ksm: reorganize ksm_check_stable_tree
[deliverable/linux.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 */
91
92 /**
93 * struct mm_slot - ksm information per mm that is being scanned
94 * @link: link to the mm_slots hash list
95 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97 * @mm: the mm that this information is valid for
98 */
99 struct mm_slot {
100 struct hlist_node link;
101 struct list_head mm_list;
102 struct rmap_item *rmap_list;
103 struct mm_struct *mm;
104 };
105
106 /**
107 * struct ksm_scan - cursor for scanning
108 * @mm_slot: the current mm_slot we are scanning
109 * @address: the next address inside that to be scanned
110 * @rmap_list: link to the next rmap to be scanned in the rmap_list
111 * @seqnr: count of completed full scans (needed when removing unstable node)
112 *
113 * There is only the one ksm_scan instance of this cursor structure.
114 */
115 struct ksm_scan {
116 struct mm_slot *mm_slot;
117 unsigned long address;
118 struct rmap_item **rmap_list;
119 unsigned long seqnr;
120 };
121
122 /**
123 * struct stable_node - node of the stable rbtree
124 * @node: rb node of this ksm page in the stable tree
125 * @hlist: hlist head of rmap_items using this ksm page
126 * @kpfn: page frame number of this ksm page
127 */
128 struct stable_node {
129 struct rb_node node;
130 struct hlist_head hlist;
131 unsigned long kpfn;
132 };
133
134 /**
135 * struct rmap_item - reverse mapping item for virtual addresses
136 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
137 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
138 * @mm: the memory structure this rmap_item is pointing into
139 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
140 * @oldchecksum: previous checksum of the page at that virtual address
141 * @nid: NUMA node id of unstable tree in which linked (may not match page)
142 * @node: rb node of this rmap_item in the unstable tree
143 * @head: pointer to stable_node heading this list in the stable tree
144 * @hlist: link into hlist of rmap_items hanging off that stable_node
145 */
146 struct rmap_item {
147 struct rmap_item *rmap_list;
148 struct anon_vma *anon_vma; /* when stable */
149 struct mm_struct *mm;
150 unsigned long address; /* + low bits used for flags below */
151 unsigned int oldchecksum; /* when unstable */
152 #ifdef CONFIG_NUMA
153 int nid;
154 #endif
155 union {
156 struct rb_node node; /* when node of unstable tree */
157 struct { /* when listed from stable tree */
158 struct stable_node *head;
159 struct hlist_node hlist;
160 };
161 };
162 };
163
164 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
165 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
166 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
167
168 /* The stable and unstable tree heads */
169 static struct rb_root root_unstable_tree[MAX_NUMNODES];
170 static struct rb_root root_stable_tree[MAX_NUMNODES];
171
172 #define MM_SLOTS_HASH_BITS 10
173 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
174
175 static struct mm_slot ksm_mm_head = {
176 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
177 };
178 static struct ksm_scan ksm_scan = {
179 .mm_slot = &ksm_mm_head,
180 };
181
182 static struct kmem_cache *rmap_item_cache;
183 static struct kmem_cache *stable_node_cache;
184 static struct kmem_cache *mm_slot_cache;
185
186 /* The number of nodes in the stable tree */
187 static unsigned long ksm_pages_shared;
188
189 /* The number of page slots additionally sharing those nodes */
190 static unsigned long ksm_pages_sharing;
191
192 /* The number of nodes in the unstable tree */
193 static unsigned long ksm_pages_unshared;
194
195 /* The number of rmap_items in use: to calculate pages_volatile */
196 static unsigned long ksm_rmap_items;
197
198 /* Number of pages ksmd should scan in one batch */
199 static unsigned int ksm_thread_pages_to_scan = 100;
200
201 /* Milliseconds ksmd should sleep between batches */
202 static unsigned int ksm_thread_sleep_millisecs = 20;
203
204 #ifdef CONFIG_NUMA
205 /* Zeroed when merging across nodes is not allowed */
206 static unsigned int ksm_merge_across_nodes = 1;
207 #else
208 #define ksm_merge_across_nodes 1U
209 #endif
210
211 #define KSM_RUN_STOP 0
212 #define KSM_RUN_MERGE 1
213 #define KSM_RUN_UNMERGE 2
214 static unsigned int ksm_run = KSM_RUN_STOP;
215
216 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
217 static DEFINE_MUTEX(ksm_thread_mutex);
218 static DEFINE_SPINLOCK(ksm_mmlist_lock);
219
220 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
221 sizeof(struct __struct), __alignof__(struct __struct),\
222 (__flags), NULL)
223
224 static int __init ksm_slab_init(void)
225 {
226 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
227 if (!rmap_item_cache)
228 goto out;
229
230 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
231 if (!stable_node_cache)
232 goto out_free1;
233
234 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
235 if (!mm_slot_cache)
236 goto out_free2;
237
238 return 0;
239
240 out_free2:
241 kmem_cache_destroy(stable_node_cache);
242 out_free1:
243 kmem_cache_destroy(rmap_item_cache);
244 out:
245 return -ENOMEM;
246 }
247
248 static void __init ksm_slab_free(void)
249 {
250 kmem_cache_destroy(mm_slot_cache);
251 kmem_cache_destroy(stable_node_cache);
252 kmem_cache_destroy(rmap_item_cache);
253 mm_slot_cache = NULL;
254 }
255
256 static inline struct rmap_item *alloc_rmap_item(void)
257 {
258 struct rmap_item *rmap_item;
259
260 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
261 if (rmap_item)
262 ksm_rmap_items++;
263 return rmap_item;
264 }
265
266 static inline void free_rmap_item(struct rmap_item *rmap_item)
267 {
268 ksm_rmap_items--;
269 rmap_item->mm = NULL; /* debug safety */
270 kmem_cache_free(rmap_item_cache, rmap_item);
271 }
272
273 static inline struct stable_node *alloc_stable_node(void)
274 {
275 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
276 }
277
278 static inline void free_stable_node(struct stable_node *stable_node)
279 {
280 kmem_cache_free(stable_node_cache, stable_node);
281 }
282
283 static inline struct mm_slot *alloc_mm_slot(void)
284 {
285 if (!mm_slot_cache) /* initialization failed */
286 return NULL;
287 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
288 }
289
290 static inline void free_mm_slot(struct mm_slot *mm_slot)
291 {
292 kmem_cache_free(mm_slot_cache, mm_slot);
293 }
294
295 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296 {
297 struct hlist_node *node;
298 struct mm_slot *slot;
299
300 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
301 if (slot->mm == mm)
302 return slot;
303
304 return NULL;
305 }
306
307 static void insert_to_mm_slots_hash(struct mm_struct *mm,
308 struct mm_slot *mm_slot)
309 {
310 mm_slot->mm = mm;
311 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
312 }
313
314 static inline int in_stable_tree(struct rmap_item *rmap_item)
315 {
316 return rmap_item->address & STABLE_FLAG;
317 }
318
319 /*
320 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321 * page tables after it has passed through ksm_exit() - which, if necessary,
322 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
323 * a special flag: they can just back out as soon as mm_users goes to zero.
324 * ksm_test_exit() is used throughout to make this test for exit: in some
325 * places for correctness, in some places just to avoid unnecessary work.
326 */
327 static inline bool ksm_test_exit(struct mm_struct *mm)
328 {
329 return atomic_read(&mm->mm_users) == 0;
330 }
331
332 /*
333 * We use break_ksm to break COW on a ksm page: it's a stripped down
334 *
335 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336 * put_page(page);
337 *
338 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339 * in case the application has unmapped and remapped mm,addr meanwhile.
340 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
341 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342 */
343 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
344 {
345 struct page *page;
346 int ret = 0;
347
348 do {
349 cond_resched();
350 page = follow_page(vma, addr, FOLL_GET);
351 if (IS_ERR_OR_NULL(page))
352 break;
353 if (PageKsm(page))
354 ret = handle_mm_fault(vma->vm_mm, vma, addr,
355 FAULT_FLAG_WRITE);
356 else
357 ret = VM_FAULT_WRITE;
358 put_page(page);
359 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360 /*
361 * We must loop because handle_mm_fault() may back out if there's
362 * any difficulty e.g. if pte accessed bit gets updated concurrently.
