mm: __delete_from_page_cache show Bad page if mapped
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
121
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
127 mapping->nrexceptional++;
128 /*
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
135 }
136 mapping->nrpages--;
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
174 }
175
176 /*
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
181 */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
184 {
185 struct address_space *mapping = page->mapping;
186
187 trace_mm_filemap_delete_from_page_cache(page);
188 /*
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
192 */
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
196 cleancache_invalidate_page(mapping, page);
197
198 VM_BUG_ON_PAGE(page_mapped(page), page);
199 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
200 int mapcount;
201
202 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
203 current->comm, page_to_pfn(page));
204 dump_page(page, "still mapped when deleted");
205 dump_stack();
206 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
207
208 mapcount = page_mapcount(page);
209 if (mapping_exiting(mapping) &&
210 page_count(page) >= mapcount + 2) {
211 /*
212 * All vmas have already been torn down, so it's
213 * a good bet that actually the page is unmapped,
214 * and we'd prefer not to leak it: if we're wrong,
215 * some other bad page check should catch it later.
216 */
217 page_mapcount_reset(page);
218 atomic_sub(mapcount, &page->_count);
219 }
220 }
221
222 page_cache_tree_delete(mapping, page, shadow);
223
224 page->mapping = NULL;
225 /* Leave page->index set: truncation lookup relies upon it */
226
227 /* hugetlb pages do not participate in page cache accounting. */
228 if (!PageHuge(page))
229 __dec_zone_page_state(page, NR_FILE_PAGES);
230 if (PageSwapBacked(page))
231 __dec_zone_page_state(page, NR_SHMEM);
232
233 /*
234 * At this point page must be either written or cleaned by truncate.
235 * Dirty page here signals a bug and loss of unwritten data.
236 *
237 * This fixes dirty accounting after removing the page entirely but
238 * leaves PageDirty set: it has no effect for truncated page and
239 * anyway will be cleared before returning page into buddy allocator.
240 */
241 if (WARN_ON_ONCE(PageDirty(page)))
242 account_page_cleaned(page, mapping, memcg,
243 inode_to_wb(mapping->host));
244 }
245
246 /**
247 * delete_from_page_cache - delete page from page cache
248 * @page: the page which the kernel is trying to remove from page cache
249 *
250 * This must be called only on pages that have been verified to be in the page
251 * cache and locked. It will never put the page into the free list, the caller
252 * has a reference on the page.
253 */
254 void delete_from_page_cache(struct page *page)
255 {
256 struct address_space *mapping = page->mapping;
257 struct mem_cgroup *memcg;
258 unsigned long flags;
259
260 void (*freepage)(struct page *);
261
262 BUG_ON(!PageLocked(page));
263
264 freepage = mapping->a_ops->freepage;
265
266 memcg = mem_cgroup_begin_page_stat(page);
267 spin_lock_irqsave(&mapping->tree_lock, flags);
268 __delete_from_page_cache(page, NULL, memcg);
269 spin_unlock_irqrestore(&mapping->tree_lock, flags);
270 mem_cgroup_end_page_stat(memcg);
271
272 if (freepage)
273 freepage(page);
274 page_cache_release(page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277
278 static int filemap_check_errors(struct address_space *mapping)
279 {
280 int ret = 0;
281 /* Check for outstanding write errors */
282 if (test_bit(AS_ENOSPC, &mapping->flags) &&
283 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
284 ret = -ENOSPC;
285 if (test_bit(AS_EIO, &mapping->flags) &&
286 test_and_clear_bit(AS_EIO, &mapping->flags))
287 ret = -EIO;
288 return ret;
289 }
290
291 /**
292 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
293 * @mapping: address space structure to write
294 * @start: offset in bytes where the range starts
295 * @end: offset in bytes where the range ends (inclusive)
296 * @sync_mode: enable synchronous operation
297 *
298 * Start writeback against all of a mapping's dirty pages that lie
299 * within the byte offsets <start, end> inclusive.
300 *
301 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
302 * opposed to a regular memory cleansing writeback. The difference between
303 * these two operations is that if a dirty page/buffer is encountered, it must
304 * be waited upon, and not just skipped over.
305 */
306 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
307 loff_t end, int sync_mode)
308 {
309 int ret;
310 struct writeback_control wbc = {
311 .sync_mode = sync_mode,
312 .nr_to_write = LONG_MAX,
313 .range_start = start,
314 .range_end = end,
315 };
316
317 if (!mapping_cap_writeback_dirty(mapping))
318 return 0;
319
320 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
321 ret = do_writepages(mapping, &wbc);
322 wbc_detach_inode(&wbc);
323 return ret;
324 }
325
326 static inline int __filemap_fdatawrite(struct address_space *mapping,
327 int sync_mode)
328 {
329 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
330 }
331
332 int filemap_fdatawrite(struct address_space *mapping)
333 {
334 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
335 }
336 EXPORT_SYMBOL(filemap_fdatawrite);
337
338 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
339 loff_t end)
340 {
341 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
342 }
343 EXPORT_SYMBOL(filemap_fdatawrite_range);
344
345 /**
346 * filemap_flush - mostly a non-blocking flush
347 * @mapping: target address_space
348 *
349 * This is a mostly non-blocking flush. Not suitable for data-integrity
350 * purposes - I/O may not be started against all dirty pages.
351 */
352 int filemap_flush(struct address_space *mapping)
353 {
354 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
355 }
356 EXPORT_SYMBOL(filemap_flush);
357
358 static int __filemap_fdatawait_range(struct address_space *mapping,
359 loff_t start_byte, loff_t end_byte)
360 {
361 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
362 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
363 struct pagevec pvec;
364 int nr_pages;
365 int ret = 0;
366
367 if (end_byte < start_byte)
368 goto out;
369
370 pagevec_init(&pvec, 0);
371 while ((index <= end) &&
372 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
373 PAGECACHE_TAG_WRITEBACK,
374 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
375 unsigned i;
376
377 for (i = 0; i < nr_pages; i++) {
378 struct page *page = pvec.pages[i];
379
380 /* until radix tree lookup accepts end_index */
381 if (page->index > end)
382 continue;
383
384 wait_on_page_writeback(page);
385 if (TestClearPageError(page))
386 ret = -EIO;
387 }
388 pagevec_release(&pvec);
389 cond_resched();
390 }
391 out:
392 return ret;
393 }
394
395 /**
396 * filemap_fdatawait_range - wait for writeback to complete
397 * @mapping: address space structure to wait for
398 * @start_byte: offset in bytes where the range starts
399 * @end_byte: offset in bytes where the range ends (inclusive)
400 *
401 * Walk the list of under-writeback pages of the given address space
402 * in the given range and wait for all of them. Check error status of
403 * the address space and return it.
404 *
405 * Since the error status of the address space is cleared by this function,
406 * callers are responsible for checking the return value and handling and/or
407 * reporting the error.
408 */
409 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
410 loff_t end_byte)
411 {
412 int ret, ret2;
413
414 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
415 ret2 = filemap_check_errors(mapping);
416 if (!ret)
417 ret = ret2;
418
419 return ret;
420 }
421 EXPORT_SYMBOL(filemap_fdatawait_range);
422
423 /**
424 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
425 * @mapping: address space structure to wait for
426 *
427 * Walk the list of under-writeback pages of the given address space
428 * and wait for all of them. Unlike filemap_fdatawait(), this function
429 * does not clear error status of the address space.
430 *
431 * Use this function if callers don't handle errors themselves. Expected
432 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
433 * fsfreeze(8)
434 */
435 void filemap_fdatawait_keep_errors(struct address_space *mapping)
436 {
437 loff_t i_size = i_size_read(mapping->host);
438
439 if (i_size == 0)
440 return;
441
442 __filemap_fdatawait_range(mapping, 0, i_size - 1);
443 }
444
445 /**
446 * filemap_fdatawait - wait for all under-writeback pages to complete
447 * @mapping: address space structure to wait for
448 *
449 * Walk the list of under-writeback pages of the given address space
450 * and wait for all of them. Check error status of the address space
451 * and return it.
452 *
453 * Since the error status of the address space is cleared by this function,
454 * callers are responsible for checking the return value and handling and/or
455 * reporting the error.
456 */
457 int filemap_fdatawait(struct address_space *mapping)
458 {
459 loff_t i_size = i_size_read(mapping->host);
460
461 if (i_size == 0)
462 return 0;
463
464 return filemap_fdatawait_range(mapping, 0, i_size - 1);
465 }
466 EXPORT_SYMBOL(filemap_fdatawait);
467
468 int filemap_write_and_wait(struct address_space *mapping)
469 {
470 int err = 0;
471
472 if ((!dax_mapping(mapping) && mapping->nrpages) ||
473 (dax_mapping(mapping) && mapping->nrexceptional)) {
474 err = filemap_fdatawrite(mapping);
475 /*
476 * Even if the above returned error, the pages may be
477 * written partially (e.g. -ENOSPC), so we wait for it.
478 * But the -EIO is special case, it may indicate the worst
479 * thing (e.g. bug) happened, so we avoid waiting for it.
480 */
481 if (err != -EIO) {
482 int err2 = filemap_fdatawait(mapping);
483 if (!err)
484 err = err2;
485 }
486 } else {
487 err = filemap_check_errors(mapping);
488 }
489 return err;
490 }
491 EXPORT_SYMBOL(filemap_write_and_wait);
492
493 /**
494 * filemap_write_and_wait_range - write out & wait on a file range
495 * @mapping: the address_space for the pages
496 * @lstart: offset in bytes where the range starts
497 * @lend: offset in bytes where the range ends (inclusive)
498 *
499 * Write out and wait upon file offsets lstart->lend, inclusive.
500 *
501 * Note that `lend' is inclusive (describes the last byte to be written) so
502 * that this function can be used to write to the very end-of-file (end = -1).
