tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return single_hugepage_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298 {
299 return single_hugepage_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr.attr,
315 #endif
316 NULL,
317 };
318
319 static struct attribute_group hugepage_attr_group = {
320 .attrs = hugepage_attr,
321 };
322
323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 {
325 int err;
326
327 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 if (unlikely(!*hugepage_kobj)) {
329 pr_err("failed to create transparent hugepage kobject\n");
330 return -ENOMEM;
331 }
332
333 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 if (err) {
335 pr_err("failed to register transparent hugepage group\n");
336 goto delete_obj;
337 }
338
339 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 if (err) {
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group;
343 }
344
345 return 0;
346
347 remove_hp_group:
348 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 kobject_put(*hugepage_kobj);
351 return err;
352 }
353
354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355 {
356 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 kobject_put(hugepage_kobj);
359 }
360 #else
361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362 {
363 return 0;
364 }
365
366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 }
369 #endif /* CONFIG_SYSFS */
370
371 static int __init hugepage_init(void)
372 {
373 int err;
374 struct kobject *hugepage_kobj;
375
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags = 0;
378 return -EINVAL;
379 }
380
381 /*
382 * hugepages can't be allocated by the buddy allocator
383 */
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 /*
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
388 */
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390
391 err = hugepage_init_sysfs(&hugepage_kobj);
392 if (err)
393 goto err_sysfs;
394
395 err = khugepaged_init();
396 if (err)
397 goto err_slab;
398
399 err = register_shrinker(&huge_zero_page_shrinker);
400 if (err)
401 goto err_hzp_shrinker;
402 err = register_shrinker(&deferred_split_shrinker);
403 if (err)
404 goto err_split_shrinker;
405
406 /*
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
410 */
411 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 transparent_hugepage_flags = 0;
413 return 0;
414 }
415
416 err = start_stop_khugepaged();
417 if (err)
418 goto err_khugepaged;
419
420 return 0;
421 err_khugepaged:
422 unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 khugepaged_destroy();
427 err_slab:
428 hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 return err;
431 }
432 subsys_initcall(hugepage_init);
433
434 static int __init setup_transparent_hugepage(char *str)
435 {
436 int ret = 0;
437 if (!str)
438 goto out;
439 if (!strcmp(str, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 &transparent_hugepage_flags);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 &transparent_hugepage_flags);
444 ret = 1;
445 } else if (!strcmp(str, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 &transparent_hugepage_flags);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 &transparent_hugepage_flags);
450 ret = 1;
451 } else if (!strcmp(str, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 }
458 out:
459 if (!ret)
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 return ret;
462 }
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
464
465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 {
467 if (likely(vma->vm_flags & VM_WRITE))
468 pmd = pmd_mkwrite(pmd);
469 return pmd;
470 }
471
472 static inline struct list_head *page_deferred_list(struct page *page)
473 {
474 /*
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
477 */
478 return (struct list_head *)&page[2].mapping;
479 }
480
481 void prep_transhuge_page(struct page *page)
482 {
483 /*
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
486 */
487
488 INIT_LIST_HEAD(page_deferred_list(page));
489 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490 }
491
492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 loff_t off, unsigned long flags, unsigned long size)
494 {
495 unsigned long addr;
496 loff_t off_end = off + len;
497 loff_t off_align = round_up(off, size);
498 unsigned long len_pad;
499
500 if (off_end <= off_align || (off_end - off_align) < size)
501 return 0;
502
503 len_pad = len + size;
504 if (len_pad < len || (off + len_pad) < off)
505 return 0;
506
507 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 off >> PAGE_SHIFT, flags);
509 if (IS_ERR_VALUE(addr))
510 return 0;
511
512 addr += (off - addr) & (size - 1);
513 return addr;
514 }
515
516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 unsigned long len, unsigned long pgoff, unsigned long flags)
518 {
519 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520
521 if (addr)
522 goto out;
523 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 goto out;
525
526 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 if (addr)
528 return addr;
529
530 out:
531 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532 }
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534
535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 gfp_t gfp)
537 {
538 struct vm_area_struct *vma = fe->vma;
539 struct mem_cgroup *memcg;
540 pgtable_t pgtable;
541 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542
543 VM_BUG_ON_PAGE(!PageCompound(page), page);
544
545 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 put_page(page);
547 count_vm_event(THP_FAULT_FALLBACK);
548 return VM_FAULT_FALLBACK;
549 }
550
551 pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 if (unlikely(!pgtable)) {
553 mem_cgroup_cancel_charge(page, memcg, true);
554 put_page(page);
555 return VM_FAULT_OOM;
556 }
557
558 clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 /*
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
562 * write.
563 */
564 __SetPageUptodate(page);
565
566 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 if (unlikely(!pmd_none(*fe->pmd))) {
568 spin_unlock(fe->ptl);
569 mem_cgroup_cancel_charge(page, memcg, true);
570 put_page(page);
571 pte_free(vma->vm_mm, pgtable);
572 } else {
573 pmd_t entry;
574
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma)) {
577 int ret;
578
579 spin_unlock(fe->ptl);
580 mem_cgroup_cancel_charge(page, memcg, true);
581 put_page(page);
582 pte_free(vma->vm_mm, pgtable);
583 ret = handle_userfault(fe, VM_UFFD_MISSING);
584 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 return ret;
586 }
587
588 entry = mk_huge_pmd(page, vma->vm_page_prot);
589 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 page_add_new_anon_rmap(page, vma, haddr, true);
591 mem_cgroup_commit_charge(page, memcg, false, true);
592 lru_cache_add_active_or_unevictable(page, vma);
593 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 atomic_long_inc(&vma->vm_mm->nr_ptes);
597 spin_unlock(fe->ptl);
598 count_vm_event(THP_FAULT_ALLOC);
599 }
600
601 return 0;
602 }
603
604 /*
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
607 * If set to madvise and the VMA is flagged then directly reclaim/compact
608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609 */
610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611 {
612 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 &transparent_hugepage_flags) && vma_madvised)
616 return GFP_TRANSHUGE;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 &transparent_hugepage_flags))
619 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 &transparent_hugepage_flags))
622 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623
624 return GFP_TRANSHUGE_LIGHT;
625 }
626
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 struct page *zero_page)
631 {
632 pmd_t entry;
633 if (!pmd_none(*pmd))
