mm: memcontrol: update copyright notice
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Whether the swap controller is active */
82 #ifdef CONFIG_MEMCG_SWAP
83 int do_swap_account __read_mostly;
84 #else
85 #define do_swap_account 0
86 #endif
87
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
95 };
96
97 static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102 };
103
104 static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110 };
111
112 /*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118 enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
120 MEM_CGROUP_TARGET_SOFTLIMIT,
121 MEM_CGROUP_TARGET_NUMAINFO,
122 MEM_CGROUP_NTARGETS,
123 };
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 struct mem_cgroup_stat_cpu {
129 long count[MEM_CGROUP_STAT_NSTATS];
130 unsigned long events[MEMCG_NR_EVENTS];
131 unsigned long nr_page_events;
132 unsigned long targets[MEM_CGROUP_NTARGETS];
133 };
134
135 struct reclaim_iter {
136 struct mem_cgroup *position;
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139 };
140
141 /*
142 * per-zone information in memory controller.
143 */
144 struct mem_cgroup_per_zone {
145 struct lruvec lruvec;
146 unsigned long lru_size[NR_LRU_LISTS];
147
148 struct reclaim_iter iter[DEF_PRIORITY + 1];
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160 };
161
162 /*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167 struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170 };
171
172 struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174 };
175
176 struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178 };
179
180 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182 struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
184 unsigned long threshold;
185 };
186
187 /* For threshold */
188 struct mem_cgroup_threshold_ary {
189 /* An array index points to threshold just below or equal to usage. */
190 int current_threshold;
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195 };
196
197 struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206 };
207
208 /* for OOM */
209 struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212 };
213
214 /*
215 * cgroup_event represents events which userspace want to receive.
216 */
217 struct mem_cgroup_event {
218 /*
219 * memcg which the event belongs to.
220 */
221 struct mem_cgroup *memcg;
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
235 int (*register_event)(struct mem_cgroup *memcg,
236 struct eventfd_ctx *eventfd, const char *args);
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
242 void (*unregister_event)(struct mem_cgroup *memcg,
243 struct eventfd_ctx *eventfd);
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252 };
253
254 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257 /*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 *
263 * TODO: Add a water mark for the memory controller. Reclaim will begin when
264 * we hit the water mark. May be even add a low water mark, such that
265 * no reclaim occurs from a cgroup at it's low water mark, this is
266 * a feature that will be implemented much later in the future.
267 */
268 struct mem_cgroup {
269 struct cgroup_subsys_state css;
270
271 /* Accounted resources */
272 struct page_counter memory;
273 struct page_counter memsw;
274 struct page_counter kmem;
275
276 /* Normal memory consumption range */
277 unsigned long low;
278 unsigned long high;
279
280 unsigned long soft_limit;
281
282 /* vmpressure notifications */
283 struct vmpressure vmpressure;
284
285 /* css_online() has been completed */
286 int initialized;
287
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
292
293 bool oom_lock;
294 atomic_t under_oom;
295 atomic_t oom_wakeups;
296
297 int swappiness;
298 /* OOM-Killer disable */
299 int oom_kill_disable;
300
301 /* protect arrays of thresholds */
302 struct mutex thresholds_lock;
303
304 /* thresholds for memory usage. RCU-protected */
305 struct mem_cgroup_thresholds thresholds;
306
307 /* thresholds for mem+swap usage. RCU-protected */
308 struct mem_cgroup_thresholds memsw_thresholds;
309
310 /* For oom notifier event fd */
311 struct list_head oom_notify;
312
313 /*
314 * Should we move charges of a task when a task is moved into this
315 * mem_cgroup ? And what type of charges should we move ?
316 */
317 unsigned long move_charge_at_immigrate;
318 /*
319 * set > 0 if pages under this cgroup are moving to other cgroup.
320 */
321 atomic_t moving_account;
322 /* taken only while moving_account > 0 */
323 spinlock_t move_lock;
324 struct task_struct *move_lock_task;
325 unsigned long move_lock_flags;
326 /*
327 * percpu counter.
328 */
329 struct mem_cgroup_stat_cpu __percpu *stat;
330 /*
331 * used when a cpu is offlined or other synchronizations
332 * See mem_cgroup_read_stat().
333 */
334 struct mem_cgroup_stat_cpu nocpu_base;
335 spinlock_t pcp_counter_lock;
336
337 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
338 struct cg_proto tcp_mem;
339 #endif
340 #if defined(CONFIG_MEMCG_KMEM)
341 /* Index in the kmem_cache->memcg_params.memcg_caches array */
342 int kmemcg_id;
343 bool kmem_acct_activated;
344 bool kmem_acct_active;
345 #endif
346
347 int last_scanned_node;
348 #if MAX_NUMNODES > 1
349 nodemask_t scan_nodes;
350 atomic_t numainfo_events;
351 atomic_t numainfo_updating;
352 #endif
353
354 /* List of events which userspace want to receive */
355 struct list_head event_list;
356 spinlock_t event_list_lock;
357
358 struct mem_cgroup_per_node *nodeinfo[0];
359 /* WARNING: nodeinfo must be the last member here */
360 };
361
362 #ifdef CONFIG_MEMCG_KMEM
363 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364 {
365 return memcg->kmem_acct_active;
366 }
367 #endif
368
369 /* Stuffs for move charges at task migration. */
370 /*
371 * Types of charges to be moved.
372 */
373 #define MOVE_ANON 0x1U
374 #define MOVE_FILE 0x2U
375 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
376
377 /* "mc" and its members are protected by cgroup_mutex */
378 static struct move_charge_struct {
379 spinlock_t lock; /* for from, to */
380 struct mem_cgroup *from;
381 struct mem_cgroup *to;
382 unsigned long flags;
383 unsigned long precharge;
384 unsigned long moved_charge;
385 unsigned long moved_swap;
386 struct task_struct *moving_task; /* a task moving charges */
387 wait_queue_head_t waitq; /* a waitq for other context */
388 } mc = {
389 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
391 };
392
393 /*
394 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
395 * limit reclaim to prevent infinite loops, if they ever occur.
396 */
397 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
398 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
399
400 enum charge_type {
401 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
402 MEM_CGROUP_CHARGE_TYPE_ANON,
403 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
404 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
405 NR_CHARGE_TYPE,
406 };
407
408 /* for encoding cft->private value on file */
409 enum res_type {
410 _MEM,
411 _MEMSWAP,
412 _OOM_TYPE,
413 _KMEM,
414 };
415
416 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
417 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
418 #define MEMFILE_ATTR(val) ((val) & 0xffff)
419 /* Used for OOM nofiier */
420 #define OOM_CONTROL (0)
421
422 /*
423 * The memcg_create_mutex will be held whenever a new cgroup is created.
424 * As a consequence, any change that needs to protect against new child cgroups
425 * appearing has to hold it as well.
426 */
427 static DEFINE_MUTEX(memcg_create_mutex);
428
429 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
430 {
431 return s ? container_of(s, struct mem_cgroup, css) : NULL;
432 }
433
434 /* Some nice accessors for the vmpressure. */
435 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
436 {
437 if (!memcg)
438 memcg = root_mem_cgroup;
439 return &memcg->vmpressure;
440 }
441
442 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
443 {
444 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
445 }
446
447 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
448 {
449 return (memcg == root_mem_cgroup);
450 }
451
452 /*
453 * We restrict the id in the range of [1, 65535], so it can fit into
454 * an unsigned short.
455 */
456 #define MEM_CGROUP_ID_MAX USHRT_MAX
457
458 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
459 {
460 return memcg->css.id;
461 }
462
463 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
464 {
465 struct cgroup_subsys_state *css;
466
467 css = css_from_id(id, &memory_cgrp_subsys);
468 return mem_cgroup_from_css(css);
469 }
470
471 /* Writing them here to avoid exposing memcg's inner layout */
472 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
473
474 void sock_update_memcg(struct sock *sk)
475 {
476 if (mem_cgroup_sockets_enabled) {
477 struct mem_cgroup *memcg;
478 struct cg_proto *cg_proto;
479
480 BUG_ON(!sk->sk_prot->proto_cgroup);
481
482 /* Socket cloning can throw us here with sk_cgrp already
483 * filled. It won't however, necessarily happen from
484 * process context. So the test for root memcg given
485 * the current task's memcg won't help us in this case.
486 *
487 * Respecting the original socket's memcg is a better
488 * decision in this case.
489 */
490 if (sk->sk_cgrp) {
491 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
492 css_get(&sk->sk_cgrp->memcg->css);
493 return;
494 }
495
496 rcu_read_lock();
497 memcg = mem_cgroup_from_task(current);
498 cg_proto = sk->sk_prot->proto_cgroup(memcg);
499 if (!mem_cgroup_is_root(memcg) &&
500 memcg_proto_active(cg_proto) &&
501 css_tryget_online(&memcg->css)) {
502 sk->sk_cgrp = cg_proto;
503 }
504 rcu_read_unlock();
505 }
506 }
507 EXPORT_SYMBOL(sock_update_memcg);
508
509 void sock_release_memcg(struct sock *sk)
510 {
511 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
512 struct mem_cgroup *memcg;
513 WARN_ON(!sk->sk_cgrp->memcg);
514 memcg = sk->sk_cgrp->memcg;
515 css_put(&sk->sk_cgrp->memcg->css);
516 }
517 }
518
519 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
520 {
521 if (!memcg || mem_cgroup_is_root(memcg))
522 return NULL;
523
524 return &memcg->tcp_mem;
525 }
526 EXPORT_SYMBOL(tcp_proto_cgroup);
527
528 #endif
529
530 #ifdef CONFIG_MEMCG_KMEM
531 /*
532 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
533 * The main reason for not using cgroup id for this:
534 * this works better in sparse environments, where we have a lot of memcgs,
535 * but only a few kmem-limited. Or also, if we have, for instance, 200
536 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
537 * 200 entry array for that.
538 *
539 * The current size of the caches array is stored in memcg_nr_cache_ids. It
540 * will double each time we have to increase it.
541 */
542 static DEFINE_IDA(memcg_cache_ida);
543 int memcg_nr_cache_ids;
544
545 /* Protects memcg_nr_cache_ids */
546 static DECLARE_RWSEM(memcg_cache_ids_sem);
547
548 void memcg_get_cache_ids(void)
549 {
550 down_read(&memcg_cache_ids_sem);
551 }
552
553 void memcg_put_cache_ids(void)
554 {
555 up_read(&memcg_cache_ids_sem);
556 }
557
558 /*
559 * MIN_SIZE is different than 1, because we would like to avoid going through
560 * the alloc/free process all the time. In a small machine, 4 kmem-limited
561 * cgroups is a reasonable guess. In the future, it could be a parameter or
562 * tunable, but that is strictly not necessary.
563 *
564 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
565 * this constant directly from cgroup, but it is understandable that this is
566 * better kept as an internal representation in cgroup.c. In any case, the
567 * cgrp_id space is not getting any smaller, and we don't have to necessarily
568 * increase ours as well if it increases.
569 */
570 #define MEMCG_CACHES_MIN_SIZE 4
571 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
572
573 /*
574 * A lot of the calls to the cache allocation functions are expected to be
575 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
576 * conditional to this static branch, we'll have to allow modules that does
577 * kmem_cache_alloc and the such to see this symbol as well
578 */
579 struct static_key memcg_kmem_enabled_key;
580 EXPORT_SYMBOL(memcg_kmem_enabled_key);
581
582 #endif /* CONFIG_MEMCG_KMEM */
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
586 {
587 int nid = zone_to_nid(zone);
588 int zid = zone_idx(zone);
589
590 return &memcg->nodeinfo[nid]->zoneinfo[zid];
591 }
592
593 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
594 {
595 return &memcg->css;
596 }
597
598 static struct mem_cgroup_per_zone *
599 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
600 {
601 int nid = page_to_nid(page);
602 int zid = page_zonenum(page);
603
604 return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 }
606
607 static struct mem_cgroup_tree_per_zone *
608 soft_limit_tree_node_zone(int nid, int zid)
609 {
610 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
611 }
612
613 static struct mem_cgroup_tree_per_zone *
614 soft_limit_tree_from_page(struct page *page)
615 {
616 int nid = page_to_nid(page);
617 int zid = page_zonenum(page);
618
619 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
620 }
621
622 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
623 struct mem_cgroup_tree_per_zone *mctz,
624 unsigned long new_usage_in_excess)
625 {
626 struct rb_node **p = &mctz->rb_root.rb_node;
627 struct rb_node *parent = NULL;
628 struct mem_cgroup_per_zone *mz_node;
629
630 if (mz->on_tree)
631 return;
632
633 mz->usage_in_excess = new_usage_in_excess;
634 if (!mz->usage_in_excess)
635 return;
636 while (*p) {
637 parent = *p;
638 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
639 tree_node);
640 if (mz->usage_in_excess < mz_node->usage_in_excess)
641 p = &(*p)->rb_left;
642 /*
643 * We can't avoid mem cgroups that are over their soft
644 * limit by the same amount
645 */
646 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
647 p = &(*p)->rb_right;
648 }
649 rb_link_node(&mz->tree_node, parent, p);
650 rb_insert_color(&mz->tree_node, &mctz->rb_root);
651 mz->on_tree = true;
652 }
653
654 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
655 struct mem_cgroup_tree_per_zone *mctz)
656 {
657 if (!mz->on_tree)
658 return;
659 rb_erase(&mz->tree_node, &mctz->rb_root);
660 mz->on_tree = false;
661 }
662
663 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz)
665 {
666 unsigned long flags;
667
668 spin_lock_irqsave(&mctz->lock, flags);
669 __mem_cgroup_remove_exceeded(mz, mctz);
670 spin_unlock_irqrestore(&mctz->lock, flags);
671 }
672
673 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
674 {
675 unsigned long nr_pages = page_counter_read(&memcg->memory);
676 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
677 unsigned long excess = 0;
678
679 if (nr_pages > soft_limit)
680 excess = nr_pages - soft_limit;
681
682 return excess;
683 }
684
685 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
686 {
687 unsigned long excess;
688 struct mem_cgroup_per_zone *mz;
689 struct mem_cgroup_tree_per_zone *mctz;
690
691 mctz = soft_limit_tree_from_page(page);
692 /*
693 * Necessary to update all ancestors when hierarchy is used.
694 * because their event counter is not touched.
695 */
696 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
697 mz = mem_cgroup_page_zoneinfo(memcg, page);
698 excess = soft_limit_excess(memcg);
699 /*
700 * We have to update the tree if mz is on RB-tree or
701 * mem is over its softlimit.
702 */
703 if (excess || mz->on_tree) {
704 unsigned long flags;
705
706 spin_lock_irqsave(&mctz->lock, flags);
707 /* if on-tree, remove it */
708 if (mz->on_tree)
709 __mem_cgroup_remove_exceeded(mz, mctz);
710 /*
711 * Insert again. mz->usage_in_excess will be updated.
712 * If excess is 0, no tree ops.
713 */
714 __mem_cgroup_insert_exceeded(mz, mctz, excess);
715 spin_unlock_irqrestore(&mctz->lock, flags);
716 }
717 }
718 }
719
720 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
721 {
722 struct mem_cgroup_tree_per_zone *mctz;
723 struct mem_cgroup_per_zone *mz;
724 int nid, zid;
725
726 for_each_node(nid) {
727 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
728 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
729 mctz = soft_limit_tree_node_zone(nid, zid);
730 mem_cgroup_remove_exceeded(mz, mctz);
731 }
732 }
733 }
734
735 static struct mem_cgroup_per_zone *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
737 {
738 struct rb_node *rightmost = NULL;
739 struct mem_cgroup_per_zone *mz;
740
741 retry:
742 mz = NULL;
743 rightmost = rb_last(&mctz->rb_root);
744 if (!rightmost)
745 goto done; /* Nothing to reclaim from */
746
747 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
748 /*
749 * Remove the node now but someone else can add it back,
750 * we will to add it back at the end of reclaim to its correct
751 * position in the tree.
752 */
753 __mem_cgroup_remove_exceeded(mz, mctz);
754 if (!soft_limit_excess(mz->memcg) ||
755 !css_tryget_online(&mz->memcg->css))
756 goto retry;
757 done:
758 return mz;
759 }
760
761 static struct mem_cgroup_per_zone *
762 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
763 {
764 struct mem_cgroup_per_zone *mz;
765
766 spin_lock_irq(&mctz->lock);
767 mz = __mem_cgroup_largest_soft_limit_node(mctz);
768 spin_unlock_irq(&mctz->lock);
769 return mz;
770 }
771
772 /*
773 * Implementation Note: reading percpu statistics for memcg.
774 *
775 * Both of vmstat[] and percpu_counter has threshold and do periodic
776 * synchronization to implement "quick" read. There are trade-off between
777 * reading cost and precision of value. Then, we may have a chance to implement
778 * a periodic synchronizion of counter in memcg's counter.
779 *
780 * But this _read() function is used for user interface now. The user accounts
781 * memory usage by memory cgroup and he _always_ requires exact value because
782 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
783 * have to visit all online cpus and make sum. So, for now, unnecessary
784 * synchronization is not implemented. (just implemented for cpu hotplug)
785 *
786 * If there are kernel internal actions which can make use of some not-exact
787 * value, and reading all cpu value can be performance bottleneck in some
788 * common workload, threashold and synchonization as vmstat[] should be
789 * implemented.
790 */
791 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
792 enum mem_cgroup_stat_index idx)
793 {
794 long val = 0;
795 int cpu;
796
797 get_online_cpus();
798 for_each_online_cpu(cpu)
799 val += per_cpu(memcg->stat->count[idx], cpu);
800 #ifdef CONFIG_HOTPLUG_CPU
801 spin_lock(&memcg->pcp_counter_lock);
802 val += memcg->nocpu_base.count[idx];
803 spin_unlock(&memcg->pcp_counter_lock);
804 #endif
805 put_online_cpus();
806 return val;
807 }
808
809 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_index idx)
811 {
812 unsigned long val = 0;
813 int cpu;
814
815 get_online_cpus();
816 for_each_online_cpu(cpu)
817 val += per_cpu(memcg->stat->events[idx], cpu);
818 #ifdef CONFIG_HOTPLUG_CPU
819 spin_lock(&memcg->pcp_counter_lock);
820 val += memcg->nocpu_base.events[idx];
821 spin_unlock(&memcg->pcp_counter_lock);
822 #endif
823 put_online_cpus();
824 return val;
825 }
826
827 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
828 struct page *page,
829 int nr_pages)
830 {
831 /*
832 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
833 * counted as CACHE even if it's on ANON LRU.
834 */
835 if (PageAnon(page))
836 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
837 nr_pages);
838 else
839 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
840 nr_pages);
841
842 if (PageTransHuge(page))
843 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
844 nr_pages);
845
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
848 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
849 else {
850 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
851 nr_pages = -nr_pages; /* for event */
852 }
853
854 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
855 }
856
857 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
858 {
859 struct mem_cgroup_per_zone *mz;
860
861 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
862 return mz->lru_size[lru];
863 }
864
865 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
866 int nid,
867 unsigned int lru_mask)
868 {
869 unsigned long nr = 0;
870 int zid;
871
872 VM_BUG_ON((unsigned)nid >= nr_node_ids);
873
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 enum lru_list lru;
877
878 for_each_lru(lru) {
879 if (!(BIT(lru) & lru_mask))
880 continue;
881 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
882 nr += mz->lru_size[lru];
883 }
884 }
885 return nr;
886 }
887
888 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
889 unsigned int lru_mask)
890 {
891 unsigned long nr = 0;
892 int nid;
893
894 for_each_node_state(nid, N_MEMORY)
895 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
896 return nr;
897 }
898
899 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
900 enum mem_cgroup_events_target target)
901 {
902 unsigned long val, next;
903
904 val = __this_cpu_read(memcg->stat->nr_page_events);
905 next = __this_cpu_read(memcg->stat->targets[target]);
906 /* from time_after() in jiffies.h */
907 if ((long)next - (long)val < 0) {
908 switch (target) {
909 case MEM_CGROUP_TARGET_THRESH:
910 next = val + THRESHOLDS_EVENTS_TARGET;
911 break;
912 case MEM_CGROUP_TARGET_SOFTLIMIT:
913 next = val + SOFTLIMIT_EVENTS_TARGET;
914 break;
915 case MEM_CGROUP_TARGET_NUMAINFO:
916 next = val + NUMAINFO_EVENTS_TARGET;
917 break;
918 default:
919 break;
920 }
921 __this_cpu_write(memcg->stat->targets[target], next);
922 return true;
923 }
924 return false;
925 }
926
927 /*
928 * Check events in order.
