mm: memcontrol: remove unnecessary PCG_MEM memory charge flag
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
304
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
353
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
360
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 };
373
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 {
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378 }
379
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 {
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383 }
384
385 #endif
386
387 /* Stuffs for move charges at task migration. */
388 /*
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 */
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
396 };
397
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412 };
413
414 static bool move_anon(void)
415 {
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
417 }
418
419 static bool move_file(void)
420 {
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 }
423
424 /*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
430
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
437 };
438
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
445 };
446
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
452
453 /*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458 static DEFINE_MUTEX(memcg_create_mutex);
459
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461 {
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 }
464
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467 {
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471 }
472
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474 {
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476 }
477
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479 {
480 return (memcg == root_mem_cgroup);
481 }
482
483 /*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
488
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490 {
491 return memcg->css.id;
492 }
493
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495 {
496 struct cgroup_subsys_state *css;
497
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
534 }
535 rcu_read_unlock();
536 }
537 }
538 EXPORT_SYMBOL(sock_update_memcg);
539
540 void sock_release_memcg(struct sock *sk)
541 {
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
547 }
548 }
549
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 {
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
555 return &memcg->tcp_mem;
556 }
557 EXPORT_SYMBOL(tcp_proto_cgroup);
558
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 {
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564 }
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 {
568 }
569 #endif
570
571 #ifdef CONFIG_MEMCG_KMEM
572 /*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
586
587 /*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
598 */
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601
602 /*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
610
611 static void memcg_free_cache_id(int id);
612
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
618 }
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
623 WARN_ON(page_counter_read(&memcg->kmem));
624 }
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 {
628 }
629 #endif /* CONFIG_MEMCG_KMEM */
630
631 static void disarm_static_keys(struct mem_cgroup *memcg)
632 {
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635 }
636
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639 {
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 }
645
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647 {
648 return &memcg->css;
649 }
650
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653 {
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
662 {
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664 }
665
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673 }
674
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
678 {
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705 }
706
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
709 {
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714 }
715
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
724 }
725
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727 {
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736 }
737
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739 {
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
743
744 mctz = soft_limit_tree_from_page(page);
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
769 }
770 }
771 }
772
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774 {
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
778
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
784 }
785 }
786 }
787
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790 {
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
812 }
813
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct mem_cgroup_per_zone *mz;
818
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
823 }
824
825 /*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
846 {
847 long val = 0;
848 int cpu;
849
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
860 }
861
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
864 {
865 unsigned long val = 0;
866 int cpu;
867
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
878 }
879
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
883 {
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
894
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 }
909
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 {
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916 }
917
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
921 {
922 unsigned long nr = 0;
923 int zid;
924
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
926
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
939 }
940
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
943 {
944 unsigned long nr = 0;
945 int nid;
946
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
976 }
977 return false;
978 }
979
980 /*
981 * Check events in order.
982 *
983 */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1005 }
1006 }
1007
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009 {
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 }
1020
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 struct mem_cgroup *memcg = NULL;
1024
1025 rcu_read_lock();
1026 do {
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1042 }
1043
1044 /**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1064 {
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1069
1070 if (mem_cgroup_disabled())
1071 return NULL;
1072
1073 if (!root)
1074 root = root_mem_cgroup;
1075
1076 if (prev && !reclaim)
1077 pos = prev;
1078
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1083 }
1084
1085 rcu_read_lock();
1086
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
1121 }
1122
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
1129
1130 if (css == &root->css)
1131 break;
1132
1133 if (css_tryget(css)) {
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
1143 }
1144
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1167 }
1168
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
1192 /*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1201
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1206
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1215
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230
1231 /**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242 {
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
1250
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1262 }
1263
1264 /**
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1272 */
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1274 {
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
1278 struct lruvec *lruvec;
1279
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
1284
1285 pc = lookup_page_cgroup(page);
1286 memcg = pc->mem_cgroup;
1287
1288 /*
1289 * Swapcache readahead pages are added to the LRU - and
1290 * possibly migrated - before they are charged. Ensure
1291 * pc->mem_cgroup is sane.
1292 */
1293 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1294 pc->mem_cgroup = memcg = root_mem_cgroup;
1295
1296 mz = mem_cgroup_page_zoneinfo(memcg, page);
1297 lruvec = &mz->lruvec;
1298 out:
1299 /*
1300 * Since a node can be onlined after the mem_cgroup was created,
1301 * we have to be prepared to initialize lruvec->zone here;
1302 * and if offlined then reonlined, we need to reinitialize it.
1303 */
1304 if (unlikely(lruvec->zone != zone))
1305 lruvec->zone = zone;
1306 return lruvec;
1307 }
1308
1309 /**
1310 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1311 * @lruvec: mem_cgroup per zone lru vector
1312 * @lru: index of lru list the page is sitting on
1313 * @nr_pages: positive when adding or negative when removing
1314 *
1315 * This function must be called when a page is added to or removed from an
1316 * lru list.
1317 */
1318 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1319 int nr_pages)
1320 {
1321 struct mem_cgroup_per_zone *mz;
1322 unsigned long *lru_size;
1323
1324 if (mem_cgroup_disabled())
1325 return;
1326
1327 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1328 lru_size = mz->lru_size + lru;
1329 *lru_size += nr_pages;
1330 VM_BUG_ON((long)(*lru_size) < 0);
1331 }
1332
1333 /*
1334 * Checks whether given mem is same or in the root_mem_cgroup's
1335 * hierarchy subtree
1336 */
1337 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
1339 {
1340 if (root_memcg == memcg)
1341 return true;
1342 if (!root_memcg->use_hierarchy || !memcg)
1343 return false;
1344 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1345 }
1346
1347 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1348 struct mem_cgroup *memcg)
1349 {
1350 bool ret;
1351
1352 rcu_read_lock();
1353 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1354 rcu_read_unlock();
1355 return ret;
1356 }
1357
1358 bool task_in_mem_cgroup(struct task_struct *task,
1359 const struct mem_cgroup *memcg)
1360 {
1361 struct mem_cgroup *curr = NULL;
1362 struct task_struct *p;
1363 bool ret;
1364
1365 p = find_lock_task_mm(task);
1366 if (p) {
1367 curr = get_mem_cgroup_from_mm(p->mm);
1368 task_unlock(p);
1369 } else {
1370 /*
1371 * All threads may have already detached their mm's, but the oom
1372 * killer still needs to detect if they have already been oom
1373 * killed to prevent needlessly killing additional tasks.
1374 */
1375 rcu_read_lock();
1376 curr = mem_cgroup_from_task(task);
1377 if (curr)
1378 css_get(&curr->css);
1379 rcu_read_unlock();
1380 }
1381 /*
1382 * We should check use_hierarchy of "memcg" not "curr". Because checking
1383 * use_hierarchy of "curr" here make this function true if hierarchy is
1384 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1385 * hierarchy(even if use_hierarchy is disabled in "memcg").
1386 */
1387 ret = mem_cgroup_same_or_subtree(memcg, curr);
1388 css_put(&curr->css);
1389 return ret;
1390 }
1391
1392 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1393 {
1394 unsigned long inactive_ratio;
1395 unsigned long inactive;
1396 unsigned long active;
1397 unsigned long gb;
1398
1399 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1400 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1401
1402 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1403 if (gb)
1404 inactive_ratio = int_sqrt(10 * gb);
1405 else
1406 inactive_ratio = 1;
1407
1408 return inactive * inactive_ratio < active;
1409 }
1410
1411 #define mem_cgroup_from_counter(counter, member) \
1412 container_of(counter, struct mem_cgroup, member)
1413
1414 /**
1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1416 * @memcg: the memory cgroup
1417 *
1418 * Returns the maximum amount of memory @mem can be charged with, in
1419 * pages.
1420 */
1421 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1422 {
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
1426
1427 count = page_counter_read(&memcg->memory);
1428 limit = ACCESS_ONCE(memcg->memory.limit);
1429 if (count < limit)
1430 margin = limit - count;
1431
1432 if (do_swap_account) {
1433 count = page_counter_read(&memcg->memsw);
1434 limit = ACCESS_ONCE(memcg->memsw.limit);
1435 if (count <= limit)
1436 margin = min(margin, limit - count);
1437 }
1438
1439 return margin;
1440 }
1441
1442 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1443 {
1444 /* root ? */
1445 if (mem_cgroup_disabled() || !memcg->css.parent)
1446 return vm_swappiness;
1447
1448 return memcg->swappiness;
1449 }
1450
1451 /*
1452 * memcg->moving_account is used for checking possibility that some thread is
1453 * calling move_account(). When a thread on CPU-A starts moving pages under
1454 * a memcg, other threads should check memcg->moving_account under
1455 * rcu_read_lock(), like this:
1456 *
1457 * CPU-A CPU-B
1458 * rcu_read_lock()
1459 * memcg->moving_account+1 if (memcg->mocing_account)
1460 * take heavy locks.
1461 * synchronize_rcu() update something.
1462 * rcu_read_unlock()
1463 * start move here.
1464 */
1465
1466 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1467 {
1468 atomic_inc(&memcg->moving_account);
1469 synchronize_rcu();
1470 }
1471
1472 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1473 {
1474 /*
1475 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1476 * We check NULL in callee rather than caller.
1477 */
1478 if (memcg)
1479 atomic_dec(&memcg->moving_account);
1480 }
1481
1482 /*
1483 * A routine for checking "mem" is under move_account() or not.
1484 *
1485 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1486 * moving cgroups. This is for waiting at high-memory pressure
1487 * caused by "move".
1488 */
1489 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1490 {
1491 struct mem_cgroup *from;
1492 struct mem_cgroup *to;
1493 bool ret = false;
1494 /*
1495 * Unlike task_move routines, we access mc.to, mc.from not under
1496 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1497 */
1498 spin_lock(&mc.lock);
1499 from = mc.from;
1500 to = mc.to;
1501 if (!from)
1502 goto unlock;
1503
1504 ret = mem_cgroup_same_or_subtree(memcg, from)
1505 || mem_cgroup_same_or_subtree(memcg, to);
1506 unlock:
1507 spin_unlock(&mc.lock);
1508 return ret;
1509 }
1510
1511 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1512 {
1513 if (mc.moving_task && current != mc.moving_task) {
1514 if (mem_cgroup_under_move(memcg)) {
1515 DEFINE_WAIT(wait);
1516 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1517 /* moving charge context might have finished. */
1518 if (mc.moving_task)
1519 schedule();
1520 finish_wait(&mc.waitq, &wait);
1521 return true;
1522 }
1523 }
1524 return false;
1525 }
1526
1527 /*
1528 * Take this lock when
1529 * - a code tries to modify page's memcg while it's USED.
1530 * - a code tries to modify page state accounting in a memcg.
1531 */
1532 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1533 unsigned long *flags)
1534 {
1535 spin_lock_irqsave(&memcg->move_lock, *flags);
1536 }
1537
1538 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1539 unsigned long *flags)
1540 {
1541 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1542 }
1543
1544 #define K(x) ((x) << (PAGE_SHIFT-10))
1545 /**
1546 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1547 * @memcg: The memory cgroup that went over limit
1548 * @p: Task that is going to be killed
1549 *
1550 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1551 * enabled
1552 */
1553 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1554 {
1555 /* oom_info_lock ensures that parallel ooms do not interleave */
1556 static DEFINE_MUTEX(oom_info_lock);
1557 struct mem_cgroup *iter;
1558 unsigned int i;
1559
1560 if (!p)
1561 return;
1562
1563 mutex_lock(&oom_info_lock);
1564 rcu_read_lock();
1565
1566 pr_info("Task in ");
1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1568 pr_info(" killed as a result of limit of ");
1569 pr_cont_cgroup_path(memcg->css.cgroup);
1570 pr_info("\n");
1571
1572 rcu_read_unlock();
1573
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1577 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 K((u64)page_counter_read(&memcg->memsw)),
1579 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1580 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->kmem)),
1582 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1583
1584 for_each_mem_cgroup_tree(iter, memcg) {
1585 pr_info("Memory cgroup stats for ");
1586 pr_cont_cgroup_path(iter->css.cgroup);
1587 pr_cont(":");
1588
1589 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1590 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1591 continue;
1592 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1593 K(mem_cgroup_read_stat(iter, i)));
1594 }
1595
1596 for (i = 0; i < NR_LRU_LISTS; i++)
1597 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1598 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1599
1600 pr_cont("\n");
1601 }
1602 mutex_unlock(&oom_info_lock);
1603 }
1604
1605 /*
1606 * This function returns the number of memcg under hierarchy tree. Returns
1607 * 1(self count) if no children.
1608 */
1609 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1610 {
1611 int num = 0;
1612 struct mem_cgroup *iter;
1613
1614 for_each_mem_cgroup_tree(iter, memcg)
1615 num++;
1616 return num;
1617 }
1618
1619 /*
1620 * Return the memory (and swap, if configured) limit for a memcg.
1621 */
1622 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1623 {
1624 unsigned long limit;
1625
1626 limit = memcg->memory.limit;
1627 if (mem_cgroup_swappiness(memcg)) {
1628 unsigned long memsw_limit;
1629
1630 memsw_limit = memcg->memsw.limit;
1631 limit = min(limit + total_swap_pages, memsw_limit);
1632 }
1633 return limit;
1634 }
1635
1636 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1637 int order)
1638 {
1639 struct mem_cgroup *iter;
1640 unsigned long chosen_points = 0;
1641 unsigned long totalpages;
1642 unsigned int points = 0;
1643 struct task_struct *chosen = NULL;
1644
1645 /*
1646 * If current has a pending SIGKILL or is exiting, then automatically
1647 * select it. The goal is to allow it to allocate so that it may
1648 * quickly exit and free its memory.
1649 */
1650 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1651 set_thread_flag(TIF_MEMDIE);
1652 return;
1653 }
1654
1655 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1656 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1657 for_each_mem_cgroup_tree(iter, memcg) {
1658 struct css_task_iter it;
1659 struct task_struct *task;
1660
1661 css_task_iter_start(&iter->css, &it);
1662 while ((task = css_task_iter_next(&it))) {
1663 switch (oom_scan_process_thread(task, totalpages, NULL,
1664 false)) {
1665 case OOM_SCAN_SELECT:
1666 if (chosen)
1667 put_task_struct(chosen);
1668 chosen = task;
1669 chosen_points = ULONG_MAX;
1670 get_task_struct(chosen);
1671 /* fall through */
1672 case OOM_SCAN_CONTINUE:
1673 continue;
1674 case OOM_SCAN_ABORT:
1675 css_task_iter_end(&it);
1676 mem_cgroup_iter_break(memcg, iter);
1677 if (chosen)
1678 put_task_struct(chosen);
1679 return;
1680 case OOM_SCAN_OK:
1681 break;
1682 };
1683 points = oom_badness(task, memcg, NULL, totalpages);
1684 if (!points || points < chosen_points)
1685 continue;
1686 /* Prefer thread group leaders for display purposes */
1687 if (points == chosen_points &&
1688 thread_group_leader(chosen))
1689 continue;
1690
1691 if (chosen)
1692 put_task_struct(chosen);
1693 chosen = task;
1694 chosen_points = points;
1695 get_task_struct(chosen);
1696 }
1697 css_task_iter_end(&it);
1698 }
1699
1700 if (!chosen)
1701 return;
1702 points = chosen_points * 1000 / totalpages;
1703 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1704 NULL, "Memory cgroup out of memory");
1705 }
1706
1707 /**
1708 * test_mem_cgroup_node_reclaimable
1709 * @memcg: the target memcg
1710 * @nid: the node ID to be checked.
1711 * @noswap : specify true here if the user wants flle only information.
1712 *
1713 * This function returns whether the specified memcg contains any
1714 * reclaimable pages on a node. Returns true if there are any reclaimable
1715 * pages in the node.
1716 */
1717 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1718 int nid, bool noswap)
1719 {
1720 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1721 return true;
1722 if (noswap || !total_swap_pages)
1723 return false;
1724 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1725 return true;
1726 return false;
1727
1728 }
1729 #if MAX_NUMNODES > 1
1730
1731 /*
1732 * Always updating the nodemask is not very good - even if we have an empty
1733 * list or the wrong list here, we can start from some node and traverse all
1734 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1735 *
1736 */
1737 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1738 {
1739 int nid;
1740 /*
1741 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1742 * pagein/pageout changes since the last update.
1743 */
1744 if (!atomic_read(&memcg->numainfo_events))
1745 return;
1746 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1747 return;
1748
1749 /* make a nodemask where this memcg uses memory from */
1750 memcg->scan_nodes = node_states[N_MEMORY];
1751
1752 for_each_node_mask(nid, node_states[N_MEMORY]) {
1753
1754 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1755 node_clear(nid, memcg->scan_nodes);
1756 }
1757
1758 atomic_set(&memcg->numainfo_events, 0);
1759 atomic_set(&memcg->numainfo_updating, 0);
1760 }
1761
1762 /*
1763 * Selecting a node where we start reclaim from. Because what we need is just
1764 * reducing usage counter, start from anywhere is O,K. Considering
1765 * memory reclaim from current node, there are pros. and cons.
1766 *
1767 * Freeing memory from current node means freeing memory from a node which
1768 * we'll use or we've used. So, it may make LRU bad. And if several threads
1769 * hit limits, it will see a contention on a node. But freeing from remote
1770 * node means more costs for memory reclaim because of memory latency.
1771 *
1772 * Now, we use round-robin. Better algorithm is welcomed.
1773 */
1774 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1775 {
1776 int node;
1777
1778 mem_cgroup_may_update_nodemask(memcg);
1779 node = memcg->last_scanned_node;
1780
1781 node = next_node(node, memcg->scan_nodes);
1782 if (node == MAX_NUMNODES)
1783 node = first_node(memcg->scan_nodes);
1784 /*
1785 * We call this when we hit limit, not when pages are added to LRU.
1786 * No LRU may hold pages because all pages are UNEVICTABLE or
1787 * memcg is too small and all pages are not on LRU. In that case,
1788 * we use curret node.
1789 */
1790 if (unlikely(node == MAX_NUMNODES))
1791 node = numa_node_id();
1792
1793 memcg->last_scanned_node = node;
1794 return node;
1795 }
1796
1797 /*
1798 * Check all nodes whether it contains reclaimable pages or not.