634 return false;
635 entry = mk_pmd(zero_page, vma->vm_page_prot);
636 entry = pmd_mkhuge(entry);
637 if (pgtable)
638 pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 set_pmd_at(mm, haddr, pmd, entry);
640 atomic_long_inc(&mm->nr_ptes);
641 return true;
642 }
643
644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
645 {
646 struct vm_area_struct *vma = fe->vma;
647 gfp_t gfp;
648 struct page *page;
649 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650
651 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 return VM_FAULT_FALLBACK;
653 if (unlikely(anon_vma_prepare(vma)))
654 return VM_FAULT_OOM;
655 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 return VM_FAULT_OOM;
657 if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 !mm_forbids_zeropage(vma->vm_mm) &&
659 transparent_hugepage_use_zero_page()) {
660 pgtable_t pgtable;
661 struct page *zero_page;
662 bool set;
663 int ret;
664 pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 if (unlikely(!pgtable))
666 return VM_FAULT_OOM;
667 zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 if (unlikely(!zero_page)) {
669 pte_free(vma->vm_mm, pgtable);
670 count_vm_event(THP_FAULT_FALLBACK);
671 return VM_FAULT_FALLBACK;
672 }
673 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 ret = 0;
675 set = false;
676 if (pmd_none(*fe->pmd)) {
677 if (userfaultfd_missing(vma)) {
678 spin_unlock(fe->ptl);
679 ret = handle_userfault(fe, VM_UFFD_MISSING);
680 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 } else {
682 set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 haddr, fe->pmd, zero_page);
684 spin_unlock(fe->ptl);
685 set = true;
686 }
687 } else
688 spin_unlock(fe->ptl);
689 if (!set)
690 pte_free(vma->vm_mm, pgtable);
691 return ret;
692 }
693 gfp = alloc_hugepage_direct_gfpmask(vma);
694 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 if (unlikely(!page)) {
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
698 }
699 prep_transhuge_page(page);
700 return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 }
702
703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
705 {
706 struct mm_struct *mm = vma->vm_mm;
707 pmd_t entry;
708 spinlock_t *ptl;
709
710 ptl = pmd_lock(mm, pmd);
711 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 if (pfn_t_devmap(pfn))
713 entry = pmd_mkdevmap(entry);
714 if (write) {
715 entry = pmd_mkyoung(pmd_mkdirty(entry));
716 entry = maybe_pmd_mkwrite(entry, vma);
717 }
718 set_pmd_at(mm, addr, pmd, entry);
719 update_mmu_cache_pmd(vma, addr, pmd);
720 spin_unlock(ptl);
721 }
722
723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 pmd_t *pmd, pfn_t pfn, bool write)
725 {
726 pgprot_t pgprot = vma->vm_page_prot;
727 /*
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
731 */
732 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 (VM_PFNMAP|VM_MIXEDMAP));
735 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 BUG_ON(!pfn_t_devmap(pfn));
737
738 if (addr < vma->vm_start || addr >= vma->vm_end)
739 return VM_FAULT_SIGBUS;
740 if (track_pfn_insert(vma, &pgprot, pfn))
741 return VM_FAULT_SIGBUS;
742 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
743 return VM_FAULT_NOPAGE;
744 }
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
746
747 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd)
749 {
750 pmd_t _pmd;
751
752 /*
753 * We should set the dirty bit only for FOLL_WRITE but for now
754 * the dirty bit in the pmd is meaningless. And if the dirty
755 * bit will become meaningful and we'll only set it with
756 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
757 * set the young bit, instead of the current set_pmd_at.
758 */
759 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
760 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
761 pmd, _pmd, 1))
762 update_mmu_cache_pmd(vma, addr, pmd);
763 }
764
765 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
766 pmd_t *pmd, int flags)
767 {
768 unsigned long pfn = pmd_pfn(*pmd);
769 struct mm_struct *mm = vma->vm_mm;
770 struct dev_pagemap *pgmap;
771 struct page *page;
772
773 assert_spin_locked(pmd_lockptr(mm, pmd));
774
775 if (flags & FOLL_WRITE && !pmd_write(*pmd))
776 return NULL;
777
778 if (pmd_present(*pmd) && pmd_devmap(*pmd))
779 /* pass */;
780 else
781 return NULL;
782
783 if (flags & FOLL_TOUCH)
784 touch_pmd(vma, addr, pmd);
785
786 /*
787 * device mapped pages can only be returned if the
788 * caller will manage the page reference count.
789 */
790 if (!(flags & FOLL_GET))
791 return ERR_PTR(-EEXIST);
792
793 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
794 pgmap = get_dev_pagemap(pfn, NULL);
795 if (!pgmap)
796 return ERR_PTR(-EFAULT);
797 page = pfn_to_page(pfn);
798 get_page(page);
799 put_dev_pagemap(pgmap);
800
801 return page;
802 }
803
804 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
806 struct vm_area_struct *vma)
807 {
808 spinlock_t *dst_ptl, *src_ptl;
809 struct page *src_page;
810 pmd_t pmd;
811 pgtable_t pgtable = NULL;
812 int ret = -ENOMEM;
813
814 /* Skip if can be re-fill on fault */
815 if (!vma_is_anonymous(vma))
816 return 0;
817
818 pgtable = pte_alloc_one(dst_mm, addr);
819 if (unlikely(!pgtable))
820 goto out;
821
822 dst_ptl = pmd_lock(dst_mm, dst_pmd);
823 src_ptl = pmd_lockptr(src_mm, src_pmd);
824 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
825
826 ret = -EAGAIN;
827 pmd = *src_pmd;
828 if (unlikely(!pmd_trans_huge(pmd))) {
829 pte_free(dst_mm, pgtable);
830 goto out_unlock;
831 }
832 /*
833 * When page table lock is held, the huge zero pmd should not be
834 * under splitting since we don't split the page itself, only pmd to
835 * a page table.
836 */
837 if (is_huge_zero_pmd(pmd)) {
838 struct page *zero_page;
839 /*
840 * get_huge_zero_page() will never allocate a new page here,
841 * since we already have a zero page to copy. It just takes a
842 * reference.
843 */
844 zero_page = mm_get_huge_zero_page(dst_mm);
845 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
846 zero_page);
847 ret = 0;
848 goto out_unlock;
849 }
850
851 src_page = pmd_page(pmd);
852 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
853 get_page(src_page);
854 page_dup_rmap(src_page, true);
855 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
856 atomic_long_inc(&dst_mm->nr_ptes);
857 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
858
859 pmdp_set_wrprotect(src_mm, addr, src_pmd);
860 pmd = pmd_mkold(pmd_wrprotect(pmd));
861 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
862
863 ret = 0;
864 out_unlock:
865 spin_unlock(src_ptl);
866 spin_unlock(dst_ptl);
867 out:
868 return ret;
869 }
870
871 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
872 {
873 pmd_t entry;
874 unsigned long haddr;
875
876 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
877 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
878 goto unlock;
879
880 entry = pmd_mkyoung(orig_pmd);
881 haddr = fe->address & HPAGE_PMD_MASK;
882 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
883 fe->flags & FAULT_FLAG_WRITE))
884 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
885
886 unlock:
887 spin_unlock(fe->ptl);
888 }
889
890 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
891 struct page *page)
892 {
893 struct vm_area_struct *vma = fe->vma;
894 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
895 struct mem_cgroup *memcg;
896 pgtable_t pgtable;
897 pmd_t _pmd;
898 int ret = 0, i;
899 struct page **pages;
900 unsigned long mmun_start; /* For mmu_notifiers */
901 unsigned long mmun_end; /* For mmu_notifiers */
902
903 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
904 GFP_KERNEL);
905 if (unlikely(!pages)) {
906 ret |= VM_FAULT_OOM;
907 goto out;
908 }
909
910 for (i = 0; i < HPAGE_PMD_NR; i++) {
911 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
912 __GFP_OTHER_NODE, vma,