503 */
504 int filemap_write_and_wait_range(struct address_space *mapping,
505 loff_t lstart, loff_t lend)
506 {
507 int err = 0;
508
509 if ((!dax_mapping(mapping) && mapping->nrpages) ||
510 (dax_mapping(mapping) && mapping->nrexceptional)) {
511 err = __filemap_fdatawrite_range(mapping, lstart, lend,
512 WB_SYNC_ALL);
513 /* See comment of filemap_write_and_wait() */
514 if (err != -EIO) {
515 int err2 = filemap_fdatawait_range(mapping,
516 lstart, lend);
517 if (!err)
518 err = err2;
519 }
520 } else {
521 err = filemap_check_errors(mapping);
522 }
523 return err;
524 }
525 EXPORT_SYMBOL(filemap_write_and_wait_range);
526
527 /**
528 * replace_page_cache_page - replace a pagecache page with a new one
529 * @old: page to be replaced
530 * @new: page to replace with
531 * @gfp_mask: allocation mode
532 *
533 * This function replaces a page in the pagecache with a new one. On
534 * success it acquires the pagecache reference for the new page and
535 * drops it for the old page. Both the old and new pages must be
536 * locked. This function does not add the new page to the LRU, the
537 * caller must do that.
538 *
539 * The remove + add is atomic. The only way this function can fail is
540 * memory allocation failure.
541 */
542 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
543 {
544 int error;
545
546 VM_BUG_ON_PAGE(!PageLocked(old), old);
547 VM_BUG_ON_PAGE(!PageLocked(new), new);
548 VM_BUG_ON_PAGE(new->mapping, new);
549
550 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
551 if (!error) {
552 struct address_space *mapping = old->mapping;
553 void (*freepage)(struct page *);
554 struct mem_cgroup *memcg;
555 unsigned long flags;
556
557 pgoff_t offset = old->index;
558 freepage = mapping->a_ops->freepage;
559
560 page_cache_get(new);
561 new->mapping = mapping;
562 new->index = offset;
563
564 memcg = mem_cgroup_begin_page_stat(old);
565 spin_lock_irqsave(&mapping->tree_lock, flags);
566 __delete_from_page_cache(old, NULL, memcg);
567 error = radix_tree_insert(&mapping->page_tree, offset, new);
568 BUG_ON(error);
569 mapping->nrpages++;
570
571 /*
572 * hugetlb pages do not participate in page cache accounting.
573 */
574 if (!PageHuge(new))
575 __inc_zone_page_state(new, NR_FILE_PAGES);
576 if (PageSwapBacked(new))
577 __inc_zone_page_state(new, NR_SHMEM);
578 spin_unlock_irqrestore(&mapping->tree_lock, flags);
579 mem_cgroup_end_page_stat(memcg);
580 mem_cgroup_replace_page(old, new);
581 radix_tree_preload_end();
582 if (freepage)
583 freepage(old);
584 page_cache_release(old);
585 }
586
587 return error;
588 }
589 EXPORT_SYMBOL_GPL(replace_page_cache_page);
590
591 static int page_cache_tree_insert(struct address_space *mapping,
592 struct page *page, void **shadowp)
593 {
594 struct radix_tree_node *node;
595 void **slot;
596 int error;
597
598 error = __radix_tree_create(&mapping->page_tree, page->index,
599 &node, &slot);
600 if (error)
601 return error;
602 if (*slot) {
603 void *p;
604
605 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
606 if (!radix_tree_exceptional_entry(p))
607 return -EEXIST;
608
609 if (WARN_ON(dax_mapping(mapping)))
610 return -EINVAL;
611
612 if (shadowp)
613 *shadowp = p;
614 mapping->nrexceptional--;
615 if (node)
616 workingset_node_shadows_dec(node);
617 }
618 radix_tree_replace_slot(slot, page);
619 mapping->nrpages++;
620 if (node) {
621 workingset_node_pages_inc(node);
622 /*
623 * Don't track node that contains actual pages.
624 *
625 * Avoid acquiring the list_lru lock if already
626 * untracked. The list_empty() test is safe as
627 * node->private_list is protected by
628 * mapping->tree_lock.
629 */
630 if (!list_empty(&node->private_list))
631 list_lru_del(&workingset_shadow_nodes,
632 &node->private_list);
633 }
634 return 0;
635 }
636
637 static int __add_to_page_cache_locked(struct page *page,
638 struct address_space *mapping,
639 pgoff_t offset, gfp_t gfp_mask,
640 void **shadowp)
641 {
642 int huge = PageHuge(page);
643 struct mem_cgroup *memcg;
644 int error;
645
646 VM_BUG_ON_PAGE(!PageLocked(page), page);
647 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
648
649 if (!huge) {
650 error = mem_cgroup_try_charge(page, current->mm,
651 gfp_mask, &memcg, false);
652 if (error)
653 return error;
654 }
655
656 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
657 if (error) {
658 if (!huge)
659 mem_cgroup_cancel_charge(page, memcg, false);
660 return error;
661 }
662
663 page_cache_get(page);
664 page->mapping = mapping;
665 page->index = offset;
666
667 spin_lock_irq(&mapping->tree_lock);
668 error = page_cache_tree_insert(mapping, page, shadowp);
669 radix_tree_preload_end();
670 if (unlikely(error))
671 goto err_insert;
672
673 /* hugetlb pages do not participate in page cache accounting. */
674 if (!huge)
675 __inc_zone_page_state(page, NR_FILE_PAGES);
676 spin_unlock_irq(&mapping->tree_lock);
677 if (!huge)
678 mem_cgroup_commit_charge(page, memcg, false, false);
679 trace_mm_filemap_add_to_page_cache(page);
680 return 0;
681 err_insert:
682 page->mapping = NULL;
683 /* Leave page->index set: truncation relies upon it */
684 spin_unlock_irq(&mapping->tree_lock);
685 if (!huge)
686 mem_cgroup_cancel_charge(page, memcg, false);
687 page_cache_release(page);
688 return error;
689 }
690
691 /**
692 * add_to_page_cache_locked - add a locked page to the pagecache
693 * @page: page to add
694 * @mapping: the page's address_space
695 * @offset: page index
696 * @gfp_mask: page allocation mode
697 *
698 * This function is used to add a page to the pagecache. It must be locked.
699 * This function does not add the page to the LRU. The caller must do that.
700 */
701 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
702 pgoff_t offset, gfp_t gfp_mask)
703 {
704 return __add_to_page_cache_locked(page, mapping, offset,
705 gfp_mask, NULL);
706 }
707 EXPORT_SYMBOL(add_to_page_cache_locked);
708
709 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
710 pgoff_t offset, gfp_t gfp_mask)
711 {
712 void *shadow = NULL;
713 int ret;
714
715 __SetPageLocked(page);
716 ret = __add_to_page_cache_locked(page, mapping, offset,
717 gfp_mask, &shadow);
718 if (unlikely(ret))
719 __ClearPageLocked(page);
720 else {
721 /*
722 * The page might have been evicted from cache only
723 * recently, in which case it should be activated like
724 * any other repeatedly accessed page.
725 */
726 if (shadow && workingset_refault(shadow)) {
727 SetPageActive(page);
728 workingset_activation(page);
729 } else
730 ClearPageActive(page);
731 lru_cache_add(page);
732 }
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
736
737 #ifdef CONFIG_NUMA
738 struct page *__page_cache_alloc(gfp_t gfp)
739 {
740 int n;
741 struct page *page;
742
743 if (cpuset_do_page_mem_spread()) {
744 unsigned int cpuset_mems_cookie;
745 do {
746 cpuset_mems_cookie = read_mems_allowed_begin();
747 n = cpuset_mem_spread_node();
748 page = __alloc_pages_node(n, gfp, 0);
749 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
750
751 return page;
752 }
753 return alloc_pages(gfp, 0);
754 }
755 EXPORT_SYMBOL(__page_cache_alloc);
756 #endif
757
758 /*
759 * In order to wait for pages to become available there must be
760 * waitqueues associated with pages. By using a hash table of
761 * waitqueues where the bucket discipline is to maintain all
762 * waiters on the same queue and wake all when any of the pages
763 * become available, and for the woken contexts to check to be
764 * sure the appropriate page became available, this saves space
765 * at a cost of "thundering herd" phenomena during rare hash
766 * collisions.
767 */
768 wait_queue_head_t *page_waitqueue(struct page *page)
769 {
770 const struct zone *zone = page_zone(page);
771
772 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
773 }
774 EXPORT_SYMBOL(page_waitqueue);
775
776 void wait_on_page_bit(struct page *page, int bit_nr)
777 {
778 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780 if (test_bit(bit_nr, &page->flags))
781 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
782 TASK_UNINTERRUPTIBLE);
783 }
784 EXPORT_SYMBOL(wait_on_page_bit);
785
786 int wait_on_page_bit_killable(struct page *page, int bit_nr)
787 {
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790 if (!test_bit(bit_nr, &page->flags))
791 return 0;
792
793 return __wait_on_bit(page_waitqueue(page), &wait,
794 bit_wait_io, TASK_KILLABLE);
795 }
796
797 int wait_on_page_bit_killable_timeout(struct page *page,
798 int bit_nr, unsigned long timeout)
799 {
800 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802 wait.key.timeout = jiffies + timeout;
803 if (!test_bit(bit_nr, &page->flags))
804 return 0;
805 return __wait_on_bit(page_waitqueue(page), &wait,
806 bit_wait_io_timeout, TASK_KILLABLE);
807 }
808 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
809
810 /**
811 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
812 * @page: Page defining the wait queue of interest
813 * @waiter: Waiter to add to the queue
814 *
815 * Add an arbitrary @waiter to the wait queue for the nominated @page.
816 */
817 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
818 {
819 wait_queue_head_t *q = page_waitqueue(page);
820 unsigned long flags;
821
822 spin_lock_irqsave(&q->lock, flags);
823 __add_wait_queue(q, waiter);
824 spin_unlock_irqrestore(&q->lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(add_page_wait_queue);
827
828 /**
829 * unlock_page - unlock a locked page
830 * @page: the page
831 *
832 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
833 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
834 * mechanism between PageLocked pages and PageWriteback pages is shared.
