mm: memcontrol: fix memcg id ref counter on swap charge move
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925 * @page: the page
926 * @zone: zone of the page
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
931 */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 struct mem_cgroup_per_node *mz;
935 struct mem_cgroup *memcg;
936 struct lruvec *lruvec;
937
938 if (mem_cgroup_disabled()) {
939 lruvec = &pgdat->lruvec;
940 goto out;
941 }
942
943 memcg = page->mem_cgroup;
944 /*
945 * Swapcache readahead pages are added to the LRU - and
946 * possibly migrated - before they are charged.
947 */
948 if (!memcg)
949 memcg = root_mem_cgroup;
950
951 mz = mem_cgroup_page_nodeinfo(memcg, page);
952 lruvec = &mz->lruvec;
953 out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
961 return lruvec;
962 }
963
964 /**
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
969 *
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973 */
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975 int nr_pages)
976 {
977 struct mem_cgroup_per_node *mz;
978 unsigned long *lru_size;
979 long size;
980 bool empty;
981
982 if (mem_cgroup_disabled())
983 return;
984
985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 lru_size = mz->lru_size + lru;
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
1002 }
1003
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup *task_memcg;
1007 struct task_struct *p;
1008 bool ret;
1009
1010 p = find_lock_task_mm(task);
1011 if (p) {
1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
1020 rcu_read_lock();
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
1023 rcu_read_unlock();
1024 }
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
1027 return ret;
1028 }
1029
1030 /**
1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032 * @memcg: the memory cgroup
1033 *
1034 * Returns the maximum amount of memory @mem can be charged with, in
1035 * pages.
1036 */
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038 {
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
1042
1043 count = page_counter_read(&memcg->memory);
1044 limit = READ_ONCE(memcg->memory.limit);
1045 if (count < limit)
1046 margin = limit - count;
1047
1048 if (do_memsw_account()) {
1049 count = page_counter_read(&memcg->memsw);
1050 limit = READ_ONCE(memcg->memsw.limit);
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
1053 else
1054 margin = 0;
1055 }
1056
1057 return margin;
1058 }
1059
1060 /*
1061 * A routine for checking "mem" is under move_account() or not.
1062 *
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
1066 */
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068 {
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
1071 bool ret = false;
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
1081
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
1084 unlock:
1085 spin_unlock(&mc.lock);
1086 return ret;
1087 }
1088
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 {
1091 if (mc.moving_task && current != mc.moving_task) {
1092 if (mem_cgroup_under_move(memcg)) {
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103 }
1104
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1106 /**
1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115 {
1116 struct mem_cgroup *iter;
1117 unsigned int i;
1118
1119 rcu_read_lock();
1120
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
1129 pr_cont_cgroup_path(memcg->css.cgroup);
1130 pr_cont("\n");
1131
1132 rcu_read_unlock();
1133
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151 continue;
1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
1162 }
1163
1164 /*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 {
1170 int num = 0;
1171 struct mem_cgroup *iter;
1172
1173 for_each_mem_cgroup_tree(iter, memcg)
1174 num++;
1175 return num;
1176 }
1177
1178 /*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1182 {
1183 unsigned long limit;
1184
1185 limit = memcg->memory.limit;
1186 if (mem_cgroup_swappiness(memcg)) {
1187 unsigned long memsw_limit;
1188 unsigned long swap_limit;
1189
1190 memsw_limit = memcg->memsw.limit;
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
1194 }
1195 return limit;
1196 }
1197
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199 int order)
1200 {
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
1204 .memcg = memcg,
1205 .gfp_mask = gfp_mask,
1206 .order = order,
1207 };
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
1214 mutex_lock(&oom_lock);
1215
1216 /*
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
1220 */
1221 if (task_will_free_mem(current)) {
1222 mark_oom_victim(current);
1223 wake_oom_reaper(current);
1224 goto unlock;
1225 }
1226
1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 for_each_mem_cgroup_tree(iter, memcg) {
1230 struct css_task_iter it;
1231 struct task_struct *task;
1232
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
1235 switch (oom_scan_process_thread(&oc, task)) {
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
1246 css_task_iter_end(&it);
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
1252 goto unlock;
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
1269 }
1270 css_task_iter_end(&it);
1271 }
1272
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
1275 oom_kill_process(&oc, chosen, points, totalpages,
1276 "Memory cgroup out of memory");
1277 }
1278 unlock:
1279 mutex_unlock(&oom_lock);
1280 return chosen;
1281 }
1282
1283 #if MAX_NUMNODES > 1
1284
1285 /**
1286 * test_mem_cgroup_node_reclaimable
1287 * @memcg: the target memcg
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 int nid, bool noswap)
1297 {
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 return true;
1304 return false;
1305
1306 }
1307
1308 /*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 {
1316 int nid;
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
1321 if (!atomic_read(&memcg->numainfo_events))
1322 return;
1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 return;
1325
1326 /* make a nodemask where this memcg uses memory from */
1327 memcg->scan_nodes = node_states[N_MEMORY];
1328
1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
1330
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
1333 }
1334
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
1337 }
1338
1339 /*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 {
1353 int node;
1354
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
1357
1358 node = next_node_in(node, memcg->scan_nodes);
1359 /*
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
1367 memcg->last_scanned_node = node;
1368 return node;
1369 }
1370 #else
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 {
1373 return 0;
1374 }
1375 #endif
1376
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378 pg_data_t *pgdat,
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381 {
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
1388 .pgdat = pgdat,
1389 .priority = 0,
1390 };
1391
1392 excess = soft_limit_excess(root_memcg);
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 pgdat, &nr_scanned);
1420 *total_scanned += nr_scanned;
1421 if (!soft_limit_excess(root_memcg))
1422 break;
1423 }
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
1426 }
1427
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431 };
1432 #endif
1433
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1435
1436 /*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1441 {
1442 struct mem_cgroup *iter, *failed = NULL;
1443
1444 spin_lock(&memcg_oom_lock);
1445
1446 for_each_mem_cgroup_tree(iter, memcg) {
1447 if (iter->oom_lock) {
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
1452 failed = iter;
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
1455 } else
1456 iter->oom_lock = true;
1457 }
1458
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
1470 }
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
1477 }
1478
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *iter;
1482
1483 spin_lock(&memcg_oom_lock);
1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 for_each_mem_cgroup_tree(iter, memcg)
1486 iter->oom_lock = false;
1487 spin_unlock(&memcg_oom_lock);
1488 }
1489
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 {
1492 struct mem_cgroup *iter;
1493
1494 spin_lock(&memcg_oom_lock);
1495 for_each_mem_cgroup_tree(iter, memcg)
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
1498 }
1499
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 {
1502 struct mem_cgroup *iter;
1503
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1507 */
1508 spin_lock(&memcg_oom_lock);
1509 for_each_mem_cgroup_tree(iter, memcg)
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
1513 }
1514
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
1517 struct oom_wait_info {
1518 struct mem_cgroup *memcg;
1519 wait_queue_t wait;
1520 };
1521
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524 {
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 oom_wait_memcg = oom_wait_info->memcg;
1531
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1534 return 0;
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536 }
1537
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1539 {
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 }
1551
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553 {
1554 if (!current->memcg_may_oom)
1555 return;
1556 /*
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
1569 */
1570 css_get(&memcg->css);
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
1574 }
1575
1576 /**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578 * @handle: actually kill/wait or just clean up the OOM state
1579 *
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
1582 *
1583 * Memcg supports userspace OOM handling where failed allocations must
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588 * the end of the page fault to complete the OOM handling.
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
1591 * completed, %false otherwise.
1592 */
1593 bool mem_cgroup_oom_synchronize(bool handle)
1594 {
1595 struct mem_cgroup *memcg = current->memcg_in_oom;
1596 struct oom_wait_info owait;
1597 bool locked;
1598
1599 /* OOM is global, do not handle */
1600 if (!memcg)
1601 return false;
1602
1603 if (!handle || oom_killer_disabled)
1604 goto cleanup;
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
1611
1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
1625 } else {
1626 schedule();
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
1640 cleanup:
1641 current->memcg_in_oom = NULL;
1642 css_put(&memcg->css);
1643 return true;
1644 }
1645
1646 /**
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
1649 *
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
1652 */
1653 void lock_page_memcg(struct page *page)
1654 {
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1657
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1662 */
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
1666 return;
1667 again:
1668 memcg = page->mem_cgroup;
1669 if (unlikely(!memcg))
1670 return;
1671
1672 if (atomic_read(&memcg->moving_account) <= 0)
1673 return;
1674
1675 spin_lock_irqsave(&memcg->move_lock, flags);
1676 if (memcg != page->mem_cgroup) {
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 goto again;
1679 }
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
1684 * the task who has the lock for unlock_page_memcg().
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
1688
1689 return;
1690 }
1691 EXPORT_SYMBOL(lock_page_memcg);
1692
1693 /**
1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
1695 * @page: the page
1696 */
1697 void unlock_page_memcg(struct page *page)
1698 {
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
1709
1710 rcu_read_unlock();
1711 }
1712 EXPORT_SYMBOL(unlock_page_memcg);
1713
1714 /*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
1718 #define CHARGE_BATCH 32U
1719 struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
1721 unsigned int nr_pages;
1722 struct work_struct work;
1723 unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE 0
1725 };
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1728
1729 /**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
1739 */
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 {
1742 struct memcg_stock_pcp *stock;
1743 bool ret = false;
1744
1745 if (nr_pages > CHARGE_BATCH)
1746 return ret;
1747
1748 stock = &get_cpu_var(memcg_stock);
1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1750 stock->nr_pages -= nr_pages;
1751 ret = true;
1752 }
1753 put_cpu_var(memcg_stock);
1754 return ret;
1755 }
1756
1757 /*
1758 * Returns stocks cached in percpu and reset cached information.
1759 */
1760 static void drain_stock(struct memcg_stock_pcp *stock)
1761 {
1762 struct mem_cgroup *old = stock->cached;
1763
1764 if (stock->nr_pages) {
1765 page_counter_uncharge(&old->memory, stock->nr_pages);
1766 if (do_memsw_account())
1767 page_counter_uncharge(&old->memsw, stock->nr_pages);
1768 css_put_many(&old->css, stock->nr_pages);
1769 stock->nr_pages = 0;
1770 }
1771 stock->cached = NULL;
1772 }
1773
1774 /*
1775 * This must be called under preempt disabled or must be called by
1776 * a thread which is pinned to local cpu.
1777 */
1778 static void drain_local_stock(struct work_struct *dummy)
1779 {
1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1781 drain_stock(stock);
1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1783 }
1784
1785 /*
1786 * Cache charges(val) to local per_cpu area.
1787 * This will be consumed by consume_stock() function, later.
1788 */
1789 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 {
1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792
1793 if (stock->cached != memcg) { /* reset if necessary */
1794 drain_stock(stock);
1795 stock->cached = memcg;
1796 }
1797 stock->nr_pages += nr_pages;
1798 put_cpu_var(memcg_stock);
1799 }
1800
1801 /*
1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803 * of the hierarchy under it.
1804 */
1805 static void drain_all_stock(struct mem_cgroup *root_memcg)
1806 {
1807 int cpu, curcpu;
1808
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
1812 /* Notify other cpus that system-wide "drain" is running */
1813 get_online_cpus();
1814 curcpu = get_cpu();
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817 struct mem_cgroup *memcg;
1818
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
1821 continue;
1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823 continue;
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
1830 }
1831 put_cpu();
1832 put_online_cpus();
1833 mutex_unlock(&percpu_charge_mutex);
1834 }
1835
1836 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1837 unsigned long action,
1838 void *hcpu)
1839 {
1840 int cpu = (unsigned long)hcpu;
1841 struct memcg_stock_pcp *stock;
1842
1843 if (action == CPU_ONLINE)
1844 return NOTIFY_OK;
1845
1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1847 return NOTIFY_OK;
1848
1849 stock = &per_cpu(memcg_stock, cpu);
1850 drain_stock(stock);
1851 return NOTIFY_OK;
1852 }
1853
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857 {
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864 }
1865
1866 static void high_work_func(struct work_struct *work)
1867 {
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872 }
1873
1874 /*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878 void mem_cgroup_handle_over_high(void)
1879 {
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890 }
1891
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894 {
1895 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905 retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
1940 if (!gfpflags_allow_blocking(gfp_mask))
1941 goto nomem;
1942
1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
1947
1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949 goto retry;
1950
1951 if (!drained) {
1952 drain_all_stock(mem_over_limit);
1953 drained = true;
1954 goto retry;
1955 }
1956
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
1977 if (nr_retries--)
1978 goto retry;
1979
1980 if (gfp_mask & __GFP_NOFAIL)
1981 goto force;
1982
1983 if (fatal_signal_pending(current))
1984 goto force;
1985
1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
1990 nomem:
1991 if (!(gfp_mask & __GFP_NOFAIL))
1992 return -ENOMEM;
1993 force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
2000 if (do_memsw_account())
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
2005
2006 done_restock:
2007 css_get_many(&memcg->css, batch);
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
2010
2011 /*
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
2019 */
2020 do {
2021 if (page_counter_read(&memcg->memory) > memcg->high) {
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
2027 current->memcg_nr_pages_over_high += batch;
2028 set_notify_resume(current);
2029 break;
2030 }
2031 } while ((memcg = parent_mem_cgroup(memcg)));
2032
2033 return 0;
2034 }
2035
2036 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2037 {
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
2041 page_counter_uncharge(&memcg->memory, nr_pages);
2042 if (do_memsw_account())
2043 page_counter_uncharge(&memcg->memsw, nr_pages);
2044
2045 css_put_many(&memcg->css, nr_pages);
2046 }
2047
2048 static void lock_page_lru(struct page *page, int *isolated)
2049 {
2050 struct zone *zone = page_zone(page);
2051
2052 spin_lock_irq(zone_lru_lock(zone));
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062 }
2063
2064 static void unlock_page_lru(struct page *page, int isolated)
2065 {
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
2076 spin_unlock_irq(zone_lru_lock(zone));
2077 }
2078
2079 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080 bool lrucare)
2081 {
2082 int isolated;
2083
2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
2092
2093 /*
2094 * Nobody should be changing or seriously looking at
2095 * page->mem_cgroup at this point:
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
2107 page->mem_cgroup = memcg;
2108
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
2111 }
2112
2113 #ifndef CONFIG_SLOB
2114 static int memcg_alloc_cache_id(void)
2115 {
2116 int id, size;
2117 int err;
2118
2119 id = ida_simple_get(&memcg_cache_ida,
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
2123
2124 if (id < memcg_nr_cache_ids)
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
2131 down_write(&memcg_cache_ids_sem);
2132
2133 size = 2 * (id + 1);
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
2139 err = memcg_update_all_caches(size);
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
2147 if (err) {
2148 ida_simple_remove(&memcg_cache_ida, id);
2149 return err;
2150 }
2151 return id;
2152 }
2153
2154 static void memcg_free_cache_id(int id)
2155 {
2156 ida_simple_remove(&memcg_cache_ida, id);
2157 }
2158
2159 struct memcg_kmem_cache_create_work {
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163 };
2164
2165 static void memcg_kmem_cache_create_func(struct work_struct *w)
2166 {
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
2171
2172 memcg_create_kmem_cache(memcg, cachep);
2173
2174 css_put(&memcg->css);
2175 kfree(cw);
2176 }
2177
2178 /*
2179 * Enqueue the creation of a per-memcg kmem_cache.