929 *
930 */
931 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
932 {
933 /* threshold event is triggered in finer grain than soft limit */
934 if (unlikely(mem_cgroup_event_ratelimit(memcg,
935 MEM_CGROUP_TARGET_THRESH))) {
936 bool do_softlimit;
937 bool do_numainfo __maybe_unused;
938
939 do_softlimit = mem_cgroup_event_ratelimit(memcg,
940 MEM_CGROUP_TARGET_SOFTLIMIT);
941 #if MAX_NUMNODES > 1
942 do_numainfo = mem_cgroup_event_ratelimit(memcg,
943 MEM_CGROUP_TARGET_NUMAINFO);
944 #endif
945 mem_cgroup_threshold(memcg);
946 if (unlikely(do_softlimit))
947 mem_cgroup_update_tree(memcg, page);
948 #if MAX_NUMNODES > 1
949 if (unlikely(do_numainfo))
950 atomic_inc(&memcg->numainfo_events);
951 #endif
952 }
953 }
954
955 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
956 {
957 /*
958 * mm_update_next_owner() may clear mm->owner to NULL
959 * if it races with swapoff, page migration, etc.
960 * So this can be called with p == NULL.
961 */
962 if (unlikely(!p))
963 return NULL;
964
965 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
966 }
967
968 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
969 {
970 struct mem_cgroup *memcg = NULL;
971
972 rcu_read_lock();
973 do {
974 /*
975 * Page cache insertions can happen withou an
976 * actual mm context, e.g. during disk probing
977 * on boot, loopback IO, acct() writes etc.
978 */
979 if (unlikely(!mm))
980 memcg = root_mem_cgroup;
981 else {
982 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983 if (unlikely(!memcg))
984 memcg = root_mem_cgroup;
985 }
986 } while (!css_tryget_online(&memcg->css));
987 rcu_read_unlock();
988 return memcg;
989 }
990
991 /**
992 * mem_cgroup_iter - iterate over memory cgroup hierarchy
993 * @root: hierarchy root
994 * @prev: previously returned memcg, NULL on first invocation
995 * @reclaim: cookie for shared reclaim walks, NULL for full walks
996 *
997 * Returns references to children of the hierarchy below @root, or
998 * @root itself, or %NULL after a full round-trip.
999 *
1000 * Caller must pass the return value in @prev on subsequent
1001 * invocations for reference counting, or use mem_cgroup_iter_break()
1002 * to cancel a hierarchy walk before the round-trip is complete.
1003 *
1004 * Reclaimers can specify a zone and a priority level in @reclaim to
1005 * divide up the memcgs in the hierarchy among all concurrent
1006 * reclaimers operating on the same zone and priority.
1007 */
1008 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1009 struct mem_cgroup *prev,
1010 struct mem_cgroup_reclaim_cookie *reclaim)
1011 {
1012 struct reclaim_iter *uninitialized_var(iter);
1013 struct cgroup_subsys_state *css = NULL;
1014 struct mem_cgroup *memcg = NULL;
1015 struct mem_cgroup *pos = NULL;
1016
1017 if (mem_cgroup_disabled())
1018 return NULL;
1019
1020 if (!root)
1021 root = root_mem_cgroup;
1022
1023 if (prev && !reclaim)
1024 pos = prev;
1025
1026 if (!root->use_hierarchy && root != root_mem_cgroup) {
1027 if (prev)
1028 goto out;
1029 return root;
1030 }
1031
1032 rcu_read_lock();
1033
1034 if (reclaim) {
1035 struct mem_cgroup_per_zone *mz;
1036
1037 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1038 iter = &mz->iter[reclaim->priority];
1039
1040 if (prev && reclaim->generation != iter->generation)
1041 goto out_unlock;
1042
1043 do {
1044 pos = ACCESS_ONCE(iter->position);
1045 /*
1046 * A racing update may change the position and
1047 * put the last reference, hence css_tryget(),
1048 * or retry to see the updated position.
1049 */
1050 } while (pos && !css_tryget(&pos->css));
1051 }
1052
1053 if (pos)
1054 css = &pos->css;
1055
1056 for (;;) {
1057 css = css_next_descendant_pre(css, &root->css);
1058 if (!css) {
1059 /*
1060 * Reclaimers share the hierarchy walk, and a
1061 * new one might jump in right at the end of
1062 * the hierarchy - make sure they see at least
1063 * one group and restart from the beginning.
1064 */
1065 if (!prev)
1066 continue;
1067 break;
1068 }
1069
1070 /*
1071 * Verify the css and acquire a reference. The root
1072 * is provided by the caller, so we know it's alive
1073 * and kicking, and don't take an extra reference.
1074 */
1075 memcg = mem_cgroup_from_css(css);
1076
1077 if (css == &root->css)
1078 break;
1079
1080 if (css_tryget(css)) {
1081 /*
1082 * Make sure the memcg is initialized:
1083 * mem_cgroup_css_online() orders the the
1084 * initialization against setting the flag.
1085 */
1086 if (smp_load_acquire(&memcg->initialized))
1087 break;
1088
1089 css_put(css);
1090 }
1091
1092 memcg = NULL;
1093 }
1094
1095 if (reclaim) {
1096 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1097 if (memcg)
1098 css_get(&memcg->css);
1099 if (pos)
1100 css_put(&pos->css);
1101 }
1102
1103 /*
1104 * pairs with css_tryget when dereferencing iter->position
1105 * above.
1106 */
1107 if (pos)
1108 css_put(&pos->css);
1109
1110 if (!memcg)
1111 iter->generation++;
1112 else if (!prev)
1113 reclaim->generation = iter->generation;
1114 }
1115
1116 out_unlock:
1117 rcu_read_unlock();
1118 out:
1119 if (prev && prev != root)
1120 css_put(&prev->css);
1121
1122 return memcg;
1123 }
1124
1125 /**
1126 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1127 * @root: hierarchy root
1128 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1129 */
1130 void mem_cgroup_iter_break(struct mem_cgroup *root,
1131 struct mem_cgroup *prev)
1132 {
1133 if (!root)
1134 root = root_mem_cgroup;
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137 }
1138
1139 /*
1140 * Iteration constructs for visiting all cgroups (under a tree). If
1141 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1142 * be used for reference counting.
1143 */
1144 #define for_each_mem_cgroup_tree(iter, root) \
1145 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1146 iter != NULL; \
1147 iter = mem_cgroup_iter(root, iter, NULL))
1148
1149 #define for_each_mem_cgroup(iter) \
1150 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1151 iter != NULL; \
1152 iter = mem_cgroup_iter(NULL, iter, NULL))
1153
1154 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155 {
1156 struct mem_cgroup *memcg;
1157
1158 rcu_read_lock();
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (unlikely(!memcg))
1161 goto out;
1162
1163 switch (idx) {
1164 case PGFAULT:
1165 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1166 break;
1167 case PGMAJFAULT:
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 break;
1170 default:
1171 BUG();
1172 }
1173 out:
1174 rcu_read_unlock();
1175 }
1176 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177
1178 /**
1179 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1180 * @zone: zone of the wanted lruvec
1181 * @memcg: memcg of the wanted lruvec
1182 *
1183 * Returns the lru list vector holding pages for the given @zone and
1184 * @mem. This can be the global zone lruvec, if the memory controller
1185 * is disabled.
1186 */
1187 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1188 struct mem_cgroup *memcg)
1189 {
1190 struct mem_cgroup_per_zone *mz;
1191 struct lruvec *lruvec;
1192
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &zone->lruvec;
1195 goto out;
1196 }
1197
1198 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1199 lruvec = &mz->lruvec;
1200 out:
1201 /*
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1205 */
1206 if (unlikely(lruvec->zone != zone))
1207 lruvec->zone = zone;
1208 return lruvec;
1209 }
1210
1211 /**
1212 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1213 * @page: the page
1214 * @zone: zone of the page
1215 *
1216 * This function is only safe when following the LRU page isolation
1217 * and putback protocol: the LRU lock must be held, and the page must
1218 * either be PageLRU() or the caller must have isolated/allocated it.
1219 */
1220 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1221 {
1222 struct mem_cgroup_per_zone *mz;
1223 struct mem_cgroup *memcg;
1224 struct lruvec *lruvec;
1225
1226 if (mem_cgroup_disabled()) {
1227 lruvec = &zone->lruvec;
1228 goto out;
1229 }
1230
1231 memcg = page->mem_cgroup;
1232 /*
1233 * Swapcache readahead pages are added to the LRU - and
1234 * possibly migrated - before they are charged.
1235 */
1236 if (!memcg)
1237 memcg = root_mem_cgroup;
1238
1239 mz = mem_cgroup_page_zoneinfo(memcg, page);
1240 lruvec = &mz->lruvec;
1241 out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
1250 }
1251
1252 /**
1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254 * @lruvec: mem_cgroup per zone lru vector
1255 * @lru: index of lru list the page is sitting on
1256 * @nr_pages: positive when adding or negative when removing
1257 *
1258 * This function must be called when a page is added to or removed from an
1259 * lru list.
1260 */
1261 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1262 int nr_pages)
1263 {
1264 struct mem_cgroup_per_zone *mz;
1265 unsigned long *lru_size;
1266
1267 if (mem_cgroup_disabled())
1268 return;
1269
1270 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1271 lru_size = mz->lru_size + lru;
1272 *lru_size += nr_pages;
1273 VM_BUG_ON((long)(*lru_size) < 0);
1274 }
1275
1276 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1277 {
1278 if (root == memcg)
1279 return true;
1280 if (!root->use_hierarchy)
1281 return false;
1282 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1283 }
1284
1285 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1286 {
1287 struct mem_cgroup *task_memcg;
1288 struct task_struct *p;
1289 bool ret;
1290
1291 p = find_lock_task_mm(task);
1292 if (p) {
1293 task_memcg = get_mem_cgroup_from_mm(p->mm);
1294 task_unlock(p);
1295 } else {
1296 /*
1297 * All threads may have already detached their mm's, but the oom
1298 * killer still needs to detect if they have already been oom
1299 * killed to prevent needlessly killing additional tasks.
1300 */
1301 rcu_read_lock();
1302 task_memcg = mem_cgroup_from_task(task);
1303 css_get(&task_memcg->css);
1304 rcu_read_unlock();
1305 }
1306 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1307 css_put(&task_memcg->css);
1308 return ret;
1309 }
1310
1311 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1312 {
1313 unsigned long inactive_ratio;
1314 unsigned long inactive;
1315 unsigned long active;
1316 unsigned long gb;
1317
1318 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1319 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1320
1321 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1322 if (gb)
1323 inactive_ratio = int_sqrt(10 * gb);
1324 else
1325 inactive_ratio = 1;
1326
1327 return inactive * inactive_ratio < active;
1328 }
1329
1330 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1331 {
1332 struct mem_cgroup_per_zone *mz;
1333 struct mem_cgroup *memcg;
1334
1335 if (mem_cgroup_disabled())
1336 return true;
1337
1338 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1339 memcg = mz->memcg;
1340
1341 return !!(memcg->css.flags & CSS_ONLINE);
1342 }
1343
1344 #define mem_cgroup_from_counter(counter, member) \
1345 container_of(counter, struct mem_cgroup, member)
1346
1347 /**
1348 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1349 * @memcg: the memory cgroup
1350 *
1351 * Returns the maximum amount of memory @mem can be charged with, in
1352 * pages.
1353 */
1354 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1355 {
1356 unsigned long margin = 0;
1357 unsigned long count;
1358 unsigned long limit;
1359
1360 count = page_counter_read(&memcg->memory);
1361 limit = ACCESS_ONCE(memcg->memory.limit);
1362 if (count < limit)
1363 margin = limit - count;
1364
1365 if (do_swap_account) {
1366 count = page_counter_read(&memcg->memsw);
1367 limit = ACCESS_ONCE(memcg->memsw.limit);
1368 if (count <= limit)
1369 margin = min(margin, limit - count);
1370 }
1371
1372 return margin;
1373 }
1374
1375 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1376 {
1377 /* root ? */
1378 if (mem_cgroup_disabled() || !memcg->css.parent)
1379 return vm_swappiness;
1380
1381 return memcg->swappiness;
1382 }
1383
1384 /*
1385 * A routine for checking "mem" is under move_account() or not.
1386 *
1387 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1388 * moving cgroups. This is for waiting at high-memory pressure
1389 * caused by "move".
1390 */
1391 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1392 {
1393 struct mem_cgroup *from;
1394 struct mem_cgroup *to;
1395 bool ret = false;
1396 /*
1397 * Unlike task_move routines, we access mc.to, mc.from not under
1398 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 */
1400 spin_lock(&mc.lock);
1401 from = mc.from;
1402 to = mc.to;
1403 if (!from)
1404 goto unlock;
1405
1406 ret = mem_cgroup_is_descendant(from, memcg) ||
1407 mem_cgroup_is_descendant(to, memcg);
1408 unlock:
1409 spin_unlock(&mc.lock);
1410 return ret;
1411 }
1412
1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1414 {
1415 if (mc.moving_task && current != mc.moving_task) {
1416 if (mem_cgroup_under_move(memcg)) {
1417 DEFINE_WAIT(wait);
1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 /* moving charge context might have finished. */
1420 if (mc.moving_task)
1421 schedule();
1422 finish_wait(&mc.waitq, &wait);
1423 return true;
1424 }
1425 }
1426 return false;
1427 }
1428
1429 #define K(x) ((x) << (PAGE_SHIFT-10))
1430 /**
1431 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439 {
1440 /* oom_info_lock ensures that parallel ooms do not interleave */
1441 static DEFINE_MUTEX(oom_info_lock);
1442 struct mem_cgroup *iter;
1443 unsigned int i;
1444
1445 if (!p)
1446 return;
1447
1448 mutex_lock(&oom_info_lock);
1449 rcu_read_lock();
1450
1451 pr_info("Task in ");
1452 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1453 pr_cont(" killed as a result of limit of ");
1454 pr_cont_cgroup_path(memcg->css.cgroup);
1455 pr_cont("\n");
1456
1457 rcu_read_unlock();
1458
1459 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1460 K((u64)page_counter_read(&memcg->memory)),
1461 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1462 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memsw)),
1464 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1465 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->kmem)),
1467 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1468
1469 for_each_mem_cgroup_tree(iter, memcg) {
1470 pr_info("Memory cgroup stats for ");
1471 pr_cont_cgroup_path(iter->css.cgroup);
1472 pr_cont(":");
1473
1474 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1475 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1476 continue;
1477 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1478 K(mem_cgroup_read_stat(iter, i)));
1479 }
1480
1481 for (i = 0; i < NR_LRU_LISTS; i++)
1482 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1483 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1484
1485 pr_cont("\n");
1486 }
1487 mutex_unlock(&oom_info_lock);
1488 }
1489
1490 /*
1491 * This function returns the number of memcg under hierarchy tree. Returns
1492 * 1(self count) if no children.
1493 */
1494 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1495 {
1496 int num = 0;
1497 struct mem_cgroup *iter;
1498
1499 for_each_mem_cgroup_tree(iter, memcg)
1500 num++;
1501 return num;
1502 }
1503
1504 /*
1505 * Return the memory (and swap, if configured) limit for a memcg.
1506 */
1507 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1508 {
1509 unsigned long limit;
1510
1511 limit = memcg->memory.limit;
1512 if (mem_cgroup_swappiness(memcg)) {
1513 unsigned long memsw_limit;
1514
1515 memsw_limit = memcg->memsw.limit;
1516 limit = min(limit + total_swap_pages, memsw_limit);
1517 }
1518 return limit;
1519 }
1520
1521 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1522 int order)
1523 {
1524 struct mem_cgroup *iter;
1525 unsigned long chosen_points = 0;
1526 unsigned long totalpages;
1527 unsigned int points = 0;
1528 struct task_struct *chosen = NULL;
1529
1530 /*
1531 * If current has a pending SIGKILL or is exiting, then automatically
1532 * select it. The goal is to allow it to allocate so that it may
1533 * quickly exit and free its memory.
1534 */
1535 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1536 mark_tsk_oom_victim(current);
1537 return;
1538 }
1539
1540 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1541 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1542 for_each_mem_cgroup_tree(iter, memcg) {
1543 struct css_task_iter it;
1544 struct task_struct *task;
1545
1546 css_task_iter_start(&iter->css, &it);
1547 while ((task = css_task_iter_next(&it))) {
1548 switch (oom_scan_process_thread(task, totalpages, NULL,
1549 false)) {
1550 case OOM_SCAN_SELECT:
1551 if (chosen)
1552 put_task_struct(chosen);
1553 chosen = task;
1554 chosen_points = ULONG_MAX;
1555 get_task_struct(chosen);
1556 /* fall through */
1557 case OOM_SCAN_CONTINUE:
1558 continue;
1559 case OOM_SCAN_ABORT:
1560 css_task_iter_end(&it);
1561 mem_cgroup_iter_break(memcg, iter);
1562 if (chosen)
1563 put_task_struct(chosen);
1564 return;
1565 case OOM_SCAN_OK:
1566 break;
1567 };
1568 points = oom_badness(task, memcg, NULL, totalpages);
1569 if (!points || points < chosen_points)
1570 continue;
1571 /* Prefer thread group leaders for display purposes */
1572 if (points == chosen_points &&
1573 thread_group_leader(chosen))
1574 continue;
1575
1576 if (chosen)
1577 put_task_struct(chosen);
1578 chosen = task;
1579 chosen_points = points;
1580 get_task_struct(chosen);
1581 }
1582 css_task_iter_end(&it);
1583 }
1584
1585 if (!chosen)
1586 return;
1587 points = chosen_points * 1000 / totalpages;
1588 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1589 NULL, "Memory cgroup out of memory");
1590 }
1591
1592 #if MAX_NUMNODES > 1
1593
1594 /**
1595 * test_mem_cgroup_node_reclaimable
1596 * @memcg: the target memcg
1597 * @nid: the node ID to be checked.
1598 * @noswap : specify true here if the user wants flle only information.
1599 *
1600 * This function returns whether the specified memcg contains any
1601 * reclaimable pages on a node. Returns true if there are any reclaimable
1602 * pages in the node.
1603 */
1604 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1605 int nid, bool noswap)
1606 {
1607 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1608 return true;
1609 if (noswap || !total_swap_pages)
1610 return false;
1611 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1612 return true;
1613 return false;
1614
1615 }
1616
1617 /*
1618 * Always updating the nodemask is not very good - even if we have an empty
1619 * list or the wrong list here, we can start from some node and traverse all
1620 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1621 *
1622 */
1623 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1624 {
1625 int nid;
1626 /*
1627 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1628 * pagein/pageout changes since the last update.
1629 */
1630 if (!atomic_read(&memcg->numainfo_events))
1631 return;
1632 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1633 return;
1634
1635 /* make a nodemask where this memcg uses memory from */
1636 memcg->scan_nodes = node_states[N_MEMORY];
1637
1638 for_each_node_mask(nid, node_states[N_MEMORY]) {
1639
1640 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1641 node_clear(nid, memcg->scan_nodes);
1642 }
1643
1644 atomic_set(&memcg->numainfo_events, 0);
1645 atomic_set(&memcg->numainfo_updating, 0);
1646 }
1647
1648 /*
1649 * Selecting a node where we start reclaim from. Because what we need is just
1650 * reducing usage counter, start from anywhere is O,K. Considering
1651 * memory reclaim from current node, there are pros. and cons.
1652 *
1653 * Freeing memory from current node means freeing memory from a node which
1654 * we'll use or we've used. So, it may make LRU bad. And if several threads
1655 * hit limits, it will see a contention on a node. But freeing from remote
1656 * node means more costs for memory reclaim because of memory latency.
1657 *
1658 * Now, we use round-robin. Better algorithm is welcomed.
1659 */
1660 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1661 {
1662 int node;
1663
1664 mem_cgroup_may_update_nodemask(memcg);
1665 node = memcg->last_scanned_node;
1666
1667 node = next_node(node, memcg->scan_nodes);
1668 if (node == MAX_NUMNODES)
1669 node = first_node(memcg->scan_nodes);
1670 /*
1671 * We call this when we hit limit, not when pages are added to LRU.
