Restartable sequences: self-tests
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
104 }
105
106 /*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
124 {
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138 }
139
140 /**
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
148 *
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
150 *
151 * RETURNS:
152 * Found address on success, 0 on failure.
153 */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
158 {
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
174
175 return 0;
176 }
177
178 /**
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
197 * RETURNS:
198 * Found address on success, 0 on failure.
199 */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
203 {
204 phys_addr_t kernel_end, ret;
205
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242 }
243
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
246 }
247
248 /**
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
254 *
255 * Find @size free area aligned to @align in the specified range.
256 *
257 * RETURNS:
258 * Found address on success, 0 on failure.
259 */
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
263 {
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
266
267 again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
270
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
276 }
277
278 return ret;
279 }
280
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283 type->total_size -= type->regions[r].size;
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 type->cnt--;
287
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
290 WARN_ON(type->total_size != 0);
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
294 type->regions[0].flags = 0;
295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296 }
297 }
298
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
303 {
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
306
307 *addr = __pa(memblock.reserved.regions);
308
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
311 }
312
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
315 {
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
318
319 *addr = __pa(memblock.memory.regions);
320
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
323 }
324
325 #endif
326
327 /**
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
332 *
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
338 *
339 * RETURNS:
340 * 0 on success, -1 on failure.
341 */
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
345 {
346 struct memblock_region *new_array, *old_array;
347 phys_addr_t old_alloc_size, new_alloc_size;
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
350 int *in_slab;
351
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
354 */
355 if (!memblock_can_resize)
356 return -1;
357
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
361 /*
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
364 */
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
367
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
373
374 /* Try to find some space for it.
375 *
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
380 *
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
384 */
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
387 addr = new_array ? __pa(new_array) : 0;
388 } else {
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
392
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
395 new_alloc_size, PAGE_SIZE);
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
400
401 new_array = addr ? __va(addr) : NULL;
402 }
403 if (!addr) {
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
407 }
408
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
412
413 /*
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
417 */
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
423
424 /* Free old array. We needn't free it if the array is the static one */
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
429 memblock_free(__pa(old_array), old_alloc_size);
430
431 /*
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
434 */
435 if (!use_slab)
436 BUG_ON(memblock_reserve(addr, new_alloc_size));
437
438 /* Update slab flag */
439 *in_slab = use_slab;
440
441 return 0;
442 }
443
444 /**
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
447 *
448 * Scan @type and merge neighboring compatible regions.
449 */
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
451 {
452 int i = 0;
453
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
458
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
466 }
467
468 this->size += next->size;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471 type->cnt--;
472 }
473 }
474
475 /**
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
483 *
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accomodate the new region.
486 */
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
489 phys_addr_t size,
490 int nid, unsigned long flags)
491 {
492 struct memblock_region *rgn = &type->regions[idx];
493
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
498 rgn->flags = flags;
499 memblock_set_region_node(rgn, nid);
500 type->cnt++;
501 type->total_size += size;
502 }
503
504 /**
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
511 *
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
516 *
517 * RETURNS:
518 * 0 on success, -errno on failure.
519 */
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
523 {
524 bool insert = false;
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
527 int idx, nr_new;
528 struct memblock_region *rgn;
529
530 if (!size)
531 return 0;
532
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
535 WARN_ON(type->cnt != 1 || type->total_size);
536 type->regions[0].base = base;
537 type->regions[0].size = size;
538 type->regions[0].flags = flags;
539 memblock_set_region_node(&type->regions[0], nid);
540 type->total_size = size;
541 return 0;
542 }
543 repeat:
544 /*
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accomodate the new area. The second actually inserts them.