2180 */
2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
2183 {
2184 struct memcg_kmem_cache_create_work *cw;
2185
2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187 if (!cw)
2188 return;
2189
2190 css_get(&memcg->css);
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2195
2196 schedule_work(&cw->work);
2197 }
2198
2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
2201 {
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
2205 * in __memcg_schedule_kmem_cache_create will recurse.
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
2213 current->memcg_kmem_skip_account = 1;
2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
2215 current->memcg_kmem_skip_account = 0;
2216 }
2217
2218 static inline bool memcg_kmem_bypass(void)
2219 {
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223 }
2224
2225 /**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
2235 *
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
2240 */
2241 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2242 {
2243 struct mem_cgroup *memcg;
2244 struct kmem_cache *memcg_cachep;
2245 int kmemcg_id;
2246
2247 VM_BUG_ON(!is_root_cache(cachep));
2248
2249 if (memcg_kmem_bypass())
2250 return cachep;
2251
2252 if (current->memcg_kmem_skip_account)
2253 return cachep;
2254
2255 memcg = get_mem_cgroup_from_mm(current->mm);
2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257 if (kmemcg_id < 0)
2258 goto out;
2259
2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
2275 */
2276 memcg_schedule_kmem_cache_create(memcg, cachep);
2277 out:
2278 css_put(&memcg->css);
2279 return cachep;
2280 }
2281
2282 /**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2287 {
2288 if (!is_root_cache(cachep))
2289 css_put(&cachep->memcg_params.memcg->css);
2290 }
2291
2292 /**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
2303 {
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
2306 int ret;
2307
2308 ret = try_charge(memcg, gfp, nr_pages);
2309 if (ret)
2310 return ret;
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
2316 }
2317
2318 page->mem_cgroup = memcg;
2319
2320 return 0;
2321 }
2322
2323 /**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2332 {
2333 struct mem_cgroup *memcg;
2334 int ret = 0;
2335
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
2339 memcg = get_mem_cgroup_from_mm(current->mm);
2340 if (!mem_cgroup_is_root(memcg)) {
2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342 if (!ret)
2343 __SetPageKmemcg(page);
2344 }
2345 css_put(&memcg->css);
2346 return ret;
2347 }
2348 /**
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2352 */
2353 void memcg_kmem_uncharge(struct page *page, int order)
2354 {
2355 struct mem_cgroup *memcg = page->mem_cgroup;
2356 unsigned int nr_pages = 1 << order;
2357
2358 if (!memcg)
2359 return;
2360
2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2365
2366 page_counter_uncharge(&memcg->memory, nr_pages);
2367 if (do_memsw_account())
2368 page_counter_uncharge(&memcg->memsw, nr_pages);
2369
2370 page->mem_cgroup = NULL;
2371
2372 /* slab pages do not have PageKmemcg flag set */
2373 if (PageKmemcg(page))
2374 __ClearPageKmemcg(page);
2375
2376 css_put_many(&memcg->css, nr_pages);
2377 }
2378 #endif /* !CONFIG_SLOB */
2379
2380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2381
2382 /*
2383 * Because tail pages are not marked as "used", set it. We're under
2384 * zone_lru_lock and migration entries setup in all page mappings.
2385 */
2386 void mem_cgroup_split_huge_fixup(struct page *head)
2387 {
2388 int i;
2389
2390 if (mem_cgroup_disabled())
2391 return;
2392
2393 for (i = 1; i < HPAGE_PMD_NR; i++)
2394 head[i].mem_cgroup = head->mem_cgroup;
2395
2396 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2397 HPAGE_PMD_NR);
2398 }
2399 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2400
2401 #ifdef CONFIG_MEMCG_SWAP
2402 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2403 bool charge)
2404 {
2405 int val = (charge) ? 1 : -1;
2406 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2407 }
2408
2409 /**
2410 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2411 * @entry: swap entry to be moved
2412 * @from: mem_cgroup which the entry is moved from
2413 * @to: mem_cgroup which the entry is moved to
2414 *
2415 * It succeeds only when the swap_cgroup's record for this entry is the same
2416 * as the mem_cgroup's id of @from.
2417 *
2418 * Returns 0 on success, -EINVAL on failure.
2419 *
2420 * The caller must have charged to @to, IOW, called page_counter_charge() about
2421 * both res and memsw, and called css_get().
2422 */
2423 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2424 struct mem_cgroup *from, struct mem_cgroup *to)
2425 {
2426 unsigned short old_id, new_id;
2427
2428 old_id = mem_cgroup_id(from);
2429 new_id = mem_cgroup_id(to);
2430
2431 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2432 mem_cgroup_swap_statistics(from, false);
2433 mem_cgroup_swap_statistics(to, true);
2434 return 0;
2435 }
2436 return -EINVAL;
2437 }
2438 #else
2439 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2440 struct mem_cgroup *from, struct mem_cgroup *to)
2441 {
2442 return -EINVAL;
2443 }
2444 #endif
2445
2446 static DEFINE_MUTEX(memcg_limit_mutex);
2447
2448 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2449 unsigned long limit)
2450 {
2451 unsigned long curusage;
2452 unsigned long oldusage;
2453 bool enlarge = false;
2454 int retry_count;
2455 int ret;
2456
2457 /*
2458 * For keeping hierarchical_reclaim simple, how long we should retry
2459 * is depends on callers. We set our retry-count to be function
2460 * of # of children which we should visit in this loop.
2461 */
2462 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2463 mem_cgroup_count_children(memcg);
2464
2465 oldusage = page_counter_read(&memcg->memory);
2466
2467 do {
2468 if (signal_pending(current)) {
2469 ret = -EINTR;
2470 break;
2471 }
2472
2473 mutex_lock(&memcg_limit_mutex);
2474 if (limit > memcg->memsw.limit) {
2475 mutex_unlock(&memcg_limit_mutex);
2476 ret = -EINVAL;
2477 break;
2478 }
2479 if (limit > memcg->memory.limit)
2480 enlarge = true;
2481 ret = page_counter_limit(&memcg->memory, limit);
2482 mutex_unlock(&memcg_limit_mutex);
2483
2484 if (!ret)
2485 break;
2486
2487 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2488
2489 curusage = page_counter_read(&memcg->memory);
2490 /* Usage is reduced ? */
2491 if (curusage >= oldusage)
2492 retry_count--;
2493 else
2494 oldusage = curusage;
2495 } while (retry_count);
2496
2497 if (!ret && enlarge)
2498 memcg_oom_recover(memcg);
2499
2500 return ret;
2501 }
2502
2503 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2504 unsigned long limit)
2505 {
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
2509 int retry_count;
2510 int ret;
2511
2512 /* see mem_cgroup_resize_res_limit */
2513 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2514 mem_cgroup_count_children(memcg);
2515
2516 oldusage = page_counter_read(&memcg->memsw);
2517
2518 do {
2519 if (signal_pending(current)) {
2520 ret = -EINTR;
2521 break;
2522 }
2523
2524 mutex_lock(&memcg_limit_mutex);
2525 if (limit < memcg->memory.limit) {
2526 mutex_unlock(&memcg_limit_mutex);
2527 ret = -EINVAL;
2528 break;
2529 }
2530 if (limit > memcg->memsw.limit)
2531 enlarge = true;
2532 ret = page_counter_limit(&memcg->memsw, limit);
2533 mutex_unlock(&memcg_limit_mutex);
2534
2535 if (!ret)
2536 break;
2537
2538 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2539
2540 curusage = page_counter_read(&memcg->memsw);
2541 /* Usage is reduced ? */
2542 if (curusage >= oldusage)
2543 retry_count--;
2544 else
2545 oldusage = curusage;
2546 } while (retry_count);
2547
2548 if (!ret && enlarge)
2549 memcg_oom_recover(memcg);
2550
2551 return ret;
2552 }
2553
2554 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2555 gfp_t gfp_mask,
2556 unsigned long *total_scanned)
2557 {
2558 unsigned long nr_reclaimed = 0;
2559 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2560 unsigned long reclaimed;
2561 int loop = 0;
2562 struct mem_cgroup_tree_per_node *mctz;
2563 unsigned long excess;
2564 unsigned long nr_scanned;
2565
2566 if (order > 0)
2567 return 0;
2568
2569 mctz = soft_limit_tree_node(pgdat->node_id);
2570
2571 /*
2572 * Do not even bother to check the largest node if the root
2573 * is empty. Do it lockless to prevent lock bouncing. Races
2574 * are acceptable as soft limit is best effort anyway.
2575 */
2576 if (RB_EMPTY_ROOT(&mctz->rb_root))
2577 return 0;
2578
2579 /*
2580 * This loop can run a while, specially if mem_cgroup's continuously
2581 * keep exceeding their soft limit and putting the system under
2582 * pressure
2583 */
2584 do {
2585 if (next_mz)
2586 mz = next_mz;
2587 else
2588 mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 if (!mz)
2590 break;
2591
2592 nr_scanned = 0;
2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2594 gfp_mask, &nr_scanned);
2595 nr_reclaimed += reclaimed;
2596 *total_scanned += nr_scanned;
2597 spin_lock_irq(&mctz->lock);
2598 __mem_cgroup_remove_exceeded(mz, mctz);
2599
2600 /*
2601 * If we failed to reclaim anything from this memory cgroup
2602 * it is time to move on to the next cgroup
2603 */
2604 next_mz = NULL;
2605 if (!reclaimed)
2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607
2608 excess = soft_limit_excess(mz->memcg);
2609 /*
2610 * One school of thought says that we should not add
2611 * back the node to the tree if reclaim returns 0.
2612 * But our reclaim could return 0, simply because due
2613 * to priority we are exposing a smaller subset of
2614 * memory to reclaim from. Consider this as a longer
2615 * term TODO.
2616 */
2617 /* If excess == 0, no tree ops */
2618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2619 spin_unlock_irq(&mctz->lock);
2620 css_put(&mz->memcg->css);
2621 loop++;
2622 /*
2623 * Could not reclaim anything and there are no more
2624 * mem cgroups to try or we seem to be looping without
2625 * reclaiming anything.
2626 */
2627 if (!nr_reclaimed &&
2628 (next_mz == NULL ||
2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 break;
2631 } while (!nr_reclaimed);
2632 if (next_mz)
2633 css_put(&next_mz->memcg->css);
2634 return nr_reclaimed;
2635 }
2636
2637 /*
2638 * Test whether @memcg has children, dead or alive. Note that this
2639 * function doesn't care whether @memcg has use_hierarchy enabled and
2640 * returns %true if there are child csses according to the cgroup
2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 */
2643 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644 {
2645 bool ret;
2646
2647 rcu_read_lock();
2648 ret = css_next_child(NULL, &memcg->css);
2649 rcu_read_unlock();
2650 return ret;
2651 }
2652
2653 /*
2654 * Reclaims as many pages from the given memcg as possible.
2655 *
2656 * Caller is responsible for holding css reference for memcg.
2657 */
2658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659 {
2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2661
2662 /* we call try-to-free pages for make this cgroup empty */
2663 lru_add_drain_all();
2664 /* try to free all pages in this cgroup */
2665 while (nr_retries && page_counter_read(&memcg->memory)) {
2666 int progress;
2667
2668 if (signal_pending(current))
2669 return -EINTR;
2670
2671 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 GFP_KERNEL, true);
2673 if (!progress) {
2674 nr_retries--;
2675 /* maybe some writeback is necessary */
2676 congestion_wait(BLK_RW_ASYNC, HZ/10);
2677 }
2678
2679 }
2680
2681 return 0;
2682 }
2683
2684 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 char *buf, size_t nbytes,
2686 loff_t off)
2687 {
2688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689
2690 if (mem_cgroup_is_root(memcg))
2691 return -EINVAL;
2692 return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 }
2694
2695 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 struct cftype *cft)
2697 {
2698 return mem_cgroup_from_css(css)->use_hierarchy;
2699 }
2700
2701 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 struct cftype *cft, u64 val)
2703 {
2704 int retval = 0;
2705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2706 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707
2708 if (memcg->use_hierarchy == val)
2709 return 0;
2710
2711 /*
2712 * If parent's use_hierarchy is set, we can't make any modifications
2713 * in the child subtrees. If it is unset, then the change can
2714 * occur, provided the current cgroup has no children.
2715 *
2716 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 * set if there are no children.
2718 */
2719 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720 (val == 1 || val == 0)) {
2721 if (!memcg_has_children(memcg))
2722 memcg->use_hierarchy = val;
2723 else
2724 retval = -EBUSY;
2725 } else
2726 retval = -EINVAL;
2727
2728 return retval;
2729 }
2730
2731 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 {
2733 struct mem_cgroup *iter;
2734 int i;
2735
2736 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737
2738 for_each_mem_cgroup_tree(iter, memcg) {
2739 for (i = 0; i < MEMCG_NR_STAT; i++)
2740 stat[i] += mem_cgroup_read_stat(iter, i);
2741 }
2742 }
2743
2744 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 {
2746 struct mem_cgroup *iter;
2747 int i;
2748
2749 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 events[i] += mem_cgroup_read_events(iter, i);
2754 }
2755 }
2756
2757 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758 {
2759 unsigned long val = 0;
2760
2761 if (mem_cgroup_is_root(memcg)) {
2762 struct mem_cgroup *iter;
2763
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 val += mem_cgroup_read_stat(iter,
2766 MEM_CGROUP_STAT_CACHE);
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_RSS);
2769 if (swap)
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_SWAP);
2772 }
2773 } else {
2774 if (!swap)
2775 val = page_counter_read(&memcg->memory);
2776 else
2777 val = page_counter_read(&memcg->memsw);
2778 }
2779 return val;
2780 }
2781
2782 enum {
2783 RES_USAGE,
2784 RES_LIMIT,
2785 RES_MAX_USAGE,
2786 RES_FAILCNT,
2787 RES_SOFT_LIMIT,
2788 };
2789
2790 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791 struct cftype *cft)
2792 {
2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794 struct page_counter *counter;
2795
2796 switch (MEMFILE_TYPE(cft->private)) {
2797 case _MEM:
2798 counter = &memcg->memory;
2799 break;
2800 case _MEMSWAP:
2801 counter = &memcg->memsw;
2802 break;
2803 case _KMEM:
2804 counter = &memcg->kmem;
2805 break;
2806 case _TCP:
2807 counter = &memcg->tcpmem;
2808 break;
2809 default:
2810 BUG();
2811 }
2812
2813 switch (MEMFILE_ATTR(cft->private)) {
2814 case RES_USAGE:
2815 if (counter == &memcg->memory)
2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817 if (counter == &memcg->memsw)
2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 case RES_LIMIT:
2821 return (u64)counter->limit * PAGE_SIZE;
2822 case RES_MAX_USAGE:
2823 return (u64)counter->watermark * PAGE_SIZE;
2824 case RES_FAILCNT:
2825 return counter->failcnt;
2826 case RES_SOFT_LIMIT:
2827 return (u64)memcg->soft_limit * PAGE_SIZE;
2828 default:
2829 BUG();
2830 }
2831 }
2832
2833 #ifndef CONFIG_SLOB
2834 static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 {
2836 int memcg_id;
2837
2838 if (cgroup_memory_nokmem)
2839 return 0;
2840
2841 BUG_ON(memcg->kmemcg_id >= 0);
2842 BUG_ON(memcg->kmem_state);
2843
2844 memcg_id = memcg_alloc_cache_id();
2845 if (memcg_id < 0)
2846 return memcg_id;
2847
2848 static_branch_inc(&memcg_kmem_enabled_key);
2849 /*
2850 * A memory cgroup is considered kmem-online as soon as it gets
2851 * kmemcg_id. Setting the id after enabling static branching will
2852 * guarantee no one starts accounting before all call sites are
2853 * patched.