1672 * No LRU may hold pages because all pages are UNEVICTABLE or
1673 * memcg is too small and all pages are not on LRU. In that case,
1674 * we use curret node.
1675 */
1676 if (unlikely(node == MAX_NUMNODES))
1677 node = numa_node_id();
1678
1679 memcg->last_scanned_node = node;
1680 return node;
1681 }
1682 #else
1683 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1684 {
1685 return 0;
1686 }
1687 #endif
1688
1689 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1690 struct zone *zone,
1691 gfp_t gfp_mask,
1692 unsigned long *total_scanned)
1693 {
1694 struct mem_cgroup *victim = NULL;
1695 int total = 0;
1696 int loop = 0;
1697 unsigned long excess;
1698 unsigned long nr_scanned;
1699 struct mem_cgroup_reclaim_cookie reclaim = {
1700 .zone = zone,
1701 .priority = 0,
1702 };
1703
1704 excess = soft_limit_excess(root_memcg);
1705
1706 while (1) {
1707 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1708 if (!victim) {
1709 loop++;
1710 if (loop >= 2) {
1711 /*
1712 * If we have not been able to reclaim
1713 * anything, it might because there are
1714 * no reclaimable pages under this hierarchy
1715 */
1716 if (!total)
1717 break;
1718 /*
1719 * We want to do more targeted reclaim.
1720 * excess >> 2 is not to excessive so as to
1721 * reclaim too much, nor too less that we keep
1722 * coming back to reclaim from this cgroup
1723 */
1724 if (total >= (excess >> 2) ||
1725 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1726 break;
1727 }
1728 continue;
1729 }
1730 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1731 zone, &nr_scanned);
1732 *total_scanned += nr_scanned;
1733 if (!soft_limit_excess(root_memcg))
1734 break;
1735 }
1736 mem_cgroup_iter_break(root_memcg, victim);
1737 return total;
1738 }
1739
1740 #ifdef CONFIG_LOCKDEP
1741 static struct lockdep_map memcg_oom_lock_dep_map = {
1742 .name = "memcg_oom_lock",
1743 };
1744 #endif
1745
1746 static DEFINE_SPINLOCK(memcg_oom_lock);
1747
1748 /*
1749 * Check OOM-Killer is already running under our hierarchy.
1750 * If someone is running, return false.
1751 */
1752 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1753 {
1754 struct mem_cgroup *iter, *failed = NULL;
1755
1756 spin_lock(&memcg_oom_lock);
1757
1758 for_each_mem_cgroup_tree(iter, memcg) {
1759 if (iter->oom_lock) {
1760 /*
1761 * this subtree of our hierarchy is already locked
1762 * so we cannot give a lock.
1763 */
1764 failed = iter;
1765 mem_cgroup_iter_break(memcg, iter);
1766 break;
1767 } else
1768 iter->oom_lock = true;
1769 }
1770
1771 if (failed) {
1772 /*
1773 * OK, we failed to lock the whole subtree so we have
1774 * to clean up what we set up to the failing subtree
1775 */
1776 for_each_mem_cgroup_tree(iter, memcg) {
1777 if (iter == failed) {
1778 mem_cgroup_iter_break(memcg, iter);
1779 break;
1780 }
1781 iter->oom_lock = false;
1782 }
1783 } else
1784 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1785
1786 spin_unlock(&memcg_oom_lock);
1787
1788 return !failed;
1789 }
1790
1791 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1792 {
1793 struct mem_cgroup *iter;
1794
1795 spin_lock(&memcg_oom_lock);
1796 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1797 for_each_mem_cgroup_tree(iter, memcg)
1798 iter->oom_lock = false;
1799 spin_unlock(&memcg_oom_lock);
1800 }
1801
1802 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1803 {
1804 struct mem_cgroup *iter;
1805
1806 for_each_mem_cgroup_tree(iter, memcg)
1807 atomic_inc(&iter->under_oom);
1808 }
1809
1810 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1811 {
1812 struct mem_cgroup *iter;
1813
1814 /*
1815 * When a new child is created while the hierarchy is under oom,
1816 * mem_cgroup_oom_lock() may not be called. We have to use
1817 * atomic_add_unless() here.
1818 */
1819 for_each_mem_cgroup_tree(iter, memcg)
1820 atomic_add_unless(&iter->under_oom, -1, 0);
1821 }
1822
1823 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1824
1825 struct oom_wait_info {
1826 struct mem_cgroup *memcg;
1827 wait_queue_t wait;
1828 };
1829
1830 static int memcg_oom_wake_function(wait_queue_t *wait,
1831 unsigned mode, int sync, void *arg)
1832 {
1833 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1834 struct mem_cgroup *oom_wait_memcg;
1835 struct oom_wait_info *oom_wait_info;
1836
1837 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1838 oom_wait_memcg = oom_wait_info->memcg;
1839
1840 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1841 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1842 return 0;
1843 return autoremove_wake_function(wait, mode, sync, arg);
1844 }
1845
1846 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1847 {
1848 atomic_inc(&memcg->oom_wakeups);
1849 /* for filtering, pass "memcg" as argument. */
1850 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1851 }
1852
1853 static void memcg_oom_recover(struct mem_cgroup *memcg)
1854 {
1855 if (memcg && atomic_read(&memcg->under_oom))
1856 memcg_wakeup_oom(memcg);
1857 }
1858
1859 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1860 {
1861 if (!current->memcg_oom.may_oom)
1862 return;
1863 /*
1864 * We are in the middle of the charge context here, so we
1865 * don't want to block when potentially sitting on a callstack
1866 * that holds all kinds of filesystem and mm locks.
1867 *
1868 * Also, the caller may handle a failed allocation gracefully
1869 * (like optional page cache readahead) and so an OOM killer
1870 * invocation might not even be necessary.
1871 *
1872 * That's why we don't do anything here except remember the
1873 * OOM context and then deal with it at the end of the page
1874 * fault when the stack is unwound, the locks are released,
1875 * and when we know whether the fault was overall successful.
1876 */
1877 css_get(&memcg->css);
1878 current->memcg_oom.memcg = memcg;
1879 current->memcg_oom.gfp_mask = mask;
1880 current->memcg_oom.order = order;
1881 }
1882
1883 /**
1884 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1885 * @handle: actually kill/wait or just clean up the OOM state
1886 *
1887 * This has to be called at the end of a page fault if the memcg OOM
1888 * handler was enabled.
1889 *
1890 * Memcg supports userspace OOM handling where failed allocations must
1891 * sleep on a waitqueue until the userspace task resolves the
1892 * situation. Sleeping directly in the charge context with all kinds
1893 * of locks held is not a good idea, instead we remember an OOM state
1894 * in the task and mem_cgroup_oom_synchronize() has to be called at
1895 * the end of the page fault to complete the OOM handling.
1896 *
1897 * Returns %true if an ongoing memcg OOM situation was detected and
1898 * completed, %false otherwise.
1899 */
1900 bool mem_cgroup_oom_synchronize(bool handle)
1901 {
1902 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1903 struct oom_wait_info owait;
1904 bool locked;
1905
1906 /* OOM is global, do not handle */
1907 if (!memcg)
1908 return false;
1909
1910 if (!handle || oom_killer_disabled)
1911 goto cleanup;
1912
1913 owait.memcg = memcg;
1914 owait.wait.flags = 0;
1915 owait.wait.func = memcg_oom_wake_function;
1916 owait.wait.private = current;
1917 INIT_LIST_HEAD(&owait.wait.task_list);
1918
1919 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1920 mem_cgroup_mark_under_oom(memcg);
1921
1922 locked = mem_cgroup_oom_trylock(memcg);
1923
1924 if (locked)
1925 mem_cgroup_oom_notify(memcg);
1926
1927 if (locked && !memcg->oom_kill_disable) {
1928 mem_cgroup_unmark_under_oom(memcg);
1929 finish_wait(&memcg_oom_waitq, &owait.wait);
1930 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1931 current->memcg_oom.order);
1932 } else {
1933 schedule();
1934 mem_cgroup_unmark_under_oom(memcg);
1935 finish_wait(&memcg_oom_waitq, &owait.wait);
1936 }
1937
1938 if (locked) {
1939 mem_cgroup_oom_unlock(memcg);
1940 /*
1941 * There is no guarantee that an OOM-lock contender
1942 * sees the wakeups triggered by the OOM kill
1943 * uncharges. Wake any sleepers explicitely.
1944 */
1945 memcg_oom_recover(memcg);
1946 }
1947 cleanup:
1948 current->memcg_oom.memcg = NULL;
1949 css_put(&memcg->css);
1950 return true;
1951 }
1952
1953 /**
1954 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1955 * @page: page that is going to change accounted state
1956 *
1957 * This function must mark the beginning of an accounted page state
1958 * change to prevent double accounting when the page is concurrently
1959 * being moved to another memcg:
1960 *
1961 * memcg = mem_cgroup_begin_page_stat(page);
1962 * if (TestClearPageState(page))
1963 * mem_cgroup_update_page_stat(memcg, state, -1);
1964 * mem_cgroup_end_page_stat(memcg);
1965 */
1966 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1967 {
1968 struct mem_cgroup *memcg;
1969 unsigned long flags;
1970
1971 /*
1972 * The RCU lock is held throughout the transaction. The fast
1973 * path can get away without acquiring the memcg->move_lock
1974 * because page moving starts with an RCU grace period.
1975 *
1976 * The RCU lock also protects the memcg from being freed when
1977 * the page state that is going to change is the only thing
1978 * preventing the page from being uncharged.
1979 * E.g. end-writeback clearing PageWriteback(), which allows
1980 * migration to go ahead and uncharge the page before the
1981 * account transaction might be complete.
1982 */
1983 rcu_read_lock();
1984
1985 if (mem_cgroup_disabled())
1986 return NULL;
1987 again:
1988 memcg = page->mem_cgroup;
1989 if (unlikely(!memcg))
1990 return NULL;
1991
1992 if (atomic_read(&memcg->moving_account) <= 0)
1993 return memcg;
1994
1995 spin_lock_irqsave(&memcg->move_lock, flags);
1996 if (memcg != page->mem_cgroup) {
1997 spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 goto again;
1999 }
2000
2001 /*
2002 * When charge migration first begins, we can have locked and
2003 * unlocked page stat updates happening concurrently. Track
2004 * the task who has the lock for mem_cgroup_end_page_stat().
2005 */
2006 memcg->move_lock_task = current;
2007 memcg->move_lock_flags = flags;
2008
2009 return memcg;
2010 }
2011
2012 /**
2013 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2014 * @memcg: the memcg that was accounted against
2015 */
2016 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2017 {
2018 if (memcg && memcg->move_lock_task == current) {
2019 unsigned long flags = memcg->move_lock_flags;
2020
2021 memcg->move_lock_task = NULL;
2022 memcg->move_lock_flags = 0;
2023
2024 spin_unlock_irqrestore(&memcg->move_lock, flags);
2025 }
2026
2027 rcu_read_unlock();
2028 }
2029
2030 /**
2031 * mem_cgroup_update_page_stat - update page state statistics
2032 * @memcg: memcg to account against
2033 * @idx: page state item to account
2034 * @val: number of pages (positive or negative)
2035 *
2036 * See mem_cgroup_begin_page_stat() for locking requirements.
2037 */
2038 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2039 enum mem_cgroup_stat_index idx, int val)
2040 {
2041 VM_BUG_ON(!rcu_read_lock_held());
2042
2043 if (memcg)
2044 this_cpu_add(memcg->stat->count[idx], val);
2045 }
2046
2047 /*
2048 * size of first charge trial. "32" comes from vmscan.c's magic value.
2049 * TODO: maybe necessary to use big numbers in big irons.
2050 */
2051 #define CHARGE_BATCH 32U
2052 struct memcg_stock_pcp {
2053 struct mem_cgroup *cached; /* this never be root cgroup */
2054 unsigned int nr_pages;
2055 struct work_struct work;
2056 unsigned long flags;
2057 #define FLUSHING_CACHED_CHARGE 0
2058 };
2059 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2060 static DEFINE_MUTEX(percpu_charge_mutex);
2061
2062 /**
2063 * consume_stock: Try to consume stocked charge on this cpu.
2064 * @memcg: memcg to consume from.
2065 * @nr_pages: how many pages to charge.
2066 *
2067 * The charges will only happen if @memcg matches the current cpu's memcg
2068 * stock, and at least @nr_pages are available in that stock. Failure to
2069 * service an allocation will refill the stock.
2070 *
2071 * returns true if successful, false otherwise.
2072 */
2073 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2074 {
2075 struct memcg_stock_pcp *stock;
2076 bool ret = false;
2077
2078 if (nr_pages > CHARGE_BATCH)
2079 return ret;
2080
2081 stock = &get_cpu_var(memcg_stock);
2082 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2083 stock->nr_pages -= nr_pages;
2084 ret = true;
2085 }
2086 put_cpu_var(memcg_stock);
2087 return ret;
2088 }
2089
2090 /*
2091 * Returns stocks cached in percpu and reset cached information.
2092 */
2093 static void drain_stock(struct memcg_stock_pcp *stock)
2094 {
2095 struct mem_cgroup *old = stock->cached;
2096
2097 if (stock->nr_pages) {
2098 page_counter_uncharge(&old->memory, stock->nr_pages);
2099 if (do_swap_account)
2100 page_counter_uncharge(&old->memsw, stock->nr_pages);
2101 css_put_many(&old->css, stock->nr_pages);
2102 stock->nr_pages = 0;
2103 }
2104 stock->cached = NULL;
2105 }
2106
2107 /*
2108 * This must be called under preempt disabled or must be called by
2109 * a thread which is pinned to local cpu.
2110 */
2111 static void drain_local_stock(struct work_struct *dummy)
2112 {
2113 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2114 drain_stock(stock);
2115 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2116 }
2117
2118 /*
2119 * Cache charges(val) to local per_cpu area.
2120 * This will be consumed by consume_stock() function, later.
2121 */
2122 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2123 {
2124 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2125
2126 if (stock->cached != memcg) { /* reset if necessary */
2127 drain_stock(stock);
2128 stock->cached = memcg;
2129 }
2130 stock->nr_pages += nr_pages;
2131 put_cpu_var(memcg_stock);
2132 }
2133
2134 /*
2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136 * of the hierarchy under it.
2137 */
2138 static void drain_all_stock(struct mem_cgroup *root_memcg)
2139 {
2140 int cpu, curcpu;
2141
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex))
2144 return;
2145 /* Notify other cpus that system-wide "drain" is running */
2146 get_online_cpus();
2147 curcpu = get_cpu();
2148 for_each_online_cpu(cpu) {
2149 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2150 struct mem_cgroup *memcg;
2151
2152 memcg = stock->cached;
2153 if (!memcg || !stock->nr_pages)
2154 continue;
2155 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2156 continue;
2157 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2158 if (cpu == curcpu)
2159 drain_local_stock(&stock->work);
2160 else
2161 schedule_work_on(cpu, &stock->work);
2162 }
2163 }
2164 put_cpu();
2165 put_online_cpus();
2166 mutex_unlock(&percpu_charge_mutex);
2167 }
2168
2169 /*
2170 * This function drains percpu counter value from DEAD cpu and
2171 * move it to local cpu. Note that this function can be preempted.
2172 */
2173 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2174 {
2175 int i;
2176
2177 spin_lock(&memcg->pcp_counter_lock);
2178 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2179 long x = per_cpu(memcg->stat->count[i], cpu);
2180
2181 per_cpu(memcg->stat->count[i], cpu) = 0;
2182 memcg->nocpu_base.count[i] += x;
2183 }
2184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2185 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2186
2187 per_cpu(memcg->stat->events[i], cpu) = 0;
2188 memcg->nocpu_base.events[i] += x;
2189 }
2190 spin_unlock(&memcg->pcp_counter_lock);
2191 }
2192
2193 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2194 unsigned long action,
2195 void *hcpu)
2196 {
2197 int cpu = (unsigned long)hcpu;
2198 struct memcg_stock_pcp *stock;
2199 struct mem_cgroup *iter;
2200
2201 if (action == CPU_ONLINE)
2202 return NOTIFY_OK;
2203
2204 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2205 return NOTIFY_OK;
2206
2207 for_each_mem_cgroup(iter)
2208 mem_cgroup_drain_pcp_counter(iter, cpu);
2209
2210 stock = &per_cpu(memcg_stock, cpu);
2211 drain_stock(stock);
2212 return NOTIFY_OK;
2213 }
2214
2215 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2216 unsigned int nr_pages)
2217 {
2218 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2219 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2220 struct mem_cgroup *mem_over_limit;
2221 struct page_counter *counter;
2222 unsigned long nr_reclaimed;
2223 bool may_swap = true;
2224 bool drained = false;
2225 int ret = 0;
2226
2227 if (mem_cgroup_is_root(memcg))
2228 goto done;
2229 retry:
2230 if (consume_stock(memcg, nr_pages))
2231 goto done;
2232
2233 if (!do_swap_account ||
2234 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2235 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2236 goto done_restock;
2237 if (do_swap_account)
2238 page_counter_uncharge(&memcg->memsw, batch);
2239 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2240 } else {
2241 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2242 may_swap = false;
2243 }
2244
2245 if (batch > nr_pages) {
2246 batch = nr_pages;
2247 goto retry;
2248 }
2249
2250 /*
2251 * Unlike in global OOM situations, memcg is not in a physical
2252 * memory shortage. Allow dying and OOM-killed tasks to
2253 * bypass the last charges so that they can exit quickly and
2254 * free their memory.
2255 */
2256 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2257 fatal_signal_pending(current) ||
2258 current->flags & PF_EXITING))
2259 goto bypass;
2260
2261 if (unlikely(task_in_memcg_oom(current)))
2262 goto nomem;
2263
2264 if (!(gfp_mask & __GFP_WAIT))
2265 goto nomem;
2266
2267 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2268
2269 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2270 gfp_mask, may_swap);
2271
2272 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2273 goto retry;
2274
2275 if (!drained) {
2276 drain_all_stock(mem_over_limit);
2277 drained = true;
2278 goto retry;
2279 }
2280
2281 if (gfp_mask & __GFP_NORETRY)
2282 goto nomem;
2283 /*
2284 * Even though the limit is exceeded at this point, reclaim
2285 * may have been able to free some pages. Retry the charge
2286 * before killing the task.
2287 *
2288 * Only for regular pages, though: huge pages are rather
2289 * unlikely to succeed so close to the limit, and we fall back
2290 * to regular pages anyway in case of failure.
2291 */
2292 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2293 goto retry;
2294 /*
2295 * At task move, charge accounts can be doubly counted. So, it's
2296 * better to wait until the end of task_move if something is going on.
2297 */
2298 if (mem_cgroup_wait_acct_move(mem_over_limit))
2299 goto retry;
2300
2301 if (nr_retries--)
2302 goto retry;
2303
2304 if (gfp_mask & __GFP_NOFAIL)
2305 goto bypass;
2306
2307 if (fatal_signal_pending(current))
2308 goto bypass;
2309
2310 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2311
2312 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2313 nomem:
2314 if (!(gfp_mask & __GFP_NOFAIL))
2315 return -ENOMEM;
2316 bypass:
2317 return -EINTR;
2318
2319 done_restock:
2320 css_get_many(&memcg->css, batch);
2321 if (batch > nr_pages)
2322 refill_stock(memcg, batch - nr_pages);
2323 /*
2324 * If the hierarchy is above the normal consumption range,
2325 * make the charging task trim their excess contribution.
2326 */
2327 do {
2328 if (page_counter_read(&memcg->memory) <= memcg->high)
2329 continue;
2330 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2331 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2332 } while ((memcg = parent_mem_cgroup(memcg)));
2333 done:
2334 return ret;
2335 }
2336
2337 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2338 {
2339 if (mem_cgroup_is_root(memcg))
2340 return;
2341
2342 page_counter_uncharge(&memcg->memory, nr_pages);
2343 if (do_swap_account)
2344 page_counter_uncharge(&memcg->memsw, nr_pages);
2345
2346 css_put_many(&memcg->css, nr_pages);
2347 }
2348
2349 /*
2350 * A helper function to get mem_cgroup from ID. must be called under
2351 * rcu_read_lock(). The caller is responsible for calling
2352 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2353 * refcnt from swap can be called against removed memcg.)
