mm: memcontrol: rein in the CONFIG space madness
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /*
254 * The memcg_create_mutex will be held whenever a new cgroup is created.
255 * As a consequence, any change that needs to protect against new child cgroups
256 * appearing has to hold it as well.
257 */
258 static DEFINE_MUTEX(memcg_create_mutex);
259
260 /* Some nice accessors for the vmpressure. */
261 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
262 {
263 if (!memcg)
264 memcg = root_mem_cgroup;
265 return &memcg->vmpressure;
266 }
267
268 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
269 {
270 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
271 }
272
273 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
274 {
275 return (memcg == root_mem_cgroup);
276 }
277
278 /*
279 * We restrict the id in the range of [1, 65535], so it can fit into
280 * an unsigned short.
281 */
282 #define MEM_CGROUP_ID_MAX USHRT_MAX
283
284 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
285 {
286 return memcg->css.id;
287 }
288
289 /*
290 * A helper function to get mem_cgroup from ID. must be called under
291 * rcu_read_lock(). The caller is responsible for calling
292 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
293 * refcnt from swap can be called against removed memcg.)
294 */
295 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
296 {
297 struct cgroup_subsys_state *css;
298
299 css = css_from_id(id, &memory_cgrp_subsys);
300 return mem_cgroup_from_css(css);
301 }
302
303 #ifndef CONFIG_SLOB
304 /*
305 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
306 * The main reason for not using cgroup id for this:
307 * this works better in sparse environments, where we have a lot of memcgs,
308 * but only a few kmem-limited. Or also, if we have, for instance, 200
309 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
310 * 200 entry array for that.
311 *
312 * The current size of the caches array is stored in memcg_nr_cache_ids. It
313 * will double each time we have to increase it.
314 */
315 static DEFINE_IDA(memcg_cache_ida);
316 int memcg_nr_cache_ids;
317
318 /* Protects memcg_nr_cache_ids */
319 static DECLARE_RWSEM(memcg_cache_ids_sem);
320
321 void memcg_get_cache_ids(void)
322 {
323 down_read(&memcg_cache_ids_sem);
324 }
325
326 void memcg_put_cache_ids(void)
327 {
328 up_read(&memcg_cache_ids_sem);
329 }
330
331 /*
332 * MIN_SIZE is different than 1, because we would like to avoid going through
333 * the alloc/free process all the time. In a small machine, 4 kmem-limited
334 * cgroups is a reasonable guess. In the future, it could be a parameter or
335 * tunable, but that is strictly not necessary.
336 *
337 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
338 * this constant directly from cgroup, but it is understandable that this is
339 * better kept as an internal representation in cgroup.c. In any case, the
340 * cgrp_id space is not getting any smaller, and we don't have to necessarily
341 * increase ours as well if it increases.
342 */
343 #define MEMCG_CACHES_MIN_SIZE 4
344 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
353 EXPORT_SYMBOL(memcg_kmem_enabled_key);
354
355 #endif /* !CONFIG_SLOB */
356
357 static struct mem_cgroup_per_zone *
358 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
359 {
360 int nid = zone_to_nid(zone);
361 int zid = zone_idx(zone);
362
363 return &memcg->nodeinfo[nid]->zoneinfo[zid];
364 }
365
366 /**
367 * mem_cgroup_css_from_page - css of the memcg associated with a page
368 * @page: page of interest
369 *
370 * If memcg is bound to the default hierarchy, css of the memcg associated
371 * with @page is returned. The returned css remains associated with @page
372 * until it is released.
373 *
374 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
375 * is returned.
376 *
377 * XXX: The above description of behavior on the default hierarchy isn't
378 * strictly true yet as replace_page_cache_page() can modify the
379 * association before @page is released even on the default hierarchy;
380 * however, the current and planned usages don't mix the the two functions
381 * and replace_page_cache_page() will soon be updated to make the invariant
382 * actually true.
383 */
384 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
385 {
386 struct mem_cgroup *memcg;
387
388 memcg = page->mem_cgroup;
389
390 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
391 memcg = root_mem_cgroup;
392
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 bool compound, int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
667 }
668
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672 else {
673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 nr_pages = -nr_pages; /* for event */
675 }
676
677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 }
679
680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
683 {
684 unsigned long nr = 0;
685 int zid;
686
687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
688
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
701 }
702
703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704 unsigned int lru_mask)
705 {
706 unsigned long nr = 0;
707 int nid;
708
709 for_each_node_state(nid, N_MEMORY)
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
712 }
713
714 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
716 {
717 unsigned long val, next;
718
719 val = __this_cpu_read(memcg->stat->nr_page_events);
720 next = __this_cpu_read(memcg->stat->targets[target]);
721 /* from time_after() in jiffies.h */
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
738 }
739 return false;
740 }
741
742 /*
743 * Check events in order.
744 *
745 */
746 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 {
748 /* threshold event is triggered in finer grain than soft limit */
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
751 bool do_softlimit;
752 bool do_numainfo __maybe_unused;
753
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
756 #if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759 #endif
760 mem_cgroup_threshold(memcg);
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
763 #if MAX_NUMNODES > 1
764 if (unlikely(do_numainfo))
765 atomic_inc(&memcg->numainfo_events);
766 #endif
767 }
768 }
769
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771 {
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781 }
782 EXPORT_SYMBOL(mem_cgroup_from_task);
783
784 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785 {
786 struct mem_cgroup *memcg = NULL;
787
788 rcu_read_lock();
789 do {
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
796 memcg = root_mem_cgroup;
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
802 } while (!css_tryget_online(&memcg->css));
803 rcu_read_unlock();
804 return memcg;
805 }
806
807 /**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825 struct mem_cgroup *prev,
826 struct mem_cgroup_reclaim_cookie *reclaim)
827 {
828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829 struct cgroup_subsys_state *css = NULL;
830 struct mem_cgroup *memcg = NULL;
831 struct mem_cgroup *pos = NULL;
832
833 if (mem_cgroup_disabled())
834 return NULL;
835
836 if (!root)
837 root = root_mem_cgroup;
838
839 if (prev && !reclaim)
840 pos = prev;
841
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
844 goto out;
845 return root;
846 }
847
848 rcu_read_lock();
849
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
859 while (1) {
860 pos = READ_ONCE(iter->position);
861 if (!pos || css_tryget(&pos->css))
862 break;
863 /*
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
870 */
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
890 }
891
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
898
899 if (css == &root->css)
900 break;
901
902 if (css_tryget(css)) {
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
910
911 css_put(css);
912 }
913
914 memcg = NULL;
915 }
916
917 if (reclaim) {
918 /*
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
922 */
923 (void)cmpxchg(&iter->position, pos, memcg);
924
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
932 }
933
934 out_unlock:
935 rcu_read_unlock();
936 out:
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 return memcg;
941 }
942
943 /**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948 void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
950 {
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955 }
956
957 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958 {
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977 }
978
979 /*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984 #define for_each_mem_cgroup_tree(iter, root) \
985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(root, iter, NULL))
988
989 #define for_each_mem_cgroup(iter) \
990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
991 iter != NULL; \
992 iter = mem_cgroup_iter(NULL, iter, NULL))
993
994 /**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
997 * @memcg: memcg of the wanted lruvec
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup_per_zone *mz;
1007 struct lruvec *lruvec;
1008
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
1013
1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 lruvec = &mz->lruvec;
1016 out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
1025 }
1026
1027 /**
1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029 * @page: the page
1030 * @zone: zone of the page
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
1035 */
1036 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct mem_cgroup *memcg;
1040 struct lruvec *lruvec;
1041
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
1046
1047 memcg = page->mem_cgroup;
1048 /*
1049 * Swapcache readahead pages are added to the LRU - and
1050 * possibly migrated - before they are charged.
1051 */
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
1054
1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 lruvec = &mz->lruvec;
1057 out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
1066 }
1067
1068 /**
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
1073 *
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
1076 */
1077 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
1079 {
1080 struct mem_cgroup_per_zone *mz;
1081 unsigned long *lru_size;
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
1090 }
1091
1092 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093 {
1094 struct mem_cgroup *task_memcg;
1095 struct task_struct *p;
1096 bool ret;
1097
1098 p = find_lock_task_mm(task);
1099 if (p) {
1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
1108 rcu_read_lock();
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
1111 rcu_read_unlock();
1112 }
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
1115 return ret;
1116 }
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @memcg: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * pages.
1124 */
1125 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126 {
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
1130
1131 count = page_counter_read(&memcg->memory);
1132 limit = READ_ONCE(memcg->memory.limit);
1133 if (count < limit)
1134 margin = limit - count;
1135
1136 if (do_memsw_account()) {
1137 count = page_counter_read(&memcg->memsw);
1138 limit = READ_ONCE(memcg->memsw.limit);
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
1144 }
1145
1146 /*
1147 * A routine for checking "mem" is under move_account() or not.
1148 *
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
1152 */
1153 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154 {
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
1157 bool ret = false;
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
1167
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
1170 unlock:
1171 spin_unlock(&mc.lock);
1172 return ret;
1173 }
1174
1175 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 {
1177 if (mc.moving_task && current != mc.moving_task) {
1178 if (mem_cgroup_under_move(memcg)) {
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
1191 #define K(x) ((x) << (PAGE_SHIFT-10))
1192 /**
1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201 {
1202 /* oom_info_lock ensures that parallel ooms do not interleave */
1203 static DEFINE_MUTEX(oom_info_lock);
1204 struct mem_cgroup *iter;
1205 unsigned int i;
1206
1207 mutex_lock(&oom_info_lock);
1208 rcu_read_lock();
1209
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
1218 pr_cont_cgroup_path(memcg->css.cgroup);
1219 pr_cont("\n");
1220
1221 rcu_read_unlock();
1222
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240 continue;
1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
1251 mutex_unlock(&oom_info_lock);
1252 }
1253
1254 /*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
1258 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 {
1260 int num = 0;
1261 struct mem_cgroup *iter;
1262
1263 for_each_mem_cgroup_tree(iter, memcg)
1264 num++;
1265 return num;
1266 }
1267
1268 /*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
1271 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1272 {
1273 unsigned long limit;
1274
1275 limit = memcg->memory.limit;
1276 if (mem_cgroup_swappiness(memcg)) {
1277 unsigned long memsw_limit;
1278
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
1281 }
1282 return limit;
1283 }
1284
1285 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
1287 {
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
1293 };
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
1300 mutex_lock(&oom_lock);
1301
1302 /*
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
1306 */
1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308 mark_oom_victim(current);
1309 goto unlock;
1310 }
1311
1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314 for_each_mem_cgroup_tree(iter, memcg) {
1315 struct css_task_iter it;
1316 struct task_struct *task;
1317
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
1331 css_task_iter_end(&it);
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
1335 goto unlock;
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
1352 }
1353 css_task_iter_end(&it);
1354 }
1355
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
1360 }
1361 unlock:
1362 mutex_unlock(&oom_lock);
1363 }
1364
1365 #if MAX_NUMNODES > 1
1366
1367 /**
1368 * test_mem_cgroup_node_reclaimable
1369 * @memcg: the target memcg
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
1377 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 int nid, bool noswap)
1379 {
1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 return true;
1386 return false;
1387
1388 }
1389
1390 /*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
1396 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 {
1398 int nid;
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
1403 if (!atomic_read(&memcg->numainfo_events))
1404 return;
1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 return;
1407
1408 /* make a nodemask where this memcg uses memory from */
1409 memcg->scan_nodes = node_states[N_MEMORY];
1410
1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
1412
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
1415 }
1416
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
1419 }
1420
1421 /*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
1433 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 {
1435 int node;
1436
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
1439
1440 node = next_node(node, memcg->scan_nodes);
1441 if (node == MAX_NUMNODES)
1442 node = first_node(memcg->scan_nodes);
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
1452 memcg->last_scanned_node = node;
1453 return node;
1454 }
1455 #else
1456 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466 {
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
1477 excess = soft_limit_excess(root_memcg);
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
1506 if (!soft_limit_excess(root_memcg))
1507 break;
1508 }
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
1511 }
1512
1513 #ifdef CONFIG_LOCKDEP
1514 static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516 };
1517 #endif
1518
1519 static DEFINE_SPINLOCK(memcg_oom_lock);
1520
1521 /*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
1525 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1526 {
1527 struct mem_cgroup *iter, *failed = NULL;
1528
1529 spin_lock(&memcg_oom_lock);
1530
1531 for_each_mem_cgroup_tree(iter, memcg) {
1532 if (iter->oom_lock) {
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
1537 failed = iter;
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 } else
1541 iter->oom_lock = true;
1542 }
1543
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
1555 }
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
1562 }
1563
1564 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570 for_each_mem_cgroup_tree(iter, memcg)
1571 iter->oom_lock = false;
1572 spin_unlock(&memcg_oom_lock);
1573 }
1574
1575 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter;
1578
1579 spin_lock(&memcg_oom_lock);
1580 for_each_mem_cgroup_tree(iter, memcg)
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
1583 }
1584
1585 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 {
1587 struct mem_cgroup *iter;
1588
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1592 */
1593 spin_lock(&memcg_oom_lock);
1594 for_each_mem_cgroup_tree(iter, memcg)
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
1602 struct oom_wait_info {
1603 struct mem_cgroup *memcg;
1604 wait_queue_t wait;
1605 };
1606
1607 static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609 {
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615 oom_wait_memcg = oom_wait_info->memcg;
1616
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1619 return 0;
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621 }
1622
1623 static void memcg_oom_recover(struct mem_cgroup *memcg)
1624 {
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 }
1636
1637 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638 {
1639 if (!current->memcg_may_oom)
1640 return;
1641 /*
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
1654 */
1655 css_get(&memcg->css);
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
1659 }
1660
1661 /**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663 * @handle: actually kill/wait or just clean up the OOM state
1664 *
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
1667 *
1668 * Memcg supports userspace OOM handling where failed allocations must
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673 * the end of the page fault to complete the OOM handling.
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
1676 * completed, %false otherwise.
1677 */
1678 bool mem_cgroup_oom_synchronize(bool handle)
1679 {
1680 struct mem_cgroup *memcg = current->memcg_in_oom;
1681 struct oom_wait_info owait;
1682 bool locked;
1683
1684 /* OOM is global, do not handle */
1685 if (!memcg)
1686 return false;
1687
1688 if (!handle || oom_killer_disabled)
1689 goto cleanup;
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696
1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
1710 } else {
1711 schedule();
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
1725 cleanup:
1726 current->memcg_in_oom = NULL;
1727 css_put(&memcg->css);
1728 return true;
1729 }
1730
1731 /**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
1734 *
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
1738 *
1739 * memcg = mem_cgroup_begin_page_stat(page);
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
1742 * mem_cgroup_end_page_stat(memcg);
1743 */
1744 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 {
1746 struct mem_cgroup *memcg;
1747 unsigned long flags;
1748
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
1765 again:
1766 memcg = page->mem_cgroup;
1767 if (unlikely(!memcg))
1768 return NULL;
1769
1770 if (atomic_read(&memcg->moving_account) <= 0)
1771 return memcg;
1772
1773 spin_lock_irqsave(&memcg->move_lock, flags);
1774 if (memcg != page->mem_cgroup) {
1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 goto again;
1777 }
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
1786
1787 return memcg;
1788 }
1789 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790
1791 /**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
1794 */
1795 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796 {
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
1805
1806 rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809
1810 /*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
1814 #define CHARGE_BATCH 32U
1815 struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
1817 unsigned int nr_pages;
1818 struct work_struct work;
1819 unsigned long flags;
1820 #define FLUSHING_CACHED_CHARGE 0
1821 };
1822 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823 static DEFINE_MUTEX(percpu_charge_mutex);
1824
1825 /**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
1835 */
1836 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 bool ret = false;
1840
1841 if (nr_pages > CHARGE_BATCH)
1842 return ret;
1843
1844 stock = &get_cpu_var(memcg_stock);
1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846 stock->nr_pages -= nr_pages;
1847 ret = true;
1848 }
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns stocks cached in percpu and reset cached information.
