mm: oom_kill: clean up victim marking and exiting interfaces
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Whether the swap controller is active */
82 #ifdef CONFIG_MEMCG_SWAP
83 int do_swap_account __read_mostly;
84 #else
85 #define do_swap_account 0
86 #endif
87
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
95 };
96
97 static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102 };
103
104 static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110 };
111
112 /*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118 enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
120 MEM_CGROUP_TARGET_SOFTLIMIT,
121 MEM_CGROUP_TARGET_NUMAINFO,
122 MEM_CGROUP_NTARGETS,
123 };
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 struct mem_cgroup_stat_cpu {
129 long count[MEM_CGROUP_STAT_NSTATS];
130 unsigned long events[MEMCG_NR_EVENTS];
131 unsigned long nr_page_events;
132 unsigned long targets[MEM_CGROUP_NTARGETS];
133 };
134
135 struct reclaim_iter {
136 struct mem_cgroup *position;
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139 };
140
141 /*
142 * per-zone information in memory controller.
143 */
144 struct mem_cgroup_per_zone {
145 struct lruvec lruvec;
146 unsigned long lru_size[NR_LRU_LISTS];
147
148 struct reclaim_iter iter[DEF_PRIORITY + 1];
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160 };
161
162 /*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167 struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170 };
171
172 struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174 };
175
176 struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178 };
179
180 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182 struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
184 unsigned long threshold;
185 };
186
187 /* For threshold */
188 struct mem_cgroup_threshold_ary {
189 /* An array index points to threshold just below or equal to usage. */
190 int current_threshold;
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195 };
196
197 struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206 };
207
208 /* for OOM */
209 struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212 };
213
214 /*
215 * cgroup_event represents events which userspace want to receive.
216 */
217 struct mem_cgroup_event {
218 /*
219 * memcg which the event belongs to.
220 */
221 struct mem_cgroup *memcg;
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
235 int (*register_event)(struct mem_cgroup *memcg,
236 struct eventfd_ctx *eventfd, const char *args);
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
242 void (*unregister_event)(struct mem_cgroup *memcg,
243 struct eventfd_ctx *eventfd);
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252 };
253
254 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257 /*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 */
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
265
266 /* Accounted resources */
267 struct page_counter memory;
268 struct page_counter memsw;
269 struct page_counter kmem;
270
271 /* Normal memory consumption range */
272 unsigned long low;
273 unsigned long high;
274
275 unsigned long soft_limit;
276
277 /* vmpressure notifications */
278 struct vmpressure vmpressure;
279
280 /* css_online() has been completed */
281 int initialized;
282
283 /*
284 * Should the accounting and control be hierarchical, per subtree?
285 */
286 bool use_hierarchy;
287
288 bool oom_lock;
289 atomic_t under_oom;
290 atomic_t oom_wakeups;
291
292 int swappiness;
293 /* OOM-Killer disable */
294 int oom_kill_disable;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 struct task_struct *move_lock_task;
320 unsigned long move_lock_flags;
321 /*
322 * percpu counter.
323 */
324 struct mem_cgroup_stat_cpu __percpu *stat;
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
331
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 struct cg_proto tcp_mem;
334 #endif
335 #if defined(CONFIG_MEMCG_KMEM)
336 /* Index in the kmem_cache->memcg_params.memcg_caches array */
337 int kmemcg_id;
338 bool kmem_acct_activated;
339 bool kmem_acct_active;
340 #endif
341
342 int last_scanned_node;
343 #if MAX_NUMNODES > 1
344 nodemask_t scan_nodes;
345 atomic_t numainfo_events;
346 atomic_t numainfo_updating;
347 #endif
348
349 /* List of events which userspace want to receive */
350 struct list_head event_list;
351 spinlock_t event_list_lock;
352
353 struct mem_cgroup_per_node *nodeinfo[0];
354 /* WARNING: nodeinfo must be the last member here */
355 };
356
357 #ifdef CONFIG_MEMCG_KMEM
358 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359 {
360 return memcg->kmem_acct_active;
361 }
362 #endif
363
364 /* Stuffs for move charges at task migration. */
365 /*
366 * Types of charges to be moved.
367 */
368 #define MOVE_ANON 0x1U
369 #define MOVE_FILE 0x2U
370 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
371
372 /* "mc" and its members are protected by cgroup_mutex */
373 static struct move_charge_struct {
374 spinlock_t lock; /* for from, to */
375 struct mem_cgroup *from;
376 struct mem_cgroup *to;
377 unsigned long flags;
378 unsigned long precharge;
379 unsigned long moved_charge;
380 unsigned long moved_swap;
381 struct task_struct *moving_task; /* a task moving charges */
382 wait_queue_head_t waitq; /* a waitq for other context */
383 } mc = {
384 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
386 };
387
388 /*
389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
390 * limit reclaim to prevent infinite loops, if they ever occur.
391 */
392 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
393 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
394
395 enum charge_type {
396 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397 MEM_CGROUP_CHARGE_TYPE_ANON,
398 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
399 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
400 NR_CHARGE_TYPE,
401 };
402
403 /* for encoding cft->private value on file */
404 enum res_type {
405 _MEM,
406 _MEMSWAP,
407 _OOM_TYPE,
408 _KMEM,
409 };
410
411 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
412 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
413 #define MEMFILE_ATTR(val) ((val) & 0xffff)
414 /* Used for OOM nofiier */
415 #define OOM_CONTROL (0)
416
417 /*
418 * The memcg_create_mutex will be held whenever a new cgroup is created.
419 * As a consequence, any change that needs to protect against new child cgroups
420 * appearing has to hold it as well.
421 */
422 static DEFINE_MUTEX(memcg_create_mutex);
423
424 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
425 {
426 return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 }
428
429 /* Some nice accessors for the vmpressure. */
430 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
431 {
432 if (!memcg)
433 memcg = root_mem_cgroup;
434 return &memcg->vmpressure;
435 }
436
437 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
438 {
439 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
440 }
441
442 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
443 {
444 return (memcg == root_mem_cgroup);
445 }
446
447 /*
448 * We restrict the id in the range of [1, 65535], so it can fit into
449 * an unsigned short.
450 */
451 #define MEM_CGROUP_ID_MAX USHRT_MAX
452
453 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
454 {
455 return memcg->css.id;
456 }
457
458 /*
459 * A helper function to get mem_cgroup from ID. must be called under
460 * rcu_read_lock(). The caller is responsible for calling
461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
462 * refcnt from swap can be called against removed memcg.)
463 */
464 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465 {
466 struct cgroup_subsys_state *css;
467
468 css = css_from_id(id, &memory_cgrp_subsys);
469 return mem_cgroup_from_css(css);
470 }
471
472 /* Writing them here to avoid exposing memcg's inner layout */
473 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
474
475 void sock_update_memcg(struct sock *sk)
476 {
477 if (mem_cgroup_sockets_enabled) {
478 struct mem_cgroup *memcg;
479 struct cg_proto *cg_proto;
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493 css_get(&sk->sk_cgrp->memcg->css);
494 return;
495 }
496
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
500 if (!mem_cgroup_is_root(memcg) &&
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
503 sk->sk_cgrp = cg_proto;
504 }
505 rcu_read_unlock();
506 }
507 }
508 EXPORT_SYMBOL(sock_update_memcg);
509
510 void sock_release_memcg(struct sock *sk)
511 {
512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
516 css_put(&sk->sk_cgrp->memcg->css);
517 }
518 }
519
520 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521 {
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
525 return &memcg->tcp_mem;
526 }
527 EXPORT_SYMBOL(tcp_proto_cgroup);
528
529 #endif
530
531 #ifdef CONFIG_MEMCG_KMEM
532 /*
533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
534 * The main reason for not using cgroup id for this:
535 * this works better in sparse environments, where we have a lot of memcgs,
536 * but only a few kmem-limited. Or also, if we have, for instance, 200
537 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
538 * 200 entry array for that.
539 *
540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
541 * will double each time we have to increase it.
542 */
543 static DEFINE_IDA(memcg_cache_ida);
544 int memcg_nr_cache_ids;
545
546 /* Protects memcg_nr_cache_ids */
547 static DECLARE_RWSEM(memcg_cache_ids_sem);
548
549 void memcg_get_cache_ids(void)
550 {
551 down_read(&memcg_cache_ids_sem);
552 }
553
554 void memcg_put_cache_ids(void)
555 {
556 up_read(&memcg_cache_ids_sem);
557 }
558
559 /*
560 * MIN_SIZE is different than 1, because we would like to avoid going through
561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
562 * cgroups is a reasonable guess. In the future, it could be a parameter or
563 * tunable, but that is strictly not necessary.
564 *
565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 * this constant directly from cgroup, but it is understandable that this is
567 * better kept as an internal representation in cgroup.c. In any case, the
568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 * increase ours as well if it increases.
570 */
571 #define MEMCG_CACHES_MIN_SIZE 4
572 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573
574 /*
575 * A lot of the calls to the cache allocation functions are expected to be
576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
577 * conditional to this static branch, we'll have to allow modules that does
578 * kmem_cache_alloc and the such to see this symbol as well
579 */
580 struct static_key memcg_kmem_enabled_key;
581 EXPORT_SYMBOL(memcg_kmem_enabled_key);
582
583 #endif /* CONFIG_MEMCG_KMEM */
584
585 static struct mem_cgroup_per_zone *
586 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587 {
588 int nid = zone_to_nid(zone);
589 int zid = zone_idx(zone);
590
591 return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 }
593
594 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595 {
596 return &memcg->css;
597 }
598
599 static struct mem_cgroup_per_zone *
600 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601 {
602 int nid = page_to_nid(page);
603 int zid = page_zonenum(page);
604
605 return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 }
607
608 static struct mem_cgroup_tree_per_zone *
609 soft_limit_tree_node_zone(int nid, int zid)
610 {
611 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
612 }
613
614 static struct mem_cgroup_tree_per_zone *
615 soft_limit_tree_from_page(struct page *page)
616 {
617 int nid = page_to_nid(page);
618 int zid = page_zonenum(page);
619
620 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
621 }
622
623 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
624 struct mem_cgroup_tree_per_zone *mctz,
625 unsigned long new_usage_in_excess)
626 {
627 struct rb_node **p = &mctz->rb_root.rb_node;
628 struct rb_node *parent = NULL;
629 struct mem_cgroup_per_zone *mz_node;
630
631 if (mz->on_tree)
632 return;
633
634 mz->usage_in_excess = new_usage_in_excess;
635 if (!mz->usage_in_excess)
636 return;
637 while (*p) {
638 parent = *p;
639 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
640 tree_node);
641 if (mz->usage_in_excess < mz_node->usage_in_excess)
642 p = &(*p)->rb_left;
643 /*
644 * We can't avoid mem cgroups that are over their soft
645 * limit by the same amount
646 */
647 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
648 p = &(*p)->rb_right;
649 }
650 rb_link_node(&mz->tree_node, parent, p);
651 rb_insert_color(&mz->tree_node, &mctz->rb_root);
652 mz->on_tree = true;
653 }
654
655 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
656 struct mem_cgroup_tree_per_zone *mctz)
657 {
658 if (!mz->on_tree)
659 return;
660 rb_erase(&mz->tree_node, &mctz->rb_root);
661 mz->on_tree = false;
662 }
663
664 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
665 struct mem_cgroup_tree_per_zone *mctz)
666 {
667 unsigned long flags;
668
669 spin_lock_irqsave(&mctz->lock, flags);
670 __mem_cgroup_remove_exceeded(mz, mctz);
671 spin_unlock_irqrestore(&mctz->lock, flags);
672 }
673
674 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675 {
676 unsigned long nr_pages = page_counter_read(&memcg->memory);
677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 unsigned long excess = 0;
679
680 if (nr_pages > soft_limit)
681 excess = nr_pages - soft_limit;
682
683 return excess;
684 }
685
686 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687 {
688 unsigned long excess;
689 struct mem_cgroup_per_zone *mz;
690 struct mem_cgroup_tree_per_zone *mctz;
691
692 mctz = soft_limit_tree_from_page(page);
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_zoneinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723 struct mem_cgroup_tree_per_zone *mctz;
724 struct mem_cgroup_per_zone *mz;
725 int nid, zid;
726
727 for_each_node(nid) {
728 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
729 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
730 mctz = soft_limit_tree_node_zone(nid, zid);
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733 }
734 }
735
736 static struct mem_cgroup_per_zone *
737 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
738 {
739 struct rb_node *rightmost = NULL;
740 struct mem_cgroup_per_zone *mz;
741
742 retry:
743 mz = NULL;
744 rightmost = rb_last(&mctz->rb_root);
745 if (!rightmost)
746 goto done; /* Nothing to reclaim from */
747
748 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
749 /*
750 * Remove the node now but someone else can add it back,
751 * we will to add it back at the end of reclaim to its correct
752 * position in the tree.
753 */
754 __mem_cgroup_remove_exceeded(mz, mctz);
755 if (!soft_limit_excess(mz->memcg) ||
756 !css_tryget_online(&mz->memcg->css))
757 goto retry;
758 done:
759 return mz;
760 }
761
762 static struct mem_cgroup_per_zone *
763 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
764 {
765 struct mem_cgroup_per_zone *mz;
766
767 spin_lock_irq(&mctz->lock);
768 mz = __mem_cgroup_largest_soft_limit_node(mctz);
769 spin_unlock_irq(&mctz->lock);
770 return mz;
771 }
772
773 /*
774 * Implementation Note: reading percpu statistics for memcg.
775 *
776 * Both of vmstat[] and percpu_counter has threshold and do periodic
777 * synchronization to implement "quick" read. There are trade-off between
778 * reading cost and precision of value. Then, we may have a chance to implement
779 * a periodic synchronizion of counter in memcg's counter.
780 *
781 * But this _read() function is used for user interface now. The user accounts
782 * memory usage by memory cgroup and he _always_ requires exact value because
783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
784 * have to visit all online cpus and make sum. So, for now, unnecessary
785 * synchronization is not implemented. (just implemented for cpu hotplug)
786 *
787 * If there are kernel internal actions which can make use of some not-exact
788 * value, and reading all cpu value can be performance bottleneck in some
789 * common workload, threashold and synchonization as vmstat[] should be
790 * implemented.
791 */
792 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793 enum mem_cgroup_stat_index idx)
794 {
795 long val = 0;
796 int cpu;
797
798 get_online_cpus();
799 for_each_online_cpu(cpu)
800 val += per_cpu(memcg->stat->count[idx], cpu);
801 #ifdef CONFIG_HOTPLUG_CPU
802 spin_lock(&memcg->pcp_counter_lock);
803 val += memcg->nocpu_base.count[idx];
804 spin_unlock(&memcg->pcp_counter_lock);
805 #endif
806 put_online_cpus();
807 return val;
808 }
809
810 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_index idx)
812 {
813 unsigned long val = 0;
814 int cpu;
815
816 get_online_cpus();
817 for_each_online_cpu(cpu)
818 val += per_cpu(memcg->stat->events[idx], cpu);
819 #ifdef CONFIG_HOTPLUG_CPU
820 spin_lock(&memcg->pcp_counter_lock);
821 val += memcg->nocpu_base.events[idx];
822 spin_unlock(&memcg->pcp_counter_lock);
823 #endif
824 put_online_cpus();
825 return val;
826 }
827
828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829 struct page *page,
830 int nr_pages)
831 {
832 /*
833 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
834 * counted as CACHE even if it's on ANON LRU.
835 */
836 if (PageAnon(page))
837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838 nr_pages);
839 else
840 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841 nr_pages);
842
843 if (PageTransHuge(page))
844 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
845 nr_pages);
846
847 /* pagein of a big page is an event. So, ignore page size */
848 if (nr_pages > 0)
849 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850 else {
851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 nr_pages = -nr_pages; /* for event */
853 }
854
855 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 }
857
858 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 {
860 struct mem_cgroup_per_zone *mz;
861
862 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
863 return mz->lru_size[lru];
864 }
865
866 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
867 int nid,
868 unsigned int lru_mask)
869 {
870 unsigned long nr = 0;
871 int zid;
872
873 VM_BUG_ON((unsigned)nid >= nr_node_ids);
874
875 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876 struct mem_cgroup_per_zone *mz;
877 enum lru_list lru;
878
879 for_each_lru(lru) {
880 if (!(BIT(lru) & lru_mask))
881 continue;
882 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
883 nr += mz->lru_size[lru];
884 }
885 }
886 return nr;
887 }
888
889 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890 unsigned int lru_mask)
891 {
892 unsigned long nr = 0;
893 int nid;
894
895 for_each_node_state(nid, N_MEMORY)
896 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
897 return nr;
898 }
899
900 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
901 enum mem_cgroup_events_target target)
902 {
903 unsigned long val, next;
904
905 val = __this_cpu_read(memcg->stat->nr_page_events);
906 next = __this_cpu_read(memcg->stat->targets[target]);
907 /* from time_after() in jiffies.h */
908 if ((long)next - (long)val < 0) {
909 switch (target) {
910 case MEM_CGROUP_TARGET_THRESH:
911 next = val + THRESHOLDS_EVENTS_TARGET;
912 break;
913 case MEM_CGROUP_TARGET_SOFTLIMIT:
914 next = val + SOFTLIMIT_EVENTS_TARGET;
915 break;
916 case MEM_CGROUP_TARGET_NUMAINFO:
917 next = val + NUMAINFO_EVENTS_TARGET;
918 break;
919 default:
920 break;
921 }
922 __this_cpu_write(memcg->stat->targets[target], next);
923 return true;
924 }
925 return false;
926 }
927
928 /*
929 * Check events in order.
930 *
931 */
932 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 {
934 /* threshold event is triggered in finer grain than soft limit */
935 if (unlikely(mem_cgroup_event_ratelimit(memcg,
936 MEM_CGROUP_TARGET_THRESH))) {
937 bool do_softlimit;
938 bool do_numainfo __maybe_unused;
939
940 do_softlimit = mem_cgroup_event_ratelimit(memcg,
941 MEM_CGROUP_TARGET_SOFTLIMIT);
942 #if MAX_NUMNODES > 1
943 do_numainfo = mem_cgroup_event_ratelimit(memcg,
944 MEM_CGROUP_TARGET_NUMAINFO);
945 #endif
946 mem_cgroup_threshold(memcg);
947 if (unlikely(do_softlimit))
948 mem_cgroup_update_tree(memcg, page);
949 #if MAX_NUMNODES > 1
950 if (unlikely(do_numainfo))
951 atomic_inc(&memcg->numainfo_events);
952 #endif
953 }
954 }
955
956 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957 {
958 /*
959 * mm_update_next_owner() may clear mm->owner to NULL
960 * if it races with swapoff, page migration, etc.
961 * So this can be called with p == NULL.
962 */
963 if (unlikely(!p))
964 return NULL;
965
966 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 }
968
969 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970 {
971 struct mem_cgroup *memcg = NULL;
972
973 rcu_read_lock();
974 do {
975 /*
976 * Page cache insertions can happen withou an
977 * actual mm context, e.g. during disk probing
978 * on boot, loopback IO, acct() writes etc.