2354 */
2355 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2356 {
2357 /* ID 0 is unused ID */
2358 if (!id)
2359 return NULL;
2360 return mem_cgroup_from_id(id);
2361 }
2362
2363 /*
2364 * try_get_mem_cgroup_from_page - look up page's memcg association
2365 * @page: the page
2366 *
2367 * Look up, get a css reference, and return the memcg that owns @page.
2368 *
2369 * The page must be locked to prevent racing with swap-in and page
2370 * cache charges. If coming from an unlocked page table, the caller
2371 * must ensure the page is on the LRU or this can race with charging.
2372 */
2373 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2374 {
2375 struct mem_cgroup *memcg;
2376 unsigned short id;
2377 swp_entry_t ent;
2378
2379 VM_BUG_ON_PAGE(!PageLocked(page), page);
2380
2381 memcg = page->mem_cgroup;
2382 if (memcg) {
2383 if (!css_tryget_online(&memcg->css))
2384 memcg = NULL;
2385 } else if (PageSwapCache(page)) {
2386 ent.val = page_private(page);
2387 id = lookup_swap_cgroup_id(ent);
2388 rcu_read_lock();
2389 memcg = mem_cgroup_lookup(id);
2390 if (memcg && !css_tryget_online(&memcg->css))
2391 memcg = NULL;
2392 rcu_read_unlock();
2393 }
2394 return memcg;
2395 }
2396
2397 static void lock_page_lru(struct page *page, int *isolated)
2398 {
2399 struct zone *zone = page_zone(page);
2400
2401 spin_lock_irq(&zone->lru_lock);
2402 if (PageLRU(page)) {
2403 struct lruvec *lruvec;
2404
2405 lruvec = mem_cgroup_page_lruvec(page, zone);
2406 ClearPageLRU(page);
2407 del_page_from_lru_list(page, lruvec, page_lru(page));
2408 *isolated = 1;
2409 } else
2410 *isolated = 0;
2411 }
2412
2413 static void unlock_page_lru(struct page *page, int isolated)
2414 {
2415 struct zone *zone = page_zone(page);
2416
2417 if (isolated) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 VM_BUG_ON_PAGE(PageLRU(page), page);
2422 SetPageLRU(page);
2423 add_page_to_lru_list(page, lruvec, page_lru(page));
2424 }
2425 spin_unlock_irq(&zone->lru_lock);
2426 }
2427
2428 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2429 bool lrucare)
2430 {
2431 int isolated;
2432
2433 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2434
2435 /*
2436 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2437 * may already be on some other mem_cgroup's LRU. Take care of it.
2438 */
2439 if (lrucare)
2440 lock_page_lru(page, &isolated);
2441
2442 /*
2443 * Nobody should be changing or seriously looking at
2444 * page->mem_cgroup at this point:
2445 *
2446 * - the page is uncharged
2447 *
2448 * - the page is off-LRU
2449 *
2450 * - an anonymous fault has exclusive page access, except for
2451 * a locked page table
2452 *
2453 * - a page cache insertion, a swapin fault, or a migration
2454 * have the page locked
2455 */
2456 page->mem_cgroup = memcg;
2457
2458 if (lrucare)
2459 unlock_page_lru(page, isolated);
2460 }
2461
2462 #ifdef CONFIG_MEMCG_KMEM
2463 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2464 unsigned long nr_pages)
2465 {
2466 struct page_counter *counter;
2467 int ret = 0;
2468
2469 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2470 if (ret < 0)
2471 return ret;
2472
2473 ret = try_charge(memcg, gfp, nr_pages);
2474 if (ret == -EINTR) {
2475 /*
2476 * try_charge() chose to bypass to root due to OOM kill or
2477 * fatal signal. Since our only options are to either fail
2478 * the allocation or charge it to this cgroup, do it as a
2479 * temporary condition. But we can't fail. From a kmem/slab
2480 * perspective, the cache has already been selected, by
2481 * mem_cgroup_kmem_get_cache(), so it is too late to change
2482 * our minds.
2483 *
2484 * This condition will only trigger if the task entered
2485 * memcg_charge_kmem in a sane state, but was OOM-killed
2486 * during try_charge() above. Tasks that were already dying
2487 * when the allocation triggers should have been already
2488 * directed to the root cgroup in memcontrol.h
2489 */
2490 page_counter_charge(&memcg->memory, nr_pages);
2491 if (do_swap_account)
2492 page_counter_charge(&memcg->memsw, nr_pages);
2493 css_get_many(&memcg->css, nr_pages);
2494 ret = 0;
2495 } else if (ret)
2496 page_counter_uncharge(&memcg->kmem, nr_pages);
2497
2498 return ret;
2499 }
2500
2501 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2502 {
2503 page_counter_uncharge(&memcg->memory, nr_pages);
2504 if (do_swap_account)
2505 page_counter_uncharge(&memcg->memsw, nr_pages);
2506
2507 page_counter_uncharge(&memcg->kmem, nr_pages);
2508
2509 css_put_many(&memcg->css, nr_pages);
2510 }
2511
2512 /*
2513 * helper for acessing a memcg's index. It will be used as an index in the
2514 * child cache array in kmem_cache, and also to derive its name. This function
2515 * will return -1 when this is not a kmem-limited memcg.
2516 */
2517 int memcg_cache_id(struct mem_cgroup *memcg)
2518 {
2519 return memcg ? memcg->kmemcg_id : -1;
2520 }
2521
2522 static int memcg_alloc_cache_id(void)
2523 {
2524 int id, size;
2525 int err;
2526
2527 id = ida_simple_get(&memcg_cache_ida,
2528 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2529 if (id < 0)
2530 return id;
2531
2532 if (id < memcg_nr_cache_ids)
2533 return id;
2534
2535 /*
2536 * There's no space for the new id in memcg_caches arrays,
2537 * so we have to grow them.
2538 */
2539 down_write(&memcg_cache_ids_sem);
2540
2541 size = 2 * (id + 1);
2542 if (size < MEMCG_CACHES_MIN_SIZE)
2543 size = MEMCG_CACHES_MIN_SIZE;
2544 else if (size > MEMCG_CACHES_MAX_SIZE)
2545 size = MEMCG_CACHES_MAX_SIZE;
2546
2547 err = memcg_update_all_caches(size);
2548 if (!err)
2549 err = memcg_update_all_list_lrus(size);
2550 if (!err)
2551 memcg_nr_cache_ids = size;
2552
2553 up_write(&memcg_cache_ids_sem);
2554
2555 if (err) {
2556 ida_simple_remove(&memcg_cache_ida, id);
2557 return err;
2558 }
2559 return id;
2560 }
2561
2562 static void memcg_free_cache_id(int id)
2563 {
2564 ida_simple_remove(&memcg_cache_ida, id);
2565 }
2566
2567 struct memcg_kmem_cache_create_work {
2568 struct mem_cgroup *memcg;
2569 struct kmem_cache *cachep;
2570 struct work_struct work;
2571 };
2572
2573 static void memcg_kmem_cache_create_func(struct work_struct *w)
2574 {
2575 struct memcg_kmem_cache_create_work *cw =
2576 container_of(w, struct memcg_kmem_cache_create_work, work);
2577 struct mem_cgroup *memcg = cw->memcg;
2578 struct kmem_cache *cachep = cw->cachep;
2579
2580 memcg_create_kmem_cache(memcg, cachep);
2581
2582 css_put(&memcg->css);
2583 kfree(cw);
2584 }
2585
2586 /*
2587 * Enqueue the creation of a per-memcg kmem_cache.
2588 */
2589 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2590 struct kmem_cache *cachep)
2591 {
2592 struct memcg_kmem_cache_create_work *cw;
2593
2594 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2595 if (!cw)
2596 return;
2597
2598 css_get(&memcg->css);
2599
2600 cw->memcg = memcg;
2601 cw->cachep = cachep;
2602 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2603
2604 schedule_work(&cw->work);
2605 }
2606
2607 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2608 struct kmem_cache *cachep)
2609 {
2610 /*
2611 * We need to stop accounting when we kmalloc, because if the
2612 * corresponding kmalloc cache is not yet created, the first allocation
2613 * in __memcg_schedule_kmem_cache_create will recurse.
2614 *
2615 * However, it is better to enclose the whole function. Depending on
2616 * the debugging options enabled, INIT_WORK(), for instance, can
2617 * trigger an allocation. This too, will make us recurse. Because at
2618 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2619 * the safest choice is to do it like this, wrapping the whole function.
2620 */
2621 current->memcg_kmem_skip_account = 1;
2622 __memcg_schedule_kmem_cache_create(memcg, cachep);
2623 current->memcg_kmem_skip_account = 0;
2624 }
2625
2626 /*
2627 * Return the kmem_cache we're supposed to use for a slab allocation.
2628 * We try to use the current memcg's version of the cache.
2629 *
2630 * If the cache does not exist yet, if we are the first user of it,
2631 * we either create it immediately, if possible, or create it asynchronously
2632 * in a workqueue.
2633 * In the latter case, we will let the current allocation go through with
2634 * the original cache.
2635 *
2636 * Can't be called in interrupt context or from kernel threads.
2637 * This function needs to be called with rcu_read_lock() held.
2638 */
2639 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2640 {
2641 struct mem_cgroup *memcg;
2642 struct kmem_cache *memcg_cachep;
2643 int kmemcg_id;
2644
2645 VM_BUG_ON(!is_root_cache(cachep));
2646
2647 if (current->memcg_kmem_skip_account)
2648 return cachep;
2649
2650 memcg = get_mem_cgroup_from_mm(current->mm);
2651 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2652 if (kmemcg_id < 0)
2653 goto out;
2654
2655 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2656 if (likely(memcg_cachep))
2657 return memcg_cachep;
2658
2659 /*
2660 * If we are in a safe context (can wait, and not in interrupt
2661 * context), we could be be predictable and return right away.
2662 * This would guarantee that the allocation being performed
2663 * already belongs in the new cache.
2664 *
2665 * However, there are some clashes that can arrive from locking.
2666 * For instance, because we acquire the slab_mutex while doing
2667 * memcg_create_kmem_cache, this means no further allocation
2668 * could happen with the slab_mutex held. So it's better to
2669 * defer everything.
2670 */
2671 memcg_schedule_kmem_cache_create(memcg, cachep);
2672 out:
2673 css_put(&memcg->css);
2674 return cachep;
2675 }
2676
2677 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2678 {
2679 if (!is_root_cache(cachep))
2680 css_put(&cachep->memcg_params.memcg->css);
2681 }
2682
2683 /*
2684 * We need to verify if the allocation against current->mm->owner's memcg is
2685 * possible for the given order. But the page is not allocated yet, so we'll
2686 * need a further commit step to do the final arrangements.
2687 *
2688 * It is possible for the task to switch cgroups in this mean time, so at
2689 * commit time, we can't rely on task conversion any longer. We'll then use
2690 * the handle argument to return to the caller which cgroup we should commit
2691 * against. We could also return the memcg directly and avoid the pointer
2692 * passing, but a boolean return value gives better semantics considering
2693 * the compiled-out case as well.
2694 *
2695 * Returning true means the allocation is possible.
2696 */
2697 bool
2698 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2699 {
2700 struct mem_cgroup *memcg;
2701 int ret;
2702
2703 *_memcg = NULL;
2704
2705 memcg = get_mem_cgroup_from_mm(current->mm);
2706
2707 if (!memcg_kmem_is_active(memcg)) {
2708 css_put(&memcg->css);
2709 return true;
2710 }
2711
2712 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2713 if (!ret)
2714 *_memcg = memcg;
2715
2716 css_put(&memcg->css);
2717 return (ret == 0);
2718 }
2719
2720 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2721 int order)
2722 {
2723 VM_BUG_ON(mem_cgroup_is_root(memcg));
2724
2725 /* The page allocation failed. Revert */
2726 if (!page) {
2727 memcg_uncharge_kmem(memcg, 1 << order);
2728 return;
2729 }
2730 page->mem_cgroup = memcg;
2731 }
2732
2733 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2734 {
2735 struct mem_cgroup *memcg = page->mem_cgroup;
2736
2737 if (!memcg)
2738 return;
2739
2740 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2741
2742 memcg_uncharge_kmem(memcg, 1 << order);
2743 page->mem_cgroup = NULL;
2744 }
2745
2746 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2747 {
2748 struct mem_cgroup *memcg = NULL;
2749 struct kmem_cache *cachep;
2750 struct page *page;
2751
2752 page = virt_to_head_page(ptr);
2753 if (PageSlab(page)) {
2754 cachep = page->slab_cache;
2755 if (!is_root_cache(cachep))
2756 memcg = cachep->memcg_params.memcg;
2757 } else
2758 /* page allocated by alloc_kmem_pages */
2759 memcg = page->mem_cgroup;
2760
2761 return memcg;
2762 }
2763 #endif /* CONFIG_MEMCG_KMEM */
2764
2765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2766
2767 /*
2768 * Because tail pages are not marked as "used", set it. We're under
2769 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2770 * charge/uncharge will be never happen and move_account() is done under
2771 * compound_lock(), so we don't have to take care of races.
2772 */
2773 void mem_cgroup_split_huge_fixup(struct page *head)
2774 {
2775 int i;
2776
2777 if (mem_cgroup_disabled())
2778 return;
2779
2780 for (i = 1; i < HPAGE_PMD_NR; i++)
2781 head[i].mem_cgroup = head->mem_cgroup;
2782
2783 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2784 HPAGE_PMD_NR);
2785 }
2786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2787
2788 /**
2789 * mem_cgroup_move_account - move account of the page
2790 * @page: the page
2791 * @nr_pages: number of regular pages (>1 for huge pages)
2792 * @from: mem_cgroup which the page is moved from.
2793 * @to: mem_cgroup which the page is moved to. @from != @to.
2794 *
2795 * The caller must confirm following.
2796 * - page is not on LRU (isolate_page() is useful.)
2797 * - compound_lock is held when nr_pages > 1
2798 *
2799 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2800 * from old cgroup.
2801 */
2802 static int mem_cgroup_move_account(struct page *page,
2803 unsigned int nr_pages,
2804 struct mem_cgroup *from,
2805 struct mem_cgroup *to)
2806 {
2807 unsigned long flags;
2808 int ret;
2809
2810 VM_BUG_ON(from == to);
2811 VM_BUG_ON_PAGE(PageLRU(page), page);
2812 /*
2813 * The page is isolated from LRU. So, collapse function
2814 * will not handle this page. But page splitting can happen.
2815 * Do this check under compound_page_lock(). The caller should
2816 * hold it.
2817 */
2818 ret = -EBUSY;
2819 if (nr_pages > 1 && !PageTransHuge(page))
2820 goto out;
2821
2822 /*
2823 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2824 * of its source page while we change it: page migration takes
2825 * both pages off the LRU, but page cache replacement doesn't.
2826 */
2827 if (!trylock_page(page))
2828 goto out;
2829
2830 ret = -EINVAL;
2831 if (page->mem_cgroup != from)
2832 goto out_unlock;
2833
2834 spin_lock_irqsave(&from->move_lock, flags);
2835
2836 if (!PageAnon(page) && page_mapped(page)) {
2837 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2838 nr_pages);
2839 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2840 nr_pages);
2841 }
2842
2843 if (PageWriteback(page)) {
2844 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2845 nr_pages);
2846 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2847 nr_pages);
2848 }
2849
2850 /*
2851 * It is safe to change page->mem_cgroup here because the page
2852 * is referenced, charged, and isolated - we can't race with
2853 * uncharging, charging, migration, or LRU putback.
2854 */
2855
2856 /* caller should have done css_get */
2857 page->mem_cgroup = to;
2858 spin_unlock_irqrestore(&from->move_lock, flags);
2859
2860 ret = 0;
2861
2862 local_irq_disable();
2863 mem_cgroup_charge_statistics(to, page, nr_pages);
2864 memcg_check_events(to, page);
2865 mem_cgroup_charge_statistics(from, page, -nr_pages);
2866 memcg_check_events(from, page);
2867 local_irq_enable();
2868 out_unlock:
2869 unlock_page(page);
2870 out:
2871 return ret;
2872 }
2873
2874 #ifdef CONFIG_MEMCG_SWAP
2875 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2876 bool charge)
2877 {
2878 int val = (charge) ? 1 : -1;
2879 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2880 }
2881
2882 /**
2883 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2884 * @entry: swap entry to be moved
2885 * @from: mem_cgroup which the entry is moved from
2886 * @to: mem_cgroup which the entry is moved to
2887 *
2888 * It succeeds only when the swap_cgroup's record for this entry is the same
2889 * as the mem_cgroup's id of @from.
2890 *
2891 * Returns 0 on success, -EINVAL on failure.
2892 *
2893 * The caller must have charged to @to, IOW, called page_counter_charge() about
2894 * both res and memsw, and called css_get().
2895 */
2896 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2897 struct mem_cgroup *from, struct mem_cgroup *to)
2898 {
2899 unsigned short old_id, new_id;
2900
2901 old_id = mem_cgroup_id(from);
2902 new_id = mem_cgroup_id(to);
2903
2904 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2905 mem_cgroup_swap_statistics(from, false);
2906 mem_cgroup_swap_statistics(to, true);
2907 return 0;
2908 }
2909 return -EINVAL;
2910 }
2911 #else
2912 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2913 struct mem_cgroup *from, struct mem_cgroup *to)
2914 {
2915 return -EINVAL;
2916 }
2917 #endif
2918
2919 static DEFINE_MUTEX(memcg_limit_mutex);
2920
2921 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2922 unsigned long limit)
2923 {
2924 unsigned long curusage;
2925 unsigned long oldusage;
2926 bool enlarge = false;
2927 int retry_count;
2928 int ret;
2929
2930 /*
2931 * For keeping hierarchical_reclaim simple, how long we should retry
2932 * is depends on callers. We set our retry-count to be function
2933 * of # of children which we should visit in this loop.
2934 */
2935 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2936 mem_cgroup_count_children(memcg);
2937
2938 oldusage = page_counter_read(&memcg->memory);
2939
2940 do {
2941 if (signal_pending(current)) {
2942 ret = -EINTR;
2943 break;
2944 }
2945
2946 mutex_lock(&memcg_limit_mutex);
2947 if (limit > memcg->memsw.limit) {
2948 mutex_unlock(&memcg_limit_mutex);
2949 ret = -EINVAL;
2950 break;
2951 }
2952 if (limit > memcg->memory.limit)
2953 enlarge = true;
2954 ret = page_counter_limit(&memcg->memory, limit);
2955 mutex_unlock(&memcg_limit_mutex);
2956
2957 if (!ret)
2958 break;
2959
2960 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2961
2962 curusage = page_counter_read(&memcg->memory);
2963 /* Usage is reduced ? */
2964 if (curusage >= oldusage)
2965 retry_count--;
2966 else
2967 oldusage = curusage;
2968 } while (retry_count);
2969
2970 if (!ret && enlarge)
2971 memcg_oom_recover(memcg);
2972
2973 return ret;
2974 }
2975
2976 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2977 unsigned long limit)
2978 {
2979 unsigned long curusage;
2980 unsigned long oldusage;
2981 bool enlarge = false;
2982 int retry_count;
2983 int ret;
2984
2985 /* see mem_cgroup_resize_res_limit */
2986 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2987 mem_cgroup_count_children(memcg);
2988
2989 oldusage = page_counter_read(&memcg->memsw);
2990
2991 do {
2992 if (signal_pending(current)) {
2993 ret = -EINTR;
2994 break;
2995 }
2996
2997 mutex_lock(&memcg_limit_mutex);
2998 if (limit < memcg->memory.limit) {
2999 mutex_unlock(&memcg_limit_mutex);
3000 ret = -EINVAL;
3001 break;
3002 }
3003 if (limit > memcg->memsw.limit)
3004 enlarge = true;
3005 ret = page_counter_limit(&memcg->memsw, limit);
3006 mutex_unlock(&memcg_limit_mutex);
3007
3008 if (!ret)
3009 break;
3010
3011 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3012
3013 curusage = page_counter_read(&memcg->memsw);
3014 /* Usage is reduced ? */
3015 if (curusage >= oldusage)
3016 retry_count--;
3017 else
3018 oldusage = curusage;
3019 } while (retry_count);
3020
3021 if (!ret && enlarge)
3022 memcg_oom_recover(memcg);
3023
3024 return ret;
3025 }
3026
3027 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3028 gfp_t gfp_mask,
3029 unsigned long *total_scanned)
3030 {
3031 unsigned long nr_reclaimed = 0;
3032 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3033 unsigned long reclaimed;
3034 int loop = 0;
3035 struct mem_cgroup_tree_per_zone *mctz;
3036 unsigned long excess;
3037 unsigned long nr_scanned;
3038
3039 if (order > 0)
3040 return 0;
3041
3042 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3043 /*
3044 * This loop can run a while, specially if mem_cgroup's continuously
3045 * keep exceeding their soft limit and putting the system under
3046 * pressure
3047 */
3048 do {
3049 if (next_mz)
3050 mz = next_mz;
3051 else
3052 mz = mem_cgroup_largest_soft_limit_node(mctz);
3053 if (!mz)
3054 break;
3055
3056 nr_scanned = 0;
3057 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3058 gfp_mask, &nr_scanned);
3059 nr_reclaimed += reclaimed;
3060 *total_scanned += nr_scanned;
3061 spin_lock_irq(&mctz->lock);
3062 __mem_cgroup_remove_exceeded(mz, mctz);
3063
3064 /*
3065 * If we failed to reclaim anything from this memory cgroup
3066 * it is time to move on to the next cgroup
3067 */
3068 next_mz = NULL;
3069 if (!reclaimed)
3070 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3071
3072 excess = soft_limit_excess(mz->memcg);
3073 /*
3074 * One school of thought says that we should not add
3075 * back the node to the tree if reclaim returns 0.