363 *
364 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365 * COW has been broken, even if the vma does not permit VM_WRITE;
366 * but note that a concurrent fault might break PageKsm for us.
367 *
368 * VM_FAULT_SIGBUS could occur if we race with truncation of the
369 * backing file, which also invalidates anonymous pages: that's
370 * okay, that truncation will have unmapped the PageKsm for us.
371 *
372 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374 * current task has TIF_MEMDIE set, and will be OOM killed on return
375 * to user; and ksmd, having no mm, would never be chosen for that.
376 *
377 * But if the mm is in a limited mem_cgroup, then the fault may fail
378 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379 * even ksmd can fail in this way - though it's usually breaking ksm
380 * just to undo a merge it made a moment before, so unlikely to oom.
381 *
382 * That's a pity: we might therefore have more kernel pages allocated
383 * than we're counting as nodes in the stable tree; but ksm_do_scan
384 * will retry to break_cow on each pass, so should recover the page
385 * in due course. The important thing is to not let VM_MERGEABLE
386 * be cleared while any such pages might remain in the area.
387 */
388 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
389 }
390
391 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
392 unsigned long addr)
393 {
394 struct vm_area_struct *vma;
395 if (ksm_test_exit(mm))
396 return NULL;
397 vma = find_vma(mm, addr);
398 if (!vma || vma->vm_start > addr)
399 return NULL;
400 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
401 return NULL;
402 return vma;
403 }
404
405 static void break_cow(struct rmap_item *rmap_item)
406 {
407 struct mm_struct *mm = rmap_item->mm;
408 unsigned long addr = rmap_item->address;
409 struct vm_area_struct *vma;
410
411 /*
412 * It is not an accident that whenever we want to break COW
413 * to undo, we also need to drop a reference to the anon_vma.
414 */
415 put_anon_vma(rmap_item->anon_vma);
416
417 down_read(&mm->mmap_sem);
418 vma = find_mergeable_vma(mm, addr);
419 if (vma)
420 break_ksm(vma, addr);
421 up_read(&mm->mmap_sem);
422 }
423
424 static struct page *page_trans_compound_anon(struct page *page)
425 {
426 if (PageTransCompound(page)) {
427 struct page *head = compound_trans_head(page);
428 /*
429 * head may actually be splitted and freed from under
430 * us but it's ok here.
431 */
432 if (PageAnon(head))
433 return head;
434 }
435 return NULL;
436 }
437
438 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439 {
440 struct mm_struct *mm = rmap_item->mm;
441 unsigned long addr = rmap_item->address;
442 struct vm_area_struct *vma;
443 struct page *page;
444
445 down_read(&mm->mmap_sem);
446 vma = find_mergeable_vma(mm, addr);
447 if (!vma)
448 goto out;
449
450 page = follow_page(vma, addr, FOLL_GET);
451 if (IS_ERR_OR_NULL(page))
452 goto out;
453 if (PageAnon(page) || page_trans_compound_anon(page)) {
454 flush_anon_page(vma, page, addr);
455 flush_dcache_page(page);
456 } else {
457 put_page(page);
458 out: page = NULL;
459 }
460 up_read(&mm->mmap_sem);
461 return page;
462 }
463
464 /*
465 * This helper is used for getting right index into array of tree roots.
466 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
467 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
468 * every node has its own stable and unstable tree.
469 */
470 static inline int get_kpfn_nid(unsigned long kpfn)
471 {
472 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
473 }
474
475 static void remove_node_from_stable_tree(struct stable_node *stable_node)
476 {
477 struct rmap_item *rmap_item;
478 struct hlist_node *hlist;
479 int nid;
480
481 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
482 if (rmap_item->hlist.next)
483 ksm_pages_sharing--;
484 else
485 ksm_pages_shared--;
486 put_anon_vma(rmap_item->anon_vma);
487 rmap_item->address &= PAGE_MASK;
488 cond_resched();
489 }
490
491 nid = get_kpfn_nid(stable_node->kpfn);
492 rb_erase(&stable_node->node, &root_stable_tree[nid]);
493 free_stable_node(stable_node);
494 }
495
496 /*
497 * get_ksm_page: checks if the page indicated by the stable node
498 * is still its ksm page, despite having held no reference to it.
499 * In which case we can trust the content of the page, and it
500 * returns the gotten page; but if the page has now been zapped,
501 * remove the stale node from the stable tree and return NULL.
502 *
503 * You would expect the stable_node to hold a reference to the ksm page.
504 * But if it increments the page's count, swapping out has to wait for
505 * ksmd to come around again before it can free the page, which may take
506 * seconds or even minutes: much too unresponsive. So instead we use a
507 * "keyhole reference": access to the ksm page from the stable node peeps
508 * out through its keyhole to see if that page still holds the right key,
509 * pointing back to this stable node. This relies on freeing a PageAnon
510 * page to reset its page->mapping to NULL, and relies on no other use of
511 * a page to put something that might look like our key in page->mapping.
512 *
513 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
514 * but this is different - made simpler by ksm_thread_mutex being held, but
515 * interesting for assuming that no other use of the struct page could ever
516 * put our expected_mapping into page->mapping (or a field of the union which
517 * coincides with page->mapping). The RCU calls are not for KSM at all, but
518 * to keep the page_count protocol described with page_cache_get_speculative.
519 *
520 * Note: it is possible that get_ksm_page() will return NULL one moment,
521 * then page the next, if the page is in between page_freeze_refs() and
522 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
523 * is on its way to being freed; but it is an anomaly to bear in mind.
524 */
525 static struct page *get_ksm_page(struct stable_node *stable_node)
526 {
527 struct page *page;
528 void *expected_mapping;
529
530 page = pfn_to_page(stable_node->kpfn);
531 expected_mapping = (void *)stable_node +
532 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
533 rcu_read_lock();
534 if (page->mapping != expected_mapping)
535 goto stale;
536 if (!get_page_unless_zero(page))
537 goto stale;
538 if (page->mapping != expected_mapping) {
539 put_page(page);
540 goto stale;
541 }
542 rcu_read_unlock();
543 return page;
544 stale:
545 rcu_read_unlock();
546 remove_node_from_stable_tree(stable_node);
547 return NULL;
548 }
549
550 /*
551 * Removing rmap_item from stable or unstable tree.
552 * This function will clean the information from the stable/unstable tree.
553 */
554 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
555 {
556 if (rmap_item->address & STABLE_FLAG) {
557 struct stable_node *stable_node;
558 struct page *page;
559
560 stable_node = rmap_item->head;
561 page = get_ksm_page(stable_node);
562 if (!page)
563 goto out;
564
565 lock_page(page);
566 hlist_del(&rmap_item->hlist);
567 unlock_page(page);
568 put_page(page);
569
570 if (stable_node->hlist.first)
571 ksm_pages_sharing--;
572 else
573 ksm_pages_shared--;
574
575 put_anon_vma(rmap_item->anon_vma);
576 rmap_item->address &= PAGE_MASK;
577
578 } else if (rmap_item->address & UNSTABLE_FLAG) {
579 unsigned char age;
580 /*
581 * Usually ksmd can and must skip the rb_erase, because
582 * root_unstable_tree was already reset to RB_ROOT.
583 * But be careful when an mm is exiting: do the rb_erase
584 * if this rmap_item was inserted by this scan, rather
585 * than left over from before.
586 */
587 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
588 BUG_ON(age > 1);
589 if (!age)
590 rb_erase(&rmap_item->node,
591 &root_unstable_tree[NUMA(rmap_item->nid)]);
592 ksm_pages_unshared--;
593 rmap_item->address &= PAGE_MASK;
594 }
595 out:
596 cond_resched(); /* we're called from many long loops */
597 }
598
599 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
600 struct rmap_item **rmap_list)
601 {
602 while (*rmap_list) {
603 struct rmap_item *rmap_item = *rmap_list;
604 *rmap_list = rmap_item->rmap_list;
605 remove_rmap_item_from_tree(rmap_item);
606 free_rmap_item(rmap_item);
607 }
608 }
609
610 /*
611 * Though it's very tempting to unmerge rmap_items from stable tree rather
612 * than check every pte of a given vma, the locking doesn't quite work for
613 * that - an rmap_item is assigned to the stable tree after inserting ksm
614 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
615 * rmap_items from parent to child at fork time (so as not to waste time
616 * if exit comes before the next scan reaches it).