548 */
549 base = obase;
550 nr_new = 0;
551
552 for_each_memblock_type(type, rgn) {
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
555
556 if (rbase >= end)
557 break;
558 if (rend <= base)
559 continue;
560 /*
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
563 */
564 if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568 WARN_ON(flags != rgn->flags);
569 nr_new++;
570 if (insert)
571 memblock_insert_region(type, idx++, base,
572 rbase - base, nid,
573 flags);
574 }
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
577 }
578
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
583 memblock_insert_region(type, idx, base, end - base,
584 nid, flags);
585 }
586
587 /*
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
590 */
591 if (!insert) {
592 while (type->cnt + nr_new > type->max)
593 if (memblock_double_array(type, obase, size) < 0)
594 return -ENOMEM;
595 insert = true;
596 goto repeat;
597 } else {
598 memblock_merge_regions(type);
599 return 0;
600 }
601 }
602
603 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
604 int nid)
605 {
606 return memblock_add_range(&memblock.memory, base, size, nid, 0);
607 }
608
609 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
610 {
611 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
612 (unsigned long long)base,
613 (unsigned long long)base + size - 1,
614 0UL, (void *)_RET_IP_);
615
616 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
617 }
618
619 /**
620 * memblock_isolate_range - isolate given range into disjoint memblocks
621 * @type: memblock type to isolate range for
622 * @base: base of range to isolate
623 * @size: size of range to isolate
624 * @start_rgn: out parameter for the start of isolated region
625 * @end_rgn: out parameter for the end of isolated region
626 *
627 * Walk @type and ensure that regions don't cross the boundaries defined by
628 * [@base,@base+@size). Crossing regions are split at the boundaries,
629 * which may create at most two more regions. The index of the first
630 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
631 *
632 * RETURNS:
633 * 0 on success, -errno on failure.
634 */
635 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
636 phys_addr_t base, phys_addr_t size,
637 int *start_rgn, int *end_rgn)
638 {
639 phys_addr_t end = base + memblock_cap_size(base, &size);
640 int idx;
641 struct memblock_region *rgn;
642
643 *start_rgn = *end_rgn = 0;
644
645 if (!size)
646 return 0;
647
648 /* we'll create at most two more regions */
649 while (type->cnt + 2 > type->max)
650 if (memblock_double_array(type, base, size) < 0)
651 return -ENOMEM;
652
653 for_each_memblock_type(type, rgn) {
654 phys_addr_t rbase = rgn->base;
655 phys_addr_t rend = rbase + rgn->size;
656
657 if (rbase >= end)
658 break;
659 if (rend <= base)
660 continue;
661
662 if (rbase < base) {
663 /*
664 * @rgn intersects from below. Split and continue
665 * to process the next region - the new top half.
666 */
667 rgn->base = base;
668 rgn->size -= base - rbase;
669 type->total_size -= base - rbase;
670 memblock_insert_region(type, idx, rbase, base - rbase,
671 memblock_get_region_node(rgn),
672 rgn->flags);
673 } else if (rend > end) {
674 /*
675 * @rgn intersects from above. Split and redo the
676 * current region - the new bottom half.
677 */
678 rgn->base = end;
679 rgn->size -= end - rbase;
680 type->total_size -= end - rbase;
681 memblock_insert_region(type, idx--, rbase, end - rbase,
682 memblock_get_region_node(rgn),
683 rgn->flags);
684 } else {
685 /* @rgn is fully contained, record it */
686 if (!*end_rgn)
687 *start_rgn = idx;
688 *end_rgn = idx + 1;
689 }
690 }
691
692 return 0;
693 }
694
695 static int __init_memblock memblock_remove_range(struct memblock_type *type,
696 phys_addr_t base, phys_addr_t size)
697 {
698 int start_rgn, end_rgn;
699 int i, ret;
700
701 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
702 if (ret)
703 return ret;
704
705 for (i = end_rgn - 1; i >= start_rgn; i--)
706 memblock_remove_region(type, i);
707 return 0;
708 }
709
710 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
711 {
712 return memblock_remove_range(&memblock.memory, base, size);
713 }
714
715
716 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
717 {
718 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
719 (unsigned long long)base,
720 (unsigned long long)base + size - 1,
721 (void *)_RET_IP_);
722
723 kmemleak_free_part(__va(base), size);
724 return memblock_remove_range(&memblock.reserved, base, size);
725 }
726
727 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
728 {
729 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
730 (unsigned long long)base,
731 (unsigned long long)base + size - 1,
732 0UL, (void *)_RET_IP_);
733
734 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
735 }
736
737 /**
738 *
739 * This function isolates region [@base, @base + @size), and sets/clears flag
740 *
741 * Return 0 on success, -errno on failure.