1855 */
1856 static void drain_stock(struct memcg_stock_pcp *stock)
1857 {
1858 struct mem_cgroup *old = stock->cached;
1859
1860 if (stock->nr_pages) {
1861 page_counter_uncharge(&old->memory, stock->nr_pages);
1862 if (do_memsw_account())
1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
1864 css_put_many(&old->css, stock->nr_pages);
1865 stock->nr_pages = 0;
1866 }
1867 stock->cached = NULL;
1868 }
1869
1870 /*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874 static void drain_local_stock(struct work_struct *dummy)
1875 {
1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877 drain_stock(stock);
1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 }
1880
1881 /*
1882 * Cache charges(val) to local per_cpu area.
1883 * This will be consumed by consume_stock() function, later.
1884 */
1885 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 {
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
1889 if (stock->cached != memcg) { /* reset if necessary */
1890 drain_stock(stock);
1891 stock->cached = memcg;
1892 }
1893 stock->nr_pages += nr_pages;
1894 put_cpu_var(memcg_stock);
1895 }
1896
1897 /*
1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899 * of the hierarchy under it.
1900 */
1901 static void drain_all_stock(struct mem_cgroup *root_memcg)
1902 {
1903 int cpu, curcpu;
1904
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
1908 /* Notify other cpus that system-wide "drain" is running */
1909 get_online_cpus();
1910 curcpu = get_cpu();
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913 struct mem_cgroup *memcg;
1914
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
1917 continue;
1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919 continue;
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
1926 }
1927 put_cpu();
1928 put_online_cpus();
1929 mutex_unlock(&percpu_charge_mutex);
1930 }
1931
1932 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 unsigned long action,
1934 void *hcpu)
1935 {
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
1939 if (action == CPU_ONLINE)
1940 return NOTIFY_OK;
1941
1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943 return NOTIFY_OK;
1944
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948 }
1949
1950 static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953 {
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960 }
1961
1962 static void high_work_func(struct work_struct *work)
1963 {
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968 }
1969
1970 /*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974 void mem_cgroup_handle_over_high(void)
1975 {
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977 struct mem_cgroup *memcg;
1978
1979 if (likely(!nr_pages))
1980 return;
1981
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986 }
1987
1988 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
1990 {
1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993 struct mem_cgroup *mem_over_limit;
1994 struct page_counter *counter;
1995 unsigned long nr_reclaimed;
1996 bool may_swap = true;
1997 bool drained = false;
1998
1999 if (mem_cgroup_is_root(memcg))
2000 return 0;
2001 retry:
2002 if (consume_stock(memcg, nr_pages))
2003 return 0;
2004
2005 if (!do_memsw_account() ||
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008 goto done_restock;
2009 if (do_memsw_account())
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012 } else {
2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014 may_swap = false;
2015 }
2016
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
2021
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
2031 goto force;
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
2036 if (!gfpflags_allow_blocking(gfp_mask))
2037 goto nomem;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
2043
2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045 goto retry;
2046
2047 if (!drained) {
2048 drain_all_stock(mem_over_limit);
2049 drained = true;
2050 goto retry;
2051 }
2052
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
2073 if (nr_retries--)
2074 goto retry;
2075
2076 if (gfp_mask & __GFP_NOFAIL)
2077 goto force;
2078
2079 if (fatal_signal_pending(current))
2080 goto force;
2081
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
2086 nomem:
2087 if (!(gfp_mask & __GFP_NOFAIL))
2088 return -ENOMEM;
2089 force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
2096 if (do_memsw_account())
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
2101
2102 done_restock:
2103 css_get_many(&memcg->css, batch);
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
2106
2107 /*
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
2115 */
2116 do {
2117 if (page_counter_read(&memcg->memory) > memcg->high) {
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
2123 current->memcg_nr_pages_over_high += batch;
2124 set_notify_resume(current);
2125 break;
2126 }
2127 } while ((memcg = parent_mem_cgroup(memcg)));
2128
2129 return 0;
2130 }
2131
2132 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
2137 page_counter_uncharge(&memcg->memory, nr_pages);
2138 if (do_memsw_account())
2139 page_counter_uncharge(&memcg->memsw, nr_pages);
2140
2141 css_put_many(&memcg->css, nr_pages);
2142 }
2143
2144 static void lock_page_lru(struct page *page, int *isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158 }
2159
2160 static void unlock_page_lru(struct page *page, int isolated)
2161 {
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173 }
2174
2175 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176 bool lrucare)
2177 {
2178 int isolated;
2179
2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
2188
2189 /*
2190 * Nobody should be changing or seriously looking at
2191 * page->mem_cgroup at this point:
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
2203 page->mem_cgroup = memcg;
2204
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
2207 }
2208
2209 #ifndef CONFIG_SLOB
2210 static int memcg_alloc_cache_id(void)
2211 {
2212 int id, size;
2213 int err;
2214
2215 id = ida_simple_get(&memcg_cache_ida,
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
2219
2220 if (id < memcg_nr_cache_ids)
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
2227 down_write(&memcg_cache_ids_sem);
2228
2229 size = 2 * (id + 1);
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
2235 err = memcg_update_all_caches(size);
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
2243 if (err) {
2244 ida_simple_remove(&memcg_cache_ida, id);
2245 return err;
2246 }
2247 return id;
2248 }
2249
2250 static void memcg_free_cache_id(int id)
2251 {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 }
2254
2255 struct memcg_kmem_cache_create_work {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259 };
2260
2261 static void memcg_kmem_cache_create_func(struct work_struct *w)
2262 {
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
2267
2268 memcg_create_kmem_cache(memcg, cachep);
2269
2270 css_put(&memcg->css);
2271 kfree(cw);
2272 }
2273
2274 /*
2275 * Enqueue the creation of a per-memcg kmem_cache.
2276 */
2277 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
2279 {
2280 struct memcg_kmem_cache_create_work *cw;
2281
2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283 if (!cw)
2284 return;
2285
2286 css_get(&memcg->css);
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291
2292 schedule_work(&cw->work);
2293 }
2294
2295 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
2297 {
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
2301 * in __memcg_schedule_kmem_cache_create will recurse.
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
2309 current->memcg_kmem_skip_account = 1;
2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
2311 current->memcg_kmem_skip_account = 0;
2312 }
2313
2314 /*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
2327 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 {
2329 struct mem_cgroup *memcg;
2330 struct kmem_cache *memcg_cachep;
2331 int kmemcg_id;
2332
2333 VM_BUG_ON(!is_root_cache(cachep));
2334
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
2341 if (current->memcg_kmem_skip_account)
2342 return cachep;
2343
2344 memcg = get_mem_cgroup_from_mm(current->mm);
2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346 if (kmemcg_id < 0)
2347 goto out;
2348
2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
2364 */
2365 memcg_schedule_kmem_cache_create(memcg, cachep);
2366 out:
2367 css_put(&memcg->css);
2368 return cachep;
2369 }
2370
2371 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372 {
2373 if (!is_root_cache(cachep))
2374 css_put(&cachep->memcg_params.memcg->css);
2375 }
2376
2377 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
2379 {
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
2382 int ret;
2383
2384 if (!memcg_kmem_online(memcg))
2385 return 0;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret)
2389 return ret;
2390
2391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2392 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2393 cancel_charge(memcg, nr_pages);
2394 return -ENOMEM;
2395 }
2396
2397 page->mem_cgroup = memcg;
2398
2399 return 0;
2400 }
2401
2402 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403 {
2404 struct mem_cgroup *memcg;
2405 int ret;
2406
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409 css_put(&memcg->css);
2410 return ret;
2411 }
2412
2413 void __memcg_kmem_uncharge(struct page *page, int order)
2414 {
2415 struct mem_cgroup *memcg = page->mem_cgroup;
2416 unsigned int nr_pages = 1 << order;
2417
2418 if (!memcg)
2419 return;
2420
2421 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422
2423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425
2426 page_counter_uncharge(&memcg->memory, nr_pages);
2427 if (do_memsw_account())
2428 page_counter_uncharge(&memcg->memsw, nr_pages);
2429
2430 page->mem_cgroup = NULL;
2431 css_put_many(&memcg->css, nr_pages);
2432 }
2433 #endif /* !CONFIG_SLOB */
2434
2435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2436
2437 /*
2438 * Because tail pages are not marked as "used", set it. We're under
2439 * zone->lru_lock and migration entries setup in all page mappings.
2440 */
2441 void mem_cgroup_split_huge_fixup(struct page *head)
2442 {
2443 int i;
2444
2445 if (mem_cgroup_disabled())
2446 return;
2447
2448 for (i = 1; i < HPAGE_PMD_NR; i++)
2449 head[i].mem_cgroup = head->mem_cgroup;
2450
2451 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452 HPAGE_PMD_NR);
2453 }
2454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455
2456 #ifdef CONFIG_MEMCG_SWAP
2457 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2458 bool charge)
2459 {
2460 int val = (charge) ? 1 : -1;
2461 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2462 }
2463
2464 /**
2465 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2466 * @entry: swap entry to be moved
2467 * @from: mem_cgroup which the entry is moved from
2468 * @to: mem_cgroup which the entry is moved to
2469 *
2470 * It succeeds only when the swap_cgroup's record for this entry is the same
2471 * as the mem_cgroup's id of @from.
2472 *
2473 * Returns 0 on success, -EINVAL on failure.
2474 *
2475 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 * both res and memsw, and called css_get().
2477 */
2478 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479 struct mem_cgroup *from, struct mem_cgroup *to)
2480 {
2481 unsigned short old_id, new_id;
2482
2483 old_id = mem_cgroup_id(from);
2484 new_id = mem_cgroup_id(to);
2485
2486 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2487 mem_cgroup_swap_statistics(from, false);
2488 mem_cgroup_swap_statistics(to, true);
2489 return 0;
2490 }
2491 return -EINVAL;
2492 }
2493 #else
2494 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495 struct mem_cgroup *from, struct mem_cgroup *to)
2496 {
2497 return -EINVAL;
2498 }
2499 #endif
2500
2501 static DEFINE_MUTEX(memcg_limit_mutex);
2502
2503 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504 unsigned long limit)
2505 {
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
2509 int retry_count;
2510 int ret;
2511
2512 /*
2513 * For keeping hierarchical_reclaim simple, how long we should retry
2514 * is depends on callers. We set our retry-count to be function
2515 * of # of children which we should visit in this loop.
2516 */
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
2519
2520 oldusage = page_counter_read(&memcg->memory);
2521
2522 do {
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit > memcg->memsw.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
2531 ret = -EINVAL;
2532 break;
2533 }
2534 if (limit > memcg->memory.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memory, limit);
2537 mutex_unlock(&memcg_limit_mutex);
2538
2539 if (!ret)
2540 break;
2541
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2543
2544 curusage = page_counter_read(&memcg->memory);
2545 /* Usage is reduced ? */
2546 if (curusage >= oldusage)
2547 retry_count--;
2548 else
2549 oldusage = curusage;
2550 } while (retry_count);
2551
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
2554
2555 return ret;
2556 }
2557
2558 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559 unsigned long limit)
2560 {
2561 unsigned long curusage;
2562 unsigned long oldusage;
2563 bool enlarge = false;
2564 int retry_count;
2565 int ret;
2566
2567 /* see mem_cgroup_resize_res_limit */
2568 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2569 mem_cgroup_count_children(memcg);
2570
2571 oldusage = page_counter_read(&memcg->memsw);
2572
2573 do {
2574 if (signal_pending(current)) {
2575 ret = -EINTR;
2576 break;
2577 }
2578
2579 mutex_lock(&memcg_limit_mutex);
2580 if (limit < memcg->memory.limit) {
2581 mutex_unlock(&memcg_limit_mutex);
2582 ret = -EINVAL;
2583 break;
2584 }
2585 if (limit > memcg->memsw.limit)
2586 enlarge = true;
2587 ret = page_counter_limit(&memcg->memsw, limit);
2588 mutex_unlock(&memcg_limit_mutex);
2589
2590 if (!ret)
2591 break;
2592
2593 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2594
2595 curusage = page_counter_read(&memcg->memsw);
2596 /* Usage is reduced ? */
2597 if (curusage >= oldusage)
2598 retry_count--;
2599 else
2600 oldusage = curusage;
2601 } while (retry_count);
2602
2603 if (!ret && enlarge)
2604 memcg_oom_recover(memcg);
2605
2606 return ret;
2607 }
2608
2609 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2610 gfp_t gfp_mask,
2611 unsigned long *total_scanned)
2612 {
2613 unsigned long nr_reclaimed = 0;
2614 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2615 unsigned long reclaimed;
2616 int loop = 0;
2617 struct mem_cgroup_tree_per_zone *mctz;
2618 unsigned long excess;
2619 unsigned long nr_scanned;
2620
2621 if (order > 0)
2622 return 0;
2623
2624 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2625 /*
2626 * This loop can run a while, specially if mem_cgroup's continuously
2627 * keep exceeding their soft limit and putting the system under
2628 * pressure
2629 */
2630 do {
2631 if (next_mz)
2632 mz = next_mz;
2633 else
2634 mz = mem_cgroup_largest_soft_limit_node(mctz);
2635 if (!mz)
2636 break;
2637
2638 nr_scanned = 0;
2639 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2640 gfp_mask, &nr_scanned);
2641 nr_reclaimed += reclaimed;
2642 *total_scanned += nr_scanned;
2643 spin_lock_irq(&mctz->lock);
2644 __mem_cgroup_remove_exceeded(mz, mctz);
2645
2646 /*
2647 * If we failed to reclaim anything from this memory cgroup
2648 * it is time to move on to the next cgroup
2649 */
2650 next_mz = NULL;
2651 if (!reclaimed)
2652 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2653
2654 excess = soft_limit_excess(mz->memcg);
2655 /*
2656 * One school of thought says that we should not add
2657 * back the node to the tree if reclaim returns 0.
2658 * But our reclaim could return 0, simply because due
2659 * to priority we are exposing a smaller subset of
2660 * memory to reclaim from. Consider this as a longer
2661 * term TODO.
2662 */
2663 /* If excess == 0, no tree ops */
2664 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2665 spin_unlock_irq(&mctz->lock);
2666 css_put(&mz->memcg->css);
2667 loop++;
2668 /*
2669 * Could not reclaim anything and there are no more
2670 * mem cgroups to try or we seem to be looping without
2671 * reclaiming anything.