617 *
618 * Similarly, although we'd like to remove rmap_items (so updating counts
619 * and freeing memory) when unmerging an area, it's easier to leave that
620 * to the next pass of ksmd - consider, for example, how ksmd might be
621 * in cmp_and_merge_page on one of the rmap_items we would be removing.
622 */
623 static int unmerge_ksm_pages(struct vm_area_struct *vma,
624 unsigned long start, unsigned long end)
625 {
626 unsigned long addr;
627 int err = 0;
628
629 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
630 if (ksm_test_exit(vma->vm_mm))
631 break;
632 if (signal_pending(current))
633 err = -ERESTARTSYS;
634 else
635 err = break_ksm(vma, addr);
636 }
637 return err;
638 }
639
640 #ifdef CONFIG_SYSFS
641 /*
642 * Only called through the sysfs control interface:
643 */
644 static int unmerge_and_remove_all_rmap_items(void)
645 {
646 struct mm_slot *mm_slot;
647 struct mm_struct *mm;
648 struct vm_area_struct *vma;
649 int err = 0;
650
651 spin_lock(&ksm_mmlist_lock);
652 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
653 struct mm_slot, mm_list);
654 spin_unlock(&ksm_mmlist_lock);
655
656 for (mm_slot = ksm_scan.mm_slot;
657 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
658 mm = mm_slot->mm;
659 down_read(&mm->mmap_sem);
660 for (vma = mm->mmap; vma; vma = vma->vm_next) {
661 if (ksm_test_exit(mm))
662 break;
663 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
664 continue;
665 err = unmerge_ksm_pages(vma,
666 vma->vm_start, vma->vm_end);
667 if (err)
668 goto error;
669 }
670
671 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
672
673 spin_lock(&ksm_mmlist_lock);
674 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
675 struct mm_slot, mm_list);
676 if (ksm_test_exit(mm)) {
677 hash_del(&mm_slot->link);
678 list_del(&mm_slot->mm_list);
679 spin_unlock(&ksm_mmlist_lock);
680
681 free_mm_slot(mm_slot);
682 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
683 up_read(&mm->mmap_sem);
684 mmdrop(mm);
685 } else {
686 spin_unlock(&ksm_mmlist_lock);
687 up_read(&mm->mmap_sem);
688 }
689 }
690
691 ksm_scan.seqnr = 0;
692 return 0;
693
694 error:
695 up_read(&mm->mmap_sem);
696 spin_lock(&ksm_mmlist_lock);
697 ksm_scan.mm_slot = &ksm_mm_head;
698 spin_unlock(&ksm_mmlist_lock);
699 return err;
700 }
701 #endif /* CONFIG_SYSFS */
702
703 static u32 calc_checksum(struct page *page)
704 {
705 u32 checksum;
706 void *addr = kmap_atomic(page);
707 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
708 kunmap_atomic(addr);
709 return checksum;
710 }
711
712 static int memcmp_pages(struct page *page1, struct page *page2)
713 {
714 char *addr1, *addr2;
715 int ret;
716
717 addr1 = kmap_atomic(page1);
718 addr2 = kmap_atomic(page2);
719 ret = memcmp(addr1, addr2, PAGE_SIZE);
720 kunmap_atomic(addr2);
721 kunmap_atomic(addr1);
722 return ret;
723 }
724
725 static inline int pages_identical(struct page *page1, struct page *page2)
726 {
727 return !memcmp_pages(page1, page2);
728 }
729
730 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
731 pte_t *orig_pte)
732 {
733 struct mm_struct *mm = vma->vm_mm;
734 unsigned long addr;
735 pte_t *ptep;
736 spinlock_t *ptl;
737 int swapped;
738 int err = -EFAULT;
739 unsigned long mmun_start; /* For mmu_notifiers */
740 unsigned long mmun_end; /* For mmu_notifiers */
741
742 addr = page_address_in_vma(page, vma);
743 if (addr == -EFAULT)
744 goto out;
745
746 BUG_ON(PageTransCompound(page));
747
748 mmun_start = addr;
749 mmun_end = addr + PAGE_SIZE;
750 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
751
752 ptep = page_check_address(page, mm, addr, &ptl, 0);
753 if (!ptep)
754 goto out_mn;
755
756 if (pte_write(*ptep) || pte_dirty(*ptep)) {
757 pte_t entry;
758
759 swapped = PageSwapCache(page);
760 flush_cache_page(vma, addr, page_to_pfn(page));
761 /*
762 * Ok this is tricky, when get_user_pages_fast() run it doesn't
763 * take any lock, therefore the check that we are going to make
764 * with the pagecount against the mapcount is racey and
765 * O_DIRECT can happen right after the check.
766 * So we clear the pte and flush the tlb before the check
767 * this assure us that no O_DIRECT can happen after the check
768 * or in the middle of the check.
769 */
770 entry = ptep_clear_flush(vma, addr, ptep);
771 /*
772 * Check that no O_DIRECT or similar I/O is in progress on the
773 * page
774 */
775 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
776 set_pte_at(mm, addr, ptep, entry);
777 goto out_unlock;
778 }
779 if (pte_dirty(entry))
780 set_page_dirty(page);
781 entry = pte_mkclean(pte_wrprotect(entry));
782 set_pte_at_notify(mm, addr, ptep, entry);
783 }
784 *orig_pte = *ptep;
785 err = 0;
786
787 out_unlock:
788 pte_unmap_unlock(ptep, ptl);
789 out_mn:
790 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
791 out:
792 return err;
793 }
794
795 /**
796 * replace_page - replace page in vma by new ksm page
797 * @vma: vma that holds the pte pointing to page
798 * @page: the page we are replacing by kpage
799 * @kpage: the ksm page we replace page by
800 * @orig_pte: the original value of the pte
801 *
802 * Returns 0 on success, -EFAULT on failure.
803 */
804 static int replace_page(struct vm_area_struct *vma, struct page *page,
805 struct page *kpage, pte_t orig_pte)
806 {
807 struct mm_struct *mm = vma->vm_mm;
808 pmd_t *pmd;
809 pte_t *ptep;
810 spinlock_t *ptl;
811 unsigned long addr;
812 int err = -EFAULT;
813 unsigned long mmun_start; /* For mmu_notifiers */
814 unsigned long mmun_end; /* For mmu_notifiers */
815
816 addr = page_address_in_vma(page, vma);
817 if (addr == -EFAULT)
818 goto out;
819
820 pmd = mm_find_pmd(mm, addr);
821 if (!pmd)
822 goto out;
823 BUG_ON(pmd_trans_huge(*pmd));
824
825 mmun_start = addr;
826 mmun_end = addr + PAGE_SIZE;
827 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
828
829 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
830 if (!pte_same(*ptep, orig_pte)) {
831 pte_unmap_unlock(ptep, ptl);
832 goto out_mn;
833 }
834
835 get_page(kpage);
836 page_add_anon_rmap(kpage, vma, addr);
837
838 flush_cache_page(vma, addr, pte_pfn(*ptep));
839 ptep_clear_flush(vma, addr, ptep);
840 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
841
842 page_remove_rmap(page);
843 if (!page_mapped(page))
844 try_to_free_swap(page);
845 put_page(page);
846
847 pte_unmap_unlock(ptep, ptl);
848 err = 0;
849 out_mn:
850 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
851 out:
852 return err;
853 }
854
855 static int page_trans_compound_anon_split(struct page *page)
856 {
857 int ret = 0;
858 struct page *transhuge_head = page_trans_compound_anon(page);
859 if (transhuge_head) {
860 /* Get the reference on the head to split it. */
861 if (get_page_unless_zero(transhuge_head)) {
862 /*
863 * Recheck we got the reference while the head
864 * was still anonymous.
865 */
866 if (PageAnon(transhuge_head))
867 ret = split_huge_page(transhuge_head);
868 else
869 /*
870 * Retry later if split_huge_page run
871 * from under us.