2854 */
2855 memcg->kmemcg_id = memcg_id;
2856 memcg->kmem_state = KMEM_ONLINE;
2857
2858 return 0;
2859 }
2860
2861 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862 {
2863 struct cgroup_subsys_state *css;
2864 struct mem_cgroup *parent, *child;
2865 int kmemcg_id;
2866
2867 if (memcg->kmem_state != KMEM_ONLINE)
2868 return;
2869 /*
2870 * Clear the online state before clearing memcg_caches array
2871 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 * guarantees that no cache will be created for this cgroup
2873 * after we are done (see memcg_create_kmem_cache()).
2874 */
2875 memcg->kmem_state = KMEM_ALLOCATED;
2876
2877 memcg_deactivate_kmem_caches(memcg);
2878
2879 kmemcg_id = memcg->kmemcg_id;
2880 BUG_ON(kmemcg_id < 0);
2881
2882 parent = parent_mem_cgroup(memcg);
2883 if (!parent)
2884 parent = root_mem_cgroup;
2885
2886 /*
2887 * Change kmemcg_id of this cgroup and all its descendants to the
2888 * parent's id, and then move all entries from this cgroup's list_lrus
2889 * to ones of the parent. After we have finished, all list_lrus
2890 * corresponding to this cgroup are guaranteed to remain empty. The
2891 * ordering is imposed by list_lru_node->lock taken by
2892 * memcg_drain_all_list_lrus().
2893 */
2894 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
2902 rcu_read_unlock();
2903
2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906 memcg_free_cache_id(kmemcg_id);
2907 }
2908
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911 /* css_alloc() failed, offlining didn't happen */
2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 memcg_offline_kmem(memcg);
2914
2915 if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 memcg_destroy_kmem_caches(memcg);
2917 static_branch_dec(&memcg_kmem_enabled_key);
2918 WARN_ON(page_counter_read(&memcg->kmem));
2919 }
2920 }
2921 #else
2922 static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 {
2924 return 0;
2925 }
2926 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927 {
2928 }
2929 static void memcg_free_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 #endif /* !CONFIG_SLOB */
2933
2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935 unsigned long limit)
2936 {
2937 int ret;
2938
2939 mutex_lock(&memcg_limit_mutex);
2940 ret = page_counter_limit(&memcg->kmem, limit);
2941 mutex_unlock(&memcg_limit_mutex);
2942 return ret;
2943 }
2944
2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946 {
2947 int ret;
2948
2949 mutex_lock(&memcg_limit_mutex);
2950
2951 ret = page_counter_limit(&memcg->tcpmem, limit);
2952 if (ret)
2953 goto out;
2954
2955 if (!memcg->tcpmem_active) {
2956 /*
2957 * The active flag needs to be written after the static_key
2958 * update. This is what guarantees that the socket activation
2959 * function is the last one to run. See sock_update_memcg() for
2960 * details, and note that we don't mark any socket as belonging
2961 * to this memcg until that flag is up.
2962 *
2963 * We need to do this, because static_keys will span multiple
2964 * sites, but we can't control their order. If we mark a socket
2965 * as accounted, but the accounting functions are not patched in
2966 * yet, we'll lose accounting.
2967 *
2968 * We never race with the readers in sock_update_memcg(),
2969 * because when this value change, the code to process it is not
2970 * patched in yet.
2971 */
2972 static_branch_inc(&memcg_sockets_enabled_key);
2973 memcg->tcpmem_active = true;
2974 }
2975 out:
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978 }
2979
2980 /*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
2986 {
2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988 unsigned long nr_pages;
2989 int ret;
2990
2991 buf = strstrip(buf);
2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 if (ret)
2994 return ret;
2995
2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997 case RES_LIMIT:
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005 break;
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008 break;
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
3012 case _TCP:
3013 ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 break;
3015 }
3016 break;
3017 case RES_SOFT_LIMIT:
3018 memcg->soft_limit = nr_pages;
3019 ret = 0;
3020 break;
3021 }
3022 return ret ?: nbytes;
3023 }
3024
3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 size_t nbytes, loff_t off)
3027 {
3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 struct page_counter *counter;
3030
3031 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 case _MEM:
3033 counter = &memcg->memory;
3034 break;
3035 case _MEMSWAP:
3036 counter = &memcg->memsw;
3037 break;
3038 case _KMEM:
3039 counter = &memcg->kmem;
3040 break;
3041 case _TCP:
3042 counter = &memcg->tcpmem;
3043 break;
3044 default:
3045 BUG();
3046 }
3047
3048 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049 case RES_MAX_USAGE:
3050 page_counter_reset_watermark(counter);
3051 break;
3052 case RES_FAILCNT:
3053 counter->failcnt = 0;
3054 break;
3055 default:
3056 BUG();
3057 }
3058
3059 return nbytes;
3060 }
3061
3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 struct cftype *cft)
3064 {
3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 }
3067
3068 #ifdef CONFIG_MMU
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 struct cftype *cft, u64 val)
3071 {
3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073
3074 if (val & ~MOVE_MASK)
3075 return -EINVAL;
3076
3077 /*
3078 * No kind of locking is needed in here, because ->can_attach() will
3079 * check this value once in the beginning of the process, and then carry
3080 * on with stale data. This means that changes to this value will only
3081 * affect task migrations starting after the change.
3082 */
3083 memcg->move_charge_at_immigrate = val;
3084 return 0;
3085 }
3086 #else
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 struct cftype *cft, u64 val)
3089 {
3090 return -ENOSYS;
3091 }
3092 #endif
3093
3094 #ifdef CONFIG_NUMA
3095 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096 {
3097 struct numa_stat {
3098 const char *name;
3099 unsigned int lru_mask;
3100 };
3101
3102 static const struct numa_stat stats[] = {
3103 { "total", LRU_ALL },
3104 { "file", LRU_ALL_FILE },
3105 { "anon", LRU_ALL_ANON },
3106 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107 };
3108 const struct numa_stat *stat;
3109 int nid;
3110 unsigned long nr;
3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 seq_printf(m, "%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 struct mem_cgroup *iter;
3126
3127 nr = 0;
3128 for_each_mem_cgroup_tree(iter, memcg)
3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_node_nr_lru_pages(
3135 iter, nid, stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
3139 }
3140
3141 return 0;
3142 }
3143 #endif /* CONFIG_NUMA */
3144
3145 static int memcg_stat_show(struct seq_file *m, void *v)
3146 {
3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148 unsigned long memory, memsw;
3149 struct mem_cgroup *mi;
3150 unsigned int i;
3151
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 MEM_CGROUP_STAT_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 MEM_CGROUP_EVENTS_NSTATS);
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160 continue;
3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163 }
3164
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 mem_cgroup_read_events(memcg, i));
3168
3169 for (i = 0; i < NR_LRU_LISTS; i++)
3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
3173 /* Hierarchical information */
3174 memory = memsw = PAGE_COUNTER_MAX;
3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 memory = min(memory, mi->memory.limit);
3177 memsw = min(memsw, mi->memsw.limit);
3178 }
3179 seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 (u64)memory * PAGE_SIZE);
3181 if (do_memsw_account())
3182 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 (u64)memsw * PAGE_SIZE);
3184
3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186 unsigned long long val = 0;
3187
3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189 continue;
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 }
3194
3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_events(mi, i);
3200 seq_printf(m, "total_%s %llu\n",
3201 mem_cgroup_events_names[i], val);
3202 }
3203
3204 for (i = 0; i < NR_LRU_LISTS; i++) {
3205 unsigned long long val = 0;
3206
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210 }
3211
3212 #ifdef CONFIG_DEBUG_VM
3213 {
3214 pg_data_t *pgdat;
3215 struct mem_cgroup_per_node *mz;
3216 struct zone_reclaim_stat *rstat;
3217 unsigned long recent_rotated[2] = {0, 0};
3218 unsigned long recent_scanned[2] = {0, 0};
3219
3220 for_each_online_pgdat(pgdat) {
3221 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3222 rstat = &mz->lruvec.reclaim_stat;
3223
3224 recent_rotated[0] += rstat->recent_rotated[0];
3225 recent_rotated[1] += rstat->recent_rotated[1];
3226 recent_scanned[0] += rstat->recent_scanned[0];
3227 recent_scanned[1] += rstat->recent_scanned[1];
3228 }
3229 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3233 }
3234 #endif
3235
3236 return 0;
3237 }
3238
3239 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 struct cftype *cft)
3241 {
3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243
3244 return mem_cgroup_swappiness(memcg);
3245 }
3246
3247 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 struct cftype *cft, u64 val)
3249 {
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251
3252 if (val > 100)
3253 return -EINVAL;
3254
3255 if (css->parent)
3256 memcg->swappiness = val;
3257 else
3258 vm_swappiness = val;
3259
3260 return 0;
3261 }
3262
3263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264 {
3265 struct mem_cgroup_threshold_ary *t;
3266 unsigned long usage;
3267 int i;
3268
3269 rcu_read_lock();
3270 if (!swap)
3271 t = rcu_dereference(memcg->thresholds.primary);
3272 else
3273 t = rcu_dereference(memcg->memsw_thresholds.primary);
3274
3275 if (!t)
3276 goto unlock;
3277
3278 usage = mem_cgroup_usage(memcg, swap);
3279
3280 /*
3281 * current_threshold points to threshold just below or equal to usage.
3282 * If it's not true, a threshold was crossed after last
3283 * call of __mem_cgroup_threshold().
3284 */
3285 i = t->current_threshold;
3286
3287 /*
3288 * Iterate backward over array of thresholds starting from
3289 * current_threshold and check if a threshold is crossed.
3290 * If none of thresholds below usage is crossed, we read
3291 * only one element of the array here.
3292 */
3293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296 /* i = current_threshold + 1 */
3297 i++;
3298
3299 /*
3300 * Iterate forward over array of thresholds starting from
3301 * current_threshold+1 and check if a threshold is crossed.
3302 * If none of thresholds above usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* Update current_threshold */
3309 t->current_threshold = i - 1;
3310 unlock:
3311 rcu_read_unlock();
3312 }
3313
3314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315 {
3316 while (memcg) {
3317 __mem_cgroup_threshold(memcg, false);
3318 if (do_memsw_account())
3319 __mem_cgroup_threshold(memcg, true);
3320
3321 memcg = parent_mem_cgroup(memcg);
3322 }
3323 }
3324
3325 static int compare_thresholds(const void *a, const void *b)
3326 {
3327 const struct mem_cgroup_threshold *_a = a;
3328 const struct mem_cgroup_threshold *_b = b;
3329
3330 if (_a->threshold > _b->threshold)
3331 return 1;
3332
3333 if (_a->threshold < _b->threshold)
3334 return -1;
3335
3336 return 0;
3337 }
3338
3339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3340 {
3341 struct mem_cgroup_eventfd_list *ev;
3342
3343 spin_lock(&memcg_oom_lock);
3344
3345 list_for_each_entry(ev, &memcg->oom_notify, list)
3346 eventfd_signal(ev->eventfd, 1);
3347
3348 spin_unlock(&memcg_oom_lock);
3349 return 0;
3350 }
3351
3352 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3353 {
3354 struct mem_cgroup *iter;
3355
3356 for_each_mem_cgroup_tree(iter, memcg)
3357 mem_cgroup_oom_notify_cb(iter);
3358 }
3359
3360 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3361 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362 {
3363 struct mem_cgroup_thresholds *thresholds;
3364 struct mem_cgroup_threshold_ary *new;
3365 unsigned long threshold;
3366 unsigned long usage;
3367 int i, size, ret;
3368
3369 ret = page_counter_memparse(args, "-1", &threshold);
3370 if (ret)
3371 return ret;
3372
3373 mutex_lock(&memcg->thresholds_lock);
3374
3375 if (type == _MEM) {
3376 thresholds = &memcg->thresholds;
3377 usage = mem_cgroup_usage(memcg, false);
3378 } else if (type == _MEMSWAP) {
3379 thresholds = &memcg->memsw_thresholds;
3380 usage = mem_cgroup_usage(memcg, true);
3381 } else
3382 BUG();
3383
3384 /* Check if a threshold crossed before adding a new one */
3385 if (thresholds->primary)
3386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
3388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389
3390 /* Allocate memory for new array of thresholds */
3391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392 GFP_KERNEL);
3393 if (!new) {
3394 ret = -ENOMEM;
3395 goto unlock;
3396 }
3397 new->size = size;
3398
3399 /* Copy thresholds (if any) to new array */
3400 if (thresholds->primary) {
3401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402 sizeof(struct mem_cgroup_threshold));
3403 }
3404
3405 /* Add new threshold */
3406 new->entries[size - 1].eventfd = eventfd;
3407 new->entries[size - 1].threshold = threshold;
3408
3409 /* Sort thresholds. Registering of new threshold isn't time-critical */
3410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411 compare_thresholds, NULL);
3412
3413 /* Find current threshold */
3414 new->current_threshold = -1;
3415 for (i = 0; i < size; i++) {
3416 if (new->entries[i].threshold <= usage) {
3417 /*
3418 * new->current_threshold will not be used until
3419 * rcu_assign_pointer(), so it's safe to increment
3420 * it here.