979 */
980 if (unlikely(!mm))
981 memcg = root_mem_cgroup;
982 else {
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (unlikely(!memcg))
985 memcg = root_mem_cgroup;
986 }
987 } while (!css_tryget_online(&memcg->css));
988 rcu_read_unlock();
989 return memcg;
990 }
991
992 /**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
1009 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010 struct mem_cgroup *prev,
1011 struct mem_cgroup_reclaim_cookie *reclaim)
1012 {
1013 struct reclaim_iter *uninitialized_var(iter);
1014 struct cgroup_subsys_state *css = NULL;
1015 struct mem_cgroup *memcg = NULL;
1016 struct mem_cgroup *pos = NULL;
1017
1018 if (mem_cgroup_disabled())
1019 return NULL;
1020
1021 if (!root)
1022 root = root_mem_cgroup;
1023
1024 if (prev && !reclaim)
1025 pos = prev;
1026
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
1029 goto out;
1030 return root;
1031 }
1032
1033 rcu_read_lock();
1034
1035 if (reclaim) {
1036 struct mem_cgroup_per_zone *mz;
1037
1038 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
1044 do {
1045 pos = READ_ONCE(iter->position);
1046 /*
1047 * A racing update may change the position and
1048 * put the last reference, hence css_tryget(),
1049 * or retry to see the updated position.
1050 */
1051 } while (pos && !css_tryget(&pos->css));
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
1069 }
1070
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
1077
1078 if (css == &root->css)
1079 break;
1080
1081 if (css_tryget(css)) {
1082 /*
1083 * Make sure the memcg is initialized:
1084 * mem_cgroup_css_online() orders the the
1085 * initialization against setting the flag.
1086 */
1087 if (smp_load_acquire(&memcg->initialized))
1088 break;
1089
1090 css_put(css);
1091 }
1092
1093 memcg = NULL;
1094 }
1095
1096 if (reclaim) {
1097 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098 if (memcg)
1099 css_get(&memcg->css);
1100 if (pos)
1101 css_put(&pos->css);
1102 }
1103
1104 /*
1105 * pairs with css_tryget when dereferencing iter->position
1106 * above.
1107 */
1108 if (pos)
1109 css_put(&pos->css);
1110
1111 if (!memcg)
1112 iter->generation++;
1113 else if (!prev)
1114 reclaim->generation = iter->generation;
1115 }
1116
1117 out_unlock:
1118 rcu_read_unlock();
1119 out:
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1122
1123 return memcg;
1124 }
1125
1126 /**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
1133 {
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138 }
1139
1140 /*
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145 #define for_each_mem_cgroup_tree(iter, root) \
1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1147 iter != NULL; \
1148 iter = mem_cgroup_iter(root, iter, NULL))
1149
1150 #define for_each_mem_cgroup(iter) \
1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1152 iter != NULL; \
1153 iter = mem_cgroup_iter(NULL, iter, NULL))
1154
1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156 {
1157 struct mem_cgroup *memcg;
1158
1159 rcu_read_lock();
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
1162 goto out;
1163
1164 switch (idx) {
1165 case PGFAULT:
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 break;
1168 case PGMAJFAULT:
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 break;
1171 default:
1172 BUG();
1173 }
1174 out:
1175 rcu_read_unlock();
1176 }
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178
1179 /**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1190 {
1191 struct mem_cgroup_per_zone *mz;
1192 struct lruvec *lruvec;
1193
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1196 goto out;
1197 }
1198
1199 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 lruvec = &mz->lruvec;
1201 out:
1202 /*
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1206 */
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1209 return lruvec;
1210 }
1211
1212 /**
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214 * @page: the page
1215 * @zone: zone of the page
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1220 */
1221 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1222 {
1223 struct mem_cgroup_per_zone *mz;
1224 struct mem_cgroup *memcg;
1225 struct lruvec *lruvec;
1226
1227 if (mem_cgroup_disabled()) {
1228 lruvec = &zone->lruvec;
1229 goto out;
1230 }
1231
1232 memcg = page->mem_cgroup;
1233 /*
1234 * Swapcache readahead pages are added to the LRU - and
1235 * possibly migrated - before they are charged.
1236 */
1237 if (!memcg)
1238 memcg = root_mem_cgroup;
1239
1240 mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 lruvec = &mz->lruvec;
1242 out:
1243 /*
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1247 */
1248 if (unlikely(lruvec->zone != zone))
1249 lruvec->zone = zone;
1250 return lruvec;
1251 }
1252
1253 /**
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
1261 */
1262 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263 int nr_pages)
1264 {
1265 struct mem_cgroup_per_zone *mz;
1266 unsigned long *lru_size;
1267
1268 if (mem_cgroup_disabled())
1269 return;
1270
1271 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272 lru_size = mz->lru_size + lru;
1273 *lru_size += nr_pages;
1274 VM_BUG_ON((long)(*lru_size) < 0);
1275 }
1276
1277 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278 {
1279 if (root == memcg)
1280 return true;
1281 if (!root->use_hierarchy)
1282 return false;
1283 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 }
1285
1286 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287 {
1288 struct mem_cgroup *task_memcg;
1289 struct task_struct *p;
1290 bool ret;
1291
1292 p = find_lock_task_mm(task);
1293 if (p) {
1294 task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 task_unlock(p);
1296 } else {
1297 /*
1298 * All threads may have already detached their mm's, but the oom
1299 * killer still needs to detect if they have already been oom
1300 * killed to prevent needlessly killing additional tasks.
1301 */
1302 rcu_read_lock();
1303 task_memcg = mem_cgroup_from_task(task);
1304 css_get(&task_memcg->css);
1305 rcu_read_unlock();
1306 }
1307 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308 css_put(&task_memcg->css);
1309 return ret;
1310 }
1311
1312 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313 {
1314 unsigned long inactive_ratio;
1315 unsigned long inactive;
1316 unsigned long active;
1317 unsigned long gb;
1318
1319 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321
1322 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323 if (gb)
1324 inactive_ratio = int_sqrt(10 * gb);
1325 else
1326 inactive_ratio = 1;
1327
1328 return inactive * inactive_ratio < active;
1329 }
1330
1331 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332 {
1333 struct mem_cgroup_per_zone *mz;
1334 struct mem_cgroup *memcg;
1335
1336 if (mem_cgroup_disabled())
1337 return true;
1338
1339 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340 memcg = mz->memcg;
1341
1342 return !!(memcg->css.flags & CSS_ONLINE);
1343 }
1344
1345 #define mem_cgroup_from_counter(counter, member) \
1346 container_of(counter, struct mem_cgroup, member)
1347
1348 /**
1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1350 * @memcg: the memory cgroup
1351 *
1352 * Returns the maximum amount of memory @mem can be charged with, in
1353 * pages.
1354 */
1355 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356 {
1357 unsigned long margin = 0;
1358 unsigned long count;
1359 unsigned long limit;
1360
1361 count = page_counter_read(&memcg->memory);
1362 limit = READ_ONCE(memcg->memory.limit);
1363 if (count < limit)
1364 margin = limit - count;
1365
1366 if (do_swap_account) {
1367 count = page_counter_read(&memcg->memsw);
1368 limit = READ_ONCE(memcg->memsw.limit);
1369 if (count <= limit)
1370 margin = min(margin, limit - count);
1371 }
1372
1373 return margin;
1374 }
1375
1376 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1377 {
1378 /* root ? */
1379 if (mem_cgroup_disabled() || !memcg->css.parent)
1380 return vm_swappiness;
1381
1382 return memcg->swappiness;
1383 }
1384
1385 /*
1386 * A routine for checking "mem" is under move_account() or not.
1387 *
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
1391 */
1392 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393 {
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
1396 bool ret = false;
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
1406
1407 ret = mem_cgroup_is_descendant(from, memcg) ||
1408 mem_cgroup_is_descendant(to, memcg);
1409 unlock:
1410 spin_unlock(&mc.lock);
1411 return ret;
1412 }
1413
1414 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 {
1416 if (mc.moving_task && current != mc.moving_task) {
1417 if (mem_cgroup_under_move(memcg)) {
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428 }
1429
1430 #define K(x) ((x) << (PAGE_SHIFT-10))
1431 /**
1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440 {
1441 /* oom_info_lock ensures that parallel ooms do not interleave */
1442 static DEFINE_MUTEX(oom_info_lock);
1443 struct mem_cgroup *iter;
1444 unsigned int i;
1445
1446 mutex_lock(&oom_info_lock);
1447 rcu_read_lock();
1448
1449 if (p) {
1450 pr_info("Task in ");
1451 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452 pr_cont(" killed as a result of limit of ");
1453 } else {
1454 pr_info("Memory limit reached of cgroup ");
1455 }
1456
1457 pr_cont_cgroup_path(memcg->css.cgroup);
1458 pr_cont("\n");
1459
1460 rcu_read_unlock();
1461
1462 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memory)),
1464 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->memsw)),
1467 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469 K((u64)page_counter_read(&memcg->kmem)),
1470 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471
1472 for_each_mem_cgroup_tree(iter, memcg) {
1473 pr_info("Memory cgroup stats for ");
1474 pr_cont_cgroup_path(iter->css.cgroup);
1475 pr_cont(":");
1476
1477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479 continue;
1480 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481 K(mem_cgroup_read_stat(iter, i)));
1482 }
1483
1484 for (i = 0; i < NR_LRU_LISTS; i++)
1485 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488 pr_cont("\n");
1489 }
1490 mutex_unlock(&oom_info_lock);
1491 }
1492
1493 /*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
1497 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 {
1499 int num = 0;
1500 struct mem_cgroup *iter;
1501
1502 for_each_mem_cgroup_tree(iter, memcg)
1503 num++;
1504 return num;
1505 }
1506
1507 /*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
1510 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511 {
1512 unsigned long limit;
1513
1514 limit = memcg->memory.limit;
1515 if (mem_cgroup_swappiness(memcg)) {
1516 unsigned long memsw_limit;
1517
1518 memsw_limit = memcg->memsw.limit;
1519 limit = min(limit + total_swap_pages, memsw_limit);
1520 }
1521 return limit;
1522 }
1523
1524 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525 int order)
1526 {
1527 struct mem_cgroup *iter;
1528 unsigned long chosen_points = 0;
1529 unsigned long totalpages;
1530 unsigned int points = 0;
1531 struct task_struct *chosen = NULL;
1532
1533 /*
1534 * If current has a pending SIGKILL or is exiting, then automatically
1535 * select it. The goal is to allow it to allocate so that it may
1536 * quickly exit and free its memory.
1537 */
1538 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539 mark_oom_victim(current);
1540 return;
1541 }
1542
1543 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545 for_each_mem_cgroup_tree(iter, memcg) {
1546 struct css_task_iter it;
1547 struct task_struct *task;
1548
1549 css_task_iter_start(&iter->css, &it);
1550 while ((task = css_task_iter_next(&it))) {
1551 switch (oom_scan_process_thread(task, totalpages, NULL,
1552 false)) {
1553 case OOM_SCAN_SELECT:
1554 if (chosen)
1555 put_task_struct(chosen);
1556 chosen = task;
1557 chosen_points = ULONG_MAX;
1558 get_task_struct(chosen);
1559 /* fall through */
1560 case OOM_SCAN_CONTINUE:
1561 continue;
1562 case OOM_SCAN_ABORT:
1563 css_task_iter_end(&it);
1564 mem_cgroup_iter_break(memcg, iter);
1565 if (chosen)
1566 put_task_struct(chosen);
1567 return;
1568 case OOM_SCAN_OK:
1569 break;
1570 };
1571 points = oom_badness(task, memcg, NULL, totalpages);
1572 if (!points || points < chosen_points)
1573 continue;
1574 /* Prefer thread group leaders for display purposes */
1575 if (points == chosen_points &&
1576 thread_group_leader(chosen))
1577 continue;
1578
1579 if (chosen)
1580 put_task_struct(chosen);
1581 chosen = task;
1582 chosen_points = points;
1583 get_task_struct(chosen);
1584 }
1585 css_task_iter_end(&it);
1586 }
1587
1588 if (!chosen)
1589 return;
1590 points = chosen_points * 1000 / totalpages;
1591 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1592 NULL, "Memory cgroup out of memory");
1593 }
1594
1595 #if MAX_NUMNODES > 1
1596
1597 /**
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
1607 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608 int nid, bool noswap)
1609 {
1610 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611 return true;
1612 if (noswap || !total_swap_pages)
1613 return false;
1614 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615 return true;
1616 return false;
1617
1618 }
1619
1620 /*
1621 * Always updating the nodemask is not very good - even if we have an empty
1622 * list or the wrong list here, we can start from some node and traverse all
1623 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1624 *
1625 */
1626 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627 {
1628 int nid;
1629 /*
1630 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1631 * pagein/pageout changes since the last update.
1632 */
1633 if (!atomic_read(&memcg->numainfo_events))
1634 return;
1635 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636 return;
1637
1638 /* make a nodemask where this memcg uses memory from */
1639 memcg->scan_nodes = node_states[N_MEMORY];
1640
1641 for_each_node_mask(nid, node_states[N_MEMORY]) {
1642
1643 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1644 node_clear(nid, memcg->scan_nodes);
1645 }
1646
1647 atomic_set(&memcg->numainfo_events, 0);
1648 atomic_set(&memcg->numainfo_updating, 0);
1649 }
1650
1651 /*
1652 * Selecting a node where we start reclaim from. Because what we need is just
1653 * reducing usage counter, start from anywhere is O,K. Considering
1654 * memory reclaim from current node, there are pros. and cons.
1655 *
1656 * Freeing memory from current node means freeing memory from a node which
1657 * we'll use or we've used. So, it may make LRU bad. And if several threads
1658 * hit limits, it will see a contention on a node. But freeing from remote
1659 * node means more costs for memory reclaim because of memory latency.
1660 *
1661 * Now, we use round-robin. Better algorithm is welcomed.
1662 */
1663 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664 {
1665 int node;
1666
1667 mem_cgroup_may_update_nodemask(memcg);
1668 node = memcg->last_scanned_node;
1669
1670 node = next_node(node, memcg->scan_nodes);
1671 if (node == MAX_NUMNODES)
1672 node = first_node(memcg->scan_nodes);
1673 /*
1674 * We call this when we hit limit, not when pages are added to LRU.
1675 * No LRU may hold pages because all pages are UNEVICTABLE or
1676 * memcg is too small and all pages are not on LRU. In that case,
1677 * we use curret node.
1678 */
1679 if (unlikely(node == MAX_NUMNODES))
1680 node = numa_node_id();
1681
1682 memcg->last_scanned_node = node;
1683 return node;
1684 }
1685 #else
1686 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 {
1688 return 0;
1689 }
1690 #endif
1691
1692 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693 struct zone *zone,
1694 gfp_t gfp_mask,
1695 unsigned long *total_scanned)
1696 {
1697 struct mem_cgroup *victim = NULL;
1698 int total = 0;
1699 int loop = 0;
1700 unsigned long excess;
1701 unsigned long nr_scanned;
1702 struct mem_cgroup_reclaim_cookie reclaim = {
1703 .zone = zone,
1704 .priority = 0,
1705 };
1706
1707 excess = soft_limit_excess(root_memcg);
1708
1709 while (1) {
1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711 if (!victim) {
1712 loop++;
1713 if (loop >= 2) {
1714 /*
1715 * If we have not been able to reclaim
1716 * anything, it might because there are
1717 * no reclaimable pages under this hierarchy
1718 */
1719 if (!total)
1720 break;
1721 /*
1722 * We want to do more targeted reclaim.
1723 * excess >> 2 is not to excessive so as to
1724 * reclaim too much, nor too less that we keep
1725 * coming back to reclaim from this cgroup
1726 */
1727 if (total >= (excess >> 2) ||
1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729 break;
1730 }
1731 continue;
1732 }
1733 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1734 zone, &nr_scanned);
1735 *total_scanned += nr_scanned;
1736 if (!soft_limit_excess(root_memcg))
1737 break;
1738 }
1739 mem_cgroup_iter_break(root_memcg, victim);
1740 return total;
1741 }
1742
1743 #ifdef CONFIG_LOCKDEP
1744 static struct lockdep_map memcg_oom_lock_dep_map = {
1745 .name = "memcg_oom_lock",
1746 };
1747 #endif
1748
1749 static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751 /*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756 {
1757 struct mem_cgroup *iter, *failed = NULL;
1758
1759 spin_lock(&memcg_oom_lock);
1760
1761 for_each_mem_cgroup_tree(iter, memcg) {
1762 if (iter->oom_lock) {
1763 /*
1764 * this subtree of our hierarchy is already locked
1765 * so we cannot give a lock.
1766 */
1767 failed = iter;
1768 mem_cgroup_iter_break(memcg, iter);
1769 break;
1770 } else
1771 iter->oom_lock = true;
1772 }
1773
1774 if (failed) {
1775 /*
1776 * OK, we failed to lock the whole subtree so we have
1777 * to clean up what we set up to the failing subtree
1778 */
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter == failed) {
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
1783 }
1784 iter->oom_lock = false;
1785 }
1786 } else
1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789 spin_unlock(&memcg_oom_lock);
1790
1791 return !failed;
1792 }
1793
1794 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795 {
1796 struct mem_cgroup *iter;
1797
1798 spin_lock(&memcg_oom_lock);
1799 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800 for_each_mem_cgroup_tree(iter, memcg)
1801 iter->oom_lock = false;
1802 spin_unlock(&memcg_oom_lock);
1803 }
1804
1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 {
1807 struct mem_cgroup *iter;
1808
1809 for_each_mem_cgroup_tree(iter, memcg)
1810 atomic_inc(&iter->under_oom);
1811 }
1812
1813 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814 {
1815 struct mem_cgroup *iter;
1816
1817 /*
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1821 */
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 atomic_add_unless(&iter->under_oom, -1, 0);
1824 }
1825
1826 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1827
1828 struct oom_wait_info {
1829 struct mem_cgroup *memcg;
1830 wait_queue_t wait;
1831 };
1832
1833 static int memcg_oom_wake_function(wait_queue_t *wait,
1834 unsigned mode, int sync, void *arg)
1835 {
1836 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1837 struct mem_cgroup *oom_wait_memcg;
1838 struct oom_wait_info *oom_wait_info;
1839
1840 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841 oom_wait_memcg = oom_wait_info->memcg;
1842
1843 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1844 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1845 return 0;
1846 return autoremove_wake_function(wait, mode, sync, arg);
1847 }
1848
1849 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1850 {
1851 atomic_inc(&memcg->oom_wakeups);
1852 /* for filtering, pass "memcg" as argument. */
1853 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1854 }
1855
1856 static void memcg_oom_recover(struct mem_cgroup *memcg)
1857 {
1858 if (memcg && atomic_read(&memcg->under_oom))
1859 memcg_wakeup_oom(memcg);
1860 }
1861
1862 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863 {
1864 if (!current->memcg_oom.may_oom)
1865 return;
1866 /*
1867 * We are in the middle of the charge context here, so we
1868 * don't want to block when potentially sitting on a callstack
1869 * that holds all kinds of filesystem and mm locks.
1870 *
1871 * Also, the caller may handle a failed allocation gracefully
1872 * (like optional page cache readahead) and so an OOM killer
1873 * invocation might not even be necessary.
1874 *
1875 * That's why we don't do anything here except remember the
1876 * OOM context and then deal with it at the end of the page
1877 * fault when the stack is unwound, the locks are released,
1878 * and when we know whether the fault was overall successful.
1879 */
1880 css_get(&memcg->css);
1881 current->memcg_oom.memcg = memcg;
1882 current->memcg_oom.gfp_mask = mask;
1883 current->memcg_oom.order = order;
1884 }
1885
1886 /**
1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888 * @handle: actually kill/wait or just clean up the OOM state
1889 *
1890 * This has to be called at the end of a page fault if the memcg OOM
1891 * handler was enabled.
1892 *
1893 * Memcg supports userspace OOM handling where failed allocations must
1894 * sleep on a waitqueue until the userspace task resolves the
1895 * situation. Sleeping directly in the charge context with all kinds
1896 * of locks held is not a good idea, instead we remember an OOM state
1897 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898 * the end of the page fault to complete the OOM handling.