3076 * But our reclaim could return 0, simply because due
3077 * to priority we are exposing a smaller subset of
3078 * memory to reclaim from. Consider this as a longer
3079 * term TODO.
3080 */
3081 /* If excess == 0, no tree ops */
3082 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3083 spin_unlock_irq(&mctz->lock);
3084 css_put(&mz->memcg->css);
3085 loop++;
3086 /*
3087 * Could not reclaim anything and there are no more
3088 * mem cgroups to try or we seem to be looping without
3089 * reclaiming anything.
3090 */
3091 if (!nr_reclaimed &&
3092 (next_mz == NULL ||
3093 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3094 break;
3095 } while (!nr_reclaimed);
3096 if (next_mz)
3097 css_put(&next_mz->memcg->css);
3098 return nr_reclaimed;
3099 }
3100
3101 /*
3102 * Test whether @memcg has children, dead or alive. Note that this
3103 * function doesn't care whether @memcg has use_hierarchy enabled and
3104 * returns %true if there are child csses according to the cgroup
3105 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3106 */
3107 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3108 {
3109 bool ret;
3110
3111 /*
3112 * The lock does not prevent addition or deletion of children, but
3113 * it prevents a new child from being initialized based on this
3114 * parent in css_online(), so it's enough to decide whether
3115 * hierarchically inherited attributes can still be changed or not.
3116 */
3117 lockdep_assert_held(&memcg_create_mutex);
3118
3119 rcu_read_lock();
3120 ret = css_next_child(NULL, &memcg->css);
3121 rcu_read_unlock();
3122 return ret;
3123 }
3124
3125 /*
3126 * Reclaims as many pages from the given memcg as possible and moves
3127 * the rest to the parent.
3128 *
3129 * Caller is responsible for holding css reference for memcg.
3130 */
3131 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3132 {
3133 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3134
3135 /* we call try-to-free pages for make this cgroup empty */
3136 lru_add_drain_all();
3137 /* try to free all pages in this cgroup */
3138 while (nr_retries && page_counter_read(&memcg->memory)) {
3139 int progress;
3140
3141 if (signal_pending(current))
3142 return -EINTR;
3143
3144 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3145 GFP_KERNEL, true);
3146 if (!progress) {
3147 nr_retries--;
3148 /* maybe some writeback is necessary */
3149 congestion_wait(BLK_RW_ASYNC, HZ/10);
3150 }
3151
3152 }
3153
3154 return 0;
3155 }
3156
3157 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3158 char *buf, size_t nbytes,
3159 loff_t off)
3160 {
3161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3162
3163 if (mem_cgroup_is_root(memcg))
3164 return -EINVAL;
3165 return mem_cgroup_force_empty(memcg) ?: nbytes;
3166 }
3167
3168 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3169 struct cftype *cft)
3170 {
3171 return mem_cgroup_from_css(css)->use_hierarchy;
3172 }
3173
3174 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3175 struct cftype *cft, u64 val)
3176 {
3177 int retval = 0;
3178 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3179 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3180
3181 mutex_lock(&memcg_create_mutex);
3182
3183 if (memcg->use_hierarchy == val)
3184 goto out;
3185
3186 /*
3187 * If parent's use_hierarchy is set, we can't make any modifications
3188 * in the child subtrees. If it is unset, then the change can
3189 * occur, provided the current cgroup has no children.
3190 *
3191 * For the root cgroup, parent_mem is NULL, we allow value to be
3192 * set if there are no children.
3193 */
3194 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3195 (val == 1 || val == 0)) {
3196 if (!memcg_has_children(memcg))
3197 memcg->use_hierarchy = val;
3198 else
3199 retval = -EBUSY;
3200 } else
3201 retval = -EINVAL;
3202
3203 out:
3204 mutex_unlock(&memcg_create_mutex);
3205
3206 return retval;
3207 }
3208
3209 static unsigned long tree_stat(struct mem_cgroup *memcg,
3210 enum mem_cgroup_stat_index idx)
3211 {
3212 struct mem_cgroup *iter;
3213 long val = 0;
3214
3215 /* Per-cpu values can be negative, use a signed accumulator */
3216 for_each_mem_cgroup_tree(iter, memcg)
3217 val += mem_cgroup_read_stat(iter, idx);
3218
3219 if (val < 0) /* race ? */
3220 val = 0;
3221 return val;
3222 }
3223
3224 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3225 {
3226 u64 val;
3227
3228 if (mem_cgroup_is_root(memcg)) {
3229 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3230 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3231 if (swap)
3232 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3233 } else {
3234 if (!swap)
3235 val = page_counter_read(&memcg->memory);
3236 else
3237 val = page_counter_read(&memcg->memsw);
3238 }
3239 return val << PAGE_SHIFT;
3240 }
3241
3242 enum {
3243 RES_USAGE,
3244 RES_LIMIT,
3245 RES_MAX_USAGE,
3246 RES_FAILCNT,
3247 RES_SOFT_LIMIT,
3248 };
3249
3250 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3251 struct cftype *cft)
3252 {
3253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254 struct page_counter *counter;
3255
3256 switch (MEMFILE_TYPE(cft->private)) {
3257 case _MEM:
3258 counter = &memcg->memory;
3259 break;
3260 case _MEMSWAP:
3261 counter = &memcg->memsw;
3262 break;
3263 case _KMEM:
3264 counter = &memcg->kmem;
3265 break;
3266 default:
3267 BUG();
3268 }
3269
3270 switch (MEMFILE_ATTR(cft->private)) {
3271 case RES_USAGE:
3272 if (counter == &memcg->memory)
3273 return mem_cgroup_usage(memcg, false);
3274 if (counter == &memcg->memsw)
3275 return mem_cgroup_usage(memcg, true);
3276 return (u64)page_counter_read(counter) * PAGE_SIZE;
3277 case RES_LIMIT:
3278 return (u64)counter->limit * PAGE_SIZE;
3279 case RES_MAX_USAGE:
3280 return (u64)counter->watermark * PAGE_SIZE;
3281 case RES_FAILCNT:
3282 return counter->failcnt;
3283 case RES_SOFT_LIMIT:
3284 return (u64)memcg->soft_limit * PAGE_SIZE;
3285 default:
3286 BUG();
3287 }
3288 }
3289
3290 #ifdef CONFIG_MEMCG_KMEM
3291 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3292 unsigned long nr_pages)
3293 {
3294 int err = 0;
3295 int memcg_id;
3296
3297 BUG_ON(memcg->kmemcg_id >= 0);
3298 BUG_ON(memcg->kmem_acct_activated);
3299 BUG_ON(memcg->kmem_acct_active);
3300
3301 /*
3302 * For simplicity, we won't allow this to be disabled. It also can't
3303 * be changed if the cgroup has children already, or if tasks had
3304 * already joined.
3305 *
3306 * If tasks join before we set the limit, a person looking at
3307 * kmem.usage_in_bytes will have no way to determine when it took
3308 * place, which makes the value quite meaningless.
3309 *
3310 * After it first became limited, changes in the value of the limit are
3311 * of course permitted.
3312 */
3313 mutex_lock(&memcg_create_mutex);
3314 if (cgroup_has_tasks(memcg->css.cgroup) ||
3315 (memcg->use_hierarchy && memcg_has_children(memcg)))
3316 err = -EBUSY;
3317 mutex_unlock(&memcg_create_mutex);
3318 if (err)
3319 goto out;
3320
3321 memcg_id = memcg_alloc_cache_id();
3322 if (memcg_id < 0) {
3323 err = memcg_id;
3324 goto out;
3325 }
3326
3327 /*
3328 * We couldn't have accounted to this cgroup, because it hasn't got
3329 * activated yet, so this should succeed.
3330 */
3331 err = page_counter_limit(&memcg->kmem, nr_pages);
3332 VM_BUG_ON(err);
3333
3334 static_key_slow_inc(&memcg_kmem_enabled_key);
3335 /*
3336 * A memory cgroup is considered kmem-active as soon as it gets
3337 * kmemcg_id. Setting the id after enabling static branching will
3338 * guarantee no one starts accounting before all call sites are
3339 * patched.
3340 */
3341 memcg->kmemcg_id = memcg_id;
3342 memcg->kmem_acct_activated = true;
3343 memcg->kmem_acct_active = true;
3344 out:
3345 return err;
3346 }
3347
3348 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3349 unsigned long limit)
3350 {
3351 int ret;
3352
3353 mutex_lock(&memcg_limit_mutex);
3354 if (!memcg_kmem_is_active(memcg))
3355 ret = memcg_activate_kmem(memcg, limit);
3356 else
3357 ret = page_counter_limit(&memcg->kmem, limit);
3358 mutex_unlock(&memcg_limit_mutex);
3359 return ret;
3360 }
3361
3362 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3363 {
3364 int ret = 0;
3365 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3366
3367 if (!parent)
3368 return 0;
3369
3370 mutex_lock(&memcg_limit_mutex);
3371 /*
3372 * If the parent cgroup is not kmem-active now, it cannot be activated
3373 * after this point, because it has at least one child already.
3374 */
3375 if (memcg_kmem_is_active(parent))
3376 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3377 mutex_unlock(&memcg_limit_mutex);
3378 return ret;
3379 }
3380 #else
3381 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3382 unsigned long limit)
3383 {
3384 return -EINVAL;
3385 }
3386 #endif /* CONFIG_MEMCG_KMEM */
3387
3388 /*
3389 * The user of this function is...
3390 * RES_LIMIT.
3391 */
3392 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3393 char *buf, size_t nbytes, loff_t off)
3394 {
3395 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3396 unsigned long nr_pages;
3397 int ret;
3398
3399 buf = strstrip(buf);
3400 ret = page_counter_memparse(buf, "-1", &nr_pages);
3401 if (ret)
3402 return ret;
3403
3404 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3405 case RES_LIMIT:
3406 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3407 ret = -EINVAL;
3408 break;
3409 }
3410 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3411 case _MEM:
3412 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3413 break;
3414 case _MEMSWAP:
3415 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3416 break;
3417 case _KMEM:
3418 ret = memcg_update_kmem_limit(memcg, nr_pages);
3419 break;
3420 }
3421 break;
3422 case RES_SOFT_LIMIT:
3423 memcg->soft_limit = nr_pages;
3424 ret = 0;
3425 break;
3426 }
3427 return ret ?: nbytes;
3428 }
3429
3430 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3431 size_t nbytes, loff_t off)
3432 {
3433 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3434 struct page_counter *counter;
3435
3436 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3437 case _MEM:
3438 counter = &memcg->memory;
3439 break;
3440 case _MEMSWAP:
3441 counter = &memcg->memsw;
3442 break;
3443 case _KMEM:
3444 counter = &memcg->kmem;
3445 break;
3446 default:
3447 BUG();
3448 }
3449
3450 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3451 case RES_MAX_USAGE:
3452 page_counter_reset_watermark(counter);
3453 break;
3454 case RES_FAILCNT:
3455 counter->failcnt = 0;
3456 break;
3457 default:
3458 BUG();
3459 }
3460
3461 return nbytes;
3462 }
3463
3464 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3465 struct cftype *cft)
3466 {
3467 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3468 }
3469
3470 #ifdef CONFIG_MMU
3471 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3472 struct cftype *cft, u64 val)
3473 {
3474 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3475
3476 if (val & ~MOVE_MASK)
3477 return -EINVAL;
3478
3479 /*
3480 * No kind of locking is needed in here, because ->can_attach() will
3481 * check this value once in the beginning of the process, and then carry
3482 * on with stale data. This means that changes to this value will only
3483 * affect task migrations starting after the change.
3484 */
3485 memcg->move_charge_at_immigrate = val;
3486 return 0;
3487 }
3488 #else
3489 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3490 struct cftype *cft, u64 val)
3491 {
3492 return -ENOSYS;
3493 }
3494 #endif
3495
3496 #ifdef CONFIG_NUMA
3497 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3498 {
3499 struct numa_stat {
3500 const char *name;
3501 unsigned int lru_mask;
3502 };
3503
3504 static const struct numa_stat stats[] = {
3505 { "total", LRU_ALL },
3506 { "file", LRU_ALL_FILE },
3507 { "anon", LRU_ALL_ANON },
3508 { "unevictable", BIT(LRU_UNEVICTABLE) },
3509 };
3510 const struct numa_stat *stat;
3511 int nid;
3512 unsigned long nr;
3513 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3514
3515 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3516 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3517 seq_printf(m, "%s=%lu", stat->name, nr);
3518 for_each_node_state(nid, N_MEMORY) {
3519 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3520 stat->lru_mask);
3521 seq_printf(m, " N%d=%lu", nid, nr);
3522 }
3523 seq_putc(m, '\n');
3524 }
3525
3526 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3527 struct mem_cgroup *iter;
3528
3529 nr = 0;
3530 for_each_mem_cgroup_tree(iter, memcg)
3531 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3532 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3533 for_each_node_state(nid, N_MEMORY) {
3534 nr = 0;
3535 for_each_mem_cgroup_tree(iter, memcg)
3536 nr += mem_cgroup_node_nr_lru_pages(
3537 iter, nid, stat->lru_mask);
3538 seq_printf(m, " N%d=%lu", nid, nr);
3539 }
3540 seq_putc(m, '\n');
3541 }
3542
3543 return 0;
3544 }
3545 #endif /* CONFIG_NUMA */
3546
3547 static int memcg_stat_show(struct seq_file *m, void *v)
3548 {
3549 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3550 unsigned long memory, memsw;
3551 struct mem_cgroup *mi;
3552 unsigned int i;
3553
3554 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3555 MEM_CGROUP_STAT_NSTATS);
3556 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3557 MEM_CGROUP_EVENTS_NSTATS);
3558 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3559
3560 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3561 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3562 continue;
3563 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3564 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3565 }
3566
3567 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3568 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3569 mem_cgroup_read_events(memcg, i));
3570
3571 for (i = 0; i < NR_LRU_LISTS; i++)
3572 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3573 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3574
3575 /* Hierarchical information */
3576 memory = memsw = PAGE_COUNTER_MAX;
3577 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3578 memory = min(memory, mi->memory.limit);
3579 memsw = min(memsw, mi->memsw.limit);
3580 }
3581 seq_printf(m, "hierarchical_memory_limit %llu\n",
3582 (u64)memory * PAGE_SIZE);
3583 if (do_swap_account)
3584 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3585 (u64)memsw * PAGE_SIZE);
3586
3587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3588 long long val = 0;
3589
3590 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3591 continue;
3592 for_each_mem_cgroup_tree(mi, memcg)
3593 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3594 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3595 }
3596
3597 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3598 unsigned long long val = 0;
3599
3600 for_each_mem_cgroup_tree(mi, memcg)
3601 val += mem_cgroup_read_events(mi, i);
3602 seq_printf(m, "total_%s %llu\n",
3603 mem_cgroup_events_names[i], val);
3604 }
3605
3606 for (i = 0; i < NR_LRU_LISTS; i++) {
3607 unsigned long long val = 0;
3608
3609 for_each_mem_cgroup_tree(mi, memcg)
3610 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3611 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3612 }
3613
3614 #ifdef CONFIG_DEBUG_VM
3615 {
3616 int nid, zid;
3617 struct mem_cgroup_per_zone *mz;
3618 struct zone_reclaim_stat *rstat;
3619 unsigned long recent_rotated[2] = {0, 0};
3620 unsigned long recent_scanned[2] = {0, 0};
3621
3622 for_each_online_node(nid)
3623 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3624 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3625 rstat = &mz->lruvec.reclaim_stat;
3626
3627 recent_rotated[0] += rstat->recent_rotated[0];
3628 recent_rotated[1] += rstat->recent_rotated[1];
3629 recent_scanned[0] += rstat->recent_scanned[0];
3630 recent_scanned[1] += rstat->recent_scanned[1];
3631 }
3632 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3633 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3634 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3635 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3636 }
3637 #endif
3638
3639 return 0;
3640 }
3641
3642 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3643 struct cftype *cft)
3644 {
3645 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3646
3647 return mem_cgroup_swappiness(memcg);
3648 }
3649
3650 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3651 struct cftype *cft, u64 val)
3652 {
3653 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3654
3655 if (val > 100)
3656 return -EINVAL;
3657
3658 if (css->parent)
3659 memcg->swappiness = val;
3660 else
3661 vm_swappiness = val;
3662
3663 return 0;
3664 }
3665
3666 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3667 {
3668 struct mem_cgroup_threshold_ary *t;
3669 unsigned long usage;
3670 int i;
3671
3672 rcu_read_lock();
3673 if (!swap)
3674 t = rcu_dereference(memcg->thresholds.primary);
3675 else
3676 t = rcu_dereference(memcg->memsw_thresholds.primary);
3677
3678 if (!t)
3679 goto unlock;
3680
3681 usage = mem_cgroup_usage(memcg, swap);
3682
3683 /*
3684 * current_threshold points to threshold just below or equal to usage.
3685 * If it's not true, a threshold was crossed after last
3686 * call of __mem_cgroup_threshold().
3687 */
3688 i = t->current_threshold;
3689
3690 /*
3691 * Iterate backward over array of thresholds starting from
3692 * current_threshold and check if a threshold is crossed.
3693 * If none of thresholds below usage is crossed, we read
3694 * only one element of the array here.
3695 */
3696 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3697 eventfd_signal(t->entries[i].eventfd, 1);
3698
3699 /* i = current_threshold + 1 */
3700 i++;
3701
3702 /*
3703 * Iterate forward over array of thresholds starting from
3704 * current_threshold+1 and check if a threshold is crossed.
3705 * If none of thresholds above usage is crossed, we read
3706 * only one element of the array here.