3421 */
3422 ++new->current_threshold;
3423 } else
3424 break;
3425 }
3426
3427 /* Free old spare buffer and save old primary buffer as spare */
3428 kfree(thresholds->spare);
3429 thresholds->spare = thresholds->primary;
3430
3431 rcu_assign_pointer(thresholds->primary, new);
3432
3433 /* To be sure that nobody uses thresholds */
3434 synchronize_rcu();
3435
3436 unlock:
3437 mutex_unlock(&memcg->thresholds_lock);
3438
3439 return ret;
3440 }
3441
3442 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3443 struct eventfd_ctx *eventfd, const char *args)
3444 {
3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3446 }
3447
3448 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449 struct eventfd_ctx *eventfd, const char *args)
3450 {
3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3452 }
3453
3454 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3455 struct eventfd_ctx *eventfd, enum res_type type)
3456 {
3457 struct mem_cgroup_thresholds *thresholds;
3458 struct mem_cgroup_threshold_ary *new;
3459 unsigned long usage;
3460 int i, j, size;
3461
3462 mutex_lock(&memcg->thresholds_lock);
3463
3464 if (type == _MEM) {
3465 thresholds = &memcg->thresholds;
3466 usage = mem_cgroup_usage(memcg, false);
3467 } else if (type == _MEMSWAP) {
3468 thresholds = &memcg->memsw_thresholds;
3469 usage = mem_cgroup_usage(memcg, true);
3470 } else
3471 BUG();
3472
3473 if (!thresholds->primary)
3474 goto unlock;
3475
3476 /* Check if a threshold crossed before removing */
3477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479 /* Calculate new number of threshold */
3480 size = 0;
3481 for (i = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd != eventfd)
3483 size++;
3484 }
3485
3486 new = thresholds->spare;
3487
3488 /* Set thresholds array to NULL if we don't have thresholds */
3489 if (!size) {
3490 kfree(new);
3491 new = NULL;
3492 goto swap_buffers;
3493 }
3494
3495 new->size = size;
3496
3497 /* Copy thresholds and find current threshold */
3498 new->current_threshold = -1;
3499 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd == eventfd)
3501 continue;
3502
3503 new->entries[j] = thresholds->primary->entries[i];
3504 if (new->entries[j].threshold <= usage) {
3505 /*
3506 * new->current_threshold will not be used
3507 * until rcu_assign_pointer(), so it's safe to increment
3508 * it here.
3509 */
3510 ++new->current_threshold;
3511 }
3512 j++;
3513 }
3514
3515 swap_buffers:
3516 /* Swap primary and spare array */
3517 thresholds->spare = thresholds->primary;
3518
3519 rcu_assign_pointer(thresholds->primary, new);
3520
3521 /* To be sure that nobody uses thresholds */
3522 synchronize_rcu();
3523
3524 /* If all events are unregistered, free the spare array */
3525 if (!new) {
3526 kfree(thresholds->spare);
3527 thresholds->spare = NULL;
3528 }
3529 unlock:
3530 mutex_unlock(&memcg->thresholds_lock);
3531 }
3532
3533 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3534 struct eventfd_ctx *eventfd)
3535 {
3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3537 }
3538
3539 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540 struct eventfd_ctx *eventfd)
3541 {
3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3543 }
3544
3545 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd, const char *args)
3547 {
3548 struct mem_cgroup_eventfd_list *event;
3549
3550 event = kmalloc(sizeof(*event), GFP_KERNEL);
3551 if (!event)
3552 return -ENOMEM;
3553
3554 spin_lock(&memcg_oom_lock);
3555
3556 event->eventfd = eventfd;
3557 list_add(&event->list, &memcg->oom_notify);
3558
3559 /* already in OOM ? */
3560 if (memcg->under_oom)
3561 eventfd_signal(eventfd, 1);
3562 spin_unlock(&memcg_oom_lock);
3563
3564 return 0;
3565 }
3566
3567 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3568 struct eventfd_ctx *eventfd)
3569 {
3570 struct mem_cgroup_eventfd_list *ev, *tmp;
3571
3572 spin_lock(&memcg_oom_lock);
3573
3574 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3575 if (ev->eventfd == eventfd) {
3576 list_del(&ev->list);
3577 kfree(ev);
3578 }
3579 }
3580
3581 spin_unlock(&memcg_oom_lock);
3582 }
3583
3584 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585 {
3586 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587
3588 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590 return 0;
3591 }
3592
3593 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594 struct cftype *cft, u64 val)
3595 {
3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597
3598 /* cannot set to root cgroup and only 0 and 1 are allowed */
3599 if (!css->parent || !((val == 0) || (val == 1)))
3600 return -EINVAL;
3601
3602 memcg->oom_kill_disable = val;
3603 if (!val)
3604 memcg_oom_recover(memcg);
3605
3606 return 0;
3607 }
3608
3609 #ifdef CONFIG_CGROUP_WRITEBACK
3610
3611 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612 {
3613 return &memcg->cgwb_list;
3614 }
3615
3616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617 {
3618 return wb_domain_init(&memcg->cgwb_domain, gfp);
3619 }
3620
3621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622 {
3623 wb_domain_exit(&memcg->cgwb_domain);
3624 }
3625
3626 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627 {
3628 wb_domain_size_changed(&memcg->cgwb_domain);
3629 }
3630
3631 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632 {
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635 if (!memcg->css.parent)
3636 return NULL;
3637
3638 return &memcg->cgwb_domain;
3639 }
3640
3641 /**
3642 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643 * @wb: bdi_writeback in question
3644 * @pfilepages: out parameter for number of file pages
3645 * @pheadroom: out parameter for number of allocatable pages according to memcg
3646 * @pdirty: out parameter for number of dirty pages
3647 * @pwriteback: out parameter for number of pages under writeback
3648 *
3649 * Determine the numbers of file, headroom, dirty, and writeback pages in
3650 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3651 * is a bit more involved.
3652 *
3653 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3654 * headroom is calculated as the lowest headroom of itself and the
3655 * ancestors. Note that this doesn't consider the actual amount of
3656 * available memory in the system. The caller should further cap
3657 * *@pheadroom accordingly.
3658 */
3659 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 unsigned long *pheadroom, unsigned long *pdirty,
3661 unsigned long *pwriteback)
3662 {
3663 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 struct mem_cgroup *parent;
3665
3666 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668 /* this should eventually include NR_UNSTABLE_NFS */
3669 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 (1 << LRU_ACTIVE_FILE));
3672 *pheadroom = PAGE_COUNTER_MAX;
3673
3674 while ((parent = parent_mem_cgroup(memcg))) {
3675 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 unsigned long used = page_counter_read(&memcg->memory);
3677
3678 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679 memcg = parent;
3680 }
3681 }
3682
3683 #else /* CONFIG_CGROUP_WRITEBACK */
3684
3685 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686 {
3687 return 0;
3688 }
3689
3690 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691 {
3692 }
3693
3694 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695 {
3696 }
3697
3698 #endif /* CONFIG_CGROUP_WRITEBACK */
3699
3700 /*
3701 * DO NOT USE IN NEW FILES.
3702 *
3703 * "cgroup.event_control" implementation.
3704 *
3705 * This is way over-engineered. It tries to support fully configurable
3706 * events for each user. Such level of flexibility is completely
3707 * unnecessary especially in the light of the planned unified hierarchy.
3708 *
3709 * Please deprecate this and replace with something simpler if at all
3710 * possible.
3711 */
3712
3713 /*
3714 * Unregister event and free resources.
3715 *
3716 * Gets called from workqueue.
3717 */
3718 static void memcg_event_remove(struct work_struct *work)
3719 {
3720 struct mem_cgroup_event *event =
3721 container_of(work, struct mem_cgroup_event, remove);
3722 struct mem_cgroup *memcg = event->memcg;
3723
3724 remove_wait_queue(event->wqh, &event->wait);
3725
3726 event->unregister_event(memcg, event->eventfd);
3727
3728 /* Notify userspace the event is going away. */
3729 eventfd_signal(event->eventfd, 1);
3730
3731 eventfd_ctx_put(event->eventfd);
3732 kfree(event);
3733 css_put(&memcg->css);
3734 }
3735
3736 /*
3737 * Gets called on POLLHUP on eventfd when user closes it.
3738 *
3739 * Called with wqh->lock held and interrupts disabled.
3740 */
3741 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 int sync, void *key)
3743 {
3744 struct mem_cgroup_event *event =
3745 container_of(wait, struct mem_cgroup_event, wait);
3746 struct mem_cgroup *memcg = event->memcg;
3747 unsigned long flags = (unsigned long)key;
3748
3749 if (flags & POLLHUP) {
3750 /*
3751 * If the event has been detached at cgroup removal, we
3752 * can simply return knowing the other side will cleanup
3753 * for us.
3754 *
3755 * We can't race against event freeing since the other
3756 * side will require wqh->lock via remove_wait_queue(),
3757 * which we hold.
3758 */
3759 spin_lock(&memcg->event_list_lock);
3760 if (!list_empty(&event->list)) {
3761 list_del_init(&event->list);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove()
3764 * may sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
3768 spin_unlock(&memcg->event_list_lock);
3769 }
3770
3771 return 0;
3772 }
3773
3774 static void memcg_event_ptable_queue_proc(struct file *file,
3775 wait_queue_head_t *wqh, poll_table *pt)
3776 {
3777 struct mem_cgroup_event *event =
3778 container_of(pt, struct mem_cgroup_event, pt);
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782 }
3783
3784 /*
3785 * DO NOT USE IN NEW FILES.
3786 *
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
3792 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 char *buf, size_t nbytes, loff_t off)
3794 {
3795 struct cgroup_subsys_state *css = of_css(of);
3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797 struct mem_cgroup_event *event;
3798 struct cgroup_subsys_state *cfile_css;
3799 unsigned int efd, cfd;
3800 struct fd efile;
3801 struct fd cfile;
3802 const char *name;
3803 char *endp;
3804 int ret;
3805
3806 buf = strstrip(buf);
3807
3808 efd = simple_strtoul(buf, &endp, 10);
3809 if (*endp != ' ')
3810 return -EINVAL;
3811 buf = endp + 1;
3812
3813 cfd = simple_strtoul(buf, &endp, 10);
3814 if ((*endp != ' ') && (*endp != '\0'))
3815 return -EINVAL;
3816 buf = endp + 1;
3817
3818 event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 if (!event)
3820 return -ENOMEM;
3821
3822 event->memcg = memcg;
3823 INIT_LIST_HEAD(&event->list);
3824 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 INIT_WORK(&event->remove, memcg_event_remove);
3827
3828 efile = fdget(efd);
3829 if (!efile.file) {
3830 ret = -EBADF;
3831 goto out_kfree;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile.file);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto out_put_efile;
3838 }
3839
3840 cfile = fdget(cfd);
3841 if (!cfile.file) {
3842 ret = -EBADF;
3843 goto out_put_eventfd;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 if (ret < 0)
3850 goto out_put_cfile;
3851
3852 /*
3853 * Determine the event callbacks and set them in @event. This used
3854 * to be done via struct cftype but cgroup core no longer knows
3855 * about these events. The following is crude but the whole thing
3856 * is for compatibility anyway.
3857 *
3858 * DO NOT ADD NEW FILES.
3859 */
3860 name = cfile.file->f_path.dentry->d_name.name;
3861
3862 if (!strcmp(name, "memory.usage_in_bytes")) {
3863 event->register_event = mem_cgroup_usage_register_event;
3864 event->unregister_event = mem_cgroup_usage_unregister_event;
3865 } else if (!strcmp(name, "memory.oom_control")) {
3866 event->register_event = mem_cgroup_oom_register_event;
3867 event->unregister_event = mem_cgroup_oom_unregister_event;
3868 } else if (!strcmp(name, "memory.pressure_level")) {
3869 event->register_event = vmpressure_register_event;
3870 event->unregister_event = vmpressure_unregister_event;
3871 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3872 event->register_event = memsw_cgroup_usage_register_event;
3873 event->unregister_event = memsw_cgroup_usage_unregister_event;
3874 } else {
3875 ret = -EINVAL;
3876 goto out_put_cfile;
3877 }
3878
3879 /*
3880 * Verify @cfile should belong to @css. Also, remaining events are
3881 * automatically removed on cgroup destruction but the removal is
3882 * asynchronous, so take an extra ref on @css.
3883 */
3884 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885 &memory_cgrp_subsys);
3886 ret = -EINVAL;
3887 if (IS_ERR(cfile_css))
3888 goto out_put_cfile;
3889 if (cfile_css != css) {
3890 css_put(cfile_css);
3891 goto out_put_cfile;
3892 }
3893
3894 ret = event->register_event(memcg, event->eventfd, buf);
3895 if (ret)
3896 goto out_put_css;
3897
3898 efile.file->f_op->poll(efile.file, &event->pt);
3899
3900 spin_lock(&memcg->event_list_lock);
3901 list_add(&event->list, &memcg->event_list);
3902 spin_unlock(&memcg->event_list_lock);
3903
3904 fdput(cfile);
3905 fdput(efile);
3906
3907 return nbytes;
3908
3909 out_put_css:
3910 css_put(css);
3911 out_put_cfile:
3912 fdput(cfile);
3913 out_put_eventfd:
3914 eventfd_ctx_put(event->eventfd);
3915 out_put_efile:
3916 fdput(efile);
3917 out_kfree:
3918 kfree(event);
3919
3920 return ret;
3921 }
3922
3923 static struct cftype mem_cgroup_legacy_files[] = {
3924 {
3925 .name = "usage_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927 .read_u64 = mem_cgroup_read_u64,
3928 },
3929 {
3930 .name = "max_usage_in_bytes",
3931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932 .write = mem_cgroup_reset,
3933 .read_u64 = mem_cgroup_read_u64,
3934 },
3935 {
3936 .name = "limit_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938 .write = mem_cgroup_write,
3939 .read_u64 = mem_cgroup_read_u64,
3940 },
3941 {
3942 .name = "soft_limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944 .write = mem_cgroup_write,
3945 .read_u64 = mem_cgroup_read_u64,
3946 },
3947 {
3948 .name = "failcnt",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950 .write = mem_cgroup_reset,
3951 .read_u64 = mem_cgroup_read_u64,
3952 },
3953 {
3954 .name = "stat",
3955 .seq_show = memcg_stat_show,
3956 },
3957 {
3958 .name = "force_empty",
3959 .write = mem_cgroup_force_empty_write,
3960 },
3961 {
3962 .name = "use_hierarchy",
3963 .write_u64 = mem_cgroup_hierarchy_write,
3964 .read_u64 = mem_cgroup_hierarchy_read,
3965 },
3966 {
3967 .name = "cgroup.event_control", /* XXX: for compat */
3968 .write = memcg_write_event_control,
3969 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970 },
3971 {
3972 .name = "swappiness",
3973 .read_u64 = mem_cgroup_swappiness_read,
3974 .write_u64 = mem_cgroup_swappiness_write,
3975 },
3976 {
3977 .name = "move_charge_at_immigrate",
3978 .read_u64 = mem_cgroup_move_charge_read,
3979 .write_u64 = mem_cgroup_move_charge_write,
3980 },
3981 {
3982 .name = "oom_control",
3983 .seq_show = mem_cgroup_oom_control_read,
3984 .write_u64 = mem_cgroup_oom_control_write,
3985 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 },
3987 {
3988 .name = "pressure_level",
3989 },
3990 #ifdef CONFIG_NUMA
3991 {
3992 .name = "numa_stat",
3993 .seq_show = memcg_numa_stat_show,
3994 },
3995 #endif
3996 {
3997 .name = "kmem.limit_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999 .write = mem_cgroup_write,
4000 .read_u64 = mem_cgroup_read_u64,
4001 },
4002 {
4003 .name = "kmem.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005 .read_u64 = mem_cgroup_read_u64,
4006 },
4007 {
4008 .name = "kmem.failcnt",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010 .write = mem_cgroup_reset,
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "kmem.max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016 .write = mem_cgroup_reset,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 #ifdef CONFIG_SLABINFO
4020 {
4021 .name = "kmem.slabinfo",
4022 .seq_start = slab_start,
4023 .seq_next = slab_next,
4024 .seq_stop = slab_stop,
4025 .seq_show = memcg_slab_show,
4026 },
4027 #endif
4028 {
4029 .name = "kmem.tcp.limit_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 .write = mem_cgroup_write,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.failcnt",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.max_usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
4051 { }, /* terminate */
4052 };
4053
4054 /*
4055 * Private memory cgroup IDR
4056 *
4057 * Swap-out records and page cache shadow entries need to store memcg
4058 * references in constrained space, so we maintain an ID space that is
4059 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4060 * memory-controlled cgroups to 64k.