1899 *
1900 * Returns %true if an ongoing memcg OOM situation was detected and
1901 * completed, %false otherwise.
1902 */
1903 bool mem_cgroup_oom_synchronize(bool handle)
1904 {
1905 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906 struct oom_wait_info owait;
1907 bool locked;
1908
1909 /* OOM is global, do not handle */
1910 if (!memcg)
1911 return false;
1912
1913 if (!handle || oom_killer_disabled)
1914 goto cleanup;
1915
1916 owait.memcg = memcg;
1917 owait.wait.flags = 0;
1918 owait.wait.func = memcg_oom_wake_function;
1919 owait.wait.private = current;
1920 INIT_LIST_HEAD(&owait.wait.task_list);
1921
1922 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923 mem_cgroup_mark_under_oom(memcg);
1924
1925 locked = mem_cgroup_oom_trylock(memcg);
1926
1927 if (locked)
1928 mem_cgroup_oom_notify(memcg);
1929
1930 if (locked && !memcg->oom_kill_disable) {
1931 mem_cgroup_unmark_under_oom(memcg);
1932 finish_wait(&memcg_oom_waitq, &owait.wait);
1933 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1934 current->memcg_oom.order);
1935 } else {
1936 schedule();
1937 mem_cgroup_unmark_under_oom(memcg);
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
1939 }
1940
1941 if (locked) {
1942 mem_cgroup_oom_unlock(memcg);
1943 /*
1944 * There is no guarantee that an OOM-lock contender
1945 * sees the wakeups triggered by the OOM kill
1946 * uncharges. Wake any sleepers explicitely.
1947 */
1948 memcg_oom_recover(memcg);
1949 }
1950 cleanup:
1951 current->memcg_oom.memcg = NULL;
1952 css_put(&memcg->css);
1953 return true;
1954 }
1955
1956 /**
1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1958 * @page: page that is going to change accounted state
1959 *
1960 * This function must mark the beginning of an accounted page state
1961 * change to prevent double accounting when the page is concurrently
1962 * being moved to another memcg:
1963 *
1964 * memcg = mem_cgroup_begin_page_stat(page);
1965 * if (TestClearPageState(page))
1966 * mem_cgroup_update_page_stat(memcg, state, -1);
1967 * mem_cgroup_end_page_stat(memcg);
1968 */
1969 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970 {
1971 struct mem_cgroup *memcg;
1972 unsigned long flags;
1973
1974 /*
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
1978 *
1979 * The RCU lock also protects the memcg from being freed when
1980 * the page state that is going to change is the only thing
1981 * preventing the page from being uncharged.
1982 * E.g. end-writeback clearing PageWriteback(), which allows
1983 * migration to go ahead and uncharge the page before the
1984 * account transaction might be complete.
1985 */
1986 rcu_read_lock();
1987
1988 if (mem_cgroup_disabled())
1989 return NULL;
1990 again:
1991 memcg = page->mem_cgroup;
1992 if (unlikely(!memcg))
1993 return NULL;
1994
1995 if (atomic_read(&memcg->moving_account) <= 0)
1996 return memcg;
1997
1998 spin_lock_irqsave(&memcg->move_lock, flags);
1999 if (memcg != page->mem_cgroup) {
2000 spin_unlock_irqrestore(&memcg->move_lock, flags);
2001 goto again;
2002 }
2003
2004 /*
2005 * When charge migration first begins, we can have locked and
2006 * unlocked page stat updates happening concurrently. Track
2007 * the task who has the lock for mem_cgroup_end_page_stat().
2008 */
2009 memcg->move_lock_task = current;
2010 memcg->move_lock_flags = flags;
2011
2012 return memcg;
2013 }
2014
2015 /**
2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2017 * @memcg: the memcg that was accounted against
2018 */
2019 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020 {
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
2029
2030 rcu_read_unlock();
2031 }
2032
2033 /**
2034 * mem_cgroup_update_page_stat - update page state statistics
2035 * @memcg: memcg to account against
2036 * @idx: page state item to account
2037 * @val: number of pages (positive or negative)
2038 *
2039 * See mem_cgroup_begin_page_stat() for locking requirements.
2040 */
2041 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2042 enum mem_cgroup_stat_index idx, int val)
2043 {
2044 VM_BUG_ON(!rcu_read_lock_held());
2045
2046 if (memcg)
2047 this_cpu_add(memcg->stat->count[idx], val);
2048 }
2049
2050 /*
2051 * size of first charge trial. "32" comes from vmscan.c's magic value.
2052 * TODO: maybe necessary to use big numbers in big irons.
2053 */
2054 #define CHARGE_BATCH 32U
2055 struct memcg_stock_pcp {
2056 struct mem_cgroup *cached; /* this never be root cgroup */
2057 unsigned int nr_pages;
2058 struct work_struct work;
2059 unsigned long flags;
2060 #define FLUSHING_CACHED_CHARGE 0
2061 };
2062 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063 static DEFINE_MUTEX(percpu_charge_mutex);
2064
2065 /**
2066 * consume_stock: Try to consume stocked charge on this cpu.
2067 * @memcg: memcg to consume from.
2068 * @nr_pages: how many pages to charge.
2069 *
2070 * The charges will only happen if @memcg matches the current cpu's memcg
2071 * stock, and at least @nr_pages are available in that stock. Failure to
2072 * service an allocation will refill the stock.
2073 *
2074 * returns true if successful, false otherwise.
2075 */
2076 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078 struct memcg_stock_pcp *stock;
2079 bool ret = false;
2080
2081 if (nr_pages > CHARGE_BATCH)
2082 return ret;
2083
2084 stock = &get_cpu_var(memcg_stock);
2085 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086 stock->nr_pages -= nr_pages;
2087 ret = true;
2088 }
2089 put_cpu_var(memcg_stock);
2090 return ret;
2091 }
2092
2093 /*
2094 * Returns stocks cached in percpu and reset cached information.
2095 */
2096 static void drain_stock(struct memcg_stock_pcp *stock)
2097 {
2098 struct mem_cgroup *old = stock->cached;
2099
2100 if (stock->nr_pages) {
2101 page_counter_uncharge(&old->memory, stock->nr_pages);
2102 if (do_swap_account)
2103 page_counter_uncharge(&old->memsw, stock->nr_pages);
2104 css_put_many(&old->css, stock->nr_pages);
2105 stock->nr_pages = 0;
2106 }
2107 stock->cached = NULL;
2108 }
2109
2110 /*
2111 * This must be called under preempt disabled or must be called by
2112 * a thread which is pinned to local cpu.
2113 */
2114 static void drain_local_stock(struct work_struct *dummy)
2115 {
2116 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117 drain_stock(stock);
2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 }
2120
2121 /*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 {
2127 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128
2129 if (stock->cached != memcg) { /* reset if necessary */
2130 drain_stock(stock);
2131 stock->cached = memcg;
2132 }
2133 stock->nr_pages += nr_pages;
2134 put_cpu_var(memcg_stock);
2135 }
2136
2137 /*
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2140 */
2141 static void drain_all_stock(struct mem_cgroup *root_memcg)
2142 {
2143 int cpu, curcpu;
2144
2145 /* If someone's already draining, avoid adding running more workers. */
2146 if (!mutex_trylock(&percpu_charge_mutex))
2147 return;
2148 /* Notify other cpus that system-wide "drain" is running */
2149 get_online_cpus();
2150 curcpu = get_cpu();
2151 for_each_online_cpu(cpu) {
2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153 struct mem_cgroup *memcg;
2154
2155 memcg = stock->cached;
2156 if (!memcg || !stock->nr_pages)
2157 continue;
2158 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159 continue;
2160 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161 if (cpu == curcpu)
2162 drain_local_stock(&stock->work);
2163 else
2164 schedule_work_on(cpu, &stock->work);
2165 }
2166 }
2167 put_cpu();
2168 put_online_cpus();
2169 mutex_unlock(&percpu_charge_mutex);
2170 }
2171
2172 /*
2173 * This function drains percpu counter value from DEAD cpu and
2174 * move it to local cpu. Note that this function can be preempted.
2175 */
2176 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177 {
2178 int i;
2179
2180 spin_lock(&memcg->pcp_counter_lock);
2181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182 long x = per_cpu(memcg->stat->count[i], cpu);
2183
2184 per_cpu(memcg->stat->count[i], cpu) = 0;
2185 memcg->nocpu_base.count[i] += x;
2186 }
2187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189
2190 per_cpu(memcg->stat->events[i], cpu) = 0;
2191 memcg->nocpu_base.events[i] += x;
2192 }
2193 spin_unlock(&memcg->pcp_counter_lock);
2194 }
2195
2196 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197 unsigned long action,
2198 void *hcpu)
2199 {
2200 int cpu = (unsigned long)hcpu;
2201 struct memcg_stock_pcp *stock;
2202 struct mem_cgroup *iter;
2203
2204 if (action == CPU_ONLINE)
2205 return NOTIFY_OK;
2206
2207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208 return NOTIFY_OK;
2209
2210 for_each_mem_cgroup(iter)
2211 mem_cgroup_drain_pcp_counter(iter, cpu);
2212
2213 stock = &per_cpu(memcg_stock, cpu);
2214 drain_stock(stock);
2215 return NOTIFY_OK;
2216 }
2217
2218 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2219 unsigned int nr_pages)
2220 {
2221 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223 struct mem_cgroup *mem_over_limit;
2224 struct page_counter *counter;
2225 unsigned long nr_reclaimed;
2226 bool may_swap = true;
2227 bool drained = false;
2228 int ret = 0;
2229
2230 if (mem_cgroup_is_root(memcg))
2231 goto done;
2232 retry:
2233 if (consume_stock(memcg, nr_pages))
2234 goto done;
2235
2236 if (!do_swap_account ||
2237 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2238 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239 goto done_restock;
2240 if (do_swap_account)
2241 page_counter_uncharge(&memcg->memsw, batch);
2242 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243 } else {
2244 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245 may_swap = false;
2246 }
2247
2248 if (batch > nr_pages) {
2249 batch = nr_pages;
2250 goto retry;
2251 }
2252
2253 /*
2254 * Unlike in global OOM situations, memcg is not in a physical
2255 * memory shortage. Allow dying and OOM-killed tasks to
2256 * bypass the last charges so that they can exit quickly and
2257 * free their memory.
2258 */
2259 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2260 fatal_signal_pending(current) ||
2261 current->flags & PF_EXITING))
2262 goto bypass;
2263
2264 if (unlikely(task_in_memcg_oom(current)))
2265 goto nomem;
2266
2267 if (!(gfp_mask & __GFP_WAIT))
2268 goto nomem;
2269
2270 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2271
2272 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2273 gfp_mask, may_swap);
2274
2275 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276 goto retry;
2277
2278 if (!drained) {
2279 drain_all_stock(mem_over_limit);
2280 drained = true;
2281 goto retry;
2282 }
2283
2284 if (gfp_mask & __GFP_NORETRY)
2285 goto nomem;
2286 /*
2287 * Even though the limit is exceeded at this point, reclaim
2288 * may have been able to free some pages. Retry the charge
2289 * before killing the task.
2290 *
2291 * Only for regular pages, though: huge pages are rather
2292 * unlikely to succeed so close to the limit, and we fall back
2293 * to regular pages anyway in case of failure.
2294 */
2295 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296 goto retry;
2297 /*
2298 * At task move, charge accounts can be doubly counted. So, it's
2299 * better to wait until the end of task_move if something is going on.
2300 */
2301 if (mem_cgroup_wait_acct_move(mem_over_limit))
2302 goto retry;
2303
2304 if (nr_retries--)
2305 goto retry;
2306
2307 if (gfp_mask & __GFP_NOFAIL)
2308 goto bypass;
2309
2310 if (fatal_signal_pending(current))
2311 goto bypass;
2312
2313 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2314
2315 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316 nomem:
2317 if (!(gfp_mask & __GFP_NOFAIL))
2318 return -ENOMEM;
2319 bypass:
2320 return -EINTR;
2321
2322 done_restock:
2323 css_get_many(&memcg->css, batch);
2324 if (batch > nr_pages)
2325 refill_stock(memcg, batch - nr_pages);
2326 if (!(gfp_mask & __GFP_WAIT))
2327 goto done;
2328 /*
2329 * If the hierarchy is above the normal consumption range,
2330 * make the charging task trim their excess contribution.
2331 */
2332 do {
2333 if (page_counter_read(&memcg->memory) <= memcg->high)
2334 continue;
2335 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2336 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2337 } while ((memcg = parent_mem_cgroup(memcg)));
2338 done:
2339 return ret;
2340 }
2341
2342 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2343 {
2344 if (mem_cgroup_is_root(memcg))
2345 return;
2346
2347 page_counter_uncharge(&memcg->memory, nr_pages);
2348 if (do_swap_account)
2349 page_counter_uncharge(&memcg->memsw, nr_pages);
2350
2351 css_put_many(&memcg->css, nr_pages);
2352 }
2353
2354 /*
2355 * try_get_mem_cgroup_from_page - look up page's memcg association
2356 * @page: the page
2357 *
2358 * Look up, get a css reference, and return the memcg that owns @page.
2359 *
2360 * The page must be locked to prevent racing with swap-in and page
2361 * cache charges. If coming from an unlocked page table, the caller
2362 * must ensure the page is on the LRU or this can race with charging.
2363 */
2364 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2365 {
2366 struct mem_cgroup *memcg;
2367 unsigned short id;
2368 swp_entry_t ent;
2369
2370 VM_BUG_ON_PAGE(!PageLocked(page), page);
2371
2372 memcg = page->mem_cgroup;
2373 if (memcg) {
2374 if (!css_tryget_online(&memcg->css))
2375 memcg = NULL;
2376 } else if (PageSwapCache(page)) {
2377 ent.val = page_private(page);
2378 id = lookup_swap_cgroup_id(ent);
2379 rcu_read_lock();
2380 memcg = mem_cgroup_from_id(id);
2381 if (memcg && !css_tryget_online(&memcg->css))
2382 memcg = NULL;
2383 rcu_read_unlock();
2384 }
2385 return memcg;
2386 }
2387
2388 static void lock_page_lru(struct page *page, int *isolated)
2389 {
2390 struct zone *zone = page_zone(page);
2391
2392 spin_lock_irq(&zone->lru_lock);
2393 if (PageLRU(page)) {
2394 struct lruvec *lruvec;
2395
2396 lruvec = mem_cgroup_page_lruvec(page, zone);
2397 ClearPageLRU(page);
2398 del_page_from_lru_list(page, lruvec, page_lru(page));
2399 *isolated = 1;
2400 } else
2401 *isolated = 0;
2402 }
2403
2404 static void unlock_page_lru(struct page *page, int isolated)
2405 {
2406 struct zone *zone = page_zone(page);
2407
2408 if (isolated) {
2409 struct lruvec *lruvec;
2410
2411 lruvec = mem_cgroup_page_lruvec(page, zone);
2412 VM_BUG_ON_PAGE(PageLRU(page), page);
2413 SetPageLRU(page);
2414 add_page_to_lru_list(page, lruvec, page_lru(page));
2415 }
2416 spin_unlock_irq(&zone->lru_lock);
2417 }
2418
2419 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2420 bool lrucare)
2421 {
2422 int isolated;
2423
2424 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2425
2426 /*
2427 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2428 * may already be on some other mem_cgroup's LRU. Take care of it.
2429 */
2430 if (lrucare)
2431 lock_page_lru(page, &isolated);
2432
2433 /*
2434 * Nobody should be changing or seriously looking at
2435 * page->mem_cgroup at this point:
2436 *
2437 * - the page is uncharged
2438 *
2439 * - the page is off-LRU
2440 *
2441 * - an anonymous fault has exclusive page access, except for
2442 * a locked page table
2443 *
2444 * - a page cache insertion, a swapin fault, or a migration
2445 * have the page locked
2446 */
2447 page->mem_cgroup = memcg;
2448
2449 if (lrucare)
2450 unlock_page_lru(page, isolated);
2451 }
2452
2453 #ifdef CONFIG_MEMCG_KMEM
2454 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2455 unsigned long nr_pages)
2456 {
2457 struct page_counter *counter;
2458 int ret = 0;
2459
2460 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2461 if (ret < 0)
2462 return ret;
2463
2464 ret = try_charge(memcg, gfp, nr_pages);
2465 if (ret == -EINTR) {
2466 /*
2467 * try_charge() chose to bypass to root due to OOM kill or
2468 * fatal signal. Since our only options are to either fail
2469 * the allocation or charge it to this cgroup, do it as a
2470 * temporary condition. But we can't fail. From a kmem/slab
2471 * perspective, the cache has already been selected, by
2472 * mem_cgroup_kmem_get_cache(), so it is too late to change
2473 * our minds.
2474 *
2475 * This condition will only trigger if the task entered
2476 * memcg_charge_kmem in a sane state, but was OOM-killed
2477 * during try_charge() above. Tasks that were already dying
2478 * when the allocation triggers should have been already
2479 * directed to the root cgroup in memcontrol.h
2480 */
2481 page_counter_charge(&memcg->memory, nr_pages);
2482 if (do_swap_account)
2483 page_counter_charge(&memcg->memsw, nr_pages);
2484 css_get_many(&memcg->css, nr_pages);
2485 ret = 0;
2486 } else if (ret)
2487 page_counter_uncharge(&memcg->kmem, nr_pages);
2488
2489 return ret;
2490 }
2491
2492 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2493 {
2494 page_counter_uncharge(&memcg->memory, nr_pages);
2495 if (do_swap_account)
2496 page_counter_uncharge(&memcg->memsw, nr_pages);
2497
2498 page_counter_uncharge(&memcg->kmem, nr_pages);
2499
2500 css_put_many(&memcg->css, nr_pages);
2501 }
2502
2503 /*
2504 * helper for acessing a memcg's index. It will be used as an index in the
2505 * child cache array in kmem_cache, and also to derive its name. This function
2506 * will return -1 when this is not a kmem-limited memcg.
2507 */
2508 int memcg_cache_id(struct mem_cgroup *memcg)
2509 {
2510 return memcg ? memcg->kmemcg_id : -1;
2511 }
2512
2513 static int memcg_alloc_cache_id(void)
2514 {
2515 int id, size;
2516 int err;
2517
2518 id = ida_simple_get(&memcg_cache_ida,
2519 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2520 if (id < 0)
2521 return id;
2522
2523 if (id < memcg_nr_cache_ids)
2524 return id;
2525
2526 /*
2527 * There's no space for the new id in memcg_caches arrays,
2528 * so we have to grow them.
2529 */
2530 down_write(&memcg_cache_ids_sem);
2531
2532 size = 2 * (id + 1);
2533 if (size < MEMCG_CACHES_MIN_SIZE)
2534 size = MEMCG_CACHES_MIN_SIZE;
2535 else if (size > MEMCG_CACHES_MAX_SIZE)
2536 size = MEMCG_CACHES_MAX_SIZE;
2537
2538 err = memcg_update_all_caches(size);
2539 if (!err)
2540 err = memcg_update_all_list_lrus(size);
2541 if (!err)
2542 memcg_nr_cache_ids = size;
2543
2544 up_write(&memcg_cache_ids_sem);
2545
2546 if (err) {
2547 ida_simple_remove(&memcg_cache_ida, id);
2548 return err;
2549 }
2550 return id;
2551 }
2552
2553 static void memcg_free_cache_id(int id)
2554 {
2555 ida_simple_remove(&memcg_cache_ida, id);
2556 }
2557
2558 struct memcg_kmem_cache_create_work {
2559 struct mem_cgroup *memcg;
2560 struct kmem_cache *cachep;
2561 struct work_struct work;
2562 };
2563
2564 static void memcg_kmem_cache_create_func(struct work_struct *w)
2565 {
2566 struct memcg_kmem_cache_create_work *cw =
2567 container_of(w, struct memcg_kmem_cache_create_work, work);
2568 struct mem_cgroup *memcg = cw->memcg;
2569 struct kmem_cache *cachep = cw->cachep;
2570
2571 memcg_create_kmem_cache(memcg, cachep);
2572
2573 css_put(&memcg->css);
2574 kfree(cw);
2575 }
2576
2577 /*
2578 * Enqueue the creation of a per-memcg kmem_cache.