872 */
873 ret = 1;
874 put_page(transhuge_head);
875 } else
876 /* Retry later if split_huge_page run from under us. */
877 ret = 1;
878 }
879 return ret;
880 }
881
882 /*
883 * try_to_merge_one_page - take two pages and merge them into one
884 * @vma: the vma that holds the pte pointing to page
885 * @page: the PageAnon page that we want to replace with kpage
886 * @kpage: the PageKsm page that we want to map instead of page,
887 * or NULL the first time when we want to use page as kpage.
888 *
889 * This function returns 0 if the pages were merged, -EFAULT otherwise.
890 */
891 static int try_to_merge_one_page(struct vm_area_struct *vma,
892 struct page *page, struct page *kpage)
893 {
894 pte_t orig_pte = __pte(0);
895 int err = -EFAULT;
896
897 if (page == kpage) /* ksm page forked */
898 return 0;
899
900 if (!(vma->vm_flags & VM_MERGEABLE))
901 goto out;
902 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
903 goto out;
904 BUG_ON(PageTransCompound(page));
905 if (!PageAnon(page))
906 goto out;
907
908 /*
909 * We need the page lock to read a stable PageSwapCache in
910 * write_protect_page(). We use trylock_page() instead of
911 * lock_page() because we don't want to wait here - we
912 * prefer to continue scanning and merging different pages,
913 * then come back to this page when it is unlocked.
914 */
915 if (!trylock_page(page))
916 goto out;
917 /*
918 * If this anonymous page is mapped only here, its pte may need
919 * to be write-protected. If it's mapped elsewhere, all of its
920 * ptes are necessarily already write-protected. But in either
921 * case, we need to lock and check page_count is not raised.
922 */
923 if (write_protect_page(vma, page, &orig_pte) == 0) {
924 if (!kpage) {
925 /*
926 * While we hold page lock, upgrade page from
927 * PageAnon+anon_vma to PageKsm+NULL stable_node:
928 * stable_tree_insert() will update stable_node.
929 */
930 set_page_stable_node(page, NULL);
931 mark_page_accessed(page);
932 err = 0;
933 } else if (pages_identical(page, kpage))
934 err = replace_page(vma, page, kpage, orig_pte);
935 }
936
937 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
938 munlock_vma_page(page);
939 if (!PageMlocked(kpage)) {
940 unlock_page(page);
941 lock_page(kpage);
942 mlock_vma_page(kpage);
943 page = kpage; /* for final unlock */
944 }
945 }
946
947 unlock_page(page);
948 out:
949 return err;
950 }
951
952 /*
953 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
954 * but no new kernel page is allocated: kpage must already be a ksm page.
955 *
956 * This function returns 0 if the pages were merged, -EFAULT otherwise.
957 */
958 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
959 struct page *page, struct page *kpage)
960 {
961 struct mm_struct *mm = rmap_item->mm;
962 struct vm_area_struct *vma;
963 int err = -EFAULT;
964
965 down_read(&mm->mmap_sem);
966 if (ksm_test_exit(mm))
967 goto out;
968 vma = find_vma(mm, rmap_item->address);
969 if (!vma || vma->vm_start > rmap_item->address)
970 goto out;
971
972 err = try_to_merge_one_page(vma, page, kpage);
973 if (err)
974 goto out;
975
976 /* Must get reference to anon_vma while still holding mmap_sem */
977 rmap_item->anon_vma = vma->anon_vma;
978 get_anon_vma(vma->anon_vma);
979 out:
980 up_read(&mm->mmap_sem);
981 return err;
982 }
983
984 /*
985 * try_to_merge_two_pages - take two identical pages and prepare them
986 * to be merged into one page.
987 *
988 * This function returns the kpage if we successfully merged two identical
989 * pages into one ksm page, NULL otherwise.
990 *
991 * Note that this function upgrades page to ksm page: if one of the pages
992 * is already a ksm page, try_to_merge_with_ksm_page should be used.
993 */
994 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
995 struct page *page,
996 struct rmap_item *tree_rmap_item,
997 struct page *tree_page)
998 {
999 int err;
1000
1001 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1002 if (!err) {
1003 err = try_to_merge_with_ksm_page(tree_rmap_item,
1004 tree_page, page);
1005 /*
1006 * If that fails, we have a ksm page with only one pte
1007 * pointing to it: so break it.
1008 */
1009 if (err)
1010 break_cow(rmap_item);
1011 }
1012 return err ? NULL : page;
1013 }
1014
1015 /*
1016 * stable_tree_search - search for page inside the stable tree
1017 *
1018 * This function checks if there is a page inside the stable tree
1019 * with identical content to the page that we are scanning right now.
1020 *
1021 * This function returns the stable tree node of identical content if found,
1022 * NULL otherwise.
1023 */
1024 static struct page *stable_tree_search(struct page *page)
1025 {
1026 struct rb_node *node;
1027 struct stable_node *stable_node;
1028 int nid;
1029
1030 stable_node = page_stable_node(page);
1031 if (stable_node) { /* ksm page forked */
1032 get_page(page);
1033 return page;
1034 }
1035
1036 nid = get_kpfn_nid(page_to_pfn(page));
1037 node = root_stable_tree[nid].rb_node;
1038
1039 while (node) {
1040 struct page *tree_page;
1041 int ret;
1042
1043 cond_resched();
1044 stable_node = rb_entry(node, struct stable_node, node);
1045 tree_page = get_ksm_page(stable_node);
1046 if (!tree_page)
1047 return NULL;
1048
1049 ret = memcmp_pages(page, tree_page);
1050
1051 if (ret < 0) {
1052 put_page(tree_page);
1053 node = node->rb_left;
1054 } else if (ret > 0) {
1055 put_page(tree_page);
1056 node = node->rb_right;
1057 } else
1058 return tree_page;
1059 }
1060
1061 return NULL;
1062 }
1063
1064 /*
1065 * stable_tree_insert - insert stable tree node pointing to new ksm page
1066 * into the stable tree.
1067 *
1068 * This function returns the stable tree node just allocated on success,
1069 * NULL otherwise.
1070 */
1071 static struct stable_node *stable_tree_insert(struct page *kpage)
1072 {
1073 int nid;
1074 unsigned long kpfn;
1075 struct rb_node **new;
1076 struct rb_node *parent = NULL;
1077 struct stable_node *stable_node;
1078
1079 kpfn = page_to_pfn(kpage);
1080 nid = get_kpfn_nid(kpfn);
1081 new = &root_stable_tree[nid].rb_node;
1082
1083 while (*new) {
1084 struct page *tree_page;
1085 int ret;
1086
1087 cond_resched();
1088 stable_node = rb_entry(*new, struct stable_node, node);
1089 tree_page = get_ksm_page(stable_node);
1090 if (!tree_page)
1091 return NULL;
1092
1093 ret = memcmp_pages(kpage, tree_page);
1094 put_page(tree_page);
1095
1096 parent = *new;
1097 if (ret < 0)
1098 new = &parent->rb_left;
1099 else if (ret > 0)
1100 new = &parent->rb_right;
1101 else {
1102 /*
1103 * It is not a bug that stable_tree_search() didn't
1104 * find this node: because at that time our page was
1105 * not yet write-protected, so may have changed since.
1106 */
1107 return NULL;
1108 }
1109 }
1110
1111 stable_node = alloc_stable_node();
1112 if (!stable_node)
1113 return NULL;
1114
1115 INIT_HLIST_HEAD(&stable_node->hlist);
1116 stable_node->kpfn = kpfn;
1117 set_page_stable_node(kpage, stable_node);
1118 rb_link_node(&stable_node->node, parent, new);
1119 rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1120
1121 return stable_node;
1122 }
1123
1124 /*
1125 * unstable_tree_search_insert - search for identical page,
1126 * else insert rmap_item into the unstable tree.
1127 *
1128 * This function searches for a page in the unstable tree identical to the
1129 * page currently being scanned; and if no identical page is found in the
1130 * tree, we insert rmap_item as a new object into the unstable tree.
1131 *
1132 * This function returns pointer to rmap_item found to be identical
1133 * to the currently scanned page, NULL otherwise.
1134 *
1135 * This function does both searching and inserting, because they share
1136 * the same walking algorithm in an rbtree.