835 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
836 *
837 * The mb is necessary to enforce ordering between the clear_bit and the read
838 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
839 */
840 void unlock_page(struct page *page)
841 {
842 page = compound_head(page);
843 VM_BUG_ON_PAGE(!PageLocked(page), page);
844 clear_bit_unlock(PG_locked, &page->flags);
845 smp_mb__after_atomic();
846 wake_up_page(page, PG_locked);
847 }
848 EXPORT_SYMBOL(unlock_page);
849
850 /**
851 * end_page_writeback - end writeback against a page
852 * @page: the page
853 */
854 void end_page_writeback(struct page *page)
855 {
856 /*
857 * TestClearPageReclaim could be used here but it is an atomic
858 * operation and overkill in this particular case. Failing to
859 * shuffle a page marked for immediate reclaim is too mild to
860 * justify taking an atomic operation penalty at the end of
861 * ever page writeback.
862 */
863 if (PageReclaim(page)) {
864 ClearPageReclaim(page);
865 rotate_reclaimable_page(page);
866 }
867
868 if (!test_clear_page_writeback(page))
869 BUG();
870
871 smp_mb__after_atomic();
872 wake_up_page(page, PG_writeback);
873 }
874 EXPORT_SYMBOL(end_page_writeback);
875
876 /*
877 * After completing I/O on a page, call this routine to update the page
878 * flags appropriately
879 */
880 void page_endio(struct page *page, int rw, int err)
881 {
882 if (rw == READ) {
883 if (!err) {
884 SetPageUptodate(page);
885 } else {
886 ClearPageUptodate(page);
887 SetPageError(page);
888 }
889 unlock_page(page);
890 } else { /* rw == WRITE */
891 if (err) {
892 SetPageError(page);
893 if (page->mapping)
894 mapping_set_error(page->mapping, err);
895 }
896 end_page_writeback(page);
897 }
898 }
899 EXPORT_SYMBOL_GPL(page_endio);
900
901 /**
902 * __lock_page - get a lock on the page, assuming we need to sleep to get it
903 * @page: the page to lock
904 */
905 void __lock_page(struct page *page)
906 {
907 struct page *page_head = compound_head(page);
908 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
909
910 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
911 TASK_UNINTERRUPTIBLE);
912 }
913 EXPORT_SYMBOL(__lock_page);
914
915 int __lock_page_killable(struct page *page)
916 {
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919
920 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
921 bit_wait_io, TASK_KILLABLE);
922 }
923 EXPORT_SYMBOL_GPL(__lock_page_killable);
924
925 /*
926 * Return values:
927 * 1 - page is locked; mmap_sem is still held.
928 * 0 - page is not locked.
929 * mmap_sem has been released (up_read()), unless flags had both
930 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
931 * which case mmap_sem is still held.
932 *
933 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
934 * with the page locked and the mmap_sem unperturbed.
935 */
936 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
937 unsigned int flags)
938 {
939 if (flags & FAULT_FLAG_ALLOW_RETRY) {
940 /*
941 * CAUTION! In this case, mmap_sem is not released
942 * even though return 0.
943 */
944 if (flags & FAULT_FLAG_RETRY_NOWAIT)
945 return 0;
946
947 up_read(&mm->mmap_sem);
948 if (flags & FAULT_FLAG_KILLABLE)
949 wait_on_page_locked_killable(page);
950 else
951 wait_on_page_locked(page);
952 return 0;
953 } else {
954 if (flags & FAULT_FLAG_KILLABLE) {
955 int ret;
956
957 ret = __lock_page_killable(page);
958 if (ret) {
959 up_read(&mm->mmap_sem);
960 return 0;
961 }
962 } else
963 __lock_page(page);
964 return 1;
965 }
966 }
967
968 /**
969 * page_cache_next_hole - find the next hole (not-present entry)
970 * @mapping: mapping
971 * @index: index
972 * @max_scan: maximum range to search
973 *
974 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
975 * lowest indexed hole.
976 *
977 * Returns: the index of the hole if found, otherwise returns an index
978 * outside of the set specified (in which case 'return - index >=
979 * max_scan' will be true). In rare cases of index wrap-around, 0 will
980 * be returned.
981 *
982 * page_cache_next_hole may be called under rcu_read_lock. However,
983 * like radix_tree_gang_lookup, this will not atomically search a
984 * snapshot of the tree at a single point in time. For example, if a
985 * hole is created at index 5, then subsequently a hole is created at
986 * index 10, page_cache_next_hole covering both indexes may return 10
987 * if called under rcu_read_lock.
988 */
989 pgoff_t page_cache_next_hole(struct address_space *mapping,
990 pgoff_t index, unsigned long max_scan)
991 {
992 unsigned long i;
993
994 for (i = 0; i < max_scan; i++) {
995 struct page *page;
996
997 page = radix_tree_lookup(&mapping->page_tree, index);
998 if (!page || radix_tree_exceptional_entry(page))
999 break;
1000 index++;
1001 if (index == 0)
1002 break;
1003 }
1004
1005 return index;
1006 }
1007 EXPORT_SYMBOL(page_cache_next_hole);
1008
1009 /**
1010 * page_cache_prev_hole - find the prev hole (not-present entry)
1011 * @mapping: mapping
1012 * @index: index
1013 * @max_scan: maximum range to search
1014 *
1015 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1016 * the first hole.
1017 *
1018 * Returns: the index of the hole if found, otherwise returns an index
1019 * outside of the set specified (in which case 'index - return >=
1020 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1021 * will be returned.
1022 *
1023 * page_cache_prev_hole may be called under rcu_read_lock. However,
1024 * like radix_tree_gang_lookup, this will not atomically search a
1025 * snapshot of the tree at a single point in time. For example, if a
1026 * hole is created at index 10, then subsequently a hole is created at
1027 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1028 * called under rcu_read_lock.
1029 */
1030 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1031 pgoff_t index, unsigned long max_scan)
1032 {
1033 unsigned long i;
1034
1035 for (i = 0; i < max_scan; i++) {
1036 struct page *page;
1037
1038 page = radix_tree_lookup(&mapping->page_tree, index);
1039 if (!page || radix_tree_exceptional_entry(page))
1040 break;
1041 index--;
1042 if (index == ULONG_MAX)
1043 break;
1044 }
1045
1046 return index;
1047 }
1048 EXPORT_SYMBOL(page_cache_prev_hole);
1049
1050 /**
1051 * find_get_entry - find and get a page cache entry
1052 * @mapping: the address_space to search
1053 * @offset: the page cache index
1054 *
1055 * Looks up the page cache slot at @mapping & @offset. If there is a
1056 * page cache page, it is returned with an increased refcount.
1057 *
1058 * If the slot holds a shadow entry of a previously evicted page, or a
1059 * swap entry from shmem/tmpfs, it is returned.
1060 *
1061 * Otherwise, %NULL is returned.
1062 */
1063 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1064 {
1065 void **pagep;
1066 struct page *page;
1067
1068 rcu_read_lock();
1069 repeat:
1070 page = NULL;
1071 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1072 if (pagep) {
1073 page = radix_tree_deref_slot(pagep);
1074 if (unlikely(!page))
1075 goto out;
1076 if (radix_tree_exception(page)) {
1077 if (radix_tree_deref_retry(page))
1078 goto repeat;
1079 /*
1080 * A shadow entry of a recently evicted page,
1081 * or a swap entry from shmem/tmpfs. Return
1082 * it without attempting to raise page count.
1083 */
1084 goto out;
1085 }
1086 if (!page_cache_get_speculative(page))
1087 goto repeat;
1088
1089 /*
1090 * Has the page moved?
1091 * This is part of the lockless pagecache protocol. See
1092 * include/linux/pagemap.h for details.
1093 */
1094 if (unlikely(page != *pagep)) {
1095 page_cache_release(page);
1096 goto repeat;
1097 }
1098 }
1099 out:
1100 rcu_read_unlock();
1101
1102 return page;
1103 }
1104 EXPORT_SYMBOL(find_get_entry);
1105
1106 /**
1107 * find_lock_entry - locate, pin and lock a page cache entry
1108 * @mapping: the address_space to search
1109 * @offset: the page cache index
1110 *
1111 * Looks up the page cache slot at @mapping & @offset. If there is a
1112 * page cache page, it is returned locked and with an increased
1113 * refcount.
1114 *
1115 * If the slot holds a shadow entry of a previously evicted page, or a
1116 * swap entry from shmem/tmpfs, it is returned.
1117 *
1118 * Otherwise, %NULL is returned.
1119 *
1120 * find_lock_entry() may sleep.
1121 */
1122 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1123 {
1124 struct page *page;
1125
1126 repeat:
1127 page = find_get_entry(mapping, offset);
1128 if (page && !radix_tree_exception(page)) {
1129 lock_page(page);
1130 /* Has the page been truncated? */
1131 if (unlikely(page->mapping != mapping)) {
1132 unlock_page(page);
1133 page_cache_release(page);
1134 goto repeat;
1135 }
1136 VM_BUG_ON_PAGE(page->index != offset, page);
1137 }
1138 return page;
1139 }
1140 EXPORT_SYMBOL(find_lock_entry);
1141
1142 /**
1143 * pagecache_get_page - find and get a page reference
1144 * @mapping: the address_space to search
1145 * @offset: the page index
1146 * @fgp_flags: PCG flags
1147 * @gfp_mask: gfp mask to use for the page cache data page allocation
1148 *
1149 * Looks up the page cache slot at @mapping & @offset.
1150 *
1151 * PCG flags modify how the page is returned.
1152 *
1153 * FGP_ACCESSED: the page will be marked accessed
1154 * FGP_LOCK: Page is return locked
1155 * FGP_CREAT: If page is not present then a new page is allocated using
1156 * @gfp_mask and added to the page cache and the VM's LRU
1157 * list. The page is returned locked and with an increased
1158 * refcount. Otherwise, %NULL is returned.
1159 *
1160 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1161 * if the GFP flags specified for FGP_CREAT are atomic.
1162 *
1163 * If there is a page cache page, it is returned with an increased refcount.