913 fe->address, page_to_nid(page));
914 if (unlikely(!pages[i] ||
915 mem_cgroup_try_charge(pages[i], vma->vm_mm,
916 GFP_KERNEL, &memcg, false))) {
917 if (pages[i])
918 put_page(pages[i]);
919 while (--i >= 0) {
920 memcg = (void *)page_private(pages[i]);
921 set_page_private(pages[i], 0);
922 mem_cgroup_cancel_charge(pages[i], memcg,
923 false);
924 put_page(pages[i]);
925 }
926 kfree(pages);
927 ret |= VM_FAULT_OOM;
928 goto out;
929 }
930 set_page_private(pages[i], (unsigned long)memcg);
931 }
932
933 for (i = 0; i < HPAGE_PMD_NR; i++) {
934 copy_user_highpage(pages[i], page + i,
935 haddr + PAGE_SIZE * i, vma);
936 __SetPageUptodate(pages[i]);
937 cond_resched();
938 }
939
940 mmun_start = haddr;
941 mmun_end = haddr + HPAGE_PMD_SIZE;
942 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
943
944 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
945 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
946 goto out_free_pages;
947 VM_BUG_ON_PAGE(!PageHead(page), page);
948
949 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
950 /* leave pmd empty until pte is filled */
951
952 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
953 pmd_populate(vma->vm_mm, &_pmd, pgtable);
954
955 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
956 pte_t entry;
957 entry = mk_pte(pages[i], vma->vm_page_prot);
958 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
959 memcg = (void *)page_private(pages[i]);
960 set_page_private(pages[i], 0);
961 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
962 mem_cgroup_commit_charge(pages[i], memcg, false, false);
963 lru_cache_add_active_or_unevictable(pages[i], vma);
964 fe->pte = pte_offset_map(&_pmd, haddr);
965 VM_BUG_ON(!pte_none(*fe->pte));
966 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
967 pte_unmap(fe->pte);
968 }
969 kfree(pages);
970
971 smp_wmb(); /* make pte visible before pmd */
972 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
973 page_remove_rmap(page, true);
974 spin_unlock(fe->ptl);
975
976 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
977
978 ret |= VM_FAULT_WRITE;
979 put_page(page);
980
981 out:
982 return ret;
983
984 out_free_pages:
985 spin_unlock(fe->ptl);
986 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 memcg = (void *)page_private(pages[i]);
989 set_page_private(pages[i], 0);
990 mem_cgroup_cancel_charge(pages[i], memcg, false);
991 put_page(pages[i]);
992 }
993 kfree(pages);
994 goto out;
995 }
996
997 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
998 {
999 struct vm_area_struct *vma = fe->vma;
1000 struct page *page = NULL, *new_page;
1001 struct mem_cgroup *memcg;
1002 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1003 unsigned long mmun_start; /* For mmu_notifiers */
1004 unsigned long mmun_end; /* For mmu_notifiers */
1005 gfp_t huge_gfp; /* for allocation and charge */
1006 int ret = 0;
1007
1008 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1009 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1010 if (is_huge_zero_pmd(orig_pmd))
1011 goto alloc;
1012 spin_lock(fe->ptl);
1013 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1014 goto out_unlock;
1015
1016 page = pmd_page(orig_pmd);
1017 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1018 /*
1019 * We can only reuse the page if nobody else maps the huge page or it's
1020 * part.
1021 */
1022 if (page_trans_huge_mapcount(page, NULL) == 1) {
1023 pmd_t entry;
1024 entry = pmd_mkyoung(orig_pmd);
1025 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1026 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1027 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1028 ret |= VM_FAULT_WRITE;
1029 goto out_unlock;
1030 }
1031 get_page(page);
1032 spin_unlock(fe->ptl);
1033 alloc:
1034 if (transparent_hugepage_enabled(vma) &&
1035 !transparent_hugepage_debug_cow()) {
1036 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1037 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1038 } else
1039 new_page = NULL;
1040
1041 if (likely(new_page)) {
1042 prep_transhuge_page(new_page);
1043 } else {
1044 if (!page) {
1045 split_huge_pmd(vma, fe->pmd, fe->address);
1046 ret |= VM_FAULT_FALLBACK;
1047 } else {
1048 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1049 if (ret & VM_FAULT_OOM) {
1050 split_huge_pmd(vma, fe->pmd, fe->address);
1051 ret |= VM_FAULT_FALLBACK;
1052 }
1053 put_page(page);
1054 }
1055 count_vm_event(THP_FAULT_FALLBACK);
1056 goto out;
1057 }
1058
1059 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1060 huge_gfp, &memcg, true))) {
1061 put_page(new_page);
1062 split_huge_pmd(vma, fe->pmd, fe->address);
1063 if (page)
1064 put_page(page);
1065 ret |= VM_FAULT_FALLBACK;
1066 count_vm_event(THP_FAULT_FALLBACK);
1067 goto out;
1068 }
1069
1070 count_vm_event(THP_FAULT_ALLOC);
1071
1072 if (!page)
1073 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1074 else
1075 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1076 __SetPageUptodate(new_page);
1077
1078 mmun_start = haddr;
1079 mmun_end = haddr + HPAGE_PMD_SIZE;
1080 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1081
1082 spin_lock(fe->ptl);
1083 if (page)
1084 put_page(page);
1085 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1086 spin_unlock(fe->ptl);
1087 mem_cgroup_cancel_charge(new_page, memcg, true);
1088 put_page(new_page);
1089 goto out_mn;
1090 } else {
1091 pmd_t entry;
1092 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1093 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1094 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1095 page_add_new_anon_rmap(new_page, vma, haddr, true);
1096 mem_cgroup_commit_charge(new_page, memcg, false, true);
1097 lru_cache_add_active_or_unevictable(new_page, vma);
1098 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1099 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1100 if (!page) {
1101 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1102 } else {
1103 VM_BUG_ON_PAGE(!PageHead(page), page);
1104 page_remove_rmap(page, true);
1105 put_page(page);
1106 }
1107 ret |= VM_FAULT_WRITE;
1108 }
1109 spin_unlock(fe->ptl);
1110 out_mn:
1111 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1112 out:
1113 return ret;
1114 out_unlock:
1115 spin_unlock(fe->ptl);
1116 return ret;
1117 }
1118
1119 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1120 unsigned long addr,
1121 pmd_t *pmd,
1122 unsigned int flags)
1123 {
1124 struct mm_struct *mm = vma->vm_mm;
1125 struct page *page = NULL;
1126
1127 assert_spin_locked(pmd_lockptr(mm, pmd));
1128
1129 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1130 goto out;
1131
1132 /* Avoid dumping huge zero page */
1133 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1134 return ERR_PTR(-EFAULT);
1135
1136 /* Full NUMA hinting faults to serialise migration in fault paths */
1137 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1138 goto out;
1139
1140 page = pmd_page(*pmd);
1141 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1142 if (flags & FOLL_TOUCH)
1143 touch_pmd(vma, addr, pmd);
1144 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1145 /*
1146 * We don't mlock() pte-mapped THPs. This way we can avoid
1147 * leaking mlocked pages into non-VM_LOCKED VMAs.
1148 *
1149 * For anon THP:
1150 *
1151 * In most cases the pmd is the only mapping of the page as we
1152 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1153 * writable private mappings in populate_vma_page_range().
1154 *
1155 * The only scenario when we have the page shared here is if we
1156 * mlocking read-only mapping shared over fork(). We skip
1157 * mlocking such pages.
1158 *
1159 * For file THP:
1160 *
1161 * We can expect PageDoubleMap() to be stable under page lock:
1162 * for file pages we set it in page_add_file_rmap(), which
1163 * requires page to be locked.