4061 *
4062 * However, there usually are many references to the oflline CSS after
4063 * the cgroup has been destroyed, such as page cache or reclaimable
4064 * slab objects, that don't need to hang on to the ID. We want to keep
4065 * those dead CSS from occupying IDs, or we might quickly exhaust the
4066 * relatively small ID space and prevent the creation of new cgroups
4067 * even when there are much fewer than 64k cgroups - possibly none.
4068 *
4069 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4070 * be freed and recycled when it's no longer needed, which is usually
4071 * when the CSS is offlined.
4072 *
4073 * The only exception to that are records of swapped out tmpfs/shmem
4074 * pages that need to be attributed to live ancestors on swapin. But
4075 * those references are manageable from userspace.
4076 */
4077
4078 static DEFINE_IDR(mem_cgroup_idr);
4079
4080 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4081 {
4082 atomic_add(n, &memcg->id.ref);
4083 }
4084
4085 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4086 {
4087 while (!atomic_inc_not_zero(&memcg->id.ref)) {
4088 /*
4089 * The root cgroup cannot be destroyed, so it's refcount must
4090 * always be >= 1.
4091 */
4092 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
4093 VM_BUG_ON(1);
4094 break;
4095 }
4096 memcg = parent_mem_cgroup(memcg);
4097 if (!memcg)
4098 memcg = root_mem_cgroup;
4099 }
4100 return memcg;
4101 }
4102
4103 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4104 {
4105 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4106 idr_remove(&mem_cgroup_idr, memcg->id.id);
4107 memcg->id.id = 0;
4108
4109 /* Memcg ID pins CSS */
4110 css_put(&memcg->css);
4111 }
4112 }
4113
4114 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4115 {
4116 mem_cgroup_id_get_many(memcg, 1);
4117 }
4118
4119 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4120 {
4121 mem_cgroup_id_put_many(memcg, 1);
4122 }
4123
4124 /**
4125 * mem_cgroup_from_id - look up a memcg from a memcg id
4126 * @id: the memcg id to look up
4127 *
4128 * Caller must hold rcu_read_lock().
4129 */
4130 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4131 {
4132 WARN_ON_ONCE(!rcu_read_lock_held());
4133 return idr_find(&mem_cgroup_idr, id);
4134 }
4135
4136 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4137 {
4138 struct mem_cgroup_per_node *pn;
4139 int tmp = node;
4140 /*
4141 * This routine is called against possible nodes.
4142 * But it's BUG to call kmalloc() against offline node.
4143 *
4144 * TODO: this routine can waste much memory for nodes which will
4145 * never be onlined. It's better to use memory hotplug callback
4146 * function.
4147 */
4148 if (!node_state(node, N_NORMAL_MEMORY))
4149 tmp = -1;
4150 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 if (!pn)
4152 return 1;
4153
4154 lruvec_init(&pn->lruvec);
4155 pn->usage_in_excess = 0;
4156 pn->on_tree = false;
4157 pn->memcg = memcg;
4158
4159 memcg->nodeinfo[node] = pn;
4160 return 0;
4161 }
4162
4163 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4164 {
4165 kfree(memcg->nodeinfo[node]);
4166 }
4167
4168 static void mem_cgroup_free(struct mem_cgroup *memcg)
4169 {
4170 int node;
4171
4172 memcg_wb_domain_exit(memcg);
4173 for_each_node(node)
4174 free_mem_cgroup_per_node_info(memcg, node);
4175 free_percpu(memcg->stat);
4176 kfree(memcg);
4177 }
4178
4179 static struct mem_cgroup *mem_cgroup_alloc(void)
4180 {
4181 struct mem_cgroup *memcg;
4182 size_t size;
4183 int node;
4184
4185 size = sizeof(struct mem_cgroup);
4186 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4187
4188 memcg = kzalloc(size, GFP_KERNEL);
4189 if (!memcg)
4190 return NULL;
4191
4192 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4193 1, MEM_CGROUP_ID_MAX,
4194 GFP_KERNEL);
4195 if (memcg->id.id < 0)
4196 goto fail;
4197
4198 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4199 if (!memcg->stat)
4200 goto fail;
4201
4202 for_each_node(node)
4203 if (alloc_mem_cgroup_per_node_info(memcg, node))
4204 goto fail;
4205
4206 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4207 goto fail;
4208
4209 INIT_WORK(&memcg->high_work, high_work_func);
4210 memcg->last_scanned_node = MAX_NUMNODES;
4211 INIT_LIST_HEAD(&memcg->oom_notify);
4212 mutex_init(&memcg->thresholds_lock);
4213 spin_lock_init(&memcg->move_lock);
4214 vmpressure_init(&memcg->vmpressure);
4215 INIT_LIST_HEAD(&memcg->event_list);
4216 spin_lock_init(&memcg->event_list_lock);
4217 memcg->socket_pressure = jiffies;
4218 #ifndef CONFIG_SLOB
4219 memcg->kmemcg_id = -1;
4220 #endif
4221 #ifdef CONFIG_CGROUP_WRITEBACK
4222 INIT_LIST_HEAD(&memcg->cgwb_list);
4223 #endif
4224 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4225 return memcg;
4226 fail:
4227 if (memcg->id.id > 0)
4228 idr_remove(&mem_cgroup_idr, memcg->id.id);
4229 mem_cgroup_free(memcg);
4230 return NULL;
4231 }
4232
4233 static struct cgroup_subsys_state * __ref
4234 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4235 {
4236 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4237 struct mem_cgroup *memcg;
4238 long error = -ENOMEM;
4239
4240 memcg = mem_cgroup_alloc();
4241 if (!memcg)
4242 return ERR_PTR(error);
4243
4244 memcg->high = PAGE_COUNTER_MAX;
4245 memcg->soft_limit = PAGE_COUNTER_MAX;
4246 if (parent) {
4247 memcg->swappiness = mem_cgroup_swappiness(parent);
4248 memcg->oom_kill_disable = parent->oom_kill_disable;
4249 }
4250 if (parent && parent->use_hierarchy) {
4251 memcg->use_hierarchy = true;
4252 page_counter_init(&memcg->memory, &parent->memory);
4253 page_counter_init(&memcg->swap, &parent->swap);
4254 page_counter_init(&memcg->memsw, &parent->memsw);
4255 page_counter_init(&memcg->kmem, &parent->kmem);
4256 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4257 } else {
4258 page_counter_init(&memcg->memory, NULL);
4259 page_counter_init(&memcg->swap, NULL);
4260 page_counter_init(&memcg->memsw, NULL);
4261 page_counter_init(&memcg->kmem, NULL);
4262 page_counter_init(&memcg->tcpmem, NULL);
4263 /*
4264 * Deeper hierachy with use_hierarchy == false doesn't make
4265 * much sense so let cgroup subsystem know about this
4266 * unfortunate state in our controller.
4267 */
4268 if (parent != root_mem_cgroup)
4269 memory_cgrp_subsys.broken_hierarchy = true;
4270 }
4271
4272 /* The following stuff does not apply to the root */
4273 if (!parent) {
4274 root_mem_cgroup = memcg;
4275 return &memcg->css;
4276 }
4277
4278 error = memcg_online_kmem(memcg);
4279 if (error)
4280 goto fail;
4281
4282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4283 static_branch_inc(&memcg_sockets_enabled_key);
4284
4285 return &memcg->css;
4286 fail:
4287 mem_cgroup_free(memcg);
4288 return ERR_PTR(-ENOMEM);
4289 }
4290
4291 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4292 {
4293 /* Online state pins memcg ID, memcg ID pins CSS */
4294 mem_cgroup_id_get(mem_cgroup_from_css(css));
4295 css_get(css);
4296 return 0;
4297 }
4298
4299 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4300 {
4301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4302 struct mem_cgroup_event *event, *tmp;
4303
4304 /*
4305 * Unregister events and notify userspace.
4306 * Notify userspace about cgroup removing only after rmdir of cgroup
4307 * directory to avoid race between userspace and kernelspace.
4308 */
4309 spin_lock(&memcg->event_list_lock);
4310 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4311 list_del_init(&event->list);
4312 schedule_work(&event->remove);
4313 }
4314 spin_unlock(&memcg->event_list_lock);
4315
4316 memcg_offline_kmem(memcg);
4317 wb_memcg_offline(memcg);
4318
4319 mem_cgroup_id_put(memcg);
4320 }
4321
4322 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4323 {
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325
4326 invalidate_reclaim_iterators(memcg);
4327 }
4328
4329 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332
4333 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4334 static_branch_dec(&memcg_sockets_enabled_key);
4335
4336 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4337 static_branch_dec(&memcg_sockets_enabled_key);
4338
4339 vmpressure_cleanup(&memcg->vmpressure);
4340 cancel_work_sync(&memcg->high_work);
4341 mem_cgroup_remove_from_trees(memcg);
4342 memcg_free_kmem(memcg);
4343 mem_cgroup_free(memcg);
4344 }
4345
4346 /**
4347 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4348 * @css: the target css
4349 *
4350 * Reset the states of the mem_cgroup associated with @css. This is
4351 * invoked when the userland requests disabling on the default hierarchy
4352 * but the memcg is pinned through dependency. The memcg should stop
4353 * applying policies and should revert to the vanilla state as it may be
4354 * made visible again.
4355 *
4356 * The current implementation only resets the essential configurations.
4357 * This needs to be expanded to cover all the visible parts.
4358 */
4359 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4360 {
4361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4362
4363 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4364 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4365 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4366 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4367 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4368 memcg->low = 0;
4369 memcg->high = PAGE_COUNTER_MAX;
4370 memcg->soft_limit = PAGE_COUNTER_MAX;
4371 memcg_wb_domain_size_changed(memcg);
4372 }
4373
4374 #ifdef CONFIG_MMU
4375 /* Handlers for move charge at task migration. */
4376 static int mem_cgroup_do_precharge(unsigned long count)
4377 {
4378 int ret;
4379
4380 /* Try a single bulk charge without reclaim first, kswapd may wake */
4381 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4382 if (!ret) {
4383 mc.precharge += count;
4384 return ret;
4385 }
4386
4387 /* Try charges one by one with reclaim */
4388 while (count--) {
4389 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4390 if (ret)
4391 return ret;
4392 mc.precharge++;
4393 cond_resched();
4394 }
4395 return 0;
4396 }
4397
4398 union mc_target {
4399 struct page *page;
4400 swp_entry_t ent;
4401 };
4402
4403 enum mc_target_type {
4404 MC_TARGET_NONE = 0,
4405 MC_TARGET_PAGE,
4406 MC_TARGET_SWAP,
4407 };
4408
4409 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4410 unsigned long addr, pte_t ptent)
4411 {
4412 struct page *page = vm_normal_page(vma, addr, ptent);
4413
4414 if (!page || !page_mapped(page))
4415 return NULL;
4416 if (PageAnon(page)) {
4417 if (!(mc.flags & MOVE_ANON))
4418 return NULL;
4419 } else {
4420 if (!(mc.flags & MOVE_FILE))
4421 return NULL;
4422 }
4423 if (!get_page_unless_zero(page))
4424 return NULL;
4425
4426 return page;
4427 }
4428
4429 #ifdef CONFIG_SWAP
4430 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4431 pte_t ptent, swp_entry_t *entry)
4432 {
4433 struct page *page = NULL;
4434 swp_entry_t ent = pte_to_swp_entry(ptent);
4435
4436 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4437 return NULL;
4438 /*
4439 * Because lookup_swap_cache() updates some statistics counter,
4440 * we call find_get_page() with swapper_space directly.
4441 */
4442 page = find_get_page(swap_address_space(ent), ent.val);
4443 if (do_memsw_account())
4444 entry->val = ent.val;
4445
4446 return page;
4447 }
4448 #else
4449 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4450 pte_t ptent, swp_entry_t *entry)
4451 {
4452 return NULL;
4453 }
4454 #endif
4455
4456 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4457 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4458 {
4459 struct page *page = NULL;
4460 struct address_space *mapping;
4461 pgoff_t pgoff;
4462
4463 if (!vma->vm_file) /* anonymous vma */
4464 return NULL;
4465 if (!(mc.flags & MOVE_FILE))
4466 return NULL;
4467
4468 mapping = vma->vm_file->f_mapping;
4469 pgoff = linear_page_index(vma, addr);
4470
4471 /* page is moved even if it's not RSS of this task(page-faulted). */
4472 #ifdef CONFIG_SWAP
4473 /* shmem/tmpfs may report page out on swap: account for that too. */
4474 if (shmem_mapping(mapping)) {
4475 page = find_get_entry(mapping, pgoff);
4476 if (radix_tree_exceptional_entry(page)) {
4477 swp_entry_t swp = radix_to_swp_entry(page);
4478 if (do_memsw_account())
4479 *entry = swp;
4480 page = find_get_page(swap_address_space(swp), swp.val);
4481 }
4482 } else
4483 page = find_get_page(mapping, pgoff);
4484 #else
4485 page = find_get_page(mapping, pgoff);
4486 #endif
4487 return page;
4488 }
4489
4490 /**
4491 * mem_cgroup_move_account - move account of the page
4492 * @page: the page
4493 * @compound: charge the page as compound or small page
4494 * @from: mem_cgroup which the page is moved from.
4495 * @to: mem_cgroup which the page is moved to. @from != @to.
4496 *
4497 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4498 *
4499 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4500 * from old cgroup.
4501 */
4502 static int mem_cgroup_move_account(struct page *page,
4503 bool compound,
4504 struct mem_cgroup *from,
4505 struct mem_cgroup *to)
4506 {
4507 unsigned long flags;
4508 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4509 int ret;
4510 bool anon;
4511
4512 VM_BUG_ON(from == to);
4513 VM_BUG_ON_PAGE(PageLRU(page), page);
4514 VM_BUG_ON(compound && !PageTransHuge(page));
4515
4516 /*
4517 * Prevent mem_cgroup_migrate() from looking at
4518 * page->mem_cgroup of its source page while we change it.
4519 */
4520 ret = -EBUSY;
4521 if (!trylock_page(page))
4522 goto out;
4523
4524 ret = -EINVAL;
4525 if (page->mem_cgroup != from)
4526 goto out_unlock;
4527
4528 anon = PageAnon(page);
4529
4530 spin_lock_irqsave(&from->move_lock, flags);
4531
4532 if (!anon && page_mapped(page)) {
4533 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4534 nr_pages);
4535 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4536 nr_pages);
4537 }
4538
4539 /*
4540 * move_lock grabbed above and caller set from->moving_account, so
4541 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4542 * So mapping should be stable for dirty pages.