1164 */
1165 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1166 int fgp_flags, gfp_t gfp_mask)
1167 {
1168 struct page *page;
1169
1170 repeat:
1171 page = find_get_entry(mapping, offset);
1172 if (radix_tree_exceptional_entry(page))
1173 page = NULL;
1174 if (!page)
1175 goto no_page;
1176
1177 if (fgp_flags & FGP_LOCK) {
1178 if (fgp_flags & FGP_NOWAIT) {
1179 if (!trylock_page(page)) {
1180 page_cache_release(page);
1181 return NULL;
1182 }
1183 } else {
1184 lock_page(page);
1185 }
1186
1187 /* Has the page been truncated? */
1188 if (unlikely(page->mapping != mapping)) {
1189 unlock_page(page);
1190 page_cache_release(page);
1191 goto repeat;
1192 }
1193 VM_BUG_ON_PAGE(page->index != offset, page);
1194 }
1195
1196 if (page && (fgp_flags & FGP_ACCESSED))
1197 mark_page_accessed(page);
1198
1199 no_page:
1200 if (!page && (fgp_flags & FGP_CREAT)) {
1201 int err;
1202 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1203 gfp_mask |= __GFP_WRITE;
1204 if (fgp_flags & FGP_NOFS)
1205 gfp_mask &= ~__GFP_FS;
1206
1207 page = __page_cache_alloc(gfp_mask);
1208 if (!page)
1209 return NULL;
1210
1211 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1212 fgp_flags |= FGP_LOCK;
1213
1214 /* Init accessed so avoid atomic mark_page_accessed later */
1215 if (fgp_flags & FGP_ACCESSED)
1216 __SetPageReferenced(page);
1217
1218 err = add_to_page_cache_lru(page, mapping, offset,
1219 gfp_mask & GFP_RECLAIM_MASK);
1220 if (unlikely(err)) {
1221 page_cache_release(page);
1222 page = NULL;
1223 if (err == -EEXIST)
1224 goto repeat;
1225 }
1226 }
1227
1228 return page;
1229 }
1230 EXPORT_SYMBOL(pagecache_get_page);
1231
1232 /**
1233 * find_get_entries - gang pagecache lookup
1234 * @mapping: The address_space to search
1235 * @start: The starting page cache index
1236 * @nr_entries: The maximum number of entries
1237 * @entries: Where the resulting entries are placed
1238 * @indices: The cache indices corresponding to the entries in @entries
1239 *
1240 * find_get_entries() will search for and return a group of up to
1241 * @nr_entries entries in the mapping. The entries are placed at
1242 * @entries. find_get_entries() takes a reference against any actual
1243 * pages it returns.
1244 *
1245 * The search returns a group of mapping-contiguous page cache entries
1246 * with ascending indexes. There may be holes in the indices due to
1247 * not-present pages.
1248 *
1249 * Any shadow entries of evicted pages, or swap entries from
1250 * shmem/tmpfs, are included in the returned array.
1251 *
1252 * find_get_entries() returns the number of pages and shadow entries
1253 * which were found.
1254 */
1255 unsigned find_get_entries(struct address_space *mapping,
1256 pgoff_t start, unsigned int nr_entries,
1257 struct page **entries, pgoff_t *indices)
1258 {
1259 void **slot;
1260 unsigned int ret = 0;
1261 struct radix_tree_iter iter;
1262
1263 if (!nr_entries)
1264 return 0;
1265
1266 rcu_read_lock();
1267 restart:
1268 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1269 struct page *page;
1270 repeat:
1271 page = radix_tree_deref_slot(slot);
1272 if (unlikely(!page))
1273 continue;
1274 if (radix_tree_exception(page)) {
1275 if (radix_tree_deref_retry(page))
1276 goto restart;
1277 /*
1278 * A shadow entry of a recently evicted page, a swap
1279 * entry from shmem/tmpfs or a DAX entry. Return it
1280 * without attempting to raise page count.
1281 */
1282 goto export;
1283 }
1284 if (!page_cache_get_speculative(page))
1285 goto repeat;
1286
1287 /* Has the page moved? */
1288 if (unlikely(page != *slot)) {
1289 page_cache_release(page);
1290 goto repeat;
1291 }
1292 export:
1293 indices[ret] = iter.index;
1294 entries[ret] = page;
1295 if (++ret == nr_entries)
1296 break;
1297 }
1298 rcu_read_unlock();
1299 return ret;
1300 }
1301
1302 /**
1303 * find_get_pages - gang pagecache lookup
1304 * @mapping: The address_space to search
1305 * @start: The starting page index
1306 * @nr_pages: The maximum number of pages
1307 * @pages: Where the resulting pages are placed
1308 *
1309 * find_get_pages() will search for and return a group of up to
1310 * @nr_pages pages in the mapping. The pages are placed at @pages.
1311 * find_get_pages() takes a reference against the returned pages.
1312 *
1313 * The search returns a group of mapping-contiguous pages with ascending
1314 * indexes. There may be holes in the indices due to not-present pages.
1315 *
1316 * find_get_pages() returns the number of pages which were found.
1317 */
1318 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1319 unsigned int nr_pages, struct page **pages)
1320 {
1321 struct radix_tree_iter iter;
1322 void **slot;
1323 unsigned ret = 0;
1324
1325 if (unlikely(!nr_pages))
1326 return 0;
1327
1328 rcu_read_lock();
1329 restart:
1330 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1331 struct page *page;
1332 repeat:
1333 page = radix_tree_deref_slot(slot);
1334 if (unlikely(!page))
1335 continue;
1336
1337 if (radix_tree_exception(page)) {
1338 if (radix_tree_deref_retry(page)) {
1339 /*
1340 * Transient condition which can only trigger
1341 * when entry at index 0 moves out of or back
1342 * to root: none yet gotten, safe to restart.
1343 */
1344 WARN_ON(iter.index);
1345 goto restart;
1346 }
1347 /*
1348 * A shadow entry of a recently evicted page,
1349 * or a swap entry from shmem/tmpfs. Skip
1350 * over it.
1351 */
1352 continue;
1353 }
1354
1355 if (!page_cache_get_speculative(page))
1356 goto repeat;
1357
1358 /* Has the page moved? */
1359 if (unlikely(page != *slot)) {
1360 page_cache_release(page);
1361 goto repeat;
1362 }
1363
1364 pages[ret] = page;
1365 if (++ret == nr_pages)
1366 break;
1367 }
1368
1369 rcu_read_unlock();
1370 return ret;
1371 }
1372
1373 /**
1374 * find_get_pages_contig - gang contiguous pagecache lookup
1375 * @mapping: The address_space to search
1376 * @index: The starting page index
1377 * @nr_pages: The maximum number of pages
1378 * @pages: Where the resulting pages are placed
1379 *
1380 * find_get_pages_contig() works exactly like find_get_pages(), except
1381 * that the returned number of pages are guaranteed to be contiguous.
1382 *
1383 * find_get_pages_contig() returns the number of pages which were found.
1384 */
1385 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1386 unsigned int nr_pages, struct page **pages)
1387 {
1388 struct radix_tree_iter iter;
1389 void **slot;
1390 unsigned int ret = 0;
1391
1392 if (unlikely(!nr_pages))
1393 return 0;
1394
1395 rcu_read_lock();
1396 restart:
1397 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1398 struct page *page;
1399 repeat:
1400 page = radix_tree_deref_slot(slot);
1401 /* The hole, there no reason to continue */
1402 if (unlikely(!page))
1403 break;
1404
1405 if (radix_tree_exception(page)) {
1406 if (radix_tree_deref_retry(page)) {
1407 /*
1408 * Transient condition which can only trigger
1409 * when entry at index 0 moves out of or back
1410 * to root: none yet gotten, safe to restart.
1411 */
1412 goto restart;
1413 }
1414 /*
1415 * A shadow entry of a recently evicted page,
1416 * or a swap entry from shmem/tmpfs. Stop
1417 * looking for contiguous pages.
1418 */
1419 break;
1420 }
1421
1422 if (!page_cache_get_speculative(page))
1423 goto repeat;
1424
1425 /* Has the page moved? */
1426 if (unlikely(page != *slot)) {
1427 page_cache_release(page);
1428 goto repeat;
1429 }
1430
1431 /*
1432 * must check mapping and index after taking the ref.
1433 * otherwise we can get both false positives and false
1434 * negatives, which is just confusing to the caller.
1435 */
1436 if (page->mapping == NULL || page->index != iter.index) {
1437 page_cache_release(page);
1438 break;
1439 }
1440
1441 pages[ret] = page;
1442 if (++ret == nr_pages)
1443 break;
1444 }
1445 rcu_read_unlock();
1446 return ret;
1447 }
1448 EXPORT_SYMBOL(find_get_pages_contig);
1449
1450 /**
1451 * find_get_pages_tag - find and return pages that match @tag
1452 * @mapping: the address_space to search
1453 * @index: the starting page index
1454 * @tag: the tag index
1455 * @nr_pages: the maximum number of pages
1456 * @pages: where the resulting pages are placed
1457 *
1458 * Like find_get_pages, except we only return pages which are tagged with
1459 * @tag. We update @index to index the next page for the traversal.
1460 */
1461 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1462 int tag, unsigned int nr_pages, struct page **pages)
1463 {
1464 struct radix_tree_iter iter;
1465 void **slot;
1466 unsigned ret = 0;
1467
1468 if (unlikely(!nr_pages))
1469 return 0;
1470
1471 rcu_read_lock();
1472 restart:
1473 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1474 &iter, *index, tag) {
1475 struct page *page;
1476 repeat:
1477 page = radix_tree_deref_slot(slot);
1478 if (unlikely(!page))
1479 continue;
1480
1481 if (radix_tree_exception(page)) {
1482 if (radix_tree_deref_retry(page)) {
1483 /*
1484 * Transient condition which can only trigger
1485 * when entry at index 0 moves out of or back
1486 * to root: none yet gotten, safe to restart.
1487 */
1488 goto restart;
1489 }
1490 /*
1491 * A shadow entry of a recently evicted page.
1492 *
1493 * Those entries should never be tagged, but
1494 * this tree walk is lockless and the tags are
1495 * looked up in bulk, one radix tree node at a
1496 * time, so there is a sizable window for page
1497 * reclaim to evict a page we saw tagged.
1498 *
1499 * Skip over it.