1799 * For quick scan, we make use of scan_nodes. This will allow us to skip
1800 * unused nodes. But scan_nodes is lazily updated and may not cotain
1801 * enough new information. We need to do double check.
1802 */
1803 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1804 {
1805 int nid;
1806
1807 /*
1808 * quick check...making use of scan_node.
1809 * We can skip unused nodes.
1810 */
1811 if (!nodes_empty(memcg->scan_nodes)) {
1812 for (nid = first_node(memcg->scan_nodes);
1813 nid < MAX_NUMNODES;
1814 nid = next_node(nid, memcg->scan_nodes)) {
1815
1816 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1817 return true;
1818 }
1819 }
1820 /*
1821 * Check rest of nodes.
1822 */
1823 for_each_node_state(nid, N_MEMORY) {
1824 if (node_isset(nid, memcg->scan_nodes))
1825 continue;
1826 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1827 return true;
1828 }
1829 return false;
1830 }
1831
1832 #else
1833 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1834 {
1835 return 0;
1836 }
1837
1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839 {
1840 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1841 }
1842 #endif
1843
1844 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1845 struct zone *zone,
1846 gfp_t gfp_mask,
1847 unsigned long *total_scanned)
1848 {
1849 struct mem_cgroup *victim = NULL;
1850 int total = 0;
1851 int loop = 0;
1852 unsigned long excess;
1853 unsigned long nr_scanned;
1854 struct mem_cgroup_reclaim_cookie reclaim = {
1855 .zone = zone,
1856 .priority = 0,
1857 };
1858
1859 excess = soft_limit_excess(root_memcg);
1860
1861 while (1) {
1862 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1863 if (!victim) {
1864 loop++;
1865 if (loop >= 2) {
1866 /*
1867 * If we have not been able to reclaim
1868 * anything, it might because there are
1869 * no reclaimable pages under this hierarchy
1870 */
1871 if (!total)
1872 break;
1873 /*
1874 * We want to do more targeted reclaim.
1875 * excess >> 2 is not to excessive so as to
1876 * reclaim too much, nor too less that we keep
1877 * coming back to reclaim from this cgroup
1878 */
1879 if (total >= (excess >> 2) ||
1880 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1881 break;
1882 }
1883 continue;
1884 }
1885 if (!mem_cgroup_reclaimable(victim, false))
1886 continue;
1887 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1888 zone, &nr_scanned);
1889 *total_scanned += nr_scanned;
1890 if (!soft_limit_excess(root_memcg))
1891 break;
1892 }
1893 mem_cgroup_iter_break(root_memcg, victim);
1894 return total;
1895 }
1896
1897 #ifdef CONFIG_LOCKDEP
1898 static struct lockdep_map memcg_oom_lock_dep_map = {
1899 .name = "memcg_oom_lock",
1900 };
1901 #endif
1902
1903 static DEFINE_SPINLOCK(memcg_oom_lock);
1904
1905 /*
1906 * Check OOM-Killer is already running under our hierarchy.
1907 * If someone is running, return false.
1908 */
1909 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1910 {
1911 struct mem_cgroup *iter, *failed = NULL;
1912
1913 spin_lock(&memcg_oom_lock);
1914
1915 for_each_mem_cgroup_tree(iter, memcg) {
1916 if (iter->oom_lock) {
1917 /*
1918 * this subtree of our hierarchy is already locked
1919 * so we cannot give a lock.
1920 */
1921 failed = iter;
1922 mem_cgroup_iter_break(memcg, iter);
1923 break;
1924 } else
1925 iter->oom_lock = true;
1926 }
1927
1928 if (failed) {
1929 /*
1930 * OK, we failed to lock the whole subtree so we have
1931 * to clean up what we set up to the failing subtree
1932 */
1933 for_each_mem_cgroup_tree(iter, memcg) {
1934 if (iter == failed) {
1935 mem_cgroup_iter_break(memcg, iter);
1936 break;
1937 }
1938 iter->oom_lock = false;
1939 }
1940 } else
1941 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1942
1943 spin_unlock(&memcg_oom_lock);
1944
1945 return !failed;
1946 }
1947
1948 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1949 {
1950 struct mem_cgroup *iter;
1951
1952 spin_lock(&memcg_oom_lock);
1953 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1954 for_each_mem_cgroup_tree(iter, memcg)
1955 iter->oom_lock = false;
1956 spin_unlock(&memcg_oom_lock);
1957 }
1958
1959 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1960 {
1961 struct mem_cgroup *iter;
1962
1963 for_each_mem_cgroup_tree(iter, memcg)
1964 atomic_inc(&iter->under_oom);
1965 }
1966
1967 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1968 {
1969 struct mem_cgroup *iter;
1970
1971 /*
1972 * When a new child is created while the hierarchy is under oom,
1973 * mem_cgroup_oom_lock() may not be called. We have to use
1974 * atomic_add_unless() here.
1975 */
1976 for_each_mem_cgroup_tree(iter, memcg)
1977 atomic_add_unless(&iter->under_oom, -1, 0);
1978 }
1979
1980 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1981
1982 struct oom_wait_info {
1983 struct mem_cgroup *memcg;
1984 wait_queue_t wait;
1985 };
1986
1987 static int memcg_oom_wake_function(wait_queue_t *wait,
1988 unsigned mode, int sync, void *arg)
1989 {
1990 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1991 struct mem_cgroup *oom_wait_memcg;
1992 struct oom_wait_info *oom_wait_info;
1993
1994 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1995 oom_wait_memcg = oom_wait_info->memcg;
1996
1997 /*
1998 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1999 * Then we can use css_is_ancestor without taking care of RCU.
2000 */
2001 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2002 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2003 return 0;
2004 return autoremove_wake_function(wait, mode, sync, arg);
2005 }
2006
2007 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2008 {
2009 atomic_inc(&memcg->oom_wakeups);
2010 /* for filtering, pass "memcg" as argument. */
2011 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2012 }
2013
2014 static void memcg_oom_recover(struct mem_cgroup *memcg)
2015 {
2016 if (memcg && atomic_read(&memcg->under_oom))
2017 memcg_wakeup_oom(memcg);
2018 }
2019
2020 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2021 {
2022 if (!current->memcg_oom.may_oom)
2023 return;
2024 /*
2025 * We are in the middle of the charge context here, so we
2026 * don't want to block when potentially sitting on a callstack
2027 * that holds all kinds of filesystem and mm locks.
2028 *
2029 * Also, the caller may handle a failed allocation gracefully
2030 * (like optional page cache readahead) and so an OOM killer
2031 * invocation might not even be necessary.
2032 *
2033 * That's why we don't do anything here except remember the
2034 * OOM context and then deal with it at the end of the page
2035 * fault when the stack is unwound, the locks are released,
2036 * and when we know whether the fault was overall successful.
2037 */
2038 css_get(&memcg->css);
2039 current->memcg_oom.memcg = memcg;
2040 current->memcg_oom.gfp_mask = mask;
2041 current->memcg_oom.order = order;
2042 }
2043
2044 /**
2045 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2046 * @handle: actually kill/wait or just clean up the OOM state
2047 *
2048 * This has to be called at the end of a page fault if the memcg OOM
2049 * handler was enabled.
2050 *
2051 * Memcg supports userspace OOM handling where failed allocations must
2052 * sleep on a waitqueue until the userspace task resolves the
2053 * situation. Sleeping directly in the charge context with all kinds
2054 * of locks held is not a good idea, instead we remember an OOM state
2055 * in the task and mem_cgroup_oom_synchronize() has to be called at
2056 * the end of the page fault to complete the OOM handling.
2057 *
2058 * Returns %true if an ongoing memcg OOM situation was detected and
2059 * completed, %false otherwise.
2060 */
2061 bool mem_cgroup_oom_synchronize(bool handle)
2062 {
2063 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2064 struct oom_wait_info owait;
2065 bool locked;
2066
2067 /* OOM is global, do not handle */
2068 if (!memcg)
2069 return false;
2070
2071 if (!handle)
2072 goto cleanup;
2073
2074 owait.memcg = memcg;
2075 owait.wait.flags = 0;
2076 owait.wait.func = memcg_oom_wake_function;
2077 owait.wait.private = current;
2078 INIT_LIST_HEAD(&owait.wait.task_list);
2079
2080 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2081 mem_cgroup_mark_under_oom(memcg);
2082
2083 locked = mem_cgroup_oom_trylock(memcg);
2084
2085 if (locked)
2086 mem_cgroup_oom_notify(memcg);
2087
2088 if (locked && !memcg->oom_kill_disable) {
2089 mem_cgroup_unmark_under_oom(memcg);
2090 finish_wait(&memcg_oom_waitq, &owait.wait);
2091 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2092 current->memcg_oom.order);
2093 } else {
2094 schedule();
2095 mem_cgroup_unmark_under_oom(memcg);
2096 finish_wait(&memcg_oom_waitq, &owait.wait);
2097 }
2098
2099 if (locked) {
2100 mem_cgroup_oom_unlock(memcg);
2101 /*
2102 * There is no guarantee that an OOM-lock contender
2103 * sees the wakeups triggered by the OOM kill
2104 * uncharges. Wake any sleepers explicitely.
2105 */
2106 memcg_oom_recover(memcg);
2107 }
2108 cleanup:
2109 current->memcg_oom.memcg = NULL;
2110 css_put(&memcg->css);
2111 return true;
2112 }
2113
2114 /**
2115 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2116 * @page: page that is going to change accounted state
2117 * @locked: &memcg->move_lock slowpath was taken
2118 * @flags: IRQ-state flags for &memcg->move_lock
2119 *
2120 * This function must mark the beginning of an accounted page state
2121 * change to prevent double accounting when the page is concurrently
2122 * being moved to another memcg:
2123 *
2124 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2125 * if (TestClearPageState(page))
2126 * mem_cgroup_update_page_stat(memcg, state, -1);
2127 * mem_cgroup_end_page_stat(memcg, locked, flags);
2128 *
2129 * The RCU lock is held throughout the transaction. The fast path can
2130 * get away without acquiring the memcg->move_lock (@locked is false)
2131 * because page moving starts with an RCU grace period.
2132 *
2133 * The RCU lock also protects the memcg from being freed when the page
2134 * state that is going to change is the only thing preventing the page
2135 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2136 * which allows migration to go ahead and uncharge the page before the
2137 * account transaction might be complete.
2138 */
2139 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2140 bool *locked,
2141 unsigned long *flags)
2142 {
2143 struct mem_cgroup *memcg;
2144 struct page_cgroup *pc;
2145
2146 rcu_read_lock();
2147
2148 if (mem_cgroup_disabled())
2149 return NULL;
2150
2151 pc = lookup_page_cgroup(page);
2152 again:
2153 memcg = pc->mem_cgroup;
2154 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2155 return NULL;
2156
2157 *locked = false;
2158 if (atomic_read(&memcg->moving_account) <= 0)
2159 return memcg;
2160
2161 move_lock_mem_cgroup(memcg, flags);
2162 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2163 move_unlock_mem_cgroup(memcg, flags);
2164 goto again;
2165 }
2166 *locked = true;
2167
2168 return memcg;
2169 }
2170
2171 /**
2172 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2173 * @memcg: the memcg that was accounted against
2174 * @locked: value received from mem_cgroup_begin_page_stat()
2175 * @flags: value received from mem_cgroup_begin_page_stat()
2176 */
2177 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2178 unsigned long flags)
2179 {
2180 if (memcg && locked)
2181 move_unlock_mem_cgroup(memcg, &flags);
2182
2183 rcu_read_unlock();
2184 }
2185
2186 /**
2187 * mem_cgroup_update_page_stat - update page state statistics
2188 * @memcg: memcg to account against
2189 * @idx: page state item to account
2190 * @val: number of pages (positive or negative)
2191 *
2192 * See mem_cgroup_begin_page_stat() for locking requirements.
2193 */
2194 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2195 enum mem_cgroup_stat_index idx, int val)
2196 {
2197 VM_BUG_ON(!rcu_read_lock_held());
2198
2199 if (memcg)
2200 this_cpu_add(memcg->stat->count[idx], val);
2201 }
2202
2203 /*
2204 * size of first charge trial. "32" comes from vmscan.c's magic value.
2205 * TODO: maybe necessary to use big numbers in big irons.
2206 */
2207 #define CHARGE_BATCH 32U
2208 struct memcg_stock_pcp {
2209 struct mem_cgroup *cached; /* this never be root cgroup */
2210 unsigned int nr_pages;
2211 struct work_struct work;
2212 unsigned long flags;
2213 #define FLUSHING_CACHED_CHARGE 0
2214 };
2215 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2216 static DEFINE_MUTEX(percpu_charge_mutex);
2217
2218 /**
2219 * consume_stock: Try to consume stocked charge on this cpu.
2220 * @memcg: memcg to consume from.
2221 * @nr_pages: how many pages to charge.
2222 *
2223 * The charges will only happen if @memcg matches the current cpu's memcg
2224 * stock, and at least @nr_pages are available in that stock. Failure to
2225 * service an allocation will refill the stock.
2226 *
2227 * returns true if successful, false otherwise.
2228 */
2229 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2230 {
2231 struct memcg_stock_pcp *stock;
2232 bool ret = false;
2233
2234 if (nr_pages > CHARGE_BATCH)
2235 return ret;
2236
2237 stock = &get_cpu_var(memcg_stock);
2238 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2239 stock->nr_pages -= nr_pages;
2240 ret = true;
2241 }
2242 put_cpu_var(memcg_stock);
2243 return ret;
2244 }
2245
2246 /*
2247 * Returns stocks cached in percpu and reset cached information.
2248 */
2249 static void drain_stock(struct memcg_stock_pcp *stock)
2250 {
2251 struct mem_cgroup *old = stock->cached;
2252
2253 if (stock->nr_pages) {
2254 page_counter_uncharge(&old->memory, stock->nr_pages);
2255 if (do_swap_account)
2256 page_counter_uncharge(&old->memsw, stock->nr_pages);
2257 css_put_many(&old->css, stock->nr_pages);
2258 stock->nr_pages = 0;
2259 }
2260 stock->cached = NULL;
2261 }
2262
2263 /*
2264 * This must be called under preempt disabled or must be called by
2265 * a thread which is pinned to local cpu.
2266 */
2267 static void drain_local_stock(struct work_struct *dummy)
2268 {
2269 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2270 drain_stock(stock);
2271 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2272 }
2273
2274 static void __init memcg_stock_init(void)
2275 {
2276 int cpu;
2277
2278 for_each_possible_cpu(cpu) {
2279 struct memcg_stock_pcp *stock =
2280 &per_cpu(memcg_stock, cpu);
2281 INIT_WORK(&stock->work, drain_local_stock);
2282 }
2283 }
2284
2285 /*
2286 * Cache charges(val) to local per_cpu area.
2287 * This will be consumed by consume_stock() function, later.
2288 */
2289 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2290 {
2291 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2292
2293 if (stock->cached != memcg) { /* reset if necessary */
2294 drain_stock(stock);
2295 stock->cached = memcg;
2296 }
2297 stock->nr_pages += nr_pages;
2298 put_cpu_var(memcg_stock);
2299 }
2300
2301 /*
2302 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2303 * of the hierarchy under it.
2304 */
2305 static void drain_all_stock(struct mem_cgroup *root_memcg)
2306 {
2307 int cpu, curcpu;
2308
2309 /* If someone's already draining, avoid adding running more workers. */
2310 if (!mutex_trylock(&percpu_charge_mutex))
2311 return;
2312 /* Notify other cpus that system-wide "drain" is running */
2313 get_online_cpus();
2314 curcpu = get_cpu();
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317 struct mem_cgroup *memcg;
2318
2319 memcg = stock->cached;
2320 if (!memcg || !stock->nr_pages)
2321 continue;
2322 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2323 continue;
2324 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 if (cpu == curcpu)
2326 drain_local_stock(&stock->work);
2327 else
2328 schedule_work_on(cpu, &stock->work);
2329 }
2330 }
2331 put_cpu();
2332 put_online_cpus();
2333 mutex_unlock(&percpu_charge_mutex);
2334 }
2335
2336 /*
2337 * This function drains percpu counter value from DEAD cpu and
2338 * move it to local cpu. Note that this function can be preempted.
2339 */
2340 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2341 {
2342 int i;
2343
2344 spin_lock(&memcg->pcp_counter_lock);
2345 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2346 long x = per_cpu(memcg->stat->count[i], cpu);
2347
2348 per_cpu(memcg->stat->count[i], cpu) = 0;
2349 memcg->nocpu_base.count[i] += x;
2350 }
2351 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2352 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2353
2354 per_cpu(memcg->stat->events[i], cpu) = 0;
2355 memcg->nocpu_base.events[i] += x;
2356 }
2357 spin_unlock(&memcg->pcp_counter_lock);
2358 }
2359
2360 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2361 unsigned long action,
2362 void *hcpu)
2363 {
2364 int cpu = (unsigned long)hcpu;
2365 struct memcg_stock_pcp *stock;
2366 struct mem_cgroup *iter;
2367
2368 if (action == CPU_ONLINE)
2369 return NOTIFY_OK;
2370
2371 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2372 return NOTIFY_OK;
2373
2374 for_each_mem_cgroup(iter)
2375 mem_cgroup_drain_pcp_counter(iter, cpu);
2376
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379 return NOTIFY_OK;
2380 }
2381
2382 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2383 unsigned int nr_pages)
2384 {
2385 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2386 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2387 struct mem_cgroup *mem_over_limit;
2388 struct page_counter *counter;
2389 unsigned long nr_reclaimed;
2390 bool may_swap = true;
2391 bool drained = false;
2392 int ret = 0;
2393
2394 if (mem_cgroup_is_root(memcg))
2395 goto done;
2396 retry:
2397 if (consume_stock(memcg, nr_pages))
2398 goto done;
2399
2400 if (!do_swap_account ||
2401 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2402 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2403 goto done_restock;
2404 if (do_swap_account)
2405 page_counter_uncharge(&memcg->memsw, batch);
2406 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2407 } else {
2408 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2409 may_swap = false;
2410 }
2411
2412 if (batch > nr_pages) {
2413 batch = nr_pages;
2414 goto retry;
2415 }
2416
2417 /*
2418 * Unlike in global OOM situations, memcg is not in a physical
2419 * memory shortage. Allow dying and OOM-killed tasks to
2420 * bypass the last charges so that they can exit quickly and
2421 * free their memory.