1137 */
1138 static
1139 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1140 struct page *page,
1141 struct page **tree_pagep)
1142 {
1143 struct rb_node **new;
1144 struct rb_root *root;
1145 struct rb_node *parent = NULL;
1146 int nid;
1147
1148 nid = get_kpfn_nid(page_to_pfn(page));
1149 root = &root_unstable_tree[nid];
1150 new = &root->rb_node;
1151
1152 while (*new) {
1153 struct rmap_item *tree_rmap_item;
1154 struct page *tree_page;
1155 int ret;
1156
1157 cond_resched();
1158 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1159 tree_page = get_mergeable_page(tree_rmap_item);
1160 if (IS_ERR_OR_NULL(tree_page))
1161 return NULL;
1162
1163 /*
1164 * Don't substitute a ksm page for a forked page.
1165 */
1166 if (page == tree_page) {
1167 put_page(tree_page);
1168 return NULL;
1169 }
1170
1171 /*
1172 * If tree_page has been migrated to another NUMA node, it
1173 * will be flushed out and put into the right unstable tree
1174 * next time: only merge with it if merge_across_nodes.
1175 */
1176 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1177 put_page(tree_page);
1178 return NULL;
1179 }
1180
1181 ret = memcmp_pages(page, tree_page);
1182
1183 parent = *new;
1184 if (ret < 0) {
1185 put_page(tree_page);
1186 new = &parent->rb_left;
1187 } else if (ret > 0) {
1188 put_page(tree_page);
1189 new = &parent->rb_right;
1190 } else {
1191 *tree_pagep = tree_page;
1192 return tree_rmap_item;
1193 }
1194 }
1195
1196 rmap_item->address |= UNSTABLE_FLAG;
1197 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1198 DO_NUMA(rmap_item->nid = nid);
1199 rb_link_node(&rmap_item->node, parent, new);
1200 rb_insert_color(&rmap_item->node, root);
1201
1202 ksm_pages_unshared++;
1203 return NULL;
1204 }
1205
1206 /*
1207 * stable_tree_append - add another rmap_item to the linked list of
1208 * rmap_items hanging off a given node of the stable tree, all sharing
1209 * the same ksm page.
1210 */
1211 static void stable_tree_append(struct rmap_item *rmap_item,
1212 struct stable_node *stable_node)
1213 {
1214 /*
1215 * Usually rmap_item->nid is already set correctly,
1216 * but it may be wrong after switching merge_across_nodes.
1217 */
1218 DO_NUMA(rmap_item->nid = get_kpfn_nid(stable_node->kpfn));
1219 rmap_item->head = stable_node;
1220 rmap_item->address |= STABLE_FLAG;
1221 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1222
1223 if (rmap_item->hlist.next)
1224 ksm_pages_sharing++;
1225 else
1226 ksm_pages_shared++;
1227 }
1228
1229 /*
1230 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1231 * if not, compare checksum to previous and if it's the same, see if page can
1232 * be inserted into the unstable tree, or merged with a page already there and
1233 * both transferred to the stable tree.
1234 *
1235 * @page: the page that we are searching identical page to.
1236 * @rmap_item: the reverse mapping into the virtual address of this page
1237 */
1238 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1239 {
1240 struct rmap_item *tree_rmap_item;
1241 struct page *tree_page = NULL;
1242 struct stable_node *stable_node;
1243 struct page *kpage;
1244 unsigned int checksum;
1245 int err;
1246
1247 remove_rmap_item_from_tree(rmap_item);
1248
1249 /* We first start with searching the page inside the stable tree */
1250 kpage = stable_tree_search(page);
1251 if (kpage) {
1252 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1253 if (!err) {
1254 /*
1255 * The page was successfully merged:
1256 * add its rmap_item to the stable tree.
1257 */
1258 lock_page(kpage);
1259 stable_tree_append(rmap_item, page_stable_node(kpage));
1260 unlock_page(kpage);
1261 }
1262 put_page(kpage);
1263 return;
1264 }
1265
1266 /*
1267 * If the hash value of the page has changed from the last time
1268 * we calculated it, this page is changing frequently: therefore we
1269 * don't want to insert it in the unstable tree, and we don't want
1270 * to waste our time searching for something identical to it there.
1271 */
1272 checksum = calc_checksum(page);
1273 if (rmap_item->oldchecksum != checksum) {
1274 rmap_item->oldchecksum = checksum;
1275 return;
1276 }
1277
1278 tree_rmap_item =
1279 unstable_tree_search_insert(rmap_item, page, &tree_page);
1280 if (tree_rmap_item) {
1281 kpage = try_to_merge_two_pages(rmap_item, page,
1282 tree_rmap_item, tree_page);
1283 put_page(tree_page);
1284 /*
1285 * As soon as we merge this page, we want to remove the
1286 * rmap_item of the page we have merged with from the unstable
1287 * tree, and insert it instead as new node in the stable tree.
1288 */
1289 if (kpage) {
1290 remove_rmap_item_from_tree(tree_rmap_item);
1291
1292 lock_page(kpage);
1293 stable_node = stable_tree_insert(kpage);
1294 if (stable_node) {
1295 stable_tree_append(tree_rmap_item, stable_node);
1296 stable_tree_append(rmap_item, stable_node);
1297 }
1298 unlock_page(kpage);
1299
1300 /*
1301 * If we fail to insert the page into the stable tree,
1302 * we will have 2 virtual addresses that are pointing
1303 * to a ksm page left outside the stable tree,
1304 * in which case we need to break_cow on both.
1305 */
1306 if (!stable_node) {
1307 break_cow(tree_rmap_item);
1308 break_cow(rmap_item);
1309 }
1310 }
1311 }
1312 }
1313
1314 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1315 struct rmap_item **rmap_list,
1316 unsigned long addr)
1317 {
1318 struct rmap_item *rmap_item;
1319
1320 while (*rmap_list) {
1321 rmap_item = *rmap_list;
1322 if ((rmap_item->address & PAGE_MASK) == addr)
1323 return rmap_item;
1324 if (rmap_item->address > addr)
1325 break;
1326 *rmap_list = rmap_item->rmap_list;
1327 remove_rmap_item_from_tree(rmap_item);
1328 free_rmap_item(rmap_item);
1329 }
1330
1331 rmap_item = alloc_rmap_item();
1332 if (rmap_item) {
1333 /* It has already been zeroed */
1334 rmap_item->mm = mm_slot->mm;
1335 rmap_item->address = addr;
1336 rmap_item->rmap_list = *rmap_list;
1337 *rmap_list = rmap_item;
1338 }
1339 return rmap_item;
1340 }
1341
1342 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1343 {
1344 struct mm_struct *mm;
1345 struct mm_slot *slot;
1346 struct vm_area_struct *vma;
1347 struct rmap_item *rmap_item;
1348 int nid;
1349
1350 if (list_empty(&ksm_mm_head.mm_list))
1351 return NULL;
1352
1353 slot = ksm_scan.mm_slot;
1354 if (slot == &ksm_mm_head) {
1355 /*
1356 * A number of pages can hang around indefinitely on per-cpu
1357 * pagevecs, raised page count preventing write_protect_page
1358 * from merging them. Though it doesn't really matter much,
1359 * it is puzzling to see some stuck in pages_volatile until
1360 * other activity jostles them out, and they also prevented
1361 * LTP's KSM test from succeeding deterministically; so drain
1362 * them here (here rather than on entry to ksm_do_scan(),
1363 * so we don't IPI too often when pages_to_scan is set low).
1364 */
1365 lru_add_drain_all();
1366
1367 for (nid = 0; nid < nr_node_ids; nid++)
1368 root_unstable_tree[nid] = RB_ROOT;
1369
1370 spin_lock(&ksm_mmlist_lock);
1371 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1372 ksm_scan.mm_slot = slot;
1373 spin_unlock(&ksm_mmlist_lock);
1374 /*
1375 * Although we tested list_empty() above, a racing __ksm_exit
1376 * of the last mm on the list may have removed it since then.