1500 */
1501 continue;
1502 }
1503
1504 if (!page_cache_get_speculative(page))
1505 goto repeat;
1506
1507 /* Has the page moved? */
1508 if (unlikely(page != *slot)) {
1509 page_cache_release(page);
1510 goto repeat;
1511 }
1512
1513 pages[ret] = page;
1514 if (++ret == nr_pages)
1515 break;
1516 }
1517
1518 rcu_read_unlock();
1519
1520 if (ret)
1521 *index = pages[ret - 1]->index + 1;
1522
1523 return ret;
1524 }
1525 EXPORT_SYMBOL(find_get_pages_tag);
1526
1527 /**
1528 * find_get_entries_tag - find and return entries that match @tag
1529 * @mapping: the address_space to search
1530 * @start: the starting page cache index
1531 * @tag: the tag index
1532 * @nr_entries: the maximum number of entries
1533 * @entries: where the resulting entries are placed
1534 * @indices: the cache indices corresponding to the entries in @entries
1535 *
1536 * Like find_get_entries, except we only return entries which are tagged with
1537 * @tag.
1538 */
1539 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1540 int tag, unsigned int nr_entries,
1541 struct page **entries, pgoff_t *indices)
1542 {
1543 void **slot;
1544 unsigned int ret = 0;
1545 struct radix_tree_iter iter;
1546
1547 if (!nr_entries)
1548 return 0;
1549
1550 rcu_read_lock();
1551 restart:
1552 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1553 &iter, start, tag) {
1554 struct page *page;
1555 repeat:
1556 page = radix_tree_deref_slot(slot);
1557 if (unlikely(!page))
1558 continue;
1559 if (radix_tree_exception(page)) {
1560 if (radix_tree_deref_retry(page)) {
1561 /*
1562 * Transient condition which can only trigger
1563 * when entry at index 0 moves out of or back
1564 * to root: none yet gotten, safe to restart.
1565 */
1566 goto restart;
1567 }
1568
1569 /*
1570 * A shadow entry of a recently evicted page, a swap
1571 * entry from shmem/tmpfs or a DAX entry. Return it
1572 * without attempting to raise page count.
1573 */
1574 goto export;
1575 }
1576 if (!page_cache_get_speculative(page))
1577 goto repeat;
1578
1579 /* Has the page moved? */
1580 if (unlikely(page != *slot)) {
1581 page_cache_release(page);
1582 goto repeat;
1583 }
1584 export:
1585 indices[ret] = iter.index;
1586 entries[ret] = page;
1587 if (++ret == nr_entries)
1588 break;
1589 }
1590 rcu_read_unlock();
1591 return ret;
1592 }
1593 EXPORT_SYMBOL(find_get_entries_tag);
1594
1595 /*
1596 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1597 * a _large_ part of the i/o request. Imagine the worst scenario:
1598 *
1599 * ---R__________________________________________B__________
1600 * ^ reading here ^ bad block(assume 4k)
1601 *
1602 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1603 * => failing the whole request => read(R) => read(R+1) =>
1604 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1605 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1606 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1607 *
1608 * It is going insane. Fix it by quickly scaling down the readahead size.
1609 */
1610 static void shrink_readahead_size_eio(struct file *filp,
1611 struct file_ra_state *ra)
1612 {
1613 ra->ra_pages /= 4;
1614 }
1615
1616 /**
1617 * do_generic_file_read - generic file read routine
1618 * @filp: the file to read
1619 * @ppos: current file position
1620 * @iter: data destination
1621 * @written: already copied
1622 *
1623 * This is a generic file read routine, and uses the
1624 * mapping->a_ops->readpage() function for the actual low-level stuff.
1625 *
1626 * This is really ugly. But the goto's actually try to clarify some
1627 * of the logic when it comes to error handling etc.
1628 */
1629 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1630 struct iov_iter *iter, ssize_t written)
1631 {
1632 struct address_space *mapping = filp->f_mapping;
1633 struct inode *inode = mapping->host;
1634 struct file_ra_state *ra = &filp->f_ra;
1635 pgoff_t index;
1636 pgoff_t last_index;
1637 pgoff_t prev_index;
1638 unsigned long offset; /* offset into pagecache page */
1639 unsigned int prev_offset;
1640 int error = 0;
1641
1642 index = *ppos >> PAGE_CACHE_SHIFT;
1643 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1644 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1645 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1646 offset = *ppos & ~PAGE_CACHE_MASK;
1647
1648 for (;;) {
1649 struct page *page;
1650 pgoff_t end_index;
1651 loff_t isize;
1652 unsigned long nr, ret;
1653
1654 cond_resched();
1655 find_page:
1656 page = find_get_page(mapping, index);
1657 if (!page) {
1658 page_cache_sync_readahead(mapping,
1659 ra, filp,
1660 index, last_index - index);
1661 page = find_get_page(mapping, index);
1662 if (unlikely(page == NULL))
1663 goto no_cached_page;
1664 }
1665 if (PageReadahead(page)) {
1666 page_cache_async_readahead(mapping,
1667 ra, filp, page,
1668 index, last_index - index);
1669 }
1670 if (!PageUptodate(page)) {
1671 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1672 !mapping->a_ops->is_partially_uptodate)
1673 goto page_not_up_to_date;
1674 if (!trylock_page(page))
1675 goto page_not_up_to_date;
1676 /* Did it get truncated before we got the lock? */
1677 if (!page->mapping)
1678 goto page_not_up_to_date_locked;
1679 if (!mapping->a_ops->is_partially_uptodate(page,
1680 offset, iter->count))
1681 goto page_not_up_to_date_locked;
1682 unlock_page(page);
1683 }
1684 page_ok:
1685 /*
1686 * i_size must be checked after we know the page is Uptodate.
1687 *
1688 * Checking i_size after the check allows us to calculate
1689 * the correct value for "nr", which means the zero-filled
1690 * part of the page is not copied back to userspace (unless
1691 * another truncate extends the file - this is desired though).
1692 */
1693
1694 isize = i_size_read(inode);
1695 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1696 if (unlikely(!isize || index > end_index)) {
1697 page_cache_release(page);
1698 goto out;
1699 }
1700
1701 /* nr is the maximum number of bytes to copy from this page */
1702 nr = PAGE_CACHE_SIZE;
1703 if (index == end_index) {
1704 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1705 if (nr <= offset) {
1706 page_cache_release(page);
1707 goto out;
1708 }
1709 }
1710 nr = nr - offset;
1711
1712 /* If users can be writing to this page using arbitrary
1713 * virtual addresses, take care about potential aliasing
1714 * before reading the page on the kernel side.
1715 */
1716 if (mapping_writably_mapped(mapping))
1717 flush_dcache_page(page);
1718
1719 /*
1720 * When a sequential read accesses a page several times,
1721 * only mark it as accessed the first time.
1722 */
1723 if (prev_index != index || offset != prev_offset)
1724 mark_page_accessed(page);
1725 prev_index = index;
1726
1727 /*
1728 * Ok, we have the page, and it's up-to-date, so
1729 * now we can copy it to user space...
1730 */
1731
1732 ret = copy_page_to_iter(page, offset, nr, iter);
1733 offset += ret;
1734 index += offset >> PAGE_CACHE_SHIFT;
1735 offset &= ~PAGE_CACHE_MASK;
1736 prev_offset = offset;
1737
1738 page_cache_release(page);
1739 written += ret;
1740 if (!iov_iter_count(iter))
1741 goto out;
1742 if (ret < nr) {
1743 error = -EFAULT;
1744 goto out;
1745 }
1746 continue;
1747
1748 page_not_up_to_date:
1749 /* Get exclusive access to the page ... */
1750 error = lock_page_killable(page);
1751 if (unlikely(error))
1752 goto readpage_error;
1753
1754 page_not_up_to_date_locked:
1755 /* Did it get truncated before we got the lock? */
1756 if (!page->mapping) {
1757 unlock_page(page);
1758 page_cache_release(page);
1759 continue;
1760 }
1761
1762 /* Did somebody else fill it already? */
1763 if (PageUptodate(page)) {
1764 unlock_page(page);
1765 goto page_ok;
1766 }
1767
1768 readpage:
1769 /*
1770 * A previous I/O error may have been due to temporary
1771 * failures, eg. multipath errors.
1772 * PG_error will be set again if readpage fails.
1773 */
1774 ClearPageError(page);
1775 /* Start the actual read. The read will unlock the page. */
1776 error = mapping->a_ops->readpage(filp, page);
1777
1778 if (unlikely(error)) {
1779 if (error == AOP_TRUNCATED_PAGE) {
1780 page_cache_release(page);
1781 error = 0;
1782 goto find_page;
1783 }
1784 goto readpage_error;
1785 }
1786
1787 if (!PageUptodate(page)) {
1788 error = lock_page_killable(page);
1789 if (unlikely(error))
1790 goto readpage_error;
1791 if (!PageUptodate(page)) {
1792 if (page->mapping == NULL) {
1793 /*
1794 * invalidate_mapping_pages got it
1795 */
1796 unlock_page(page);
1797 page_cache_release(page);
1798 goto find_page;
1799 }
1800 unlock_page(page);
1801 shrink_readahead_size_eio(filp, ra);
1802 error = -EIO;
1803 goto readpage_error;
1804 }
1805 unlock_page(page);
1806 }
1807
1808 goto page_ok;
1809
1810 readpage_error:
1811 /* UHHUH! A synchronous read error occurred. Report it */
1812 page_cache_release(page);
1813 goto out;
1814
1815 no_cached_page:
1816 /*
1817 * Ok, it wasn't cached, so we need to create a new
1818 * page..
1819 */
1820 page = page_cache_alloc_cold(mapping);
1821 if (!page) {
1822 error = -ENOMEM;
1823 goto out;
1824 }
1825 error = add_to_page_cache_lru(page, mapping, index,
1826 mapping_gfp_constraint(mapping, GFP_KERNEL));
1827 if (error) {
1828 page_cache_release(page);
1829 if (error == -EEXIST) {
1830 error = 0;
1831 goto find_page;
1832 }
1833 goto out;
1834 }
1835 goto readpage;
1836 }
1837
1838 out:
1839 ra->prev_pos = prev_index;
1840 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1841 ra->prev_pos |= prev_offset;
1842
1843 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1844 file_accessed(filp);
1845 return written ? written : error;
1846 }
1847
1848 /**
1849 * generic_file_read_iter - generic filesystem read routine
1850 * @iocb: kernel I/O control block
1851 * @iter: destination for the data read
1852 *
1853 * This is the "read_iter()" routine for all filesystems
1854 * that can use the page cache directly.