2579 */
2580 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2581 struct kmem_cache *cachep)
2582 {
2583 struct memcg_kmem_cache_create_work *cw;
2584
2585 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2586 if (!cw)
2587 return;
2588
2589 css_get(&memcg->css);
2590
2591 cw->memcg = memcg;
2592 cw->cachep = cachep;
2593 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2594
2595 schedule_work(&cw->work);
2596 }
2597
2598 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2599 struct kmem_cache *cachep)
2600 {
2601 /*
2602 * We need to stop accounting when we kmalloc, because if the
2603 * corresponding kmalloc cache is not yet created, the first allocation
2604 * in __memcg_schedule_kmem_cache_create will recurse.
2605 *
2606 * However, it is better to enclose the whole function. Depending on
2607 * the debugging options enabled, INIT_WORK(), for instance, can
2608 * trigger an allocation. This too, will make us recurse. Because at
2609 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2610 * the safest choice is to do it like this, wrapping the whole function.
2611 */
2612 current->memcg_kmem_skip_account = 1;
2613 __memcg_schedule_kmem_cache_create(memcg, cachep);
2614 current->memcg_kmem_skip_account = 0;
2615 }
2616
2617 /*
2618 * Return the kmem_cache we're supposed to use for a slab allocation.
2619 * We try to use the current memcg's version of the cache.
2620 *
2621 * If the cache does not exist yet, if we are the first user of it,
2622 * we either create it immediately, if possible, or create it asynchronously
2623 * in a workqueue.
2624 * In the latter case, we will let the current allocation go through with
2625 * the original cache.
2626 *
2627 * Can't be called in interrupt context or from kernel threads.
2628 * This function needs to be called with rcu_read_lock() held.
2629 */
2630 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2631 {
2632 struct mem_cgroup *memcg;
2633 struct kmem_cache *memcg_cachep;
2634 int kmemcg_id;
2635
2636 VM_BUG_ON(!is_root_cache(cachep));
2637
2638 if (current->memcg_kmem_skip_account)
2639 return cachep;
2640
2641 memcg = get_mem_cgroup_from_mm(current->mm);
2642 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2643 if (kmemcg_id < 0)
2644 goto out;
2645
2646 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2647 if (likely(memcg_cachep))
2648 return memcg_cachep;
2649
2650 /*
2651 * If we are in a safe context (can wait, and not in interrupt
2652 * context), we could be be predictable and return right away.
2653 * This would guarantee that the allocation being performed
2654 * already belongs in the new cache.
2655 *
2656 * However, there are some clashes that can arrive from locking.
2657 * For instance, because we acquire the slab_mutex while doing
2658 * memcg_create_kmem_cache, this means no further allocation
2659 * could happen with the slab_mutex held. So it's better to
2660 * defer everything.
2661 */
2662 memcg_schedule_kmem_cache_create(memcg, cachep);
2663 out:
2664 css_put(&memcg->css);
2665 return cachep;
2666 }
2667
2668 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2669 {
2670 if (!is_root_cache(cachep))
2671 css_put(&cachep->memcg_params.memcg->css);
2672 }
2673
2674 /*
2675 * We need to verify if the allocation against current->mm->owner's memcg is
2676 * possible for the given order. But the page is not allocated yet, so we'll
2677 * need a further commit step to do the final arrangements.
2678 *
2679 * It is possible for the task to switch cgroups in this mean time, so at
2680 * commit time, we can't rely on task conversion any longer. We'll then use
2681 * the handle argument to return to the caller which cgroup we should commit
2682 * against. We could also return the memcg directly and avoid the pointer
2683 * passing, but a boolean return value gives better semantics considering
2684 * the compiled-out case as well.
2685 *
2686 * Returning true means the allocation is possible.
2687 */
2688 bool
2689 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2690 {
2691 struct mem_cgroup *memcg;
2692 int ret;
2693
2694 *_memcg = NULL;
2695
2696 memcg = get_mem_cgroup_from_mm(current->mm);
2697
2698 if (!memcg_kmem_is_active(memcg)) {
2699 css_put(&memcg->css);
2700 return true;
2701 }
2702
2703 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2704 if (!ret)
2705 *_memcg = memcg;
2706
2707 css_put(&memcg->css);
2708 return (ret == 0);
2709 }
2710
2711 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2712 int order)
2713 {
2714 VM_BUG_ON(mem_cgroup_is_root(memcg));
2715
2716 /* The page allocation failed. Revert */
2717 if (!page) {
2718 memcg_uncharge_kmem(memcg, 1 << order);
2719 return;
2720 }
2721 page->mem_cgroup = memcg;
2722 }
2723
2724 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2725 {
2726 struct mem_cgroup *memcg = page->mem_cgroup;
2727
2728 if (!memcg)
2729 return;
2730
2731 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2732
2733 memcg_uncharge_kmem(memcg, 1 << order);
2734 page->mem_cgroup = NULL;
2735 }
2736
2737 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2738 {
2739 struct mem_cgroup *memcg = NULL;
2740 struct kmem_cache *cachep;
2741 struct page *page;
2742
2743 page = virt_to_head_page(ptr);
2744 if (PageSlab(page)) {
2745 cachep = page->slab_cache;
2746 if (!is_root_cache(cachep))
2747 memcg = cachep->memcg_params.memcg;
2748 } else
2749 /* page allocated by alloc_kmem_pages */
2750 memcg = page->mem_cgroup;
2751
2752 return memcg;
2753 }
2754 #endif /* CONFIG_MEMCG_KMEM */
2755
2756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2757
2758 /*
2759 * Because tail pages are not marked as "used", set it. We're under
2760 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2761 * charge/uncharge will be never happen and move_account() is done under
2762 * compound_lock(), so we don't have to take care of races.
2763 */
2764 void mem_cgroup_split_huge_fixup(struct page *head)
2765 {
2766 int i;
2767
2768 if (mem_cgroup_disabled())
2769 return;
2770
2771 for (i = 1; i < HPAGE_PMD_NR; i++)
2772 head[i].mem_cgroup = head->mem_cgroup;
2773
2774 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2775 HPAGE_PMD_NR);
2776 }
2777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2778
2779 #ifdef CONFIG_MEMCG_SWAP
2780 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2781 bool charge)
2782 {
2783 int val = (charge) ? 1 : -1;
2784 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2785 }
2786
2787 /**
2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2789 * @entry: swap entry to be moved
2790 * @from: mem_cgroup which the entry is moved from
2791 * @to: mem_cgroup which the entry is moved to
2792 *
2793 * It succeeds only when the swap_cgroup's record for this entry is the same
2794 * as the mem_cgroup's id of @from.
2795 *
2796 * Returns 0 on success, -EINVAL on failure.
2797 *
2798 * The caller must have charged to @to, IOW, called page_counter_charge() about
2799 * both res and memsw, and called css_get().
2800 */
2801 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2802 struct mem_cgroup *from, struct mem_cgroup *to)
2803 {
2804 unsigned short old_id, new_id;
2805
2806 old_id = mem_cgroup_id(from);
2807 new_id = mem_cgroup_id(to);
2808
2809 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2810 mem_cgroup_swap_statistics(from, false);
2811 mem_cgroup_swap_statistics(to, true);
2812 return 0;
2813 }
2814 return -EINVAL;
2815 }
2816 #else
2817 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2818 struct mem_cgroup *from, struct mem_cgroup *to)
2819 {
2820 return -EINVAL;
2821 }
2822 #endif
2823
2824 static DEFINE_MUTEX(memcg_limit_mutex);
2825
2826 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2827 unsigned long limit)
2828 {
2829 unsigned long curusage;
2830 unsigned long oldusage;
2831 bool enlarge = false;
2832 int retry_count;
2833 int ret;
2834
2835 /*
2836 * For keeping hierarchical_reclaim simple, how long we should retry
2837 * is depends on callers. We set our retry-count to be function
2838 * of # of children which we should visit in this loop.
2839 */
2840 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2841 mem_cgroup_count_children(memcg);
2842
2843 oldusage = page_counter_read(&memcg->memory);
2844
2845 do {
2846 if (signal_pending(current)) {
2847 ret = -EINTR;
2848 break;
2849 }
2850
2851 mutex_lock(&memcg_limit_mutex);
2852 if (limit > memcg->memsw.limit) {
2853 mutex_unlock(&memcg_limit_mutex);
2854 ret = -EINVAL;
2855 break;
2856 }
2857 if (limit > memcg->memory.limit)
2858 enlarge = true;
2859 ret = page_counter_limit(&memcg->memory, limit);
2860 mutex_unlock(&memcg_limit_mutex);
2861
2862 if (!ret)
2863 break;
2864
2865 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2866
2867 curusage = page_counter_read(&memcg->memory);
2868 /* Usage is reduced ? */
2869 if (curusage >= oldusage)
2870 retry_count--;
2871 else
2872 oldusage = curusage;
2873 } while (retry_count);
2874
2875 if (!ret && enlarge)
2876 memcg_oom_recover(memcg);
2877
2878 return ret;
2879 }
2880
2881 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2882 unsigned long limit)
2883 {
2884 unsigned long curusage;
2885 unsigned long oldusage;
2886 bool enlarge = false;
2887 int retry_count;
2888 int ret;
2889
2890 /* see mem_cgroup_resize_res_limit */
2891 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2892 mem_cgroup_count_children(memcg);
2893
2894 oldusage = page_counter_read(&memcg->memsw);
2895
2896 do {
2897 if (signal_pending(current)) {
2898 ret = -EINTR;
2899 break;
2900 }
2901
2902 mutex_lock(&memcg_limit_mutex);
2903 if (limit < memcg->memory.limit) {
2904 mutex_unlock(&memcg_limit_mutex);
2905 ret = -EINVAL;
2906 break;
2907 }
2908 if (limit > memcg->memsw.limit)
2909 enlarge = true;
2910 ret = page_counter_limit(&memcg->memsw, limit);
2911 mutex_unlock(&memcg_limit_mutex);
2912
2913 if (!ret)
2914 break;
2915
2916 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2917
2918 curusage = page_counter_read(&memcg->memsw);
2919 /* Usage is reduced ? */
2920 if (curusage >= oldusage)
2921 retry_count--;
2922 else
2923 oldusage = curusage;
2924 } while (retry_count);
2925
2926 if (!ret && enlarge)
2927 memcg_oom_recover(memcg);
2928
2929 return ret;
2930 }
2931
2932 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2933 gfp_t gfp_mask,
2934 unsigned long *total_scanned)
2935 {
2936 unsigned long nr_reclaimed = 0;
2937 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2938 unsigned long reclaimed;
2939 int loop = 0;
2940 struct mem_cgroup_tree_per_zone *mctz;
2941 unsigned long excess;
2942 unsigned long nr_scanned;
2943
2944 if (order > 0)
2945 return 0;
2946
2947 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2948 /*
2949 * This loop can run a while, specially if mem_cgroup's continuously
2950 * keep exceeding their soft limit and putting the system under
2951 * pressure
2952 */
2953 do {
2954 if (next_mz)
2955 mz = next_mz;
2956 else
2957 mz = mem_cgroup_largest_soft_limit_node(mctz);
2958 if (!mz)
2959 break;
2960
2961 nr_scanned = 0;
2962 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2963 gfp_mask, &nr_scanned);
2964 nr_reclaimed += reclaimed;
2965 *total_scanned += nr_scanned;
2966 spin_lock_irq(&mctz->lock);
2967 __mem_cgroup_remove_exceeded(mz, mctz);
2968
2969 /*
2970 * If we failed to reclaim anything from this memory cgroup
2971 * it is time to move on to the next cgroup
2972 */
2973 next_mz = NULL;
2974 if (!reclaimed)
2975 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2976
2977 excess = soft_limit_excess(mz->memcg);
2978 /*
2979 * One school of thought says that we should not add
2980 * back the node to the tree if reclaim returns 0.
2981 * But our reclaim could return 0, simply because due
2982 * to priority we are exposing a smaller subset of
2983 * memory to reclaim from. Consider this as a longer
2984 * term TODO.
2985 */
2986 /* If excess == 0, no tree ops */
2987 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2988 spin_unlock_irq(&mctz->lock);
2989 css_put(&mz->memcg->css);
2990 loop++;
2991 /*
2992 * Could not reclaim anything and there are no more
2993 * mem cgroups to try or we seem to be looping without
2994 * reclaiming anything.
2995 */
2996 if (!nr_reclaimed &&
2997 (next_mz == NULL ||
2998 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2999 break;
3000 } while (!nr_reclaimed);
3001 if (next_mz)
3002 css_put(&next_mz->memcg->css);
3003 return nr_reclaimed;
3004 }
3005
3006 /*
3007 * Test whether @memcg has children, dead or alive. Note that this
3008 * function doesn't care whether @memcg has use_hierarchy enabled and
3009 * returns %true if there are child csses according to the cgroup
3010 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3011 */
3012 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3013 {
3014 bool ret;
3015
3016 /*
3017 * The lock does not prevent addition or deletion of children, but
3018 * it prevents a new child from being initialized based on this
3019 * parent in css_online(), so it's enough to decide whether
3020 * hierarchically inherited attributes can still be changed or not.
3021 */
3022 lockdep_assert_held(&memcg_create_mutex);
3023
3024 rcu_read_lock();
3025 ret = css_next_child(NULL, &memcg->css);
3026 rcu_read_unlock();
3027 return ret;
3028 }
3029
3030 /*
3031 * Reclaims as many pages from the given memcg as possible and moves
3032 * the rest to the parent.
3033 *
3034 * Caller is responsible for holding css reference for memcg.
3035 */
3036 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3037 {
3038 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3039
3040 /* we call try-to-free pages for make this cgroup empty */
3041 lru_add_drain_all();
3042 /* try to free all pages in this cgroup */
3043 while (nr_retries && page_counter_read(&memcg->memory)) {
3044 int progress;
3045
3046 if (signal_pending(current))
3047 return -EINTR;
3048
3049 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3050 GFP_KERNEL, true);
3051 if (!progress) {
3052 nr_retries--;
3053 /* maybe some writeback is necessary */
3054 congestion_wait(BLK_RW_ASYNC, HZ/10);
3055 }
3056
3057 }
3058
3059 return 0;
3060 }
3061
3062 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3063 char *buf, size_t nbytes,
3064 loff_t off)
3065 {
3066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067
3068 if (mem_cgroup_is_root(memcg))
3069 return -EINVAL;
3070 return mem_cgroup_force_empty(memcg) ?: nbytes;
3071 }
3072
3073 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3074 struct cftype *cft)
3075 {
3076 return mem_cgroup_from_css(css)->use_hierarchy;
3077 }
3078
3079 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3080 struct cftype *cft, u64 val)
3081 {
3082 int retval = 0;
3083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3084 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3085
3086 mutex_lock(&memcg_create_mutex);
3087
3088 if (memcg->use_hierarchy == val)
3089 goto out;
3090
3091 /*
3092 * If parent's use_hierarchy is set, we can't make any modifications
3093 * in the child subtrees. If it is unset, then the change can
3094 * occur, provided the current cgroup has no children.
3095 *
3096 * For the root cgroup, parent_mem is NULL, we allow value to be
3097 * set if there are no children.
3098 */
3099 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3100 (val == 1 || val == 0)) {
3101 if (!memcg_has_children(memcg))
3102 memcg->use_hierarchy = val;
3103 else
3104 retval = -EBUSY;
3105 } else
3106 retval = -EINVAL;
3107
3108 out:
3109 mutex_unlock(&memcg_create_mutex);
3110
3111 return retval;
3112 }
3113
3114 static unsigned long tree_stat(struct mem_cgroup *memcg,
3115 enum mem_cgroup_stat_index idx)
3116 {
3117 struct mem_cgroup *iter;
3118 long val = 0;
3119
3120 /* Per-cpu values can be negative, use a signed accumulator */
3121 for_each_mem_cgroup_tree(iter, memcg)
3122 val += mem_cgroup_read_stat(iter, idx);
3123
3124 if (val < 0) /* race ? */
3125 val = 0;
3126 return val;
3127 }
3128
3129 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3130 {
3131 u64 val;
3132
3133 if (mem_cgroup_is_root(memcg)) {
3134 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3135 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3136 if (swap)
3137 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3138 } else {
3139 if (!swap)
3140 val = page_counter_read(&memcg->memory);
3141 else
3142 val = page_counter_read(&memcg->memsw);
3143 }
3144 return val << PAGE_SHIFT;
3145 }
3146
3147 enum {
3148 RES_USAGE,
3149 RES_LIMIT,
3150 RES_MAX_USAGE,
3151 RES_FAILCNT,
3152 RES_SOFT_LIMIT,
3153 };
3154
3155 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3156 struct cftype *cft)
3157 {
3158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3159 struct page_counter *counter;
3160
3161 switch (MEMFILE_TYPE(cft->private)) {
3162 case _MEM:
3163 counter = &memcg->memory;
3164 break;
3165 case _MEMSWAP:
3166 counter = &memcg->memsw;
3167 break;
3168 case _KMEM:
3169 counter = &memcg->kmem;
3170 break;
3171 default:
3172 BUG();
3173 }
3174
3175 switch (MEMFILE_ATTR(cft->private)) {
3176 case RES_USAGE:
3177 if (counter == &memcg->memory)
3178 return mem_cgroup_usage(memcg, false);
3179 if (counter == &memcg->memsw)
3180 return mem_cgroup_usage(memcg, true);
3181 return (u64)page_counter_read(counter) * PAGE_SIZE;
3182 case RES_LIMIT:
3183 return (u64)counter->limit * PAGE_SIZE;
3184 case RES_MAX_USAGE:
3185 return (u64)counter->watermark * PAGE_SIZE;
3186 case RES_FAILCNT:
3187 return counter->failcnt;
3188 case RES_SOFT_LIMIT:
3189 return (u64)memcg->soft_limit * PAGE_SIZE;
3190 default:
3191 BUG();
3192 }
3193 }
3194
3195 #ifdef CONFIG_MEMCG_KMEM
3196 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3197 unsigned long nr_pages)
3198 {
3199 int err = 0;
3200 int memcg_id;
3201
3202 BUG_ON(memcg->kmemcg_id >= 0);
3203 BUG_ON(memcg->kmem_acct_activated);
3204 BUG_ON(memcg->kmem_acct_active);
3205
3206 /*
3207 * For simplicity, we won't allow this to be disabled. It also can't
3208 * be changed if the cgroup has children already, or if tasks had
3209 * already joined.
3210 *
3211 * If tasks join before we set the limit, a person looking at
3212 * kmem.usage_in_bytes will have no way to determine when it took
3213 * place, which makes the value quite meaningless.
3214 *
3215 * After it first became limited, changes in the value of the limit are
3216 * of course permitted.
3217 */
3218 mutex_lock(&memcg_create_mutex);
3219 if (cgroup_has_tasks(memcg->css.cgroup) ||
3220 (memcg->use_hierarchy && memcg_has_children(memcg)))
3221 err = -EBUSY;
3222 mutex_unlock(&memcg_create_mutex);
3223 if (err)
3224 goto out;
3225
3226 memcg_id = memcg_alloc_cache_id();
3227 if (memcg_id < 0) {
3228 err = memcg_id;
3229 goto out;
3230 }
3231
3232 /*
3233 * We couldn't have accounted to this cgroup, because it hasn't got
3234 * activated yet, so this should succeed.