1377 */
1378 if (slot == &ksm_mm_head)
1379 return NULL;
1380 next_mm:
1381 ksm_scan.address = 0;
1382 ksm_scan.rmap_list = &slot->rmap_list;
1383 }
1384
1385 mm = slot->mm;
1386 down_read(&mm->mmap_sem);
1387 if (ksm_test_exit(mm))
1388 vma = NULL;
1389 else
1390 vma = find_vma(mm, ksm_scan.address);
1391
1392 for (; vma; vma = vma->vm_next) {
1393 if (!(vma->vm_flags & VM_MERGEABLE))
1394 continue;
1395 if (ksm_scan.address < vma->vm_start)
1396 ksm_scan.address = vma->vm_start;
1397 if (!vma->anon_vma)
1398 ksm_scan.address = vma->vm_end;
1399
1400 while (ksm_scan.address < vma->vm_end) {
1401 if (ksm_test_exit(mm))
1402 break;
1403 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1404 if (IS_ERR_OR_NULL(*page)) {
1405 ksm_scan.address += PAGE_SIZE;
1406 cond_resched();
1407 continue;
1408 }
1409 if (PageAnon(*page) ||
1410 page_trans_compound_anon(*page)) {
1411 flush_anon_page(vma, *page, ksm_scan.address);
1412 flush_dcache_page(*page);
1413 rmap_item = get_next_rmap_item(slot,
1414 ksm_scan.rmap_list, ksm_scan.address);
1415 if (rmap_item) {
1416 ksm_scan.rmap_list =
1417 &rmap_item->rmap_list;
1418 ksm_scan.address += PAGE_SIZE;
1419 } else
1420 put_page(*page);
1421 up_read(&mm->mmap_sem);
1422 return rmap_item;
1423 }
1424 put_page(*page);
1425 ksm_scan.address += PAGE_SIZE;
1426 cond_resched();
1427 }
1428 }
1429
1430 if (ksm_test_exit(mm)) {
1431 ksm_scan.address = 0;
1432 ksm_scan.rmap_list = &slot->rmap_list;
1433 }
1434 /*
1435 * Nuke all the rmap_items that are above this current rmap:
1436 * because there were no VM_MERGEABLE vmas with such addresses.
1437 */
1438 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1439
1440 spin_lock(&ksm_mmlist_lock);
1441 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1442 struct mm_slot, mm_list);
1443 if (ksm_scan.address == 0) {
1444 /*
1445 * We've completed a full scan of all vmas, holding mmap_sem
1446 * throughout, and found no VM_MERGEABLE: so do the same as
1447 * __ksm_exit does to remove this mm from all our lists now.
1448 * This applies either when cleaning up after __ksm_exit
1449 * (but beware: we can reach here even before __ksm_exit),
1450 * or when all VM_MERGEABLE areas have been unmapped (and
1451 * mmap_sem then protects against race with MADV_MERGEABLE).
1452 */
1453 hash_del(&slot->link);
1454 list_del(&slot->mm_list);
1455 spin_unlock(&ksm_mmlist_lock);
1456
1457 free_mm_slot(slot);
1458 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1459 up_read(&mm->mmap_sem);
1460 mmdrop(mm);
1461 } else {
1462 spin_unlock(&ksm_mmlist_lock);
1463 up_read(&mm->mmap_sem);
1464 }
1465
1466 /* Repeat until we've completed scanning the whole list */
1467 slot = ksm_scan.mm_slot;
1468 if (slot != &ksm_mm_head)
1469 goto next_mm;
1470
1471 ksm_scan.seqnr++;
1472 return NULL;
1473 }
1474
1475 /**
1476 * ksm_do_scan - the ksm scanner main worker function.
1477 * @scan_npages - number of pages we want to scan before we return.
1478 */
1479 static void ksm_do_scan(unsigned int scan_npages)
1480 {
1481 struct rmap_item *rmap_item;
1482 struct page *uninitialized_var(page);
1483
1484 while (scan_npages-- && likely(!freezing(current))) {
1485 cond_resched();
1486 rmap_item = scan_get_next_rmap_item(&page);
1487 if (!rmap_item)
1488 return;
1489 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1490 cmp_and_merge_page(page, rmap_item);
1491 put_page(page);
1492 }
1493 }
1494
1495 static int ksmd_should_run(void)
1496 {
1497 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1498 }
1499
1500 static int ksm_scan_thread(void *nothing)
1501 {
1502 set_freezable();
1503 set_user_nice(current, 5);
1504
1505 while (!kthread_should_stop()) {
1506 mutex_lock(&ksm_thread_mutex);
1507 if (ksmd_should_run())
1508 ksm_do_scan(ksm_thread_pages_to_scan);
1509 mutex_unlock(&ksm_thread_mutex);
1510
1511 try_to_freeze();
1512
1513 if (ksmd_should_run()) {
1514 schedule_timeout_interruptible(
1515 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1516 } else {
1517 wait_event_freezable(ksm_thread_wait,
1518 ksmd_should_run() || kthread_should_stop());
1519 }
1520 }
1521 return 0;
1522 }
1523
1524 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1525 unsigned long end, int advice, unsigned long *vm_flags)
1526 {
1527 struct mm_struct *mm = vma->vm_mm;
1528 int err;
1529
1530 switch (advice) {
1531 case MADV_MERGEABLE:
1532 /*
1533 * Be somewhat over-protective for now!
1534 */
1535 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1536 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1537 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1538 return 0; /* just ignore the advice */
1539
1540 #ifdef VM_SAO
1541 if (*vm_flags & VM_SAO)
1542 return 0;
1543 #endif
1544
1545 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1546 err = __ksm_enter(mm);
1547 if (err)
1548 return err;
1549 }
1550
1551 *vm_flags |= VM_MERGEABLE;
1552 break;
1553
1554 case MADV_UNMERGEABLE:
1555 if (!(*vm_flags & VM_MERGEABLE))
1556 return 0; /* just ignore the advice */
1557
1558 if (vma->anon_vma) {
1559 err = unmerge_ksm_pages(vma, start, end);
1560 if (err)
1561 return err;
1562 }
1563
1564 *vm_flags &= ~VM_MERGEABLE;
1565 break;
1566 }
1567
1568 return 0;
1569 }
1570
1571 int __ksm_enter(struct mm_struct *mm)
1572 {
1573 struct mm_slot *mm_slot;
1574 int needs_wakeup;
1575
1576 mm_slot = alloc_mm_slot();
1577 if (!mm_slot)
1578 return -ENOMEM;
1579
1580 /* Check ksm_run too? Would need tighter locking */
1581 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1582
1583 spin_lock(&ksm_mmlist_lock);
1584 insert_to_mm_slots_hash(mm, mm_slot);
1585 /*
1586 * Insert just behind the scanning cursor, to let the area settle
1587 * down a little; when fork is followed by immediate exec, we don't
1588 * want ksmd to waste time setting up and tearing down an rmap_list.
1589 */
1590 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1591 spin_unlock(&ksm_mmlist_lock);
1592
1593 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1594 atomic_inc(&mm->mm_count);
1595
1596 if (needs_wakeup)
1597 wake_up_interruptible(&ksm_thread_wait);
1598
1599 return 0;
1600 }
1601
1602 void __ksm_exit(struct mm_struct *mm)
1603 {
1604 struct mm_slot *mm_slot;
1605 int easy_to_free = 0;
1606
1607 /*
1608 * This process is exiting: if it's straightforward (as is the
1609 * case when ksmd was never running), free mm_slot immediately.
1610 * But if it's at the cursor or has rmap_items linked to it, use
1611 * mmap_sem to synchronize with any break_cows before pagetables
1612 * are freed, and leave the mm_slot on the list for ksmd to free.
1613 * Beware: ksm may already have noticed it exiting and freed the slot.