1855 */
1856 ssize_t
1857 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1858 {
1859 struct file *file = iocb->ki_filp;
1860 ssize_t retval = 0;
1861 loff_t *ppos = &iocb->ki_pos;
1862 loff_t pos = *ppos;
1863
1864 if (iocb->ki_flags & IOCB_DIRECT) {
1865 struct address_space *mapping = file->f_mapping;
1866 struct inode *inode = mapping->host;
1867 size_t count = iov_iter_count(iter);
1868 loff_t size;
1869
1870 if (!count)
1871 goto out; /* skip atime */
1872 size = i_size_read(inode);
1873 retval = filemap_write_and_wait_range(mapping, pos,
1874 pos + count - 1);
1875 if (!retval) {
1876 struct iov_iter data = *iter;
1877 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1878 }
1879
1880 if (retval > 0) {
1881 *ppos = pos + retval;
1882 iov_iter_advance(iter, retval);
1883 }
1884
1885 /*
1886 * Btrfs can have a short DIO read if we encounter
1887 * compressed extents, so if there was an error, or if
1888 * we've already read everything we wanted to, or if
1889 * there was a short read because we hit EOF, go ahead
1890 * and return. Otherwise fallthrough to buffered io for
1891 * the rest of the read. Buffered reads will not work for
1892 * DAX files, so don't bother trying.
1893 */
1894 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1895 IS_DAX(inode)) {
1896 file_accessed(file);
1897 goto out;
1898 }
1899 }
1900
1901 retval = do_generic_file_read(file, ppos, iter, retval);
1902 out:
1903 return retval;
1904 }
1905 EXPORT_SYMBOL(generic_file_read_iter);
1906
1907 #ifdef CONFIG_MMU
1908 /**
1909 * page_cache_read - adds requested page to the page cache if not already there
1910 * @file: file to read
1911 * @offset: page index
1912 * @gfp_mask: memory allocation flags
1913 *
1914 * This adds the requested page to the page cache if it isn't already there,
1915 * and schedules an I/O to read in its contents from disk.
1916 */
1917 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1918 {
1919 struct address_space *mapping = file->f_mapping;
1920 struct page *page;
1921 int ret;
1922
1923 do {
1924 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1925 if (!page)
1926 return -ENOMEM;
1927
1928 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1929 if (ret == 0)
1930 ret = mapping->a_ops->readpage(file, page);
1931 else if (ret == -EEXIST)
1932 ret = 0; /* losing race to add is OK */
1933
1934 page_cache_release(page);
1935
1936 } while (ret == AOP_TRUNCATED_PAGE);
1937
1938 return ret;
1939 }
1940
1941 #define MMAP_LOTSAMISS (100)
1942
1943 /*
1944 * Synchronous readahead happens when we don't even find
1945 * a page in the page cache at all.
1946 */
1947 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1948 struct file_ra_state *ra,
1949 struct file *file,
1950 pgoff_t offset)
1951 {
1952 struct address_space *mapping = file->f_mapping;
1953
1954 /* If we don't want any read-ahead, don't bother */
1955 if (vma->vm_flags & VM_RAND_READ)
1956 return;
1957 if (!ra->ra_pages)
1958 return;
1959
1960 if (vma->vm_flags & VM_SEQ_READ) {
1961 page_cache_sync_readahead(mapping, ra, file, offset,
1962 ra->ra_pages);
1963 return;
1964 }
1965
1966 /* Avoid banging the cache line if not needed */
1967 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1968 ra->mmap_miss++;
1969
1970 /*
1971 * Do we miss much more than hit in this file? If so,
1972 * stop bothering with read-ahead. It will only hurt.
1973 */
1974 if (ra->mmap_miss > MMAP_LOTSAMISS)
1975 return;
1976
1977 /*
1978 * mmap read-around
1979 */
1980 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1981 ra->size = ra->ra_pages;
1982 ra->async_size = ra->ra_pages / 4;
1983 ra_submit(ra, mapping, file);
1984 }
1985
1986 /*
1987 * Asynchronous readahead happens when we find the page and PG_readahead,
1988 * so we want to possibly extend the readahead further..
1989 */
1990 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1991 struct file_ra_state *ra,
1992 struct file *file,
1993 struct page *page,
1994 pgoff_t offset)
1995 {
1996 struct address_space *mapping = file->f_mapping;
1997
1998 /* If we don't want any read-ahead, don't bother */
1999 if (vma->vm_flags & VM_RAND_READ)
2000 return;
2001 if (ra->mmap_miss > 0)
2002 ra->mmap_miss--;
2003 if (PageReadahead(page))
2004 page_cache_async_readahead(mapping, ra, file,
2005 page, offset, ra->ra_pages);
2006 }
2007
2008 /**
2009 * filemap_fault - read in file data for page fault handling
2010 * @vma: vma in which the fault was taken
2011 * @vmf: struct vm_fault containing details of the fault
2012 *
2013 * filemap_fault() is invoked via the vma operations vector for a
2014 * mapped memory region to read in file data during a page fault.
2015 *
2016 * The goto's are kind of ugly, but this streamlines the normal case of having
2017 * it in the page cache, and handles the special cases reasonably without
2018 * having a lot of duplicated code.
2019 *
2020 * vma->vm_mm->mmap_sem must be held on entry.
2021 *
2022 * If our return value has VM_FAULT_RETRY set, it's because
2023 * lock_page_or_retry() returned 0.
2024 * The mmap_sem has usually been released in this case.
2025 * See __lock_page_or_retry() for the exception.
2026 *
2027 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2028 * has not been released.
2029 *
2030 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2031 */
2032 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2033 {
2034 int error;
2035 struct file *file = vma->vm_file;
2036 struct address_space *mapping = file->f_mapping;
2037 struct file_ra_state *ra = &file->f_ra;
2038 struct inode *inode = mapping->host;
2039 pgoff_t offset = vmf->pgoff;
2040 struct page *page;
2041 loff_t size;
2042 int ret = 0;
2043
2044 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2045 if (offset >= size >> PAGE_CACHE_SHIFT)
2046 return VM_FAULT_SIGBUS;
2047
2048 /*
2049 * Do we have something in the page cache already?
2050 */
2051 page = find_get_page(mapping, offset);
2052 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2053 /*
2054 * We found the page, so try async readahead before
2055 * waiting for the lock.
2056 */
2057 do_async_mmap_readahead(vma, ra, file, page, offset);
2058 } else if (!page) {
2059 /* No page in the page cache at all */
2060 do_sync_mmap_readahead(vma, ra, file, offset);
2061 count_vm_event(PGMAJFAULT);
2062 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2063 ret = VM_FAULT_MAJOR;
2064 retry_find:
2065 page = find_get_page(mapping, offset);
2066 if (!page)
2067 goto no_cached_page;
2068 }
2069
2070 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2071 page_cache_release(page);
2072 return ret | VM_FAULT_RETRY;
2073 }
2074
2075 /* Did it get truncated? */
2076 if (unlikely(page->mapping != mapping)) {
2077 unlock_page(page);
2078 put_page(page);
2079 goto retry_find;
2080 }
2081 VM_BUG_ON_PAGE(page->index != offset, page);
2082
2083 /*
2084 * We have a locked page in the page cache, now we need to check
2085 * that it's up-to-date. If not, it is going to be due to an error.
2086 */
2087 if (unlikely(!PageUptodate(page)))
2088 goto page_not_uptodate;
2089
2090 /*
2091 * Found the page and have a reference on it.
2092 * We must recheck i_size under page lock.
2093 */
2094 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2095 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2096 unlock_page(page);
2097 page_cache_release(page);
2098 return VM_FAULT_SIGBUS;
2099 }
2100
2101 vmf->page = page;
2102 return ret | VM_FAULT_LOCKED;
2103
2104 no_cached_page:
2105 /*
2106 * We're only likely to ever get here if MADV_RANDOM is in
2107 * effect.
2108 */
2109 error = page_cache_read(file, offset, vmf->gfp_mask);
2110
2111 /*
2112 * The page we want has now been added to the page cache.
2113 * In the unlikely event that someone removed it in the
2114 * meantime, we'll just come back here and read it again.
2115 */
2116 if (error >= 0)
2117 goto retry_find;
2118
2119 /*
2120 * An error return from page_cache_read can result if the
2121 * system is low on memory, or a problem occurs while trying
2122 * to schedule I/O.
2123 */
2124 if (error == -ENOMEM)
2125 return VM_FAULT_OOM;
2126 return VM_FAULT_SIGBUS;
2127
2128 page_not_uptodate:
2129 /*
2130 * Umm, take care of errors if the page isn't up-to-date.
2131 * Try to re-read it _once_. We do this synchronously,
2132 * because there really aren't any performance issues here
2133 * and we need to check for errors.