3235 */
3236 err = page_counter_limit(&memcg->kmem, nr_pages);
3237 VM_BUG_ON(err);
3238
3239 static_key_slow_inc(&memcg_kmem_enabled_key);
3240 /*
3241 * A memory cgroup is considered kmem-active as soon as it gets
3242 * kmemcg_id. Setting the id after enabling static branching will
3243 * guarantee no one starts accounting before all call sites are
3244 * patched.
3245 */
3246 memcg->kmemcg_id = memcg_id;
3247 memcg->kmem_acct_activated = true;
3248 memcg->kmem_acct_active = true;
3249 out:
3250 return err;
3251 }
3252
3253 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3254 unsigned long limit)
3255 {
3256 int ret;
3257
3258 mutex_lock(&memcg_limit_mutex);
3259 if (!memcg_kmem_is_active(memcg))
3260 ret = memcg_activate_kmem(memcg, limit);
3261 else
3262 ret = page_counter_limit(&memcg->kmem, limit);
3263 mutex_unlock(&memcg_limit_mutex);
3264 return ret;
3265 }
3266
3267 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3268 {
3269 int ret = 0;
3270 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3271
3272 if (!parent)
3273 return 0;
3274
3275 mutex_lock(&memcg_limit_mutex);
3276 /*
3277 * If the parent cgroup is not kmem-active now, it cannot be activated
3278 * after this point, because it has at least one child already.
3279 */
3280 if (memcg_kmem_is_active(parent))
3281 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3282 mutex_unlock(&memcg_limit_mutex);
3283 return ret;
3284 }
3285 #else
3286 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3287 unsigned long limit)
3288 {
3289 return -EINVAL;
3290 }
3291 #endif /* CONFIG_MEMCG_KMEM */
3292
3293 /*
3294 * The user of this function is...
3295 * RES_LIMIT.
3296 */
3297 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3298 char *buf, size_t nbytes, loff_t off)
3299 {
3300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301 unsigned long nr_pages;
3302 int ret;
3303
3304 buf = strstrip(buf);
3305 ret = page_counter_memparse(buf, "-1", &nr_pages);
3306 if (ret)
3307 return ret;
3308
3309 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3310 case RES_LIMIT:
3311 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3312 ret = -EINVAL;
3313 break;
3314 }
3315 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3316 case _MEM:
3317 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3318 break;
3319 case _MEMSWAP:
3320 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3321 break;
3322 case _KMEM:
3323 ret = memcg_update_kmem_limit(memcg, nr_pages);
3324 break;
3325 }
3326 break;
3327 case RES_SOFT_LIMIT:
3328 memcg->soft_limit = nr_pages;
3329 ret = 0;
3330 break;
3331 }
3332 return ret ?: nbytes;
3333 }
3334
3335 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3336 size_t nbytes, loff_t off)
3337 {
3338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3339 struct page_counter *counter;
3340
3341 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3342 case _MEM:
3343 counter = &memcg->memory;
3344 break;
3345 case _MEMSWAP:
3346 counter = &memcg->memsw;
3347 break;
3348 case _KMEM:
3349 counter = &memcg->kmem;
3350 break;
3351 default:
3352 BUG();
3353 }
3354
3355 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3356 case RES_MAX_USAGE:
3357 page_counter_reset_watermark(counter);
3358 break;
3359 case RES_FAILCNT:
3360 counter->failcnt = 0;
3361 break;
3362 default:
3363 BUG();
3364 }
3365
3366 return nbytes;
3367 }
3368
3369 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3370 struct cftype *cft)
3371 {
3372 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3373 }
3374
3375 #ifdef CONFIG_MMU
3376 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3377 struct cftype *cft, u64 val)
3378 {
3379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3380
3381 if (val & ~MOVE_MASK)
3382 return -EINVAL;
3383
3384 /*
3385 * No kind of locking is needed in here, because ->can_attach() will
3386 * check this value once in the beginning of the process, and then carry
3387 * on with stale data. This means that changes to this value will only
3388 * affect task migrations starting after the change.
3389 */
3390 memcg->move_charge_at_immigrate = val;
3391 return 0;
3392 }
3393 #else
3394 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3395 struct cftype *cft, u64 val)
3396 {
3397 return -ENOSYS;
3398 }
3399 #endif
3400
3401 #ifdef CONFIG_NUMA
3402 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3403 {
3404 struct numa_stat {
3405 const char *name;
3406 unsigned int lru_mask;
3407 };
3408
3409 static const struct numa_stat stats[] = {
3410 { "total", LRU_ALL },
3411 { "file", LRU_ALL_FILE },
3412 { "anon", LRU_ALL_ANON },
3413 { "unevictable", BIT(LRU_UNEVICTABLE) },
3414 };
3415 const struct numa_stat *stat;
3416 int nid;
3417 unsigned long nr;
3418 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3419
3420 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3421 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3422 seq_printf(m, "%s=%lu", stat->name, nr);
3423 for_each_node_state(nid, N_MEMORY) {
3424 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3425 stat->lru_mask);
3426 seq_printf(m, " N%d=%lu", nid, nr);
3427 }
3428 seq_putc(m, '\n');
3429 }
3430
3431 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432 struct mem_cgroup *iter;
3433
3434 nr = 0;
3435 for_each_mem_cgroup_tree(iter, memcg)
3436 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3437 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3438 for_each_node_state(nid, N_MEMORY) {
3439 nr = 0;
3440 for_each_mem_cgroup_tree(iter, memcg)
3441 nr += mem_cgroup_node_nr_lru_pages(
3442 iter, nid, stat->lru_mask);
3443 seq_printf(m, " N%d=%lu", nid, nr);
3444 }
3445 seq_putc(m, '\n');
3446 }
3447
3448 return 0;
3449 }
3450 #endif /* CONFIG_NUMA */
3451
3452 static int memcg_stat_show(struct seq_file *m, void *v)
3453 {
3454 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3455 unsigned long memory, memsw;
3456 struct mem_cgroup *mi;
3457 unsigned int i;
3458
3459 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3460 MEM_CGROUP_STAT_NSTATS);
3461 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3462 MEM_CGROUP_EVENTS_NSTATS);
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3464
3465 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3466 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3467 continue;
3468 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3469 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3470 }
3471
3472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3473 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3474 mem_cgroup_read_events(memcg, i));
3475
3476 for (i = 0; i < NR_LRU_LISTS; i++)
3477 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3479
3480 /* Hierarchical information */
3481 memory = memsw = PAGE_COUNTER_MAX;
3482 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483 memory = min(memory, mi->memory.limit);
3484 memsw = min(memsw, mi->memsw.limit);
3485 }
3486 seq_printf(m, "hierarchical_memory_limit %llu\n",
3487 (u64)memory * PAGE_SIZE);
3488 if (do_swap_account)
3489 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490 (u64)memsw * PAGE_SIZE);
3491
3492 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3493 long long val = 0;
3494
3495 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3496 continue;
3497 for_each_mem_cgroup_tree(mi, memcg)
3498 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3499 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3500 }
3501
3502 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3503 unsigned long long val = 0;
3504
3505 for_each_mem_cgroup_tree(mi, memcg)
3506 val += mem_cgroup_read_events(mi, i);
3507 seq_printf(m, "total_%s %llu\n",
3508 mem_cgroup_events_names[i], val);
3509 }
3510
3511 for (i = 0; i < NR_LRU_LISTS; i++) {
3512 unsigned long long val = 0;
3513
3514 for_each_mem_cgroup_tree(mi, memcg)
3515 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3516 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3517 }
3518
3519 #ifdef CONFIG_DEBUG_VM
3520 {
3521 int nid, zid;
3522 struct mem_cgroup_per_zone *mz;
3523 struct zone_reclaim_stat *rstat;
3524 unsigned long recent_rotated[2] = {0, 0};
3525 unsigned long recent_scanned[2] = {0, 0};
3526
3527 for_each_online_node(nid)
3528 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3529 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3530 rstat = &mz->lruvec.reclaim_stat;
3531
3532 recent_rotated[0] += rstat->recent_rotated[0];
3533 recent_rotated[1] += rstat->recent_rotated[1];
3534 recent_scanned[0] += rstat->recent_scanned[0];
3535 recent_scanned[1] += rstat->recent_scanned[1];
3536 }
3537 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3538 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3539 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3540 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3541 }
3542 #endif
3543
3544 return 0;
3545 }
3546
3547 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3548 struct cftype *cft)
3549 {
3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552 return mem_cgroup_swappiness(memcg);
3553 }
3554
3555 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3556 struct cftype *cft, u64 val)
3557 {
3558 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3559
3560 if (val > 100)
3561 return -EINVAL;
3562
3563 if (css->parent)
3564 memcg->swappiness = val;
3565 else
3566 vm_swappiness = val;
3567
3568 return 0;
3569 }
3570
3571 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3572 {
3573 struct mem_cgroup_threshold_ary *t;
3574 unsigned long usage;
3575 int i;
3576
3577 rcu_read_lock();
3578 if (!swap)
3579 t = rcu_dereference(memcg->thresholds.primary);
3580 else
3581 t = rcu_dereference(memcg->memsw_thresholds.primary);
3582
3583 if (!t)
3584 goto unlock;
3585
3586 usage = mem_cgroup_usage(memcg, swap);
3587
3588 /*
3589 * current_threshold points to threshold just below or equal to usage.
3590 * If it's not true, a threshold was crossed after last
3591 * call of __mem_cgroup_threshold().
3592 */
3593 i = t->current_threshold;
3594
3595 /*
3596 * Iterate backward over array of thresholds starting from
3597 * current_threshold and check if a threshold is crossed.
3598 * If none of thresholds below usage is crossed, we read
3599 * only one element of the array here.
3600 */
3601 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3602 eventfd_signal(t->entries[i].eventfd, 1);
3603
3604 /* i = current_threshold + 1 */
3605 i++;
3606
3607 /*
3608 * Iterate forward over array of thresholds starting from
3609 * current_threshold+1 and check if a threshold is crossed.
3610 * If none of thresholds above usage is crossed, we read
3611 * only one element of the array here.
3612 */
3613 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3614 eventfd_signal(t->entries[i].eventfd, 1);
3615
3616 /* Update current_threshold */
3617 t->current_threshold = i - 1;
3618 unlock:
3619 rcu_read_unlock();
3620 }
3621
3622 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3623 {
3624 while (memcg) {
3625 __mem_cgroup_threshold(memcg, false);
3626 if (do_swap_account)
3627 __mem_cgroup_threshold(memcg, true);
3628
3629 memcg = parent_mem_cgroup(memcg);
3630 }
3631 }
3632
3633 static int compare_thresholds(const void *a, const void *b)
3634 {
3635 const struct mem_cgroup_threshold *_a = a;
3636 const struct mem_cgroup_threshold *_b = b;
3637
3638 if (_a->threshold > _b->threshold)
3639 return 1;
3640
3641 if (_a->threshold < _b->threshold)
3642 return -1;
3643
3644 return 0;
3645 }
3646
3647 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3648 {
3649 struct mem_cgroup_eventfd_list *ev;
3650
3651 spin_lock(&memcg_oom_lock);
3652
3653 list_for_each_entry(ev, &memcg->oom_notify, list)
3654 eventfd_signal(ev->eventfd, 1);
3655
3656 spin_unlock(&memcg_oom_lock);
3657 return 0;
3658 }
3659
3660 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3661 {
3662 struct mem_cgroup *iter;
3663
3664 for_each_mem_cgroup_tree(iter, memcg)
3665 mem_cgroup_oom_notify_cb(iter);
3666 }
3667
3668 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3669 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3670 {
3671 struct mem_cgroup_thresholds *thresholds;
3672 struct mem_cgroup_threshold_ary *new;
3673 unsigned long threshold;
3674 unsigned long usage;
3675 int i, size, ret;
3676
3677 ret = page_counter_memparse(args, "-1", &threshold);
3678 if (ret)
3679 return ret;
3680
3681 mutex_lock(&memcg->thresholds_lock);
3682
3683 if (type == _MEM) {
3684 thresholds = &memcg->thresholds;
3685 usage = mem_cgroup_usage(memcg, false);
3686 } else if (type == _MEMSWAP) {
3687 thresholds = &memcg->memsw_thresholds;
3688 usage = mem_cgroup_usage(memcg, true);
3689 } else
3690 BUG();
3691
3692 /* Check if a threshold crossed before adding a new one */
3693 if (thresholds->primary)
3694 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3695
3696 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3697
3698 /* Allocate memory for new array of thresholds */
3699 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3700 GFP_KERNEL);
3701 if (!new) {
3702 ret = -ENOMEM;
3703 goto unlock;
3704 }
3705 new->size = size;
3706
3707 /* Copy thresholds (if any) to new array */
3708 if (thresholds->primary) {
3709 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3710 sizeof(struct mem_cgroup_threshold));
3711 }
3712
3713 /* Add new threshold */
3714 new->entries[size - 1].eventfd = eventfd;
3715 new->entries[size - 1].threshold = threshold;
3716
3717 /* Sort thresholds. Registering of new threshold isn't time-critical */
3718 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3719 compare_thresholds, NULL);
3720
3721 /* Find current threshold */
3722 new->current_threshold = -1;
3723 for (i = 0; i < size; i++) {
3724 if (new->entries[i].threshold <= usage) {
3725 /*
3726 * new->current_threshold will not be used until
3727 * rcu_assign_pointer(), so it's safe to increment
3728 * it here.
3729 */
3730 ++new->current_threshold;
3731 } else
3732 break;
3733 }
3734
3735 /* Free old spare buffer and save old primary buffer as spare */
3736 kfree(thresholds->spare);
3737 thresholds->spare = thresholds->primary;
3738
3739 rcu_assign_pointer(thresholds->primary, new);
3740
3741 /* To be sure that nobody uses thresholds */
3742 synchronize_rcu();
3743
3744 unlock:
3745 mutex_unlock(&memcg->thresholds_lock);
3746
3747 return ret;
3748 }
3749
3750 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3751 struct eventfd_ctx *eventfd, const char *args)
3752 {
3753 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3754 }
3755
3756 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3757 struct eventfd_ctx *eventfd, const char *args)
3758 {
3759 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3760 }
3761
3762 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3763 struct eventfd_ctx *eventfd, enum res_type type)
3764 {
3765 struct mem_cgroup_thresholds *thresholds;
3766 struct mem_cgroup_threshold_ary *new;
3767 unsigned long usage;
3768 int i, j, size;
3769
3770 mutex_lock(&memcg->thresholds_lock);
3771
3772 if (type == _MEM) {
3773 thresholds = &memcg->thresholds;
3774 usage = mem_cgroup_usage(memcg, false);
3775 } else if (type == _MEMSWAP) {
3776 thresholds = &memcg->memsw_thresholds;
3777 usage = mem_cgroup_usage(memcg, true);
3778 } else
3779 BUG();
3780
3781 if (!thresholds->primary)
3782 goto unlock;
3783
3784 /* Check if a threshold crossed before removing */
3785 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3786
3787 /* Calculate new number of threshold */
3788 size = 0;
3789 for (i = 0; i < thresholds->primary->size; i++) {
3790 if (thresholds->primary->entries[i].eventfd != eventfd)
3791 size++;
3792 }
3793
3794 new = thresholds->spare;
3795
3796 /* Set thresholds array to NULL if we don't have thresholds */
3797 if (!size) {
3798 kfree(new);
3799 new = NULL;
3800 goto swap_buffers;
3801 }
3802
3803 new->size = size;
3804
3805 /* Copy thresholds and find current threshold */
3806 new->current_threshold = -1;
3807 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3808 if (thresholds->primary->entries[i].eventfd == eventfd)
3809 continue;
3810
3811 new->entries[j] = thresholds->primary->entries[i];
3812 if (new->entries[j].threshold <= usage) {
3813 /*
3814 * new->current_threshold will not be used
3815 * until rcu_assign_pointer(), so it's safe to increment
3816 * it here.
3817 */
3818 ++new->current_threshold;
3819 }
3820 j++;
3821 }
3822
3823 swap_buffers:
3824 /* Swap primary and spare array */
3825 thresholds->spare = thresholds->primary;
3826 /* If all events are unregistered, free the spare array */
3827 if (!new) {
3828 kfree(thresholds->spare);
3829 thresholds->spare = NULL;
3830 }
3831
3832 rcu_assign_pointer(thresholds->primary, new);
3833
3834 /* To be sure that nobody uses thresholds */
3835 synchronize_rcu();
3836 unlock:
3837 mutex_unlock(&memcg->thresholds_lock);
3838 }
3839
3840 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3841 struct eventfd_ctx *eventfd)
3842 {
3843 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3844 }
3845
3846 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3847 struct eventfd_ctx *eventfd)
3848 {
3849 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3850 }
3851
3852 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3853 struct eventfd_ctx *eventfd, const char *args)
3854 {
3855 struct mem_cgroup_eventfd_list *event;
3856
3857 event = kmalloc(sizeof(*event), GFP_KERNEL);
3858 if (!event)
3859 return -ENOMEM;
3860
3861 spin_lock(&memcg_oom_lock);
3862
3863 event->eventfd = eventfd;
3864 list_add(&event->list, &memcg->oom_notify);
3865
3866 /* already in OOM ? */
3867 if (atomic_read(&memcg->under_oom))
3868 eventfd_signal(eventfd, 1);
3869 spin_unlock(&memcg_oom_lock);
3870
3871 return 0;
3872 }
3873
3874 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3875 struct eventfd_ctx *eventfd)
3876 {
3877 struct mem_cgroup_eventfd_list *ev, *tmp;
3878
3879 spin_lock(&memcg_oom_lock);
3880
3881 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3882 if (ev->eventfd == eventfd) {
3883 list_del(&ev->list);
3884 kfree(ev);
3885 }
3886 }
3887
3888 spin_unlock(&memcg_oom_lock);
3889 }
3890
3891 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3892 {
3893 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3894
3895 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3896 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3897 return 0;
3898 }
3899
3900 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3901 struct cftype *cft, u64 val)
3902 {
3903 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904
3905 /* cannot set to root cgroup and only 0 and 1 are allowed */
3906 if (!css->parent || !((val == 0) || (val == 1)))
3907 return -EINVAL;
3908
3909 memcg->oom_kill_disable = val;
3910 if (!val)
3911 memcg_oom_recover(memcg);
3912
3913 return 0;
3914 }
3915
3916 #ifdef CONFIG_MEMCG_KMEM
3917 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3918 {
3919 int ret;
3920
3921 ret = memcg_propagate_kmem(memcg);
3922 if (ret)
3923 return ret;
3924
3925 return mem_cgroup_sockets_init(memcg, ss);
3926 }
3927
3928 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3929 {
3930 struct cgroup_subsys_state *css;
3931 struct mem_cgroup *parent, *child;
3932 int kmemcg_id;
3933
3934 if (!memcg->kmem_acct_active)
3935 return;
3936
3937 /*
3938 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3939 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3940 * guarantees no cache will be created for this cgroup after we are
3941 * done (see memcg_create_kmem_cache()).