2422 */
2423 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2424 fatal_signal_pending(current) ||
2425 current->flags & PF_EXITING))
2426 goto bypass;
2427
2428 if (unlikely(task_in_memcg_oom(current)))
2429 goto nomem;
2430
2431 if (!(gfp_mask & __GFP_WAIT))
2432 goto nomem;
2433
2434 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2435 gfp_mask, may_swap);
2436
2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438 goto retry;
2439
2440 if (!drained) {
2441 drain_all_stock(mem_over_limit);
2442 drained = true;
2443 goto retry;
2444 }
2445
2446 if (gfp_mask & __GFP_NORETRY)
2447 goto nomem;
2448 /*
2449 * Even though the limit is exceeded at this point, reclaim
2450 * may have been able to free some pages. Retry the charge
2451 * before killing the task.
2452 *
2453 * Only for regular pages, though: huge pages are rather
2454 * unlikely to succeed so close to the limit, and we fall back
2455 * to regular pages anyway in case of failure.
2456 */
2457 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2458 goto retry;
2459 /*
2460 * At task move, charge accounts can be doubly counted. So, it's
2461 * better to wait until the end of task_move if something is going on.
2462 */
2463 if (mem_cgroup_wait_acct_move(mem_over_limit))
2464 goto retry;
2465
2466 if (nr_retries--)
2467 goto retry;
2468
2469 if (gfp_mask & __GFP_NOFAIL)
2470 goto bypass;
2471
2472 if (fatal_signal_pending(current))
2473 goto bypass;
2474
2475 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2476 nomem:
2477 if (!(gfp_mask & __GFP_NOFAIL))
2478 return -ENOMEM;
2479 bypass:
2480 return -EINTR;
2481
2482 done_restock:
2483 css_get_many(&memcg->css, batch);
2484 if (batch > nr_pages)
2485 refill_stock(memcg, batch - nr_pages);
2486 done:
2487 return ret;
2488 }
2489
2490 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2491 {
2492 if (mem_cgroup_is_root(memcg))
2493 return;
2494
2495 page_counter_uncharge(&memcg->memory, nr_pages);
2496 if (do_swap_account)
2497 page_counter_uncharge(&memcg->memsw, nr_pages);
2498
2499 css_put_many(&memcg->css, nr_pages);
2500 }
2501
2502 /*
2503 * A helper function to get mem_cgroup from ID. must be called under
2504 * rcu_read_lock(). The caller is responsible for calling
2505 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2506 * refcnt from swap can be called against removed memcg.)
2507 */
2508 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2509 {
2510 /* ID 0 is unused ID */
2511 if (!id)
2512 return NULL;
2513 return mem_cgroup_from_id(id);
2514 }
2515
2516 /*
2517 * try_get_mem_cgroup_from_page - look up page's memcg association
2518 * @page: the page
2519 *
2520 * Look up, get a css reference, and return the memcg that owns @page.
2521 *
2522 * The page must be locked to prevent racing with swap-in and page
2523 * cache charges. If coming from an unlocked page table, the caller
2524 * must ensure the page is on the LRU or this can race with charging.
2525 */
2526 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2527 {
2528 struct mem_cgroup *memcg = NULL;
2529 struct page_cgroup *pc;
2530 unsigned short id;
2531 swp_entry_t ent;
2532
2533 VM_BUG_ON_PAGE(!PageLocked(page), page);
2534
2535 pc = lookup_page_cgroup(page);
2536 if (PageCgroupUsed(pc)) {
2537 memcg = pc->mem_cgroup;
2538 if (memcg && !css_tryget_online(&memcg->css))
2539 memcg = NULL;
2540 } else if (PageSwapCache(page)) {
2541 ent.val = page_private(page);
2542 id = lookup_swap_cgroup_id(ent);
2543 rcu_read_lock();
2544 memcg = mem_cgroup_lookup(id);
2545 if (memcg && !css_tryget_online(&memcg->css))
2546 memcg = NULL;
2547 rcu_read_unlock();
2548 }
2549 return memcg;
2550 }
2551
2552 static void lock_page_lru(struct page *page, int *isolated)
2553 {
2554 struct zone *zone = page_zone(page);
2555
2556 spin_lock_irq(&zone->lru_lock);
2557 if (PageLRU(page)) {
2558 struct lruvec *lruvec;
2559
2560 lruvec = mem_cgroup_page_lruvec(page, zone);
2561 ClearPageLRU(page);
2562 del_page_from_lru_list(page, lruvec, page_lru(page));
2563 *isolated = 1;
2564 } else
2565 *isolated = 0;
2566 }
2567
2568 static void unlock_page_lru(struct page *page, int isolated)
2569 {
2570 struct zone *zone = page_zone(page);
2571
2572 if (isolated) {
2573 struct lruvec *lruvec;
2574
2575 lruvec = mem_cgroup_page_lruvec(page, zone);
2576 VM_BUG_ON_PAGE(PageLRU(page), page);
2577 SetPageLRU(page);
2578 add_page_to_lru_list(page, lruvec, page_lru(page));
2579 }
2580 spin_unlock_irq(&zone->lru_lock);
2581 }
2582
2583 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2584 bool lrucare)
2585 {
2586 struct page_cgroup *pc = lookup_page_cgroup(page);
2587 int isolated;
2588
2589 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2590 /*
2591 * we don't need page_cgroup_lock about tail pages, becase they are not
2592 * accessed by any other context at this point.
2593 */
2594
2595 /*
2596 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2597 * may already be on some other mem_cgroup's LRU. Take care of it.
2598 */
2599 if (lrucare)
2600 lock_page_lru(page, &isolated);
2601
2602 /*
2603 * Nobody should be changing or seriously looking at
2604 * pc->mem_cgroup and pc->flags at this point:
2605 *
2606 * - the page is uncharged
2607 *
2608 * - the page is off-LRU
2609 *
2610 * - an anonymous fault has exclusive page access, except for
2611 * a locked page table
2612 *
2613 * - a page cache insertion, a swapin fault, or a migration
2614 * have the page locked
2615 */
2616 pc->mem_cgroup = memcg;
2617 pc->flags = PCG_USED;
2618
2619 if (lrucare)
2620 unlock_page_lru(page, isolated);
2621 }
2622
2623 #ifdef CONFIG_MEMCG_KMEM
2624 /*
2625 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2626 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2627 */
2628 static DEFINE_MUTEX(memcg_slab_mutex);
2629
2630 /*
2631 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2632 * in the memcg_cache_params struct.
2633 */
2634 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2635 {
2636 struct kmem_cache *cachep;
2637
2638 VM_BUG_ON(p->is_root_cache);
2639 cachep = p->root_cache;
2640 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2641 }
2642
2643 #ifdef CONFIG_SLABINFO
2644 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2645 {
2646 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2647 struct memcg_cache_params *params;
2648
2649 if (!memcg_kmem_is_active(memcg))
2650 return -EIO;
2651
2652 print_slabinfo_header(m);
2653
2654 mutex_lock(&memcg_slab_mutex);
2655 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2656 cache_show(memcg_params_to_cache(params), m);
2657 mutex_unlock(&memcg_slab_mutex);
2658
2659 return 0;
2660 }
2661 #endif
2662
2663 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2664 unsigned long nr_pages)
2665 {
2666 struct page_counter *counter;
2667 int ret = 0;
2668
2669 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2670 if (ret < 0)
2671 return ret;
2672
2673 ret = try_charge(memcg, gfp, nr_pages);
2674 if (ret == -EINTR) {
2675 /*
2676 * try_charge() chose to bypass to root due to OOM kill or
2677 * fatal signal. Since our only options are to either fail
2678 * the allocation or charge it to this cgroup, do it as a
2679 * temporary condition. But we can't fail. From a kmem/slab
2680 * perspective, the cache has already been selected, by
2681 * mem_cgroup_kmem_get_cache(), so it is too late to change
2682 * our minds.
2683 *
2684 * This condition will only trigger if the task entered
2685 * memcg_charge_kmem in a sane state, but was OOM-killed
2686 * during try_charge() above. Tasks that were already dying
2687 * when the allocation triggers should have been already
2688 * directed to the root cgroup in memcontrol.h
2689 */
2690 page_counter_charge(&memcg->memory, nr_pages);
2691 if (do_swap_account)
2692 page_counter_charge(&memcg->memsw, nr_pages);
2693 css_get_many(&memcg->css, nr_pages);
2694 ret = 0;
2695 } else if (ret)
2696 page_counter_uncharge(&memcg->kmem, nr_pages);
2697
2698 return ret;
2699 }
2700
2701 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2702 unsigned long nr_pages)
2703 {
2704 page_counter_uncharge(&memcg->memory, nr_pages);
2705 if (do_swap_account)
2706 page_counter_uncharge(&memcg->memsw, nr_pages);
2707
2708 page_counter_uncharge(&memcg->kmem, nr_pages);
2709
2710 css_put_many(&memcg->css, nr_pages);
2711 }
2712
2713 /*
2714 * helper for acessing a memcg's index. It will be used as an index in the
2715 * child cache array in kmem_cache, and also to derive its name. This function
2716 * will return -1 when this is not a kmem-limited memcg.
2717 */
2718 int memcg_cache_id(struct mem_cgroup *memcg)
2719 {
2720 return memcg ? memcg->kmemcg_id : -1;
2721 }
2722
2723 static int memcg_alloc_cache_id(void)
2724 {
2725 int id, size;
2726 int err;
2727
2728 id = ida_simple_get(&kmem_limited_groups,
2729 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2730 if (id < 0)
2731 return id;
2732
2733 if (id < memcg_limited_groups_array_size)
2734 return id;
2735
2736 /*
2737 * There's no space for the new id in memcg_caches arrays,
2738 * so we have to grow them.
2739 */
2740
2741 size = 2 * (id + 1);
2742 if (size < MEMCG_CACHES_MIN_SIZE)
2743 size = MEMCG_CACHES_MIN_SIZE;
2744 else if (size > MEMCG_CACHES_MAX_SIZE)
2745 size = MEMCG_CACHES_MAX_SIZE;
2746
2747 mutex_lock(&memcg_slab_mutex);
2748 err = memcg_update_all_caches(size);
2749 mutex_unlock(&memcg_slab_mutex);
2750
2751 if (err) {
2752 ida_simple_remove(&kmem_limited_groups, id);
2753 return err;
2754 }
2755 return id;
2756 }
2757
2758 static void memcg_free_cache_id(int id)
2759 {
2760 ida_simple_remove(&kmem_limited_groups, id);
2761 }
2762
2763 /*
2764 * We should update the current array size iff all caches updates succeed. This
2765 * can only be done from the slab side. The slab mutex needs to be held when
2766 * calling this.
2767 */
2768 void memcg_update_array_size(int num)
2769 {
2770 memcg_limited_groups_array_size = num;
2771 }
2772
2773 static void memcg_register_cache(struct mem_cgroup *memcg,
2774 struct kmem_cache *root_cache)
2775 {
2776 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2777 memcg_slab_mutex */
2778 struct kmem_cache *cachep;
2779 int id;
2780
2781 lockdep_assert_held(&memcg_slab_mutex);
2782
2783 id = memcg_cache_id(memcg);
2784
2785 /*
2786 * Since per-memcg caches are created asynchronously on first
2787 * allocation (see memcg_kmem_get_cache()), several threads can try to
2788 * create the same cache, but only one of them may succeed.
2789 */
2790 if (cache_from_memcg_idx(root_cache, id))
2791 return;
2792
2793 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2794 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2795 /*
2796 * If we could not create a memcg cache, do not complain, because
2797 * that's not critical at all as we can always proceed with the root
2798 * cache.
2799 */
2800 if (!cachep)
2801 return;
2802
2803 css_get(&memcg->css);
2804 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2805
2806 /*
2807 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2808 * barrier here to ensure nobody will see the kmem_cache partially
2809 * initialized.
2810 */
2811 smp_wmb();
2812
2813 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2814 root_cache->memcg_params->memcg_caches[id] = cachep;
2815 }
2816
2817 static void memcg_unregister_cache(struct kmem_cache *cachep)
2818 {
2819 struct kmem_cache *root_cache;
2820 struct mem_cgroup *memcg;
2821 int id;
2822
2823 lockdep_assert_held(&memcg_slab_mutex);
2824
2825 BUG_ON(is_root_cache(cachep));
2826
2827 root_cache = cachep->memcg_params->root_cache;
2828 memcg = cachep->memcg_params->memcg;
2829 id = memcg_cache_id(memcg);
2830
2831 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2832 root_cache->memcg_params->memcg_caches[id] = NULL;
2833
2834 list_del(&cachep->memcg_params->list);
2835
2836 kmem_cache_destroy(cachep);
2837
2838 /* drop the reference taken in memcg_register_cache */
2839 css_put(&memcg->css);
2840 }
2841
2842 /*
2843 * During the creation a new cache, we need to disable our accounting mechanism
2844 * altogether. This is true even if we are not creating, but rather just
2845 * enqueing new caches to be created.
2846 *
2847 * This is because that process will trigger allocations; some visible, like
2848 * explicit kmallocs to auxiliary data structures, name strings and internal
2849 * cache structures; some well concealed, like INIT_WORK() that can allocate
2850 * objects during debug.
2851 *
2852 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2853 * to it. This may not be a bounded recursion: since the first cache creation
2854 * failed to complete (waiting on the allocation), we'll just try to create the
2855 * cache again, failing at the same point.
2856 *
2857 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2858 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2859 * inside the following two functions.
2860 */
2861 static inline void memcg_stop_kmem_account(void)
2862 {
2863 VM_BUG_ON(!current->mm);
2864 current->memcg_kmem_skip_account++;
2865 }
2866
2867 static inline void memcg_resume_kmem_account(void)
2868 {
2869 VM_BUG_ON(!current->mm);
2870 current->memcg_kmem_skip_account--;
2871 }
2872
2873 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2874 {
2875 struct kmem_cache *c;
2876 int i, failed = 0;
2877
2878 mutex_lock(&memcg_slab_mutex);
2879 for_each_memcg_cache_index(i) {
2880 c = cache_from_memcg_idx(s, i);
2881 if (!c)
2882 continue;
2883
2884 memcg_unregister_cache(c);
2885
2886 if (cache_from_memcg_idx(s, i))
2887 failed++;
2888 }
2889 mutex_unlock(&memcg_slab_mutex);
2890 return failed;
2891 }
2892
2893 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2894 {
2895 struct kmem_cache *cachep;
2896 struct memcg_cache_params *params, *tmp;
2897
2898 if (!memcg_kmem_is_active(memcg))
2899 return;
2900
2901 mutex_lock(&memcg_slab_mutex);
2902 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2903 cachep = memcg_params_to_cache(params);
2904 kmem_cache_shrink(cachep);
2905 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2906 memcg_unregister_cache(cachep);
2907 }
2908 mutex_unlock(&memcg_slab_mutex);
2909 }
2910
2911 struct memcg_register_cache_work {
2912 struct mem_cgroup *memcg;
2913 struct kmem_cache *cachep;
2914 struct work_struct work;
2915 };
2916
2917 static void memcg_register_cache_func(struct work_struct *w)
2918 {
2919 struct memcg_register_cache_work *cw =
2920 container_of(w, struct memcg_register_cache_work, work);
2921 struct mem_cgroup *memcg = cw->memcg;
2922 struct kmem_cache *cachep = cw->cachep;
2923
2924 mutex_lock(&memcg_slab_mutex);
2925 memcg_register_cache(memcg, cachep);
2926 mutex_unlock(&memcg_slab_mutex);
2927
2928 css_put(&memcg->css);
2929 kfree(cw);
2930 }
2931
2932 /*
2933 * Enqueue the creation of a per-memcg kmem_cache.
2934 */
2935 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2936 struct kmem_cache *cachep)
2937 {
2938 struct memcg_register_cache_work *cw;
2939
2940 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2941 if (cw == NULL) {
2942 css_put(&memcg->css);
2943 return;
2944 }
2945
2946 cw->memcg = memcg;
2947 cw->cachep = cachep;
2948
2949 INIT_WORK(&cw->work, memcg_register_cache_func);
2950 schedule_work(&cw->work);
2951 }
2952
2953 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2954 struct kmem_cache *cachep)
2955 {
2956 /*
2957 * We need to stop accounting when we kmalloc, because if the
2958 * corresponding kmalloc cache is not yet created, the first allocation
2959 * in __memcg_schedule_register_cache will recurse.
2960 *
2961 * However, it is better to enclose the whole function. Depending on
2962 * the debugging options enabled, INIT_WORK(), for instance, can
2963 * trigger an allocation. This too, will make us recurse. Because at
2964 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2965 * the safest choice is to do it like this, wrapping the whole function.
2966 */
2967 memcg_stop_kmem_account();
2968 __memcg_schedule_register_cache(memcg, cachep);
2969 memcg_resume_kmem_account();
2970 }
2971
2972 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2973 {
2974 unsigned int nr_pages = 1 << order;
2975 int res;
2976
2977 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2978 if (!res)
2979 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2980 return res;
2981 }
2982
2983 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2984 {
2985 unsigned int nr_pages = 1 << order;
2986
2987 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2988 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2989 }
2990
2991 /*
2992 * Return the kmem_cache we're supposed to use for a slab allocation.
2993 * We try to use the current memcg's version of the cache.
2994 *
2995 * If the cache does not exist yet, if we are the first user of it,
2996 * we either create it immediately, if possible, or create it asynchronously
2997 * in a workqueue.
2998 * In the latter case, we will let the current allocation go through with
2999 * the original cache.
3000 *
3001 * Can't be called in interrupt context or from kernel threads.
3002 * This function needs to be called with rcu_read_lock() held.
3003 */
3004 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3005 gfp_t gfp)
3006 {
3007 struct mem_cgroup *memcg;
3008 struct kmem_cache *memcg_cachep;
3009
3010 VM_BUG_ON(!cachep->memcg_params);
3011 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3012
3013 if (!current->mm || current->memcg_kmem_skip_account)
3014 return cachep;
3015
3016 rcu_read_lock();
3017 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3018
3019 if (!memcg_kmem_is_active(memcg))
3020 goto out;
3021
3022 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3023 if (likely(memcg_cachep)) {
3024 cachep = memcg_cachep;
3025 goto out;
3026 }
3027
3028 /* The corresponding put will be done in the workqueue. */
3029 if (!css_tryget_online(&memcg->css))
3030 goto out;
3031 rcu_read_unlock();
3032
3033 /*
3034 * If we are in a safe context (can wait, and not in interrupt
3035 * context), we could be be predictable and return right away.