3707 */
3708 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3709 eventfd_signal(t->entries[i].eventfd, 1);
3710
3711 /* Update current_threshold */
3712 t->current_threshold = i - 1;
3713 unlock:
3714 rcu_read_unlock();
3715 }
3716
3717 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3718 {
3719 while (memcg) {
3720 __mem_cgroup_threshold(memcg, false);
3721 if (do_swap_account)
3722 __mem_cgroup_threshold(memcg, true);
3723
3724 memcg = parent_mem_cgroup(memcg);
3725 }
3726 }
3727
3728 static int compare_thresholds(const void *a, const void *b)
3729 {
3730 const struct mem_cgroup_threshold *_a = a;
3731 const struct mem_cgroup_threshold *_b = b;
3732
3733 if (_a->threshold > _b->threshold)
3734 return 1;
3735
3736 if (_a->threshold < _b->threshold)
3737 return -1;
3738
3739 return 0;
3740 }
3741
3742 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3743 {
3744 struct mem_cgroup_eventfd_list *ev;
3745
3746 spin_lock(&memcg_oom_lock);
3747
3748 list_for_each_entry(ev, &memcg->oom_notify, list)
3749 eventfd_signal(ev->eventfd, 1);
3750
3751 spin_unlock(&memcg_oom_lock);
3752 return 0;
3753 }
3754
3755 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3756 {
3757 struct mem_cgroup *iter;
3758
3759 for_each_mem_cgroup_tree(iter, memcg)
3760 mem_cgroup_oom_notify_cb(iter);
3761 }
3762
3763 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3764 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3765 {
3766 struct mem_cgroup_thresholds *thresholds;
3767 struct mem_cgroup_threshold_ary *new;
3768 unsigned long threshold;
3769 unsigned long usage;
3770 int i, size, ret;
3771
3772 ret = page_counter_memparse(args, "-1", &threshold);
3773 if (ret)
3774 return ret;
3775
3776 mutex_lock(&memcg->thresholds_lock);
3777
3778 if (type == _MEM) {
3779 thresholds = &memcg->thresholds;
3780 usage = mem_cgroup_usage(memcg, false);
3781 } else if (type == _MEMSWAP) {
3782 thresholds = &memcg->memsw_thresholds;
3783 usage = mem_cgroup_usage(memcg, true);
3784 } else
3785 BUG();
3786
3787 /* Check if a threshold crossed before adding a new one */
3788 if (thresholds->primary)
3789 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3790
3791 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3792
3793 /* Allocate memory for new array of thresholds */
3794 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3795 GFP_KERNEL);
3796 if (!new) {
3797 ret = -ENOMEM;
3798 goto unlock;
3799 }
3800 new->size = size;
3801
3802 /* Copy thresholds (if any) to new array */
3803 if (thresholds->primary) {
3804 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3805 sizeof(struct mem_cgroup_threshold));
3806 }
3807
3808 /* Add new threshold */
3809 new->entries[size - 1].eventfd = eventfd;
3810 new->entries[size - 1].threshold = threshold;
3811
3812 /* Sort thresholds. Registering of new threshold isn't time-critical */
3813 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3814 compare_thresholds, NULL);
3815
3816 /* Find current threshold */
3817 new->current_threshold = -1;
3818 for (i = 0; i < size; i++) {
3819 if (new->entries[i].threshold <= usage) {
3820 /*
3821 * new->current_threshold will not be used until
3822 * rcu_assign_pointer(), so it's safe to increment
3823 * it here.
3824 */
3825 ++new->current_threshold;
3826 } else
3827 break;
3828 }
3829
3830 /* Free old spare buffer and save old primary buffer as spare */
3831 kfree(thresholds->spare);
3832 thresholds->spare = thresholds->primary;
3833
3834 rcu_assign_pointer(thresholds->primary, new);
3835
3836 /* To be sure that nobody uses thresholds */
3837 synchronize_rcu();
3838
3839 unlock:
3840 mutex_unlock(&memcg->thresholds_lock);
3841
3842 return ret;
3843 }
3844
3845 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3846 struct eventfd_ctx *eventfd, const char *args)
3847 {
3848 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3849 }
3850
3851 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3852 struct eventfd_ctx *eventfd, const char *args)
3853 {
3854 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3855 }
3856
3857 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3858 struct eventfd_ctx *eventfd, enum res_type type)
3859 {
3860 struct mem_cgroup_thresholds *thresholds;
3861 struct mem_cgroup_threshold_ary *new;
3862 unsigned long usage;
3863 int i, j, size;
3864
3865 mutex_lock(&memcg->thresholds_lock);
3866
3867 if (type == _MEM) {
3868 thresholds = &memcg->thresholds;
3869 usage = mem_cgroup_usage(memcg, false);
3870 } else if (type == _MEMSWAP) {
3871 thresholds = &memcg->memsw_thresholds;
3872 usage = mem_cgroup_usage(memcg, true);
3873 } else
3874 BUG();
3875
3876 if (!thresholds->primary)
3877 goto unlock;
3878
3879 /* Check if a threshold crossed before removing */
3880 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3881
3882 /* Calculate new number of threshold */
3883 size = 0;
3884 for (i = 0; i < thresholds->primary->size; i++) {
3885 if (thresholds->primary->entries[i].eventfd != eventfd)
3886 size++;
3887 }
3888
3889 new = thresholds->spare;
3890
3891 /* Set thresholds array to NULL if we don't have thresholds */
3892 if (!size) {
3893 kfree(new);
3894 new = NULL;
3895 goto swap_buffers;
3896 }
3897
3898 new->size = size;
3899
3900 /* Copy thresholds and find current threshold */
3901 new->current_threshold = -1;
3902 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3903 if (thresholds->primary->entries[i].eventfd == eventfd)
3904 continue;
3905
3906 new->entries[j] = thresholds->primary->entries[i];
3907 if (new->entries[j].threshold <= usage) {
3908 /*
3909 * new->current_threshold will not be used
3910 * until rcu_assign_pointer(), so it's safe to increment
3911 * it here.
3912 */
3913 ++new->current_threshold;
3914 }
3915 j++;
3916 }
3917
3918 swap_buffers:
3919 /* Swap primary and spare array */
3920 thresholds->spare = thresholds->primary;
3921 /* If all events are unregistered, free the spare array */
3922 if (!new) {
3923 kfree(thresholds->spare);
3924 thresholds->spare = NULL;
3925 }
3926
3927 rcu_assign_pointer(thresholds->primary, new);
3928
3929 /* To be sure that nobody uses thresholds */
3930 synchronize_rcu();
3931 unlock:
3932 mutex_unlock(&memcg->thresholds_lock);
3933 }
3934
3935 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3936 struct eventfd_ctx *eventfd)
3937 {
3938 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3939 }
3940
3941 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3942 struct eventfd_ctx *eventfd)
3943 {
3944 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3945 }
3946
3947 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3948 struct eventfd_ctx *eventfd, const char *args)
3949 {
3950 struct mem_cgroup_eventfd_list *event;
3951
3952 event = kmalloc(sizeof(*event), GFP_KERNEL);
3953 if (!event)
3954 return -ENOMEM;
3955
3956 spin_lock(&memcg_oom_lock);
3957
3958 event->eventfd = eventfd;
3959 list_add(&event->list, &memcg->oom_notify);
3960
3961 /* already in OOM ? */
3962 if (atomic_read(&memcg->under_oom))
3963 eventfd_signal(eventfd, 1);
3964 spin_unlock(&memcg_oom_lock);
3965
3966 return 0;
3967 }
3968
3969 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3970 struct eventfd_ctx *eventfd)
3971 {
3972 struct mem_cgroup_eventfd_list *ev, *tmp;
3973
3974 spin_lock(&memcg_oom_lock);
3975
3976 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3977 if (ev->eventfd == eventfd) {
3978 list_del(&ev->list);
3979 kfree(ev);
3980 }
3981 }
3982
3983 spin_unlock(&memcg_oom_lock);
3984 }
3985
3986 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3987 {
3988 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3989
3990 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3991 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3992 return 0;
3993 }
3994
3995 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3996 struct cftype *cft, u64 val)
3997 {
3998 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3999
4000 /* cannot set to root cgroup and only 0 and 1 are allowed */
4001 if (!css->parent || !((val == 0) || (val == 1)))
4002 return -EINVAL;
4003
4004 memcg->oom_kill_disable = val;
4005 if (!val)
4006 memcg_oom_recover(memcg);
4007
4008 return 0;
4009 }
4010
4011 #ifdef CONFIG_MEMCG_KMEM
4012 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4013 {
4014 int ret;
4015
4016 ret = memcg_propagate_kmem(memcg);
4017 if (ret)
4018 return ret;
4019
4020 return mem_cgroup_sockets_init(memcg, ss);
4021 }
4022
4023 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4024 {
4025 struct cgroup_subsys_state *css;
4026 struct mem_cgroup *parent, *child;
4027 int kmemcg_id;
4028
4029 if (!memcg->kmem_acct_active)
4030 return;
4031
4032 /*
4033 * Clear the 'active' flag before clearing memcg_caches arrays entries.
4034 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
4035 * guarantees no cache will be created for this cgroup after we are
4036 * done (see memcg_create_kmem_cache()).
4037 */
4038 memcg->kmem_acct_active = false;
4039
4040 memcg_deactivate_kmem_caches(memcg);
4041
4042 kmemcg_id = memcg->kmemcg_id;
4043 BUG_ON(kmemcg_id < 0);
4044
4045 parent = parent_mem_cgroup(memcg);
4046 if (!parent)
4047 parent = root_mem_cgroup;
4048
4049 /*
4050 * Change kmemcg_id of this cgroup and all its descendants to the
4051 * parent's id, and then move all entries from this cgroup's list_lrus
4052 * to ones of the parent. After we have finished, all list_lrus
4053 * corresponding to this cgroup are guaranteed to remain empty. The
4054 * ordering is imposed by list_lru_node->lock taken by
4055 * memcg_drain_all_list_lrus().
4056 */
4057 css_for_each_descendant_pre(css, &memcg->css) {
4058 child = mem_cgroup_from_css(css);
4059 BUG_ON(child->kmemcg_id != kmemcg_id);
4060 child->kmemcg_id = parent->kmemcg_id;
4061 if (!memcg->use_hierarchy)
4062 break;
4063 }
4064 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4065
4066 memcg_free_cache_id(kmemcg_id);
4067 }
4068
4069 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4070 {
4071 if (memcg->kmem_acct_activated) {
4072 memcg_destroy_kmem_caches(memcg);
4073 static_key_slow_dec(&memcg_kmem_enabled_key);
4074 WARN_ON(page_counter_read(&memcg->kmem));
4075 }
4076 mem_cgroup_sockets_destroy(memcg);
4077 }
4078 #else
4079 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4080 {
4081 return 0;
4082 }
4083
4084 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4085 {
4086 }
4087
4088 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4089 {
4090 }
4091 #endif
4092
4093 /*
4094 * DO NOT USE IN NEW FILES.
4095 *
4096 * "cgroup.event_control" implementation.
4097 *
4098 * This is way over-engineered. It tries to support fully configurable
4099 * events for each user. Such level of flexibility is completely
4100 * unnecessary especially in the light of the planned unified hierarchy.
4101 *
4102 * Please deprecate this and replace with something simpler if at all
4103 * possible.
4104 */
4105
4106 /*
4107 * Unregister event and free resources.
4108 *
4109 * Gets called from workqueue.
4110 */
4111 static void memcg_event_remove(struct work_struct *work)
4112 {
4113 struct mem_cgroup_event *event =
4114 container_of(work, struct mem_cgroup_event, remove);
4115 struct mem_cgroup *memcg = event->memcg;
4116
4117 remove_wait_queue(event->wqh, &event->wait);
4118
4119 event->unregister_event(memcg, event->eventfd);
4120
4121 /* Notify userspace the event is going away. */
4122 eventfd_signal(event->eventfd, 1);
4123
4124 eventfd_ctx_put(event->eventfd);
4125 kfree(event);
4126 css_put(&memcg->css);
4127 }
4128
4129 /*
4130 * Gets called on POLLHUP on eventfd when user closes it.
4131 *
4132 * Called with wqh->lock held and interrupts disabled.
4133 */
4134 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4135 int sync, void *key)
4136 {
4137 struct mem_cgroup_event *event =
4138 container_of(wait, struct mem_cgroup_event, wait);
4139 struct mem_cgroup *memcg = event->memcg;
4140 unsigned long flags = (unsigned long)key;
4141
4142 if (flags & POLLHUP) {
4143 /*
4144 * If the event has been detached at cgroup removal, we
4145 * can simply return knowing the other side will cleanup
4146 * for us.
4147 *
4148 * We can't race against event freeing since the other
4149 * side will require wqh->lock via remove_wait_queue(),
4150 * which we hold.
4151 */
4152 spin_lock(&memcg->event_list_lock);
4153 if (!list_empty(&event->list)) {
4154 list_del_init(&event->list);
4155 /*
4156 * We are in atomic context, but cgroup_event_remove()
4157 * may sleep, so we have to call it in workqueue.
4158 */
4159 schedule_work(&event->remove);
4160 }
4161 spin_unlock(&memcg->event_list_lock);
4162 }
4163
4164 return 0;
4165 }
4166
4167 static void memcg_event_ptable_queue_proc(struct file *file,
4168 wait_queue_head_t *wqh, poll_table *pt)
4169 {
4170 struct mem_cgroup_event *event =
4171 container_of(pt, struct mem_cgroup_event, pt);
4172
4173 event->wqh = wqh;
4174 add_wait_queue(wqh, &event->wait);
4175 }
4176
4177 /*
4178 * DO NOT USE IN NEW FILES.
4179 *
4180 * Parse input and register new cgroup event handler.
4181 *
4182 * Input must be in format '<event_fd> <control_fd> <args>'.
4183 * Interpretation of args is defined by control file implementation.
4184 */
4185 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4186 char *buf, size_t nbytes, loff_t off)
4187 {
4188 struct cgroup_subsys_state *css = of_css(of);
4189 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4190 struct mem_cgroup_event *event;
4191 struct cgroup_subsys_state *cfile_css;
4192 unsigned int efd, cfd;
4193 struct fd efile;
4194 struct fd cfile;
4195 const char *name;
4196 char *endp;
4197 int ret;
4198
4199 buf = strstrip(buf);
4200
4201 efd = simple_strtoul(buf, &endp, 10);
4202 if (*endp != ' ')
4203 return -EINVAL;
4204 buf = endp + 1;
4205
4206 cfd = simple_strtoul(buf, &endp, 10);
4207 if ((*endp != ' ') && (*endp != '\0'))
4208 return -EINVAL;
4209 buf = endp + 1;
4210
4211 event = kzalloc(sizeof(*event), GFP_KERNEL);
4212 if (!event)
4213 return -ENOMEM;
4214
4215 event->memcg = memcg;
4216 INIT_LIST_HEAD(&event->list);
4217 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4218 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4219 INIT_WORK(&event->remove, memcg_event_remove);
4220
4221 efile = fdget(efd);
4222 if (!efile.file) {
4223 ret = -EBADF;
4224 goto out_kfree;
4225 }
4226
4227 event->eventfd = eventfd_ctx_fileget(efile.file);
4228 if (IS_ERR(event->eventfd)) {
4229 ret = PTR_ERR(event->eventfd);
4230 goto out_put_efile;
4231 }
4232
4233 cfile = fdget(cfd);
4234 if (!cfile.file) {
4235 ret = -EBADF;
4236 goto out_put_eventfd;
4237 }
4238
4239 /* the process need read permission on control file */
4240 /* AV: shouldn't we check that it's been opened for read instead? */
4241 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4242 if (ret < 0)
4243 goto out_put_cfile;
4244
4245 /*
4246 * Determine the event callbacks and set them in @event. This used
4247 * to be done via struct cftype but cgroup core no longer knows
4248 * about these events. The following is crude but the whole thing
4249 * is for compatibility anyway.
4250 *
4251 * DO NOT ADD NEW FILES.
4252 */
4253 name = cfile.file->f_path.dentry->d_name.name;
4254
4255 if (!strcmp(name, "memory.usage_in_bytes")) {
4256 event->register_event = mem_cgroup_usage_register_event;
4257 event->unregister_event = mem_cgroup_usage_unregister_event;
4258 } else if (!strcmp(name, "memory.oom_control")) {
4259 event->register_event = mem_cgroup_oom_register_event;
4260 event->unregister_event = mem_cgroup_oom_unregister_event;
4261 } else if (!strcmp(name, "memory.pressure_level")) {
4262 event->register_event = vmpressure_register_event;
4263 event->unregister_event = vmpressure_unregister_event;
4264 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4265 event->register_event = memsw_cgroup_usage_register_event;
4266 event->unregister_event = memsw_cgroup_usage_unregister_event;
4267 } else {
4268 ret = -EINVAL;
4269 goto out_put_cfile;
4270 }
4271
4272 /*
4273 * Verify @cfile should belong to @css. Also, remaining events are
4274 * automatically removed on cgroup destruction but the removal is
4275 * asynchronous, so take an extra ref on @css.
4276 */
4277 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4278 &memory_cgrp_subsys);
4279 ret = -EINVAL;
4280 if (IS_ERR(cfile_css))
4281 goto out_put_cfile;
4282 if (cfile_css != css) {
4283 css_put(cfile_css);
4284 goto out_put_cfile;
4285 }
4286
4287 ret = event->register_event(memcg, event->eventfd, buf);
4288 if (ret)
4289 goto out_put_css;
4290
4291 efile.file->f_op->poll(efile.file, &event->pt);
4292
4293 spin_lock(&memcg->event_list_lock);
4294 list_add(&event->list, &memcg->event_list);
4295 spin_unlock(&memcg->event_list_lock);
4296
4297 fdput(cfile);
4298 fdput(efile);
4299
4300 return nbytes;
4301
4302 out_put_css:
4303 css_put(css);
4304 out_put_cfile:
4305 fdput(cfile);
4306 out_put_eventfd:
4307 eventfd_ctx_put(event->eventfd);
4308 out_put_efile:
4309 fdput(efile);
4310 out_kfree:
4311 kfree(event);
4312
4313 return ret;
4314 }
4315
4316 static struct cftype mem_cgroup_legacy_files[] = {
4317 {
4318 .name = "usage_in_bytes",
4319 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4320 .read_u64 = mem_cgroup_read_u64,
4321 },
4322 {
4323 .name = "max_usage_in_bytes",
4324 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4325 .write = mem_cgroup_reset,
4326 .read_u64 = mem_cgroup_read_u64,
4327 },
4328 {
4329 .name = "limit_in_bytes",
4330 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4331 .write = mem_cgroup_write,
4332 .read_u64 = mem_cgroup_read_u64,
4333 },
4334 {
4335 .name = "soft_limit_in_bytes",
4336 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4337 .write = mem_cgroup_write,
4338 .read_u64 = mem_cgroup_read_u64,
4339 },
4340 {
4341 .name = "failcnt",
4342 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4343 .write = mem_cgroup_reset,
4344 .read_u64 = mem_cgroup_read_u64,
4345 },
4346 {
4347 .name = "stat",
4348 .seq_show = memcg_stat_show,
4349 },
4350 {
4351 .name = "force_empty",
4352 .write = mem_cgroup_force_empty_write,
4353 },
4354 {
4355 .name = "use_hierarchy",
4356 .write_u64 = mem_cgroup_hierarchy_write,
4357 .read_u64 = mem_cgroup_hierarchy_read,
4358 },
4359 {
4360 .name = "cgroup.event_control", /* XXX: for compat */
4361 .write = memcg_write_event_control,
4362 .flags = CFTYPE_NO_PREFIX,
4363 .mode = S_IWUGO,
4364 },
4365 {
4366 .name = "swappiness",
4367 .read_u64 = mem_cgroup_swappiness_read,
4368 .write_u64 = mem_cgroup_swappiness_write,
4369 },
4370 {
4371 .name = "move_charge_at_immigrate",
4372 .read_u64 = mem_cgroup_move_charge_read,
4373 .write_u64 = mem_cgroup_move_charge_write,
4374 },
4375 {
4376 .name = "oom_control",
4377 .seq_show = mem_cgroup_oom_control_read,
4378 .write_u64 = mem_cgroup_oom_control_write,
4379 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4380 },
4381 {
4382 .name = "pressure_level",
4383 },
4384 #ifdef CONFIG_NUMA
4385 {
4386 .name = "numa_stat",
4387 .seq_show = memcg_numa_stat_show,
4388 },
4389 #endif
4390 #ifdef CONFIG_MEMCG_KMEM
4391 {
4392 .name = "kmem.limit_in_bytes",
4393 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4394 .write = mem_cgroup_write,
4395 .read_u64 = mem_cgroup_read_u64,
4396 },
4397 {
4398 .name = "kmem.usage_in_bytes",
4399 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4400 .read_u64 = mem_cgroup_read_u64,
4401 },
4402 {
4403 .name = "kmem.failcnt",
4404 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4405 .write = mem_cgroup_reset,
4406 .read_u64 = mem_cgroup_read_u64,
4407 },
4408 {
4409 .name = "kmem.max_usage_in_bytes",
4410 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4411 .write = mem_cgroup_reset,
4412 .read_u64 = mem_cgroup_read_u64,
4413 },
4414 #ifdef CONFIG_SLABINFO
4415 {
4416 .name = "kmem.slabinfo",
4417 .seq_start = slab_start,
4418 .seq_next = slab_next,
4419 .seq_stop = slab_stop,
4420 .seq_show = memcg_slab_show,
4421 },
4422 #endif
4423 #endif
4424 { }, /* terminate */
4425 };
4426
4427 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4428 {
4429 struct mem_cgroup_per_node *pn;
4430 struct mem_cgroup_per_zone *mz;
4431 int zone, tmp = node;
4432 /*
4433 * This routine is called against possible nodes.