1164 */
1165
1166 if (PageAnon(page) && compound_mapcount(page) != 1)
1167 goto skip_mlock;
1168 if (PageDoubleMap(page) || !page->mapping)
1169 goto skip_mlock;
1170 if (!trylock_page(page))
1171 goto skip_mlock;
1172 lru_add_drain();
1173 if (page->mapping && !PageDoubleMap(page))
1174 mlock_vma_page(page);
1175 unlock_page(page);
1176 }
1177 skip_mlock:
1178 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1179 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1180 if (flags & FOLL_GET)
1181 get_page(page);
1182
1183 out:
1184 return page;
1185 }
1186
1187 /* NUMA hinting page fault entry point for trans huge pmds */
1188 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1189 {
1190 struct vm_area_struct *vma = fe->vma;
1191 struct anon_vma *anon_vma = NULL;
1192 struct page *page;
1193 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1194 int page_nid = -1, this_nid = numa_node_id();
1195 int target_nid, last_cpupid = -1;
1196 bool page_locked;
1197 bool migrated = false;
1198 bool was_writable;
1199 int flags = 0;
1200
1201 /* A PROT_NONE fault should not end up here */
1202 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1203
1204 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1205 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1206 goto out_unlock;
1207
1208 /*
1209 * If there are potential migrations, wait for completion and retry
1210 * without disrupting NUMA hinting information. Do not relock and
1211 * check_same as the page may no longer be mapped.
1212 */
1213 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1214 page = pmd_page(*fe->pmd);
1215 spin_unlock(fe->ptl);
1216 wait_on_page_locked(page);
1217 goto out;
1218 }
1219
1220 page = pmd_page(pmd);
1221 BUG_ON(is_huge_zero_page(page));
1222 page_nid = page_to_nid(page);
1223 last_cpupid = page_cpupid_last(page);
1224 count_vm_numa_event(NUMA_HINT_FAULTS);
1225 if (page_nid == this_nid) {
1226 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1227 flags |= TNF_FAULT_LOCAL;
1228 }
1229
1230 /* See similar comment in do_numa_page for explanation */
1231 if (!(vma->vm_flags & VM_WRITE))
1232 flags |= TNF_NO_GROUP;
1233
1234 /*
1235 * Acquire the page lock to serialise THP migrations but avoid dropping
1236 * page_table_lock if at all possible
1237 */
1238 page_locked = trylock_page(page);
1239 target_nid = mpol_misplaced(page, vma, haddr);
1240 if (target_nid == -1) {
1241 /* If the page was locked, there are no parallel migrations */
1242 if (page_locked)
1243 goto clear_pmdnuma;
1244 }
1245
1246 /* Migration could have started since the pmd_trans_migrating check */
1247 if (!page_locked) {
1248 spin_unlock(fe->ptl);
1249 wait_on_page_locked(page);
1250 page_nid = -1;
1251 goto out;
1252 }
1253
1254 /*
1255 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1256 * to serialises splits
1257 */
1258 get_page(page);
1259 spin_unlock(fe->ptl);
1260 anon_vma = page_lock_anon_vma_read(page);
1261
1262 /* Confirm the PMD did not change while page_table_lock was released */
1263 spin_lock(fe->ptl);
1264 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1265 unlock_page(page);
1266 put_page(page);
1267 page_nid = -1;
1268 goto out_unlock;
1269 }
1270
1271 /* Bail if we fail to protect against THP splits for any reason */
1272 if (unlikely(!anon_vma)) {
1273 put_page(page);
1274 page_nid = -1;
1275 goto clear_pmdnuma;
1276 }
1277
1278 /*
1279 * Migrate the THP to the requested node, returns with page unlocked
1280 * and access rights restored.
1281 */
1282 spin_unlock(fe->ptl);
1283 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1284 fe->pmd, pmd, fe->address, page, target_nid);
1285 if (migrated) {
1286 flags |= TNF_MIGRATED;
1287 page_nid = target_nid;
1288 } else
1289 flags |= TNF_MIGRATE_FAIL;
1290
1291 goto out;
1292 clear_pmdnuma:
1293 BUG_ON(!PageLocked(page));
1294 was_writable = pmd_write(pmd);
1295 pmd = pmd_modify(pmd, vma->vm_page_prot);
1296 pmd = pmd_mkyoung(pmd);
1297 if (was_writable)
1298 pmd = pmd_mkwrite(pmd);
1299 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1300 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1301 unlock_page(page);
1302 out_unlock:
1303 spin_unlock(fe->ptl);
1304
1305 out:
1306 if (anon_vma)
1307 page_unlock_anon_vma_read(anon_vma);
1308
1309 if (page_nid != -1)
1310 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Return true if we do MADV_FREE successfully on entire pmd page.
1317 * Otherwise, return false.
1318 */
1319 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1320 pmd_t *pmd, unsigned long addr, unsigned long next)
1321 {
1322 spinlock_t *ptl;
1323 pmd_t orig_pmd;
1324 struct page *page;
1325 struct mm_struct *mm = tlb->mm;
1326 bool ret = false;
1327
1328 ptl = pmd_trans_huge_lock(pmd, vma);
1329 if (!ptl)
1330 goto out_unlocked;
1331
1332 orig_pmd = *pmd;
1333 if (is_huge_zero_pmd(orig_pmd))
1334 goto out;
1335
1336 page = pmd_page(orig_pmd);
1337 /*
1338 * If other processes are mapping this page, we couldn't discard
1339 * the page unless they all do MADV_FREE so let's skip the page.
1340 */
1341 if (page_mapcount(page) != 1)
1342 goto out;
1343
1344 if (!trylock_page(page))
1345 goto out;
1346
1347 /*
1348 * If user want to discard part-pages of THP, split it so MADV_FREE
1349 * will deactivate only them.
1350 */
1351 if (next - addr != HPAGE_PMD_SIZE) {
1352 get_page(page);
1353 spin_unlock(ptl);
1354 split_huge_page(page);
1355 put_page(page);
1356 unlock_page(page);
1357 goto out_unlocked;
1358 }
1359
1360 if (PageDirty(page))
1361 ClearPageDirty(page);
1362 unlock_page(page);
1363
1364 if (PageActive(page))
1365 deactivate_page(page);
1366
1367 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1368 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1369 tlb->fullmm);
1370 orig_pmd = pmd_mkold(orig_pmd);
1371 orig_pmd = pmd_mkclean(orig_pmd);
1372
1373 set_pmd_at(mm, addr, pmd, orig_pmd);
1374 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1375 }
1376 ret = true;
1377 out:
1378 spin_unlock(ptl);
1379 out_unlocked:
1380 return ret;
1381 }
1382
1383 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1384 pmd_t *pmd, unsigned long addr)
1385 {
1386 pmd_t orig_pmd;
1387 spinlock_t *ptl;
1388
1389 ptl = __pmd_trans_huge_lock(pmd, vma);
1390 if (!ptl)
1391 return 0;
1392 /*
1393 * For architectures like ppc64 we look at deposited pgtable
1394 * when calling pmdp_huge_get_and_clear. So do the
1395 * pgtable_trans_huge_withdraw after finishing pmdp related
1396 * operations.