3036 * This would guarantee that the allocation being performed
3037 * already belongs in the new cache.
3038 *
3039 * However, there are some clashes that can arrive from locking.
3040 * For instance, because we acquire the slab_mutex while doing
3041 * memcg_create_kmem_cache, this means no further allocation
3042 * could happen with the slab_mutex held. So it's better to
3043 * defer everything.
3044 */
3045 memcg_schedule_register_cache(memcg, cachep);
3046 return cachep;
3047 out:
3048 rcu_read_unlock();
3049 return cachep;
3050 }
3051
3052 /*
3053 * We need to verify if the allocation against current->mm->owner's memcg is
3054 * possible for the given order. But the page is not allocated yet, so we'll
3055 * need a further commit step to do the final arrangements.
3056 *
3057 * It is possible for the task to switch cgroups in this mean time, so at
3058 * commit time, we can't rely on task conversion any longer. We'll then use
3059 * the handle argument to return to the caller which cgroup we should commit
3060 * against. We could also return the memcg directly and avoid the pointer
3061 * passing, but a boolean return value gives better semantics considering
3062 * the compiled-out case as well.
3063 *
3064 * Returning true means the allocation is possible.
3065 */
3066 bool
3067 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3068 {
3069 struct mem_cgroup *memcg;
3070 int ret;
3071
3072 *_memcg = NULL;
3073
3074 /*
3075 * Disabling accounting is only relevant for some specific memcg
3076 * internal allocations. Therefore we would initially not have such
3077 * check here, since direct calls to the page allocator that are
3078 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3079 * outside memcg core. We are mostly concerned with cache allocations,
3080 * and by having this test at memcg_kmem_get_cache, we are already able
3081 * to relay the allocation to the root cache and bypass the memcg cache
3082 * altogether.
3083 *
3084 * There is one exception, though: the SLUB allocator does not create
3085 * large order caches, but rather service large kmallocs directly from
3086 * the page allocator. Therefore, the following sequence when backed by
3087 * the SLUB allocator:
3088 *
3089 * memcg_stop_kmem_account();
3090 * kmalloc(<large_number>)
3091 * memcg_resume_kmem_account();
3092 *
3093 * would effectively ignore the fact that we should skip accounting,
3094 * since it will drive us directly to this function without passing
3095 * through the cache selector memcg_kmem_get_cache. Such large
3096 * allocations are extremely rare but can happen, for instance, for the
3097 * cache arrays. We bring this test here.
3098 */
3099 if (!current->mm || current->memcg_kmem_skip_account)
3100 return true;
3101
3102 memcg = get_mem_cgroup_from_mm(current->mm);
3103
3104 if (!memcg_kmem_is_active(memcg)) {
3105 css_put(&memcg->css);
3106 return true;
3107 }
3108
3109 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3110 if (!ret)
3111 *_memcg = memcg;
3112
3113 css_put(&memcg->css);
3114 return (ret == 0);
3115 }
3116
3117 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3118 int order)
3119 {
3120 struct page_cgroup *pc;
3121
3122 VM_BUG_ON(mem_cgroup_is_root(memcg));
3123
3124 /* The page allocation failed. Revert */
3125 if (!page) {
3126 memcg_uncharge_kmem(memcg, 1 << order);
3127 return;
3128 }
3129 /*
3130 * The page is freshly allocated and not visible to any
3131 * outside callers yet. Set up pc non-atomically.
3132 */
3133 pc = lookup_page_cgroup(page);
3134 pc->mem_cgroup = memcg;
3135 pc->flags = PCG_USED;
3136 }
3137
3138 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3139 {
3140 struct mem_cgroup *memcg = NULL;
3141 struct page_cgroup *pc;
3142
3143
3144 pc = lookup_page_cgroup(page);
3145 if (!PageCgroupUsed(pc))
3146 return;
3147
3148 memcg = pc->mem_cgroup;
3149 pc->flags = 0;
3150
3151 /*
3152 * We trust that only if there is a memcg associated with the page, it
3153 * is a valid allocation
3154 */
3155 if (!memcg)
3156 return;
3157
3158 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3159 memcg_uncharge_kmem(memcg, 1 << order);
3160 }
3161 #else
3162 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3163 {
3164 }
3165 #endif /* CONFIG_MEMCG_KMEM */
3166
3167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3168
3169 /*
3170 * Because tail pages are not marked as "used", set it. We're under
3171 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3172 * charge/uncharge will be never happen and move_account() is done under
3173 * compound_lock(), so we don't have to take care of races.
3174 */
3175 void mem_cgroup_split_huge_fixup(struct page *head)
3176 {
3177 struct page_cgroup *head_pc;
3178 struct page_cgroup *pc;
3179 struct mem_cgroup *memcg;
3180 int i;
3181
3182 if (mem_cgroup_disabled())
3183 return;
3184
3185 head_pc = lookup_page_cgroup(head);
3186
3187 memcg = head_pc->mem_cgroup;
3188 for (i = 1; i < HPAGE_PMD_NR; i++) {
3189 pc = head_pc + i;
3190 pc->mem_cgroup = memcg;
3191 pc->flags = head_pc->flags;
3192 }
3193 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3194 HPAGE_PMD_NR);
3195 }
3196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3197
3198 /**
3199 * mem_cgroup_move_account - move account of the page
3200 * @page: the page
3201 * @nr_pages: number of regular pages (>1 for huge pages)
3202 * @pc: page_cgroup of the page.
3203 * @from: mem_cgroup which the page is moved from.
3204 * @to: mem_cgroup which the page is moved to. @from != @to.
3205 *
3206 * The caller must confirm following.
3207 * - page is not on LRU (isolate_page() is useful.)
3208 * - compound_lock is held when nr_pages > 1
3209 *
3210 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3211 * from old cgroup.
3212 */
3213 static int mem_cgroup_move_account(struct page *page,
3214 unsigned int nr_pages,
3215 struct page_cgroup *pc,
3216 struct mem_cgroup *from,
3217 struct mem_cgroup *to)
3218 {
3219 unsigned long flags;
3220 int ret;
3221
3222 VM_BUG_ON(from == to);
3223 VM_BUG_ON_PAGE(PageLRU(page), page);
3224 /*
3225 * The page is isolated from LRU. So, collapse function
3226 * will not handle this page. But page splitting can happen.
3227 * Do this check under compound_page_lock(). The caller should
3228 * hold it.
3229 */
3230 ret = -EBUSY;
3231 if (nr_pages > 1 && !PageTransHuge(page))
3232 goto out;
3233
3234 /*
3235 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3236 * of its source page while we change it: page migration takes
3237 * both pages off the LRU, but page cache replacement doesn't.
3238 */
3239 if (!trylock_page(page))
3240 goto out;
3241
3242 ret = -EINVAL;
3243 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3244 goto out_unlock;
3245
3246 move_lock_mem_cgroup(from, &flags);
3247
3248 if (!PageAnon(page) && page_mapped(page)) {
3249 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3250 nr_pages);
3251 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3252 nr_pages);
3253 }
3254
3255 if (PageWriteback(page)) {
3256 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3257 nr_pages);
3258 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3259 nr_pages);
3260 }
3261
3262 /*
3263 * It is safe to change pc->mem_cgroup here because the page
3264 * is referenced, charged, and isolated - we can't race with
3265 * uncharging, charging, migration, or LRU putback.
3266 */
3267
3268 /* caller should have done css_get */
3269 pc->mem_cgroup = to;
3270 move_unlock_mem_cgroup(from, &flags);
3271 ret = 0;
3272
3273 local_irq_disable();
3274 mem_cgroup_charge_statistics(to, page, nr_pages);
3275 memcg_check_events(to, page);
3276 mem_cgroup_charge_statistics(from, page, -nr_pages);
3277 memcg_check_events(from, page);
3278 local_irq_enable();
3279 out_unlock:
3280 unlock_page(page);
3281 out:
3282 return ret;
3283 }
3284
3285 #ifdef CONFIG_MEMCG_SWAP
3286 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3287 bool charge)
3288 {
3289 int val = (charge) ? 1 : -1;
3290 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3291 }
3292
3293 /**
3294 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3295 * @entry: swap entry to be moved
3296 * @from: mem_cgroup which the entry is moved from
3297 * @to: mem_cgroup which the entry is moved to
3298 *
3299 * It succeeds only when the swap_cgroup's record for this entry is the same
3300 * as the mem_cgroup's id of @from.
3301 *
3302 * Returns 0 on success, -EINVAL on failure.
3303 *
3304 * The caller must have charged to @to, IOW, called page_counter_charge() about
3305 * both res and memsw, and called css_get().
3306 */
3307 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3308 struct mem_cgroup *from, struct mem_cgroup *to)
3309 {
3310 unsigned short old_id, new_id;
3311
3312 old_id = mem_cgroup_id(from);
3313 new_id = mem_cgroup_id(to);
3314
3315 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3316 mem_cgroup_swap_statistics(from, false);
3317 mem_cgroup_swap_statistics(to, true);
3318 /*
3319 * This function is only called from task migration context now.
3320 * It postpones page_counter and refcount handling till the end
3321 * of task migration(mem_cgroup_clear_mc()) for performance
3322 * improvement. But we cannot postpone css_get(to) because if
3323 * the process that has been moved to @to does swap-in, the
3324 * refcount of @to might be decreased to 0.
3325 *
3326 * We are in attach() phase, so the cgroup is guaranteed to be
3327 * alive, so we can just call css_get().
3328 */
3329 css_get(&to->css);
3330 return 0;
3331 }
3332 return -EINVAL;
3333 }
3334 #else
3335 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3336 struct mem_cgroup *from, struct mem_cgroup *to)
3337 {
3338 return -EINVAL;
3339 }
3340 #endif
3341
3342 #ifdef CONFIG_DEBUG_VM
3343 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3344 {
3345 struct page_cgroup *pc;
3346
3347 pc = lookup_page_cgroup(page);
3348 /*
3349 * Can be NULL while feeding pages into the page allocator for
3350 * the first time, i.e. during boot or memory hotplug;
3351 * or when mem_cgroup_disabled().
3352 */
3353 if (likely(pc) && PageCgroupUsed(pc))
3354 return pc;
3355 return NULL;
3356 }
3357
3358 bool mem_cgroup_bad_page_check(struct page *page)
3359 {
3360 if (mem_cgroup_disabled())
3361 return false;
3362
3363 return lookup_page_cgroup_used(page) != NULL;
3364 }
3365
3366 void mem_cgroup_print_bad_page(struct page *page)
3367 {
3368 struct page_cgroup *pc;
3369
3370 pc = lookup_page_cgroup_used(page);
3371 if (pc) {
3372 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3373 pc, pc->flags, pc->mem_cgroup);
3374 }
3375 }
3376 #endif
3377
3378 static DEFINE_MUTEX(memcg_limit_mutex);
3379
3380 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3381 unsigned long limit)
3382 {
3383 unsigned long curusage;
3384 unsigned long oldusage;
3385 bool enlarge = false;
3386 int retry_count;
3387 int ret;
3388
3389 /*
3390 * For keeping hierarchical_reclaim simple, how long we should retry
3391 * is depends on callers. We set our retry-count to be function
3392 * of # of children which we should visit in this loop.
3393 */
3394 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3395 mem_cgroup_count_children(memcg);
3396
3397 oldusage = page_counter_read(&memcg->memory);
3398
3399 do {
3400 if (signal_pending(current)) {
3401 ret = -EINTR;
3402 break;
3403 }
3404
3405 mutex_lock(&memcg_limit_mutex);
3406 if (limit > memcg->memsw.limit) {
3407 mutex_unlock(&memcg_limit_mutex);
3408 ret = -EINVAL;
3409 break;
3410 }
3411 if (limit > memcg->memory.limit)
3412 enlarge = true;
3413 ret = page_counter_limit(&memcg->memory, limit);
3414 mutex_unlock(&memcg_limit_mutex);
3415
3416 if (!ret)
3417 break;
3418
3419 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3420
3421 curusage = page_counter_read(&memcg->memory);
3422 /* Usage is reduced ? */
3423 if (curusage >= oldusage)
3424 retry_count--;
3425 else
3426 oldusage = curusage;
3427 } while (retry_count);
3428
3429 if (!ret && enlarge)
3430 memcg_oom_recover(memcg);
3431
3432 return ret;
3433 }
3434
3435 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3436 unsigned long limit)
3437 {
3438 unsigned long curusage;
3439 unsigned long oldusage;
3440 bool enlarge = false;
3441 int retry_count;
3442 int ret;
3443
3444 /* see mem_cgroup_resize_res_limit */
3445 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3446 mem_cgroup_count_children(memcg);
3447
3448 oldusage = page_counter_read(&memcg->memsw);
3449
3450 do {
3451 if (signal_pending(current)) {
3452 ret = -EINTR;
3453 break;
3454 }
3455
3456 mutex_lock(&memcg_limit_mutex);
3457 if (limit < memcg->memory.limit) {
3458 mutex_unlock(&memcg_limit_mutex);
3459 ret = -EINVAL;
3460 break;
3461 }
3462 if (limit > memcg->memsw.limit)
3463 enlarge = true;
3464 ret = page_counter_limit(&memcg->memsw, limit);
3465 mutex_unlock(&memcg_limit_mutex);
3466
3467 if (!ret)
3468 break;
3469
3470 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3471
3472 curusage = page_counter_read(&memcg->memsw);
3473 /* Usage is reduced ? */
3474 if (curusage >= oldusage)
3475 retry_count--;
3476 else
3477 oldusage = curusage;
3478 } while (retry_count);
3479
3480 if (!ret && enlarge)
3481 memcg_oom_recover(memcg);
3482
3483 return ret;
3484 }
3485
3486 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3487 gfp_t gfp_mask,
3488 unsigned long *total_scanned)
3489 {
3490 unsigned long nr_reclaimed = 0;
3491 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3492 unsigned long reclaimed;
3493 int loop = 0;
3494 struct mem_cgroup_tree_per_zone *mctz;
3495 unsigned long excess;
3496 unsigned long nr_scanned;
3497
3498 if (order > 0)
3499 return 0;
3500
3501 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3502 /*
3503 * This loop can run a while, specially if mem_cgroup's continuously
3504 * keep exceeding their soft limit and putting the system under
3505 * pressure
3506 */
3507 do {
3508 if (next_mz)
3509 mz = next_mz;
3510 else
3511 mz = mem_cgroup_largest_soft_limit_node(mctz);
3512 if (!mz)
3513 break;
3514
3515 nr_scanned = 0;
3516 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3517 gfp_mask, &nr_scanned);
3518 nr_reclaimed += reclaimed;
3519 *total_scanned += nr_scanned;
3520 spin_lock_irq(&mctz->lock);
3521 __mem_cgroup_remove_exceeded(mz, mctz);
3522
3523 /*
3524 * If we failed to reclaim anything from this memory cgroup
3525 * it is time to move on to the next cgroup
3526 */
3527 next_mz = NULL;
3528 if (!reclaimed)
3529 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3530
3531 excess = soft_limit_excess(mz->memcg);
3532 /*
3533 * One school of thought says that we should not add
3534 * back the node to the tree if reclaim returns 0.
3535 * But our reclaim could return 0, simply because due
3536 * to priority we are exposing a smaller subset of
3537 * memory to reclaim from. Consider this as a longer
3538 * term TODO.
3539 */
3540 /* If excess == 0, no tree ops */
3541 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3542 spin_unlock_irq(&mctz->lock);
3543 css_put(&mz->memcg->css);
3544 loop++;
3545 /*
3546 * Could not reclaim anything and there are no more
3547 * mem cgroups to try or we seem to be looping without
3548 * reclaiming anything.
3549 */
3550 if (!nr_reclaimed &&
3551 (next_mz == NULL ||
3552 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3553 break;
3554 } while (!nr_reclaimed);
3555 if (next_mz)
3556 css_put(&next_mz->memcg->css);
3557 return nr_reclaimed;
3558 }
3559
3560 /*
3561 * Test whether @memcg has children, dead or alive. Note that this
3562 * function doesn't care whether @memcg has use_hierarchy enabled and
3563 * returns %true if there are child csses according to the cgroup
3564 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3565 */
3566 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3567 {
3568 bool ret;
3569
3570 /*
3571 * The lock does not prevent addition or deletion of children, but
3572 * it prevents a new child from being initialized based on this
3573 * parent in css_online(), so it's enough to decide whether
3574 * hierarchically inherited attributes can still be changed or not.
3575 */
3576 lockdep_assert_held(&memcg_create_mutex);
3577
3578 rcu_read_lock();
3579 ret = css_next_child(NULL, &memcg->css);
3580 rcu_read_unlock();
3581 return ret;
3582 }
3583
3584 /*
3585 * Reclaims as many pages from the given memcg as possible and moves
3586 * the rest to the parent.
3587 *
3588 * Caller is responsible for holding css reference for memcg.
3589 */
3590 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3591 {
3592 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3593
3594 /* we call try-to-free pages for make this cgroup empty */
3595 lru_add_drain_all();
3596 /* try to free all pages in this cgroup */
3597 while (nr_retries && page_counter_read(&memcg->memory)) {
3598 int progress;
3599
3600 if (signal_pending(current))
3601 return -EINTR;
3602
3603 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3604 GFP_KERNEL, true);
3605 if (!progress) {
3606 nr_retries--;
3607 /* maybe some writeback is necessary */
3608 congestion_wait(BLK_RW_ASYNC, HZ/10);
3609 }
3610
3611 }
3612
3613 return 0;
3614 }
3615
3616 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3617 char *buf, size_t nbytes,
3618 loff_t off)
3619 {
3620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3621
3622 if (mem_cgroup_is_root(memcg))
3623 return -EINVAL;
3624 return mem_cgroup_force_empty(memcg) ?: nbytes;
3625 }
3626
3627 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3628 struct cftype *cft)
3629 {
3630 return mem_cgroup_from_css(css)->use_hierarchy;
3631 }
3632
3633 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3634 struct cftype *cft, u64 val)
3635 {
3636 int retval = 0;
3637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3638 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3639
3640 mutex_lock(&memcg_create_mutex);
3641
3642 if (memcg->use_hierarchy == val)
3643 goto out;
3644
3645 /*
3646 * If parent's use_hierarchy is set, we can't make any modifications
3647 * in the child subtrees. If it is unset, then the change can
3648 * occur, provided the current cgroup has no children.