742 */
743 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
744 phys_addr_t size, int set, int flag)
745 {
746 struct memblock_type *type = &memblock.memory;
747 int i, ret, start_rgn, end_rgn;
748
749 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
750 if (ret)
751 return ret;
752
753 for (i = start_rgn; i < end_rgn; i++)
754 if (set)
755 memblock_set_region_flags(&type->regions[i], flag);
756 else
757 memblock_clear_region_flags(&type->regions[i], flag);
758
759 memblock_merge_regions(type);
760 return 0;
761 }
762
763 /**
764 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
771 {
772 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
773 }
774
775 /**
776 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
783 {
784 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
785 }
786
787 /**
788 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
789 * @base: the base phys addr of the region
790 * @size: the size of the region
791 *
792 * Return 0 on success, -errno on failure.
793 */
794 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
795 {
796 system_has_some_mirror = true;
797
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
799 }
800
801 /**
802 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
809 {
810 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
811 }
812
813 /**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821 void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824 {
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843 }
844
845 /**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876 {
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961 }
962
963 /**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985 {
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 idx_b = type_b->cnt;
995 }
996
997 for (; idx_a >= 0; idx_a--) {
998 struct memblock_region *m = &type_a->regions[idx_a];
999
1000 phys_addr_t m_start = m->base;
1001 phys_addr_t m_end = m->base + m->size;
1002 int m_nid = memblock_get_region_node(m);
1003
1004 /* only memory regions are associated with nodes, check it */
1005 if (nid != NUMA_NO_NODE && nid != m_nid)
1006 continue;
1007
1008 /* skip hotpluggable memory regions if needed */
1009 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1010 continue;
1011
1012 /* if we want mirror memory skip non-mirror memory regions */
1013 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1014 continue;
1015
1016 /* skip nomap memory unless we were asked for it explicitly */
1017 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1018 continue;
1019
1020 if (!type_b) {
1021 if (out_start)
1022 *out_start = m_start;
1023 if (out_end)
1024 *out_end = m_end;
1025 if (out_nid)
1026 *out_nid = m_nid;
1027 idx_a++;
1028 *idx = (u32)idx_a | (u64)idx_b << 32;
1029 return;
1030 }
1031
1032 /* scan areas before each reservation */
1033 for (; idx_b >= 0; idx_b--) {
1034 struct memblock_region *r;
1035 phys_addr_t r_start;
1036 phys_addr_t r_end;
1037
1038 r = &type_b->regions[idx_b];
1039 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1040 r_end = idx_b < type_b->cnt ?
1041 r->base : ULLONG_MAX;
1042 /*
1043 * if idx_b advanced past idx_a,
1044 * break out to advance idx_a
1045 */
1046
1047 if (r_end <= m_start)
1048 break;
1049 /* if the two regions intersect, we're done */
1050 if (m_end > r_start) {
1051 if (out_start)
1052 *out_start = max(m_start, r_start);
1053 if (out_end)
1054 *out_end = min(m_end, r_end);
1055 if (out_nid)
1056 *out_nid = m_nid;
1057 if (m_start >= r_start)
1058 idx_a--;
1059 else
1060 idx_b--;
1061 *idx = (u32)idx_a | (u64)idx_b << 32;
1062 return;
1063 }
1064 }
1065 }
1066 /* signal end of iteration */
1067 *idx = ULLONG_MAX;
1068 }
1069
1070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1071 /*
1072 * Common iterator interface used to define for_each_mem_range().
1073 */
1074 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1075 unsigned long *out_start_pfn,
1076 unsigned long *out_end_pfn, int *out_nid)
1077 {
1078 struct memblock_type *type = &memblock.memory;
1079 struct memblock_region *r;
1080
1081 while (++*idx < type->cnt) {
1082 r = &type->regions[*idx];
1083
1084 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1085 continue;
1086 if (nid == MAX_NUMNODES || nid == r->nid)
1087 break;
1088 }
1089 if (*idx >= type->cnt) {
1090 *idx = -1;
1091 return;
1092 }
1093
1094 if (out_start_pfn)
1095 *out_start_pfn = PFN_UP(r->base);
1096 if (out_end_pfn)
1097 *out_end_pfn = PFN_DOWN(r->base + r->size);
1098 if (out_nid)
1099 *out_nid = r->nid;
1100 }
1101
1102 /**
1103 * memblock_set_node - set node ID on memblock regions
1104 * @base: base of area to set node ID for
1105 * @size: size of area to set node ID for
1106 * @type: memblock type to set node ID for
1107 * @nid: node ID to set
1108 *
1109 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1110 * Regions which cross the area boundaries are split as necessary.