1614 */
1615
1616 spin_lock(&ksm_mmlist_lock);
1617 mm_slot = get_mm_slot(mm);
1618 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1619 if (!mm_slot->rmap_list) {
1620 hash_del(&mm_slot->link);
1621 list_del(&mm_slot->mm_list);
1622 easy_to_free = 1;
1623 } else {
1624 list_move(&mm_slot->mm_list,
1625 &ksm_scan.mm_slot->mm_list);
1626 }
1627 }
1628 spin_unlock(&ksm_mmlist_lock);
1629
1630 if (easy_to_free) {
1631 free_mm_slot(mm_slot);
1632 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1633 mmdrop(mm);
1634 } else if (mm_slot) {
1635 down_write(&mm->mmap_sem);
1636 up_write(&mm->mmap_sem);
1637 }
1638 }
1639
1640 struct page *ksm_does_need_to_copy(struct page *page,
1641 struct vm_area_struct *vma, unsigned long address)
1642 {
1643 struct page *new_page;
1644
1645 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1646 if (new_page) {
1647 copy_user_highpage(new_page, page, address, vma);
1648
1649 SetPageDirty(new_page);
1650 __SetPageUptodate(new_page);
1651 __set_page_locked(new_page);
1652 }
1653
1654 return new_page;
1655 }
1656
1657 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1658 unsigned long *vm_flags)
1659 {
1660 struct stable_node *stable_node;
1661 struct rmap_item *rmap_item;
1662 struct hlist_node *hlist;
1663 unsigned int mapcount = page_mapcount(page);
1664 int referenced = 0;
1665 int search_new_forks = 0;
1666
1667 VM_BUG_ON(!PageKsm(page));
1668 VM_BUG_ON(!PageLocked(page));
1669
1670 stable_node = page_stable_node(page);
1671 if (!stable_node)
1672 return 0;
1673 again:
1674 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1675 struct anon_vma *anon_vma = rmap_item->anon_vma;
1676 struct anon_vma_chain *vmac;
1677 struct vm_area_struct *vma;
1678
1679 anon_vma_lock_read(anon_vma);
1680 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1681 0, ULONG_MAX) {
1682 vma = vmac->vma;
1683 if (rmap_item->address < vma->vm_start ||
1684 rmap_item->address >= vma->vm_end)
1685 continue;
1686 /*
1687 * Initially we examine only the vma which covers this
1688 * rmap_item; but later, if there is still work to do,
1689 * we examine covering vmas in other mms: in case they
1690 * were forked from the original since ksmd passed.
1691 */
1692 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1693 continue;
1694
1695 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1696 continue;
1697
1698 referenced += page_referenced_one(page, vma,
1699 rmap_item->address, &mapcount, vm_flags);
1700 if (!search_new_forks || !mapcount)
1701 break;
1702 }
1703 anon_vma_unlock_read(anon_vma);
1704 if (!mapcount)
1705 goto out;
1706 }
1707 if (!search_new_forks++)
1708 goto again;
1709 out:
1710 return referenced;
1711 }
1712
1713 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1714 {
1715 struct stable_node *stable_node;
1716 struct hlist_node *hlist;
1717 struct rmap_item *rmap_item;
1718 int ret = SWAP_AGAIN;
1719 int search_new_forks = 0;
1720
1721 VM_BUG_ON(!PageKsm(page));
1722 VM_BUG_ON(!PageLocked(page));
1723
1724 stable_node = page_stable_node(page);
1725 if (!stable_node)
1726 return SWAP_FAIL;
1727 again:
1728 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1729 struct anon_vma *anon_vma = rmap_item->anon_vma;
1730 struct anon_vma_chain *vmac;
1731 struct vm_area_struct *vma;
1732
1733 anon_vma_lock_read(anon_vma);
1734 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1735 0, ULONG_MAX) {
1736 vma = vmac->vma;
1737 if (rmap_item->address < vma->vm_start ||
1738 rmap_item->address >= vma->vm_end)
1739 continue;
1740 /*
1741 * Initially we examine only the vma which covers this
1742 * rmap_item; but later, if there is still work to do,
1743 * we examine covering vmas in other mms: in case they
1744 * were forked from the original since ksmd passed.
1745 */
1746 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1747 continue;
1748
1749 ret = try_to_unmap_one(page, vma,
1750 rmap_item->address, flags);
1751 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1752 anon_vma_unlock_read(anon_vma);
1753 goto out;
1754 }
1755 }
1756 anon_vma_unlock_read(anon_vma);
1757 }
1758 if (!search_new_forks++)
1759 goto again;
1760 out:
1761 return ret;
1762 }
1763
1764 #ifdef CONFIG_MIGRATION
1765 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1766 struct vm_area_struct *, unsigned long, void *), void *arg)
1767 {
1768 struct stable_node *stable_node;
1769 struct hlist_node *hlist;
1770 struct rmap_item *rmap_item;
1771 int ret = SWAP_AGAIN;
1772 int search_new_forks = 0;
1773
1774 VM_BUG_ON(!PageKsm(page));
1775 VM_BUG_ON(!PageLocked(page));
1776
1777 stable_node = page_stable_node(page);
1778 if (!stable_node)
1779 return ret;
1780 again:
1781 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1782 struct anon_vma *anon_vma = rmap_item->anon_vma;
1783 struct anon_vma_chain *vmac;
1784 struct vm_area_struct *vma;
1785
1786 anon_vma_lock_read(anon_vma);
1787 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1788 0, ULONG_MAX) {
1789 vma = vmac->vma;
1790 if (rmap_item->address < vma->vm_start ||
1791 rmap_item->address >= vma->vm_end)
1792 continue;
1793 /*
1794 * Initially we examine only the vma which covers this
1795 * rmap_item; but later, if there is still work to do,
1796 * we examine covering vmas in other mms: in case they
1797 * were forked from the original since ksmd passed.
1798 */
1799 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1800 continue;
1801
1802 ret = rmap_one(page, vma, rmap_item->address, arg);
1803 if (ret != SWAP_AGAIN) {
1804 anon_vma_unlock_read(anon_vma);
1805 goto out;
1806 }
1807 }
1808 anon_vma_unlock_read(anon_vma);
1809 }
1810 if (!search_new_forks++)
1811 goto again;
1812 out:
1813 return ret;
1814 }
1815
1816 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1817 {
1818 struct stable_node *stable_node;
1819
1820 VM_BUG_ON(!PageLocked(oldpage));
1821 VM_BUG_ON(!PageLocked(newpage));
1822 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1823
1824 stable_node = page_stable_node(newpage);
1825 if (stable_node) {
1826 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1827 stable_node->kpfn = page_to_pfn(newpage);
1828 }
1829 }
1830 #endif /* CONFIG_MIGRATION */
1831
1832 #ifdef CONFIG_MEMORY_HOTREMOVE
1833 static void ksm_check_stable_tree(unsigned long start_pfn,
1834 unsigned long end_pfn)
1835 {
1836 struct stable_node *stable_node;
1837 struct rb_node *node;
1838 int nid;
1839
1840 for (nid = 0; nid < nr_node_ids; nid++) {
1841 node = rb_first(&root_stable_tree[nid]);
1842 while (node) {
1843 stable_node = rb_entry(node, struct stable_node, node);
1844 if (stable_node->kpfn >= start_pfn &&
1845 stable_node->kpfn < end_pfn) {
1846 /*
1847 * Don't get_ksm_page, page has already gone:
1848 * which is why we keep kpfn instead of page*
1849 */
1850 remove_node_from_stable_tree(stable_node);
1851 node = rb_first(&root_stable_tree[nid]);
1852 } else
1853 node = rb_next(node);
1854 cond_resched();
1855 }
1856 }
1857 }
1858
1859 static int ksm_memory_callback(struct notifier_block *self,
1860 unsigned long action, void *arg)
1861 {
1862 struct memory_notify *mn = arg;
1863
1864 switch (action) {
1865 case MEM_GOING_OFFLINE:
1866 /*
1867 * Keep it very simple for now: just lock out ksmd and
1868 * MADV_UNMERGEABLE while any memory is going offline.
1869 * mutex_lock_nested() is necessary because lockdep was alarmed
1870 * that here we take ksm_thread_mutex inside notifier chain
1871 * mutex, and later take notifier chain mutex inside
1872 * ksm_thread_mutex to unlock it. But that's safe because both
1873 * are inside mem_hotplug_mutex.
1874 */
1875 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1876 break;
1877
1878 case MEM_OFFLINE:
1879 /*
1880 * Most of the work is done by page migration; but there might
1881 * be a few stable_nodes left over, still pointing to struct
1882 * pages which have been offlined: prune those from the tree,
1883 * otherwise get_ksm_page() might later try to access a
1884 * non-existent struct page.