3942 */
3943 memcg->kmem_acct_active = false;
3944
3945 memcg_deactivate_kmem_caches(memcg);
3946
3947 kmemcg_id = memcg->kmemcg_id;
3948 BUG_ON(kmemcg_id < 0);
3949
3950 parent = parent_mem_cgroup(memcg);
3951 if (!parent)
3952 parent = root_mem_cgroup;
3953
3954 /*
3955 * Change kmemcg_id of this cgroup and all its descendants to the
3956 * parent's id, and then move all entries from this cgroup's list_lrus
3957 * to ones of the parent. After we have finished, all list_lrus
3958 * corresponding to this cgroup are guaranteed to remain empty. The
3959 * ordering is imposed by list_lru_node->lock taken by
3960 * memcg_drain_all_list_lrus().
3961 */
3962 css_for_each_descendant_pre(css, &memcg->css) {
3963 child = mem_cgroup_from_css(css);
3964 BUG_ON(child->kmemcg_id != kmemcg_id);
3965 child->kmemcg_id = parent->kmemcg_id;
3966 if (!memcg->use_hierarchy)
3967 break;
3968 }
3969 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3970
3971 memcg_free_cache_id(kmemcg_id);
3972 }
3973
3974 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3975 {
3976 if (memcg->kmem_acct_activated) {
3977 memcg_destroy_kmem_caches(memcg);
3978 static_key_slow_dec(&memcg_kmem_enabled_key);
3979 WARN_ON(page_counter_read(&memcg->kmem));
3980 }
3981 mem_cgroup_sockets_destroy(memcg);
3982 }
3983 #else
3984 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3985 {
3986 return 0;
3987 }
3988
3989 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3990 {
3991 }
3992
3993 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3994 {
3995 }
3996 #endif
3997
3998 /*
3999 * DO NOT USE IN NEW FILES.
4000 *
4001 * "cgroup.event_control" implementation.
4002 *
4003 * This is way over-engineered. It tries to support fully configurable
4004 * events for each user. Such level of flexibility is completely
4005 * unnecessary especially in the light of the planned unified hierarchy.
4006 *
4007 * Please deprecate this and replace with something simpler if at all
4008 * possible.
4009 */
4010
4011 /*
4012 * Unregister event and free resources.
4013 *
4014 * Gets called from workqueue.
4015 */
4016 static void memcg_event_remove(struct work_struct *work)
4017 {
4018 struct mem_cgroup_event *event =
4019 container_of(work, struct mem_cgroup_event, remove);
4020 struct mem_cgroup *memcg = event->memcg;
4021
4022 remove_wait_queue(event->wqh, &event->wait);
4023
4024 event->unregister_event(memcg, event->eventfd);
4025
4026 /* Notify userspace the event is going away. */
4027 eventfd_signal(event->eventfd, 1);
4028
4029 eventfd_ctx_put(event->eventfd);
4030 kfree(event);
4031 css_put(&memcg->css);
4032 }
4033
4034 /*
4035 * Gets called on POLLHUP on eventfd when user closes it.
4036 *
4037 * Called with wqh->lock held and interrupts disabled.
4038 */
4039 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4040 int sync, void *key)
4041 {
4042 struct mem_cgroup_event *event =
4043 container_of(wait, struct mem_cgroup_event, wait);
4044 struct mem_cgroup *memcg = event->memcg;
4045 unsigned long flags = (unsigned long)key;
4046
4047 if (flags & POLLHUP) {
4048 /*
4049 * If the event has been detached at cgroup removal, we
4050 * can simply return knowing the other side will cleanup
4051 * for us.
4052 *
4053 * We can't race against event freeing since the other
4054 * side will require wqh->lock via remove_wait_queue(),
4055 * which we hold.
4056 */
4057 spin_lock(&memcg->event_list_lock);
4058 if (!list_empty(&event->list)) {
4059 list_del_init(&event->list);
4060 /*
4061 * We are in atomic context, but cgroup_event_remove()
4062 * may sleep, so we have to call it in workqueue.
4063 */
4064 schedule_work(&event->remove);
4065 }
4066 spin_unlock(&memcg->event_list_lock);
4067 }
4068
4069 return 0;
4070 }
4071
4072 static void memcg_event_ptable_queue_proc(struct file *file,
4073 wait_queue_head_t *wqh, poll_table *pt)
4074 {
4075 struct mem_cgroup_event *event =
4076 container_of(pt, struct mem_cgroup_event, pt);
4077
4078 event->wqh = wqh;
4079 add_wait_queue(wqh, &event->wait);
4080 }
4081
4082 /*
4083 * DO NOT USE IN NEW FILES.
4084 *
4085 * Parse input and register new cgroup event handler.
4086 *
4087 * Input must be in format '<event_fd> <control_fd> <args>'.
4088 * Interpretation of args is defined by control file implementation.
4089 */
4090 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4091 char *buf, size_t nbytes, loff_t off)
4092 {
4093 struct cgroup_subsys_state *css = of_css(of);
4094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4095 struct mem_cgroup_event *event;
4096 struct cgroup_subsys_state *cfile_css;
4097 unsigned int efd, cfd;
4098 struct fd efile;
4099 struct fd cfile;
4100 const char *name;
4101 char *endp;
4102 int ret;
4103
4104 buf = strstrip(buf);
4105
4106 efd = simple_strtoul(buf, &endp, 10);
4107 if (*endp != ' ')
4108 return -EINVAL;
4109 buf = endp + 1;
4110
4111 cfd = simple_strtoul(buf, &endp, 10);
4112 if ((*endp != ' ') && (*endp != '\0'))
4113 return -EINVAL;
4114 buf = endp + 1;
4115
4116 event = kzalloc(sizeof(*event), GFP_KERNEL);
4117 if (!event)
4118 return -ENOMEM;
4119
4120 event->memcg = memcg;
4121 INIT_LIST_HEAD(&event->list);
4122 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4123 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4124 INIT_WORK(&event->remove, memcg_event_remove);
4125
4126 efile = fdget(efd);
4127 if (!efile.file) {
4128 ret = -EBADF;
4129 goto out_kfree;
4130 }
4131
4132 event->eventfd = eventfd_ctx_fileget(efile.file);
4133 if (IS_ERR(event->eventfd)) {
4134 ret = PTR_ERR(event->eventfd);
4135 goto out_put_efile;
4136 }
4137
4138 cfile = fdget(cfd);
4139 if (!cfile.file) {
4140 ret = -EBADF;
4141 goto out_put_eventfd;
4142 }
4143
4144 /* the process need read permission on control file */
4145 /* AV: shouldn't we check that it's been opened for read instead? */
4146 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4147 if (ret < 0)
4148 goto out_put_cfile;
4149
4150 /*
4151 * Determine the event callbacks and set them in @event. This used
4152 * to be done via struct cftype but cgroup core no longer knows
4153 * about these events. The following is crude but the whole thing
4154 * is for compatibility anyway.
4155 *
4156 * DO NOT ADD NEW FILES.
4157 */
4158 name = cfile.file->f_path.dentry->d_name.name;
4159
4160 if (!strcmp(name, "memory.usage_in_bytes")) {
4161 event->register_event = mem_cgroup_usage_register_event;
4162 event->unregister_event = mem_cgroup_usage_unregister_event;
4163 } else if (!strcmp(name, "memory.oom_control")) {
4164 event->register_event = mem_cgroup_oom_register_event;
4165 event->unregister_event = mem_cgroup_oom_unregister_event;
4166 } else if (!strcmp(name, "memory.pressure_level")) {
4167 event->register_event = vmpressure_register_event;
4168 event->unregister_event = vmpressure_unregister_event;
4169 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4170 event->register_event = memsw_cgroup_usage_register_event;
4171 event->unregister_event = memsw_cgroup_usage_unregister_event;
4172 } else {
4173 ret = -EINVAL;
4174 goto out_put_cfile;
4175 }
4176
4177 /*
4178 * Verify @cfile should belong to @css. Also, remaining events are
4179 * automatically removed on cgroup destruction but the removal is
4180 * asynchronous, so take an extra ref on @css.
4181 */
4182 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4183 &memory_cgrp_subsys);
4184 ret = -EINVAL;
4185 if (IS_ERR(cfile_css))
4186 goto out_put_cfile;
4187 if (cfile_css != css) {
4188 css_put(cfile_css);
4189 goto out_put_cfile;
4190 }
4191
4192 ret = event->register_event(memcg, event->eventfd, buf);
4193 if (ret)
4194 goto out_put_css;
4195
4196 efile.file->f_op->poll(efile.file, &event->pt);
4197
4198 spin_lock(&memcg->event_list_lock);
4199 list_add(&event->list, &memcg->event_list);
4200 spin_unlock(&memcg->event_list_lock);
4201
4202 fdput(cfile);
4203 fdput(efile);
4204
4205 return nbytes;
4206
4207 out_put_css:
4208 css_put(css);
4209 out_put_cfile:
4210 fdput(cfile);
4211 out_put_eventfd:
4212 eventfd_ctx_put(event->eventfd);
4213 out_put_efile:
4214 fdput(efile);
4215 out_kfree:
4216 kfree(event);
4217
4218 return ret;
4219 }
4220
4221 static struct cftype mem_cgroup_legacy_files[] = {
4222 {
4223 .name = "usage_in_bytes",
4224 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4225 .read_u64 = mem_cgroup_read_u64,
4226 },
4227 {
4228 .name = "max_usage_in_bytes",
4229 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4230 .write = mem_cgroup_reset,
4231 .read_u64 = mem_cgroup_read_u64,
4232 },
4233 {
4234 .name = "limit_in_bytes",
4235 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4236 .write = mem_cgroup_write,
4237 .read_u64 = mem_cgroup_read_u64,
4238 },
4239 {
4240 .name = "soft_limit_in_bytes",
4241 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4242 .write = mem_cgroup_write,
4243 .read_u64 = mem_cgroup_read_u64,
4244 },
4245 {
4246 .name = "failcnt",
4247 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4248 .write = mem_cgroup_reset,
4249 .read_u64 = mem_cgroup_read_u64,
4250 },
4251 {
4252 .name = "stat",
4253 .seq_show = memcg_stat_show,
4254 },
4255 {
4256 .name = "force_empty",
4257 .write = mem_cgroup_force_empty_write,
4258 },
4259 {
4260 .name = "use_hierarchy",
4261 .write_u64 = mem_cgroup_hierarchy_write,
4262 .read_u64 = mem_cgroup_hierarchy_read,
4263 },
4264 {
4265 .name = "cgroup.event_control", /* XXX: for compat */
4266 .write = memcg_write_event_control,
4267 .flags = CFTYPE_NO_PREFIX,
4268 .mode = S_IWUGO,
4269 },
4270 {
4271 .name = "swappiness",
4272 .read_u64 = mem_cgroup_swappiness_read,
4273 .write_u64 = mem_cgroup_swappiness_write,
4274 },
4275 {
4276 .name = "move_charge_at_immigrate",
4277 .read_u64 = mem_cgroup_move_charge_read,
4278 .write_u64 = mem_cgroup_move_charge_write,
4279 },
4280 {
4281 .name = "oom_control",
4282 .seq_show = mem_cgroup_oom_control_read,
4283 .write_u64 = mem_cgroup_oom_control_write,
4284 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4285 },
4286 {
4287 .name = "pressure_level",
4288 },
4289 #ifdef CONFIG_NUMA
4290 {
4291 .name = "numa_stat",
4292 .seq_show = memcg_numa_stat_show,
4293 },
4294 #endif
4295 #ifdef CONFIG_MEMCG_KMEM
4296 {
4297 .name = "kmem.limit_in_bytes",
4298 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4299 .write = mem_cgroup_write,
4300 .read_u64 = mem_cgroup_read_u64,
4301 },
4302 {
4303 .name = "kmem.usage_in_bytes",
4304 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4305 .read_u64 = mem_cgroup_read_u64,
4306 },
4307 {
4308 .name = "kmem.failcnt",
4309 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4310 .write = mem_cgroup_reset,
4311 .read_u64 = mem_cgroup_read_u64,
4312 },
4313 {
4314 .name = "kmem.max_usage_in_bytes",
4315 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4316 .write = mem_cgroup_reset,
4317 .read_u64 = mem_cgroup_read_u64,
4318 },
4319 #ifdef CONFIG_SLABINFO
4320 {
4321 .name = "kmem.slabinfo",
4322 .seq_start = slab_start,
4323 .seq_next = slab_next,
4324 .seq_stop = slab_stop,
4325 .seq_show = memcg_slab_show,
4326 },
4327 #endif
4328 #endif
4329 { }, /* terminate */
4330 };
4331
4332 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4333 {
4334 struct mem_cgroup_per_node *pn;
4335 struct mem_cgroup_per_zone *mz;
4336 int zone, tmp = node;
4337 /*
4338 * This routine is called against possible nodes.
4339 * But it's BUG to call kmalloc() against offline node.
4340 *
4341 * TODO: this routine can waste much memory for nodes which will
4342 * never be onlined. It's better to use memory hotplug callback
4343 * function.
4344 */
4345 if (!node_state(node, N_NORMAL_MEMORY))
4346 tmp = -1;
4347 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4348 if (!pn)
4349 return 1;
4350
4351 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4352 mz = &pn->zoneinfo[zone];
4353 lruvec_init(&mz->lruvec);
4354 mz->usage_in_excess = 0;
4355 mz->on_tree = false;
4356 mz->memcg = memcg;
4357 }
4358 memcg->nodeinfo[node] = pn;
4359 return 0;
4360 }
4361
4362 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4363 {
4364 kfree(memcg->nodeinfo[node]);
4365 }
4366
4367 static struct mem_cgroup *mem_cgroup_alloc(void)
4368 {
4369 struct mem_cgroup *memcg;
4370 size_t size;
4371
4372 size = sizeof(struct mem_cgroup);
4373 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4374
4375 memcg = kzalloc(size, GFP_KERNEL);
4376 if (!memcg)
4377 return NULL;
4378
4379 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4380 if (!memcg->stat)
4381 goto out_free;
4382 spin_lock_init(&memcg->pcp_counter_lock);
4383 return memcg;
4384
4385 out_free:
4386 kfree(memcg);
4387 return NULL;
4388 }
4389
4390 /*
4391 * At destroying mem_cgroup, references from swap_cgroup can remain.
4392 * (scanning all at force_empty is too costly...)
4393 *
4394 * Instead of clearing all references at force_empty, we remember
4395 * the number of reference from swap_cgroup and free mem_cgroup when
4396 * it goes down to 0.
4397 *
4398 * Removal of cgroup itself succeeds regardless of refs from swap.
4399 */
4400
4401 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4402 {
4403 int node;
4404
4405 mem_cgroup_remove_from_trees(memcg);
4406
4407 for_each_node(node)
4408 free_mem_cgroup_per_zone_info(memcg, node);
4409
4410 free_percpu(memcg->stat);
4411 kfree(memcg);
4412 }
4413
4414 /*
4415 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4416 */
4417 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4418 {
4419 if (!memcg->memory.parent)
4420 return NULL;
4421 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4422 }
4423 EXPORT_SYMBOL(parent_mem_cgroup);
4424
4425 static struct cgroup_subsys_state * __ref
4426 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4427 {
4428 struct mem_cgroup *memcg;
4429 long error = -ENOMEM;
4430 int node;
4431
4432 memcg = mem_cgroup_alloc();
4433 if (!memcg)
4434 return ERR_PTR(error);
4435
4436 for_each_node(node)
4437 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4438 goto free_out;
4439
4440 /* root ? */
4441 if (parent_css == NULL) {
4442 root_mem_cgroup = memcg;
4443 page_counter_init(&memcg->memory, NULL);
4444 memcg->high = PAGE_COUNTER_MAX;
4445 memcg->soft_limit = PAGE_COUNTER_MAX;
4446 page_counter_init(&memcg->memsw, NULL);
4447 page_counter_init(&memcg->kmem, NULL);
4448 }
4449
4450 memcg->last_scanned_node = MAX_NUMNODES;
4451 INIT_LIST_HEAD(&memcg->oom_notify);
4452 memcg->move_charge_at_immigrate = 0;
4453 mutex_init(&memcg->thresholds_lock);
4454 spin_lock_init(&memcg->move_lock);
4455 vmpressure_init(&memcg->vmpressure);
4456 INIT_LIST_HEAD(&memcg->event_list);
4457 spin_lock_init(&memcg->event_list_lock);
4458 #ifdef CONFIG_MEMCG_KMEM
4459 memcg->kmemcg_id = -1;
4460 #endif
4461
4462 return &memcg->css;
4463
4464 free_out:
4465 __mem_cgroup_free(memcg);
4466 return ERR_PTR(error);
4467 }
4468
4469 static int
4470 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4471 {
4472 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4473 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4474 int ret;
4475
4476 if (css->id > MEM_CGROUP_ID_MAX)
4477 return -ENOSPC;
4478
4479 if (!parent)
4480 return 0;
4481
4482 mutex_lock(&memcg_create_mutex);
4483
4484 memcg->use_hierarchy = parent->use_hierarchy;
4485 memcg->oom_kill_disable = parent->oom_kill_disable;
4486 memcg->swappiness = mem_cgroup_swappiness(parent);
4487
4488 if (parent->use_hierarchy) {
4489 page_counter_init(&memcg->memory, &parent->memory);
4490 memcg->high = PAGE_COUNTER_MAX;
4491 memcg->soft_limit = PAGE_COUNTER_MAX;
4492 page_counter_init(&memcg->memsw, &parent->memsw);
4493 page_counter_init(&memcg->kmem, &parent->kmem);
4494
4495 /*
4496 * No need to take a reference to the parent because cgroup
4497 * core guarantees its existence.
4498 */
4499 } else {
4500 page_counter_init(&memcg->memory, NULL);
4501 memcg->high = PAGE_COUNTER_MAX;
4502 memcg->soft_limit = PAGE_COUNTER_MAX;
4503 page_counter_init(&memcg->memsw, NULL);
4504 page_counter_init(&memcg->kmem, NULL);
4505 /*
4506 * Deeper hierachy with use_hierarchy == false doesn't make
4507 * much sense so let cgroup subsystem know about this
4508 * unfortunate state in our controller.
4509 */
4510 if (parent != root_mem_cgroup)
4511 memory_cgrp_subsys.broken_hierarchy = true;
4512 }
4513 mutex_unlock(&memcg_create_mutex);
4514
4515 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4516 if (ret)
4517 return ret;
4518
4519 /*
4520 * Make sure the memcg is initialized: mem_cgroup_iter()
4521 * orders reading memcg->initialized against its callers
4522 * reading the memcg members.
4523 */
4524 smp_store_release(&memcg->initialized, 1);
4525
4526 return 0;
4527 }
4528
4529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4530 {
4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532 struct mem_cgroup_event *event, *tmp;
4533
4534 /*
4535 * Unregister events and notify userspace.
4536 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 * directory to avoid race between userspace and kernelspace.
4538 */
4539 spin_lock(&memcg->event_list_lock);
4540 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4541 list_del_init(&event->list);
4542 schedule_work(&event->remove);
4543 }
4544 spin_unlock(&memcg->event_list_lock);
4545
4546 vmpressure_cleanup(&memcg->vmpressure);
4547
4548 memcg_deactivate_kmem(memcg);
4549 }
4550
4551 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4552 {
4553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4554
4555 memcg_destroy_kmem(memcg);
4556 __mem_cgroup_free(memcg);
4557 }
4558
4559 /**
4560 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4561 * @css: the target css
4562 *
4563 * Reset the states of the mem_cgroup associated with @css. This is
4564 * invoked when the userland requests disabling on the default hierarchy
4565 * but the memcg is pinned through dependency. The memcg should stop
4566 * applying policies and should revert to the vanilla state as it may be
4567 * made visible again.
4568 *
4569 * The current implementation only resets the essential configurations.
4570 * This needs to be expanded to cover all the visible parts.