4543 */
4544 if (!anon && PageDirty(page)) {
4545 struct address_space *mapping = page_mapping(page);
4546
4547 if (mapping_cap_account_dirty(mapping)) {
4548 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4549 nr_pages);
4550 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4551 nr_pages);
4552 }
4553 }
4554
4555 if (PageWriteback(page)) {
4556 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4557 nr_pages);
4558 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4559 nr_pages);
4560 }
4561
4562 /*
4563 * It is safe to change page->mem_cgroup here because the page
4564 * is referenced, charged, and isolated - we can't race with
4565 * uncharging, charging, migration, or LRU putback.
4566 */
4567
4568 /* caller should have done css_get */
4569 page->mem_cgroup = to;
4570 spin_unlock_irqrestore(&from->move_lock, flags);
4571
4572 ret = 0;
4573
4574 local_irq_disable();
4575 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4576 memcg_check_events(to, page);
4577 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4578 memcg_check_events(from, page);
4579 local_irq_enable();
4580 out_unlock:
4581 unlock_page(page);
4582 out:
4583 return ret;
4584 }
4585
4586 /**
4587 * get_mctgt_type - get target type of moving charge
4588 * @vma: the vma the pte to be checked belongs
4589 * @addr: the address corresponding to the pte to be checked
4590 * @ptent: the pte to be checked
4591 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4592 *
4593 * Returns
4594 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4595 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4596 * move charge. if @target is not NULL, the page is stored in target->page
4597 * with extra refcnt got(Callers should handle it).
4598 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4599 * target for charge migration. if @target is not NULL, the entry is stored
4600 * in target->ent.
4601 *
4602 * Called with pte lock held.
4603 */
4604
4605 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4606 unsigned long addr, pte_t ptent, union mc_target *target)
4607 {
4608 struct page *page = NULL;
4609 enum mc_target_type ret = MC_TARGET_NONE;
4610 swp_entry_t ent = { .val = 0 };
4611
4612 if (pte_present(ptent))
4613 page = mc_handle_present_pte(vma, addr, ptent);
4614 else if (is_swap_pte(ptent))
4615 page = mc_handle_swap_pte(vma, ptent, &ent);
4616 else if (pte_none(ptent))
4617 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4618
4619 if (!page && !ent.val)
4620 return ret;
4621 if (page) {
4622 /*
4623 * Do only loose check w/o serialization.
4624 * mem_cgroup_move_account() checks the page is valid or
4625 * not under LRU exclusion.
4626 */
4627 if (page->mem_cgroup == mc.from) {
4628 ret = MC_TARGET_PAGE;
4629 if (target)
4630 target->page = page;
4631 }
4632 if (!ret || !target)
4633 put_page(page);
4634 }
4635 /* There is a swap entry and a page doesn't exist or isn't charged */
4636 if (ent.val && !ret &&
4637 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4638 ret = MC_TARGET_SWAP;
4639 if (target)
4640 target->ent = ent;
4641 }
4642 return ret;
4643 }
4644
4645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4646 /*
4647 * We don't consider swapping or file mapped pages because THP does not
4648 * support them for now.
4649 * Caller should make sure that pmd_trans_huge(pmd) is true.
4650 */
4651 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4652 unsigned long addr, pmd_t pmd, union mc_target *target)
4653 {
4654 struct page *page = NULL;
4655 enum mc_target_type ret = MC_TARGET_NONE;
4656
4657 page = pmd_page(pmd);
4658 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4659 if (!(mc.flags & MOVE_ANON))
4660 return ret;
4661 if (page->mem_cgroup == mc.from) {
4662 ret = MC_TARGET_PAGE;
4663 if (target) {
4664 get_page(page);
4665 target->page = page;
4666 }
4667 }
4668 return ret;
4669 }
4670 #else
4671 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4672 unsigned long addr, pmd_t pmd, union mc_target *target)
4673 {
4674 return MC_TARGET_NONE;
4675 }
4676 #endif
4677
4678 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4679 unsigned long addr, unsigned long end,
4680 struct mm_walk *walk)
4681 {
4682 struct vm_area_struct *vma = walk->vma;
4683 pte_t *pte;
4684 spinlock_t *ptl;
4685
4686 ptl = pmd_trans_huge_lock(pmd, vma);
4687 if (ptl) {
4688 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4689 mc.precharge += HPAGE_PMD_NR;
4690 spin_unlock(ptl);
4691 return 0;
4692 }
4693
4694 if (pmd_trans_unstable(pmd))
4695 return 0;
4696 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4697 for (; addr != end; pte++, addr += PAGE_SIZE)
4698 if (get_mctgt_type(vma, addr, *pte, NULL))
4699 mc.precharge++; /* increment precharge temporarily */
4700 pte_unmap_unlock(pte - 1, ptl);
4701 cond_resched();
4702
4703 return 0;
4704 }
4705
4706 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4707 {
4708 unsigned long precharge;
4709
4710 struct mm_walk mem_cgroup_count_precharge_walk = {
4711 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4712 .mm = mm,
4713 };
4714 down_read(&mm->mmap_sem);
4715 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4716 up_read(&mm->mmap_sem);
4717
4718 precharge = mc.precharge;
4719 mc.precharge = 0;
4720
4721 return precharge;
4722 }
4723
4724 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4725 {
4726 unsigned long precharge = mem_cgroup_count_precharge(mm);
4727
4728 VM_BUG_ON(mc.moving_task);
4729 mc.moving_task = current;
4730 return mem_cgroup_do_precharge(precharge);
4731 }
4732
4733 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4734 static void __mem_cgroup_clear_mc(void)
4735 {
4736 struct mem_cgroup *from = mc.from;
4737 struct mem_cgroup *to = mc.to;
4738
4739 /* we must uncharge all the leftover precharges from mc.to */
4740 if (mc.precharge) {
4741 cancel_charge(mc.to, mc.precharge);
4742 mc.precharge = 0;
4743 }
4744 /*
4745 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4746 * we must uncharge here.
4747 */
4748 if (mc.moved_charge) {
4749 cancel_charge(mc.from, mc.moved_charge);
4750 mc.moved_charge = 0;
4751 }
4752 /* we must fixup refcnts and charges */
4753 if (mc.moved_swap) {
4754 /* uncharge swap account from the old cgroup */
4755 if (!mem_cgroup_is_root(mc.from))
4756 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4757
4758 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4759
4760 /*
4761 * we charged both to->memory and to->memsw, so we
4762 * should uncharge to->memory.
4763 */
4764 if (!mem_cgroup_is_root(mc.to))
4765 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4766
4767 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4768 css_put_many(&mc.to->css, mc.moved_swap);
4769
4770 mc.moved_swap = 0;
4771 }
4772 memcg_oom_recover(from);
4773 memcg_oom_recover(to);
4774 wake_up_all(&mc.waitq);
4775 }
4776
4777 static void mem_cgroup_clear_mc(void)
4778 {
4779 struct mm_struct *mm = mc.mm;
4780
4781 /*
4782 * we must clear moving_task before waking up waiters at the end of
4783 * task migration.
4784 */
4785 mc.moving_task = NULL;
4786 __mem_cgroup_clear_mc();
4787 spin_lock(&mc.lock);
4788 mc.from = NULL;
4789 mc.to = NULL;
4790 mc.mm = NULL;
4791 spin_unlock(&mc.lock);
4792
4793 mmput(mm);
4794 }
4795
4796 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4797 {
4798 struct cgroup_subsys_state *css;
4799 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4800 struct mem_cgroup *from;
4801 struct task_struct *leader, *p;
4802 struct mm_struct *mm;
4803 unsigned long move_flags;
4804 int ret = 0;
4805
4806 /* charge immigration isn't supported on the default hierarchy */
4807 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4808 return 0;
4809
4810 /*
4811 * Multi-process migrations only happen on the default hierarchy
4812 * where charge immigration is not used. Perform charge
4813 * immigration if @tset contains a leader and whine if there are
4814 * multiple.
4815 */
4816 p = NULL;
4817 cgroup_taskset_for_each_leader(leader, css, tset) {
4818 WARN_ON_ONCE(p);
4819 p = leader;
4820 memcg = mem_cgroup_from_css(css);
4821 }
4822 if (!p)
4823 return 0;
4824
4825 /*
4826 * We are now commited to this value whatever it is. Changes in this
4827 * tunable will only affect upcoming migrations, not the current one.
4828 * So we need to save it, and keep it going.
4829 */
4830 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4831 if (!move_flags)
4832 return 0;
4833
4834 from = mem_cgroup_from_task(p);
4835
4836 VM_BUG_ON(from == memcg);
4837
4838 mm = get_task_mm(p);
4839 if (!mm)
4840 return 0;
4841 /* We move charges only when we move a owner of the mm */
4842 if (mm->owner == p) {
4843 VM_BUG_ON(mc.from);
4844 VM_BUG_ON(mc.to);
4845 VM_BUG_ON(mc.precharge);
4846 VM_BUG_ON(mc.moved_charge);
4847 VM_BUG_ON(mc.moved_swap);
4848
4849 spin_lock(&mc.lock);
4850 mc.mm = mm;
4851 mc.from = from;
4852 mc.to = memcg;
4853 mc.flags = move_flags;
4854 spin_unlock(&mc.lock);
4855 /* We set mc.moving_task later */
4856
4857 ret = mem_cgroup_precharge_mc(mm);
4858 if (ret)
4859 mem_cgroup_clear_mc();
4860 } else {
4861 mmput(mm);
4862 }
4863 return ret;
4864 }
4865
4866 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4867 {
4868 if (mc.to)
4869 mem_cgroup_clear_mc();
4870 }
4871
4872 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4873 unsigned long addr, unsigned long end,
4874 struct mm_walk *walk)
4875 {
4876 int ret = 0;
4877 struct vm_area_struct *vma = walk->vma;
4878 pte_t *pte;
4879 spinlock_t *ptl;
4880 enum mc_target_type target_type;
4881 union mc_target target;
4882 struct page *page;
4883
4884 ptl = pmd_trans_huge_lock(pmd, vma);
4885 if (ptl) {
4886 if (mc.precharge < HPAGE_PMD_NR) {
4887 spin_unlock(ptl);
4888 return 0;
4889 }
4890 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4891 if (target_type == MC_TARGET_PAGE) {
4892 page = target.page;
4893 if (!isolate_lru_page(page)) {
4894 if (!mem_cgroup_move_account(page, true,
4895 mc.from, mc.to)) {
4896 mc.precharge -= HPAGE_PMD_NR;
4897 mc.moved_charge += HPAGE_PMD_NR;
4898 }
4899 putback_lru_page(page);
4900 }
4901 put_page(page);
4902 }
4903 spin_unlock(ptl);
4904 return 0;
4905 }
4906
4907 if (pmd_trans_unstable(pmd))
4908 return 0;
4909 retry:
4910 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4911 for (; addr != end; addr += PAGE_SIZE) {
4912 pte_t ptent = *(pte++);
4913 swp_entry_t ent;
4914
4915 if (!mc.precharge)
4916 break;
4917
4918 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4919 case MC_TARGET_PAGE:
4920 page = target.page;
4921 /*
4922 * We can have a part of the split pmd here. Moving it
4923 * can be done but it would be too convoluted so simply
4924 * ignore such a partial THP and keep it in original
4925 * memcg. There should be somebody mapping the head.
4926 */
4927 if (PageTransCompound(page))
4928 goto put;
4929 if (isolate_lru_page(page))
4930 goto put;
4931 if (!mem_cgroup_move_account(page, false,
4932 mc.from, mc.to)) {
4933 mc.precharge--;
4934 /* we uncharge from mc.from later. */
4935 mc.moved_charge++;
4936 }
4937 putback_lru_page(page);
4938 put: /* get_mctgt_type() gets the page */
4939 put_page(page);
4940 break;
4941 case MC_TARGET_SWAP:
4942 ent = target.ent;
4943 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4944 mc.precharge--;
4945 /* we fixup refcnts and charges later. */
4946 mc.moved_swap++;
4947 }
4948 break;
4949 default:
4950 break;
4951 }
4952 }
4953 pte_unmap_unlock(pte - 1, ptl);
4954 cond_resched();
4955
4956 if (addr != end) {
4957 /*
4958 * We have consumed all precharges we got in can_attach().
4959 * We try charge one by one, but don't do any additional
4960 * charges to mc.to if we have failed in charge once in attach()
4961 * phase.
4962 */
4963 ret = mem_cgroup_do_precharge(1);
4964 if (!ret)
4965 goto retry;
4966 }
4967
4968 return ret;
4969 }
4970
4971 static void mem_cgroup_move_charge(void)
4972 {
4973 struct mm_walk mem_cgroup_move_charge_walk = {
4974 .pmd_entry = mem_cgroup_move_charge_pte_range,
4975 .mm = mc.mm,
4976 };
4977
4978 lru_add_drain_all();
4979 /*
4980 * Signal lock_page_memcg() to take the memcg's move_lock
4981 * while we're moving its pages to another memcg. Then wait
4982 * for already started RCU-only updates to finish.
4983 */
4984 atomic_inc(&mc.from->moving_account);
4985 synchronize_rcu();
4986 retry:
4987 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4988 /*
4989 * Someone who are holding the mmap_sem might be waiting in
4990 * waitq. So we cancel all extra charges, wake up all waiters,
4991 * and retry. Because we cancel precharges, we might not be able
4992 * to move enough charges, but moving charge is a best-effort
4993 * feature anyway, so it wouldn't be a big problem.
4994 */
4995 __mem_cgroup_clear_mc();
4996 cond_resched();
4997 goto retry;
4998 }
4999 /*
5000 * When we have consumed all precharges and failed in doing
5001 * additional charge, the page walk just aborts.
5002 */
5003 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5004 up_read(&mc.mm->mmap_sem);
5005 atomic_dec(&mc.from->moving_account);
5006 }
5007
5008 static void mem_cgroup_move_task(void)
5009 {
5010 if (mc.to) {
5011 mem_cgroup_move_charge();
5012 mem_cgroup_clear_mc();
5013 }
5014 }
5015 #else /* !CONFIG_MMU */
5016 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5017 {
5018 return 0;
5019 }
5020 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5021 {
5022 }
5023 static void mem_cgroup_move_task(void)
5024 {
5025 }
5026 #endif
5027
5028 /*
5029 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5030 * to verify whether we're attached to the default hierarchy on each mount
5031 * attempt.
5032 */
5033 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5034 {
5035 /*
5036 * use_hierarchy is forced on the default hierarchy. cgroup core
5037 * guarantees that @root doesn't have any children, so turning it
5038 * on for the root memcg is enough.