1111 *
1112 * RETURNS:
1113 * 0 on success, -errno on failure.
1114 */
1115 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1116 struct memblock_type *type, int nid)
1117 {
1118 int start_rgn, end_rgn;
1119 int i, ret;
1120
1121 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1122 if (ret)
1123 return ret;
1124
1125 for (i = start_rgn; i < end_rgn; i++)
1126 memblock_set_region_node(&type->regions[i], nid);
1127
1128 memblock_merge_regions(type);
1129 return 0;
1130 }
1131 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1132
1133 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1134 phys_addr_t align, phys_addr_t start,
1135 phys_addr_t end, int nid, ulong flags)
1136 {
1137 phys_addr_t found;
1138
1139 if (!align)
1140 align = SMP_CACHE_BYTES;
1141
1142 found = memblock_find_in_range_node(size, align, start, end, nid,
1143 flags);
1144 if (found && !memblock_reserve(found, size)) {
1145 /*
1146 * The min_count is set to 0 so that memblock allocations are
1147 * never reported as leaks.
1148 */
1149 kmemleak_alloc(__va(found), size, 0, 0);
1150 return found;
1151 }
1152 return 0;
1153 }
1154
1155 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1156 phys_addr_t start, phys_addr_t end,
1157 ulong flags)
1158 {
1159 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1160 flags);
1161 }
1162
1163 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1164 phys_addr_t align, phys_addr_t max_addr,
1165 int nid, ulong flags)
1166 {
1167 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1168 }
1169
1170 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1171 {
1172 ulong flags = choose_memblock_flags();
1173 phys_addr_t ret;
1174
1175 again:
1176 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1177 nid, flags);
1178
1179 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1180 flags &= ~MEMBLOCK_MIRROR;
1181 goto again;
1182 }
1183 return ret;
1184 }
1185
1186 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1187 {
1188 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1189 MEMBLOCK_NONE);
1190 }
1191
1192 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1193 {
1194 phys_addr_t alloc;
1195
1196 alloc = __memblock_alloc_base(size, align, max_addr);
1197
1198 if (alloc == 0)
1199 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1200 (unsigned long long) size, (unsigned long long) max_addr);
1201
1202 return alloc;
1203 }
1204
1205 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1206 {
1207 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1208 }
1209
1210 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1211 {
1212 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1213
1214 if (res)
1215 return res;
1216 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1217 }
1218
1219 /**
1220 * memblock_virt_alloc_internal - allocate boot memory block
1221 * @size: size of memory block to be allocated in bytes
1222 * @align: alignment of the region and block's size
1223 * @min_addr: the lower bound of the memory region to allocate (phys address)
1224 * @max_addr: the upper bound of the memory region to allocate (phys address)
1225 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1226 *
1227 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1228 * will fall back to memory below @min_addr. Also, allocation may fall back
1229 * to any node in the system if the specified node can not
1230 * hold the requested memory.
1231 *
1232 * The allocation is performed from memory region limited by
1233 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1234 *
1235 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1236 *
1237 * The phys address of allocated boot memory block is converted to virtual and
1238 * allocated memory is reset to 0.
1239 *
1240 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1241 * allocated boot memory block, so that it is never reported as leaks.
1242 *
1243 * RETURNS:
1244 * Virtual address of allocated memory block on success, NULL on failure.