3649 *
3650 * For the root cgroup, parent_mem is NULL, we allow value to be
3651 * set if there are no children.
3652 */
3653 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3654 (val == 1 || val == 0)) {
3655 if (!memcg_has_children(memcg))
3656 memcg->use_hierarchy = val;
3657 else
3658 retval = -EBUSY;
3659 } else
3660 retval = -EINVAL;
3661
3662 out:
3663 mutex_unlock(&memcg_create_mutex);
3664
3665 return retval;
3666 }
3667
3668 static unsigned long tree_stat(struct mem_cgroup *memcg,
3669 enum mem_cgroup_stat_index idx)
3670 {
3671 struct mem_cgroup *iter;
3672 long val = 0;
3673
3674 /* Per-cpu values can be negative, use a signed accumulator */
3675 for_each_mem_cgroup_tree(iter, memcg)
3676 val += mem_cgroup_read_stat(iter, idx);
3677
3678 if (val < 0) /* race ? */
3679 val = 0;
3680 return val;
3681 }
3682
3683 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3684 {
3685 u64 val;
3686
3687 if (mem_cgroup_is_root(memcg)) {
3688 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3689 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3690 if (swap)
3691 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3692 } else {
3693 if (!swap)
3694 val = page_counter_read(&memcg->memory);
3695 else
3696 val = page_counter_read(&memcg->memsw);
3697 }
3698 return val << PAGE_SHIFT;
3699 }
3700
3701 enum {
3702 RES_USAGE,
3703 RES_LIMIT,
3704 RES_MAX_USAGE,
3705 RES_FAILCNT,
3706 RES_SOFT_LIMIT,
3707 };
3708
3709 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3710 struct cftype *cft)
3711 {
3712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3713 struct page_counter *counter;
3714
3715 switch (MEMFILE_TYPE(cft->private)) {
3716 case _MEM:
3717 counter = &memcg->memory;
3718 break;
3719 case _MEMSWAP:
3720 counter = &memcg->memsw;
3721 break;
3722 case _KMEM:
3723 counter = &memcg->kmem;
3724 break;
3725 default:
3726 BUG();
3727 }
3728
3729 switch (MEMFILE_ATTR(cft->private)) {
3730 case RES_USAGE:
3731 if (counter == &memcg->memory)
3732 return mem_cgroup_usage(memcg, false);
3733 if (counter == &memcg->memsw)
3734 return mem_cgroup_usage(memcg, true);
3735 return (u64)page_counter_read(counter) * PAGE_SIZE;
3736 case RES_LIMIT:
3737 return (u64)counter->limit * PAGE_SIZE;
3738 case RES_MAX_USAGE:
3739 return (u64)counter->watermark * PAGE_SIZE;
3740 case RES_FAILCNT:
3741 return counter->failcnt;
3742 case RES_SOFT_LIMIT:
3743 return (u64)memcg->soft_limit * PAGE_SIZE;
3744 default:
3745 BUG();
3746 }
3747 }
3748
3749 #ifdef CONFIG_MEMCG_KMEM
3750 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3751 unsigned long nr_pages)
3752 {
3753 int err = 0;
3754 int memcg_id;
3755
3756 if (memcg_kmem_is_active(memcg))
3757 return 0;
3758
3759 /*
3760 * We are going to allocate memory for data shared by all memory
3761 * cgroups so let's stop accounting here.
3762 */
3763 memcg_stop_kmem_account();
3764
3765 /*
3766 * For simplicity, we won't allow this to be disabled. It also can't
3767 * be changed if the cgroup has children already, or if tasks had
3768 * already joined.
3769 *
3770 * If tasks join before we set the limit, a person looking at
3771 * kmem.usage_in_bytes will have no way to determine when it took
3772 * place, which makes the value quite meaningless.
3773 *
3774 * After it first became limited, changes in the value of the limit are
3775 * of course permitted.
3776 */
3777 mutex_lock(&memcg_create_mutex);
3778 if (cgroup_has_tasks(memcg->css.cgroup) ||
3779 (memcg->use_hierarchy && memcg_has_children(memcg)))
3780 err = -EBUSY;
3781 mutex_unlock(&memcg_create_mutex);
3782 if (err)
3783 goto out;
3784
3785 memcg_id = memcg_alloc_cache_id();
3786 if (memcg_id < 0) {
3787 err = memcg_id;
3788 goto out;
3789 }
3790
3791 memcg->kmemcg_id = memcg_id;
3792 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3793
3794 /*
3795 * We couldn't have accounted to this cgroup, because it hasn't got the
3796 * active bit set yet, so this should succeed.
3797 */
3798 err = page_counter_limit(&memcg->kmem, nr_pages);
3799 VM_BUG_ON(err);
3800
3801 static_key_slow_inc(&memcg_kmem_enabled_key);
3802 /*
3803 * Setting the active bit after enabling static branching will
3804 * guarantee no one starts accounting before all call sites are
3805 * patched.
3806 */
3807 memcg_kmem_set_active(memcg);
3808 out:
3809 memcg_resume_kmem_account();
3810 return err;
3811 }
3812
3813 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3814 unsigned long limit)
3815 {
3816 int ret;
3817
3818 mutex_lock(&memcg_limit_mutex);
3819 if (!memcg_kmem_is_active(memcg))
3820 ret = memcg_activate_kmem(memcg, limit);
3821 else
3822 ret = page_counter_limit(&memcg->kmem, limit);
3823 mutex_unlock(&memcg_limit_mutex);
3824 return ret;
3825 }
3826
3827 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3828 {
3829 int ret = 0;
3830 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3831
3832 if (!parent)
3833 return 0;
3834
3835 mutex_lock(&memcg_limit_mutex);
3836 /*
3837 * If the parent cgroup is not kmem-active now, it cannot be activated
3838 * after this point, because it has at least one child already.
3839 */
3840 if (memcg_kmem_is_active(parent))
3841 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3842 mutex_unlock(&memcg_limit_mutex);
3843 return ret;
3844 }
3845 #else
3846 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3847 unsigned long limit)
3848 {
3849 return -EINVAL;
3850 }
3851 #endif /* CONFIG_MEMCG_KMEM */
3852
3853 /*
3854 * The user of this function is...
3855 * RES_LIMIT.
3856 */
3857 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3858 char *buf, size_t nbytes, loff_t off)
3859 {
3860 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3861 unsigned long nr_pages;
3862 int ret;
3863
3864 buf = strstrip(buf);
3865 ret = page_counter_memparse(buf, &nr_pages);
3866 if (ret)
3867 return ret;
3868
3869 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3870 case RES_LIMIT:
3871 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3872 ret = -EINVAL;
3873 break;
3874 }
3875 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3876 case _MEM:
3877 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3878 break;
3879 case _MEMSWAP:
3880 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3881 break;
3882 case _KMEM:
3883 ret = memcg_update_kmem_limit(memcg, nr_pages);
3884 break;
3885 }
3886 break;
3887 case RES_SOFT_LIMIT:
3888 memcg->soft_limit = nr_pages;
3889 ret = 0;
3890 break;
3891 }
3892 return ret ?: nbytes;
3893 }
3894
3895 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896 size_t nbytes, loff_t off)
3897 {
3898 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899 struct page_counter *counter;
3900
3901 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902 case _MEM:
3903 counter = &memcg->memory;
3904 break;
3905 case _MEMSWAP:
3906 counter = &memcg->memsw;
3907 break;
3908 case _KMEM:
3909 counter = &memcg->kmem;
3910 break;
3911 default:
3912 BUG();
3913 }
3914
3915 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3916 case RES_MAX_USAGE:
3917 page_counter_reset_watermark(counter);
3918 break;
3919 case RES_FAILCNT:
3920 counter->failcnt = 0;
3921 break;
3922 default:
3923 BUG();
3924 }
3925
3926 return nbytes;
3927 }
3928
3929 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3930 struct cftype *cft)
3931 {
3932 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3933 }
3934
3935 #ifdef CONFIG_MMU
3936 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3937 struct cftype *cft, u64 val)
3938 {
3939 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3940
3941 if (val >= (1 << NR_MOVE_TYPE))
3942 return -EINVAL;
3943
3944 /*
3945 * No kind of locking is needed in here, because ->can_attach() will
3946 * check this value once in the beginning of the process, and then carry
3947 * on with stale data. This means that changes to this value will only
3948 * affect task migrations starting after the change.
3949 */
3950 memcg->move_charge_at_immigrate = val;
3951 return 0;
3952 }
3953 #else
3954 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3955 struct cftype *cft, u64 val)
3956 {
3957 return -ENOSYS;
3958 }
3959 #endif
3960
3961 #ifdef CONFIG_NUMA
3962 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3963 {
3964 struct numa_stat {
3965 const char *name;
3966 unsigned int lru_mask;
3967 };
3968
3969 static const struct numa_stat stats[] = {
3970 { "total", LRU_ALL },
3971 { "file", LRU_ALL_FILE },
3972 { "anon", LRU_ALL_ANON },
3973 { "unevictable", BIT(LRU_UNEVICTABLE) },
3974 };
3975 const struct numa_stat *stat;
3976 int nid;
3977 unsigned long nr;
3978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3979
3980 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3981 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3982 seq_printf(m, "%s=%lu", stat->name, nr);
3983 for_each_node_state(nid, N_MEMORY) {
3984 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3985 stat->lru_mask);
3986 seq_printf(m, " N%d=%lu", nid, nr);
3987 }
3988 seq_putc(m, '\n');
3989 }
3990
3991 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3992 struct mem_cgroup *iter;
3993
3994 nr = 0;
3995 for_each_mem_cgroup_tree(iter, memcg)
3996 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3997 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3998 for_each_node_state(nid, N_MEMORY) {
3999 nr = 0;
4000 for_each_mem_cgroup_tree(iter, memcg)
4001 nr += mem_cgroup_node_nr_lru_pages(
4002 iter, nid, stat->lru_mask);
4003 seq_printf(m, " N%d=%lu", nid, nr);
4004 }
4005 seq_putc(m, '\n');
4006 }
4007
4008 return 0;
4009 }
4010 #endif /* CONFIG_NUMA */
4011
4012 static inline void mem_cgroup_lru_names_not_uptodate(void)
4013 {
4014 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4015 }
4016
4017 static int memcg_stat_show(struct seq_file *m, void *v)
4018 {
4019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4020 unsigned long memory, memsw;
4021 struct mem_cgroup *mi;
4022 unsigned int i;
4023
4024 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4025 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4026 continue;
4027 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4028 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4029 }
4030
4031 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4032 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4033 mem_cgroup_read_events(memcg, i));
4034
4035 for (i = 0; i < NR_LRU_LISTS; i++)
4036 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4037 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4038
4039 /* Hierarchical information */
4040 memory = memsw = PAGE_COUNTER_MAX;
4041 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4042 memory = min(memory, mi->memory.limit);
4043 memsw = min(memsw, mi->memsw.limit);
4044 }
4045 seq_printf(m, "hierarchical_memory_limit %llu\n",
4046 (u64)memory * PAGE_SIZE);
4047 if (do_swap_account)
4048 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4049 (u64)memsw * PAGE_SIZE);
4050
4051 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4052 long long val = 0;
4053
4054 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4055 continue;
4056 for_each_mem_cgroup_tree(mi, memcg)
4057 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4058 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4059 }
4060
4061 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4062 unsigned long long val = 0;
4063
4064 for_each_mem_cgroup_tree(mi, memcg)
4065 val += mem_cgroup_read_events(mi, i);
4066 seq_printf(m, "total_%s %llu\n",
4067 mem_cgroup_events_names[i], val);
4068 }
4069
4070 for (i = 0; i < NR_LRU_LISTS; i++) {
4071 unsigned long long val = 0;
4072
4073 for_each_mem_cgroup_tree(mi, memcg)
4074 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4075 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4076 }
4077
4078 #ifdef CONFIG_DEBUG_VM
4079 {
4080 int nid, zid;
4081 struct mem_cgroup_per_zone *mz;
4082 struct zone_reclaim_stat *rstat;
4083 unsigned long recent_rotated[2] = {0, 0};
4084 unsigned long recent_scanned[2] = {0, 0};
4085
4086 for_each_online_node(nid)
4087 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4088 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4089 rstat = &mz->lruvec.reclaim_stat;
4090
4091 recent_rotated[0] += rstat->recent_rotated[0];
4092 recent_rotated[1] += rstat->recent_rotated[1];
4093 recent_scanned[0] += rstat->recent_scanned[0];
4094 recent_scanned[1] += rstat->recent_scanned[1];
4095 }
4096 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4097 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4098 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4099 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4100 }
4101 #endif
4102
4103 return 0;
4104 }
4105
4106 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
4108 {
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 return mem_cgroup_swappiness(memcg);
4112 }
4113
4114 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
4116 {
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119 if (val > 100)
4120 return -EINVAL;
4121
4122 if (css->parent)
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
4126
4127 return 0;
4128 }
4129
4130 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131 {
4132 struct mem_cgroup_threshold_ary *t;
4133 unsigned long usage;
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
4138 t = rcu_dereference(memcg->thresholds.primary);
4139 else
4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142 if (!t)
4143 goto unlock;
4144
4145 usage = mem_cgroup_usage(memcg, swap);
4146
4147 /*
4148 * current_threshold points to threshold just below or equal to usage.
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
4152 i = t->current_threshold;
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
4176 t->current_threshold = i - 1;
4177 unlock:
4178 rcu_read_unlock();
4179 }
4180
4181 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182 {
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_swap_account)
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
4190 }
4191
4192 static int compare_thresholds(const void *a, const void *b)
4193 {
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
4204 }
4205
4206 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207 {
4208 struct mem_cgroup_eventfd_list *ev;
4209
4210 spin_lock(&memcg_oom_lock);
4211
4212 list_for_each_entry(ev, &memcg->oom_notify, list)
4213 eventfd_signal(ev->eventfd, 1);
4214
4215 spin_unlock(&memcg_oom_lock);
4216 return 0;
4217 }
4218
4219 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220 {
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, memcg)
4224 mem_cgroup_oom_notify_cb(iter);
4225 }
4226
4227 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229 {
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
4232 unsigned long threshold;
4233 unsigned long usage;
4234 int i, size, ret;
4235
4236 ret = page_counter_memparse(args, &threshold);
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
4241
4242 if (type == _MEM) {
4243 thresholds = &memcg->thresholds;
4244 usage = mem_cgroup_usage(memcg, false);
4245 } else if (type == _MEMSWAP) {
4246 thresholds = &memcg->memsw_thresholds;
4247 usage = mem_cgroup_usage(memcg, true);
4248 } else
4249 BUG();
4250
4251 /* Check if a threshold crossed before adding a new one */
4252 if (thresholds->primary)
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257 /* Allocate memory for new array of thresholds */
4258 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4259 GFP_KERNEL);
4260 if (!new) {
4261 ret = -ENOMEM;
4262 goto unlock;
4263 }
4264 new->size = size;
4265
4266 /* Copy thresholds (if any) to new array */
4267 if (thresholds->primary) {
4268 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4269 sizeof(struct mem_cgroup_threshold));
4270 }
4271
4272 /* Add new threshold */
4273 new->entries[size - 1].eventfd = eventfd;
4274 new->entries[size - 1].threshold = threshold;
4275
4276 /* Sort thresholds. Registering of new threshold isn't time-critical */
4277 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4278 compare_thresholds, NULL);
4279
4280 /* Find current threshold */
4281 new->current_threshold = -1;
4282 for (i = 0; i < size; i++) {
4283 if (new->entries[i].threshold <= usage) {
4284 /*
4285 * new->current_threshold will not be used until
4286 * rcu_assign_pointer(), so it's safe to increment
4287 * it here.
4288 */
4289 ++new->current_threshold;
4290 } else
4291 break;
4292 }
4293
4294 /* Free old spare buffer and save old primary buffer as spare */
4295 kfree(thresholds->spare);
4296 thresholds->spare = thresholds->primary;
4297
4298 rcu_assign_pointer(thresholds->primary, new);
4299
4300 /* To be sure that nobody uses thresholds */
4301 synchronize_rcu();
4302
4303 unlock:
4304 mutex_unlock(&memcg->thresholds_lock);
4305
4306 return ret;
4307 }
4308
4309 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4310 struct eventfd_ctx *eventfd, const char *args)
4311 {
4312 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4313 }
4314
4315 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4316 struct eventfd_ctx *eventfd, const char *args)
4317 {
4318 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4319 }
4320
4321 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4322 struct eventfd_ctx *eventfd, enum res_type type)
4323 {
4324 struct mem_cgroup_thresholds *thresholds;
4325 struct mem_cgroup_threshold_ary *new;
4326 unsigned long usage;
4327 int i, j, size;
4328
4329 mutex_lock(&memcg->thresholds_lock);
4330
4331 if (type == _MEM) {
4332 thresholds = &memcg->thresholds;
4333 usage = mem_cgroup_usage(memcg, false);
4334 } else if (type == _MEMSWAP) {
4335 thresholds = &memcg->memsw_thresholds;
4336 usage = mem_cgroup_usage(memcg, true);
4337 } else
4338 BUG();
4339
4340 if (!thresholds->primary)
4341 goto unlock;
4342
4343 /* Check if a threshold crossed before removing */
4344 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4345
4346 /* Calculate new number of threshold */
4347 size = 0;
4348 for (i = 0; i < thresholds->primary->size; i++) {
4349 if (thresholds->primary->entries[i].eventfd != eventfd)
4350 size++;
4351 }
4352
4353 new = thresholds->spare;
4354
4355 /* Set thresholds array to NULL if we don't have thresholds */
4356 if (!size) {
4357 kfree(new);
4358 new = NULL;
4359 goto swap_buffers;
4360 }
4361
4362 new->size = size;
4363
4364 /* Copy thresholds and find current threshold */
4365 new->current_threshold = -1;
4366 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4367 if (thresholds->primary->entries[i].eventfd == eventfd)
4368 continue;
4369
4370 new->entries[j] = thresholds->primary->entries[i];
4371 if (new->entries[j].threshold <= usage) {
4372 /*
4373 * new->current_threshold will not be used
4374 * until rcu_assign_pointer(), so it's safe to increment
4375 * it here.