1397 */
1398 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1399 tlb->fullmm);
1400 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1401 if (vma_is_dax(vma)) {
1402 spin_unlock(ptl);
1403 if (is_huge_zero_pmd(orig_pmd))
1404 tlb_remove_page(tlb, pmd_page(orig_pmd));
1405 } else if (is_huge_zero_pmd(orig_pmd)) {
1406 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1407 atomic_long_dec(&tlb->mm->nr_ptes);
1408 spin_unlock(ptl);
1409 tlb_remove_page(tlb, pmd_page(orig_pmd));
1410 } else {
1411 struct page *page = pmd_page(orig_pmd);
1412 page_remove_rmap(page, true);
1413 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1414 VM_BUG_ON_PAGE(!PageHead(page), page);
1415 if (PageAnon(page)) {
1416 pgtable_t pgtable;
1417 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1418 pte_free(tlb->mm, pgtable);
1419 atomic_long_dec(&tlb->mm->nr_ptes);
1420 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1421 } else {
1422 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1423 }
1424 spin_unlock(ptl);
1425 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1426 }
1427 return 1;
1428 }
1429
1430 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1431 unsigned long new_addr, unsigned long old_end,
1432 pmd_t *old_pmd, pmd_t *new_pmd)
1433 {
1434 spinlock_t *old_ptl, *new_ptl;
1435 pmd_t pmd;
1436 struct mm_struct *mm = vma->vm_mm;
1437
1438 if ((old_addr & ~HPAGE_PMD_MASK) ||
1439 (new_addr & ~HPAGE_PMD_MASK) ||
1440 old_end - old_addr < HPAGE_PMD_SIZE)
1441 return false;
1442
1443 /*
1444 * The destination pmd shouldn't be established, free_pgtables()
1445 * should have release it.
1446 */
1447 if (WARN_ON(!pmd_none(*new_pmd))) {
1448 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1449 return false;
1450 }
1451
1452 /*
1453 * We don't have to worry about the ordering of src and dst
1454 * ptlocks because exclusive mmap_sem prevents deadlock.
1455 */
1456 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1457 if (old_ptl) {
1458 new_ptl = pmd_lockptr(mm, new_pmd);
1459 if (new_ptl != old_ptl)
1460 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1461 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1462 VM_BUG_ON(!pmd_none(*new_pmd));
1463
1464 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1465 vma_is_anonymous(vma)) {
1466 pgtable_t pgtable;
1467 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1468 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1469 }
1470 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1471 if (new_ptl != old_ptl)
1472 spin_unlock(new_ptl);
1473 spin_unlock(old_ptl);
1474 return true;
1475 }
1476 return false;
1477 }
1478
1479 /*
1480 * Returns
1481 * - 0 if PMD could not be locked
1482 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1483 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1484 */
1485 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1486 unsigned long addr, pgprot_t newprot, int prot_numa)
1487 {
1488 struct mm_struct *mm = vma->vm_mm;
1489 spinlock_t *ptl;
1490 int ret = 0;
1491
1492 ptl = __pmd_trans_huge_lock(pmd, vma);
1493 if (ptl) {
1494 pmd_t entry;
1495 bool preserve_write = prot_numa && pmd_write(*pmd);
1496 ret = 1;
1497
1498 /*
1499 * Avoid trapping faults against the zero page. The read-only
1500 * data is likely to be read-cached on the local CPU and
1501 * local/remote hits to the zero page are not interesting.
1502 */
1503 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1504 spin_unlock(ptl);
1505 return ret;
1506 }
1507
1508 if (!prot_numa || !pmd_protnone(*pmd)) {
1509 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1510 entry = pmd_modify(entry, newprot);
1511 if (preserve_write)
1512 entry = pmd_mkwrite(entry);
1513 ret = HPAGE_PMD_NR;
1514 set_pmd_at(mm, addr, pmd, entry);
1515 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1516 pmd_write(entry));
1517 }
1518 spin_unlock(ptl);
1519 }
1520
1521 return ret;
1522 }
1523
1524 /*
1525 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1526 *
1527 * Note that if it returns page table lock pointer, this routine returns without
1528 * unlocking page table lock. So callers must unlock it.
1529 */
1530 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1531 {
1532 spinlock_t *ptl;
1533 ptl = pmd_lock(vma->vm_mm, pmd);
1534 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1535 return ptl;
1536 spin_unlock(ptl);
1537 return NULL;
1538 }
1539
1540 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1541 unsigned long haddr, pmd_t *pmd)
1542 {
1543 struct mm_struct *mm = vma->vm_mm;
1544 pgtable_t pgtable;
1545 pmd_t _pmd;
1546 int i;
1547
1548 /* leave pmd empty until pte is filled */
1549 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1550
1551 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1552 pmd_populate(mm, &_pmd, pgtable);
1553
1554 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1555 pte_t *pte, entry;
1556 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1557 entry = pte_mkspecial(entry);
1558 pte = pte_offset_map(&_pmd, haddr);
1559 VM_BUG_ON(!pte_none(*pte));
1560 set_pte_at(mm, haddr, pte, entry);
1561 pte_unmap(pte);
1562 }
1563 smp_wmb(); /* make pte visible before pmd */
1564 pmd_populate(mm, pmd, pgtable);
1565 }
1566
1567 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1568 unsigned long haddr, bool freeze)
1569 {
1570 struct mm_struct *mm = vma->vm_mm;
1571 struct page *page;
1572 pgtable_t pgtable;
1573 pmd_t _pmd;
1574 bool young, write, dirty, soft_dirty;
1575 unsigned long addr;
1576 int i;
1577
1578 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1579 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1580 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1581 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1582
1583 count_vm_event(THP_SPLIT_PMD);
1584
1585 if (!vma_is_anonymous(vma)) {
1586 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1587 if (vma_is_dax(vma))
1588 return;
1589 page = pmd_page(_pmd);
1590 if (!PageReferenced(page) && pmd_young(_pmd))
1591 SetPageReferenced(page);
1592 page_remove_rmap(page, true);
1593 put_page(page);
1594 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1595 return;
1596 } else if (is_huge_zero_pmd(*pmd)) {
1597 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1598 }
1599
1600 page = pmd_page(*pmd);
1601 VM_BUG_ON_PAGE(!page_count(page), page);
1602 page_ref_add(page, HPAGE_PMD_NR - 1);
1603 write = pmd_write(*pmd);
1604 young = pmd_young(*pmd);
1605 dirty = pmd_dirty(*pmd);
1606 soft_dirty = pmd_soft_dirty(*pmd);
1607
1608 pmdp_huge_split_prepare(vma, haddr, pmd);
1609 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1610 pmd_populate(mm, &_pmd, pgtable);
1611
1612 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1613 pte_t entry, *pte;
1614 /*
1615 * Note that NUMA hinting access restrictions are not
1616 * transferred to avoid any possibility of altering
1617 * permissions across VMAs.
1618 */
1619 if (freeze) {
1620 swp_entry_t swp_entry;
1621 swp_entry = make_migration_entry(page + i, write);
1622 entry = swp_entry_to_pte(swp_entry);
1623 if (soft_dirty)
1624 entry = pte_swp_mksoft_dirty(entry);
1625 } else {
1626 entry = mk_pte(page + i, vma->vm_page_prot);
1627 entry = maybe_mkwrite(entry, vma);
1628 if (!write)
1629 entry = pte_wrprotect(entry);
1630 if (!young)
1631 entry = pte_mkold(entry);
1632 if (soft_dirty)
1633 entry = pte_mksoft_dirty(entry);
1634 }
1635 if (dirty)
1636 SetPageDirty(page + i);
1637 pte = pte_offset_map(&_pmd, addr);
1638 BUG_ON(!pte_none(*pte));
1639 set_pte_at(mm, addr, pte, entry);
1640 atomic_inc(&page[i]._mapcount);
1641 pte_unmap(pte);
1642 }
1643
1644 /*
1645 * Set PG_double_map before dropping compound_mapcount to avoid
1646 * false-negative page_mapped().