4571 */
4572 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4573 {
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
4576 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4577 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4578 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4579 memcg->low = 0;
4580 memcg->high = PAGE_COUNTER_MAX;
4581 memcg->soft_limit = PAGE_COUNTER_MAX;
4582 }
4583
4584 #ifdef CONFIG_MMU
4585 /* Handlers for move charge at task migration. */
4586 static int mem_cgroup_do_precharge(unsigned long count)
4587 {
4588 int ret;
4589
4590 /* Try a single bulk charge without reclaim first */
4591 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4592 if (!ret) {
4593 mc.precharge += count;
4594 return ret;
4595 }
4596 if (ret == -EINTR) {
4597 cancel_charge(root_mem_cgroup, count);
4598 return ret;
4599 }
4600
4601 /* Try charges one by one with reclaim */
4602 while (count--) {
4603 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4604 /*
4605 * In case of failure, any residual charges against
4606 * mc.to will be dropped by mem_cgroup_clear_mc()
4607 * later on. However, cancel any charges that are
4608 * bypassed to root right away or they'll be lost.
4609 */
4610 if (ret == -EINTR)
4611 cancel_charge(root_mem_cgroup, 1);
4612 if (ret)
4613 return ret;
4614 mc.precharge++;
4615 cond_resched();
4616 }
4617 return 0;
4618 }
4619
4620 /**
4621 * get_mctgt_type - get target type of moving charge
4622 * @vma: the vma the pte to be checked belongs
4623 * @addr: the address corresponding to the pte to be checked
4624 * @ptent: the pte to be checked
4625 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4626 *
4627 * Returns
4628 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4629 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4630 * move charge. if @target is not NULL, the page is stored in target->page
4631 * with extra refcnt got(Callers should handle it).
4632 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4633 * target for charge migration. if @target is not NULL, the entry is stored
4634 * in target->ent.
4635 *
4636 * Called with pte lock held.
4637 */
4638 union mc_target {
4639 struct page *page;
4640 swp_entry_t ent;
4641 };
4642
4643 enum mc_target_type {
4644 MC_TARGET_NONE = 0,
4645 MC_TARGET_PAGE,
4646 MC_TARGET_SWAP,
4647 };
4648
4649 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4650 unsigned long addr, pte_t ptent)
4651 {
4652 struct page *page = vm_normal_page(vma, addr, ptent);
4653
4654 if (!page || !page_mapped(page))
4655 return NULL;
4656 if (PageAnon(page)) {
4657 if (!(mc.flags & MOVE_ANON))
4658 return NULL;
4659 } else {
4660 if (!(mc.flags & MOVE_FILE))
4661 return NULL;
4662 }
4663 if (!get_page_unless_zero(page))
4664 return NULL;
4665
4666 return page;
4667 }
4668
4669 #ifdef CONFIG_SWAP
4670 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4671 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4672 {
4673 struct page *page = NULL;
4674 swp_entry_t ent = pte_to_swp_entry(ptent);
4675
4676 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4677 return NULL;
4678 /*
4679 * Because lookup_swap_cache() updates some statistics counter,
4680 * we call find_get_page() with swapper_space directly.
4681 */
4682 page = find_get_page(swap_address_space(ent), ent.val);
4683 if (do_swap_account)
4684 entry->val = ent.val;
4685
4686 return page;
4687 }
4688 #else
4689 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4690 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4691 {
4692 return NULL;
4693 }
4694 #endif
4695
4696 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4697 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4698 {
4699 struct page *page = NULL;
4700 struct address_space *mapping;
4701 pgoff_t pgoff;
4702
4703 if (!vma->vm_file) /* anonymous vma */
4704 return NULL;
4705 if (!(mc.flags & MOVE_FILE))
4706 return NULL;
4707
4708 mapping = vma->vm_file->f_mapping;
4709 pgoff = linear_page_index(vma, addr);
4710
4711 /* page is moved even if it's not RSS of this task(page-faulted). */
4712 #ifdef CONFIG_SWAP
4713 /* shmem/tmpfs may report page out on swap: account for that too. */
4714 if (shmem_mapping(mapping)) {
4715 page = find_get_entry(mapping, pgoff);
4716 if (radix_tree_exceptional_entry(page)) {
4717 swp_entry_t swp = radix_to_swp_entry(page);
4718 if (do_swap_account)
4719 *entry = swp;
4720 page = find_get_page(swap_address_space(swp), swp.val);
4721 }
4722 } else
4723 page = find_get_page(mapping, pgoff);
4724 #else
4725 page = find_get_page(mapping, pgoff);
4726 #endif
4727 return page;
4728 }
4729
4730 /**
4731 * mem_cgroup_move_account - move account of the page
4732 * @page: the page
4733 * @nr_pages: number of regular pages (>1 for huge pages)
4734 * @from: mem_cgroup which the page is moved from.
4735 * @to: mem_cgroup which the page is moved to. @from != @to.
4736 *
4737 * The caller must confirm following.
4738 * - page is not on LRU (isolate_page() is useful.)
4739 * - compound_lock is held when nr_pages > 1
4740 *
4741 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4742 * from old cgroup.
4743 */
4744 static int mem_cgroup_move_account(struct page *page,
4745 unsigned int nr_pages,
4746 struct mem_cgroup *from,
4747 struct mem_cgroup *to)
4748 {
4749 unsigned long flags;
4750 int ret;
4751
4752 VM_BUG_ON(from == to);
4753 VM_BUG_ON_PAGE(PageLRU(page), page);
4754 /*
4755 * The page is isolated from LRU. So, collapse function
4756 * will not handle this page. But page splitting can happen.
4757 * Do this check under compound_page_lock(). The caller should
4758 * hold it.
4759 */
4760 ret = -EBUSY;
4761 if (nr_pages > 1 && !PageTransHuge(page))
4762 goto out;
4763
4764 /*
4765 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4766 * of its source page while we change it: page migration takes
4767 * both pages off the LRU, but page cache replacement doesn't.
4768 */
4769 if (!trylock_page(page))
4770 goto out;
4771
4772 ret = -EINVAL;
4773 if (page->mem_cgroup != from)
4774 goto out_unlock;
4775
4776 spin_lock_irqsave(&from->move_lock, flags);
4777
4778 if (!PageAnon(page) && page_mapped(page)) {
4779 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4780 nr_pages);
4781 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4782 nr_pages);
4783 }
4784
4785 if (PageWriteback(page)) {
4786 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4787 nr_pages);
4788 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4789 nr_pages);
4790 }
4791
4792 /*
4793 * It is safe to change page->mem_cgroup here because the page
4794 * is referenced, charged, and isolated - we can't race with
4795 * uncharging, charging, migration, or LRU putback.
4796 */
4797
4798 /* caller should have done css_get */
4799 page->mem_cgroup = to;
4800 spin_unlock_irqrestore(&from->move_lock, flags);
4801
4802 ret = 0;
4803
4804 local_irq_disable();
4805 mem_cgroup_charge_statistics(to, page, nr_pages);
4806 memcg_check_events(to, page);
4807 mem_cgroup_charge_statistics(from, page, -nr_pages);
4808 memcg_check_events(from, page);
4809 local_irq_enable();
4810 out_unlock:
4811 unlock_page(page);
4812 out:
4813 return ret;
4814 }
4815
4816 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4817 unsigned long addr, pte_t ptent, union mc_target *target)
4818 {
4819 struct page *page = NULL;
4820 enum mc_target_type ret = MC_TARGET_NONE;
4821 swp_entry_t ent = { .val = 0 };
4822
4823 if (pte_present(ptent))
4824 page = mc_handle_present_pte(vma, addr, ptent);
4825 else if (is_swap_pte(ptent))
4826 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4827 else if (pte_none(ptent))
4828 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4829
4830 if (!page && !ent.val)
4831 return ret;
4832 if (page) {
4833 /*
4834 * Do only loose check w/o serialization.
4835 * mem_cgroup_move_account() checks the page is valid or
4836 * not under LRU exclusion.
4837 */
4838 if (page->mem_cgroup == mc.from) {
4839 ret = MC_TARGET_PAGE;
4840 if (target)
4841 target->page = page;
4842 }
4843 if (!ret || !target)
4844 put_page(page);
4845 }
4846 /* There is a swap entry and a page doesn't exist or isn't charged */
4847 if (ent.val && !ret &&
4848 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4849 ret = MC_TARGET_SWAP;
4850 if (target)
4851 target->ent = ent;
4852 }
4853 return ret;
4854 }
4855
4856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4857 /*
4858 * We don't consider swapping or file mapped pages because THP does not
4859 * support them for now.
4860 * Caller should make sure that pmd_trans_huge(pmd) is true.
4861 */
4862 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4863 unsigned long addr, pmd_t pmd, union mc_target *target)
4864 {
4865 struct page *page = NULL;
4866 enum mc_target_type ret = MC_TARGET_NONE;
4867
4868 page = pmd_page(pmd);
4869 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4870 if (!(mc.flags & MOVE_ANON))
4871 return ret;
4872 if (page->mem_cgroup == mc.from) {
4873 ret = MC_TARGET_PAGE;
4874 if (target) {
4875 get_page(page);
4876 target->page = page;
4877 }
4878 }
4879 return ret;
4880 }
4881 #else
4882 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4883 unsigned long addr, pmd_t pmd, union mc_target *target)
4884 {
4885 return MC_TARGET_NONE;
4886 }
4887 #endif
4888
4889 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4890 unsigned long addr, unsigned long end,
4891 struct mm_walk *walk)
4892 {
4893 struct vm_area_struct *vma = walk->vma;
4894 pte_t *pte;
4895 spinlock_t *ptl;
4896
4897 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4898 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4899 mc.precharge += HPAGE_PMD_NR;
4900 spin_unlock(ptl);
4901 return 0;
4902 }
4903
4904 if (pmd_trans_unstable(pmd))
4905 return 0;
4906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4907 for (; addr != end; pte++, addr += PAGE_SIZE)
4908 if (get_mctgt_type(vma, addr, *pte, NULL))
4909 mc.precharge++; /* increment precharge temporarily */
4910 pte_unmap_unlock(pte - 1, ptl);
4911 cond_resched();
4912
4913 return 0;
4914 }
4915
4916 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4917 {
4918 unsigned long precharge;
4919
4920 struct mm_walk mem_cgroup_count_precharge_walk = {
4921 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4922 .mm = mm,
4923 };
4924 down_read(&mm->mmap_sem);
4925 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4926 up_read(&mm->mmap_sem);
4927
4928 precharge = mc.precharge;
4929 mc.precharge = 0;
4930
4931 return precharge;
4932 }
4933
4934 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4935 {
4936 unsigned long precharge = mem_cgroup_count_precharge(mm);
4937
4938 VM_BUG_ON(mc.moving_task);
4939 mc.moving_task = current;
4940 return mem_cgroup_do_precharge(precharge);
4941 }
4942
4943 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4944 static void __mem_cgroup_clear_mc(void)
4945 {
4946 struct mem_cgroup *from = mc.from;
4947 struct mem_cgroup *to = mc.to;
4948
4949 /* we must uncharge all the leftover precharges from mc.to */
4950 if (mc.precharge) {
4951 cancel_charge(mc.to, mc.precharge);
4952 mc.precharge = 0;
4953 }
4954 /*
4955 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4956 * we must uncharge here.
4957 */
4958 if (mc.moved_charge) {
4959 cancel_charge(mc.from, mc.moved_charge);
4960 mc.moved_charge = 0;
4961 }
4962 /* we must fixup refcnts and charges */
4963 if (mc.moved_swap) {
4964 /* uncharge swap account from the old cgroup */
4965 if (!mem_cgroup_is_root(mc.from))
4966 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4967
4968 /*
4969 * we charged both to->memory and to->memsw, so we
4970 * should uncharge to->memory.
4971 */
4972 if (!mem_cgroup_is_root(mc.to))
4973 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4974
4975 css_put_many(&mc.from->css, mc.moved_swap);
4976
4977 /* we've already done css_get(mc.to) */
4978 mc.moved_swap = 0;
4979 }
4980 memcg_oom_recover(from);
4981 memcg_oom_recover(to);
4982 wake_up_all(&mc.waitq);
4983 }
4984
4985 static void mem_cgroup_clear_mc(void)
4986 {
4987 /*
4988 * we must clear moving_task before waking up waiters at the end of
4989 * task migration.
4990 */
4991 mc.moving_task = NULL;
4992 __mem_cgroup_clear_mc();
4993 spin_lock(&mc.lock);
4994 mc.from = NULL;
4995 mc.to = NULL;
4996 spin_unlock(&mc.lock);
4997 }
4998
4999 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5000 struct cgroup_taskset *tset)
5001 {
5002 struct task_struct *p = cgroup_taskset_first(tset);
5003 int ret = 0;
5004 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005 unsigned long move_flags;
5006
5007 /*
5008 * We are now commited to this value whatever it is. Changes in this
5009 * tunable will only affect upcoming migrations, not the current one.
5010 * So we need to save it, and keep it going.
5011 */
5012 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5013 if (move_flags) {
5014 struct mm_struct *mm;
5015 struct mem_cgroup *from = mem_cgroup_from_task(p);
5016
5017 VM_BUG_ON(from == memcg);
5018
5019 mm = get_task_mm(p);
5020 if (!mm)
5021 return 0;
5022 /* We move charges only when we move a owner of the mm */
5023 if (mm->owner == p) {
5024 VM_BUG_ON(mc.from);
5025 VM_BUG_ON(mc.to);
5026 VM_BUG_ON(mc.precharge);
5027 VM_BUG_ON(mc.moved_charge);
5028 VM_BUG_ON(mc.moved_swap);
5029
5030 spin_lock(&mc.lock);
5031 mc.from = from;
5032 mc.to = memcg;
5033 mc.flags = move_flags;
5034 spin_unlock(&mc.lock);
5035 /* We set mc.moving_task later */
5036
5037 ret = mem_cgroup_precharge_mc(mm);
5038 if (ret)
5039 mem_cgroup_clear_mc();
5040 }
5041 mmput(mm);
5042 }
5043 return ret;
5044 }
5045
5046 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5047 struct cgroup_taskset *tset)
5048 {
5049 if (mc.to)
5050 mem_cgroup_clear_mc();
5051 }
5052
5053 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5054 unsigned long addr, unsigned long end,
5055 struct mm_walk *walk)
5056 {
5057 int ret = 0;
5058 struct vm_area_struct *vma = walk->vma;
5059 pte_t *pte;
5060 spinlock_t *ptl;
5061 enum mc_target_type target_type;
5062 union mc_target target;
5063 struct page *page;
5064
5065 /*
5066 * We don't take compound_lock() here but no race with splitting thp
5067 * happens because:
5068 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5069 * under splitting, which means there's no concurrent thp split,
5070 * - if another thread runs into split_huge_page() just after we
5071 * entered this if-block, the thread must wait for page table lock
5072 * to be unlocked in __split_huge_page_splitting(), where the main
5073 * part of thp split is not executed yet.
5074 */
5075 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5076 if (mc.precharge < HPAGE_PMD_NR) {
5077 spin_unlock(ptl);
5078 return 0;
5079 }
5080 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5081 if (target_type == MC_TARGET_PAGE) {
5082 page = target.page;
5083 if (!isolate_lru_page(page)) {
5084 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5085 mc.from, mc.to)) {
5086 mc.precharge -= HPAGE_PMD_NR;
5087 mc.moved_charge += HPAGE_PMD_NR;
5088 }
5089 putback_lru_page(page);
5090 }
5091 put_page(page);
5092 }
5093 spin_unlock(ptl);
5094 return 0;
5095 }
5096
5097 if (pmd_trans_unstable(pmd))
5098 return 0;
5099 retry:
5100 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101 for (; addr != end; addr += PAGE_SIZE) {
5102 pte_t ptent = *(pte++);
5103 swp_entry_t ent;
5104
5105 if (!mc.precharge)
5106 break;
5107
5108 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5109 case MC_TARGET_PAGE:
5110 page = target.page;
5111 if (isolate_lru_page(page))
5112 goto put;
5113 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5114 mc.precharge--;
5115 /* we uncharge from mc.from later. */
5116 mc.moved_charge++;
5117 }
5118 putback_lru_page(page);
5119 put: /* get_mctgt_type() gets the page */
5120 put_page(page);
5121 break;
5122 case MC_TARGET_SWAP:
5123 ent = target.ent;
5124 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5125 mc.precharge--;
5126 /* we fixup refcnts and charges later. */
5127 mc.moved_swap++;
5128 }
5129 break;
5130 default:
5131 break;
5132 }
5133 }
5134 pte_unmap_unlock(pte - 1, ptl);
5135 cond_resched();
5136
5137 if (addr != end) {
5138 /*
5139 * We have consumed all precharges we got in can_attach().
5140 * We try charge one by one, but don't do any additional
5141 * charges to mc.to if we have failed in charge once in attach()
5142 * phase.
5143 */
5144 ret = mem_cgroup_do_precharge(1);
5145 if (!ret)
5146 goto retry;
5147 }
5148
5149 return ret;
5150 }
5151
5152 static void mem_cgroup_move_charge(struct mm_struct *mm)
5153 {
5154 struct mm_walk mem_cgroup_move_charge_walk = {
5155 .pmd_entry = mem_cgroup_move_charge_pte_range,
5156 .mm = mm,
5157 };
5158
5159 lru_add_drain_all();
5160 /*
5161 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5162 * move_lock while we're moving its pages to another memcg.
5163 * Then wait for already started RCU-only updates to finish.
5164 */
5165 atomic_inc(&mc.from->moving_account);
5166 synchronize_rcu();
5167 retry:
5168 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5169 /*
5170 * Someone who are holding the mmap_sem might be waiting in
5171 * waitq. So we cancel all extra charges, wake up all waiters,
5172 * and retry. Because we cancel precharges, we might not be able
5173 * to move enough charges, but moving charge is a best-effort
5174 * feature anyway, so it wouldn't be a big problem.
5175 */
5176 __mem_cgroup_clear_mc();
5177 cond_resched();
5178 goto retry;
5179 }
5180 /*
5181 * When we have consumed all precharges and failed in doing
5182 * additional charge, the page walk just aborts.
5183 */
5184 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5185 up_read(&mm->mmap_sem);
5186 atomic_dec(&mc.from->moving_account);
5187 }
5188
5189 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5190 struct cgroup_taskset *tset)
5191 {
5192 struct task_struct *p = cgroup_taskset_first(tset);
5193 struct mm_struct *mm = get_task_mm(p);
5194
5195 if (mm) {
5196 if (mc.to)
5197 mem_cgroup_move_charge(mm);
5198 mmput(mm);
5199 }
5200 if (mc.to)
5201 mem_cgroup_clear_mc();
5202 }
5203 #else /* !CONFIG_MMU */
5204 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5205 struct cgroup_taskset *tset)
5206 {
5207 return 0;
5208 }
5209 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5210 struct cgroup_taskset *tset)
5211 {
5212 }
5213 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5214 struct cgroup_taskset *tset)
5215 {
5216 }
5217 #endif
5218
5219 /*
5220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5221 * to verify whether we're attached to the default hierarchy on each mount
5222 * attempt.
5223 */
5224 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5225 {
5226 /*
5227 * use_hierarchy is forced on the default hierarchy. cgroup core
5228 * guarantees that @root doesn't have any children, so turning it
5229 * on for the root memcg is enough.