4376 */
4377 ++new->current_threshold;
4378 }
4379 j++;
4380 }
4381
4382 swap_buffers:
4383 /* Swap primary and spare array */
4384 thresholds->spare = thresholds->primary;
4385 /* If all events are unregistered, free the spare array */
4386 if (!new) {
4387 kfree(thresholds->spare);
4388 thresholds->spare = NULL;
4389 }
4390
4391 rcu_assign_pointer(thresholds->primary, new);
4392
4393 /* To be sure that nobody uses thresholds */
4394 synchronize_rcu();
4395 unlock:
4396 mutex_unlock(&memcg->thresholds_lock);
4397 }
4398
4399 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4400 struct eventfd_ctx *eventfd)
4401 {
4402 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4403 }
4404
4405 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4406 struct eventfd_ctx *eventfd)
4407 {
4408 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4409 }
4410
4411 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4412 struct eventfd_ctx *eventfd, const char *args)
4413 {
4414 struct mem_cgroup_eventfd_list *event;
4415
4416 event = kmalloc(sizeof(*event), GFP_KERNEL);
4417 if (!event)
4418 return -ENOMEM;
4419
4420 spin_lock(&memcg_oom_lock);
4421
4422 event->eventfd = eventfd;
4423 list_add(&event->list, &memcg->oom_notify);
4424
4425 /* already in OOM ? */
4426 if (atomic_read(&memcg->under_oom))
4427 eventfd_signal(eventfd, 1);
4428 spin_unlock(&memcg_oom_lock);
4429
4430 return 0;
4431 }
4432
4433 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4434 struct eventfd_ctx *eventfd)
4435 {
4436 struct mem_cgroup_eventfd_list *ev, *tmp;
4437
4438 spin_lock(&memcg_oom_lock);
4439
4440 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4441 if (ev->eventfd == eventfd) {
4442 list_del(&ev->list);
4443 kfree(ev);
4444 }
4445 }
4446
4447 spin_unlock(&memcg_oom_lock);
4448 }
4449
4450 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4451 {
4452 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4453
4454 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4455 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4456 return 0;
4457 }
4458
4459 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460 struct cftype *cft, u64 val)
4461 {
4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463
4464 /* cannot set to root cgroup and only 0 and 1 are allowed */
4465 if (!css->parent || !((val == 0) || (val == 1)))
4466 return -EINVAL;
4467
4468 memcg->oom_kill_disable = val;
4469 if (!val)
4470 memcg_oom_recover(memcg);
4471
4472 return 0;
4473 }
4474
4475 #ifdef CONFIG_MEMCG_KMEM
4476 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4477 {
4478 int ret;
4479
4480 memcg->kmemcg_id = -1;
4481 ret = memcg_propagate_kmem(memcg);
4482 if (ret)
4483 return ret;
4484
4485 return mem_cgroup_sockets_init(memcg, ss);
4486 }
4487
4488 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4489 {
4490 mem_cgroup_sockets_destroy(memcg);
4491 }
4492 #else
4493 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4494 {
4495 return 0;
4496 }
4497
4498 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4499 {
4500 }
4501 #endif
4502
4503 /*
4504 * DO NOT USE IN NEW FILES.
4505 *
4506 * "cgroup.event_control" implementation.
4507 *
4508 * This is way over-engineered. It tries to support fully configurable
4509 * events for each user. Such level of flexibility is completely
4510 * unnecessary especially in the light of the planned unified hierarchy.
4511 *
4512 * Please deprecate this and replace with something simpler if at all
4513 * possible.
4514 */
4515
4516 /*
4517 * Unregister event and free resources.
4518 *
4519 * Gets called from workqueue.
4520 */
4521 static void memcg_event_remove(struct work_struct *work)
4522 {
4523 struct mem_cgroup_event *event =
4524 container_of(work, struct mem_cgroup_event, remove);
4525 struct mem_cgroup *memcg = event->memcg;
4526
4527 remove_wait_queue(event->wqh, &event->wait);
4528
4529 event->unregister_event(memcg, event->eventfd);
4530
4531 /* Notify userspace the event is going away. */
4532 eventfd_signal(event->eventfd, 1);
4533
4534 eventfd_ctx_put(event->eventfd);
4535 kfree(event);
4536 css_put(&memcg->css);
4537 }
4538
4539 /*
4540 * Gets called on POLLHUP on eventfd when user closes it.
4541 *
4542 * Called with wqh->lock held and interrupts disabled.
4543 */
4544 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4545 int sync, void *key)
4546 {
4547 struct mem_cgroup_event *event =
4548 container_of(wait, struct mem_cgroup_event, wait);
4549 struct mem_cgroup *memcg = event->memcg;
4550 unsigned long flags = (unsigned long)key;
4551
4552 if (flags & POLLHUP) {
4553 /*
4554 * If the event has been detached at cgroup removal, we
4555 * can simply return knowing the other side will cleanup
4556 * for us.
4557 *
4558 * We can't race against event freeing since the other
4559 * side will require wqh->lock via remove_wait_queue(),
4560 * which we hold.
4561 */
4562 spin_lock(&memcg->event_list_lock);
4563 if (!list_empty(&event->list)) {
4564 list_del_init(&event->list);
4565 /*
4566 * We are in atomic context, but cgroup_event_remove()
4567 * may sleep, so we have to call it in workqueue.
4568 */
4569 schedule_work(&event->remove);
4570 }
4571 spin_unlock(&memcg->event_list_lock);
4572 }
4573
4574 return 0;
4575 }
4576
4577 static void memcg_event_ptable_queue_proc(struct file *file,
4578 wait_queue_head_t *wqh, poll_table *pt)
4579 {
4580 struct mem_cgroup_event *event =
4581 container_of(pt, struct mem_cgroup_event, pt);
4582
4583 event->wqh = wqh;
4584 add_wait_queue(wqh, &event->wait);
4585 }
4586
4587 /*
4588 * DO NOT USE IN NEW FILES.
4589 *
4590 * Parse input and register new cgroup event handler.
4591 *
4592 * Input must be in format '<event_fd> <control_fd> <args>'.
4593 * Interpretation of args is defined by control file implementation.
4594 */
4595 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4596 char *buf, size_t nbytes, loff_t off)
4597 {
4598 struct cgroup_subsys_state *css = of_css(of);
4599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4600 struct mem_cgroup_event *event;
4601 struct cgroup_subsys_state *cfile_css;
4602 unsigned int efd, cfd;
4603 struct fd efile;
4604 struct fd cfile;
4605 const char *name;
4606 char *endp;
4607 int ret;
4608
4609 buf = strstrip(buf);
4610
4611 efd = simple_strtoul(buf, &endp, 10);
4612 if (*endp != ' ')
4613 return -EINVAL;
4614 buf = endp + 1;
4615
4616 cfd = simple_strtoul(buf, &endp, 10);
4617 if ((*endp != ' ') && (*endp != '\0'))
4618 return -EINVAL;
4619 buf = endp + 1;
4620
4621 event = kzalloc(sizeof(*event), GFP_KERNEL);
4622 if (!event)
4623 return -ENOMEM;
4624
4625 event->memcg = memcg;
4626 INIT_LIST_HEAD(&event->list);
4627 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4628 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4629 INIT_WORK(&event->remove, memcg_event_remove);
4630
4631 efile = fdget(efd);
4632 if (!efile.file) {
4633 ret = -EBADF;
4634 goto out_kfree;
4635 }
4636
4637 event->eventfd = eventfd_ctx_fileget(efile.file);
4638 if (IS_ERR(event->eventfd)) {
4639 ret = PTR_ERR(event->eventfd);
4640 goto out_put_efile;
4641 }
4642
4643 cfile = fdget(cfd);
4644 if (!cfile.file) {
4645 ret = -EBADF;
4646 goto out_put_eventfd;
4647 }
4648
4649 /* the process need read permission on control file */
4650 /* AV: shouldn't we check that it's been opened for read instead? */
4651 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4652 if (ret < 0)
4653 goto out_put_cfile;
4654
4655 /*
4656 * Determine the event callbacks and set them in @event. This used
4657 * to be done via struct cftype but cgroup core no longer knows
4658 * about these events. The following is crude but the whole thing
4659 * is for compatibility anyway.
4660 *
4661 * DO NOT ADD NEW FILES.
4662 */
4663 name = cfile.file->f_dentry->d_name.name;
4664
4665 if (!strcmp(name, "memory.usage_in_bytes")) {
4666 event->register_event = mem_cgroup_usage_register_event;
4667 event->unregister_event = mem_cgroup_usage_unregister_event;
4668 } else if (!strcmp(name, "memory.oom_control")) {
4669 event->register_event = mem_cgroup_oom_register_event;
4670 event->unregister_event = mem_cgroup_oom_unregister_event;
4671 } else if (!strcmp(name, "memory.pressure_level")) {
4672 event->register_event = vmpressure_register_event;
4673 event->unregister_event = vmpressure_unregister_event;
4674 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4675 event->register_event = memsw_cgroup_usage_register_event;
4676 event->unregister_event = memsw_cgroup_usage_unregister_event;
4677 } else {
4678 ret = -EINVAL;
4679 goto out_put_cfile;
4680 }
4681
4682 /*
4683 * Verify @cfile should belong to @css. Also, remaining events are
4684 * automatically removed on cgroup destruction but the removal is
4685 * asynchronous, so take an extra ref on @css.
4686 */
4687 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4688 &memory_cgrp_subsys);
4689 ret = -EINVAL;
4690 if (IS_ERR(cfile_css))
4691 goto out_put_cfile;
4692 if (cfile_css != css) {
4693 css_put(cfile_css);
4694 goto out_put_cfile;
4695 }
4696
4697 ret = event->register_event(memcg, event->eventfd, buf);
4698 if (ret)
4699 goto out_put_css;
4700
4701 efile.file->f_op->poll(efile.file, &event->pt);
4702
4703 spin_lock(&memcg->event_list_lock);
4704 list_add(&event->list, &memcg->event_list);
4705 spin_unlock(&memcg->event_list_lock);
4706
4707 fdput(cfile);
4708 fdput(efile);
4709
4710 return nbytes;
4711
4712 out_put_css:
4713 css_put(css);
4714 out_put_cfile:
4715 fdput(cfile);
4716 out_put_eventfd:
4717 eventfd_ctx_put(event->eventfd);
4718 out_put_efile:
4719 fdput(efile);
4720 out_kfree:
4721 kfree(event);
4722
4723 return ret;
4724 }
4725
4726 static struct cftype mem_cgroup_files[] = {
4727 {
4728 .name = "usage_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4730 .read_u64 = mem_cgroup_read_u64,
4731 },
4732 {
4733 .name = "max_usage_in_bytes",
4734 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4735 .write = mem_cgroup_reset,
4736 .read_u64 = mem_cgroup_read_u64,
4737 },
4738 {
4739 .name = "limit_in_bytes",
4740 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4741 .write = mem_cgroup_write,
4742 .read_u64 = mem_cgroup_read_u64,
4743 },
4744 {
4745 .name = "soft_limit_in_bytes",
4746 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4747 .write = mem_cgroup_write,
4748 .read_u64 = mem_cgroup_read_u64,
4749 },
4750 {
4751 .name = "failcnt",
4752 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4753 .write = mem_cgroup_reset,
4754 .read_u64 = mem_cgroup_read_u64,
4755 },
4756 {
4757 .name = "stat",
4758 .seq_show = memcg_stat_show,
4759 },
4760 {
4761 .name = "force_empty",
4762 .write = mem_cgroup_force_empty_write,
4763 },
4764 {
4765 .name = "use_hierarchy",
4766 .write_u64 = mem_cgroup_hierarchy_write,
4767 .read_u64 = mem_cgroup_hierarchy_read,
4768 },
4769 {
4770 .name = "cgroup.event_control", /* XXX: for compat */
4771 .write = memcg_write_event_control,
4772 .flags = CFTYPE_NO_PREFIX,
4773 .mode = S_IWUGO,
4774 },
4775 {
4776 .name = "swappiness",
4777 .read_u64 = mem_cgroup_swappiness_read,
4778 .write_u64 = mem_cgroup_swappiness_write,
4779 },
4780 {
4781 .name = "move_charge_at_immigrate",
4782 .read_u64 = mem_cgroup_move_charge_read,
4783 .write_u64 = mem_cgroup_move_charge_write,
4784 },
4785 {
4786 .name = "oom_control",
4787 .seq_show = mem_cgroup_oom_control_read,
4788 .write_u64 = mem_cgroup_oom_control_write,
4789 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4790 },
4791 {
4792 .name = "pressure_level",
4793 },
4794 #ifdef CONFIG_NUMA
4795 {
4796 .name = "numa_stat",
4797 .seq_show = memcg_numa_stat_show,
4798 },
4799 #endif
4800 #ifdef CONFIG_MEMCG_KMEM
4801 {
4802 .name = "kmem.limit_in_bytes",
4803 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4804 .write = mem_cgroup_write,
4805 .read_u64 = mem_cgroup_read_u64,
4806 },
4807 {
4808 .name = "kmem.usage_in_bytes",
4809 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4810 .read_u64 = mem_cgroup_read_u64,
4811 },
4812 {
4813 .name = "kmem.failcnt",
4814 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4815 .write = mem_cgroup_reset,
4816 .read_u64 = mem_cgroup_read_u64,
4817 },
4818 {
4819 .name = "kmem.max_usage_in_bytes",
4820 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4821 .write = mem_cgroup_reset,
4822 .read_u64 = mem_cgroup_read_u64,
4823 },
4824 #ifdef CONFIG_SLABINFO
4825 {
4826 .name = "kmem.slabinfo",
4827 .seq_show = mem_cgroup_slabinfo_read,
4828 },
4829 #endif
4830 #endif
4831 { }, /* terminate */
4832 };
4833
4834 #ifdef CONFIG_MEMCG_SWAP
4835 static struct cftype memsw_cgroup_files[] = {
4836 {
4837 .name = "memsw.usage_in_bytes",
4838 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4839 .read_u64 = mem_cgroup_read_u64,
4840 },
4841 {
4842 .name = "memsw.max_usage_in_bytes",
4843 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4844 .write = mem_cgroup_reset,
4845 .read_u64 = mem_cgroup_read_u64,
4846 },
4847 {
4848 .name = "memsw.limit_in_bytes",
4849 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4850 .write = mem_cgroup_write,
4851 .read_u64 = mem_cgroup_read_u64,
4852 },
4853 {
4854 .name = "memsw.failcnt",
4855 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4856 .write = mem_cgroup_reset,
4857 .read_u64 = mem_cgroup_read_u64,
4858 },
4859 { }, /* terminate */
4860 };
4861 #endif
4862 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4863 {
4864 struct mem_cgroup_per_node *pn;
4865 struct mem_cgroup_per_zone *mz;
4866 int zone, tmp = node;
4867 /*
4868 * This routine is called against possible nodes.
4869 * But it's BUG to call kmalloc() against offline node.
4870 *
4871 * TODO: this routine can waste much memory for nodes which will
4872 * never be onlined. It's better to use memory hotplug callback
4873 * function.
4874 */
4875 if (!node_state(node, N_NORMAL_MEMORY))
4876 tmp = -1;
4877 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4878 if (!pn)
4879 return 1;
4880
4881 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4882 mz = &pn->zoneinfo[zone];
4883 lruvec_init(&mz->lruvec);
4884 mz->usage_in_excess = 0;
4885 mz->on_tree = false;
4886 mz->memcg = memcg;
4887 }
4888 memcg->nodeinfo[node] = pn;
4889 return 0;
4890 }
4891
4892 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4893 {
4894 kfree(memcg->nodeinfo[node]);
4895 }
4896
4897 static struct mem_cgroup *mem_cgroup_alloc(void)
4898 {
4899 struct mem_cgroup *memcg;
4900 size_t size;
4901
4902 size = sizeof(struct mem_cgroup);
4903 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4904
4905 memcg = kzalloc(size, GFP_KERNEL);
4906 if (!memcg)
4907 return NULL;
4908
4909 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4910 if (!memcg->stat)
4911 goto out_free;
4912 spin_lock_init(&memcg->pcp_counter_lock);
4913 return memcg;
4914
4915 out_free:
4916 kfree(memcg);
4917 return NULL;
4918 }
4919
4920 /*
4921 * At destroying mem_cgroup, references from swap_cgroup can remain.
4922 * (scanning all at force_empty is too costly...)
4923 *
4924 * Instead of clearing all references at force_empty, we remember
4925 * the number of reference from swap_cgroup and free mem_cgroup when
4926 * it goes down to 0.
4927 *
4928 * Removal of cgroup itself succeeds regardless of refs from swap.
4929 */
4930
4931 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4932 {
4933 int node;
4934
4935 mem_cgroup_remove_from_trees(memcg);
4936
4937 for_each_node(node)
4938 free_mem_cgroup_per_zone_info(memcg, node);
4939
4940 free_percpu(memcg->stat);
4941
4942 /*
4943 * We need to make sure that (at least for now), the jump label
4944 * destruction code runs outside of the cgroup lock. This is because
4945 * get_online_cpus(), which is called from the static_branch update,
4946 * can't be called inside the cgroup_lock. cpusets are the ones
4947 * enforcing this dependency, so if they ever change, we might as well.
4948 *
4949 * schedule_work() will guarantee this happens. Be careful if you need
4950 * to move this code around, and make sure it is outside
4951 * the cgroup_lock.
