * Case b, the page will not be up to date
2362 * Case c, the page may be truncated but in itself, the data may still
2363 * be valid after IO completes as it's a read vs truncate race. The
2364 * operation must restart if the page is not uptodate on unlock but
2365 * otherwise serialising on page lock to stabilise the mapping gives
2366 * no additional guarantees to the caller as the page lock is
2367 * released before return.
2368 * Case d, similar to truncation. If reclaim holds the page lock, it
2369 * will be a race with remove_mapping that determines if the mapping
2370 * is valid on unlock but otherwise the data is valid and there is
2371 * no need to serialise with page lock.
2372 *
2373 * As the page lock gives no additional guarantee, we optimistically
2374 * wait on the page to be unlocked and check if it's up to date and
2375 * use the page if it is. Otherwise, the page lock is required to
2376 * distinguish between the different cases. The motivation is that we
2377 * avoid spurious serialisations and wakeups when multiple processes
2378 * wait on the same page for IO to complete.
2379 */
2380 wait_on_page_locked(page);
2381 if (PageUptodate(page))
2382 goto out;
2383
2384 /* Distinguish between all the cases under the safety of the lock */
2385 lock_page(page);
2386
2387 /* Case c or d, restart the operation */
2388 if (!page->mapping) {
2389 unlock_page(page);
2390 page_cache_release(page);
2391 goto repeat;
2392 }
2393
2394 /* Someone else locked and filled the page in a very small window */
2395 if (PageUptodate(page)) {
2396 unlock_page(page);
2397 goto out;
2398 }
2399 goto filler;
2400
2401 out:
2402 mark_page_accessed(page);
2403 return page;
2404 }
2405
2406 /**
2407 * read_cache_page - read into page cache, fill it if needed
2408 * @mapping: the page's address_space
2409 * @index: the page index
2410 * @filler: function to perform the read
2411 * @data: first arg to filler(data, page) function, often left as NULL
2412 *
2413 * Read into the page cache. If a page already exists, and PageUptodate() is
2414 * not set, try to fill the page and wait for it to become unlocked.
2415 *
2416 * If the page does not get brought uptodate, return -EIO.
2417 */
2418 struct page *read_cache_page(struct address_space *mapping,
2419 pgoff_t index,
2420 int (*filler)(void *, struct page *),
2421 void *data)
2422 {
2423 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2424 }
2425 EXPORT_SYMBOL(read_cache_page);
2426
2427 /**
2428 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2429 * @mapping: the page's address_space
2430 * @index: the page index
2431 * @gfp: the page allocator flags to use if allocating
2432 *
2433 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2434 * any new page allocations done using the specified allocation flags.
2435 *
2436 * If the page does not get brought uptodate, return -EIO.
2437 */
2438 struct page *read_cache_page_gfp(struct address_space *mapping,
2439 pgoff_t index,
2440 gfp_t gfp)
2441 {
2442 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2443
2444 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2445 }
2446 EXPORT_SYMBOL(read_cache_page_gfp);
2447
2448 /*
2449 * Performs necessary checks before doing a write
2450 *
2451 * Can adjust writing position or amount of bytes to write.
2452 * Returns appropriate error code that caller should return or
2453 * zero in case that write should be allowed.
2454 */
2455 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2456 {
2457 struct file *file = iocb->ki_filp;
2458 struct inode *inode = file->f_mapping->host;
2459 unsigned long limit = rlimit(RLIMIT_FSIZE);
2460 loff_t pos;
2461
2462 if (!iov_iter_count(from))
2463 return 0;
2464
2465 /* FIXME: this is for backwards compatibility with 2.4 */
2466 if (iocb->ki_flags & IOCB_APPEND)
2467 iocb->ki_pos = i_size_read(inode);
2468
2469 pos = iocb->ki_pos;
2470
2471 if (limit != RLIM_INFINITY) {
2472 if (iocb->ki_pos >= limit) {
2473 send_sig(SIGXFSZ, current, 0);
2474 return -EFBIG;
2475 }
2476 iov_iter_truncate(from, limit - (unsigned long)pos);
2477 }
2478
2479 /*
2480 * LFS rule
2481 */
2482 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2483 !(file->f_flags & O_LARGEFILE))) {
2484 if (pos >= MAX_NON_LFS)
2485 return -EFBIG;
2486 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2487 }
2488
2489 /*
2490 * Are we about to exceed the fs block limit ?