4434 * But it's BUG to call kmalloc() against offline node.
4435 *
4436 * TODO: this routine can waste much memory for nodes which will
4437 * never be onlined. It's better to use memory hotplug callback
4438 * function.
4439 */
4440 if (!node_state(node, N_NORMAL_MEMORY))
4441 tmp = -1;
4442 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4443 if (!pn)
4444 return 1;
4445
4446 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4447 mz = &pn->zoneinfo[zone];
4448 lruvec_init(&mz->lruvec);
4449 mz->usage_in_excess = 0;
4450 mz->on_tree = false;
4451 mz->memcg = memcg;
4452 }
4453 memcg->nodeinfo[node] = pn;
4454 return 0;
4455 }
4456
4457 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4458 {
4459 kfree(memcg->nodeinfo[node]);
4460 }
4461
4462 static struct mem_cgroup *mem_cgroup_alloc(void)
4463 {
4464 struct mem_cgroup *memcg;
4465 size_t size;
4466
4467 size = sizeof(struct mem_cgroup);
4468 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4469
4470 memcg = kzalloc(size, GFP_KERNEL);
4471 if (!memcg)
4472 return NULL;
4473
4474 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4475 if (!memcg->stat)
4476 goto out_free;
4477 spin_lock_init(&memcg->pcp_counter_lock);
4478 return memcg;
4479
4480 out_free:
4481 kfree(memcg);
4482 return NULL;
4483 }
4484
4485 /*
4486 * At destroying mem_cgroup, references from swap_cgroup can remain.
4487 * (scanning all at force_empty is too costly...)
4488 *
4489 * Instead of clearing all references at force_empty, we remember
4490 * the number of reference from swap_cgroup and free mem_cgroup when
4491 * it goes down to 0.
4492 *
4493 * Removal of cgroup itself succeeds regardless of refs from swap.
4494 */
4495
4496 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4497 {
4498 int node;
4499
4500 mem_cgroup_remove_from_trees(memcg);
4501
4502 for_each_node(node)
4503 free_mem_cgroup_per_zone_info(memcg, node);
4504
4505 free_percpu(memcg->stat);
4506 kfree(memcg);
4507 }
4508
4509 /*
4510 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4511 */
4512 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4513 {
4514 if (!memcg->memory.parent)
4515 return NULL;
4516 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4517 }
4518 EXPORT_SYMBOL(parent_mem_cgroup);
4519
4520 static struct cgroup_subsys_state * __ref
4521 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4522 {
4523 struct mem_cgroup *memcg;
4524 long error = -ENOMEM;
4525 int node;
4526
4527 memcg = mem_cgroup_alloc();
4528 if (!memcg)
4529 return ERR_PTR(error);
4530
4531 for_each_node(node)
4532 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4533 goto free_out;
4534
4535 /* root ? */
4536 if (parent_css == NULL) {
4537 root_mem_cgroup = memcg;
4538 page_counter_init(&memcg->memory, NULL);
4539 memcg->high = PAGE_COUNTER_MAX;
4540 memcg->soft_limit = PAGE_COUNTER_MAX;
4541 page_counter_init(&memcg->memsw, NULL);
4542 page_counter_init(&memcg->kmem, NULL);
4543 }
4544
4545 memcg->last_scanned_node = MAX_NUMNODES;
4546 INIT_LIST_HEAD(&memcg->oom_notify);
4547 memcg->move_charge_at_immigrate = 0;
4548 mutex_init(&memcg->thresholds_lock);
4549 spin_lock_init(&memcg->move_lock);
4550 vmpressure_init(&memcg->vmpressure);
4551 INIT_LIST_HEAD(&memcg->event_list);
4552 spin_lock_init(&memcg->event_list_lock);
4553 #ifdef CONFIG_MEMCG_KMEM
4554 memcg->kmemcg_id = -1;
4555 #endif
4556
4557 return &memcg->css;
4558
4559 free_out:
4560 __mem_cgroup_free(memcg);
4561 return ERR_PTR(error);
4562 }
4563
4564 static int
4565 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4568 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4569 int ret;
4570
4571 if (css->id > MEM_CGROUP_ID_MAX)
4572 return -ENOSPC;
4573
4574 if (!parent)
4575 return 0;
4576
4577 mutex_lock(&memcg_create_mutex);
4578
4579 memcg->use_hierarchy = parent->use_hierarchy;
4580 memcg->oom_kill_disable = parent->oom_kill_disable;
4581 memcg->swappiness = mem_cgroup_swappiness(parent);
4582
4583 if (parent->use_hierarchy) {
4584 page_counter_init(&memcg->memory, &parent->memory);
4585 memcg->high = PAGE_COUNTER_MAX;
4586 memcg->soft_limit = PAGE_COUNTER_MAX;
4587 page_counter_init(&memcg->memsw, &parent->memsw);
4588 page_counter_init(&memcg->kmem, &parent->kmem);
4589
4590 /*
4591 * No need to take a reference to the parent because cgroup
4592 * core guarantees its existence.
4593 */
4594 } else {
4595 page_counter_init(&memcg->memory, NULL);
4596 memcg->high = PAGE_COUNTER_MAX;
4597 memcg->soft_limit = PAGE_COUNTER_MAX;
4598 page_counter_init(&memcg->memsw, NULL);
4599 page_counter_init(&memcg->kmem, NULL);
4600 /*
4601 * Deeper hierachy with use_hierarchy == false doesn't make
4602 * much sense so let cgroup subsystem know about this
4603 * unfortunate state in our controller.
4604 */
4605 if (parent != root_mem_cgroup)
4606 memory_cgrp_subsys.broken_hierarchy = true;
4607 }
4608 mutex_unlock(&memcg_create_mutex);
4609
4610 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4611 if (ret)
4612 return ret;
4613
4614 /*
4615 * Make sure the memcg is initialized: mem_cgroup_iter()
4616 * orders reading memcg->initialized against its callers
4617 * reading the memcg members.
4618 */
4619 smp_store_release(&memcg->initialized, 1);
4620
4621 return 0;
4622 }
4623
4624 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4625 {
4626 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4627 struct mem_cgroup_event *event, *tmp;
4628
4629 /*
4630 * Unregister events and notify userspace.
4631 * Notify userspace about cgroup removing only after rmdir of cgroup
4632 * directory to avoid race between userspace and kernelspace.
4633 */
4634 spin_lock(&memcg->event_list_lock);
4635 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4636 list_del_init(&event->list);
4637 schedule_work(&event->remove);
4638 }
4639 spin_unlock(&memcg->event_list_lock);
4640
4641 vmpressure_cleanup(&memcg->vmpressure);
4642
4643 memcg_deactivate_kmem(memcg);
4644 }
4645
4646 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4647 {
4648 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4649
4650 memcg_destroy_kmem(memcg);
4651 __mem_cgroup_free(memcg);
4652 }
4653
4654 /**
4655 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4656 * @css: the target css
4657 *
4658 * Reset the states of the mem_cgroup associated with @css. This is
4659 * invoked when the userland requests disabling on the default hierarchy
4660 * but the memcg is pinned through dependency. The memcg should stop
4661 * applying policies and should revert to the vanilla state as it may be
4662 * made visible again.
4663 *
4664 * The current implementation only resets the essential configurations.
4665 * This needs to be expanded to cover all the visible parts.
4666 */
4667 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4668 {
4669 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4670
4671 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4672 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4673 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4674 memcg->low = 0;
4675 memcg->high = PAGE_COUNTER_MAX;
4676 memcg->soft_limit = PAGE_COUNTER_MAX;
4677 }
4678
4679 #ifdef CONFIG_MMU
4680 /* Handlers for move charge at task migration. */
4681 static int mem_cgroup_do_precharge(unsigned long count)
4682 {
4683 int ret;
4684
4685 /* Try a single bulk charge without reclaim first */
4686 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4687 if (!ret) {
4688 mc.precharge += count;
4689 return ret;
4690 }
4691 if (ret == -EINTR) {
4692 cancel_charge(root_mem_cgroup, count);
4693 return ret;
4694 }
4695
4696 /* Try charges one by one with reclaim */
4697 while (count--) {
4698 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4699 /*
4700 * In case of failure, any residual charges against
4701 * mc.to will be dropped by mem_cgroup_clear_mc()
4702 * later on. However, cancel any charges that are
4703 * bypassed to root right away or they'll be lost.
4704 */
4705 if (ret == -EINTR)
4706 cancel_charge(root_mem_cgroup, 1);
4707 if (ret)
4708 return ret;
4709 mc.precharge++;
4710 cond_resched();
4711 }
4712 return 0;
4713 }
4714
4715 /**
4716 * get_mctgt_type - get target type of moving charge
4717 * @vma: the vma the pte to be checked belongs
4718 * @addr: the address corresponding to the pte to be checked
4719 * @ptent: the pte to be checked
4720 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4721 *
4722 * Returns
4723 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4724 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4725 * move charge. if @target is not NULL, the page is stored in target->page
4726 * with extra refcnt got(Callers should handle it).
4727 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4728 * target for charge migration. if @target is not NULL, the entry is stored
4729 * in target->ent.
4730 *
4731 * Called with pte lock held.
4732 */
4733 union mc_target {
4734 struct page *page;
4735 swp_entry_t ent;
4736 };
4737
4738 enum mc_target_type {
4739 MC_TARGET_NONE = 0,
4740 MC_TARGET_PAGE,
4741 MC_TARGET_SWAP,
4742 };
4743
4744 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4745 unsigned long addr, pte_t ptent)
4746 {
4747 struct page *page = vm_normal_page(vma, addr, ptent);
4748
4749 if (!page || !page_mapped(page))
4750 return NULL;
4751 if (PageAnon(page)) {
4752 if (!(mc.flags & MOVE_ANON))
4753 return NULL;
4754 } else {
4755 if (!(mc.flags & MOVE_FILE))
4756 return NULL;
4757 }
4758 if (!get_page_unless_zero(page))
4759 return NULL;
4760
4761 return page;
4762 }
4763
4764 #ifdef CONFIG_SWAP
4765 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4766 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4767 {
4768 struct page *page = NULL;
4769 swp_entry_t ent = pte_to_swp_entry(ptent);
4770
4771 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4772 return NULL;
4773 /*
4774 * Because lookup_swap_cache() updates some statistics counter,
4775 * we call find_get_page() with swapper_space directly.
4776 */
4777 page = find_get_page(swap_address_space(ent), ent.val);
4778 if (do_swap_account)
4779 entry->val = ent.val;
4780
4781 return page;
4782 }
4783 #else
4784 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4785 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4786 {
4787 return NULL;
4788 }
4789 #endif
4790
4791 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4792 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4793 {
4794 struct page *page = NULL;
4795 struct address_space *mapping;
4796 pgoff_t pgoff;
4797
4798 if (!vma->vm_file) /* anonymous vma */
4799 return NULL;
4800 if (!(mc.flags & MOVE_FILE))
4801 return NULL;
4802
4803 mapping = vma->vm_file->f_mapping;
4804 pgoff = linear_page_index(vma, addr);
4805
4806 /* page is moved even if it's not RSS of this task(page-faulted). */
4807 #ifdef CONFIG_SWAP
4808 /* shmem/tmpfs may report page out on swap: account for that too. */
4809 if (shmem_mapping(mapping)) {
4810 page = find_get_entry(mapping, pgoff);
4811 if (radix_tree_exceptional_entry(page)) {
4812 swp_entry_t swp = radix_to_swp_entry(page);
4813 if (do_swap_account)
4814 *entry = swp;
4815 page = find_get_page(swap_address_space(swp), swp.val);
4816 }
4817 } else
4818 page = find_get_page(mapping, pgoff);
4819 #else
4820 page = find_get_page(mapping, pgoff);
4821 #endif
4822 return page;
4823 }
4824
4825 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4826 unsigned long addr, pte_t ptent, union mc_target *target)
4827 {
4828 struct page *page = NULL;
4829 enum mc_target_type ret = MC_TARGET_NONE;
4830 swp_entry_t ent = { .val = 0 };
4831
4832 if (pte_present(ptent))
4833 page = mc_handle_present_pte(vma, addr, ptent);
4834 else if (is_swap_pte(ptent))
4835 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4836 else if (pte_none(ptent))
4837 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4838
4839 if (!page && !ent.val)
4840 return ret;
4841 if (page) {
4842 /*
4843 * Do only loose check w/o serialization.
4844 * mem_cgroup_move_account() checks the page is valid or
4845 * not under LRU exclusion.
4846 */
4847 if (page->mem_cgroup == mc.from) {
4848 ret = MC_TARGET_PAGE;
4849 if (target)
4850 target->page = page;
4851 }
4852 if (!ret || !target)
4853 put_page(page);
4854 }
4855 /* There is a swap entry and a page doesn't exist or isn't charged */
4856 if (ent.val && !ret &&
4857 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4858 ret = MC_TARGET_SWAP;
4859 if (target)
4860 target->ent = ent;
4861 }
4862 return ret;
4863 }
4864
4865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4866 /*
4867 * We don't consider swapping or file mapped pages because THP does not
4868 * support them for now.
4869 * Caller should make sure that pmd_trans_huge(pmd) is true.
4870 */
4871 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4872 unsigned long addr, pmd_t pmd, union mc_target *target)
4873 {
4874 struct page *page = NULL;
4875 enum mc_target_type ret = MC_TARGET_NONE;
4876
4877 page = pmd_page(pmd);
4878 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4879 if (!(mc.flags & MOVE_ANON))
4880 return ret;
4881 if (page->mem_cgroup == mc.from) {
4882 ret = MC_TARGET_PAGE;
4883 if (target) {
4884 get_page(page);
4885 target->page = page;
4886 }
4887 }
4888 return ret;
4889 }
4890 #else
4891 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4892 unsigned long addr, pmd_t pmd, union mc_target *target)
4893 {
4894 return MC_TARGET_NONE;
4895 }
4896 #endif
4897
4898 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4899 unsigned long addr, unsigned long end,
4900 struct mm_walk *walk)
4901 {
4902 struct vm_area_struct *vma = walk->vma;
4903 pte_t *pte;
4904 spinlock_t *ptl;
4905
4906 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4907 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4908 mc.precharge += HPAGE_PMD_NR;
4909 spin_unlock(ptl);
4910 return 0;
4911 }
4912
4913 if (pmd_trans_unstable(pmd))
4914 return 0;
4915 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4916 for (; addr != end; pte++, addr += PAGE_SIZE)
4917 if (get_mctgt_type(vma, addr, *pte, NULL))
4918 mc.precharge++; /* increment precharge temporarily */
4919 pte_unmap_unlock(pte - 1, ptl);
4920 cond_resched();
4921
4922 return 0;
4923 }
4924
4925 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4926 {
4927 unsigned long precharge;
4928
4929 struct mm_walk mem_cgroup_count_precharge_walk = {
4930 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4931 .mm = mm,
4932 };
4933 down_read(&mm->mmap_sem);
4934 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4935 up_read(&mm->mmap_sem);
4936
4937 precharge = mc.precharge;
4938 mc.precharge = 0;
4939
4940 return precharge;
4941 }
4942
4943 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4944 {
4945 unsigned long precharge = mem_cgroup_count_precharge(mm);
4946
4947 VM_BUG_ON(mc.moving_task);
4948 mc.moving_task = current;
4949 return mem_cgroup_do_precharge(precharge);
4950 }
4951
4952 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4953 static void __mem_cgroup_clear_mc(void)
4954 {
4955 struct mem_cgroup *from = mc.from;
4956 struct mem_cgroup *to = mc.to;
4957
4958 /* we must uncharge all the leftover precharges from mc.to */
4959 if (mc.precharge) {
4960 cancel_charge(mc.to, mc.precharge);
4961 mc.precharge = 0;
4962 }
4963 /*
4964 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4965 * we must uncharge here.
4966 */
4967 if (mc.moved_charge) {
4968 cancel_charge(mc.from, mc.moved_charge);
4969 mc.moved_charge = 0;
4970 }
4971 /* we must fixup refcnts and charges */
4972 if (mc.moved_swap) {
4973 /* uncharge swap account from the old cgroup */
4974 if (!mem_cgroup_is_root(mc.from))
4975 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4976
4977 /*
4978 * we charged both to->memory and to->memsw, so we
4979 * should uncharge to->memory.
4980 */
4981 if (!mem_cgroup_is_root(mc.to))
4982 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4983
4984 css_put_many(&mc.from->css, mc.moved_swap);
4985
4986 /* we've already done css_get(mc.to) */
4987 mc.moved_swap = 0;
4988 }
4989 memcg_oom_recover(from);
4990 memcg_oom_recover(to);
4991 wake_up_all(&mc.waitq);
4992 }
4993
4994 static void mem_cgroup_clear_mc(void)
4995 {
4996 /*
4997 * we must clear moving_task before waking up waiters at the end of
4998 * task migration.
4999 */
5000 mc.moving_task = NULL;
5001 __mem_cgroup_clear_mc();
5002 spin_lock(&mc.lock);
5003 mc.from = NULL;
5004 mc.to = NULL;
5005 spin_unlock(&mc.lock);
5006 }
5007
5008 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5009 struct cgroup_taskset *tset)
5010 {
5011 struct task_struct *p = cgroup_taskset_first(tset);
5012 int ret = 0;
5013 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5014 unsigned long move_flags;
5015
5016 /*
5017 * We are now commited to this value whatever it is. Changes in this
5018 * tunable will only affect upcoming migrations, not the current one.
5019 * So we need to save it, and keep it going.
5020 */
5021 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5022 if (move_flags) {
5023 struct mm_struct *mm;
5024 struct mem_cgroup *from = mem_cgroup_from_task(p);
5025
5026 VM_BUG_ON(from == memcg);
5027
5028 mm = get_task_mm(p);
5029 if (!mm)
5030 return 0;
5031 /* We move charges only when we move a owner of the mm */
5032 if (mm->owner == p) {
5033 VM_BUG_ON(mc.from);
5034 VM_BUG_ON(mc.to);
5035 VM_BUG_ON(mc.precharge);
5036 VM_BUG_ON(mc.moved_charge);
5037 VM_BUG_ON(mc.moved_swap);
5038
5039 spin_lock(&mc.lock);
5040 mc.from = from;
5041 mc.to = memcg;
5042 mc.flags = move_flags;
5043 spin_unlock(&mc.lock);
5044 /* We set mc.moving_task later */
5045
5046 ret = mem_cgroup_precharge_mc(mm);
5047 if (ret)
5048 mem_cgroup_clear_mc();
5049 }
5050 mmput(mm);
5051 }
5052 return ret;
5053 }
5054
5055 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5056 struct cgroup_taskset *tset)
5057 {
5058 if (mc.to)
5059 mem_cgroup_clear_mc();
5060 }
5061
5062 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5063 unsigned long addr, unsigned long end,
5064 struct mm_walk *walk)
5065 {
5066 int ret = 0;
5067 struct vm_area_struct *vma = walk->vma;
5068 pte_t *pte;
5069 spinlock_t *ptl;
5070 enum mc_target_type target_type;
5071 union mc_target target;
5072 struct page *page;
5073
5074 /*
5075 * We don't take compound_lock() here but no race with splitting thp
5076 * happens because:
5077 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5078 * under splitting, which means there's no concurrent thp split,
5079 * - if another thread runs into split_huge_page() just after we
5080 * entered this if-block, the thread must wait for page table lock
5081 * to be unlocked in __split_huge_page_splitting(), where the main
5082 * part of thp split is not executed yet.