1647 */
1648 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1649 for (i = 0; i < HPAGE_PMD_NR; i++)
1650 atomic_inc(&page[i]._mapcount);
1651 }
1652
1653 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1654 /* Last compound_mapcount is gone. */
1655 __dec_node_page_state(page, NR_ANON_THPS);
1656 if (TestClearPageDoubleMap(page)) {
1657 /* No need in mapcount reference anymore */
1658 for (i = 0; i < HPAGE_PMD_NR; i++)
1659 atomic_dec(&page[i]._mapcount);
1660 }
1661 }
1662
1663 smp_wmb(); /* make pte visible before pmd */
1664 /*
1665 * Up to this point the pmd is present and huge and userland has the
1666 * whole access to the hugepage during the split (which happens in
1667 * place). If we overwrite the pmd with the not-huge version pointing
1668 * to the pte here (which of course we could if all CPUs were bug
1669 * free), userland could trigger a small page size TLB miss on the
1670 * small sized TLB while the hugepage TLB entry is still established in
1671 * the huge TLB. Some CPU doesn't like that.
1672 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1673 * 383 on page 93. Intel should be safe but is also warns that it's
1674 * only safe if the permission and cache attributes of the two entries
1675 * loaded in the two TLB is identical (which should be the case here).
1676 * But it is generally safer to never allow small and huge TLB entries
1677 * for the same virtual address to be loaded simultaneously. So instead
1678 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1679 * current pmd notpresent (atomically because here the pmd_trans_huge
1680 * and pmd_trans_splitting must remain set at all times on the pmd
1681 * until the split is complete for this pmd), then we flush the SMP TLB
1682 * and finally we write the non-huge version of the pmd entry with
1683 * pmd_populate.
1684 */
1685 pmdp_invalidate(vma, haddr, pmd);
1686 pmd_populate(mm, pmd, pgtable);
1687
1688 if (freeze) {
1689 for (i = 0; i < HPAGE_PMD_NR; i++) {
1690 page_remove_rmap(page + i, false);
1691 put_page(page + i);
1692 }
1693 }
1694 }
1695
1696 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1697 unsigned long address, bool freeze, struct page *page)
1698 {
1699 spinlock_t *ptl;
1700 struct mm_struct *mm = vma->vm_mm;
1701 unsigned long haddr = address & HPAGE_PMD_MASK;
1702
1703 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1704 ptl = pmd_lock(mm, pmd);
1705
1706 /*
1707 * If caller asks to setup a migration entries, we need a page to check
1708 * pmd against. Otherwise we can end up replacing wrong page.
1709 */
1710 VM_BUG_ON(freeze && !page);
1711 if (page && page != pmd_page(*pmd))
1712 goto out;
1713
1714 if (pmd_trans_huge(*pmd)) {
1715 page = pmd_page(*pmd);
1716 if (PageMlocked(page))
1717 clear_page_mlock(page);
1718 } else if (!pmd_devmap(*pmd))
1719 goto out;
1720 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1721 out:
1722 spin_unlock(ptl);
1723 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1724 }
1725
1726 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1727 bool freeze, struct page *page)
1728 {
1729 pgd_t *pgd;
1730 pud_t *pud;
1731 pmd_t *pmd;
1732
1733 pgd = pgd_offset(vma->vm_mm, address);
1734 if (!pgd_present(*pgd))
1735 return;
1736
1737 pud = pud_offset(pgd, address);
1738 if (!pud_present(*pud))
1739 return;
1740
1741 pmd = pmd_offset(pud, address);
1742
1743 __split_huge_pmd(vma, pmd, address, freeze, page);
1744 }
1745
1746 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1747 unsigned long start,
1748 unsigned long end,
1749 long adjust_next)
1750 {
1751 /*
1752 * If the new start address isn't hpage aligned and it could
1753 * previously contain an hugepage: check if we need to split
1754 * an huge pmd.
1755 */
1756 if (start & ~HPAGE_PMD_MASK &&
1757 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1758 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1759 split_huge_pmd_address(vma, start, false, NULL);
1760
1761 /*
1762 * If the new end address isn't hpage aligned and it could
1763 * previously contain an hugepage: check if we need to split
1764 * an huge pmd.
1765 */
1766 if (end & ~HPAGE_PMD_MASK &&
1767 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1768 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1769 split_huge_pmd_address(vma, end, false, NULL);
1770
1771 /*
1772 * If we're also updating the vma->vm_next->vm_start, if the new
1773 * vm_next->vm_start isn't page aligned and it could previously
1774 * contain an hugepage: check if we need to split an huge pmd.
1775 */
1776 if (adjust_next > 0) {
1777 struct vm_area_struct *next = vma->vm_next;
1778 unsigned long nstart = next->vm_start;
1779 nstart += adjust_next << PAGE_SHIFT;
1780 if (nstart & ~HPAGE_PMD_MASK &&
1781 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1782 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1783 split_huge_pmd_address(next, nstart, false, NULL);
1784 }
1785 }
1786
1787 static void freeze_page(struct page *page)
1788 {
1789 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1790 TTU_RMAP_LOCKED;
1791 int i, ret;
1792
1793 VM_BUG_ON_PAGE(!PageHead(page), page);
1794
1795 if (PageAnon(page))
1796 ttu_flags |= TTU_MIGRATION;
1797
1798 /* We only need TTU_SPLIT_HUGE_PMD once */
1799 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1800 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1801 /* Cut short if the page is unmapped */
1802 if (page_count(page) == 1)
1803 return;
1804
1805 ret = try_to_unmap(page + i, ttu_flags);
1806 }
1807 VM_BUG_ON_PAGE(ret, page + i - 1);
1808 }
1809
1810 static void unfreeze_page(struct page *page)
1811 {
1812 int i;
1813
1814 for (i = 0; i < HPAGE_PMD_NR; i++)
1815 remove_migration_ptes(page + i, page + i, true);
1816 }
1817
1818 static void __split_huge_page_tail(struct page *head, int tail,
1819 struct lruvec *lruvec, struct list_head *list)
1820 {
1821 struct page *page_tail = head + tail;
1822
1823 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1824 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1825
1826 /*
1827 * tail_page->_refcount is zero and not changing from under us. But
1828 * get_page_unless_zero() may be running from under us on the
1829 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1830 * atomic_add(), we would then run atomic_set() concurrently with
1831 * get_page_unless_zero(), and atomic_set() is implemented in C not
1832 * using locked ops. spin_unlock on x86 sometime uses locked ops
1833 * because of PPro errata 66, 92, so unless somebody can guarantee
1834 * atomic_set() here would be safe on all archs (and not only on x86),
1835 * it's safer to use atomic_inc()/atomic_add().
1836 */
1837 if (PageAnon(head)) {
1838 page_ref_inc(page_tail);
1839 } else {
1840 /* Additional pin to radix tree */
1841 page_ref_add(page_tail, 2);
1842 }
1843
1844 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1845 page_tail->flags |= (head->flags &
1846 ((1L << PG_referenced) |
1847 (1L << PG_swapbacked) |
1848 (1L << PG_mlocked) |
1849 (1L << PG_uptodate) |
1850 (1L << PG_active) |
1851 (1L << PG_locked) |
1852 (1L << PG_unevictable) |
1853 (1L << PG_dirty)));
1854
1855 /*
1856 * After clearing PageTail the gup refcount can be released.