2672 */
2673 if (!nr_reclaimed &&
2674 (next_mz == NULL ||
2675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2676 break;
2677 } while (!nr_reclaimed);
2678 if (next_mz)
2679 css_put(&next_mz->memcg->css);
2680 return nr_reclaimed;
2681 }
2682
2683 /*
2684 * Test whether @memcg has children, dead or alive. Note that this
2685 * function doesn't care whether @memcg has use_hierarchy enabled and
2686 * returns %true if there are child csses according to the cgroup
2687 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2688 */
2689 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2690 {
2691 bool ret;
2692
2693 /*
2694 * The lock does not prevent addition or deletion of children, but
2695 * it prevents a new child from being initialized based on this
2696 * parent in css_online(), so it's enough to decide whether
2697 * hierarchically inherited attributes can still be changed or not.
2698 */
2699 lockdep_assert_held(&memcg_create_mutex);
2700
2701 rcu_read_lock();
2702 ret = css_next_child(NULL, &memcg->css);
2703 rcu_read_unlock();
2704 return ret;
2705 }
2706
2707 /*
2708 * Reclaims as many pages from the given memcg as possible and moves
2709 * the rest to the parent.
2710 *
2711 * Caller is responsible for holding css reference for memcg.
2712 */
2713 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2714 {
2715 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2716
2717 /* we call try-to-free pages for make this cgroup empty */
2718 lru_add_drain_all();
2719 /* try to free all pages in this cgroup */
2720 while (nr_retries && page_counter_read(&memcg->memory)) {
2721 int progress;
2722
2723 if (signal_pending(current))
2724 return -EINTR;
2725
2726 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2727 GFP_KERNEL, true);
2728 if (!progress) {
2729 nr_retries--;
2730 /* maybe some writeback is necessary */
2731 congestion_wait(BLK_RW_ASYNC, HZ/10);
2732 }
2733
2734 }
2735
2736 return 0;
2737 }
2738
2739 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2740 char *buf, size_t nbytes,
2741 loff_t off)
2742 {
2743 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744
2745 if (mem_cgroup_is_root(memcg))
2746 return -EINVAL;
2747 return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 }
2749
2750 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2751 struct cftype *cft)
2752 {
2753 return mem_cgroup_from_css(css)->use_hierarchy;
2754 }
2755
2756 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2757 struct cftype *cft, u64 val)
2758 {
2759 int retval = 0;
2760 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2761 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762
2763 mutex_lock(&memcg_create_mutex);
2764
2765 if (memcg->use_hierarchy == val)
2766 goto out;
2767
2768 /*
2769 * If parent's use_hierarchy is set, we can't make any modifications
2770 * in the child subtrees. If it is unset, then the change can
2771 * occur, provided the current cgroup has no children.
2772 *
2773 * For the root cgroup, parent_mem is NULL, we allow value to be
2774 * set if there are no children.
2775 */
2776 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777 (val == 1 || val == 0)) {
2778 if (!memcg_has_children(memcg))
2779 memcg->use_hierarchy = val;
2780 else
2781 retval = -EBUSY;
2782 } else
2783 retval = -EINVAL;
2784
2785 out:
2786 mutex_unlock(&memcg_create_mutex);
2787
2788 return retval;
2789 }
2790
2791 static unsigned long tree_stat(struct mem_cgroup *memcg,
2792 enum mem_cgroup_stat_index idx)
2793 {
2794 struct mem_cgroup *iter;
2795 unsigned long val = 0;
2796
2797 for_each_mem_cgroup_tree(iter, memcg)
2798 val += mem_cgroup_read_stat(iter, idx);
2799
2800 return val;
2801 }
2802
2803 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804 {
2805 unsigned long val;
2806
2807 if (mem_cgroup_is_root(memcg)) {
2808 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2809 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2810 if (swap)
2811 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2812 } else {
2813 if (!swap)
2814 val = page_counter_read(&memcg->memory);
2815 else
2816 val = page_counter_read(&memcg->memsw);
2817 }
2818 return val;
2819 }
2820
2821 enum {
2822 RES_USAGE,
2823 RES_LIMIT,
2824 RES_MAX_USAGE,
2825 RES_FAILCNT,
2826 RES_SOFT_LIMIT,
2827 };
2828
2829 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830 struct cftype *cft)
2831 {
2832 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833 struct page_counter *counter;
2834
2835 switch (MEMFILE_TYPE(cft->private)) {
2836 case _MEM:
2837 counter = &memcg->memory;
2838 break;
2839 case _MEMSWAP:
2840 counter = &memcg->memsw;
2841 break;
2842 case _KMEM:
2843 counter = &memcg->kmem;
2844 break;
2845 case _TCP:
2846 counter = &memcg->tcp_mem.memory_allocated;
2847 break;
2848 default:
2849 BUG();
2850 }
2851
2852 switch (MEMFILE_ATTR(cft->private)) {
2853 case RES_USAGE:
2854 if (counter == &memcg->memory)
2855 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2856 if (counter == &memcg->memsw)
2857 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2858 return (u64)page_counter_read(counter) * PAGE_SIZE;
2859 case RES_LIMIT:
2860 return (u64)counter->limit * PAGE_SIZE;
2861 case RES_MAX_USAGE:
2862 return (u64)counter->watermark * PAGE_SIZE;
2863 case RES_FAILCNT:
2864 return counter->failcnt;
2865 case RES_SOFT_LIMIT:
2866 return (u64)memcg->soft_limit * PAGE_SIZE;
2867 default:
2868 BUG();
2869 }
2870 }
2871
2872 #ifndef CONFIG_SLOB
2873 static int memcg_online_kmem(struct mem_cgroup *memcg)
2874 {
2875 int err = 0;
2876 int memcg_id;
2877
2878 BUG_ON(memcg->kmemcg_id >= 0);
2879 BUG_ON(memcg->kmem_state);
2880
2881 /*
2882 * For simplicity, we won't allow this to be disabled. It also can't
2883 * be changed if the cgroup has children already, or if tasks had
2884 * already joined.
2885 *
2886 * If tasks join before we set the limit, a person looking at
2887 * kmem.usage_in_bytes will have no way to determine when it took
2888 * place, which makes the value quite meaningless.
2889 *
2890 * After it first became limited, changes in the value of the limit are
2891 * of course permitted.
2892 */
2893 mutex_lock(&memcg_create_mutex);
2894 if (cgroup_is_populated(memcg->css.cgroup) ||
2895 (memcg->use_hierarchy && memcg_has_children(memcg)))
2896 err = -EBUSY;
2897 mutex_unlock(&memcg_create_mutex);
2898 if (err)
2899 goto out;
2900
2901 memcg_id = memcg_alloc_cache_id();
2902 if (memcg_id < 0) {
2903 err = memcg_id;
2904 goto out;
2905 }
2906
2907 static_branch_inc(&memcg_kmem_enabled_key);
2908 /*
2909 * A memory cgroup is considered kmem-online as soon as it gets
2910 * kmemcg_id. Setting the id after enabling static branching will
2911 * guarantee no one starts accounting before all call sites are
2912 * patched.
2913 */
2914 memcg->kmemcg_id = memcg_id;
2915 memcg->kmem_state = KMEM_ONLINE;
2916 out:
2917 return err;
2918 }
2919
2920 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2921 {
2922 int ret = 0;
2923 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2924
2925 if (!parent)
2926 return 0;
2927
2928 mutex_lock(&memcg_limit_mutex);
2929 /*
2930 * If the parent cgroup is not kmem-online now, it cannot be
2931 * onlined after this point, because it has at least one child
2932 * already.
2933 */
2934 if (memcg_kmem_online(parent) ||
2935 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2936 ret = memcg_online_kmem(memcg);
2937 mutex_unlock(&memcg_limit_mutex);
2938 return ret;
2939 }
2940
2941 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2942 {
2943 struct cgroup_subsys_state *css;
2944 struct mem_cgroup *parent, *child;
2945 int kmemcg_id;
2946
2947 if (memcg->kmem_state != KMEM_ONLINE)
2948 return;
2949 /*
2950 * Clear the online state before clearing memcg_caches array
2951 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2952 * guarantees that no cache will be created for this cgroup
2953 * after we are done (see memcg_create_kmem_cache()).
2954 */
2955 memcg->kmem_state = KMEM_ALLOCATED;
2956
2957 memcg_deactivate_kmem_caches(memcg);
2958
2959 kmemcg_id = memcg->kmemcg_id;
2960 BUG_ON(kmemcg_id < 0);
2961
2962 parent = parent_mem_cgroup(memcg);
2963 if (!parent)
2964 parent = root_mem_cgroup;
2965
2966 /*
2967 * Change kmemcg_id of this cgroup and all its descendants to the
2968 * parent's id, and then move all entries from this cgroup's list_lrus
2969 * to ones of the parent. After we have finished, all list_lrus
2970 * corresponding to this cgroup are guaranteed to remain empty. The
2971 * ordering is imposed by list_lru_node->lock taken by
2972 * memcg_drain_all_list_lrus().
2973 */
2974 css_for_each_descendant_pre(css, &memcg->css) {
2975 child = mem_cgroup_from_css(css);
2976 BUG_ON(child->kmemcg_id != kmemcg_id);
2977 child->kmemcg_id = parent->kmemcg_id;
2978 if (!memcg->use_hierarchy)
2979 break;
2980 }
2981 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2982
2983 memcg_free_cache_id(kmemcg_id);
2984 }
2985
2986 static void memcg_free_kmem(struct mem_cgroup *memcg)
2987 {
2988 if (memcg->kmem_state == KMEM_ALLOCATED) {
2989 memcg_destroy_kmem_caches(memcg);
2990 static_branch_dec(&memcg_kmem_enabled_key);
2991 WARN_ON(page_counter_read(&memcg->kmem));
2992 }
2993 }
2994 #else
2995 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2996 {
2997 return 0;
2998 }
2999 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3000 {
3001 }
3002 static void memcg_free_kmem(struct mem_cgroup *memcg)
3003 {
3004 }
3005 #endif /* !CONFIG_SLOB */
3006
3007 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3008 unsigned long limit)
3009 {
3010 int ret;
3011
3012 mutex_lock(&memcg_limit_mutex);
3013 /* Top-level cgroup doesn't propagate from root */
3014 if (!memcg_kmem_online(memcg)) {
3015 ret = memcg_online_kmem(memcg);
3016 if (ret)
3017 goto out;
3018 }
3019 ret = page_counter_limit(&memcg->kmem, limit);
3020 out:
3021 mutex_unlock(&memcg_limit_mutex);
3022 return ret;
3023 }
3024
3025 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
3026 {
3027 int ret;
3028
3029 mutex_lock(&memcg_limit_mutex);
3030
3031 ret = page_counter_limit(&memcg->tcp_mem.memory_allocated, limit);
3032 if (ret)
3033 goto out;
3034
3035 if (!memcg->tcp_mem.active) {
3036 /*
3037 * The active flag needs to be written after the static_key
3038 * update. This is what guarantees that the socket activation
3039 * function is the last one to run. See sock_update_memcg() for
3040 * details, and note that we don't mark any socket as belonging
3041 * to this memcg until that flag is up.
3042 *
3043 * We need to do this, because static_keys will span multiple
3044 * sites, but we can't control their order. If we mark a socket
3045 * as accounted, but the accounting functions are not patched in
3046 * yet, we'll lose accounting.
3047 *
3048 * We never race with the readers in sock_update_memcg(),
3049 * because when this value change, the code to process it is not
3050 * patched in yet.
3051 */
3052 static_branch_inc(&memcg_sockets_enabled_key);
3053 memcg->tcp_mem.active = true;
3054 }
3055 out:
3056 mutex_unlock(&memcg_limit_mutex);
3057 return ret;
3058 }
3059
3060 /*
3061 * The user of this function is...
3062 * RES_LIMIT.
3063 */
3064 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3065 char *buf, size_t nbytes, loff_t off)
3066 {
3067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3068 unsigned long nr_pages;
3069 int ret;
3070
3071 buf = strstrip(buf);
3072 ret = page_counter_memparse(buf, "-1", &nr_pages);
3073 if (ret)
3074 return ret;
3075
3076 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3077 case RES_LIMIT:
3078 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3079 ret = -EINVAL;
3080 break;
3081 }
3082 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3083 case _MEM:
3084 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3085 break;
3086 case _MEMSWAP:
3087 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3088 break;
3089 case _KMEM:
3090 ret = memcg_update_kmem_limit(memcg, nr_pages);
3091 break;
3092 case _TCP:
3093 ret = memcg_update_tcp_limit(memcg, nr_pages);
3094 break;
3095 }
3096 break;
3097 case RES_SOFT_LIMIT:
3098 memcg->soft_limit = nr_pages;
3099 ret = 0;
3100 break;
3101 }
3102 return ret ?: nbytes;
3103 }
3104
3105 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3106 size_t nbytes, loff_t off)
3107 {
3108 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3109 struct page_counter *counter;
3110
3111 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3112 case _MEM:
3113 counter = &memcg->memory;
3114 break;
3115 case _MEMSWAP:
3116 counter = &memcg->memsw;
3117 break;
3118 case _KMEM:
3119 counter = &memcg->kmem;
3120 break;
3121 case _TCP:
3122 counter = &memcg->tcp_mem.memory_allocated;
3123 break;
3124 default:
3125 BUG();
3126 }
3127
3128 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3129 case RES_MAX_USAGE:
3130 page_counter_reset_watermark(counter);
3131 break;
3132 case RES_FAILCNT:
3133 counter->failcnt = 0;
3134 break;
3135 default:
3136 BUG();
3137 }
3138
3139 return nbytes;
3140 }
3141
3142 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3143 struct cftype *cft)
3144 {
3145 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3146 }
3147
3148 #ifdef CONFIG_MMU
3149 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3150 struct cftype *cft, u64 val)
3151 {
3152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3153
3154 if (val & ~MOVE_MASK)
3155 return -EINVAL;
3156
3157 /*
3158 * No kind of locking is needed in here, because ->can_attach() will
3159 * check this value once in the beginning of the process, and then carry
3160 * on with stale data. This means that changes to this value will only
3161 * affect task migrations starting after the change.