2491 *
2492 * If we have written data it becomes a short write. If we have
2493 * exceeded without writing data we send a signal and return EFBIG.
2494 * Linus frestrict idea will clean these up nicely..
2495 */
2496 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2497 return -EFBIG;
2498
2499 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2500 return iov_iter_count(from);
2501 }
2502 EXPORT_SYMBOL(generic_write_checks);
2503
2504 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2505 loff_t pos, unsigned len, unsigned flags,
2506 struct page **pagep, void **fsdata)
2507 {
2508 const struct address_space_operations *aops = mapping->a_ops;
2509
2510 return aops->write_begin(file, mapping, pos, len, flags,
2511 pagep, fsdata);
2512 }
2513 EXPORT_SYMBOL(pagecache_write_begin);
2514
2515 int pagecache_write_end(struct file *file, struct address_space *mapping,
2516 loff_t pos, unsigned len, unsigned copied,
2517 struct page *page, void *fsdata)
2518 {
2519 const struct address_space_operations *aops = mapping->a_ops;
2520
2521 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2522 }
2523 EXPORT_SYMBOL(pagecache_write_end);
2524
2525 ssize_t
2526 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2527 {
2528 struct file *file = iocb->ki_filp;
2529 struct address_space *mapping = file->f_mapping;
2530 struct inode *inode = mapping->host;
2531 ssize_t written;
2532 size_t write_len;
2533 pgoff_t end;
2534 struct iov_iter data;
2535
2536 write_len = iov_iter_count(from);
2537 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2538
2539 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2540 if (written)
2541 goto out;
2542
2543 /*
2544 * After a write we want buffered reads to be sure to go to disk to get
2545 * the new data. We invalidate clean cached page from the region we're
2546 * about to write. We do this *before* the write so that we can return
2547 * without clobbering -EIOCBQUEUED from ->direct_IO().
2548 */
2549 if (mapping->nrpages) {
2550 written = invalidate_inode_pages2_range(mapping,
2551 pos >> PAGE_CACHE_SHIFT, end);
2552 /*
2553 * If a page can not be invalidated, return 0 to fall back
2554 * to buffered write.
2555 */
2556 if (written) {
2557 if (written == -EBUSY)
2558 return 0;
2559 goto out;
2560 }
2561 }
2562
2563 data = *from;
2564 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2565
2566 /*
2567 * Finally, try again to invalidate clean pages which might have been
2568 * cached by non-direct readahead, or faulted in by get_user_pages()
2569 * if the source of the write was an mmap'ed region of the file
2570 * we're writing. Either one is a pretty crazy thing to do,
2571 * so we don't support it 100%. If this invalidation
2572 * fails, tough, the write still worked...
2573 */
2574 if (mapping->nrpages) {
2575 invalidate_inode_pages2_range(mapping,
2576 pos >> PAGE_CACHE_SHIFT, end);
2577 }
2578
2579 if (written > 0) {
2580 pos += written;
2581 iov_iter_advance(from, written);
2582 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2583 i_size_write(inode, pos);
2584 mark_inode_dirty(inode);
2585 }
2586 iocb->ki_pos = pos;
2587 }
2588 out:
2589 return written;
2590 }
2591 EXPORT_SYMBOL(generic_file_direct_write);
2592
2593 /*
2594 * Find or create a page at the given pagecache position. Return the locked
2595 * page. This function is specifically for buffered writes.