1857 * Page flags also must be visible before we make the page non-compound.
1858 */
1859 smp_wmb();
1860
1861 clear_compound_head(page_tail);
1862
1863 if (page_is_young(head))
1864 set_page_young(page_tail);
1865 if (page_is_idle(head))
1866 set_page_idle(page_tail);
1867
1868 /* ->mapping in first tail page is compound_mapcount */
1869 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1870 page_tail);
1871 page_tail->mapping = head->mapping;
1872
1873 page_tail->index = head->index + tail;
1874 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1875 lru_add_page_tail(head, page_tail, lruvec, list);
1876 }
1877
1878 static void __split_huge_page(struct page *page, struct list_head *list,
1879 unsigned long flags)
1880 {
1881 struct page *head = compound_head(page);
1882 struct zone *zone = page_zone(head);
1883 struct lruvec *lruvec;
1884 pgoff_t end = -1;
1885 int i;
1886
1887 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1888
1889 /* complete memcg works before add pages to LRU */
1890 mem_cgroup_split_huge_fixup(head);
1891
1892 if (!PageAnon(page))
1893 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1894
1895 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1896 __split_huge_page_tail(head, i, lruvec, list);
1897 /* Some pages can be beyond i_size: drop them from page cache */
1898 if (head[i].index >= end) {
1899 __ClearPageDirty(head + i);
1900 __delete_from_page_cache(head + i, NULL);
1901 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1902 shmem_uncharge(head->mapping->host, 1);
1903 put_page(head + i);
1904 }
1905 }
1906
1907 ClearPageCompound(head);
1908 /* See comment in __split_huge_page_tail() */
1909 if (PageAnon(head)) {
1910 page_ref_inc(head);
1911 } else {
1912 /* Additional pin to radix tree */
1913 page_ref_add(head, 2);
1914 spin_unlock(&head->mapping->tree_lock);
1915 }
1916
1917 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1918
1919 unfreeze_page(head);
1920
1921 for (i = 0; i < HPAGE_PMD_NR; i++) {
1922 struct page *subpage = head + i;
1923 if (subpage == page)
1924 continue;
1925 unlock_page(subpage);
1926
1927 /*
1928 * Subpages may be freed if there wasn't any mapping
1929 * like if add_to_swap() is running on a lru page that
1930 * had its mapping zapped. And freeing these pages
1931 * requires taking the lru_lock so we do the put_page
1932 * of the tail pages after the split is complete.
1933 */
1934 put_page(subpage);
1935 }
1936 }
1937
1938 int total_mapcount(struct page *page)
1939 {
1940 int i, compound, ret;
1941
1942 VM_BUG_ON_PAGE(PageTail(page), page);
1943
1944 if (likely(!PageCompound(page)))
1945 return atomic_read(&page->_mapcount) + 1;
1946
1947 compound = compound_mapcount(page);
1948 if (PageHuge(page))
1949 return compound;
1950 ret = compound;
1951 for (i = 0; i < HPAGE_PMD_NR; i++)
1952 ret += atomic_read(&page[i]._mapcount) + 1;
1953 /* File pages has compound_mapcount included in _mapcount */
1954 if (!PageAnon(page))
1955 return ret - compound * HPAGE_PMD_NR;
1956 if (PageDoubleMap(page))
1957 ret -= HPAGE_PMD_NR;
1958 return ret;
1959 }
1960
1961 /*
1962 * This calculates accurately how many mappings a transparent hugepage
1963 * has (unlike page_mapcount() which isn't fully accurate). This full
1964 * accuracy is primarily needed to know if copy-on-write faults can
1965 * reuse the page and change the mapping to read-write instead of
1966 * copying them. At the same time this returns the total_mapcount too.
1967 *
1968 * The function returns the highest mapcount any one of the subpages
1969 * has. If the return value is one, even if different processes are
1970 * mapping different subpages of the transparent hugepage, they can
1971 * all reuse it, because each process is reusing a different subpage.
1972 *
1973 * The total_mapcount is instead counting all virtual mappings of the
1974 * subpages. If the total_mapcount is equal to "one", it tells the
1975 * caller all mappings belong to the same "mm" and in turn the
1976 * anon_vma of the transparent hugepage can become the vma->anon_vma
1977 * local one as no other process may be mapping any of the subpages.
1978 *
1979 * It would be more accurate to replace page_mapcount() with
1980 * page_trans_huge_mapcount(), however we only use
1981 * page_trans_huge_mapcount() in the copy-on-write faults where we
1982 * need full accuracy to avoid breaking page pinning, because
1983 * page_trans_huge_mapcount() is slower than page_mapcount().
1984 */
1985 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1986 {
1987 int i, ret, _total_mapcount, mapcount;
1988
1989 /* hugetlbfs shouldn't call it */
1990 VM_BUG_ON_PAGE(PageHuge(page), page);
1991
1992 if (likely(!PageTransCompound(page))) {
1993 mapcount = atomic_read(&page->_mapcount) + 1;
1994 if (total_mapcount)
1995 *total_mapcount = mapcount;
1996 return mapcount;
1997 }
1998
1999 page = compound_head(page);
2000
2001 _total_mapcount = ret = 0;
2002 for (i = 0; i < HPAGE_PMD_NR; i++) {
2003 mapcount = atomic_read(&page[i]._mapcount) + 1;
2004 ret = max(ret, mapcount);
2005 _total_mapcount += mapcount;
2006 }
2007 if (PageDoubleMap(page)) {
2008 ret -= 1;
2009 _total_mapcount -= HPAGE_PMD_NR;
2010 }
2011 mapcount = compound_mapcount(page);
2012 ret += mapcount;
2013 _total_mapcount += mapcount;
2014 if (total_mapcount)
2015 *total_mapcount = _total_mapcount;
2016 return ret;
2017 }
2018
2019 /*
2020 * This function splits huge page into normal pages. @page can point to any
2021 * subpage of huge page to split. Split doesn't change the position of @page.
2022 *
2023 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2024 * The huge page must be locked.
2025 *
2026 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2027 *
2028 * Both head page and tail pages will inherit mapping, flags, and so on from
2029 * the hugepage.
2030 *
2031 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2032 * they are not mapped.
2033 *
2034 * Returns 0 if the hugepage is split successfully.
2035 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2036 * us.
2037 */
2038 int split_huge_page_to_list(struct page *page, struct list_head *list)
2039 {
2040 struct page *head = compound_head(page);
2041 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2042 struct anon_vma *anon_vma = NULL;
2043 struct address_space *mapping = NULL;
2044 int count, mapcount, extra_pins, ret;
2045 bool mlocked;
2046 unsigned long flags;
2047
2048 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2049 VM_BUG_ON_PAGE(!PageLocked(page), page);
2050 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051 VM_BUG_ON_PAGE(!PageCompound(page), page);
2052
2053 if (PageAnon(head)) {
2054 /*
2055 * The caller does not necessarily hold an mmap_sem that would
2056 * prevent the anon_vma disappearing so we first we take a
2057 * reference to it and then lock the anon_vma for write. This
2058 * is similar to page_lock_anon_vma_read except the write lock
2059 * is taken to serialise against parallel split or collapse
2060 * operations.