3162 */
3163 memcg->move_charge_at_immigrate = val;
3164 return 0;
3165 }
3166 #else
3167 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3168 struct cftype *cft, u64 val)
3169 {
3170 return -ENOSYS;
3171 }
3172 #endif
3173
3174 #ifdef CONFIG_NUMA
3175 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3176 {
3177 struct numa_stat {
3178 const char *name;
3179 unsigned int lru_mask;
3180 };
3181
3182 static const struct numa_stat stats[] = {
3183 { "total", LRU_ALL },
3184 { "file", LRU_ALL_FILE },
3185 { "anon", LRU_ALL_ANON },
3186 { "unevictable", BIT(LRU_UNEVICTABLE) },
3187 };
3188 const struct numa_stat *stat;
3189 int nid;
3190 unsigned long nr;
3191 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3192
3193 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3194 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3195 seq_printf(m, "%s=%lu", stat->name, nr);
3196 for_each_node_state(nid, N_MEMORY) {
3197 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3198 stat->lru_mask);
3199 seq_printf(m, " N%d=%lu", nid, nr);
3200 }
3201 seq_putc(m, '\n');
3202 }
3203
3204 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3205 struct mem_cgroup *iter;
3206
3207 nr = 0;
3208 for_each_mem_cgroup_tree(iter, memcg)
3209 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3210 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3211 for_each_node_state(nid, N_MEMORY) {
3212 nr = 0;
3213 for_each_mem_cgroup_tree(iter, memcg)
3214 nr += mem_cgroup_node_nr_lru_pages(
3215 iter, nid, stat->lru_mask);
3216 seq_printf(m, " N%d=%lu", nid, nr);
3217 }
3218 seq_putc(m, '\n');
3219 }
3220
3221 return 0;
3222 }
3223 #endif /* CONFIG_NUMA */
3224
3225 static int memcg_stat_show(struct seq_file *m, void *v)
3226 {
3227 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3228 unsigned long memory, memsw;
3229 struct mem_cgroup *mi;
3230 unsigned int i;
3231
3232 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3233 MEM_CGROUP_STAT_NSTATS);
3234 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3235 MEM_CGROUP_EVENTS_NSTATS);
3236 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3237
3238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3240 continue;
3241 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3242 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3243 }
3244
3245 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3246 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3247 mem_cgroup_read_events(memcg, i));
3248
3249 for (i = 0; i < NR_LRU_LISTS; i++)
3250 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3251 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3252
3253 /* Hierarchical information */
3254 memory = memsw = PAGE_COUNTER_MAX;
3255 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3256 memory = min(memory, mi->memory.limit);
3257 memsw = min(memsw, mi->memsw.limit);
3258 }
3259 seq_printf(m, "hierarchical_memory_limit %llu\n",
3260 (u64)memory * PAGE_SIZE);
3261 if (do_memsw_account())
3262 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3263 (u64)memsw * PAGE_SIZE);
3264
3265 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3266 unsigned long long val = 0;
3267
3268 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3269 continue;
3270 for_each_mem_cgroup_tree(mi, memcg)
3271 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3272 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3273 }
3274
3275 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3276 unsigned long long val = 0;
3277
3278 for_each_mem_cgroup_tree(mi, memcg)
3279 val += mem_cgroup_read_events(mi, i);
3280 seq_printf(m, "total_%s %llu\n",
3281 mem_cgroup_events_names[i], val);
3282 }
3283
3284 for (i = 0; i < NR_LRU_LISTS; i++) {
3285 unsigned long long val = 0;
3286
3287 for_each_mem_cgroup_tree(mi, memcg)
3288 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3289 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3290 }
3291
3292 #ifdef CONFIG_DEBUG_VM
3293 {
3294 int nid, zid;
3295 struct mem_cgroup_per_zone *mz;
3296 struct zone_reclaim_stat *rstat;
3297 unsigned long recent_rotated[2] = {0, 0};
3298 unsigned long recent_scanned[2] = {0, 0};
3299
3300 for_each_online_node(nid)
3301 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3302 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3303 rstat = &mz->lruvec.reclaim_stat;
3304
3305 recent_rotated[0] += rstat->recent_rotated[0];
3306 recent_rotated[1] += rstat->recent_rotated[1];
3307 recent_scanned[0] += rstat->recent_scanned[0];
3308 recent_scanned[1] += rstat->recent_scanned[1];
3309 }
3310 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3311 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3312 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3313 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3314 }
3315 #endif
3316
3317 return 0;
3318 }
3319
3320 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3321 struct cftype *cft)
3322 {
3323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3324
3325 return mem_cgroup_swappiness(memcg);
3326 }
3327
3328 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3329 struct cftype *cft, u64 val)
3330 {
3331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3332
3333 if (val > 100)
3334 return -EINVAL;
3335
3336 if (css->parent)
3337 memcg->swappiness = val;
3338 else
3339 vm_swappiness = val;
3340
3341 return 0;
3342 }
3343
3344 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3345 {
3346 struct mem_cgroup_threshold_ary *t;
3347 unsigned long usage;
3348 int i;
3349
3350 rcu_read_lock();
3351 if (!swap)
3352 t = rcu_dereference(memcg->thresholds.primary);
3353 else
3354 t = rcu_dereference(memcg->memsw_thresholds.primary);
3355
3356 if (!t)
3357 goto unlock;
3358
3359 usage = mem_cgroup_usage(memcg, swap);
3360
3361 /*
3362 * current_threshold points to threshold just below or equal to usage.
3363 * If it's not true, a threshold was crossed after last
3364 * call of __mem_cgroup_threshold().
3365 */
3366 i = t->current_threshold;
3367
3368 /*
3369 * Iterate backward over array of thresholds starting from
3370 * current_threshold and check if a threshold is crossed.
3371 * If none of thresholds below usage is crossed, we read
3372 * only one element of the array here.
3373 */
3374 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3375 eventfd_signal(t->entries[i].eventfd, 1);
3376
3377 /* i = current_threshold + 1 */
3378 i++;
3379
3380 /*
3381 * Iterate forward over array of thresholds starting from
3382 * current_threshold+1 and check if a threshold is crossed.
3383 * If none of thresholds above usage is crossed, we read
3384 * only one element of the array here.
3385 */
3386 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3387 eventfd_signal(t->entries[i].eventfd, 1);
3388
3389 /* Update current_threshold */
3390 t->current_threshold = i - 1;
3391 unlock:
3392 rcu_read_unlock();
3393 }
3394
3395 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3396 {
3397 while (memcg) {
3398 __mem_cgroup_threshold(memcg, false);
3399 if (do_memsw_account())
3400 __mem_cgroup_threshold(memcg, true);
3401
3402 memcg = parent_mem_cgroup(memcg);
3403 }
3404 }
3405
3406 static int compare_thresholds(const void *a, const void *b)
3407 {
3408 const struct mem_cgroup_threshold *_a = a;
3409 const struct mem_cgroup_threshold *_b = b;
3410
3411 if (_a->threshold > _b->threshold)
3412 return 1;
3413
3414 if (_a->threshold < _b->threshold)
3415 return -1;
3416
3417 return 0;
3418 }
3419
3420 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3421 {
3422 struct mem_cgroup_eventfd_list *ev;
3423
3424 spin_lock(&memcg_oom_lock);
3425
3426 list_for_each_entry(ev, &memcg->oom_notify, list)
3427 eventfd_signal(ev->eventfd, 1);
3428
3429 spin_unlock(&memcg_oom_lock);
3430 return 0;
3431 }
3432
3433 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3434 {
3435 struct mem_cgroup *iter;
3436
3437 for_each_mem_cgroup_tree(iter, memcg)
3438 mem_cgroup_oom_notify_cb(iter);
3439 }
3440
3441 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3442 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3443 {
3444 struct mem_cgroup_thresholds *thresholds;
3445 struct mem_cgroup_threshold_ary *new;
3446 unsigned long threshold;
3447 unsigned long usage;
3448 int i, size, ret;
3449
3450 ret = page_counter_memparse(args, "-1", &threshold);
3451 if (ret)
3452 return ret;
3453
3454 mutex_lock(&memcg->thresholds_lock);
3455
3456 if (type == _MEM) {
3457 thresholds = &memcg->thresholds;
3458 usage = mem_cgroup_usage(memcg, false);
3459 } else if (type == _MEMSWAP) {
3460 thresholds = &memcg->memsw_thresholds;
3461 usage = mem_cgroup_usage(memcg, true);
3462 } else
3463 BUG();
3464
3465 /* Check if a threshold crossed before adding a new one */
3466 if (thresholds->primary)
3467 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3468
3469 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3470
3471 /* Allocate memory for new array of thresholds */
3472 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3473 GFP_KERNEL);
3474 if (!new) {
3475 ret = -ENOMEM;
3476 goto unlock;
3477 }
3478 new->size = size;
3479
3480 /* Copy thresholds (if any) to new array */
3481 if (thresholds->primary) {
3482 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3483 sizeof(struct mem_cgroup_threshold));
3484 }
3485
3486 /* Add new threshold */
3487 new->entries[size - 1].eventfd = eventfd;
3488 new->entries[size - 1].threshold = threshold;
3489
3490 /* Sort thresholds. Registering of new threshold isn't time-critical */
3491 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3492 compare_thresholds, NULL);
3493
3494 /* Find current threshold */
3495 new->current_threshold = -1;
3496 for (i = 0; i < size; i++) {
3497 if (new->entries[i].threshold <= usage) {
3498 /*
3499 * new->current_threshold will not be used until
3500 * rcu_assign_pointer(), so it's safe to increment
3501 * it here.
3502 */
3503 ++new->current_threshold;
3504 } else
3505 break;
3506 }
3507
3508 /* Free old spare buffer and save old primary buffer as spare */
3509 kfree(thresholds->spare);
3510 thresholds->spare = thresholds->primary;
3511
3512 rcu_assign_pointer(thresholds->primary, new);
3513
3514 /* To be sure that nobody uses thresholds */
3515 synchronize_rcu();
3516
3517 unlock:
3518 mutex_unlock(&memcg->thresholds_lock);
3519
3520 return ret;
3521 }
3522
3523 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd, const char *args)
3525 {
3526 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3527 }
3528
3529 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531 {
3532 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3533 }
3534
3535 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3536 struct eventfd_ctx *eventfd, enum res_type type)
3537 {
3538 struct mem_cgroup_thresholds *thresholds;
3539 struct mem_cgroup_threshold_ary *new;
3540 unsigned long usage;
3541 int i, j, size;
3542
3543 mutex_lock(&memcg->thresholds_lock);
3544
3545 if (type == _MEM) {
3546 thresholds = &memcg->thresholds;
3547 usage = mem_cgroup_usage(memcg, false);
3548 } else if (type == _MEMSWAP) {
3549 thresholds = &memcg->memsw_thresholds;
3550 usage = mem_cgroup_usage(memcg, true);
3551 } else
3552 BUG();
3553
3554 if (!thresholds->primary)
3555 goto unlock;
3556
3557 /* Check if a threshold crossed before removing */
3558 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3559
3560 /* Calculate new number of threshold */
3561 size = 0;
3562 for (i = 0; i < thresholds->primary->size; i++) {
3563 if (thresholds->primary->entries[i].eventfd != eventfd)
3564 size++;
3565 }
3566
3567 new = thresholds->spare;
3568
3569 /* Set thresholds array to NULL if we don't have thresholds */
3570 if (!size) {
3571 kfree(new);
3572 new = NULL;
3573 goto swap_buffers;
3574 }
3575
3576 new->size = size;
3577
3578 /* Copy thresholds and find current threshold */
3579 new->current_threshold = -1;
3580 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3581 if (thresholds->primary->entries[i].eventfd == eventfd)
3582 continue;
3583
3584 new->entries[j] = thresholds->primary->entries[i];
3585 if (new->entries[j].threshold <= usage) {
3586 /*
3587 * new->current_threshold will not be used
3588 * until rcu_assign_pointer(), so it's safe to increment
3589 * it here.
3590 */
3591 ++new->current_threshold;
3592 }
3593 j++;
3594 }
3595
3596 swap_buffers:
3597 /* Swap primary and spare array */
3598 thresholds->spare = thresholds->primary;
3599
3600 rcu_assign_pointer(thresholds->primary, new);
3601
3602 /* To be sure that nobody uses thresholds */
3603 synchronize_rcu();
3604
3605 /* If all events are unregistered, free the spare array */
3606 if (!new) {
3607 kfree(thresholds->spare);
3608 thresholds->spare = NULL;
3609 }
3610 unlock:
3611 mutex_unlock(&memcg->thresholds_lock);
3612 }
3613
3614 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3615 struct eventfd_ctx *eventfd)
3616 {
3617 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3618 }
3619
3620 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3621 struct eventfd_ctx *eventfd)
3622 {
3623 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3624 }
3625
3626 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3627 struct eventfd_ctx *eventfd, const char *args)
3628 {
3629 struct mem_cgroup_eventfd_list *event;
3630
3631 event = kmalloc(sizeof(*event), GFP_KERNEL);
3632 if (!event)
3633 return -ENOMEM;
3634
3635 spin_lock(&memcg_oom_lock);
3636
3637 event->eventfd = eventfd;
3638 list_add(&event->list, &memcg->oom_notify);
3639
3640 /* already in OOM ? */
3641 if (memcg->under_oom)
3642 eventfd_signal(eventfd, 1);
3643 spin_unlock(&memcg_oom_lock);
3644
3645 return 0;
3646 }
3647
3648 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3649 struct eventfd_ctx *eventfd)
3650 {
3651 struct mem_cgroup_eventfd_list *ev, *tmp;
3652
3653 spin_lock(&memcg_oom_lock);
3654
3655 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3656 if (ev->eventfd == eventfd) {
3657 list_del(&ev->list);
3658 kfree(ev);
3659 }
3660 }
3661
3662 spin_unlock(&memcg_oom_lock);
3663 }
3664
3665 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3666 {
3667 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3668
3669 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3670 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3671 return 0;
3672 }
3673
3674 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3675 struct cftype *cft, u64 val)
3676 {
3677 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3678
3679 /* cannot set to root cgroup and only 0 and 1 are allowed */
3680 if (!css->parent || !((val == 0) || (val == 1)))
3681 return -EINVAL;
3682
3683 memcg->oom_kill_disable = val;
3684 if (!val)
3685 memcg_oom_recover(memcg);
3686
3687 return 0;
3688 }
3689
3690 #ifdef CONFIG_CGROUP_WRITEBACK
3691
3692 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3693 {
3694 return &memcg->cgwb_list;
3695 }
3696
3697 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3698 {
3699 return wb_domain_init(&memcg->cgwb_domain, gfp);
3700 }
3701
3702 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3703 {
3704 wb_domain_exit(&memcg->cgwb_domain);
3705 }
3706
3707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3708 {
3709 wb_domain_size_changed(&memcg->cgwb_domain);
3710 }
3711
3712 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3713 {
3714 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3715
3716 if (!memcg->css.parent)
3717 return NULL;
3718
3719 return &memcg->cgwb_domain;
3720 }
3721
3722 /**
3723 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3724 * @wb: bdi_writeback in question
3725 * @pfilepages: out parameter for number of file pages
3726 * @pheadroom: out parameter for number of allocatable pages according to memcg
3727 * @pdirty: out parameter for number of dirty pages
3728 * @pwriteback: out parameter for number of pages under writeback
3729 *
3730 * Determine the numbers of file, headroom, dirty, and writeback pages in
3731 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3732 * is a bit more involved.
3733 *
3734 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3735 * headroom is calculated as the lowest headroom of itself and the
3736 * ancestors. Note that this doesn't consider the actual amount of
3737 * available memory in the system. The caller should further cap
3738 * *@pheadroom accordingly.
3739 */
3740 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3741 unsigned long *pheadroom, unsigned long *pdirty,
3742 unsigned long *pwriteback)
3743 {
3744 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3745 struct mem_cgroup *parent;
3746
3747 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3748
3749 /* this should eventually include NR_UNSTABLE_NFS */
3750 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3751 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3752 (1 << LRU_ACTIVE_FILE));
3753 *pheadroom = PAGE_COUNTER_MAX;
3754
3755 while ((parent = parent_mem_cgroup(memcg))) {
3756 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3757 unsigned long used = page_counter_read(&memcg->memory);
3758
3759 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3760 memcg = parent;
3761 }
3762 }
3763
3764 #else /* CONFIG_CGROUP_WRITEBACK */
3765
3766 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3767 {
3768 return 0;
3769 }
3770
3771 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3772 {
3773 }
3774
3775 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3776 {
3777 }
3778
3779 #endif /* CONFIG_CGROUP_WRITEBACK */
3780
3781 /*
3782 * DO NOT USE IN NEW FILES.
3783 *
3784 * "cgroup.event_control" implementation.