2596 */
2597 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2598 pgoff_t index, unsigned flags)
2599 {
2600 struct page *page;
2601 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2602
2603 if (flags & AOP_FLAG_NOFS)
2604 fgp_flags |= FGP_NOFS;
2605
2606 page = pagecache_get_page(mapping, index, fgp_flags,
2607 mapping_gfp_mask(mapping));
2608 if (page)
2609 wait_for_stable_page(page);
2610
2611 return page;
2612 }
2613 EXPORT_SYMBOL(grab_cache_page_write_begin);
2614
2615 ssize_t generic_perform_write(struct file *file,
2616 struct iov_iter *i, loff_t pos)
2617 {
2618 struct address_space *mapping = file->f_mapping;
2619 const struct address_space_operations *a_ops = mapping->a_ops;
2620 long status = 0;
2621 ssize_t written = 0;
2622 unsigned int flags = 0;
2623
2624 /*
2625 * Copies from kernel address space cannot fail (NFSD is a big user).
2626 */
2627 if (!iter_is_iovec(i))
2628 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2629
2630 do {
2631 struct page *page;
2632 unsigned long offset; /* Offset into pagecache page */
2633 unsigned long bytes; /* Bytes to write to page */
2634 size_t copied; /* Bytes copied from user */
2635 void *fsdata;
2636
2637 offset = (pos & (PAGE_CACHE_SIZE - 1));
2638 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2639 iov_iter_count(i));
2640
2641 again:
2642 /*
2643 * Bring in the user page that we will copy from _first_.
2644 * Otherwise there's a nasty deadlock on copying from the
2645 * same page as we're writing to, without it being marked
2646 * up-to-date.
2647 *
2648 * Not only is this an optimisation, but it is also required
2649 * to check that the address is actually valid, when atomic
2650 * usercopies are used, below.
2651 */
2652 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2653 status = -EFAULT;
2654 break;
2655 }
2656
2657 if (fatal_signal_pending(current)) {
2658 status = -EINTR;
2659 break;
2660 }
2661
2662 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2663 &page, &fsdata);
2664 if (unlikely(status < 0))
2665 break;
2666
2667 if (mapping_writably_mapped(mapping))
2668 flush_dcache_page(page);
2669
2670 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2671 flush_dcache_page(page);
2672
2673 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2674 page, fsdata);
2675 if (unlikely(status < 0))
2676 break;
2677 copied = status;
2678
2679 cond_resched();
2680
2681 iov_iter_advance(i, copied);
2682 if (unlikely(copied == 0)) {
2683 /*
2684 * If we were unable to copy any data at all, we must
2685 * fall back to a single segment length write.
2686 *
2687 * If we didn't fallback here, we could livelock
2688 * because not all segments in the iov can be copied at
2689 * once without a pagefault.
2690 */
2691 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2692 iov_iter_single_seg_count(i));
2693 goto again;
2694 }
2695 pos += copied;
2696 written += copied;
2697
2698 balance_dirty_pages_ratelimited(mapping);
2699 } while (iov_iter_count(i));
2700
2701 return written ? written : status;
2702 }
2703 EXPORT_SYMBOL(generic_perform_write);
2704
2705 /**
2706 * __generic_file_write_iter - write data to a file
2707 * @iocb: IO state structure (file, offset, etc.)
2708 * @from: iov_iter with data to write
2709 *
2710 * This function does all the work needed for actually writing data to a
2711 * file. It does all basic checks, removes SUID from the file, updates
2712 * modification times and calls proper subroutines depending on whether we
2713 * do direct IO or a standard buffered write.
2714 *
2715 * It expects i_mutex to be grabbed unless we work on a block device or similar
2716 * object which does not need locking at all.
2717 *
2718 * This function does *not* take care of syncing data in case of O_SYNC write.
2719 * A caller has to handle it. This is mainly due to the fact that we want to
2720 * avoid syncing under i_mutex.
2721 */
2722 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2723 {
2724 struct file *file = iocb->ki_filp;
2725 struct address_space * mapping = file->f_mapping;
2726 struct inode *inode = mapping->host;
2727 ssize_t written = 0;
2728 ssize_t err;
2729 ssize_t status;
2730
2731 /* We can write back this queue in page reclaim */
2732 current->backing_dev_info = inode_to_bdi(inode);
2733 err = file_remove_privs(file);
2734 if (err)
2735 goto out;
2736
2737 err = file_update_time(file);
2738 if (err)
2739 goto out;
2740
2741 if (iocb->ki_flags & IOCB_DIRECT) {
2742 loff_t pos, endbyte;
2743
2744 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2745 /*
2746 * If the write stopped short of completing, fall back to
2747 * buffered writes. Some filesystems do this for writes to
2748 * holes, for example. For DAX files, a buffered write will
2749 * not succeed (even if it did, DAX does not handle dirty
2750 * page-cache pages correctly).