4952 */
4953 disarm_static_keys(memcg);
4954 kfree(memcg);
4955 }
4956
4957 /*
4958 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4959 */
4960 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4961 {
4962 if (!memcg->memory.parent)
4963 return NULL;
4964 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4965 }
4966 EXPORT_SYMBOL(parent_mem_cgroup);
4967
4968 static void __init mem_cgroup_soft_limit_tree_init(void)
4969 {
4970 struct mem_cgroup_tree_per_node *rtpn;
4971 struct mem_cgroup_tree_per_zone *rtpz;
4972 int tmp, node, zone;
4973
4974 for_each_node(node) {
4975 tmp = node;
4976 if (!node_state(node, N_NORMAL_MEMORY))
4977 tmp = -1;
4978 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4979 BUG_ON(!rtpn);
4980
4981 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4982
4983 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4984 rtpz = &rtpn->rb_tree_per_zone[zone];
4985 rtpz->rb_root = RB_ROOT;
4986 spin_lock_init(&rtpz->lock);
4987 }
4988 }
4989 }
4990
4991 static struct cgroup_subsys_state * __ref
4992 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4993 {
4994 struct mem_cgroup *memcg;
4995 long error = -ENOMEM;
4996 int node;
4997
4998 memcg = mem_cgroup_alloc();
4999 if (!memcg)
5000 return ERR_PTR(error);
5001
5002 for_each_node(node)
5003 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5004 goto free_out;
5005
5006 /* root ? */
5007 if (parent_css == NULL) {
5008 root_mem_cgroup = memcg;
5009 page_counter_init(&memcg->memory, NULL);
5010 page_counter_init(&memcg->memsw, NULL);
5011 page_counter_init(&memcg->kmem, NULL);
5012 }
5013
5014 memcg->last_scanned_node = MAX_NUMNODES;
5015 INIT_LIST_HEAD(&memcg->oom_notify);
5016 memcg->move_charge_at_immigrate = 0;
5017 mutex_init(&memcg->thresholds_lock);
5018 spin_lock_init(&memcg->move_lock);
5019 vmpressure_init(&memcg->vmpressure);
5020 INIT_LIST_HEAD(&memcg->event_list);
5021 spin_lock_init(&memcg->event_list_lock);
5022
5023 return &memcg->css;
5024
5025 free_out:
5026 __mem_cgroup_free(memcg);
5027 return ERR_PTR(error);
5028 }
5029
5030 static int
5031 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5032 {
5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5034 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5035 int ret;
5036
5037 if (css->id > MEM_CGROUP_ID_MAX)
5038 return -ENOSPC;
5039
5040 if (!parent)
5041 return 0;
5042
5043 mutex_lock(&memcg_create_mutex);
5044
5045 memcg->use_hierarchy = parent->use_hierarchy;
5046 memcg->oom_kill_disable = parent->oom_kill_disable;
5047 memcg->swappiness = mem_cgroup_swappiness(parent);
5048
5049 if (parent->use_hierarchy) {
5050 page_counter_init(&memcg->memory, &parent->memory);
5051 page_counter_init(&memcg->memsw, &parent->memsw);
5052 page_counter_init(&memcg->kmem, &parent->kmem);
5053
5054 /*
5055 * No need to take a reference to the parent because cgroup
5056 * core guarantees its existence.
5057 */
5058 } else {
5059 page_counter_init(&memcg->memory, NULL);
5060 page_counter_init(&memcg->memsw, NULL);
5061 page_counter_init(&memcg->kmem, NULL);
5062 /*
5063 * Deeper hierachy with use_hierarchy == false doesn't make
5064 * much sense so let cgroup subsystem know about this
5065 * unfortunate state in our controller.
5066 */
5067 if (parent != root_mem_cgroup)
5068 memory_cgrp_subsys.broken_hierarchy = true;
5069 }
5070 mutex_unlock(&memcg_create_mutex);
5071
5072 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5073 if (ret)
5074 return ret;
5075
5076 /*
5077 * Make sure the memcg is initialized: mem_cgroup_iter()
5078 * orders reading memcg->initialized against its callers
5079 * reading the memcg members.
5080 */
5081 smp_store_release(&memcg->initialized, 1);
5082
5083 return 0;
5084 }
5085
5086 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5087 {
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5089 struct mem_cgroup_event *event, *tmp;
5090
5091 /*
5092 * Unregister events and notify userspace.
5093 * Notify userspace about cgroup removing only after rmdir of cgroup
5094 * directory to avoid race between userspace and kernelspace.
5095 */
5096 spin_lock(&memcg->event_list_lock);
5097 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5098 list_del_init(&event->list);
5099 schedule_work(&event->remove);
5100 }
5101 spin_unlock(&memcg->event_list_lock);
5102
5103 memcg_unregister_all_caches(memcg);
5104 vmpressure_cleanup(&memcg->vmpressure);
5105 }
5106
5107 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5108 {
5109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5110
5111 memcg_destroy_kmem(memcg);
5112 __mem_cgroup_free(memcg);
5113 }
5114
5115 /**
5116 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5117 * @css: the target css
5118 *
5119 * Reset the states of the mem_cgroup associated with @css. This is
5120 * invoked when the userland requests disabling on the default hierarchy
5121 * but the memcg is pinned through dependency. The memcg should stop
5122 * applying policies and should revert to the vanilla state as it may be
5123 * made visible again.
5124 *
5125 * The current implementation only resets the essential configurations.
5126 * This needs to be expanded to cover all the visible parts.
5127 */
5128 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5129 {
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131
5132 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5133 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5134 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5135 memcg->soft_limit = 0;
5136 }
5137
5138 #ifdef CONFIG_MMU
5139 /* Handlers for move charge at task migration. */
5140 static int mem_cgroup_do_precharge(unsigned long count)
5141 {
5142 int ret;
5143
5144 /* Try a single bulk charge without reclaim first */
5145 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5146 if (!ret) {
5147 mc.precharge += count;
5148 return ret;
5149 }
5150 if (ret == -EINTR) {
5151 cancel_charge(root_mem_cgroup, count);
5152 return ret;
5153 }
5154
5155 /* Try charges one by one with reclaim */
5156 while (count--) {
5157 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5158 /*
5159 * In case of failure, any residual charges against
5160 * mc.to will be dropped by mem_cgroup_clear_mc()
5161 * later on. However, cancel any charges that are
5162 * bypassed to root right away or they'll be lost.
5163 */
5164 if (ret == -EINTR)
5165 cancel_charge(root_mem_cgroup, 1);
5166 if (ret)
5167 return ret;
5168 mc.precharge++;
5169 cond_resched();
5170 }
5171 return 0;
5172 }
5173
5174 /**
5175 * get_mctgt_type - get target type of moving charge
5176 * @vma: the vma the pte to be checked belongs
5177 * @addr: the address corresponding to the pte to be checked
5178 * @ptent: the pte to be checked
5179 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5180 *
5181 * Returns
5182 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5183 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5184 * move charge. if @target is not NULL, the page is stored in target->page
5185 * with extra refcnt got(Callers should handle it).
5186 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5187 * target for charge migration. if @target is not NULL, the entry is stored
5188 * in target->ent.
5189 *
5190 * Called with pte lock held.
5191 */
5192 union mc_target {
5193 struct page *page;
5194 swp_entry_t ent;
5195 };
5196
5197 enum mc_target_type {
5198 MC_TARGET_NONE = 0,
5199 MC_TARGET_PAGE,
5200 MC_TARGET_SWAP,
5201 };
5202
5203 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent)
5205 {
5206 struct page *page = vm_normal_page(vma, addr, ptent);
5207
5208 if (!page || !page_mapped(page))
5209 return NULL;
5210 if (PageAnon(page)) {
5211 /* we don't move shared anon */
5212 if (!move_anon())
5213 return NULL;
5214 } else if (!move_file())
5215 /* we ignore mapcount for file pages */
5216 return NULL;
5217 if (!get_page_unless_zero(page))
5218 return NULL;
5219
5220 return page;
5221 }
5222
5223 #ifdef CONFIG_SWAP
5224 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226 {
5227 struct page *page = NULL;
5228 swp_entry_t ent = pte_to_swp_entry(ptent);
5229
5230 if (!move_anon() || non_swap_entry(ent))
5231 return NULL;
5232 /*
5233 * Because lookup_swap_cache() updates some statistics counter,
5234 * we call find_get_page() with swapper_space directly.
5235 */
5236 page = find_get_page(swap_address_space(ent), ent.val);
5237 if (do_swap_account)
5238 entry->val = ent.val;
5239
5240 return page;
5241 }
5242 #else
5243 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5244 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5245 {
5246 return NULL;
5247 }
5248 #endif
5249
5250 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5251 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5252 {
5253 struct page *page = NULL;
5254 struct address_space *mapping;
5255 pgoff_t pgoff;
5256
5257 if (!vma->vm_file) /* anonymous vma */
5258 return NULL;
5259 if (!move_file())
5260 return NULL;
5261
5262 mapping = vma->vm_file->f_mapping;
5263 if (pte_none(ptent))
5264 pgoff = linear_page_index(vma, addr);
5265 else /* pte_file(ptent) is true */
5266 pgoff = pte_to_pgoff(ptent);
5267
5268 /* page is moved even if it's not RSS of this task(page-faulted). */
5269 #ifdef CONFIG_SWAP
5270 /* shmem/tmpfs may report page out on swap: account for that too. */
5271 if (shmem_mapping(mapping)) {
5272 page = find_get_entry(mapping, pgoff);
5273 if (radix_tree_exceptional_entry(page)) {
5274 swp_entry_t swp = radix_to_swp_entry(page);
5275 if (do_swap_account)
5276 *entry = swp;
5277 page = find_get_page(swap_address_space(swp), swp.val);
5278 }
5279 } else
5280 page = find_get_page(mapping, pgoff);
5281 #else
5282 page = find_get_page(mapping, pgoff);
5283 #endif
5284 return page;
5285 }
5286
5287 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5288 unsigned long addr, pte_t ptent, union mc_target *target)
5289 {
5290 struct page *page = NULL;
5291 struct page_cgroup *pc;
5292 enum mc_target_type ret = MC_TARGET_NONE;
5293 swp_entry_t ent = { .val = 0 };
5294
5295 if (pte_present(ptent))
5296 page = mc_handle_present_pte(vma, addr, ptent);
5297 else if (is_swap_pte(ptent))
5298 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5299 else if (pte_none(ptent) || pte_file(ptent))
5300 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5301
5302 if (!page && !ent.val)
5303 return ret;
5304 if (page) {
5305 pc = lookup_page_cgroup(page);
5306 /*
5307 * Do only loose check w/o serialization.
5308 * mem_cgroup_move_account() checks the pc is valid or
5309 * not under LRU exclusion.
5310 */
5311 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5312 ret = MC_TARGET_PAGE;
5313 if (target)
5314 target->page = page;
5315 }
5316 if (!ret || !target)
5317 put_page(page);
5318 }
5319 /* There is a swap entry and a page doesn't exist or isn't charged */
5320 if (ent.val && !ret &&
5321 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5322 ret = MC_TARGET_SWAP;
5323 if (target)
5324 target->ent = ent;
5325 }
5326 return ret;
5327 }
5328
5329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5330 /*
5331 * We don't consider swapping or file mapped pages because THP does not
5332 * support them for now.
5333 * Caller should make sure that pmd_trans_huge(pmd) is true.
5334 */
5335 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5336 unsigned long addr, pmd_t pmd, union mc_target *target)
5337 {
5338 struct page *page = NULL;
5339 struct page_cgroup *pc;
5340 enum mc_target_type ret = MC_TARGET_NONE;
5341
5342 page = pmd_page(pmd);
5343 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5344 if (!move_anon())
5345 return ret;
5346 pc = lookup_page_cgroup(page);
5347 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5348 ret = MC_TARGET_PAGE;
5349 if (target) {
5350 get_page(page);
5351 target->page = page;
5352 }
5353 }
5354 return ret;
5355 }
5356 #else
5357 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5358 unsigned long addr, pmd_t pmd, union mc_target *target)
5359 {
5360 return MC_TARGET_NONE;
5361 }
5362 #endif
5363
5364 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5365 unsigned long addr, unsigned long end,
5366 struct mm_walk *walk)
5367 {
5368 struct vm_area_struct *vma = walk->private;
5369 pte_t *pte;
5370 spinlock_t *ptl;
5371
5372 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5373 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5374 mc.precharge += HPAGE_PMD_NR;
5375 spin_unlock(ptl);
5376 return 0;
5377 }
5378
5379 if (pmd_trans_unstable(pmd))
5380 return 0;
5381 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5382 for (; addr != end; pte++, addr += PAGE_SIZE)
5383 if (get_mctgt_type(vma, addr, *pte, NULL))
5384 mc.precharge++; /* increment precharge temporarily */
5385 pte_unmap_unlock(pte - 1, ptl);
5386 cond_resched();
5387
5388 return 0;
5389 }
5390
5391 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5392 {
5393 unsigned long precharge;
5394 struct vm_area_struct *vma;
5395
5396 down_read(&mm->mmap_sem);
5397 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5398 struct mm_walk mem_cgroup_count_precharge_walk = {
5399 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5400 .mm = mm,
5401 .private = vma,
5402 };
5403 if (is_vm_hugetlb_page(vma))
5404 continue;
5405 walk_page_range(vma->vm_start, vma->vm_end,
5406 &mem_cgroup_count_precharge_walk);
5407 }
5408 up_read(&mm->mmap_sem);
5409
5410 precharge = mc.precharge;
5411 mc.precharge = 0;
5412
5413 return precharge;
5414 }
5415
5416 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5417 {
5418 unsigned long precharge = mem_cgroup_count_precharge(mm);
5419
5420 VM_BUG_ON(mc.moving_task);
5421 mc.moving_task = current;
5422 return mem_cgroup_do_precharge(precharge);
5423 }
5424
5425 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5426 static void __mem_cgroup_clear_mc(void)
5427 {
5428 struct mem_cgroup *from = mc.from;
5429 struct mem_cgroup *to = mc.to;
5430
5431 /* we must uncharge all the leftover precharges from mc.to */
5432 if (mc.precharge) {
5433 cancel_charge(mc.to, mc.precharge);
5434 mc.precharge = 0;
5435 }
5436 /*
5437 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5438 * we must uncharge here.
5439 */
5440 if (mc.moved_charge) {
5441 cancel_charge(mc.from, mc.moved_charge);
5442 mc.moved_charge = 0;
5443 }
5444 /* we must fixup refcnts and charges */
5445 if (mc.moved_swap) {
5446 /* uncharge swap account from the old cgroup */
5447 if (!mem_cgroup_is_root(mc.from))
5448 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5449
5450 /*
5451 * we charged both to->memory and to->memsw, so we
5452 * should uncharge to->memory.
5453 */
5454 if (!mem_cgroup_is_root(mc.to))
5455 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5456
5457 css_put_many(&mc.from->css, mc.moved_swap);
5458
5459 /* we've already done css_get(mc.to) */
5460 mc.moved_swap = 0;
5461 }
5462 memcg_oom_recover(from);
5463 memcg_oom_recover(to);
5464 wake_up_all(&mc.waitq);
5465 }
5466
5467 static void mem_cgroup_clear_mc(void)
5468 {
5469 struct mem_cgroup *from = mc.from;
5470
5471 /*
5472 * we must clear moving_task before waking up waiters at the end of
5473 * task migration.
5474 */
5475 mc.moving_task = NULL;
5476 __mem_cgroup_clear_mc();
5477 spin_lock(&mc.lock);
5478 mc.from = NULL;
5479 mc.to = NULL;
5480 spin_unlock(&mc.lock);
5481 mem_cgroup_end_move(from);
5482 }
5483
5484 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5485 struct cgroup_taskset *tset)
5486 {
5487 struct task_struct *p = cgroup_taskset_first(tset);
5488 int ret = 0;
5489 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5490 unsigned long move_charge_at_immigrate;
5491
5492 /*
5493 * We are now commited to this value whatever it is. Changes in this
5494 * tunable will only affect upcoming migrations, not the current one.
5495 * So we need to save it, and keep it going.
5496 */
5497 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5498 if (move_charge_at_immigrate) {
5499 struct mm_struct *mm;
5500 struct mem_cgroup *from = mem_cgroup_from_task(p);
5501
5502 VM_BUG_ON(from == memcg);
5503
5504 mm = get_task_mm(p);
5505 if (!mm)
5506 return 0;
5507 /* We move charges only when we move a owner of the mm */
5508 if (mm->owner == p) {
5509 VM_BUG_ON(mc.from);
5510 VM_BUG_ON(mc.to);
5511 VM_BUG_ON(mc.precharge);
5512 VM_BUG_ON(mc.moved_charge);
5513 VM_BUG_ON(mc.moved_swap);
5514 mem_cgroup_start_move(from);
5515 spin_lock(&mc.lock);
5516 mc.from = from;
5517 mc.to = memcg;
5518 mc.immigrate_flags = move_charge_at_immigrate;
5519 spin_unlock(&mc.lock);
5520 /* We set mc.moving_task later */
5521
5522 ret = mem_cgroup_precharge_mc(mm);
5523 if (ret)
5524 mem_cgroup_clear_mc();
5525 }
5526 mmput(mm);
5527 }
5528 return ret;
5529 }
5530
5531 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5532 struct cgroup_taskset *tset)
5533 {
5534 mem_cgroup_clear_mc();
5535 }
5536
5537 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5538 unsigned long addr, unsigned long end,
5539 struct mm_walk *walk)
5540 {
5541 int ret = 0;
5542 struct vm_area_struct *vma = walk->private;
5543 pte_t *pte;
5544 spinlock_t *ptl;
5545 enum mc_target_type target_type;
5546 union mc_target target;
5547 struct page *page;
5548 struct page_cgroup *pc;
5549
5550 /*
5551 * We don't take compound_lock() here but no race with splitting thp
5552 * happens because:
5553 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5554 * under splitting, which means there's no concurrent thp split,
5555 * - if another thread runs into split_huge_page() just after we
5556 * entered this if-block, the thread must wait for page table lock
5557 * to be unlocked in __split_huge_page_splitting(), where the main
5558 * part of thp split is not executed yet.