3785 *
3786 * This is way over-engineered. It tries to support fully configurable
3787 * events for each user. Such level of flexibility is completely
3788 * unnecessary especially in the light of the planned unified hierarchy.
3789 *
3790 * Please deprecate this and replace with something simpler if at all
3791 * possible.
3792 */
3793
3794 /*
3795 * Unregister event and free resources.
3796 *
3797 * Gets called from workqueue.
3798 */
3799 static void memcg_event_remove(struct work_struct *work)
3800 {
3801 struct mem_cgroup_event *event =
3802 container_of(work, struct mem_cgroup_event, remove);
3803 struct mem_cgroup *memcg = event->memcg;
3804
3805 remove_wait_queue(event->wqh, &event->wait);
3806
3807 event->unregister_event(memcg, event->eventfd);
3808
3809 /* Notify userspace the event is going away. */
3810 eventfd_signal(event->eventfd, 1);
3811
3812 eventfd_ctx_put(event->eventfd);
3813 kfree(event);
3814 css_put(&memcg->css);
3815 }
3816
3817 /*
3818 * Gets called on POLLHUP on eventfd when user closes it.
3819 *
3820 * Called with wqh->lock held and interrupts disabled.
3821 */
3822 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3823 int sync, void *key)
3824 {
3825 struct mem_cgroup_event *event =
3826 container_of(wait, struct mem_cgroup_event, wait);
3827 struct mem_cgroup *memcg = event->memcg;
3828 unsigned long flags = (unsigned long)key;
3829
3830 if (flags & POLLHUP) {
3831 /*
3832 * If the event has been detached at cgroup removal, we
3833 * can simply return knowing the other side will cleanup
3834 * for us.
3835 *
3836 * We can't race against event freeing since the other
3837 * side will require wqh->lock via remove_wait_queue(),
3838 * which we hold.
3839 */
3840 spin_lock(&memcg->event_list_lock);
3841 if (!list_empty(&event->list)) {
3842 list_del_init(&event->list);
3843 /*
3844 * We are in atomic context, but cgroup_event_remove()
3845 * may sleep, so we have to call it in workqueue.
3846 */
3847 schedule_work(&event->remove);
3848 }
3849 spin_unlock(&memcg->event_list_lock);
3850 }
3851
3852 return 0;
3853 }
3854
3855 static void memcg_event_ptable_queue_proc(struct file *file,
3856 wait_queue_head_t *wqh, poll_table *pt)
3857 {
3858 struct mem_cgroup_event *event =
3859 container_of(pt, struct mem_cgroup_event, pt);
3860
3861 event->wqh = wqh;
3862 add_wait_queue(wqh, &event->wait);
3863 }
3864
3865 /*
3866 * DO NOT USE IN NEW FILES.
3867 *
3868 * Parse input and register new cgroup event handler.
3869 *
3870 * Input must be in format '<event_fd> <control_fd> <args>'.
3871 * Interpretation of args is defined by control file implementation.
3872 */
3873 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3874 char *buf, size_t nbytes, loff_t off)
3875 {
3876 struct cgroup_subsys_state *css = of_css(of);
3877 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3878 struct mem_cgroup_event *event;
3879 struct cgroup_subsys_state *cfile_css;
3880 unsigned int efd, cfd;
3881 struct fd efile;
3882 struct fd cfile;
3883 const char *name;
3884 char *endp;
3885 int ret;
3886
3887 buf = strstrip(buf);
3888
3889 efd = simple_strtoul(buf, &endp, 10);
3890 if (*endp != ' ')
3891 return -EINVAL;
3892 buf = endp + 1;
3893
3894 cfd = simple_strtoul(buf, &endp, 10);
3895 if ((*endp != ' ') && (*endp != '\0'))
3896 return -EINVAL;
3897 buf = endp + 1;
3898
3899 event = kzalloc(sizeof(*event), GFP_KERNEL);
3900 if (!event)
3901 return -ENOMEM;
3902
3903 event->memcg = memcg;
3904 INIT_LIST_HEAD(&event->list);
3905 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3906 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3907 INIT_WORK(&event->remove, memcg_event_remove);
3908
3909 efile = fdget(efd);
3910 if (!efile.file) {
3911 ret = -EBADF;
3912 goto out_kfree;
3913 }
3914
3915 event->eventfd = eventfd_ctx_fileget(efile.file);
3916 if (IS_ERR(event->eventfd)) {
3917 ret = PTR_ERR(event->eventfd);
3918 goto out_put_efile;
3919 }
3920
3921 cfile = fdget(cfd);
3922 if (!cfile.file) {
3923 ret = -EBADF;
3924 goto out_put_eventfd;
3925 }
3926
3927 /* the process need read permission on control file */
3928 /* AV: shouldn't we check that it's been opened for read instead? */
3929 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3930 if (ret < 0)
3931 goto out_put_cfile;
3932
3933 /*
3934 * Determine the event callbacks and set them in @event. This used
3935 * to be done via struct cftype but cgroup core no longer knows
3936 * about these events. The following is crude but the whole thing
3937 * is for compatibility anyway.
3938 *
3939 * DO NOT ADD NEW FILES.
3940 */
3941 name = cfile.file->f_path.dentry->d_name.name;
3942
3943 if (!strcmp(name, "memory.usage_in_bytes")) {
3944 event->register_event = mem_cgroup_usage_register_event;
3945 event->unregister_event = mem_cgroup_usage_unregister_event;
3946 } else if (!strcmp(name, "memory.oom_control")) {
3947 event->register_event = mem_cgroup_oom_register_event;
3948 event->unregister_event = mem_cgroup_oom_unregister_event;
3949 } else if (!strcmp(name, "memory.pressure_level")) {
3950 event->register_event = vmpressure_register_event;
3951 event->unregister_event = vmpressure_unregister_event;
3952 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3953 event->register_event = memsw_cgroup_usage_register_event;
3954 event->unregister_event = memsw_cgroup_usage_unregister_event;
3955 } else {
3956 ret = -EINVAL;
3957 goto out_put_cfile;
3958 }
3959
3960 /*
3961 * Verify @cfile should belong to @css. Also, remaining events are
3962 * automatically removed on cgroup destruction but the removal is
3963 * asynchronous, so take an extra ref on @css.
3964 */
3965 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3966 &memory_cgrp_subsys);
3967 ret = -EINVAL;
3968 if (IS_ERR(cfile_css))
3969 goto out_put_cfile;
3970 if (cfile_css != css) {
3971 css_put(cfile_css);
3972 goto out_put_cfile;
3973 }
3974
3975 ret = event->register_event(memcg, event->eventfd, buf);
3976 if (ret)
3977 goto out_put_css;
3978
3979 efile.file->f_op->poll(efile.file, &event->pt);
3980
3981 spin_lock(&memcg->event_list_lock);
3982 list_add(&event->list, &memcg->event_list);
3983 spin_unlock(&memcg->event_list_lock);
3984
3985 fdput(cfile);
3986 fdput(efile);
3987
3988 return nbytes;
3989
3990 out_put_css:
3991 css_put(css);
3992 out_put_cfile:
3993 fdput(cfile);
3994 out_put_eventfd:
3995 eventfd_ctx_put(event->eventfd);
3996 out_put_efile:
3997 fdput(efile);
3998 out_kfree:
3999 kfree(event);
4000
4001 return ret;
4002 }
4003
4004 static struct cftype mem_cgroup_legacy_files[] = {
4005 {
4006 .name = "usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4008 .read_u64 = mem_cgroup_read_u64,
4009 },
4010 {
4011 .name = "max_usage_in_bytes",
4012 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4013 .write = mem_cgroup_reset,
4014 .read_u64 = mem_cgroup_read_u64,
4015 },
4016 {
4017 .name = "limit_in_bytes",
4018 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4019 .write = mem_cgroup_write,
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 {
4023 .name = "soft_limit_in_bytes",
4024 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4025 .write = mem_cgroup_write,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "failcnt",
4030 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "stat",
4036 .seq_show = memcg_stat_show,
4037 },
4038 {
4039 .name = "force_empty",
4040 .write = mem_cgroup_force_empty_write,
4041 },
4042 {
4043 .name = "use_hierarchy",
4044 .write_u64 = mem_cgroup_hierarchy_write,
4045 .read_u64 = mem_cgroup_hierarchy_read,
4046 },
4047 {
4048 .name = "cgroup.event_control", /* XXX: for compat */
4049 .write = memcg_write_event_control,
4050 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4051 },
4052 {
4053 .name = "swappiness",
4054 .read_u64 = mem_cgroup_swappiness_read,
4055 .write_u64 = mem_cgroup_swappiness_write,
4056 },
4057 {
4058 .name = "move_charge_at_immigrate",
4059 .read_u64 = mem_cgroup_move_charge_read,
4060 .write_u64 = mem_cgroup_move_charge_write,
4061 },
4062 {
4063 .name = "oom_control",
4064 .seq_show = mem_cgroup_oom_control_read,
4065 .write_u64 = mem_cgroup_oom_control_write,
4066 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4067 },
4068 {
4069 .name = "pressure_level",
4070 },
4071 #ifdef CONFIG_NUMA
4072 {
4073 .name = "numa_stat",
4074 .seq_show = memcg_numa_stat_show,
4075 },
4076 #endif
4077 {
4078 .name = "kmem.limit_in_bytes",
4079 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4080 .write = mem_cgroup_write,
4081 .read_u64 = mem_cgroup_read_u64,
4082 },
4083 {
4084 .name = "kmem.usage_in_bytes",
4085 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4086 .read_u64 = mem_cgroup_read_u64,
4087 },
4088 {
4089 .name = "kmem.failcnt",
4090 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4091 .write = mem_cgroup_reset,
4092 .read_u64 = mem_cgroup_read_u64,
4093 },
4094 {
4095 .name = "kmem.max_usage_in_bytes",
4096 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4097 .write = mem_cgroup_reset,
4098 .read_u64 = mem_cgroup_read_u64,
4099 },
4100 #ifdef CONFIG_SLABINFO
4101 {
4102 .name = "kmem.slabinfo",
4103 .seq_start = slab_start,
4104 .seq_next = slab_next,
4105 .seq_stop = slab_stop,
4106 .seq_show = memcg_slab_show,
4107 },
4108 #endif
4109 {
4110 .name = "kmem.tcp.limit_in_bytes",
4111 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4112 .write = mem_cgroup_write,
4113 .read_u64 = mem_cgroup_read_u64,
4114 },
4115 {
4116 .name = "kmem.tcp.usage_in_bytes",
4117 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4118 .read_u64 = mem_cgroup_read_u64,
4119 },
4120 {
4121 .name = "kmem.tcp.failcnt",
4122 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4123 .write = mem_cgroup_reset,
4124 .read_u64 = mem_cgroup_read_u64,
4125 },
4126 {
4127 .name = "kmem.tcp.max_usage_in_bytes",
4128 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4129 .write = mem_cgroup_reset,
4130 .read_u64 = mem_cgroup_read_u64,
4131 },
4132 { }, /* terminate */
4133 };
4134
4135 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4136 {
4137 struct mem_cgroup_per_node *pn;
4138 struct mem_cgroup_per_zone *mz;
4139 int zone, tmp = node;
4140 /*
4141 * This routine is called against possible nodes.
4142 * But it's BUG to call kmalloc() against offline node.
4143 *
4144 * TODO: this routine can waste much memory for nodes which will
4145 * never be onlined. It's better to use memory hotplug callback
4146 * function.
4147 */
4148 if (!node_state(node, N_NORMAL_MEMORY))
4149 tmp = -1;
4150 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 if (!pn)
4152 return 1;
4153
4154 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4155 mz = &pn->zoneinfo[zone];
4156 lruvec_init(&mz->lruvec);
4157 mz->usage_in_excess = 0;
4158 mz->on_tree = false;
4159 mz->memcg = memcg;
4160 }
4161 memcg->nodeinfo[node] = pn;
4162 return 0;
4163 }
4164
4165 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4166 {
4167 kfree(memcg->nodeinfo[node]);
4168 }
4169
4170 static struct mem_cgroup *mem_cgroup_alloc(void)
4171 {
4172 struct mem_cgroup *memcg;
4173 size_t size;
4174
4175 size = sizeof(struct mem_cgroup);
4176 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4177
4178 memcg = kzalloc(size, GFP_KERNEL);
4179 if (!memcg)
4180 return NULL;
4181
4182 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4183 if (!memcg->stat)
4184 goto out_free;
4185
4186 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4187 goto out_free_stat;
4188
4189 return memcg;
4190
4191 out_free_stat:
4192 free_percpu(memcg->stat);
4193 out_free:
4194 kfree(memcg);
4195 return NULL;
4196 }
4197
4198 /*
4199 * At destroying mem_cgroup, references from swap_cgroup can remain.
4200 * (scanning all at force_empty is too costly...)
4201 *
4202 * Instead of clearing all references at force_empty, we remember
4203 * the number of reference from swap_cgroup and free mem_cgroup when
4204 * it goes down to 0.
4205 *
4206 * Removal of cgroup itself succeeds regardless of refs from swap.
4207 */
4208
4209 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4210 {
4211 int node;
4212
4213 cancel_work_sync(&memcg->high_work);
4214
4215 mem_cgroup_remove_from_trees(memcg);
4216
4217 for_each_node(node)
4218 free_mem_cgroup_per_zone_info(memcg, node);
4219
4220 free_percpu(memcg->stat);
4221 memcg_wb_domain_exit(memcg);
4222 kfree(memcg);
4223 }
4224
4225 static struct cgroup_subsys_state * __ref
4226 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4227 {
4228 struct mem_cgroup *memcg;
4229 long error = -ENOMEM;
4230 int node;
4231
4232 memcg = mem_cgroup_alloc();
4233 if (!memcg)
4234 return ERR_PTR(error);
4235
4236 for_each_node(node)
4237 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4238 goto free_out;
4239
4240 /* root ? */
4241 if (parent_css == NULL) {
4242 root_mem_cgroup = memcg;
4243 page_counter_init(&memcg->memory, NULL);
4244 memcg->high = PAGE_COUNTER_MAX;
4245 memcg->soft_limit = PAGE_COUNTER_MAX;
4246 page_counter_init(&memcg->memsw, NULL);
4247 page_counter_init(&memcg->kmem, NULL);
4248 }
4249
4250 INIT_WORK(&memcg->high_work, high_work_func);
4251 memcg->last_scanned_node = MAX_NUMNODES;
4252 INIT_LIST_HEAD(&memcg->oom_notify);
4253 memcg->move_charge_at_immigrate = 0;
4254 mutex_init(&memcg->thresholds_lock);
4255 spin_lock_init(&memcg->move_lock);
4256 vmpressure_init(&memcg->vmpressure);
4257 INIT_LIST_HEAD(&memcg->event_list);
4258 spin_lock_init(&memcg->event_list_lock);
4259 memcg->socket_pressure = jiffies;
4260 #ifndef CONFIG_SLOB
4261 memcg->kmemcg_id = -1;
4262 #endif
4263 #ifdef CONFIG_CGROUP_WRITEBACK
4264 INIT_LIST_HEAD(&memcg->cgwb_list);
4265 #endif
4266 return &memcg->css;
4267
4268 free_out:
4269 __mem_cgroup_free(memcg);
4270 return ERR_PTR(error);
4271 }
4272
4273 static int
4274 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275 {
4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278 int ret;
4279
4280 if (css->id > MEM_CGROUP_ID_MAX)
4281 return -ENOSPC;
4282
4283 if (!parent)
4284 return 0;
4285
4286 mutex_lock(&memcg_create_mutex);
4287
4288 memcg->use_hierarchy = parent->use_hierarchy;
4289 memcg->oom_kill_disable = parent->oom_kill_disable;
4290 memcg->swappiness = mem_cgroup_swappiness(parent);
4291
4292 if (parent->use_hierarchy) {
4293 page_counter_init(&memcg->memory, &parent->memory);
4294 memcg->high = PAGE_COUNTER_MAX;
4295 memcg->soft_limit = PAGE_COUNTER_MAX;
4296 page_counter_init(&memcg->memsw, &parent->memsw);
4297 page_counter_init(&memcg->kmem, &parent->kmem);
4298 page_counter_init(&memcg->tcp_mem.memory_allocated,
4299 &parent->tcp_mem.memory_allocated);
4300
4301 /*
4302 * No need to take a reference to the parent because cgroup
4303 * core guarantees its existence.