5039 */
5040 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5041 root_mem_cgroup->use_hierarchy = true;
5042 else
5043 root_mem_cgroup->use_hierarchy = false;
5044 }
5045
5046 static u64 memory_current_read(struct cgroup_subsys_state *css,
5047 struct cftype *cft)
5048 {
5049 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5050
5051 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5052 }
5053
5054 static int memory_low_show(struct seq_file *m, void *v)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5057 unsigned long low = READ_ONCE(memcg->low);
5058
5059 if (low == PAGE_COUNTER_MAX)
5060 seq_puts(m, "max\n");
5061 else
5062 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5063
5064 return 0;
5065 }
5066
5067 static ssize_t memory_low_write(struct kernfs_open_file *of,
5068 char *buf, size_t nbytes, loff_t off)
5069 {
5070 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5071 unsigned long low;
5072 int err;
5073
5074 buf = strstrip(buf);
5075 err = page_counter_memparse(buf, "max", &low);
5076 if (err)
5077 return err;
5078
5079 memcg->low = low;
5080
5081 return nbytes;
5082 }
5083
5084 static int memory_high_show(struct seq_file *m, void *v)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5087 unsigned long high = READ_ONCE(memcg->high);
5088
5089 if (high == PAGE_COUNTER_MAX)
5090 seq_puts(m, "max\n");
5091 else
5092 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5093
5094 return 0;
5095 }
5096
5097 static ssize_t memory_high_write(struct kernfs_open_file *of,
5098 char *buf, size_t nbytes, loff_t off)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5101 unsigned long nr_pages;
5102 unsigned long high;
5103 int err;
5104
5105 buf = strstrip(buf);
5106 err = page_counter_memparse(buf, "max", &high);
5107 if (err)
5108 return err;
5109
5110 memcg->high = high;
5111
5112 nr_pages = page_counter_read(&memcg->memory);
5113 if (nr_pages > high)
5114 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5115 GFP_KERNEL, true);
5116
5117 memcg_wb_domain_size_changed(memcg);
5118 return nbytes;
5119 }
5120
5121 static int memory_max_show(struct seq_file *m, void *v)
5122 {
5123 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5124 unsigned long max = READ_ONCE(memcg->memory.limit);
5125
5126 if (max == PAGE_COUNTER_MAX)
5127 seq_puts(m, "max\n");
5128 else
5129 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5130
5131 return 0;
5132 }
5133
5134 static ssize_t memory_max_write(struct kernfs_open_file *of,
5135 char *buf, size_t nbytes, loff_t off)
5136 {
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5138 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5139 bool drained = false;
5140 unsigned long max;
5141 int err;
5142
5143 buf = strstrip(buf);
5144 err = page_counter_memparse(buf, "max", &max);
5145 if (err)
5146 return err;
5147
5148 xchg(&memcg->memory.limit, max);
5149
5150 for (;;) {
5151 unsigned long nr_pages = page_counter_read(&memcg->memory);
5152
5153 if (nr_pages <= max)
5154 break;
5155
5156 if (signal_pending(current)) {
5157 err = -EINTR;
5158 break;
5159 }
5160
5161 if (!drained) {
5162 drain_all_stock(memcg);
5163 drained = true;
5164 continue;
5165 }
5166
5167 if (nr_reclaims) {
5168 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5169 GFP_KERNEL, true))
5170 nr_reclaims--;
5171 continue;
5172 }
5173
5174 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5175 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5176 break;
5177 }
5178
5179 memcg_wb_domain_size_changed(memcg);
5180 return nbytes;
5181 }
5182
5183 static int memory_events_show(struct seq_file *m, void *v)
5184 {
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5186
5187 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5188 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5189 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5190 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5191
5192 return 0;
5193 }
5194
5195 static int memory_stat_show(struct seq_file *m, void *v)
5196 {
5197 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5198 unsigned long stat[MEMCG_NR_STAT];
5199 unsigned long events[MEMCG_NR_EVENTS];
5200 int i;
5201
5202 /*
5203 * Provide statistics on the state of the memory subsystem as
5204 * well as cumulative event counters that show past behavior.
5205 *
5206 * This list is ordered following a combination of these gradients:
5207 * 1) generic big picture -> specifics and details
5208 * 2) reflecting userspace activity -> reflecting kernel heuristics
5209 *
5210 * Current memory state:
5211 */
5212
5213 tree_stat(memcg, stat);
5214 tree_events(memcg, events);
5215
5216 seq_printf(m, "anon %llu\n",
5217 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5218 seq_printf(m, "file %llu\n",
5219 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5220 seq_printf(m, "kernel_stack %llu\n",
5221 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5222 seq_printf(m, "slab %llu\n",
5223 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5224 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5225 seq_printf(m, "sock %llu\n",
5226 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5227
5228 seq_printf(m, "file_mapped %llu\n",
5229 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5230 seq_printf(m, "file_dirty %llu\n",
5231 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5232 seq_printf(m, "file_writeback %llu\n",
5233 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5234
5235 for (i = 0; i < NR_LRU_LISTS; i++) {
5236 struct mem_cgroup *mi;
5237 unsigned long val = 0;
5238
5239 for_each_mem_cgroup_tree(mi, memcg)
5240 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5241 seq_printf(m, "%s %llu\n",
5242 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5243 }
5244
5245 seq_printf(m, "slab_reclaimable %llu\n",
5246 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5247 seq_printf(m, "slab_unreclaimable %llu\n",
5248 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5249
5250 /* Accumulated memory events */
5251
5252 seq_printf(m, "pgfault %lu\n",
5253 events[MEM_CGROUP_EVENTS_PGFAULT]);
5254 seq_printf(m, "pgmajfault %lu\n",
5255 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5256
5257 return 0;
5258 }
5259
5260 static struct cftype memory_files[] = {
5261 {
5262 .name = "current",
5263 .flags = CFTYPE_NOT_ON_ROOT,
5264 .read_u64 = memory_current_read,
5265 },
5266 {
5267 .name = "low",
5268 .flags = CFTYPE_NOT_ON_ROOT,
5269 .seq_show = memory_low_show,
5270 .write = memory_low_write,
5271 },
5272 {
5273 .name = "high",
5274 .flags = CFTYPE_NOT_ON_ROOT,
5275 .seq_show = memory_high_show,
5276 .write = memory_high_write,
5277 },
5278 {
5279 .name = "max",
5280 .flags = CFTYPE_NOT_ON_ROOT,
5281 .seq_show = memory_max_show,
5282 .write = memory_max_write,
5283 },
5284 {
5285 .name = "events",
5286 .flags = CFTYPE_NOT_ON_ROOT,
5287 .file_offset = offsetof(struct mem_cgroup, events_file),
5288 .seq_show = memory_events_show,
5289 },
5290 {
5291 .name = "stat",
5292 .flags = CFTYPE_NOT_ON_ROOT,
5293 .seq_show = memory_stat_show,
5294 },
5295 { } /* terminate */
5296 };
5297
5298 struct cgroup_subsys memory_cgrp_subsys = {
5299 .css_alloc = mem_cgroup_css_alloc,
5300 .css_online = mem_cgroup_css_online,
5301 .css_offline = mem_cgroup_css_offline,
5302 .css_released = mem_cgroup_css_released,
5303 .css_free = mem_cgroup_css_free,
5304 .css_reset = mem_cgroup_css_reset,
5305 .can_attach = mem_cgroup_can_attach,
5306 .cancel_attach = mem_cgroup_cancel_attach,
5307 .post_attach = mem_cgroup_move_task,
5308 .bind = mem_cgroup_bind,
5309 .dfl_cftypes = memory_files,
5310 .legacy_cftypes = mem_cgroup_legacy_files,
5311 .early_init = 0,
5312 };
5313
5314 /**
5315 * mem_cgroup_low - check if memory consumption is below the normal range
5316 * @root: the highest ancestor to consider
5317 * @memcg: the memory cgroup to check
5318 *
5319 * Returns %true if memory consumption of @memcg, and that of all
5320 * configurable ancestors up to @root, is below the normal range.
5321 */
5322 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5323 {
5324 if (mem_cgroup_disabled())
5325 return false;
5326
5327 /*
5328 * The toplevel group doesn't have a configurable range, so
5329 * it's never low when looked at directly, and it is not
5330 * considered an ancestor when assessing the hierarchy.
5331 */
5332
5333 if (memcg == root_mem_cgroup)
5334 return false;
5335
5336 if (page_counter_read(&memcg->memory) >= memcg->low)
5337 return false;
5338
5339 while (memcg != root) {
5340 memcg = parent_mem_cgroup(memcg);
5341
5342 if (memcg == root_mem_cgroup)
5343 break;
5344
5345 if (page_counter_read(&memcg->memory) >= memcg->low)
5346 return false;
5347 }
5348 return true;
5349 }
5350
5351 /**
5352 * mem_cgroup_try_charge - try charging a page
5353 * @page: page to charge
5354 * @mm: mm context of the victim
5355 * @gfp_mask: reclaim mode
5356 * @memcgp: charged memcg return
5357 * @compound: charge the page as compound or small page
5358 *
5359 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5360 * pages according to @gfp_mask if necessary.
5361 *
5362 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5363 * Otherwise, an error code is returned.
5364 *
5365 * After page->mapping has been set up, the caller must finalize the
5366 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5367 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5368 */
5369 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5370 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5371 bool compound)
5372 {
5373 struct mem_cgroup *memcg = NULL;
5374 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5375 int ret = 0;
5376
5377 if (mem_cgroup_disabled())
5378 goto out;
5379
5380 if (PageSwapCache(page)) {
5381 /*
5382 * Every swap fault against a single page tries to charge the
5383 * page, bail as early as possible. shmem_unuse() encounters
5384 * already charged pages, too. The USED bit is protected by
5385 * the page lock, which serializes swap cache removal, which
5386 * in turn serializes uncharging.
5387 */
5388 VM_BUG_ON_PAGE(!PageLocked(page), page);
5389 if (page->mem_cgroup)
5390 goto out;
5391
5392 if (do_swap_account) {
5393 swp_entry_t ent = { .val = page_private(page), };
5394 unsigned short id = lookup_swap_cgroup_id(ent);
5395
5396 rcu_read_lock();
5397 memcg = mem_cgroup_from_id(id);
5398 if (memcg && !css_tryget_online(&memcg->css))
5399 memcg = NULL;
5400 rcu_read_unlock();
5401 }
5402 }
5403
5404 if (!memcg)
5405 memcg = get_mem_cgroup_from_mm(mm);
5406
5407 ret = try_charge(memcg, gfp_mask, nr_pages);
5408
5409 css_put(&memcg->css);
5410 out:
5411 *memcgp = memcg;
5412 return ret;
5413 }
5414
5415 /**
5416 * mem_cgroup_commit_charge - commit a page charge
5417 * @page: page to charge
5418 * @memcg: memcg to charge the page to
5419 * @lrucare: page might be on LRU already
5420 * @compound: charge the page as compound or small page
5421 *
5422 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5423 * after page->mapping has been set up. This must happen atomically
5424 * as part of the page instantiation, i.e. under the page table lock
5425 * for anonymous pages, under the page lock for page and swap cache.
5426 *
5427 * In addition, the page must not be on the LRU during the commit, to
5428 * prevent racing with task migration. If it might be, use @lrucare.
5429 *
5430 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5431 */
5432 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5433 bool lrucare, bool compound)
5434 {
5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436
5437 VM_BUG_ON_PAGE(!page->mapping, page);
5438 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5439
5440 if (mem_cgroup_disabled())
5441 return;
5442 /*
5443 * Swap faults will attempt to charge the same page multiple
5444 * times. But reuse_swap_page() might have removed the page
5445 * from swapcache already, so we can't check PageSwapCache().
5446 */
5447 if (!memcg)
5448 return;
5449
5450 commit_charge(page, memcg, lrucare);
5451
5452 local_irq_disable();
5453 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5454 memcg_check_events(memcg, page);
5455 local_irq_enable();
5456
5457 if (do_memsw_account() && PageSwapCache(page)) {
5458 swp_entry_t entry = { .val = page_private(page) };
5459 /*
5460 * The swap entry might not get freed for a long time,
5461 * let's not wait for it. The page already received a
5462 * memory+swap charge, drop the swap entry duplicate.
5463 */
5464 mem_cgroup_uncharge_swap(entry);
5465 }
5466 }
5467
5468 /**
5469 * mem_cgroup_cancel_charge - cancel a page charge
5470 * @page: page to charge
5471 * @memcg: memcg to charge the page to
5472 * @compound: charge the page as compound or small page
5473 *
5474 * Cancel a charge transaction started by mem_cgroup_try_charge().
5475 */
5476 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5477 bool compound)
5478 {
5479 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5480
5481 if (mem_cgroup_disabled())
5482 return;
5483 /*
5484 * Swap faults will attempt to charge the same page multiple
5485 * times. But reuse_swap_page() might have removed the page
5486 * from swapcache already, so we can't check PageSwapCache().
5487 */
5488 if (!memcg)
5489 return;
5490
5491 cancel_charge(memcg, nr_pages);
5492 }
5493
5494 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5495 unsigned long nr_anon, unsigned long nr_file,
5496 unsigned long nr_huge, unsigned long nr_kmem,
5497 struct page *dummy_page)
5498 {
5499 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5500 unsigned long flags;
5501
5502 if (!mem_cgroup_is_root(memcg)) {
5503 page_counter_uncharge(&memcg->memory, nr_pages);
5504 if (do_memsw_account())
5505 page_counter_uncharge(&memcg->memsw, nr_pages);
5506 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5507 page_counter_uncharge(&memcg->kmem, nr_kmem);
5508 memcg_oom_recover(memcg);
5509 }
5510
5511 local_irq_save(flags);
5512 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5513 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5514 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5515 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5516 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5517 memcg_check_events(memcg, dummy_page);
5518 local_irq_restore(flags);
5519
5520 if (!mem_cgroup_is_root(memcg))
5521 css_put_many(&memcg->css, nr_pages);
5522 }
5523
5524 static void uncharge_list(struct list_head *page_list)
5525 {
5526 struct mem_cgroup *memcg = NULL;
5527 unsigned long nr_anon = 0;
5528 unsigned long nr_file = 0;
5529 unsigned long nr_huge = 0;
5530 unsigned long nr_kmem = 0;
5531 unsigned long pgpgout = 0;
5532 struct list_head *next;
5533 struct page *page;
5534
5535 /*
5536 * Note that the list can be a single page->lru; hence the
5537 * do-while loop instead of a simple list_for_each_entry().
5538 */
5539 next = page_list->next;
5540 do {
5541 page = list_entry(next, struct page, lru);
5542 next = page->lru.next;
5543
5544 VM_BUG_ON_PAGE(PageLRU(page), page);
5545 VM_BUG_ON_PAGE(page_count(page), page);
5546
5547 if (!page->mem_cgroup)
5548 continue;
5549
5550 /*
5551 * Nobody should be changing or seriously looking at
5552 * page->mem_cgroup at this point, we have fully
5553 * exclusive access to the page.