2134 */
2135 ClearPageError(page);
2136 error = mapping->a_ops->readpage(file, page);
2137 if (!error) {
2138 wait_on_page_locked(page);
2139 if (!PageUptodate(page))
2140 error = -EIO;
2141 }
2142 page_cache_release(page);
2143
2144 if (!error || error == AOP_TRUNCATED_PAGE)
2145 goto retry_find;
2146
2147 /* Things didn't work out. Return zero to tell the mm layer so. */
2148 shrink_readahead_size_eio(file, ra);
2149 return VM_FAULT_SIGBUS;
2150 }
2151 EXPORT_SYMBOL(filemap_fault);
2152
2153 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2154 {
2155 struct radix_tree_iter iter;
2156 void **slot;
2157 struct file *file = vma->vm_file;
2158 struct address_space *mapping = file->f_mapping;
2159 loff_t size;
2160 struct page *page;
2161 unsigned long address = (unsigned long) vmf->virtual_address;
2162 unsigned long addr;
2163 pte_t *pte;
2164
2165 rcu_read_lock();
2166 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2167 if (iter.index > vmf->max_pgoff)
2168 break;
2169 repeat:
2170 page = radix_tree_deref_slot(slot);
2171 if (unlikely(!page))
2172 goto next;
2173 if (radix_tree_exception(page)) {
2174 if (radix_tree_deref_retry(page))
2175 break;
2176 else
2177 goto next;
2178 }
2179
2180 if (!page_cache_get_speculative(page))
2181 goto repeat;
2182
2183 /* Has the page moved? */
2184 if (unlikely(page != *slot)) {
2185 page_cache_release(page);
2186 goto repeat;
2187 }
2188
2189 if (!PageUptodate(page) ||
2190 PageReadahead(page) ||
2191 PageHWPoison(page))
2192 goto skip;
2193 if (!trylock_page(page))
2194 goto skip;
2195
2196 if (page->mapping != mapping || !PageUptodate(page))
2197 goto unlock;
2198
2199 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2200 if (page->index >= size >> PAGE_CACHE_SHIFT)
2201 goto unlock;
2202
2203 pte = vmf->pte + page->index - vmf->pgoff;
2204 if (!pte_none(*pte))
2205 goto unlock;
2206
2207 if (file->f_ra.mmap_miss > 0)
2208 file->f_ra.mmap_miss--;
2209 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2210 do_set_pte(vma, addr, page, pte, false, false);
2211 unlock_page(page);
2212 goto next;
2213 unlock:
2214 unlock_page(page);
2215 skip:
2216 page_cache_release(page);
2217 next:
2218 if (iter.index == vmf->max_pgoff)
2219 break;
2220 }
2221 rcu_read_unlock();
2222 }
2223 EXPORT_SYMBOL(filemap_map_pages);
2224
2225 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2226 {
2227 struct page *page = vmf->page;
2228 struct inode *inode = file_inode(vma->vm_file);
2229 int ret = VM_FAULT_LOCKED;
2230
2231 sb_start_pagefault(inode->i_sb);
2232 file_update_time(vma->vm_file);
2233 lock_page(page);
2234 if (page->mapping != inode->i_mapping) {
2235 unlock_page(page);
2236 ret = VM_FAULT_NOPAGE;
2237 goto out;
2238 }
2239 /*
2240 * We mark the page dirty already here so that when freeze is in
2241 * progress, we are guaranteed that writeback during freezing will
2242 * see the dirty page and writeprotect it again.
2243 */
2244 set_page_dirty(page);
2245 wait_for_stable_page(page);
2246 out:
2247 sb_end_pagefault(inode->i_sb);
2248 return ret;
2249 }
2250 EXPORT_SYMBOL(filemap_page_mkwrite);
2251
2252 const struct vm_operations_struct generic_file_vm_ops = {
2253 .fault = filemap_fault,
2254 .map_pages = filemap_map_pages,
2255 .page_mkwrite = filemap_page_mkwrite,
2256 };
2257
2258 /* This is used for a general mmap of a disk file */
2259
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262 struct address_space *mapping = file->f_mapping;
2263
2264 if (!mapping->a_ops->readpage)
2265 return -ENOEXEC;
2266 file_accessed(file);
2267 vma->vm_ops = &generic_file_vm_ops;
2268 return 0;
2269 }
2270
2271 /*
2272 * This is for filesystems which do not implement ->writepage.
2273 */
2274 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2275 {
2276 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2277 return -EINVAL;
2278 return generic_file_mmap(file, vma);
2279 }
2280 #else
2281 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2282 {
2283 return -ENOSYS;
2284 }
2285 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2286 {
2287 return -ENOSYS;
2288 }
2289 #endif /* CONFIG_MMU */
2290
2291 EXPORT_SYMBOL(generic_file_mmap);
2292 EXPORT_SYMBOL(generic_file_readonly_mmap);
2293
2294 static struct page *wait_on_page_read(struct page *page)
2295 {
2296 if (!IS_ERR(page)) {
2297 wait_on_page_locked(page);
2298 if (!PageUptodate(page)) {
2299 page_cache_release(page);
2300 page = ERR_PTR(-EIO);
2301 }
2302 }
2303 return page;
2304 }
2305
2306 static struct page *__read_cache_page(struct address_space *mapping,
2307 pgoff_t index,
2308 int (*filler)(void *, struct page *),
2309 void *data,
2310 gfp_t gfp)
2311 {
2312 struct page *page;
2313 int err;
2314 repeat:
2315 page = find_get_page(mapping, index);
2316 if (!page) {
2317 page = __page_cache_alloc(gfp | __GFP_COLD);
2318 if (!page)
2319 return ERR_PTR(-ENOMEM);
2320 err = add_to_page_cache_lru(page, mapping, index, gfp);
2321 if (unlikely(err)) {
2322 page_cache_release(page);
2323 if (err == -EEXIST)
2324 goto repeat;
2325 /* Presumably ENOMEM for radix tree node */
2326 return ERR_PTR(err);
2327 }
2328 err = filler(data, page);
2329 if (err < 0) {
2330 page_cache_release(page);
2331 page = ERR_PTR(err);
2332 } else {
2333 page = wait_on_page_read(page);
2334 }
2335 }
2336 return page;
2337 }
2338
2339 static struct page *do_read_cache_page(struct address_space *mapping,
2340 pgoff_t index,
2341 int (*filler)(void *, struct page *),
2342 void *data,
2343 gfp_t gfp)
2344
2345 {
2346 struct page *page;
2347 int err;
2348
2349 retry:
2350 page = __read_cache_page(mapping, index, filler, data, gfp);
2351 if (IS_ERR(page))
2352 return page;
2353 if (PageUptodate(page))
2354 goto out;
2355
2356 lock_page(page);
2357 if (!page->mapping) {
2358 unlock_page(page);
2359 page_cache_release(page);
2360 goto retry;
2361 }
2362 if (PageUptodate(page)) {
2363 unlock_page(page);
2364 goto out;
2365 }
2366 err = filler(data, page);
2367 if (err < 0) {
2368 page_cache_release(page);
2369 return ERR_PTR(err);
2370 } else {
2371 page = wait_on_page_read(page);
2372 if (IS_ERR(page))
2373 return page;
2374 }
2375 out:
2376 mark_page_accessed(page);
2377 return page;
2378 }
2379
2380 /**
2381 * read_cache_page - read into page cache, fill it if needed
2382 * @mapping: the page's address_space
2383 * @index: the page index
2384 * @filler: function to perform the read
2385 * @data: first arg to filler(data, page) function, often left as NULL
2386 *
2387 * Read into the page cache. If a page already exists, and PageUptodate() is
2388 * not set, try to fill the page and wait for it to become unlocked.
2389 *
2390 * If the page does not get brought uptodate, return -EIO.
2391 */
2392 struct page *read_cache_page(struct address_space *mapping,
2393 pgoff_t index,
2394 int (*filler)(void *, struct page *),
2395 void *data)
2396 {
2397 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2398 }
2399 EXPORT_SYMBOL(read_cache_page);
2400
2401 /**
2402 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403 * @mapping: the page's address_space
2404 * @index: the page index
2405 * @gfp: the page allocator flags to use if allocating
2406 *
2407 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2408 * any new page allocations done using the specified allocation flags.
2409 *
2410 * If the page does not get brought uptodate, return -EIO.
2411 */
2412 struct page *read_cache_page_gfp(struct address_space *mapping,
2413 pgoff_t index,
2414 gfp_t gfp)
2415 {
2416 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2417
2418 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2419 }
2420 EXPORT_SYMBOL(read_cache_page_gfp);
2421
2422 /*
2423 * Performs necessary checks before doing a write
2424 *
2425 * Can adjust writing position or amount of bytes to write.
2426 * Returns appropriate error code that caller should return or
2427 * zero in case that write should be allowed.
2428 */
2429 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2430 {
2431 struct file *file = iocb->ki_filp;
2432 struct inode *inode = file->f_mapping->host;
2433 unsigned long limit = rlimit(RLIMIT_FSIZE);
2434 loff_t pos;
2435
2436 if (!iov_iter_count(from))
2437 return 0;
2438
2439 /* FIXME: this is for backwards compatibility with 2.4 */
2440 if (iocb->ki_flags & IOCB_APPEND)
2441 iocb->ki_pos = i_size_read(inode);
2442
2443 pos = iocb->ki_pos;
2444
2445 if (limit != RLIM_INFINITY) {
2446 if (iocb->ki_pos >= limit) {
2447 send_sig(SIGXFSZ, current, 0);
2448 return -EFBIG;
2449 }
2450 iov_iter_truncate(from, limit - (unsigned long)pos);
2451 }
2452
2453 /*
2454 * LFS rule
2455 */
2456 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2457 !(file->f_flags & O_LARGEFILE))) {
2458 if (pos >= MAX_NON_LFS)
2459 return -EFBIG;
2460 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2461 }
2462
2463 /*
2464 * Are we about to exceed the fs block limit ?
2465 *
2466 * If we have written data it becomes a short write. If we have
2467 * exceeded without writing data we send a signal and return EFBIG.
2468 * Linus frestrict idea will clean these up nicely..
2469 */
2470 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2471 return -EFBIG;
2472
2473 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474 return iov_iter_count(from);
2475 }
2476 EXPORT_SYMBOL(generic_write_checks);
2477
2478 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned flags,
2480 struct page **pagep, void **fsdata)
2481 {
2482 const struct address_space_operations *aops = mapping->a_ops;
2483
2484 return aops->write_begin(file, mapping, pos, len, flags,
2485 pagep, fsdata);
2486 }
2487 EXPORT_SYMBOL(pagecache_write_begin);
2488
2489 int pagecache_write_end(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned copied,
2491 struct page *page, void *fsdata)
2492 {
2493 const struct address_space_operations *aops = mapping->a_ops;
2494
2495 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2496 }
2497 EXPORT_SYMBOL(pagecache_write_end);
2498
2499 ssize_t
2500 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2501 {
2502 struct file *file = iocb->ki_filp;
2503 struct address_space *mapping = file->f_mapping;
2504 struct inode *inode = mapping->host;
2505 ssize_t written;
2506 size_t write_len;
2507 pgoff_t end;
2508 struct iov_iter data;
2509
2510 write_len = iov_iter_count(from);
2511 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2512
2513 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2514 if (written)
2515 goto out;
2516
2517 /*
2518 * After a write we want buffered reads to be sure to go to disk to get
2519 * the new data. We invalidate clean cached page from the region we're
2520 * about to write. We do this *before* the write so that we can return
2521 * without clobbering -EIOCBQUEUED from ->direct_IO().