4304 */
4305 } else {
4306 page_counter_init(&memcg->memory, NULL);
4307 memcg->high = PAGE_COUNTER_MAX;
4308 memcg->soft_limit = PAGE_COUNTER_MAX;
4309 page_counter_init(&memcg->memsw, NULL);
4310 page_counter_init(&memcg->kmem, NULL);
4311 page_counter_init(&memcg->tcp_mem.memory_allocated, NULL);
4312 /*
4313 * Deeper hierachy with use_hierarchy == false doesn't make
4314 * much sense so let cgroup subsystem know about this
4315 * unfortunate state in our controller.
4316 */
4317 if (parent != root_mem_cgroup)
4318 memory_cgrp_subsys.broken_hierarchy = true;
4319 }
4320 mutex_unlock(&memcg_create_mutex);
4321
4322 ret = memcg_propagate_kmem(memcg);
4323 if (ret)
4324 return ret;
4325
4326 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4327 static_branch_inc(&memcg_sockets_enabled_key);
4328
4329 /*
4330 * Make sure the memcg is initialized: mem_cgroup_iter()
4331 * orders reading memcg->initialized against its callers
4332 * reading the memcg members.
4333 */
4334 smp_store_release(&memcg->initialized, 1);
4335
4336 return 0;
4337 }
4338
4339 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4340 {
4341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342 struct mem_cgroup_event *event, *tmp;
4343
4344 /*
4345 * Unregister events and notify userspace.
4346 * Notify userspace about cgroup removing only after rmdir of cgroup
4347 * directory to avoid race between userspace and kernelspace.
4348 */
4349 spin_lock(&memcg->event_list_lock);
4350 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4351 list_del_init(&event->list);
4352 schedule_work(&event->remove);
4353 }
4354 spin_unlock(&memcg->event_list_lock);
4355
4356 vmpressure_cleanup(&memcg->vmpressure);
4357
4358 memcg_offline_kmem(memcg);
4359
4360 wb_memcg_offline(memcg);
4361 }
4362
4363 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4364 {
4365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4366
4367 invalidate_reclaim_iterators(memcg);
4368 }
4369
4370 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4371 {
4372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4373
4374 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4375 static_branch_dec(&memcg_sockets_enabled_key);
4376
4377 if (memcg->tcp_mem.active)
4378 static_branch_dec(&memcg_sockets_enabled_key);
4379
4380 memcg_free_kmem(memcg);
4381 __mem_cgroup_free(memcg);
4382 }
4383
4384 /**
4385 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4386 * @css: the target css
4387 *
4388 * Reset the states of the mem_cgroup associated with @css. This is
4389 * invoked when the userland requests disabling on the default hierarchy
4390 * but the memcg is pinned through dependency. The memcg should stop
4391 * applying policies and should revert to the vanilla state as it may be
4392 * made visible again.
4393 *
4394 * The current implementation only resets the essential configurations.
4395 * This needs to be expanded to cover all the visible parts.
4396 */
4397 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4398 {
4399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4400
4401 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4402 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4403 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4404 memcg->low = 0;
4405 memcg->high = PAGE_COUNTER_MAX;
4406 memcg->soft_limit = PAGE_COUNTER_MAX;
4407 memcg_wb_domain_size_changed(memcg);
4408 }
4409
4410 #ifdef CONFIG_MMU
4411 /* Handlers for move charge at task migration. */
4412 static int mem_cgroup_do_precharge(unsigned long count)
4413 {
4414 int ret;
4415
4416 /* Try a single bulk charge without reclaim first, kswapd may wake */
4417 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4418 if (!ret) {
4419 mc.precharge += count;
4420 return ret;
4421 }
4422
4423 /* Try charges one by one with reclaim */
4424 while (count--) {
4425 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4426 if (ret)
4427 return ret;
4428 mc.precharge++;
4429 cond_resched();
4430 }
4431 return 0;
4432 }
4433
4434 /**
4435 * get_mctgt_type - get target type of moving charge
4436 * @vma: the vma the pte to be checked belongs
4437 * @addr: the address corresponding to the pte to be checked
4438 * @ptent: the pte to be checked
4439 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4440 *
4441 * Returns
4442 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4443 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4444 * move charge. if @target is not NULL, the page is stored in target->page
4445 * with extra refcnt got(Callers should handle it).
4446 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4447 * target for charge migration. if @target is not NULL, the entry is stored
4448 * in target->ent.
4449 *
4450 * Called with pte lock held.
4451 */
4452 union mc_target {
4453 struct page *page;
4454 swp_entry_t ent;
4455 };
4456
4457 enum mc_target_type {
4458 MC_TARGET_NONE = 0,
4459 MC_TARGET_PAGE,
4460 MC_TARGET_SWAP,
4461 };
4462
4463 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4464 unsigned long addr, pte_t ptent)
4465 {
4466 struct page *page = vm_normal_page(vma, addr, ptent);
4467
4468 if (!page || !page_mapped(page))
4469 return NULL;
4470 if (PageAnon(page)) {
4471 if (!(mc.flags & MOVE_ANON))
4472 return NULL;
4473 } else {
4474 if (!(mc.flags & MOVE_FILE))
4475 return NULL;
4476 }
4477 if (!get_page_unless_zero(page))
4478 return NULL;
4479
4480 return page;
4481 }
4482
4483 #ifdef CONFIG_SWAP
4484 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4485 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4486 {
4487 struct page *page = NULL;
4488 swp_entry_t ent = pte_to_swp_entry(ptent);
4489
4490 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4491 return NULL;
4492 /*
4493 * Because lookup_swap_cache() updates some statistics counter,
4494 * we call find_get_page() with swapper_space directly.
4495 */
4496 page = find_get_page(swap_address_space(ent), ent.val);
4497 if (do_memsw_account())
4498 entry->val = ent.val;
4499
4500 return page;
4501 }
4502 #else
4503 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4504 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4505 {
4506 return NULL;
4507 }
4508 #endif
4509
4510 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4511 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4512 {
4513 struct page *page = NULL;
4514 struct address_space *mapping;
4515 pgoff_t pgoff;
4516
4517 if (!vma->vm_file) /* anonymous vma */
4518 return NULL;
4519 if (!(mc.flags & MOVE_FILE))
4520 return NULL;
4521
4522 mapping = vma->vm_file->f_mapping;
4523 pgoff = linear_page_index(vma, addr);
4524
4525 /* page is moved even if it's not RSS of this task(page-faulted). */
4526 #ifdef CONFIG_SWAP
4527 /* shmem/tmpfs may report page out on swap: account for that too. */
4528 if (shmem_mapping(mapping)) {
4529 page = find_get_entry(mapping, pgoff);
4530 if (radix_tree_exceptional_entry(page)) {
4531 swp_entry_t swp = radix_to_swp_entry(page);
4532 if (do_memsw_account())
4533 *entry = swp;
4534 page = find_get_page(swap_address_space(swp), swp.val);
4535 }
4536 } else
4537 page = find_get_page(mapping, pgoff);
4538 #else
4539 page = find_get_page(mapping, pgoff);
4540 #endif
4541 return page;
4542 }
4543
4544 /**
4545 * mem_cgroup_move_account - move account of the page
4546 * @page: the page
4547 * @nr_pages: number of regular pages (>1 for huge pages)
4548 * @from: mem_cgroup which the page is moved from.
4549 * @to: mem_cgroup which the page is moved to. @from != @to.
4550 *
4551 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4552 *
4553 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4554 * from old cgroup.
4555 */
4556 static int mem_cgroup_move_account(struct page *page,
4557 bool compound,
4558 struct mem_cgroup *from,
4559 struct mem_cgroup *to)
4560 {
4561 unsigned long flags;
4562 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4563 int ret;
4564 bool anon;
4565
4566 VM_BUG_ON(from == to);
4567 VM_BUG_ON_PAGE(PageLRU(page), page);
4568 VM_BUG_ON(compound && !PageTransHuge(page));
4569
4570 /*
4571 * Prevent mem_cgroup_replace_page() from looking at
4572 * page->mem_cgroup of its source page while we change it.
4573 */
4574 ret = -EBUSY;
4575 if (!trylock_page(page))
4576 goto out;
4577
4578 ret = -EINVAL;
4579 if (page->mem_cgroup != from)
4580 goto out_unlock;
4581
4582 anon = PageAnon(page);
4583
4584 spin_lock_irqsave(&from->move_lock, flags);
4585
4586 if (!anon && page_mapped(page)) {
4587 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4588 nr_pages);
4589 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4590 nr_pages);
4591 }
4592
4593 /*
4594 * move_lock grabbed above and caller set from->moving_account, so
4595 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4596 * So mapping should be stable for dirty pages.
4597 */
4598 if (!anon && PageDirty(page)) {
4599 struct address_space *mapping = page_mapping(page);
4600
4601 if (mapping_cap_account_dirty(mapping)) {
4602 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4603 nr_pages);
4604 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4605 nr_pages);
4606 }
4607 }
4608
4609 if (PageWriteback(page)) {
4610 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4611 nr_pages);
4612 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4613 nr_pages);
4614 }
4615
4616 /*
4617 * It is safe to change page->mem_cgroup here because the page
4618 * is referenced, charged, and isolated - we can't race with
4619 * uncharging, charging, migration, or LRU putback.
4620 */
4621
4622 /* caller should have done css_get */
4623 page->mem_cgroup = to;
4624 spin_unlock_irqrestore(&from->move_lock, flags);
4625
4626 ret = 0;
4627
4628 local_irq_disable();
4629 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4630 memcg_check_events(to, page);
4631 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4632 memcg_check_events(from, page);
4633 local_irq_enable();
4634 out_unlock:
4635 unlock_page(page);
4636 out:
4637 return ret;
4638 }
4639
4640 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4641 unsigned long addr, pte_t ptent, union mc_target *target)
4642 {
4643 struct page *page = NULL;
4644 enum mc_target_type ret = MC_TARGET_NONE;
4645 swp_entry_t ent = { .val = 0 };
4646
4647 if (pte_present(ptent))
4648 page = mc_handle_present_pte(vma, addr, ptent);
4649 else if (is_swap_pte(ptent))
4650 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4651 else if (pte_none(ptent))
4652 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4653
4654 if (!page && !ent.val)
4655 return ret;
4656 if (page) {
4657 /*
4658 * Do only loose check w/o serialization.
4659 * mem_cgroup_move_account() checks the page is valid or
4660 * not under LRU exclusion.
4661 */
4662 if (page->mem_cgroup == mc.from) {
4663 ret = MC_TARGET_PAGE;
4664 if (target)
4665 target->page = page;
4666 }
4667 if (!ret || !target)
4668 put_page(page);
4669 }
4670 /* There is a swap entry and a page doesn't exist or isn't charged */
4671 if (ent.val && !ret &&
4672 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4673 ret = MC_TARGET_SWAP;
4674 if (target)
4675 target->ent = ent;
4676 }
4677 return ret;
4678 }
4679
4680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4681 /*
4682 * We don't consider swapping or file mapped pages because THP does not
4683 * support them for now.
4684 * Caller should make sure that pmd_trans_huge(pmd) is true.
4685 */
4686 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4687 unsigned long addr, pmd_t pmd, union mc_target *target)
4688 {
4689 struct page *page = NULL;
4690 enum mc_target_type ret = MC_TARGET_NONE;
4691
4692 page = pmd_page(pmd);
4693 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4694 if (!(mc.flags & MOVE_ANON))
4695 return ret;
4696 if (page->mem_cgroup == mc.from) {
4697 ret = MC_TARGET_PAGE;
4698 if (target) {
4699 get_page(page);
4700 target->page = page;
4701 }
4702 }
4703 return ret;
4704 }
4705 #else
4706 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4707 unsigned long addr, pmd_t pmd, union mc_target *target)
4708 {
4709 return MC_TARGET_NONE;
4710 }
4711 #endif
4712
4713 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4714 unsigned long addr, unsigned long end,
4715 struct mm_walk *walk)
4716 {
4717 struct vm_area_struct *vma = walk->vma;
4718 pte_t *pte;
4719 spinlock_t *ptl;
4720
4721 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4722 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4723 mc.precharge += HPAGE_PMD_NR;
4724 spin_unlock(ptl);
4725 return 0;
4726 }
4727
4728 if (pmd_trans_unstable(pmd))
4729 return 0;
4730 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4731 for (; addr != end; pte++, addr += PAGE_SIZE)
4732 if (get_mctgt_type(vma, addr, *pte, NULL))
4733 mc.precharge++; /* increment precharge temporarily */
4734 pte_unmap_unlock(pte - 1, ptl);
4735 cond_resched();
4736
4737 return 0;
4738 }
4739
4740 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4741 {
4742 unsigned long precharge;
4743
4744 struct mm_walk mem_cgroup_count_precharge_walk = {
4745 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4746 .mm = mm,
4747 };
4748 down_read(&mm->mmap_sem);
4749 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4750 up_read(&mm->mmap_sem);
4751
4752 precharge = mc.precharge;
4753 mc.precharge = 0;
4754
4755 return precharge;
4756 }
4757
4758 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4759 {
4760 unsigned long precharge = mem_cgroup_count_precharge(mm);
4761
4762 VM_BUG_ON(mc.moving_task);
4763 mc.moving_task = current;
4764 return mem_cgroup_do_precharge(precharge);
4765 }
4766
4767 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4768 static void __mem_cgroup_clear_mc(void)
4769 {
4770 struct mem_cgroup *from = mc.from;
4771 struct mem_cgroup *to = mc.to;
4772
4773 /* we must uncharge all the leftover precharges from mc.to */
4774 if (mc.precharge) {
4775 cancel_charge(mc.to, mc.precharge);
4776 mc.precharge = 0;
4777 }
4778 /*
4779 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4780 * we must uncharge here.
4781 */
4782 if (mc.moved_charge) {
4783 cancel_charge(mc.from, mc.moved_charge);
4784 mc.moved_charge = 0;
4785 }
4786 /* we must fixup refcnts and charges */
4787 if (mc.moved_swap) {
4788 /* uncharge swap account from the old cgroup */
4789 if (!mem_cgroup_is_root(mc.from))
4790 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4791
4792 /*
4793 * we charged both to->memory and to->memsw, so we
4794 * should uncharge to->memory.