5554 */
5555
5556 if (memcg != page->mem_cgroup) {
5557 if (memcg) {
5558 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5559 nr_huge, nr_kmem, page);
5560 pgpgout = nr_anon = nr_file =
5561 nr_huge = nr_kmem = 0;
5562 }
5563 memcg = page->mem_cgroup;
5564 }
5565
5566 if (!PageKmemcg(page)) {
5567 unsigned int nr_pages = 1;
5568
5569 if (PageTransHuge(page)) {
5570 nr_pages <<= compound_order(page);
5571 nr_huge += nr_pages;
5572 }
5573 if (PageAnon(page))
5574 nr_anon += nr_pages;
5575 else
5576 nr_file += nr_pages;
5577 pgpgout++;
5578 } else {
5579 nr_kmem += 1 << compound_order(page);
5580 __ClearPageKmemcg(page);
5581 }
5582
5583 page->mem_cgroup = NULL;
5584 } while (next != page_list);
5585
5586 if (memcg)
5587 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5588 nr_huge, nr_kmem, page);
5589 }
5590
5591 /**
5592 * mem_cgroup_uncharge - uncharge a page
5593 * @page: page to uncharge
5594 *
5595 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5596 * mem_cgroup_commit_charge().
5597 */
5598 void mem_cgroup_uncharge(struct page *page)
5599 {
5600 if (mem_cgroup_disabled())
5601 return;
5602
5603 /* Don't touch page->lru of any random page, pre-check: */
5604 if (!page->mem_cgroup)
5605 return;
5606
5607 INIT_LIST_HEAD(&page->lru);
5608 uncharge_list(&page->lru);
5609 }
5610
5611 /**
5612 * mem_cgroup_uncharge_list - uncharge a list of page
5613 * @page_list: list of pages to uncharge
5614 *
5615 * Uncharge a list of pages previously charged with
5616 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5617 */
5618 void mem_cgroup_uncharge_list(struct list_head *page_list)
5619 {
5620 if (mem_cgroup_disabled())
5621 return;
5622
5623 if (!list_empty(page_list))
5624 uncharge_list(page_list);
5625 }
5626
5627 /**
5628 * mem_cgroup_migrate - charge a page's replacement
5629 * @oldpage: currently circulating page
5630 * @newpage: replacement page
5631 *
5632 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5633 * be uncharged upon free.
5634 *
5635 * Both pages must be locked, @newpage->mapping must be set up.
5636 */
5637 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5638 {
5639 struct mem_cgroup *memcg;
5640 unsigned int nr_pages;
5641 bool compound;
5642 unsigned long flags;
5643
5644 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5645 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5646 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5647 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5648 newpage);
5649
5650 if (mem_cgroup_disabled())
5651 return;
5652
5653 /* Page cache replacement: new page already charged? */
5654 if (newpage->mem_cgroup)
5655 return;
5656
5657 /* Swapcache readahead pages can get replaced before being charged */
5658 memcg = oldpage->mem_cgroup;
5659 if (!memcg)
5660 return;
5661
5662 /* Force-charge the new page. The old one will be freed soon */
5663 compound = PageTransHuge(newpage);
5664 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5665
5666 page_counter_charge(&memcg->memory, nr_pages);
5667 if (do_memsw_account())
5668 page_counter_charge(&memcg->memsw, nr_pages);
5669 css_get_many(&memcg->css, nr_pages);
5670
5671 commit_charge(newpage, memcg, false);
5672
5673 local_irq_save(flags);
5674 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5675 memcg_check_events(memcg, newpage);
5676 local_irq_restore(flags);
5677 }
5678
5679 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5680 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5681
5682 void sock_update_memcg(struct sock *sk)
5683 {
5684 struct mem_cgroup *memcg;
5685
5686 /* Socket cloning can throw us here with sk_cgrp already
5687 * filled. It won't however, necessarily happen from
5688 * process context. So the test for root memcg given
5689 * the current task's memcg won't help us in this case.
5690 *
5691 * Respecting the original socket's memcg is a better
5692 * decision in this case.
5693 */
5694 if (sk->sk_memcg) {
5695 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5696 css_get(&sk->sk_memcg->css);
5697 return;
5698 }
5699
5700 rcu_read_lock();
5701 memcg = mem_cgroup_from_task(current);
5702 if (memcg == root_mem_cgroup)
5703 goto out;
5704 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5705 goto out;
5706 if (css_tryget_online(&memcg->css))
5707 sk->sk_memcg = memcg;
5708 out:
5709 rcu_read_unlock();
5710 }
5711 EXPORT_SYMBOL(sock_update_memcg);
5712
5713 void sock_release_memcg(struct sock *sk)
5714 {
5715 WARN_ON(!sk->sk_memcg);
5716 css_put(&sk->sk_memcg->css);
5717 }
5718
5719 /**
5720 * mem_cgroup_charge_skmem - charge socket memory
5721 * @memcg: memcg to charge
5722 * @nr_pages: number of pages to charge
5723 *
5724 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5725 * @memcg's configured limit, %false if the charge had to be forced.
5726 */
5727 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5728 {
5729 gfp_t gfp_mask = GFP_KERNEL;
5730
5731 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5732 struct page_counter *fail;
5733
5734 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5735 memcg->tcpmem_pressure = 0;
5736 return true;
5737 }
5738 page_counter_charge(&memcg->tcpmem, nr_pages);
5739 memcg->tcpmem_pressure = 1;
5740 return false;
5741 }
5742
5743 /* Don't block in the packet receive path */
5744 if (in_softirq())
5745 gfp_mask = GFP_NOWAIT;
5746
5747 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5748
5749 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5750 return true;
5751
5752 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5753 return false;
5754 }
5755
5756 /**
5757 * mem_cgroup_uncharge_skmem - uncharge socket memory
5758 * @memcg - memcg to uncharge
5759 * @nr_pages - number of pages to uncharge
5760 */
5761 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5762 {
5763 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5764 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5765 return;
5766 }
5767
5768 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5769
5770 page_counter_uncharge(&memcg->memory, nr_pages);
5771 css_put_many(&memcg->css, nr_pages);
5772 }
5773
5774 static int __init cgroup_memory(char *s)
5775 {
5776 char *token;
5777
5778 while ((token = strsep(&s, ",")) != NULL) {
5779 if (!*token)
5780 continue;
5781 if (!strcmp(token, "nosocket"))
5782 cgroup_memory_nosocket = true;
5783 if (!strcmp(token, "nokmem"))
5784 cgroup_memory_nokmem = true;
5785 }
5786 return 0;
5787 }
5788 __setup("cgroup.memory=", cgroup_memory);
5789
5790 /*
5791 * subsys_initcall() for memory controller.
5792 *
5793 * Some parts like hotcpu_notifier() have to be initialized from this context
5794 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5795 * everything that doesn't depend on a specific mem_cgroup structure should
5796 * be initialized from here.
5797 */
5798 static int __init mem_cgroup_init(void)
5799 {
5800 int cpu, node;
5801
5802 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5803
5804 for_each_possible_cpu(cpu)
5805 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5806 drain_local_stock);
5807
5808 for_each_node(node) {
5809 struct mem_cgroup_tree_per_node *rtpn;
5810
5811 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5812 node_online(node) ? node : NUMA_NO_NODE);
5813
5814 rtpn->rb_root = RB_ROOT;
5815 spin_lock_init(&rtpn->lock);
5816 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5817 }
5818
5819 return 0;
5820 }
5821 subsys_initcall(mem_cgroup_init);
5822
5823 #ifdef CONFIG_MEMCG_SWAP
5824 /**
5825 * mem_cgroup_swapout - transfer a memsw charge to swap
5826 * @page: page whose memsw charge to transfer
5827 * @entry: swap entry to move the charge to
5828 *
5829 * Transfer the memsw charge of @page to @entry.
5830 */
5831 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5832 {
5833 struct mem_cgroup *memcg, *swap_memcg;
5834 unsigned short oldid;
5835
5836 VM_BUG_ON_PAGE(PageLRU(page), page);
5837 VM_BUG_ON_PAGE(page_count(page), page);
5838
5839 if (!do_memsw_account())
5840 return;
5841
5842 memcg = page->mem_cgroup;
5843
5844 /* Readahead page, never charged */
5845 if (!memcg)
5846 return;
5847
5848 /*
5849 * In case the memcg owning these pages has been offlined and doesn't
5850 * have an ID allocated to it anymore, charge the closest online
5851 * ancestor for the swap instead and transfer the memory+swap charge.
5852 */
5853 swap_memcg = mem_cgroup_id_get_online(memcg);
5854 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5855 VM_BUG_ON_PAGE(oldid, page);
5856 mem_cgroup_swap_statistics(swap_memcg, true);
5857
5858 page->mem_cgroup = NULL;
5859
5860 if (!mem_cgroup_is_root(memcg))
5861 page_counter_uncharge(&memcg->memory, 1);
5862
5863 if (memcg != swap_memcg) {
5864 if (!mem_cgroup_is_root(swap_memcg))
5865 page_counter_charge(&swap_memcg->memsw, 1);
5866 page_counter_uncharge(&memcg->memsw, 1);
5867 }
5868
5869 /*
5870 * Interrupts should be disabled here because the caller holds the
5871 * mapping->tree_lock lock which is taken with interrupts-off. It is
5872 * important here to have the interrupts disabled because it is the
5873 * only synchronisation we have for udpating the per-CPU variables.
5874 */
5875 VM_BUG_ON(!irqs_disabled());
5876 mem_cgroup_charge_statistics(memcg, page, false, -1);
5877 memcg_check_events(memcg, page);
5878
5879 if (!mem_cgroup_is_root(memcg))
5880 css_put(&memcg->css);
5881 }
5882
5883 /*
5884 * mem_cgroup_try_charge_swap - try charging a swap entry
5885 * @page: page being added to swap
5886 * @entry: swap entry to charge
5887 *
5888 * Try to charge @entry to the memcg that @page belongs to.
5889 *
5890 * Returns 0 on success, -ENOMEM on failure.
5891 */
5892 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5893 {
5894 struct mem_cgroup *memcg;
5895 struct page_counter *counter;
5896 unsigned short oldid;
5897
5898 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5899 return 0;
5900
5901 memcg = page->mem_cgroup;
5902
5903 /* Readahead page, never charged */
5904 if (!memcg)
5905 return 0;
5906
5907 memcg = mem_cgroup_id_get_online(memcg);
5908
5909 if (!mem_cgroup_is_root(memcg) &&
5910 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5911 mem_cgroup_id_put(memcg);
5912 return -ENOMEM;
5913 }
5914
5915 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5916 VM_BUG_ON_PAGE(oldid, page);
5917 mem_cgroup_swap_statistics(memcg, true);
5918
5919 return 0;
5920 }
5921
5922 /**
5923 * mem_cgroup_uncharge_swap - uncharge a swap entry
5924 * @entry: swap entry to uncharge
5925 *
5926 * Drop the swap charge associated with @entry.
5927 */
5928 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5929 {
5930 struct mem_cgroup *memcg;
5931 unsigned short id;
5932
5933 if (!do_swap_account)
5934 return;
5935
5936 id = swap_cgroup_record(entry, 0);
5937 rcu_read_lock();
5938 memcg = mem_cgroup_from_id(id);
5939 if (memcg) {
5940 if (!mem_cgroup_is_root(memcg)) {
5941 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5942 page_counter_uncharge(&memcg->swap, 1);
5943 else
5944 page_counter_uncharge(&memcg->memsw, 1);
5945 }
5946 mem_cgroup_swap_statistics(memcg, false);
5947 mem_cgroup_id_put(memcg);
5948 }
5949 rcu_read_unlock();
5950 }
5951
5952 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5953 {
5954 long nr_swap_pages = get_nr_swap_pages();
5955
5956 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5957 return nr_swap_pages;
5958 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5959 nr_swap_pages = min_t(long, nr_swap_pages,
5960 READ_ONCE(memcg->swap.limit) -
5961 page_counter_read(&memcg->swap));
5962 return nr_swap_pages;
5963 }
5964
5965 bool mem_cgroup_swap_full(struct page *page)
5966 {
5967 struct mem_cgroup *memcg;
5968
5969 VM_BUG_ON_PAGE(!PageLocked(page), page);
5970
5971 if (vm_swap_full())
5972 return true;
5973 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5974 return false;
5975
5976 memcg = page->mem_cgroup;
5977 if (!memcg)
5978 return false;
5979
5980 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5981 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5982 return true;
5983
5984 return false;
5985 }
5986
5987 /* for remember boot option*/
5988 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5989 static int really_do_swap_account __initdata = 1;
5990 #else
5991 static int really_do_swap_account __initdata;
5992 #endif
5993
5994 static int __init enable_swap_account(char *s)
5995 {
5996 if (!strcmp(s, "1"))
5997 really_do_swap_account = 1;
5998 else if (!strcmp(s, "0"))
5999 really_do_swap_account = 0;
6000 return 1;
6001 }
6002 __setup("swapaccount=", enable_swap_account);
6003
6004 static u64 swap_current_read(struct cgroup_subsys_state *css,
6005 struct cftype *cft)
6006 {
6007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6008
6009 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6010 }
6011
6012 static int swap_max_show(struct seq_file *m, void *v)
6013 {
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6015 unsigned long max = READ_ONCE(memcg->swap.limit);
6016
6017 if (max == PAGE_COUNTER_MAX)
6018 seq_puts(m, "max\n");
6019 else
6020 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6021
6022 return 0;
6023 }
6024
6025 static ssize_t swap_max_write(struct kernfs_open_file *of,
6026 char *buf, size_t nbytes, loff_t off)
6027 {
6028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6029 unsigned long max;
6030 int err;
6031
6032 buf = strstrip(buf);
6033 err = page_counter_memparse(buf, "max", &max);
6034 if (err)
6035 return err;
6036
6037 mutex_lock(&memcg_limit_mutex);
6038 err = page_counter_limit(&memcg->swap, max);
6039 mutex_unlock(&memcg_limit_mutex);
6040 if (err)
6041 return err;
6042
6043 return nbytes;
6044 }
6045
6046 static struct cftype swap_files[] = {
6047 {
6048 .name = "swap.current",
6049 .flags = CFTYPE_NOT_ON_ROOT,
6050 .read_u64 = swap_current_read,
6051 },
6052 {
6053 .name = "swap.max",
6054 .flags = CFTYPE_NOT_ON_ROOT,
6055 .seq_show = swap_max_show,
6056 .write = swap_max_write,
6057 },
6058 { } /* terminate */
6059 };
6060
6061 static struct cftype memsw_cgroup_files[] = {
6062 {
6063 .name = "memsw.usage_in_bytes",
6064 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6065 .read_u64 = mem_cgroup_read_u64,
6066 },
6067 {
6068 .name = "memsw.max_usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6070 .write = mem_cgroup_reset,
6071 .read_u64 = mem_cgroup_read_u64,
6072 },
6073 {
6074 .name = "memsw.limit_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6076 .write = mem_cgroup_write,
6077 .read_u64 = mem_cgroup_read_u64,
6078 },
6079 {
6080 .name = "memsw.failcnt",
6081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6082 .write = mem_cgroup_reset,
6083 .read_u64 = mem_cgroup_read_u64,
6084 },
6085 { }, /* terminate */
6086 };
6087
6088 static int __init mem_cgroup_swap_init(void)
6089 {
6090 if (!mem_cgroup_disabled() && really_do_swap_account) {
6091 do_swap_account = 1;
6092 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6093 swap_files));
6094 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6095 memsw_cgroup_files));
6096 }
6097 return 0;
6098 }
6099 subsys_initcall(mem_cgroup_swap_init);
6100
6101 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.15819 seconds and 5 git commands to generate.