2061 */
2062 anon_vma = page_get_anon_vma(head);
2063 if (!anon_vma) {
2064 ret = -EBUSY;
2065 goto out;
2066 }
2067 extra_pins = 0;
2068 mapping = NULL;
2069 anon_vma_lock_write(anon_vma);
2070 } else {
2071 mapping = head->mapping;
2072
2073 /* Truncated ? */
2074 if (!mapping) {
2075 ret = -EBUSY;
2076 goto out;
2077 }
2078
2079 /* Addidional pins from radix tree */
2080 extra_pins = HPAGE_PMD_NR;
2081 anon_vma = NULL;
2082 i_mmap_lock_read(mapping);
2083 }
2084
2085 /*
2086 * Racy check if we can split the page, before freeze_page() will
2087 * split PMDs
2088 */
2089 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2090 ret = -EBUSY;
2091 goto out_unlock;
2092 }
2093
2094 mlocked = PageMlocked(page);
2095 freeze_page(head);
2096 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2097
2098 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2099 if (mlocked)
2100 lru_add_drain();
2101
2102 /* prevent PageLRU to go away from under us, and freeze lru stats */
2103 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2104
2105 if (mapping) {
2106 void **pslot;
2107
2108 spin_lock(&mapping->tree_lock);
2109 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2110 page_index(head));
2111 /*
2112 * Check if the head page is present in radix tree.
2113 * We assume all tail are present too, if head is there.
2114 */
2115 if (radix_tree_deref_slot_protected(pslot,
2116 &mapping->tree_lock) != head)
2117 goto fail;
2118 }
2119
2120 /* Prevent deferred_split_scan() touching ->_refcount */
2121 spin_lock(&pgdata->split_queue_lock);
2122 count = page_count(head);
2123 mapcount = total_mapcount(head);
2124 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2125 if (!list_empty(page_deferred_list(head))) {
2126 pgdata->split_queue_len--;
2127 list_del(page_deferred_list(head));
2128 }
2129 if (mapping)
2130 __dec_node_page_state(page, NR_SHMEM_THPS);
2131 spin_unlock(&pgdata->split_queue_lock);
2132 __split_huge_page(page, list, flags);
2133 ret = 0;
2134 } else {
2135 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2136 pr_alert("total_mapcount: %u, page_count(): %u\n",
2137 mapcount, count);
2138 if (PageTail(page))
2139 dump_page(head, NULL);
2140 dump_page(page, "total_mapcount(head) > 0");
2141 BUG();
2142 }
2143 spin_unlock(&pgdata->split_queue_lock);
2144 fail: if (mapping)
2145 spin_unlock(&mapping->tree_lock);
2146 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2147 unfreeze_page(head);
2148 ret = -EBUSY;
2149 }
2150
2151 out_unlock:
2152 if (anon_vma) {
2153 anon_vma_unlock_write(anon_vma);
2154 put_anon_vma(anon_vma);
2155 }
2156 if (mapping)
2157 i_mmap_unlock_read(mapping);
2158 out:
2159 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2160 return ret;
2161 }
2162
2163 void free_transhuge_page(struct page *page)
2164 {
2165 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2166 unsigned long flags;
2167
2168 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2169 if (!list_empty(page_deferred_list(page))) {
2170 pgdata->split_queue_len--;
2171 list_del(page_deferred_list(page));
2172 }
2173 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2174 free_compound_page(page);
2175 }
2176
2177 void deferred_split_huge_page(struct page *page)
2178 {
2179 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2180 unsigned long flags;
2181
2182 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2183
2184 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2185 if (list_empty(page_deferred_list(page))) {
2186 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2187 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2188 pgdata->split_queue_len++;
2189 }
2190 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2191 }
2192
2193 static unsigned long deferred_split_count(struct shrinker *shrink,
2194 struct shrink_control *sc)
2195 {
2196 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2197 return ACCESS_ONCE(pgdata->split_queue_len);
2198 }
2199
2200 static unsigned long deferred_split_scan(struct shrinker *shrink,
2201 struct shrink_control *sc)
2202 {
2203 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2204 unsigned long flags;
2205 LIST_HEAD(list), *pos, *next;
2206 struct page *page;
2207 int split = 0;
2208
2209 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2210 /* Take pin on all head pages to avoid freeing them under us */
2211 list_for_each_safe(pos, next, &pgdata->split_queue) {
2212 page = list_entry((void *)pos, struct page, mapping);
2213 page = compound_head(page);
2214 if (get_page_unless_zero(page)) {
2215 list_move(page_deferred_list(page), &list);
2216 } else {
2217 /* We lost race with put_compound_page() */
2218 list_del_init(page_deferred_list(page));
2219 pgdata->split_queue_len--;
2220 }
2221 if (!--sc->nr_to_scan)
2222 break;
2223 }
2224 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2225
2226 list_for_each_safe(pos, next, &list) {
2227 page = list_entry((void *)pos, struct page, mapping);
2228 lock_page(page);
2229 /* split_huge_page() removes page from list on success */
2230 if (!split_huge_page(page))
2231 split++;
2232 unlock_page(page);
2233 put_page(page);
2234 }
2235
2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 list_splice_tail(&list, &pgdata->split_queue);
2238 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2239
2240 /*
2241 * Stop shrinker if we didn't split any page, but the queue is empty.
2242 * This can happen if pages were freed under us.
2243 */
2244 if (!split && list_empty(&pgdata->split_queue))
2245 return SHRINK_STOP;
2246 return split;
2247 }
2248
2249 static struct shrinker deferred_split_shrinker = {
2250 .count_objects = deferred_split_count,
2251 .scan_objects = deferred_split_scan,
2252 .seeks = DEFAULT_SEEKS,
2253 .flags = SHRINKER_NUMA_AWARE,
2254 };
2255
2256 #ifdef CONFIG_DEBUG_FS
2257 static int split_huge_pages_set(void *data, u64 val)
2258 {
2259 struct zone *zone;
2260 struct page *page;
2261 unsigned long pfn, max_zone_pfn;
2262 unsigned long total = 0, split = 0;
2263
2264 if (val != 1)
2265 return -EINVAL;
2266
2267 for_each_populated_zone(zone) {
2268 max_zone_pfn = zone_end_pfn(zone);
2269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2270 if (!pfn_valid(pfn))
2271 continue;
2272
2273 page = pfn_to_page(pfn);
2274 if (!get_page_unless_zero(page))
2275 continue;
2276
2277 if (zone != page_zone(page))
2278 goto next;
2279
2280 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2281 goto next;
2282
2283 total++;
2284 lock_page(page);
2285 if (!split_huge_page(page))
2286 split++;
2287 unlock_page(page);
2288 next:
2289 put_page(page);
2290 }
2291 }
2292
2293 pr_info("%lu of %lu THP split\n", split, total);
2294
2295 return 0;
2296 }
2297 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2298 "%llu\n");
2299
2300 static int __init split_huge_pages_debugfs(void)
2301 {
2302 void *ret;
2303
2304 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2305 &split_huge_pages_fops);
2306 if (!ret)
2307 pr_warn("Failed to create split_huge_pages in debugfs");
2308 return 0;
2309 }
2310 late_initcall(split_huge_pages_debugfs);
2311 #endif
This page took 0.077791 seconds and 5 git commands to generate.