2751 */
2752 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2753 goto out;
2754
2755 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2756 /*
2757 * If generic_perform_write() returned a synchronous error
2758 * then we want to return the number of bytes which were
2759 * direct-written, or the error code if that was zero. Note
2760 * that this differs from normal direct-io semantics, which
2761 * will return -EFOO even if some bytes were written.
2762 */
2763 if (unlikely(status < 0)) {
2764 err = status;
2765 goto out;
2766 }
2767 /*
2768 * We need to ensure that the page cache pages are written to
2769 * disk and invalidated to preserve the expected O_DIRECT
2770 * semantics.
2771 */
2772 endbyte = pos + status - 1;
2773 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2774 if (err == 0) {
2775 iocb->ki_pos = endbyte + 1;
2776 written += status;
2777 invalidate_mapping_pages(mapping,
2778 pos >> PAGE_CACHE_SHIFT,
2779 endbyte >> PAGE_CACHE_SHIFT);
2780 } else {
2781 /*
2782 * We don't know how much we wrote, so just return
2783 * the number of bytes which were direct-written
2784 */
2785 }
2786 } else {
2787 written = generic_perform_write(file, from, iocb->ki_pos);
2788 if (likely(written > 0))
2789 iocb->ki_pos += written;
2790 }
2791 out:
2792 current->backing_dev_info = NULL;
2793 return written ? written : err;
2794 }
2795 EXPORT_SYMBOL(__generic_file_write_iter);
2796
2797 /**
2798 * generic_file_write_iter - write data to a file
2799 * @iocb: IO state structure
2800 * @from: iov_iter with data to write
2801 *
2802 * This is a wrapper around __generic_file_write_iter() to be used by most
2803 * filesystems. It takes care of syncing the file in case of O_SYNC file
2804 * and acquires i_mutex as needed.
2805 */
2806 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2807 {
2808 struct file *file = iocb->ki_filp;
2809 struct inode *inode = file->f_mapping->host;
2810 ssize_t ret;
2811
2812 inode_lock(inode);
2813 ret = generic_write_checks(iocb, from);
2814 if (ret > 0)
2815 ret = __generic_file_write_iter(iocb, from);
2816 inode_unlock(inode);
2817
2818 if (ret > 0) {
2819 ssize_t err;
2820
2821 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2822 if (err < 0)
2823 ret = err;
2824 }
2825 return ret;
2826 }
2827 EXPORT_SYMBOL(generic_file_write_iter);
2828
2829 /**
2830 * try_to_release_page() - release old fs-specific metadata on a page
2831 *
2832 * @page: the page which the kernel is trying to free
2833 * @gfp_mask: memory allocation flags (and I/O mode)
2834 *
2835 * The address_space is to try to release any data against the page
2836 * (presumably at page->private). If the release was successful, return `1'.
2837 * Otherwise return zero.
2838 *
2839 * This may also be called if PG_fscache is set on a page, indicating that the
2840 * page is known to the local caching routines.
2841 *
2842 * The @gfp_mask argument specifies whether I/O may be performed to release
2843 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2844 *
2845 */
2846 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2847 {
2848 struct address_space * const mapping = page->mapping;
2849
2850 BUG_ON(!PageLocked(page));
2851 if (PageWriteback(page))
2852 return 0;
2853
2854 if (mapping && mapping->a_ops->releasepage)
2855 return mapping->a_ops->releasepage(page, gfp_mask);
2856 return try_to_free_buffers(page);
2857 }
2858
2859 EXPORT_SYMBOL(try_to_release_page);
This page took 0.093591 seconds and 5 git commands to generate.