2522 */
2523 if (mapping->nrpages) {
2524 written = invalidate_inode_pages2_range(mapping,
2525 pos >> PAGE_CACHE_SHIFT, end);
2526 /*
2527 * If a page can not be invalidated, return 0 to fall back
2528 * to buffered write.
2529 */
2530 if (written) {
2531 if (written == -EBUSY)
2532 return 0;
2533 goto out;
2534 }
2535 }
2536
2537 data = *from;
2538 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2539
2540 /*
2541 * Finally, try again to invalidate clean pages which might have been
2542 * cached by non-direct readahead, or faulted in by get_user_pages()
2543 * if the source of the write was an mmap'ed region of the file
2544 * we're writing. Either one is a pretty crazy thing to do,
2545 * so we don't support it 100%. If this invalidation
2546 * fails, tough, the write still worked...
2547 */
2548 if (mapping->nrpages) {
2549 invalidate_inode_pages2_range(mapping,
2550 pos >> PAGE_CACHE_SHIFT, end);
2551 }
2552
2553 if (written > 0) {
2554 pos += written;
2555 iov_iter_advance(from, written);
2556 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2557 i_size_write(inode, pos);
2558 mark_inode_dirty(inode);
2559 }
2560 iocb->ki_pos = pos;
2561 }
2562 out:
2563 return written;
2564 }
2565 EXPORT_SYMBOL(generic_file_direct_write);
2566
2567 /*
2568 * Find or create a page at the given pagecache position. Return the locked
2569 * page. This function is specifically for buffered writes.
2570 */
2571 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2572 pgoff_t index, unsigned flags)
2573 {
2574 struct page *page;
2575 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2576
2577 if (flags & AOP_FLAG_NOFS)
2578 fgp_flags |= FGP_NOFS;
2579
2580 page = pagecache_get_page(mapping, index, fgp_flags,
2581 mapping_gfp_mask(mapping));
2582 if (page)
2583 wait_for_stable_page(page);
2584
2585 return page;
2586 }
2587 EXPORT_SYMBOL(grab_cache_page_write_begin);
2588
2589 ssize_t generic_perform_write(struct file *file,
2590 struct iov_iter *i, loff_t pos)
2591 {
2592 struct address_space *mapping = file->f_mapping;
2593 const struct address_space_operations *a_ops = mapping->a_ops;
2594 long status = 0;
2595 ssize_t written = 0;
2596 unsigned int flags = 0;
2597
2598 /*
2599 * Copies from kernel address space cannot fail (NFSD is a big user).
2600 */
2601 if (!iter_is_iovec(i))
2602 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2603
2604 do {
2605 struct page *page;
2606 unsigned long offset; /* Offset into pagecache page */
2607 unsigned long bytes; /* Bytes to write to page */
2608 size_t copied; /* Bytes copied from user */
2609 void *fsdata;
2610
2611 offset = (pos & (PAGE_CACHE_SIZE - 1));
2612 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2613 iov_iter_count(i));
2614
2615 again:
2616 /*
2617 * Bring in the user page that we will copy from _first_.
2618 * Otherwise there's a nasty deadlock on copying from the
2619 * same page as we're writing to, without it being marked
2620 * up-to-date.
2621 *
2622 * Not only is this an optimisation, but it is also required
2623 * to check that the address is actually valid, when atomic
2624 * usercopies are used, below.
2625 */
2626 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2627 status = -EFAULT;
2628 break;
2629 }
2630
2631 if (fatal_signal_pending(current)) {
2632 status = -EINTR;
2633 break;
2634 }
2635
2636 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2637 &page, &fsdata);
2638 if (unlikely(status < 0))
2639 break;
2640
2641 if (mapping_writably_mapped(mapping))
2642 flush_dcache_page(page);
2643
2644 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2645 flush_dcache_page(page);
2646
2647 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2648 page, fsdata);
2649 if (unlikely(status < 0))
2650 break;
2651 copied = status;
2652
2653 cond_resched();
2654
2655 iov_iter_advance(i, copied);
2656 if (unlikely(copied == 0)) {
2657 /*
2658 * If we were unable to copy any data at all, we must
2659 * fall back to a single segment length write.
2660 *
2661 * If we didn't fallback here, we could livelock
2662 * because not all segments in the iov can be copied at
2663 * once without a pagefault.
2664 */
2665 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2666 iov_iter_single_seg_count(i));
2667 goto again;
2668 }
2669 pos += copied;
2670 written += copied;
2671
2672 balance_dirty_pages_ratelimited(mapping);
2673 } while (iov_iter_count(i));
2674
2675 return written ? written : status;
2676 }
2677 EXPORT_SYMBOL(generic_perform_write);
2678
2679 /**
2680 * __generic_file_write_iter - write data to a file
2681 * @iocb: IO state structure (file, offset, etc.)
2682 * @from: iov_iter with data to write
2683 *
2684 * This function does all the work needed for actually writing data to a
2685 * file. It does all basic checks, removes SUID from the file, updates
2686 * modification times and calls proper subroutines depending on whether we
2687 * do direct IO or a standard buffered write.
2688 *
2689 * It expects i_mutex to be grabbed unless we work on a block device or similar
2690 * object which does not need locking at all.
2691 *
2692 * This function does *not* take care of syncing data in case of O_SYNC write.
2693 * A caller has to handle it. This is mainly due to the fact that we want to
2694 * avoid syncing under i_mutex.
2695 */
2696 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2697 {
2698 struct file *file = iocb->ki_filp;
2699 struct address_space * mapping = file->f_mapping;
2700 struct inode *inode = mapping->host;
2701 ssize_t written = 0;
2702 ssize_t err;
2703 ssize_t status;
2704
2705 /* We can write back this queue in page reclaim */
2706 current->backing_dev_info = inode_to_bdi(inode);
2707 err = file_remove_privs(file);
2708 if (err)
2709 goto out;
2710
2711 err = file_update_time(file);
2712 if (err)
2713 goto out;
2714
2715 if (iocb->ki_flags & IOCB_DIRECT) {
2716 loff_t pos, endbyte;
2717
2718 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2719 /*
2720 * If the write stopped short of completing, fall back to
2721 * buffered writes. Some filesystems do this for writes to
2722 * holes, for example. For DAX files, a buffered write will
2723 * not succeed (even if it did, DAX does not handle dirty
2724 * page-cache pages correctly).
2725 */
2726 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2727 goto out;
2728
2729 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2730 /*
2731 * If generic_perform_write() returned a synchronous error
2732 * then we want to return the number of bytes which were
2733 * direct-written, or the error code if that was zero. Note
2734 * that this differs from normal direct-io semantics, which
2735 * will return -EFOO even if some bytes were written.
2736 */
2737 if (unlikely(status < 0)) {
2738 err = status;
2739 goto out;
2740 }
2741 /*
2742 * We need to ensure that the page cache pages are written to
2743 * disk and invalidated to preserve the expected O_DIRECT
2744 * semantics.
2745 */
2746 endbyte = pos + status - 1;
2747 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2748 if (err == 0) {
2749 iocb->ki_pos = endbyte + 1;
2750 written += status;
2751 invalidate_mapping_pages(mapping,
2752 pos >> PAGE_CACHE_SHIFT,
2753 endbyte >> PAGE_CACHE_SHIFT);
2754 } else {
2755 /*
2756 * We don't know how much we wrote, so just return
2757 * the number of bytes which were direct-written
2758 */
2759 }
2760 } else {
2761 written = generic_perform_write(file, from, iocb->ki_pos);
2762 if (likely(written > 0))
2763 iocb->ki_pos += written;
2764 }
2765 out:
2766 current->backing_dev_info = NULL;
2767 return written ? written : err;
2768 }
2769 EXPORT_SYMBOL(__generic_file_write_iter);
2770
2771 /**
2772 * generic_file_write_iter - write data to a file
2773 * @iocb: IO state structure
2774 * @from: iov_iter with data to write
2775 *
2776 * This is a wrapper around __generic_file_write_iter() to be used by most
2777 * filesystems. It takes care of syncing the file in case of O_SYNC file
2778 * and acquires i_mutex as needed.
2779 */
2780 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2781 {
2782 struct file *file = iocb->ki_filp;
2783 struct inode *inode = file->f_mapping->host;
2784 ssize_t ret;
2785
2786 inode_lock(inode);
2787 ret = generic_write_checks(iocb, from);
2788 if (ret > 0)
2789 ret = __generic_file_write_iter(iocb, from);
2790 inode_unlock(inode);
2791
2792 if (ret > 0) {
2793 ssize_t err;
2794
2795 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2796 if (err < 0)
2797 ret = err;
2798 }
2799 return ret;
2800 }
2801 EXPORT_SYMBOL(generic_file_write_iter);
2802
2803 /**
2804 * try_to_release_page() - release old fs-specific metadata on a page
2805 *
2806 * @page: the page which the kernel is trying to free
2807 * @gfp_mask: memory allocation flags (and I/O mode)
2808 *
2809 * The address_space is to try to release any data against the page
2810 * (presumably at page->private). If the release was successful, return `1'.
2811 * Otherwise return zero.
2812 *
2813 * This may also be called if PG_fscache is set on a page, indicating that the
2814 * page is known to the local caching routines.
2815 *
2816 * The @gfp_mask argument specifies whether I/O may be performed to release
2817 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2818 *
2819 */
2820 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2821 {
2822 struct address_space * const mapping = page->mapping;
2823
2824 BUG_ON(!PageLocked(page));
2825 if (PageWriteback(page))
2826 return 0;
2827
2828 if (mapping && mapping->a_ops->releasepage)
2829 return mapping->a_ops->releasepage(page, gfp_mask);
2830 return try_to_free_buffers(page);
2831 }
2832
2833 EXPORT_SYMBOL(try_to_release_page);
This page took 0.091036 seconds and 5 git commands to generate.