4795 */
4796 if (!mem_cgroup_is_root(mc.to))
4797 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4798
4799 css_put_many(&mc.from->css, mc.moved_swap);
4800
4801 /* we've already done css_get(mc.to) */
4802 mc.moved_swap = 0;
4803 }
4804 memcg_oom_recover(from);
4805 memcg_oom_recover(to);
4806 wake_up_all(&mc.waitq);
4807 }
4808
4809 static void mem_cgroup_clear_mc(void)
4810 {
4811 /*
4812 * we must clear moving_task before waking up waiters at the end of
4813 * task migration.
4814 */
4815 mc.moving_task = NULL;
4816 __mem_cgroup_clear_mc();
4817 spin_lock(&mc.lock);
4818 mc.from = NULL;
4819 mc.to = NULL;
4820 spin_unlock(&mc.lock);
4821 }
4822
4823 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4824 {
4825 struct cgroup_subsys_state *css;
4826 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4827 struct mem_cgroup *from;
4828 struct task_struct *leader, *p;
4829 struct mm_struct *mm;
4830 unsigned long move_flags;
4831 int ret = 0;
4832
4833 /* charge immigration isn't supported on the default hierarchy */
4834 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4835 return 0;
4836
4837 /*
4838 * Multi-process migrations only happen on the default hierarchy
4839 * where charge immigration is not used. Perform charge
4840 * immigration if @tset contains a leader and whine if there are
4841 * multiple.
4842 */
4843 p = NULL;
4844 cgroup_taskset_for_each_leader(leader, css, tset) {
4845 WARN_ON_ONCE(p);
4846 p = leader;
4847 memcg = mem_cgroup_from_css(css);
4848 }
4849 if (!p)
4850 return 0;
4851
4852 /*
4853 * We are now commited to this value whatever it is. Changes in this
4854 * tunable will only affect upcoming migrations, not the current one.
4855 * So we need to save it, and keep it going.
4856 */
4857 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4858 if (!move_flags)
4859 return 0;
4860
4861 from = mem_cgroup_from_task(p);
4862
4863 VM_BUG_ON(from == memcg);
4864
4865 mm = get_task_mm(p);
4866 if (!mm)
4867 return 0;
4868 /* We move charges only when we move a owner of the mm */
4869 if (mm->owner == p) {
4870 VM_BUG_ON(mc.from);
4871 VM_BUG_ON(mc.to);
4872 VM_BUG_ON(mc.precharge);
4873 VM_BUG_ON(mc.moved_charge);
4874 VM_BUG_ON(mc.moved_swap);
4875
4876 spin_lock(&mc.lock);
4877 mc.from = from;
4878 mc.to = memcg;
4879 mc.flags = move_flags;
4880 spin_unlock(&mc.lock);
4881 /* We set mc.moving_task later */
4882
4883 ret = mem_cgroup_precharge_mc(mm);
4884 if (ret)
4885 mem_cgroup_clear_mc();
4886 }
4887 mmput(mm);
4888 return ret;
4889 }
4890
4891 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4892 {
4893 if (mc.to)
4894 mem_cgroup_clear_mc();
4895 }
4896
4897 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4898 unsigned long addr, unsigned long end,
4899 struct mm_walk *walk)
4900 {
4901 int ret = 0;
4902 struct vm_area_struct *vma = walk->vma;
4903 pte_t *pte;
4904 spinlock_t *ptl;
4905 enum mc_target_type target_type;
4906 union mc_target target;
4907 struct page *page;
4908
4909 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4910 if (mc.precharge < HPAGE_PMD_NR) {
4911 spin_unlock(ptl);
4912 return 0;
4913 }
4914 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4915 if (target_type == MC_TARGET_PAGE) {
4916 page = target.page;
4917 if (!isolate_lru_page(page)) {
4918 if (!mem_cgroup_move_account(page, true,
4919 mc.from, mc.to)) {
4920 mc.precharge -= HPAGE_PMD_NR;
4921 mc.moved_charge += HPAGE_PMD_NR;
4922 }
4923 putback_lru_page(page);
4924 }
4925 put_page(page);
4926 }
4927 spin_unlock(ptl);
4928 return 0;
4929 }
4930
4931 if (pmd_trans_unstable(pmd))
4932 return 0;
4933 retry:
4934 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4935 for (; addr != end; addr += PAGE_SIZE) {
4936 pte_t ptent = *(pte++);
4937 swp_entry_t ent;
4938
4939 if (!mc.precharge)
4940 break;
4941
4942 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4943 case MC_TARGET_PAGE:
4944 page = target.page;
4945 /*
4946 * We can have a part of the split pmd here. Moving it
4947 * can be done but it would be too convoluted so simply
4948 * ignore such a partial THP and keep it in original
4949 * memcg. There should be somebody mapping the head.
4950 */
4951 if (PageTransCompound(page))
4952 goto put;
4953 if (isolate_lru_page(page))
4954 goto put;
4955 if (!mem_cgroup_move_account(page, false,
4956 mc.from, mc.to)) {
4957 mc.precharge--;
4958 /* we uncharge from mc.from later. */
4959 mc.moved_charge++;
4960 }
4961 putback_lru_page(page);
4962 put: /* get_mctgt_type() gets the page */
4963 put_page(page);
4964 break;
4965 case MC_TARGET_SWAP:
4966 ent = target.ent;
4967 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4968 mc.precharge--;
4969 /* we fixup refcnts and charges later. */
4970 mc.moved_swap++;
4971 }
4972 break;
4973 default:
4974 break;
4975 }
4976 }
4977 pte_unmap_unlock(pte - 1, ptl);
4978 cond_resched();
4979
4980 if (addr != end) {
4981 /*
4982 * We have consumed all precharges we got in can_attach().
4983 * We try charge one by one, but don't do any additional
4984 * charges to mc.to if we have failed in charge once in attach()
4985 * phase.
4986 */
4987 ret = mem_cgroup_do_precharge(1);
4988 if (!ret)
4989 goto retry;
4990 }
4991
4992 return ret;
4993 }
4994
4995 static void mem_cgroup_move_charge(struct mm_struct *mm)
4996 {
4997 struct mm_walk mem_cgroup_move_charge_walk = {
4998 .pmd_entry = mem_cgroup_move_charge_pte_range,
4999 .mm = mm,
5000 };
5001
5002 lru_add_drain_all();
5003 /*
5004 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5005 * move_lock while we're moving its pages to another memcg.
5006 * Then wait for already started RCU-only updates to finish.
5007 */
5008 atomic_inc(&mc.from->moving_account);
5009 synchronize_rcu();
5010 retry:
5011 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5012 /*
5013 * Someone who are holding the mmap_sem might be waiting in
5014 * waitq. So we cancel all extra charges, wake up all waiters,
5015 * and retry. Because we cancel precharges, we might not be able
5016 * to move enough charges, but moving charge is a best-effort
5017 * feature anyway, so it wouldn't be a big problem.
5018 */
5019 __mem_cgroup_clear_mc();
5020 cond_resched();
5021 goto retry;
5022 }
5023 /*
5024 * When we have consumed all precharges and failed in doing
5025 * additional charge, the page walk just aborts.
5026 */
5027 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5028 up_read(&mm->mmap_sem);
5029 atomic_dec(&mc.from->moving_account);
5030 }
5031
5032 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5033 {
5034 struct cgroup_subsys_state *css;
5035 struct task_struct *p = cgroup_taskset_first(tset, &css);
5036 struct mm_struct *mm = get_task_mm(p);
5037
5038 if (mm) {
5039 if (mc.to)
5040 mem_cgroup_move_charge(mm);
5041 mmput(mm);
5042 }
5043 if (mc.to)
5044 mem_cgroup_clear_mc();
5045 }
5046 #else /* !CONFIG_MMU */
5047 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5048 {
5049 return 0;
5050 }
5051 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5052 {
5053 }
5054 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5055 {
5056 }
5057 #endif
5058
5059 /*
5060 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5061 * to verify whether we're attached to the default hierarchy on each mount
5062 * attempt.
5063 */
5064 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5065 {
5066 /*
5067 * use_hierarchy is forced on the default hierarchy. cgroup core
5068 * guarantees that @root doesn't have any children, so turning it
5069 * on for the root memcg is enough.
5070 */
5071 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5072 root_mem_cgroup->use_hierarchy = true;
5073 else
5074 root_mem_cgroup->use_hierarchy = false;
5075 }
5076
5077 static u64 memory_current_read(struct cgroup_subsys_state *css,
5078 struct cftype *cft)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5081
5082 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5083 }
5084
5085 static int memory_low_show(struct seq_file *m, void *v)
5086 {
5087 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5088 unsigned long low = READ_ONCE(memcg->low);
5089
5090 if (low == PAGE_COUNTER_MAX)
5091 seq_puts(m, "max\n");
5092 else
5093 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5094
5095 return 0;
5096 }
5097
5098 static ssize_t memory_low_write(struct kernfs_open_file *of,
5099 char *buf, size_t nbytes, loff_t off)
5100 {
5101 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5102 unsigned long low;
5103 int err;
5104
5105 buf = strstrip(buf);
5106 err = page_counter_memparse(buf, "max", &low);
5107 if (err)
5108 return err;
5109
5110 memcg->low = low;
5111
5112 return nbytes;
5113 }
5114
5115 static int memory_high_show(struct seq_file *m, void *v)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5118 unsigned long high = READ_ONCE(memcg->high);
5119
5120 if (high == PAGE_COUNTER_MAX)
5121 seq_puts(m, "max\n");
5122 else
5123 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5124
5125 return 0;
5126 }
5127
5128 static ssize_t memory_high_write(struct kernfs_open_file *of,
5129 char *buf, size_t nbytes, loff_t off)
5130 {
5131 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5132 unsigned long high;
5133 int err;
5134
5135 buf = strstrip(buf);
5136 err = page_counter_memparse(buf, "max", &high);
5137 if (err)
5138 return err;
5139
5140 memcg->high = high;
5141
5142 memcg_wb_domain_size_changed(memcg);
5143 return nbytes;
5144 }
5145
5146 static int memory_max_show(struct seq_file *m, void *v)
5147 {
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5149 unsigned long max = READ_ONCE(memcg->memory.limit);
5150
5151 if (max == PAGE_COUNTER_MAX)
5152 seq_puts(m, "max\n");
5153 else
5154 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5155
5156 return 0;
5157 }
5158
5159 static ssize_t memory_max_write(struct kernfs_open_file *of,
5160 char *buf, size_t nbytes, loff_t off)
5161 {
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5163 unsigned long max;
5164 int err;
5165
5166 buf = strstrip(buf);
5167 err = page_counter_memparse(buf, "max", &max);
5168 if (err)
5169 return err;
5170
5171 err = mem_cgroup_resize_limit(memcg, max);
5172 if (err)
5173 return err;
5174
5175 memcg_wb_domain_size_changed(memcg);
5176 return nbytes;
5177 }
5178
5179 static int memory_events_show(struct seq_file *m, void *v)
5180 {
5181 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5182
5183 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5184 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5185 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5186 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5187
5188 return 0;
5189 }
5190
5191 static struct cftype memory_files[] = {
5192 {
5193 .name = "current",
5194 .flags = CFTYPE_NOT_ON_ROOT,
5195 .read_u64 = memory_current_read,
5196 },
5197 {
5198 .name = "low",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_low_show,
5201 .write = memory_low_write,
5202 },
5203 {
5204 .name = "high",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_high_show,
5207 .write = memory_high_write,
5208 },
5209 {
5210 .name = "max",
5211 .flags = CFTYPE_NOT_ON_ROOT,
5212 .seq_show = memory_max_show,
5213 .write = memory_max_write,
5214 },
5215 {
5216 .name = "events",
5217 .flags = CFTYPE_NOT_ON_ROOT,
5218 .file_offset = offsetof(struct mem_cgroup, events_file),
5219 .seq_show = memory_events_show,
5220 },
5221 { } /* terminate */
5222 };
5223
5224 struct cgroup_subsys memory_cgrp_subsys = {
5225 .css_alloc = mem_cgroup_css_alloc,
5226 .css_online = mem_cgroup_css_online,
5227 .css_offline = mem_cgroup_css_offline,
5228 .css_released = mem_cgroup_css_released,
5229 .css_free = mem_cgroup_css_free,
5230 .css_reset = mem_cgroup_css_reset,
5231 .can_attach = mem_cgroup_can_attach,
5232 .cancel_attach = mem_cgroup_cancel_attach,
5233 .attach = mem_cgroup_move_task,
5234 .bind = mem_cgroup_bind,
5235 .dfl_cftypes = memory_files,
5236 .legacy_cftypes = mem_cgroup_legacy_files,
5237 .early_init = 0,
5238 };
5239
5240 /**
5241 * mem_cgroup_low - check if memory consumption is below the normal range
5242 * @root: the highest ancestor to consider
5243 * @memcg: the memory cgroup to check
5244 *
5245 * Returns %true if memory consumption of @memcg, and that of all
5246 * configurable ancestors up to @root, is below the normal range.
5247 */
5248 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5249 {
5250 if (mem_cgroup_disabled())
5251 return false;
5252
5253 /*
5254 * The toplevel group doesn't have a configurable range, so
5255 * it's never low when looked at directly, and it is not
5256 * considered an ancestor when assessing the hierarchy.
5257 */
5258
5259 if (memcg == root_mem_cgroup)
5260 return false;
5261
5262 if (page_counter_read(&memcg->memory) >= memcg->low)
5263 return false;
5264
5265 while (memcg != root) {
5266 memcg = parent_mem_cgroup(memcg);
5267
5268 if (memcg == root_mem_cgroup)
5269 break;
5270
5271 if (page_counter_read(&memcg->memory) >= memcg->low)
5272 return false;
5273 }
5274 return true;
5275 }
5276
5277 /**
5278 * mem_cgroup_try_charge - try charging a page
5279 * @page: page to charge
5280 * @mm: mm context of the victim
5281 * @gfp_mask: reclaim mode
5282 * @memcgp: charged memcg return
5283 *
5284 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5285 * pages according to @gfp_mask if necessary.
5286 *
5287 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5288 * Otherwise, an error code is returned.
5289 *
5290 * After page->mapping has been set up, the caller must finalize the
5291 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5292 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5293 */
5294 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5295 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5296 bool compound)
5297 {
5298 struct mem_cgroup *memcg = NULL;
5299 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5300 int ret = 0;
5301
5302 if (mem_cgroup_disabled())
5303 goto out;
5304
5305 if (PageSwapCache(page)) {
5306 /*
5307 * Every swap fault against a single page tries to charge the
5308 * page, bail as early as possible. shmem_unuse() encounters
5309 * already charged pages, too. The USED bit is protected by
5310 * the page lock, which serializes swap cache removal, which
5311 * in turn serializes uncharging.