1245 */
1246 static void * __init memblock_virt_alloc_internal(
1247 phys_addr_t size, phys_addr_t align,
1248 phys_addr_t min_addr, phys_addr_t max_addr,
1249 int nid)
1250 {
1251 phys_addr_t alloc;
1252 void *ptr;
1253 ulong flags = choose_memblock_flags();
1254
1255 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1256 nid = NUMA_NO_NODE;
1257
1258 /*
1259 * Detect any accidental use of these APIs after slab is ready, as at
1260 * this moment memblock may be deinitialized already and its
1261 * internal data may be destroyed (after execution of free_all_bootmem)
1262 */
1263 if (WARN_ON_ONCE(slab_is_available()))
1264 return kzalloc_node(size, GFP_NOWAIT, nid);
1265
1266 if (!align)
1267 align = SMP_CACHE_BYTES;
1268
1269 if (max_addr > memblock.current_limit)
1270 max_addr = memblock.current_limit;
1271
1272 again:
1273 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1274 nid, flags);
1275 if (alloc)
1276 goto done;
1277
1278 if (nid != NUMA_NO_NODE) {
1279 alloc = memblock_find_in_range_node(size, align, min_addr,
1280 max_addr, NUMA_NO_NODE,
1281 flags);
1282 if (alloc)
1283 goto done;
1284 }
1285
1286 if (min_addr) {
1287 min_addr = 0;
1288 goto again;
1289 }
1290
1291 if (flags & MEMBLOCK_MIRROR) {
1292 flags &= ~MEMBLOCK_MIRROR;
1293 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1294 &size);
1295 goto again;
1296 }
1297
1298 return NULL;
1299 done:
1300 memblock_reserve(alloc, size);
1301 ptr = phys_to_virt(alloc);
1302 memset(ptr, 0, size);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313 }
1314
1315 /**
1316 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1317 * @size: size of memory block to be allocated in bytes
1318 * @align: alignment of the region and block's size
1319 * @min_addr: the lower bound of the memory region from where the allocation
1320 * is preferred (phys address)
1321 * @max_addr: the upper bound of the memory region from where the allocation
1322 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1323 * allocate only from memory limited by memblock.current_limit value
1324 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1325 *
1326 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1327 * additional debug information (including caller info), if enabled.
1328 *
1329 * RETURNS:
1330 * Virtual address of allocated memory block on success, NULL on failure.
1331 */
1332 void * __init memblock_virt_alloc_try_nid_nopanic(
1333 phys_addr_t size, phys_addr_t align,
1334 phys_addr_t min_addr, phys_addr_t max_addr,
1335 int nid)
1336 {
1337 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1338 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1339 (u64)max_addr, (void *)_RET_IP_);
1340 return memblock_virt_alloc_internal(size, align, min_addr,
1341 max_addr, nid);
1342 }
1343
1344 /**
1345 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1346 * @size: size of memory block to be allocated in bytes
1347 * @align: alignment of the region and block's size
1348 * @min_addr: the lower bound of the memory region from where the allocation
1349 * is preferred (phys address)
1350 * @max_addr: the upper bound of the memory region from where the allocation
1351 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1352 * allocate only from memory limited by memblock.current_limit value
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 *
1355 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1356 * which provides debug information (including caller info), if enabled,
1357 * and panics if the request can not be satisfied.
1358 *
1359 * RETURNS:
1360 * Virtual address of allocated memory block on success, NULL on failure.
1361 */
1362 void * __init memblock_virt_alloc_try_nid(
1363 phys_addr_t size, phys_addr_t align,
1364 phys_addr_t min_addr, phys_addr_t max_addr,
1365 int nid)
1366 {
1367 void *ptr;
1368
1369 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1370 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1371 (u64)max_addr, (void *)_RET_IP_);
1372 ptr = memblock_virt_alloc_internal(size, align,
1373 min_addr, max_addr, nid);
1374 if (ptr)
1375 return ptr;
1376
1377 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1378 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1379 (u64)max_addr);
1380 return NULL;
1381 }
1382
1383 /**
1384 * __memblock_free_early - free boot memory block
1385 * @base: phys starting address of the boot memory block
1386 * @size: size of the boot memory block in bytes
1387 *
1388 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1389 * The freeing memory will not be released to the buddy allocator.