5559 */
5560 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5561 if (mc.precharge < HPAGE_PMD_NR) {
5562 spin_unlock(ptl);
5563 return 0;
5564 }
5565 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5566 if (target_type == MC_TARGET_PAGE) {
5567 page = target.page;
5568 if (!isolate_lru_page(page)) {
5569 pc = lookup_page_cgroup(page);
5570 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5571 pc, mc.from, mc.to)) {
5572 mc.precharge -= HPAGE_PMD_NR;
5573 mc.moved_charge += HPAGE_PMD_NR;
5574 }
5575 putback_lru_page(page);
5576 }
5577 put_page(page);
5578 }
5579 spin_unlock(ptl);
5580 return 0;
5581 }
5582
5583 if (pmd_trans_unstable(pmd))
5584 return 0;
5585 retry:
5586 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5587 for (; addr != end; addr += PAGE_SIZE) {
5588 pte_t ptent = *(pte++);
5589 swp_entry_t ent;
5590
5591 if (!mc.precharge)
5592 break;
5593
5594 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5595 case MC_TARGET_PAGE:
5596 page = target.page;
5597 if (isolate_lru_page(page))
5598 goto put;
5599 pc = lookup_page_cgroup(page);
5600 if (!mem_cgroup_move_account(page, 1, pc,
5601 mc.from, mc.to)) {
5602 mc.precharge--;
5603 /* we uncharge from mc.from later. */
5604 mc.moved_charge++;
5605 }
5606 putback_lru_page(page);
5607 put: /* get_mctgt_type() gets the page */
5608 put_page(page);
5609 break;
5610 case MC_TARGET_SWAP:
5611 ent = target.ent;
5612 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5613 mc.precharge--;
5614 /* we fixup refcnts and charges later. */
5615 mc.moved_swap++;
5616 }
5617 break;
5618 default:
5619 break;
5620 }
5621 }
5622 pte_unmap_unlock(pte - 1, ptl);
5623 cond_resched();
5624
5625 if (addr != end) {
5626 /*
5627 * We have consumed all precharges we got in can_attach().
5628 * We try charge one by one, but don't do any additional
5629 * charges to mc.to if we have failed in charge once in attach()
5630 * phase.
5631 */
5632 ret = mem_cgroup_do_precharge(1);
5633 if (!ret)
5634 goto retry;
5635 }
5636
5637 return ret;
5638 }
5639
5640 static void mem_cgroup_move_charge(struct mm_struct *mm)
5641 {
5642 struct vm_area_struct *vma;
5643
5644 lru_add_drain_all();
5645 retry:
5646 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5647 /*
5648 * Someone who are holding the mmap_sem might be waiting in
5649 * waitq. So we cancel all extra charges, wake up all waiters,
5650 * and retry. Because we cancel precharges, we might not be able
5651 * to move enough charges, but moving charge is a best-effort
5652 * feature anyway, so it wouldn't be a big problem.
5653 */
5654 __mem_cgroup_clear_mc();
5655 cond_resched();
5656 goto retry;
5657 }
5658 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5659 int ret;
5660 struct mm_walk mem_cgroup_move_charge_walk = {
5661 .pmd_entry = mem_cgroup_move_charge_pte_range,
5662 .mm = mm,
5663 .private = vma,
5664 };
5665 if (is_vm_hugetlb_page(vma))
5666 continue;
5667 ret = walk_page_range(vma->vm_start, vma->vm_end,
5668 &mem_cgroup_move_charge_walk);
5669 if (ret)
5670 /*
5671 * means we have consumed all precharges and failed in
5672 * doing additional charge. Just abandon here.
5673 */
5674 break;
5675 }
5676 up_read(&mm->mmap_sem);
5677 }
5678
5679 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5680 struct cgroup_taskset *tset)
5681 {
5682 struct task_struct *p = cgroup_taskset_first(tset);
5683 struct mm_struct *mm = get_task_mm(p);
5684
5685 if (mm) {
5686 if (mc.to)
5687 mem_cgroup_move_charge(mm);
5688 mmput(mm);
5689 }
5690 if (mc.to)
5691 mem_cgroup_clear_mc();
5692 }
5693 #else /* !CONFIG_MMU */
5694 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5695 struct cgroup_taskset *tset)
5696 {
5697 return 0;
5698 }
5699 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5700 struct cgroup_taskset *tset)
5701 {
5702 }
5703 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5704 struct cgroup_taskset *tset)
5705 {
5706 }
5707 #endif
5708
5709 /*
5710 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5711 * to verify whether we're attached to the default hierarchy on each mount
5712 * attempt.
5713 */
5714 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5715 {
5716 /*
5717 * use_hierarchy is forced on the default hierarchy. cgroup core
5718 * guarantees that @root doesn't have any children, so turning it
5719 * on for the root memcg is enough.
5720 */
5721 if (cgroup_on_dfl(root_css->cgroup))
5722 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5723 }
5724
5725 struct cgroup_subsys memory_cgrp_subsys = {
5726 .css_alloc = mem_cgroup_css_alloc,
5727 .css_online = mem_cgroup_css_online,
5728 .css_offline = mem_cgroup_css_offline,
5729 .css_free = mem_cgroup_css_free,
5730 .css_reset = mem_cgroup_css_reset,
5731 .can_attach = mem_cgroup_can_attach,
5732 .cancel_attach = mem_cgroup_cancel_attach,
5733 .attach = mem_cgroup_move_task,
5734 .bind = mem_cgroup_bind,
5735 .legacy_cftypes = mem_cgroup_files,
5736 .early_init = 0,
5737 };
5738
5739 #ifdef CONFIG_MEMCG_SWAP
5740 static int __init enable_swap_account(char *s)
5741 {
5742 if (!strcmp(s, "1"))
5743 really_do_swap_account = 1;
5744 else if (!strcmp(s, "0"))
5745 really_do_swap_account = 0;
5746 return 1;
5747 }
5748 __setup("swapaccount=", enable_swap_account);
5749
5750 static void __init memsw_file_init(void)
5751 {
5752 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5753 memsw_cgroup_files));
5754 }
5755
5756 static void __init enable_swap_cgroup(void)
5757 {
5758 if (!mem_cgroup_disabled() && really_do_swap_account) {
5759 do_swap_account = 1;
5760 memsw_file_init();
5761 }
5762 }
5763
5764 #else
5765 static void __init enable_swap_cgroup(void)
5766 {
5767 }
5768 #endif
5769
5770 #ifdef CONFIG_MEMCG_SWAP
5771 /**
5772 * mem_cgroup_swapout - transfer a memsw charge to swap
5773 * @page: page whose memsw charge to transfer
5774 * @entry: swap entry to move the charge to
5775 *
5776 * Transfer the memsw charge of @page to @entry.
5777 */
5778 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5779 {
5780 struct mem_cgroup *memcg;
5781 struct page_cgroup *pc;
5782 unsigned short oldid;
5783
5784 VM_BUG_ON_PAGE(PageLRU(page), page);
5785 VM_BUG_ON_PAGE(page_count(page), page);
5786
5787 if (!do_swap_account)
5788 return;
5789
5790 pc = lookup_page_cgroup(page);
5791
5792 /* Readahead page, never charged */
5793 if (!PageCgroupUsed(pc))
5794 return;
5795
5796 memcg = pc->mem_cgroup;
5797
5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5799 VM_BUG_ON_PAGE(oldid, page);
5800 mem_cgroup_swap_statistics(memcg, true);
5801
5802 pc->flags = 0;
5803
5804 if (!mem_cgroup_is_root(memcg))
5805 page_counter_uncharge(&memcg->memory, 1);
5806
5807 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5808 VM_BUG_ON(!irqs_disabled());
5809
5810 mem_cgroup_charge_statistics(memcg, page, -1);
5811 memcg_check_events(memcg, page);
5812 }
5813
5814 /**
5815 * mem_cgroup_uncharge_swap - uncharge a swap entry
5816 * @entry: swap entry to uncharge
5817 *
5818 * Drop the memsw charge associated with @entry.
5819 */
5820 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5821 {
5822 struct mem_cgroup *memcg;
5823 unsigned short id;
5824
5825 if (!do_swap_account)
5826 return;
5827
5828 id = swap_cgroup_record(entry, 0);
5829 rcu_read_lock();
5830 memcg = mem_cgroup_lookup(id);
5831 if (memcg) {
5832 if (!mem_cgroup_is_root(memcg))
5833 page_counter_uncharge(&memcg->memsw, 1);
5834 mem_cgroup_swap_statistics(memcg, false);
5835 css_put(&memcg->css);
5836 }
5837 rcu_read_unlock();
5838 }
5839 #endif
5840
5841 /**
5842 * mem_cgroup_try_charge - try charging a page
5843 * @page: page to charge
5844 * @mm: mm context of the victim
5845 * @gfp_mask: reclaim mode
5846 * @memcgp: charged memcg return
5847 *
5848 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5849 * pages according to @gfp_mask if necessary.
5850 *
5851 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5852 * Otherwise, an error code is returned.
5853 *
5854 * After page->mapping has been set up, the caller must finalize the
5855 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5856 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5857 */
5858 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5859 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5860 {
5861 struct mem_cgroup *memcg = NULL;
5862 unsigned int nr_pages = 1;
5863 int ret = 0;
5864
5865 if (mem_cgroup_disabled())
5866 goto out;
5867
5868 if (PageSwapCache(page)) {
5869 struct page_cgroup *pc = lookup_page_cgroup(page);
5870 /*
5871 * Every swap fault against a single page tries to charge the
5872 * page, bail as early as possible. shmem_unuse() encounters
5873 * already charged pages, too. The USED bit is protected by
5874 * the page lock, which serializes swap cache removal, which
5875 * in turn serializes uncharging.
5876 */
5877 if (PageCgroupUsed(pc))
5878 goto out;
5879 }
5880
5881 if (PageTransHuge(page)) {
5882 nr_pages <<= compound_order(page);
5883 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5884 }
5885
5886 if (do_swap_account && PageSwapCache(page))
5887 memcg = try_get_mem_cgroup_from_page(page);
5888 if (!memcg)
5889 memcg = get_mem_cgroup_from_mm(mm);
5890
5891 ret = try_charge(memcg, gfp_mask, nr_pages);
5892
5893 css_put(&memcg->css);
5894
5895 if (ret == -EINTR) {
5896 memcg = root_mem_cgroup;
5897 ret = 0;
5898 }
5899 out:
5900 *memcgp = memcg;
5901 return ret;
5902 }
5903
5904 /**
5905 * mem_cgroup_commit_charge - commit a page charge
5906 * @page: page to charge
5907 * @memcg: memcg to charge the page to
5908 * @lrucare: page might be on LRU already
5909 *
5910 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5911 * after page->mapping has been set up. This must happen atomically
5912 * as part of the page instantiation, i.e. under the page table lock
5913 * for anonymous pages, under the page lock for page and swap cache.
5914 *
5915 * In addition, the page must not be on the LRU during the commit, to
5916 * prevent racing with task migration. If it might be, use @lrucare.
5917 *
5918 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5919 */
5920 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5921 bool lrucare)
5922 {
5923 unsigned int nr_pages = 1;
5924
5925 VM_BUG_ON_PAGE(!page->mapping, page);
5926 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5927
5928 if (mem_cgroup_disabled())
5929 return;
5930 /*
5931 * Swap faults will attempt to charge the same page multiple
5932 * times. But reuse_swap_page() might have removed the page
5933 * from swapcache already, so we can't check PageSwapCache().
5934 */
5935 if (!memcg)
5936 return;
5937
5938 commit_charge(page, memcg, lrucare);
5939
5940 if (PageTransHuge(page)) {
5941 nr_pages <<= compound_order(page);
5942 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5943 }
5944
5945 local_irq_disable();
5946 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5947 memcg_check_events(memcg, page);
5948 local_irq_enable();
5949
5950 if (do_swap_account && PageSwapCache(page)) {
5951 swp_entry_t entry = { .val = page_private(page) };
5952 /*
5953 * The swap entry might not get freed for a long time,
5954 * let's not wait for it. The page already received a
5955 * memory+swap charge, drop the swap entry duplicate.
5956 */
5957 mem_cgroup_uncharge_swap(entry);
5958 }
5959 }
5960
5961 /**
5962 * mem_cgroup_cancel_charge - cancel a page charge
5963 * @page: page to charge
5964 * @memcg: memcg to charge the page to
5965 *
5966 * Cancel a charge transaction started by mem_cgroup_try_charge().
5967 */
5968 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5969 {
5970 unsigned int nr_pages = 1;
5971
5972 if (mem_cgroup_disabled())
5973 return;
5974 /*
5975 * Swap faults will attempt to charge the same page multiple
5976 * times. But reuse_swap_page() might have removed the page
5977 * from swapcache already, so we can't check PageSwapCache().
5978 */
5979 if (!memcg)
5980 return;
5981
5982 if (PageTransHuge(page)) {
5983 nr_pages <<= compound_order(page);
5984 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5985 }
5986
5987 cancel_charge(memcg, nr_pages);
5988 }
5989
5990 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5991 unsigned long nr_anon, unsigned long nr_file,
5992 unsigned long nr_huge, struct page *dummy_page)
5993 {
5994 unsigned long nr_pages = nr_anon + nr_file;
5995 unsigned long flags;
5996
5997 if (!mem_cgroup_is_root(memcg)) {
5998 page_counter_uncharge(&memcg->memory, nr_pages);
5999 if (do_swap_account)
6000 page_counter_uncharge(&memcg->memsw, nr_pages);
6001 memcg_oom_recover(memcg);
6002 }
6003
6004 local_irq_save(flags);
6005 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6006 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6007 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6008 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6009 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6010 memcg_check_events(memcg, dummy_page);
6011 local_irq_restore(flags);
6012
6013 if (!mem_cgroup_is_root(memcg))
6014 css_put_many(&memcg->css, nr_pages);
6015 }
6016
6017 static void uncharge_list(struct list_head *page_list)
6018 {
6019 struct mem_cgroup *memcg = NULL;
6020 unsigned long nr_anon = 0;
6021 unsigned long nr_file = 0;
6022 unsigned long nr_huge = 0;
6023 unsigned long pgpgout = 0;
6024 struct list_head *next;
6025 struct page *page;
6026
6027 next = page_list->next;
6028 do {
6029 unsigned int nr_pages = 1;
6030 struct page_cgroup *pc;
6031
6032 page = list_entry(next, struct page, lru);
6033 next = page->lru.next;
6034
6035 VM_BUG_ON_PAGE(PageLRU(page), page);
6036 VM_BUG_ON_PAGE(page_count(page), page);
6037
6038 pc = lookup_page_cgroup(page);
6039 if (!PageCgroupUsed(pc))
6040 continue;
6041
6042 /*
6043 * Nobody should be changing or seriously looking at
6044 * pc->mem_cgroup and pc->flags at this point, we have
6045 * fully exclusive access to the page.
6046 */
6047
6048 if (memcg != pc->mem_cgroup) {
6049 if (memcg) {
6050 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6051 nr_huge, page);
6052 pgpgout = nr_anon = nr_file = nr_huge = 0;
6053 }
6054 memcg = pc->mem_cgroup;
6055 }
6056
6057 if (PageTransHuge(page)) {
6058 nr_pages <<= compound_order(page);
6059 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6060 nr_huge += nr_pages;
6061 }
6062
6063 if (PageAnon(page))
6064 nr_anon += nr_pages;
6065 else
6066 nr_file += nr_pages;
6067
6068 pc->flags = 0;
6069
6070 pgpgout++;
6071 } while (next != page_list);
6072
6073 if (memcg)
6074 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6075 nr_huge, page);
6076 }
6077
6078 /**
6079 * mem_cgroup_uncharge - uncharge a page
6080 * @page: page to uncharge
6081 *
6082 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6083 * mem_cgroup_commit_charge().
6084 */
6085 void mem_cgroup_uncharge(struct page *page)
6086 {
6087 struct page_cgroup *pc;
6088
6089 if (mem_cgroup_disabled())
6090 return;
6091
6092 /* Don't touch page->lru of any random page, pre-check: */
6093 pc = lookup_page_cgroup(page);
6094 if (!PageCgroupUsed(pc))
6095 return;
6096
6097 INIT_LIST_HEAD(&page->lru);
6098 uncharge_list(&page->lru);
6099 }
6100
6101 /**
6102 * mem_cgroup_uncharge_list - uncharge a list of page
6103 * @page_list: list of pages to uncharge
6104 *
6105 * Uncharge a list of pages previously charged with
6106 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6107 */
6108 void mem_cgroup_uncharge_list(struct list_head *page_list)
6109 {
6110 if (mem_cgroup_disabled())
6111 return;
6112
6113 if (!list_empty(page_list))
6114 uncharge_list(page_list);
6115 }
6116
6117 /**
6118 * mem_cgroup_migrate - migrate a charge to another page
6119 * @oldpage: currently charged page
6120 * @newpage: page to transfer the charge to
6121 * @lrucare: both pages might be on the LRU already
6122 *
6123 * Migrate the charge from @oldpage to @newpage.
6124 *
6125 * Both pages must be locked, @newpage->mapping must be set up.
6126 */
6127 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6128 bool lrucare)
6129 {
6130 struct page_cgroup *pc;
6131 int isolated;
6132
6133 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6134 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6135 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6136 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6137 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6138 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6139 newpage);
6140
6141 if (mem_cgroup_disabled())
6142 return;
6143
6144 /* Page cache replacement: new page already charged? */
6145 pc = lookup_page_cgroup(newpage);
6146 if (PageCgroupUsed(pc))
6147 return;
6148
6149 /*
6150 * Swapcache readahead pages can get migrated before being
6151 * charged, and migration from compaction can happen to an
6152 * uncharged page when the PFN walker finds a page that
6153 * reclaim just put back on the LRU but has not released yet.
6154 */
6155 pc = lookup_page_cgroup(oldpage);
6156 if (!PageCgroupUsed(pc))
6157 return;
6158
6159 if (lrucare)
6160 lock_page_lru(oldpage, &isolated);
6161
6162 pc->flags = 0;
6163
6164 if (lrucare)
6165 unlock_page_lru(oldpage, isolated);
6166
6167 commit_charge(newpage, pc->mem_cgroup, lrucare);
6168 }
6169
6170 /*
6171 * subsys_initcall() for memory controller.
6172 *
6173 * Some parts like hotcpu_notifier() have to be initialized from this context
6174 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6175 * everything that doesn't depend on a specific mem_cgroup structure should
6176 * be initialized from here.
6177 */
6178 static int __init mem_cgroup_init(void)
6179 {
6180 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6181 enable_swap_cgroup();
6182 mem_cgroup_soft_limit_tree_init();
6183 memcg_stock_init();
6184 return 0;
6185 }
6186 subsys_initcall(mem_cgroup_init);
This page took 0.156619 seconds and 5 git commands to generate.