5312 */
5313 VM_BUG_ON_PAGE(!PageLocked(page), page);
5314 if (page->mem_cgroup)
5315 goto out;
5316
5317 if (do_memsw_account()) {
5318 swp_entry_t ent = { .val = page_private(page), };
5319 unsigned short id = lookup_swap_cgroup_id(ent);
5320
5321 rcu_read_lock();
5322 memcg = mem_cgroup_from_id(id);
5323 if (memcg && !css_tryget_online(&memcg->css))
5324 memcg = NULL;
5325 rcu_read_unlock();
5326 }
5327 }
5328
5329 if (!memcg)
5330 memcg = get_mem_cgroup_from_mm(mm);
5331
5332 ret = try_charge(memcg, gfp_mask, nr_pages);
5333
5334 css_put(&memcg->css);
5335 out:
5336 *memcgp = memcg;
5337 return ret;
5338 }
5339
5340 /**
5341 * mem_cgroup_commit_charge - commit a page charge
5342 * @page: page to charge
5343 * @memcg: memcg to charge the page to
5344 * @lrucare: page might be on LRU already
5345 *
5346 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5347 * after page->mapping has been set up. This must happen atomically
5348 * as part of the page instantiation, i.e. under the page table lock
5349 * for anonymous pages, under the page lock for page and swap cache.
5350 *
5351 * In addition, the page must not be on the LRU during the commit, to
5352 * prevent racing with task migration. If it might be, use @lrucare.
5353 *
5354 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5355 */
5356 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5357 bool lrucare, bool compound)
5358 {
5359 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5360
5361 VM_BUG_ON_PAGE(!page->mapping, page);
5362 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5363
5364 if (mem_cgroup_disabled())
5365 return;
5366 /*
5367 * Swap faults will attempt to charge the same page multiple
5368 * times. But reuse_swap_page() might have removed the page
5369 * from swapcache already, so we can't check PageSwapCache().
5370 */
5371 if (!memcg)
5372 return;
5373
5374 commit_charge(page, memcg, lrucare);
5375
5376 local_irq_disable();
5377 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5378 memcg_check_events(memcg, page);
5379 local_irq_enable();
5380
5381 if (do_memsw_account() && PageSwapCache(page)) {
5382 swp_entry_t entry = { .val = page_private(page) };
5383 /*
5384 * The swap entry might not get freed for a long time,
5385 * let's not wait for it. The page already received a
5386 * memory+swap charge, drop the swap entry duplicate.
5387 */
5388 mem_cgroup_uncharge_swap(entry);
5389 }
5390 }
5391
5392 /**
5393 * mem_cgroup_cancel_charge - cancel a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5396 *
5397 * Cancel a charge transaction started by mem_cgroup_try_charge().
5398 */
5399 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5400 bool compound)
5401 {
5402 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5403
5404 if (mem_cgroup_disabled())
5405 return;
5406 /*
5407 * Swap faults will attempt to charge the same page multiple
5408 * times. But reuse_swap_page() might have removed the page
5409 * from swapcache already, so we can't check PageSwapCache().
5410 */
5411 if (!memcg)
5412 return;
5413
5414 cancel_charge(memcg, nr_pages);
5415 }
5416
5417 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5418 unsigned long nr_anon, unsigned long nr_file,
5419 unsigned long nr_huge, struct page *dummy_page)
5420 {
5421 unsigned long nr_pages = nr_anon + nr_file;
5422 unsigned long flags;
5423
5424 if (!mem_cgroup_is_root(memcg)) {
5425 page_counter_uncharge(&memcg->memory, nr_pages);
5426 if (do_memsw_account())
5427 page_counter_uncharge(&memcg->memsw, nr_pages);
5428 memcg_oom_recover(memcg);
5429 }
5430
5431 local_irq_save(flags);
5432 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5433 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5434 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5435 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5436 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5437 memcg_check_events(memcg, dummy_page);
5438 local_irq_restore(flags);
5439
5440 if (!mem_cgroup_is_root(memcg))
5441 css_put_many(&memcg->css, nr_pages);
5442 }
5443
5444 static void uncharge_list(struct list_head *page_list)
5445 {
5446 struct mem_cgroup *memcg = NULL;
5447 unsigned long nr_anon = 0;
5448 unsigned long nr_file = 0;
5449 unsigned long nr_huge = 0;
5450 unsigned long pgpgout = 0;
5451 struct list_head *next;
5452 struct page *page;
5453
5454 next = page_list->next;
5455 do {
5456 unsigned int nr_pages = 1;
5457
5458 page = list_entry(next, struct page, lru);
5459 next = page->lru.next;
5460
5461 VM_BUG_ON_PAGE(PageLRU(page), page);
5462 VM_BUG_ON_PAGE(page_count(page), page);
5463
5464 if (!page->mem_cgroup)
5465 continue;
5466
5467 /*
5468 * Nobody should be changing or seriously looking at
5469 * page->mem_cgroup at this point, we have fully
5470 * exclusive access to the page.
5471 */
5472
5473 if (memcg != page->mem_cgroup) {
5474 if (memcg) {
5475 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5476 nr_huge, page);
5477 pgpgout = nr_anon = nr_file = nr_huge = 0;
5478 }
5479 memcg = page->mem_cgroup;
5480 }
5481
5482 if (PageTransHuge(page)) {
5483 nr_pages <<= compound_order(page);
5484 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5485 nr_huge += nr_pages;
5486 }
5487
5488 if (PageAnon(page))
5489 nr_anon += nr_pages;
5490 else
5491 nr_file += nr_pages;
5492
5493 page->mem_cgroup = NULL;
5494
5495 pgpgout++;
5496 } while (next != page_list);
5497
5498 if (memcg)
5499 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5500 nr_huge, page);
5501 }
5502
5503 /**
5504 * mem_cgroup_uncharge - uncharge a page
5505 * @page: page to uncharge
5506 *
5507 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5508 * mem_cgroup_commit_charge().
5509 */
5510 void mem_cgroup_uncharge(struct page *page)
5511 {
5512 if (mem_cgroup_disabled())
5513 return;
5514
5515 /* Don't touch page->lru of any random page, pre-check: */
5516 if (!page->mem_cgroup)
5517 return;
5518
5519 INIT_LIST_HEAD(&page->lru);
5520 uncharge_list(&page->lru);
5521 }
5522
5523 /**
5524 * mem_cgroup_uncharge_list - uncharge a list of page
5525 * @page_list: list of pages to uncharge
5526 *
5527 * Uncharge a list of pages previously charged with
5528 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5529 */
5530 void mem_cgroup_uncharge_list(struct list_head *page_list)
5531 {
5532 if (mem_cgroup_disabled())
5533 return;
5534
5535 if (!list_empty(page_list))
5536 uncharge_list(page_list);
5537 }
5538
5539 /**
5540 * mem_cgroup_replace_page - migrate a charge to another page
5541 * @oldpage: currently charged page
5542 * @newpage: page to transfer the charge to
5543 *
5544 * Migrate the charge from @oldpage to @newpage.
5545 *
5546 * Both pages must be locked, @newpage->mapping must be set up.
5547 * Either or both pages might be on the LRU already.
5548 */
5549 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5550 {
5551 struct mem_cgroup *memcg;
5552 int isolated;
5553
5554 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5555 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5556 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5557 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5558 newpage);
5559
5560 if (mem_cgroup_disabled())
5561 return;
5562
5563 /* Page cache replacement: new page already charged? */
5564 if (newpage->mem_cgroup)
5565 return;
5566
5567 /* Swapcache readahead pages can get replaced before being charged */
5568 memcg = oldpage->mem_cgroup;
5569 if (!memcg)
5570 return;
5571
5572 lock_page_lru(oldpage, &isolated);
5573 oldpage->mem_cgroup = NULL;
5574 unlock_page_lru(oldpage, isolated);
5575
5576 commit_charge(newpage, memcg, true);
5577 }
5578
5579 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5580 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5581
5582 void sock_update_memcg(struct sock *sk)
5583 {
5584 struct mem_cgroup *memcg;
5585
5586 /* Socket cloning can throw us here with sk_cgrp already
5587 * filled. It won't however, necessarily happen from
5588 * process context. So the test for root memcg given
5589 * the current task's memcg won't help us in this case.
5590 *
5591 * Respecting the original socket's memcg is a better
5592 * decision in this case.
5593 */
5594 if (sk->sk_memcg) {
5595 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5596 css_get(&sk->sk_memcg->css);
5597 return;
5598 }
5599
5600 rcu_read_lock();
5601 memcg = mem_cgroup_from_task(current);
5602 if (memcg == root_mem_cgroup)
5603 goto out;
5604 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5605 goto out;
5606 if (css_tryget_online(&memcg->css))
5607 sk->sk_memcg = memcg;
5608 out:
5609 rcu_read_unlock();
5610 }
5611 EXPORT_SYMBOL(sock_update_memcg);
5612
5613 void sock_release_memcg(struct sock *sk)
5614 {
5615 WARN_ON(!sk->sk_memcg);
5616 css_put(&sk->sk_memcg->css);
5617 }
5618
5619 /**
5620 * mem_cgroup_charge_skmem - charge socket memory
5621 * @memcg: memcg to charge
5622 * @nr_pages: number of pages to charge
5623 *
5624 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5625 * @memcg's configured limit, %false if the charge had to be forced.
5626 */
5627 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5628 {
5629 gfp_t gfp_mask = GFP_KERNEL;
5630
5631 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5632 struct page_counter *counter;
5633
5634 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5635 nr_pages, &counter)) {
5636 memcg->tcp_mem.memory_pressure = 0;
5637 return true;
5638 }
5639 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5640 memcg->tcp_mem.memory_pressure = 1;
5641 return false;
5642 }
5643
5644 /* Don't block in the packet receive path */
5645 if (in_softirq())
5646 gfp_mask = GFP_NOWAIT;
5647
5648 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5649 return true;
5650
5651 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5652 return false;
5653 }
5654
5655 /**
5656 * mem_cgroup_uncharge_skmem - uncharge socket memory
5657 * @memcg - memcg to uncharge
5658 * @nr_pages - number of pages to uncharge
5659 */
5660 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5661 {
5662 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5663 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5664 nr_pages);
5665 return;
5666 }
5667
5668 page_counter_uncharge(&memcg->memory, nr_pages);
5669 css_put_many(&memcg->css, nr_pages);
5670 }
5671
5672 static int __init cgroup_memory(char *s)
5673 {
5674 char *token;
5675
5676 while ((token = strsep(&s, ",")) != NULL) {
5677 if (!*token)
5678 continue;
5679 if (!strcmp(token, "nosocket"))
5680 cgroup_memory_nosocket = true;
5681 if (!strcmp(token, "nokmem"))
5682 cgroup_memory_nokmem = true;
5683 }
5684 return 0;
5685 }
5686 __setup("cgroup.memory=", cgroup_memory);
5687
5688 /*
5689 * subsys_initcall() for memory controller.
5690 *
5691 * Some parts like hotcpu_notifier() have to be initialized from this context
5692 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5693 * everything that doesn't depend on a specific mem_cgroup structure should
5694 * be initialized from here.
5695 */
5696 static int __init mem_cgroup_init(void)
5697 {
5698 int cpu, node;
5699
5700 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5701
5702 for_each_possible_cpu(cpu)
5703 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5704 drain_local_stock);
5705
5706 for_each_node(node) {
5707 struct mem_cgroup_tree_per_node *rtpn;
5708 int zone;
5709
5710 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5711 node_online(node) ? node : NUMA_NO_NODE);
5712
5713 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5714 struct mem_cgroup_tree_per_zone *rtpz;
5715
5716 rtpz = &rtpn->rb_tree_per_zone[zone];
5717 rtpz->rb_root = RB_ROOT;
5718 spin_lock_init(&rtpz->lock);
5719 }
5720 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5721 }
5722
5723 return 0;
5724 }
5725 subsys_initcall(mem_cgroup_init);
5726
5727 #ifdef CONFIG_MEMCG_SWAP
5728 /**
5729 * mem_cgroup_swapout - transfer a memsw charge to swap
5730 * @page: page whose memsw charge to transfer
5731 * @entry: swap entry to move the charge to
5732 *
5733 * Transfer the memsw charge of @page to @entry.
5734 */
5735 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5736 {
5737 struct mem_cgroup *memcg;
5738 unsigned short oldid;
5739
5740 VM_BUG_ON_PAGE(PageLRU(page), page);
5741 VM_BUG_ON_PAGE(page_count(page), page);
5742
5743 if (!do_memsw_account())
5744 return;
5745
5746 memcg = page->mem_cgroup;
5747
5748 /* Readahead page, never charged */
5749 if (!memcg)
5750 return;
5751
5752 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5753 VM_BUG_ON_PAGE(oldid, page);
5754 mem_cgroup_swap_statistics(memcg, true);
5755
5756 page->mem_cgroup = NULL;
5757
5758 if (!mem_cgroup_is_root(memcg))
5759 page_counter_uncharge(&memcg->memory, 1);
5760
5761 /*
5762 * Interrupts should be disabled here because the caller holds the
5763 * mapping->tree_lock lock which is taken with interrupts-off. It is
5764 * important here to have the interrupts disabled because it is the
5765 * only synchronisation we have for udpating the per-CPU variables.
5766 */
5767 VM_BUG_ON(!irqs_disabled());
5768 mem_cgroup_charge_statistics(memcg, page, false, -1);
5769 memcg_check_events(memcg, page);
5770 }
5771
5772 /**
5773 * mem_cgroup_uncharge_swap - uncharge a swap entry
5774 * @entry: swap entry to uncharge
5775 *
5776 * Drop the memsw charge associated with @entry.
5777 */
5778 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5779 {
5780 struct mem_cgroup *memcg;
5781 unsigned short id;
5782
5783 if (!do_memsw_account())
5784 return;
5785
5786 id = swap_cgroup_record(entry, 0);
5787 rcu_read_lock();
5788 memcg = mem_cgroup_from_id(id);
5789 if (memcg) {
5790 if (!mem_cgroup_is_root(memcg))
5791 page_counter_uncharge(&memcg->memsw, 1);
5792 mem_cgroup_swap_statistics(memcg, false);
5793 css_put(&memcg->css);
5794 }
5795 rcu_read_unlock();
5796 }
5797
5798 /* for remember boot option*/
5799 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5800 static int really_do_swap_account __initdata = 1;
5801 #else
5802 static int really_do_swap_account __initdata;
5803 #endif
5804
5805 static int __init enable_swap_account(char *s)
5806 {
5807 if (!strcmp(s, "1"))
5808 really_do_swap_account = 1;
5809 else if (!strcmp(s, "0"))
5810 really_do_swap_account = 0;
5811 return 1;
5812 }
5813 __setup("swapaccount=", enable_swap_account);
5814
5815 static struct cftype memsw_cgroup_files[] = {
5816 {
5817 .name = "memsw.usage_in_bytes",
5818 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5819 .read_u64 = mem_cgroup_read_u64,
5820 },
5821 {
5822 .name = "memsw.max_usage_in_bytes",
5823 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5824 .write = mem_cgroup_reset,
5825 .read_u64 = mem_cgroup_read_u64,
5826 },
5827 {
5828 .name = "memsw.limit_in_bytes",
5829 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5830 .write = mem_cgroup_write,
5831 .read_u64 = mem_cgroup_read_u64,
5832 },
5833 {
5834 .name = "memsw.failcnt",
5835 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5836 .write = mem_cgroup_reset,
5837 .read_u64 = mem_cgroup_read_u64,
5838 },
5839 { }, /* terminate */
5840 };
5841
5842 static int __init mem_cgroup_swap_init(void)
5843 {
5844 if (!mem_cgroup_disabled() && really_do_swap_account) {
5845 do_swap_account = 1;
5846 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5847 memsw_cgroup_files));
5848 }
5849 return 0;
5850 }
5851 subsys_initcall(mem_cgroup_swap_init);
5852
5853 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.154577 seconds and 5 git commands to generate.