1390 */
1391 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1392 {
1393 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1394 __func__, (u64)base, (u64)base + size - 1,
1395 (void *)_RET_IP_);
1396 kmemleak_free_part(__va(base), size);
1397 memblock_remove_range(&memblock.reserved, base, size);
1398 }
1399
1400 /*
1401 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1402 * @addr: phys starting address of the boot memory block
1403 * @size: size of the boot memory block in bytes
1404 *
1405 * This is only useful when the bootmem allocator has already been torn
1406 * down, but we are still initializing the system. Pages are released directly
1407 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1408 */
1409 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1410 {
1411 u64 cursor, end;
1412
1413 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1414 __func__, (u64)base, (u64)base + size - 1,
1415 (void *)_RET_IP_);
1416 kmemleak_free_part(__va(base), size);
1417 cursor = PFN_UP(base);
1418 end = PFN_DOWN(base + size);
1419
1420 for (; cursor < end; cursor++) {
1421 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1422 totalram_pages++;
1423 }
1424 }
1425
1426 /*
1427 * Remaining API functions
1428 */
1429
1430 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1431 {
1432 return memblock.memory.total_size;
1433 }
1434
1435 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1436 {
1437 unsigned long pages = 0;
1438 struct memblock_region *r;
1439 unsigned long start_pfn, end_pfn;
1440
1441 for_each_memblock(memory, r) {
1442 start_pfn = memblock_region_memory_base_pfn(r);
1443 end_pfn = memblock_region_memory_end_pfn(r);
1444 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1445 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1446 pages += end_pfn - start_pfn;
1447 }
1448
1449 return PFN_PHYS(pages);
1450 }
1451
1452 /* lowest address */
1453 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1454 {
1455 return memblock.memory.regions[0].base;
1456 }
1457
1458 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1459 {
1460 int idx = memblock.memory.cnt - 1;
1461
1462 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1463 }
1464
1465 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1466 {
1467 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1468 struct memblock_region *r;
1469
1470 if (!limit)
1471 return;
1472
1473 /* find out max address */
1474 for_each_memblock(memory, r) {
1475 if (limit <= r->size) {
1476 max_addr = r->base + limit;
1477 break;
1478 }
1479 limit -= r->size;
1480 }
1481
1482 /* truncate both memory and reserved regions */
1483 memblock_remove_range(&memblock.memory, max_addr,
1484 (phys_addr_t)ULLONG_MAX);
1485 memblock_remove_range(&memblock.reserved, max_addr,
1486 (phys_addr_t)ULLONG_MAX);
1487 }
1488
1489 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1490 {
1491 unsigned int left = 0, right = type->cnt;
1492
1493 do {
1494 unsigned int mid = (right + left) / 2;
1495
1496 if (addr < type->regions[mid].base)
1497 right = mid;
1498 else if (addr >= (type->regions[mid].base +
1499 type->regions[mid].size))
1500 left = mid + 1;
1501 else
1502 return mid;
1503 } while (left < right);
1504 return -1;
1505 }
1506
1507 bool __init memblock_is_reserved(phys_addr_t addr)
1508 {
1509 return memblock_search(&memblock.reserved, addr) != -1;
1510 }
1511
1512 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1513 {
1514 return memblock_search(&memblock.memory, addr) != -1;
1515 }
1516
1517 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1518 {
1519 int i = memblock_search(&memblock.memory, addr);
1520
1521 if (i == -1)
1522 return false;
1523 return !memblock_is_nomap(&memblock.memory.regions[i]);
1524 }
1525
1526 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1527 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1528 unsigned long *start_pfn, unsigned long *end_pfn)
1529 {
1530 struct memblock_type *type = &memblock.memory;
1531 int mid = memblock_search(type, PFN_PHYS(pfn));
1532
1533 if (mid == -1)
1534 return -1;
1535
1536 *start_pfn = PFN_DOWN(type->regions[mid].base);
1537 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1538
1539 return type->regions[mid].nid;
1540 }
1541 #endif
1542
1543 /**
1544 * memblock_is_region_memory - check if a region is a subset of memory
1545 * @base: base of region to check
1546 * @size: size of region to check
1547 *
1548 * Check if the region [@base, @base+@size) is a subset of a memory block.
1549 *
1550 * RETURNS:
1551 * 0 if false, non-zero if true
1552 */
1553 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1554 {
1555 int idx = memblock_search(&memblock.memory, base);
1556 phys_addr_t end = base + memblock_cap_size(base, &size);
1557
1558 if (idx == -1)
1559 return 0;
1560 return memblock.memory.regions[idx].base <= base &&
1561 (memblock.memory.regions[idx].base +
1562 memblock.memory.regions[idx].size) >= end;
1563 }
1564
1565 /**
1566 * memblock_is_region_reserved - check if a region intersects reserved memory
1567 * @base: base of region to check
1568 * @size: size of region to check
1569 *
1570 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1571 *
1572 * RETURNS:
1573 * True if they intersect, false if not.