1885 */
1886 ksm_check_stable_tree(mn->start_pfn,
1887 mn->start_pfn + mn->nr_pages);
1888 /* fallthrough */
1889
1890 case MEM_CANCEL_OFFLINE:
1891 mutex_unlock(&ksm_thread_mutex);
1892 break;
1893 }
1894 return NOTIFY_OK;
1895 }
1896 #endif /* CONFIG_MEMORY_HOTREMOVE */
1897
1898 #ifdef CONFIG_SYSFS
1899 /*
1900 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1901 */
1902
1903 #define KSM_ATTR_RO(_name) \
1904 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1905 #define KSM_ATTR(_name) \
1906 static struct kobj_attribute _name##_attr = \
1907 __ATTR(_name, 0644, _name##_show, _name##_store)
1908
1909 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1910 struct kobj_attribute *attr, char *buf)
1911 {
1912 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1913 }
1914
1915 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1916 struct kobj_attribute *attr,
1917 const char *buf, size_t count)
1918 {
1919 unsigned long msecs;
1920 int err;
1921
1922 err = strict_strtoul(buf, 10, &msecs);
1923 if (err || msecs > UINT_MAX)
1924 return -EINVAL;
1925
1926 ksm_thread_sleep_millisecs = msecs;
1927
1928 return count;
1929 }
1930 KSM_ATTR(sleep_millisecs);
1931
1932 static ssize_t pages_to_scan_show(struct kobject *kobj,
1933 struct kobj_attribute *attr, char *buf)
1934 {
1935 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1936 }
1937
1938 static ssize_t pages_to_scan_store(struct kobject *kobj,
1939 struct kobj_attribute *attr,
1940 const char *buf, size_t count)
1941 {
1942 int err;
1943 unsigned long nr_pages;
1944
1945 err = strict_strtoul(buf, 10, &nr_pages);
1946 if (err || nr_pages > UINT_MAX)
1947 return -EINVAL;
1948
1949 ksm_thread_pages_to_scan = nr_pages;
1950
1951 return count;
1952 }
1953 KSM_ATTR(pages_to_scan);
1954
1955 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1956 char *buf)
1957 {
1958 return sprintf(buf, "%u\n", ksm_run);
1959 }
1960
1961 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1962 const char *buf, size_t count)
1963 {
1964 int err;
1965 unsigned long flags;
1966
1967 err = strict_strtoul(buf, 10, &flags);
1968 if (err || flags > UINT_MAX)
1969 return -EINVAL;
1970 if (flags > KSM_RUN_UNMERGE)
1971 return -EINVAL;
1972
1973 /*
1974 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1975 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1976 * breaking COW to free the pages_shared (but leaves mm_slots
1977 * on the list for when ksmd may be set running again).
1978 */
1979
1980 mutex_lock(&ksm_thread_mutex);
1981 if (ksm_run != flags) {
1982 ksm_run = flags;
1983 if (flags & KSM_RUN_UNMERGE) {
1984 set_current_oom_origin();
1985 err = unmerge_and_remove_all_rmap_items();
1986 clear_current_oom_origin();
1987 if (err) {
1988 ksm_run = KSM_RUN_STOP;
1989 count = err;
1990 }
1991 }
1992 }
1993 mutex_unlock(&ksm_thread_mutex);
1994
1995 if (flags & KSM_RUN_MERGE)
1996 wake_up_interruptible(&ksm_thread_wait);
1997
1998 return count;
1999 }
2000 KSM_ATTR(run);
2001
2002 #ifdef CONFIG_NUMA
2003 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2004 struct kobj_attribute *attr, char *buf)
2005 {
2006 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2007 }
2008
2009 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2010 struct kobj_attribute *attr,
2011 const char *buf, size_t count)
2012 {
2013 int err;
2014 unsigned long knob;
2015
2016 err = kstrtoul(buf, 10, &knob);
2017 if (err)
2018 return err;
2019 if (knob > 1)
2020 return -EINVAL;
2021
2022 mutex_lock(&ksm_thread_mutex);
2023 if (ksm_merge_across_nodes != knob) {
2024 if (ksm_pages_shared)
2025 err = -EBUSY;
2026 else
2027 ksm_merge_across_nodes = knob;
2028 }
2029 mutex_unlock(&ksm_thread_mutex);
2030
2031 return err ? err : count;
2032 }
2033 KSM_ATTR(merge_across_nodes);
2034 #endif
2035
2036 static ssize_t pages_shared_show(struct kobject *kobj,
2037 struct kobj_attribute *attr, char *buf)
2038 {
2039 return sprintf(buf, "%lu\n", ksm_pages_shared);
2040 }
2041 KSM_ATTR_RO(pages_shared);
2042
2043 static ssize_t pages_sharing_show(struct kobject *kobj,
2044 struct kobj_attribute *attr, char *buf)
2045 {
2046 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2047 }
2048 KSM_ATTR_RO(pages_sharing);
2049
2050 static ssize_t pages_unshared_show(struct kobject *kobj,
2051 struct kobj_attribute *attr, char *buf)
2052 {
2053 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2054 }
2055 KSM_ATTR_RO(pages_unshared);
2056
2057 static ssize_t pages_volatile_show(struct kobject *kobj,
2058 struct kobj_attribute *attr, char *buf)
2059 {
2060 long ksm_pages_volatile;
2061
2062 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2063 - ksm_pages_sharing - ksm_pages_unshared;
2064 /*
2065 * It was not worth any locking to calculate that statistic,
2066 * but it might therefore sometimes be negative: conceal that.
2067 */
2068 if (ksm_pages_volatile < 0)
2069 ksm_pages_volatile = 0;
2070 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2071 }
2072 KSM_ATTR_RO(pages_volatile);
2073
2074 static ssize_t full_scans_show(struct kobject *kobj,
2075 struct kobj_attribute *attr, char *buf)
2076 {
2077 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2078 }
2079 KSM_ATTR_RO(full_scans);
2080
2081 static struct attribute *ksm_attrs[] = {
2082 &sleep_millisecs_attr.attr,
2083 &pages_to_scan_attr.attr,
2084 &run_attr.attr,
2085 &pages_shared_attr.attr,
2086 &pages_sharing_attr.attr,
2087 &pages_unshared_attr.attr,
2088 &pages_volatile_attr.attr,
2089 &full_scans_attr.attr,
2090 #ifdef CONFIG_NUMA
2091 &merge_across_nodes_attr.attr,
2092 #endif
2093 NULL,
2094 };
2095
2096 static struct attribute_group ksm_attr_group = {
2097 .attrs = ksm_attrs,
2098 .name = "ksm",
2099 };
2100 #endif /* CONFIG_SYSFS */
2101
2102 static int __init ksm_init(void)
2103 {
2104 struct task_struct *ksm_thread;
2105 int err;
2106 int nid;
2107
2108 err = ksm_slab_init();
2109 if (err)
2110 goto out;
2111
2112 for (nid = 0; nid < nr_node_ids; nid++)
2113 root_stable_tree[nid] = RB_ROOT;
2114
2115 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2116 if (IS_ERR(ksm_thread)) {
2117 printk(KERN_ERR "ksm: creating kthread failed\n");
2118 err = PTR_ERR(ksm_thread);
2119 goto out_free;
2120 }
2121
2122 #ifdef CONFIG_SYSFS
2123 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2124 if (err) {
2125 printk(KERN_ERR "ksm: register sysfs failed\n");
2126 kthread_stop(ksm_thread);
2127 goto out_free;
2128 }
2129 #else
2130 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2131
2132 #endif /* CONFIG_SYSFS */
2133
2134 #ifdef CONFIG_MEMORY_HOTREMOVE
2135 /*
2136 * Choose a high priority since the callback takes ksm_thread_mutex:
2137 * later callbacks could only be taking locks which nest within that.
2138 */
2139 hotplug_memory_notifier(ksm_memory_callback, 100);
2140 #endif
2141 return 0;
2142
2143 out_free:
2144 ksm_slab_free();
2145 out:
2146 return err;
2147 }
2148 module_init(ksm_init)
This page took 0.073675 seconds and 5 git commands to generate.