5230 */
5231 if (cgroup_on_dfl(root_css->cgroup))
5232 root_mem_cgroup->use_hierarchy = true;
5233 else
5234 root_mem_cgroup->use_hierarchy = false;
5235 }
5236
5237 static u64 memory_current_read(struct cgroup_subsys_state *css,
5238 struct cftype *cft)
5239 {
5240 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5241 }
5242
5243 static int memory_low_show(struct seq_file *m, void *v)
5244 {
5245 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5246 unsigned long low = READ_ONCE(memcg->low);
5247
5248 if (low == PAGE_COUNTER_MAX)
5249 seq_puts(m, "max\n");
5250 else
5251 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5252
5253 return 0;
5254 }
5255
5256 static ssize_t memory_low_write(struct kernfs_open_file *of,
5257 char *buf, size_t nbytes, loff_t off)
5258 {
5259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5260 unsigned long low;
5261 int err;
5262
5263 buf = strstrip(buf);
5264 err = page_counter_memparse(buf, "max", &low);
5265 if (err)
5266 return err;
5267
5268 memcg->low = low;
5269
5270 return nbytes;
5271 }
5272
5273 static int memory_high_show(struct seq_file *m, void *v)
5274 {
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5276 unsigned long high = READ_ONCE(memcg->high);
5277
5278 if (high == PAGE_COUNTER_MAX)
5279 seq_puts(m, "max\n");
5280 else
5281 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5282
5283 return 0;
5284 }
5285
5286 static ssize_t memory_high_write(struct kernfs_open_file *of,
5287 char *buf, size_t nbytes, loff_t off)
5288 {
5289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5290 unsigned long high;
5291 int err;
5292
5293 buf = strstrip(buf);
5294 err = page_counter_memparse(buf, "max", &high);
5295 if (err)
5296 return err;
5297
5298 memcg->high = high;
5299
5300 return nbytes;
5301 }
5302
5303 static int memory_max_show(struct seq_file *m, void *v)
5304 {
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5306 unsigned long max = READ_ONCE(memcg->memory.limit);
5307
5308 if (max == PAGE_COUNTER_MAX)
5309 seq_puts(m, "max\n");
5310 else
5311 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5312
5313 return 0;
5314 }
5315
5316 static ssize_t memory_max_write(struct kernfs_open_file *of,
5317 char *buf, size_t nbytes, loff_t off)
5318 {
5319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5320 unsigned long max;
5321 int err;
5322
5323 buf = strstrip(buf);
5324 err = page_counter_memparse(buf, "max", &max);
5325 if (err)
5326 return err;
5327
5328 err = mem_cgroup_resize_limit(memcg, max);
5329 if (err)
5330 return err;
5331
5332 return nbytes;
5333 }
5334
5335 static int memory_events_show(struct seq_file *m, void *v)
5336 {
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5338
5339 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5340 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5341 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5342 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5343
5344 return 0;
5345 }
5346
5347 static struct cftype memory_files[] = {
5348 {
5349 .name = "current",
5350 .read_u64 = memory_current_read,
5351 },
5352 {
5353 .name = "low",
5354 .flags = CFTYPE_NOT_ON_ROOT,
5355 .seq_show = memory_low_show,
5356 .write = memory_low_write,
5357 },
5358 {
5359 .name = "high",
5360 .flags = CFTYPE_NOT_ON_ROOT,
5361 .seq_show = memory_high_show,
5362 .write = memory_high_write,
5363 },
5364 {
5365 .name = "max",
5366 .flags = CFTYPE_NOT_ON_ROOT,
5367 .seq_show = memory_max_show,
5368 .write = memory_max_write,
5369 },
5370 {
5371 .name = "events",
5372 .flags = CFTYPE_NOT_ON_ROOT,
5373 .seq_show = memory_events_show,
5374 },
5375 { } /* terminate */
5376 };
5377
5378 struct cgroup_subsys memory_cgrp_subsys = {
5379 .css_alloc = mem_cgroup_css_alloc,
5380 .css_online = mem_cgroup_css_online,
5381 .css_offline = mem_cgroup_css_offline,
5382 .css_free = mem_cgroup_css_free,
5383 .css_reset = mem_cgroup_css_reset,
5384 .can_attach = mem_cgroup_can_attach,
5385 .cancel_attach = mem_cgroup_cancel_attach,
5386 .attach = mem_cgroup_move_task,
5387 .bind = mem_cgroup_bind,
5388 .dfl_cftypes = memory_files,
5389 .legacy_cftypes = mem_cgroup_legacy_files,
5390 .early_init = 0,
5391 };
5392
5393 /**
5394 * mem_cgroup_events - count memory events against a cgroup
5395 * @memcg: the memory cgroup
5396 * @idx: the event index
5397 * @nr: the number of events to account for
5398 */
5399 void mem_cgroup_events(struct mem_cgroup *memcg,
5400 enum mem_cgroup_events_index idx,
5401 unsigned int nr)
5402 {
5403 this_cpu_add(memcg->stat->events[idx], nr);
5404 }
5405
5406 /**
5407 * mem_cgroup_low - check if memory consumption is below the normal range
5408 * @root: the highest ancestor to consider
5409 * @memcg: the memory cgroup to check
5410 *
5411 * Returns %true if memory consumption of @memcg, and that of all
5412 * configurable ancestors up to @root, is below the normal range.
5413 */
5414 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5415 {
5416 if (mem_cgroup_disabled())
5417 return false;
5418
5419 /*
5420 * The toplevel group doesn't have a configurable range, so
5421 * it's never low when looked at directly, and it is not
5422 * considered an ancestor when assessing the hierarchy.
5423 */
5424
5425 if (memcg == root_mem_cgroup)
5426 return false;
5427
5428 if (page_counter_read(&memcg->memory) >= memcg->low)
5429 return false;
5430
5431 while (memcg != root) {
5432 memcg = parent_mem_cgroup(memcg);
5433
5434 if (memcg == root_mem_cgroup)
5435 break;
5436
5437 if (page_counter_read(&memcg->memory) >= memcg->low)
5438 return false;
5439 }
5440 return true;
5441 }
5442
5443 /**
5444 * mem_cgroup_try_charge - try charging a page
5445 * @page: page to charge
5446 * @mm: mm context of the victim
5447 * @gfp_mask: reclaim mode
5448 * @memcgp: charged memcg return
5449 *
5450 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5451 * pages according to @gfp_mask if necessary.
5452 *
5453 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5454 * Otherwise, an error code is returned.
5455 *
5456 * After page->mapping has been set up, the caller must finalize the
5457 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5458 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5459 */
5460 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5461 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5462 {
5463 struct mem_cgroup *memcg = NULL;
5464 unsigned int nr_pages = 1;
5465 int ret = 0;
5466
5467 if (mem_cgroup_disabled())
5468 goto out;
5469
5470 if (PageSwapCache(page)) {
5471 /*
5472 * Every swap fault against a single page tries to charge the
5473 * page, bail as early as possible. shmem_unuse() encounters
5474 * already charged pages, too. The USED bit is protected by
5475 * the page lock, which serializes swap cache removal, which
5476 * in turn serializes uncharging.
5477 */
5478 if (page->mem_cgroup)
5479 goto out;
5480 }
5481
5482 if (PageTransHuge(page)) {
5483 nr_pages <<= compound_order(page);
5484 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5485 }
5486
5487 if (do_swap_account && PageSwapCache(page))
5488 memcg = try_get_mem_cgroup_from_page(page);
5489 if (!memcg)
5490 memcg = get_mem_cgroup_from_mm(mm);
5491
5492 ret = try_charge(memcg, gfp_mask, nr_pages);
5493
5494 css_put(&memcg->css);
5495
5496 if (ret == -EINTR) {
5497 memcg = root_mem_cgroup;
5498 ret = 0;
5499 }
5500 out:
5501 *memcgp = memcg;
5502 return ret;
5503 }
5504
5505 /**
5506 * mem_cgroup_commit_charge - commit a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
5509 * @lrucare: page might be on LRU already
5510 *
5511 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5512 * after page->mapping has been set up. This must happen atomically
5513 * as part of the page instantiation, i.e. under the page table lock
5514 * for anonymous pages, under the page lock for page and swap cache.
5515 *
5516 * In addition, the page must not be on the LRU during the commit, to
5517 * prevent racing with task migration. If it might be, use @lrucare.
5518 *
5519 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5520 */
5521 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5522 bool lrucare)
5523 {
5524 unsigned int nr_pages = 1;
5525
5526 VM_BUG_ON_PAGE(!page->mapping, page);
5527 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5528
5529 if (mem_cgroup_disabled())
5530 return;
5531 /*
5532 * Swap faults will attempt to charge the same page multiple
5533 * times. But reuse_swap_page() might have removed the page
5534 * from swapcache already, so we can't check PageSwapCache().
5535 */
5536 if (!memcg)
5537 return;
5538
5539 commit_charge(page, memcg, lrucare);
5540
5541 if (PageTransHuge(page)) {
5542 nr_pages <<= compound_order(page);
5543 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5544 }
5545
5546 local_irq_disable();
5547 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5548 memcg_check_events(memcg, page);
5549 local_irq_enable();
5550
5551 if (do_swap_account && PageSwapCache(page)) {
5552 swp_entry_t entry = { .val = page_private(page) };
5553 /*
5554 * The swap entry might not get freed for a long time,
5555 * let's not wait for it. The page already received a
5556 * memory+swap charge, drop the swap entry duplicate.
5557 */
5558 mem_cgroup_uncharge_swap(entry);
5559 }
5560 }
5561
5562 /**
5563 * mem_cgroup_cancel_charge - cancel a page charge
5564 * @page: page to charge
5565 * @memcg: memcg to charge the page to
5566 *
5567 * Cancel a charge transaction started by mem_cgroup_try_charge().
5568 */
5569 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5570 {
5571 unsigned int nr_pages = 1;
5572
5573 if (mem_cgroup_disabled())
5574 return;
5575 /*
5576 * Swap faults will attempt to charge the same page multiple
5577 * times. But reuse_swap_page() might have removed the page
5578 * from swapcache already, so we can't check PageSwapCache().
5579 */
5580 if (!memcg)
5581 return;
5582
5583 if (PageTransHuge(page)) {
5584 nr_pages <<= compound_order(page);
5585 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5586 }
5587
5588 cancel_charge(memcg, nr_pages);
5589 }
5590
5591 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5592 unsigned long nr_anon, unsigned long nr_file,
5593 unsigned long nr_huge, struct page *dummy_page)
5594 {
5595 unsigned long nr_pages = nr_anon + nr_file;
5596 unsigned long flags;
5597
5598 if (!mem_cgroup_is_root(memcg)) {
5599 page_counter_uncharge(&memcg->memory, nr_pages);
5600 if (do_swap_account)
5601 page_counter_uncharge(&memcg->memsw, nr_pages);
5602 memcg_oom_recover(memcg);
5603 }
5604
5605 local_irq_save(flags);
5606 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5607 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5608 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5609 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5610 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5611 memcg_check_events(memcg, dummy_page);
5612 local_irq_restore(flags);
5613
5614 if (!mem_cgroup_is_root(memcg))
5615 css_put_many(&memcg->css, nr_pages);
5616 }
5617
5618 static void uncharge_list(struct list_head *page_list)
5619 {
5620 struct mem_cgroup *memcg = NULL;
5621 unsigned long nr_anon = 0;
5622 unsigned long nr_file = 0;
5623 unsigned long nr_huge = 0;
5624 unsigned long pgpgout = 0;
5625 struct list_head *next;
5626 struct page *page;
5627
5628 next = page_list->next;
5629 do {
5630 unsigned int nr_pages = 1;
5631
5632 page = list_entry(next, struct page, lru);
5633 next = page->lru.next;
5634
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
5636 VM_BUG_ON_PAGE(page_count(page), page);
5637
5638 if (!page->mem_cgroup)
5639 continue;
5640
5641 /*
5642 * Nobody should be changing or seriously looking at
5643 * page->mem_cgroup at this point, we have fully
5644 * exclusive access to the page.
5645 */
5646
5647 if (memcg != page->mem_cgroup) {
5648 if (memcg) {
5649 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5650 nr_huge, page);
5651 pgpgout = nr_anon = nr_file = nr_huge = 0;
5652 }
5653 memcg = page->mem_cgroup;
5654 }
5655
5656 if (PageTransHuge(page)) {
5657 nr_pages <<= compound_order(page);
5658 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5659 nr_huge += nr_pages;
5660 }
5661
5662 if (PageAnon(page))
5663 nr_anon += nr_pages;
5664 else
5665 nr_file += nr_pages;
5666
5667 page->mem_cgroup = NULL;
5668
5669 pgpgout++;
5670 } while (next != page_list);
5671
5672 if (memcg)
5673 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5674 nr_huge, page);
5675 }
5676
5677 /**
5678 * mem_cgroup_uncharge - uncharge a page
5679 * @page: page to uncharge
5680 *
5681 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5682 * mem_cgroup_commit_charge().
5683 */
5684 void mem_cgroup_uncharge(struct page *page)
5685 {
5686 if (mem_cgroup_disabled())
5687 return;
5688
5689 /* Don't touch page->lru of any random page, pre-check: */
5690 if (!page->mem_cgroup)
5691 return;
5692
5693 INIT_LIST_HEAD(&page->lru);
5694 uncharge_list(&page->lru);
5695 }
5696
5697 /**
5698 * mem_cgroup_uncharge_list - uncharge a list of page
5699 * @page_list: list of pages to uncharge
5700 *
5701 * Uncharge a list of pages previously charged with
5702 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5703 */
5704 void mem_cgroup_uncharge_list(struct list_head *page_list)
5705 {
5706 if (mem_cgroup_disabled())
5707 return;
5708
5709 if (!list_empty(page_list))
5710 uncharge_list(page_list);
5711 }
5712
5713 /**
5714 * mem_cgroup_migrate - migrate a charge to another page
5715 * @oldpage: currently charged page
5716 * @newpage: page to transfer the charge to
5717 * @lrucare: either or both pages might be on the LRU already
5718 *
5719 * Migrate the charge from @oldpage to @newpage.
5720 *
5721 * Both pages must be locked, @newpage->mapping must be set up.
5722 */
5723 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5724 bool lrucare)
5725 {
5726 struct mem_cgroup *memcg;
5727 int isolated;
5728
5729 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5730 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5731 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5732 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5733 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5734 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5735 newpage);
5736
5737 if (mem_cgroup_disabled())
5738 return;
5739
5740 /* Page cache replacement: new page already charged? */
5741 if (newpage->mem_cgroup)
5742 return;
5743
5744 /*
5745 * Swapcache readahead pages can get migrated before being
5746 * charged, and migration from compaction can happen to an
5747 * uncharged page when the PFN walker finds a page that
5748 * reclaim just put back on the LRU but has not released yet.
5749 */
5750 memcg = oldpage->mem_cgroup;
5751 if (!memcg)
5752 return;
5753
5754 if (lrucare)
5755 lock_page_lru(oldpage, &isolated);
5756
5757 oldpage->mem_cgroup = NULL;
5758
5759 if (lrucare)
5760 unlock_page_lru(oldpage, isolated);
5761
5762 commit_charge(newpage, memcg, lrucare);
5763 }
5764
5765 /*
5766 * subsys_initcall() for memory controller.
5767 *
5768 * Some parts like hotcpu_notifier() have to be initialized from this context
5769 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5770 * everything that doesn't depend on a specific mem_cgroup structure should
5771 * be initialized from here.
5772 */
5773 static int __init mem_cgroup_init(void)
5774 {
5775 int cpu, node;
5776
5777 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5778
5779 for_each_possible_cpu(cpu)
5780 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5781 drain_local_stock);
5782
5783 for_each_node(node) {
5784 struct mem_cgroup_tree_per_node *rtpn;
5785 int zone;
5786
5787 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5788 node_online(node) ? node : NUMA_NO_NODE);
5789
5790 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5791 struct mem_cgroup_tree_per_zone *rtpz;
5792
5793 rtpz = &rtpn->rb_tree_per_zone[zone];
5794 rtpz->rb_root = RB_ROOT;
5795 spin_lock_init(&rtpz->lock);
5796 }
5797 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5798 }
5799
5800 return 0;
5801 }
5802 subsys_initcall(mem_cgroup_init);
5803
5804 #ifdef CONFIG_MEMCG_SWAP
5805 /**
5806 * mem_cgroup_swapout - transfer a memsw charge to swap
5807 * @page: page whose memsw charge to transfer
5808 * @entry: swap entry to move the charge to
5809 *
5810 * Transfer the memsw charge of @page to @entry.
5811 */
5812 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5813 {
5814 struct mem_cgroup *memcg;
5815 unsigned short oldid;
5816
5817 VM_BUG_ON_PAGE(PageLRU(page), page);
5818 VM_BUG_ON_PAGE(page_count(page), page);
5819
5820 if (!do_swap_account)
5821 return;
5822
5823 memcg = page->mem_cgroup;
5824
5825 /* Readahead page, never charged */
5826 if (!memcg)
5827 return;
5828
5829 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5830 VM_BUG_ON_PAGE(oldid, page);
5831 mem_cgroup_swap_statistics(memcg, true);
5832
5833 page->mem_cgroup = NULL;
5834
5835 if (!mem_cgroup_is_root(memcg))
5836 page_counter_uncharge(&memcg->memory, 1);
5837
5838 /* Caller disabled preemption with mapping->tree_lock */
5839 mem_cgroup_charge_statistics(memcg, page, -1);
5840 memcg_check_events(memcg, page);
5841 }
5842
5843 /**
5844 * mem_cgroup_uncharge_swap - uncharge a swap entry
5845 * @entry: swap entry to uncharge
5846 *
5847 * Drop the memsw charge associated with @entry.
5848 */
5849 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5850 {
5851 struct mem_cgroup *memcg;
5852 unsigned short id;
5853
5854 if (!do_swap_account)
5855 return;
5856
5857 id = swap_cgroup_record(entry, 0);
5858 rcu_read_lock();
5859 memcg = mem_cgroup_from_id(id);
5860 if (memcg) {
5861 if (!mem_cgroup_is_root(memcg))
5862 page_counter_uncharge(&memcg->memsw, 1);
5863 mem_cgroup_swap_statistics(memcg, false);
5864 css_put(&memcg->css);
5865 }
5866 rcu_read_unlock();
5867 }
5868
5869 /* for remember boot option*/
5870 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5871 static int really_do_swap_account __initdata = 1;
5872 #else
5873 static int really_do_swap_account __initdata;
5874 #endif
5875
5876 static int __init enable_swap_account(char *s)
5877 {
5878 if (!strcmp(s, "1"))
5879 really_do_swap_account = 1;
5880 else if (!strcmp(s, "0"))
5881 really_do_swap_account = 0;
5882 return 1;
5883 }
5884 __setup("swapaccount=", enable_swap_account);
5885
5886 static struct cftype memsw_cgroup_files[] = {
5887 {
5888 .name = "memsw.usage_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5890 .read_u64 = mem_cgroup_read_u64,
5891 },
5892 {
5893 .name = "memsw.max_usage_in_bytes",
5894 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5895 .write = mem_cgroup_reset,
5896 .read_u64 = mem_cgroup_read_u64,
5897 },
5898 {
5899 .name = "memsw.limit_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5901 .write = mem_cgroup_write,
5902 .read_u64 = mem_cgroup_read_u64,
5903 },
5904 {
5905 .name = "memsw.failcnt",
5906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5907 .write = mem_cgroup_reset,
5908 .read_u64 = mem_cgroup_read_u64,
5909 },
5910 { }, /* terminate */
5911 };
5912
5913 static int __init mem_cgroup_swap_init(void)
5914 {
5915 if (!mem_cgroup_disabled() && really_do_swap_account) {
5916 do_swap_account = 1;
5917 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5918 memsw_cgroup_files));
5919 }
5920 return 0;
5921 }
5922 subsys_initcall(mem_cgroup_swap_init);
5923
5924 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.150815 seconds and 5 git commands to generate.