1574 */
1575 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1576 {
1577 memblock_cap_size(base, &size);
1578 return memblock_overlaps_region(&memblock.reserved, base, size);
1579 }
1580
1581 void __init_memblock memblock_trim_memory(phys_addr_t align)
1582 {
1583 phys_addr_t start, end, orig_start, orig_end;
1584 struct memblock_region *r;
1585
1586 for_each_memblock(memory, r) {
1587 orig_start = r->base;
1588 orig_end = r->base + r->size;
1589 start = round_up(orig_start, align);
1590 end = round_down(orig_end, align);
1591
1592 if (start == orig_start && end == orig_end)
1593 continue;
1594
1595 if (start < end) {
1596 r->base = start;
1597 r->size = end - start;
1598 } else {
1599 memblock_remove_region(&memblock.memory,
1600 r - memblock.memory.regions);
1601 r--;
1602 }
1603 }
1604 }
1605
1606 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1607 {
1608 memblock.current_limit = limit;
1609 }
1610
1611 phys_addr_t __init_memblock memblock_get_current_limit(void)
1612 {
1613 return memblock.current_limit;
1614 }
1615
1616 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1617 {
1618 unsigned long long base, size;
1619 unsigned long flags;
1620 int idx;
1621 struct memblock_region *rgn;
1622
1623 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1624
1625 for_each_memblock_type(type, rgn) {
1626 char nid_buf[32] = "";
1627
1628 base = rgn->base;
1629 size = rgn->size;
1630 flags = rgn->flags;
1631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1632 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1633 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1634 memblock_get_region_node(rgn));
1635 #endif
1636 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1637 name, idx, base, base + size - 1, size, nid_buf, flags);
1638 }
1639 }
1640
1641 void __init_memblock __memblock_dump_all(void)
1642 {
1643 pr_info("MEMBLOCK configuration:\n");
1644 pr_info(" memory size = %#llx reserved size = %#llx\n",
1645 (unsigned long long)memblock.memory.total_size,
1646 (unsigned long long)memblock.reserved.total_size);
1647
1648 memblock_dump(&memblock.memory, "memory");
1649 memblock_dump(&memblock.reserved, "reserved");
1650 }
1651
1652 void __init memblock_allow_resize(void)
1653 {
1654 memblock_can_resize = 1;
1655 }
1656
1657 static int __init early_memblock(char *p)
1658 {
1659 if (p && strstr(p, "debug"))
1660 memblock_debug = 1;
1661 return 0;
1662 }
1663 early_param("memblock", early_memblock);
1664
1665 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1666
1667 static int memblock_debug_show(struct seq_file *m, void *private)
1668 {
1669 struct memblock_type *type = m->private;
1670 struct memblock_region *reg;
1671 int i;
1672
1673 for (i = 0; i < type->cnt; i++) {
1674 reg = &type->regions[i];
1675 seq_printf(m, "%4d: ", i);
1676 if (sizeof(phys_addr_t) == 4)
1677 seq_printf(m, "0x%08lx..0x%08lx\n",
1678 (unsigned long)reg->base,
1679 (unsigned long)(reg->base + reg->size - 1));
1680 else
1681 seq_printf(m, "0x%016llx..0x%016llx\n",
1682 (unsigned long long)reg->base,
1683 (unsigned long long)(reg->base + reg->size - 1));
1684
1685 }
1686 return 0;
1687 }
1688
1689 static int memblock_debug_open(struct inode *inode, struct file *file)
1690 {
1691 return single_open(file, memblock_debug_show, inode->i_private);
1692 }
1693
1694 static const struct file_operations memblock_debug_fops = {
1695 .open = memblock_debug_open,
1696 .read = seq_read,
1697 .llseek = seq_lseek,
1698 .release = single_release,
1699 };
1700
1701 static int __init memblock_init_debugfs(void)
1702 {
1703 struct dentry *root = debugfs_create_dir("memblock", NULL);
1704 if (!root)
1705 return -ENXIO;
1706 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1707 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1708 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1709 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1710 #endif
1711
1712 return 0;
1713 }
1714 __initcall(memblock_init_debugfs);
1715
1716 #endif /* CONFIG_DEBUG_FS */
This page took 0.062782 seconds and 5 git commands to generate.