5083 */
5084 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5085 if (mc.precharge < HPAGE_PMD_NR) {
5086 spin_unlock(ptl);
5087 return 0;
5088 }
5089 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5090 if (target_type == MC_TARGET_PAGE) {
5091 page = target.page;
5092 if (!isolate_lru_page(page)) {
5093 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5094 mc.from, mc.to)) {
5095 mc.precharge -= HPAGE_PMD_NR;
5096 mc.moved_charge += HPAGE_PMD_NR;
5097 }
5098 putback_lru_page(page);
5099 }
5100 put_page(page);
5101 }
5102 spin_unlock(ptl);
5103 return 0;
5104 }
5105
5106 if (pmd_trans_unstable(pmd))
5107 return 0;
5108 retry:
5109 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5110 for (; addr != end; addr += PAGE_SIZE) {
5111 pte_t ptent = *(pte++);
5112 swp_entry_t ent;
5113
5114 if (!mc.precharge)
5115 break;
5116
5117 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5118 case MC_TARGET_PAGE:
5119 page = target.page;
5120 if (isolate_lru_page(page))
5121 goto put;
5122 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5123 mc.precharge--;
5124 /* we uncharge from mc.from later. */
5125 mc.moved_charge++;
5126 }
5127 putback_lru_page(page);
5128 put: /* get_mctgt_type() gets the page */
5129 put_page(page);
5130 break;
5131 case MC_TARGET_SWAP:
5132 ent = target.ent;
5133 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5134 mc.precharge--;
5135 /* we fixup refcnts and charges later. */
5136 mc.moved_swap++;
5137 }
5138 break;
5139 default:
5140 break;
5141 }
5142 }
5143 pte_unmap_unlock(pte - 1, ptl);
5144 cond_resched();
5145
5146 if (addr != end) {
5147 /*
5148 * We have consumed all precharges we got in can_attach().
5149 * We try charge one by one, but don't do any additional
5150 * charges to mc.to if we have failed in charge once in attach()
5151 * phase.
5152 */
5153 ret = mem_cgroup_do_precharge(1);
5154 if (!ret)
5155 goto retry;
5156 }
5157
5158 return ret;
5159 }
5160
5161 static void mem_cgroup_move_charge(struct mm_struct *mm)
5162 {
5163 struct mm_walk mem_cgroup_move_charge_walk = {
5164 .pmd_entry = mem_cgroup_move_charge_pte_range,
5165 .mm = mm,
5166 };
5167
5168 lru_add_drain_all();
5169 /*
5170 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5171 * move_lock while we're moving its pages to another memcg.
5172 * Then wait for already started RCU-only updates to finish.
5173 */
5174 atomic_inc(&mc.from->moving_account);
5175 synchronize_rcu();
5176 retry:
5177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5178 /*
5179 * Someone who are holding the mmap_sem might be waiting in
5180 * waitq. So we cancel all extra charges, wake up all waiters,
5181 * and retry. Because we cancel precharges, we might not be able
5182 * to move enough charges, but moving charge is a best-effort
5183 * feature anyway, so it wouldn't be a big problem.
5184 */
5185 __mem_cgroup_clear_mc();
5186 cond_resched();
5187 goto retry;
5188 }
5189 /*
5190 * When we have consumed all precharges and failed in doing
5191 * additional charge, the page walk just aborts.
5192 */
5193 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5194 up_read(&mm->mmap_sem);
5195 atomic_dec(&mc.from->moving_account);
5196 }
5197
5198 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5199 struct cgroup_taskset *tset)
5200 {
5201 struct task_struct *p = cgroup_taskset_first(tset);
5202 struct mm_struct *mm = get_task_mm(p);
5203
5204 if (mm) {
5205 if (mc.to)
5206 mem_cgroup_move_charge(mm);
5207 mmput(mm);
5208 }
5209 if (mc.to)
5210 mem_cgroup_clear_mc();
5211 }
5212 #else /* !CONFIG_MMU */
5213 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5214 struct cgroup_taskset *tset)
5215 {
5216 return 0;
5217 }
5218 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5219 struct cgroup_taskset *tset)
5220 {
5221 }
5222 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5223 struct cgroup_taskset *tset)
5224 {
5225 }
5226 #endif
5227
5228 /*
5229 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5230 * to verify whether we're attached to the default hierarchy on each mount
5231 * attempt.
5232 */
5233 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5234 {
5235 /*
5236 * use_hierarchy is forced on the default hierarchy. cgroup core
5237 * guarantees that @root doesn't have any children, so turning it
5238 * on for the root memcg is enough.
5239 */
5240 if (cgroup_on_dfl(root_css->cgroup))
5241 root_mem_cgroup->use_hierarchy = true;
5242 else
5243 root_mem_cgroup->use_hierarchy = false;
5244 }
5245
5246 static u64 memory_current_read(struct cgroup_subsys_state *css,
5247 struct cftype *cft)
5248 {
5249 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5250 }
5251
5252 static int memory_low_show(struct seq_file *m, void *v)
5253 {
5254 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5255 unsigned long low = ACCESS_ONCE(memcg->low);
5256
5257 if (low == PAGE_COUNTER_MAX)
5258 seq_puts(m, "max\n");
5259 else
5260 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5261
5262 return 0;
5263 }
5264
5265 static ssize_t memory_low_write(struct kernfs_open_file *of,
5266 char *buf, size_t nbytes, loff_t off)
5267 {
5268 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5269 unsigned long low;
5270 int err;
5271
5272 buf = strstrip(buf);
5273 err = page_counter_memparse(buf, "max", &low);
5274 if (err)
5275 return err;
5276
5277 memcg->low = low;
5278
5279 return nbytes;
5280 }
5281
5282 static int memory_high_show(struct seq_file *m, void *v)
5283 {
5284 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5285 unsigned long high = ACCESS_ONCE(memcg->high);
5286
5287 if (high == PAGE_COUNTER_MAX)
5288 seq_puts(m, "max\n");
5289 else
5290 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5291
5292 return 0;
5293 }
5294
5295 static ssize_t memory_high_write(struct kernfs_open_file *of,
5296 char *buf, size_t nbytes, loff_t off)
5297 {
5298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5299 unsigned long high;
5300 int err;
5301
5302 buf = strstrip(buf);
5303 err = page_counter_memparse(buf, "max", &high);
5304 if (err)
5305 return err;
5306
5307 memcg->high = high;
5308
5309 return nbytes;
5310 }
5311
5312 static int memory_max_show(struct seq_file *m, void *v)
5313 {
5314 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5315 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5316
5317 if (max == PAGE_COUNTER_MAX)
5318 seq_puts(m, "max\n");
5319 else
5320 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5321
5322 return 0;
5323 }
5324
5325 static ssize_t memory_max_write(struct kernfs_open_file *of,
5326 char *buf, size_t nbytes, loff_t off)
5327 {
5328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5329 unsigned long max;
5330 int err;
5331
5332 buf = strstrip(buf);
5333 err = page_counter_memparse(buf, "max", &max);
5334 if (err)
5335 return err;
5336
5337 err = mem_cgroup_resize_limit(memcg, max);
5338 if (err)
5339 return err;
5340
5341 return nbytes;
5342 }
5343
5344 static int memory_events_show(struct seq_file *m, void *v)
5345 {
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5347
5348 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5349 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5350 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5351 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5352
5353 return 0;
5354 }
5355
5356 static struct cftype memory_files[] = {
5357 {
5358 .name = "current",
5359 .read_u64 = memory_current_read,
5360 },
5361 {
5362 .name = "low",
5363 .flags = CFTYPE_NOT_ON_ROOT,
5364 .seq_show = memory_low_show,
5365 .write = memory_low_write,
5366 },
5367 {
5368 .name = "high",
5369 .flags = CFTYPE_NOT_ON_ROOT,
5370 .seq_show = memory_high_show,
5371 .write = memory_high_write,
5372 },
5373 {
5374 .name = "max",
5375 .flags = CFTYPE_NOT_ON_ROOT,
5376 .seq_show = memory_max_show,
5377 .write = memory_max_write,
5378 },
5379 {
5380 .name = "events",
5381 .flags = CFTYPE_NOT_ON_ROOT,
5382 .seq_show = memory_events_show,
5383 },
5384 { } /* terminate */
5385 };
5386
5387 struct cgroup_subsys memory_cgrp_subsys = {
5388 .css_alloc = mem_cgroup_css_alloc,
5389 .css_online = mem_cgroup_css_online,
5390 .css_offline = mem_cgroup_css_offline,
5391 .css_free = mem_cgroup_css_free,
5392 .css_reset = mem_cgroup_css_reset,
5393 .can_attach = mem_cgroup_can_attach,
5394 .cancel_attach = mem_cgroup_cancel_attach,
5395 .attach = mem_cgroup_move_task,
5396 .bind = mem_cgroup_bind,
5397 .dfl_cftypes = memory_files,
5398 .legacy_cftypes = mem_cgroup_legacy_files,
5399 .early_init = 0,
5400 };
5401
5402 /**
5403 * mem_cgroup_events - count memory events against a cgroup
5404 * @memcg: the memory cgroup
5405 * @idx: the event index
5406 * @nr: the number of events to account for
5407 */
5408 void mem_cgroup_events(struct mem_cgroup *memcg,
5409 enum mem_cgroup_events_index idx,
5410 unsigned int nr)
5411 {
5412 this_cpu_add(memcg->stat->events[idx], nr);
5413 }
5414
5415 /**
5416 * mem_cgroup_low - check if memory consumption is below the normal range
5417 * @root: the highest ancestor to consider
5418 * @memcg: the memory cgroup to check
5419 *
5420 * Returns %true if memory consumption of @memcg, and that of all
5421 * configurable ancestors up to @root, is below the normal range.
5422 */
5423 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5424 {
5425 if (mem_cgroup_disabled())
5426 return false;
5427
5428 /*
5429 * The toplevel group doesn't have a configurable range, so
5430 * it's never low when looked at directly, and it is not
5431 * considered an ancestor when assessing the hierarchy.
5432 */
5433
5434 if (memcg == root_mem_cgroup)
5435 return false;
5436
5437 if (page_counter_read(&memcg->memory) >= memcg->low)
5438 return false;
5439
5440 while (memcg != root) {
5441 memcg = parent_mem_cgroup(memcg);
5442
5443 if (memcg == root_mem_cgroup)
5444 break;
5445
5446 if (page_counter_read(&memcg->memory) >= memcg->low)
5447 return false;
5448 }
5449 return true;
5450 }
5451
5452 /**
5453 * mem_cgroup_try_charge - try charging a page
5454 * @page: page to charge
5455 * @mm: mm context of the victim
5456 * @gfp_mask: reclaim mode
5457 * @memcgp: charged memcg return
5458 *
5459 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5460 * pages according to @gfp_mask if necessary.
5461 *
5462 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5463 * Otherwise, an error code is returned.
5464 *
5465 * After page->mapping has been set up, the caller must finalize the
5466 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5467 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5468 */
5469 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5470 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5471 {
5472 struct mem_cgroup *memcg = NULL;
5473 unsigned int nr_pages = 1;
5474 int ret = 0;
5475
5476 if (mem_cgroup_disabled())
5477 goto out;
5478
5479 if (PageSwapCache(page)) {
5480 /*
5481 * Every swap fault against a single page tries to charge the
5482 * page, bail as early as possible. shmem_unuse() encounters
5483 * already charged pages, too. The USED bit is protected by
5484 * the page lock, which serializes swap cache removal, which
5485 * in turn serializes uncharging.
5486 */
5487 if (page->mem_cgroup)
5488 goto out;
5489 }
5490
5491 if (PageTransHuge(page)) {
5492 nr_pages <<= compound_order(page);
5493 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5494 }
5495
5496 if (do_swap_account && PageSwapCache(page))
5497 memcg = try_get_mem_cgroup_from_page(page);
5498 if (!memcg)
5499 memcg = get_mem_cgroup_from_mm(mm);
5500
5501 ret = try_charge(memcg, gfp_mask, nr_pages);
5502
5503 css_put(&memcg->css);
5504
5505 if (ret == -EINTR) {
5506 memcg = root_mem_cgroup;
5507 ret = 0;
5508 }
5509 out:
5510 *memcgp = memcg;
5511 return ret;
5512 }
5513
5514 /**
5515 * mem_cgroup_commit_charge - commit a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @lrucare: page might be on LRU already
5519 *
5520 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5521 * after page->mapping has been set up. This must happen atomically
5522 * as part of the page instantiation, i.e. under the page table lock
5523 * for anonymous pages, under the page lock for page and swap cache.
5524 *
5525 * In addition, the page must not be on the LRU during the commit, to
5526 * prevent racing with task migration. If it might be, use @lrucare.
5527 *
5528 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5529 */
5530 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5531 bool lrucare)
5532 {
5533 unsigned int nr_pages = 1;
5534
5535 VM_BUG_ON_PAGE(!page->mapping, page);
5536 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5537
5538 if (mem_cgroup_disabled())
5539 return;
5540 /*
5541 * Swap faults will attempt to charge the same page multiple
5542 * times. But reuse_swap_page() might have removed the page
5543 * from swapcache already, so we can't check PageSwapCache().
5544 */
5545 if (!memcg)
5546 return;
5547
5548 commit_charge(page, memcg, lrucare);
5549
5550 if (PageTransHuge(page)) {
5551 nr_pages <<= compound_order(page);
5552 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5553 }
5554
5555 local_irq_disable();
5556 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5557 memcg_check_events(memcg, page);
5558 local_irq_enable();
5559
5560 if (do_swap_account && PageSwapCache(page)) {
5561 swp_entry_t entry = { .val = page_private(page) };
5562 /*
5563 * The swap entry might not get freed for a long time,
5564 * let's not wait for it. The page already received a
5565 * memory+swap charge, drop the swap entry duplicate.
5566 */
5567 mem_cgroup_uncharge_swap(entry);
5568 }
5569 }
5570
5571 /**
5572 * mem_cgroup_cancel_charge - cancel a page charge
5573 * @page: page to charge
5574 * @memcg: memcg to charge the page to
5575 *
5576 * Cancel a charge transaction started by mem_cgroup_try_charge().
5577 */
5578 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5579 {
5580 unsigned int nr_pages = 1;
5581
5582 if (mem_cgroup_disabled())
5583 return;
5584 /*
5585 * Swap faults will attempt to charge the same page multiple
5586 * times. But reuse_swap_page() might have removed the page
5587 * from swapcache already, so we can't check PageSwapCache().
5588 */
5589 if (!memcg)
5590 return;
5591
5592 if (PageTransHuge(page)) {
5593 nr_pages <<= compound_order(page);
5594 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5595 }
5596
5597 cancel_charge(memcg, nr_pages);
5598 }
5599
5600 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5601 unsigned long nr_anon, unsigned long nr_file,
5602 unsigned long nr_huge, struct page *dummy_page)
5603 {
5604 unsigned long nr_pages = nr_anon + nr_file;
5605 unsigned long flags;
5606
5607 if (!mem_cgroup_is_root(memcg)) {
5608 page_counter_uncharge(&memcg->memory, nr_pages);
5609 if (do_swap_account)
5610 page_counter_uncharge(&memcg->memsw, nr_pages);
5611 memcg_oom_recover(memcg);
5612 }
5613
5614 local_irq_save(flags);
5615 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5616 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5617 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5618 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5619 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5620 memcg_check_events(memcg, dummy_page);
5621 local_irq_restore(flags);
5622
5623 if (!mem_cgroup_is_root(memcg))
5624 css_put_many(&memcg->css, nr_pages);
5625 }
5626
5627 static void uncharge_list(struct list_head *page_list)
5628 {
5629 struct mem_cgroup *memcg = NULL;
5630 unsigned long nr_anon = 0;
5631 unsigned long nr_file = 0;
5632 unsigned long nr_huge = 0;
5633 unsigned long pgpgout = 0;
5634 struct list_head *next;
5635 struct page *page;
5636
5637 next = page_list->next;
5638 do {
5639 unsigned int nr_pages = 1;
5640
5641 page = list_entry(next, struct page, lru);
5642 next = page->lru.next;
5643
5644 VM_BUG_ON_PAGE(PageLRU(page), page);
5645 VM_BUG_ON_PAGE(page_count(page), page);
5646
5647 if (!page->mem_cgroup)
5648 continue;
5649
5650 /*
5651 * Nobody should be changing or seriously looking at
5652 * page->mem_cgroup at this point, we have fully
5653 * exclusive access to the page.
5654 */
5655
5656 if (memcg != page->mem_cgroup) {
5657 if (memcg) {
5658 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5659 nr_huge, page);
5660 pgpgout = nr_anon = nr_file = nr_huge = 0;
5661 }
5662 memcg = page->mem_cgroup;
5663 }
5664
5665 if (PageTransHuge(page)) {
5666 nr_pages <<= compound_order(page);
5667 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5668 nr_huge += nr_pages;
5669 }
5670
5671 if (PageAnon(page))
5672 nr_anon += nr_pages;
5673 else
5674 nr_file += nr_pages;
5675
5676 page->mem_cgroup = NULL;
5677
5678 pgpgout++;
5679 } while (next != page_list);
5680
5681 if (memcg)
5682 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5683 nr_huge, page);
5684 }
5685
5686 /**
5687 * mem_cgroup_uncharge - uncharge a page
5688 * @page: page to uncharge
5689 *
5690 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5691 * mem_cgroup_commit_charge().
5692 */
5693 void mem_cgroup_uncharge(struct page *page)
5694 {
5695 if (mem_cgroup_disabled())
5696 return;
5697
5698 /* Don't touch page->lru of any random page, pre-check: */
5699 if (!page->mem_cgroup)
5700 return;
5701
5702 INIT_LIST_HEAD(&page->lru);
5703 uncharge_list(&page->lru);
5704 }
5705
5706 /**
5707 * mem_cgroup_uncharge_list - uncharge a list of page
5708 * @page_list: list of pages to uncharge
5709 *
5710 * Uncharge a list of pages previously charged with
5711 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5712 */
5713 void mem_cgroup_uncharge_list(struct list_head *page_list)
5714 {
5715 if (mem_cgroup_disabled())
5716 return;
5717
5718 if (!list_empty(page_list))
5719 uncharge_list(page_list);
5720 }
5721
5722 /**
5723 * mem_cgroup_migrate - migrate a charge to another page
5724 * @oldpage: currently charged page
5725 * @newpage: page to transfer the charge to
5726 * @lrucare: either or both pages might be on the LRU already
5727 *
5728 * Migrate the charge from @oldpage to @newpage.
5729 *
5730 * Both pages must be locked, @newpage->mapping must be set up.
5731 */
5732 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5733 bool lrucare)
5734 {
5735 struct mem_cgroup *memcg;
5736 int isolated;
5737
5738 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5739 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5740 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5741 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5742 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5743 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5744 newpage);
5745
5746 if (mem_cgroup_disabled())
5747 return;
5748
5749 /* Page cache replacement: new page already charged? */
5750 if (newpage->mem_cgroup)
5751 return;
5752
5753 /*
5754 * Swapcache readahead pages can get migrated before being
5755 * charged, and migration from compaction can happen to an
5756 * uncharged page when the PFN walker finds a page that
5757 * reclaim just put back on the LRU but has not released yet.
5758 */
5759 memcg = oldpage->mem_cgroup;
5760 if (!memcg)
5761 return;
5762
5763 if (lrucare)
5764 lock_page_lru(oldpage, &isolated);
5765
5766 oldpage->mem_cgroup = NULL;
5767
5768 if (lrucare)
5769 unlock_page_lru(oldpage, isolated);
5770
5771 commit_charge(newpage, memcg, lrucare);
5772 }
5773
5774 /*
5775 * subsys_initcall() for memory controller.
5776 *
5777 * Some parts like hotcpu_notifier() have to be initialized from this context
5778 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5779 * everything that doesn't depend on a specific mem_cgroup structure should
5780 * be initialized from here.
5781 */
5782 static int __init mem_cgroup_init(void)
5783 {
5784 int cpu, node;
5785
5786 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5787
5788 for_each_possible_cpu(cpu)
5789 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5790 drain_local_stock);
5791
5792 for_each_node(node) {
5793 struct mem_cgroup_tree_per_node *rtpn;
5794 int zone;
5795
5796 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5797 node_online(node) ? node : NUMA_NO_NODE);
5798
5799 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5800 struct mem_cgroup_tree_per_zone *rtpz;
5801
5802 rtpz = &rtpn->rb_tree_per_zone[zone];
5803 rtpz->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpz->lock);
5805 }
5806 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5807 }
5808
5809 return 0;
5810 }
5811 subsys_initcall(mem_cgroup_init);
5812
5813 #ifdef CONFIG_MEMCG_SWAP
5814 /**
5815 * mem_cgroup_swapout - transfer a memsw charge to swap
5816 * @page: page whose memsw charge to transfer
5817 * @entry: swap entry to move the charge to
5818 *
5819 * Transfer the memsw charge of @page to @entry.
5820 */
5821 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5822 {
5823 struct mem_cgroup *memcg;
5824 unsigned short oldid;
5825
5826 VM_BUG_ON_PAGE(PageLRU(page), page);
5827 VM_BUG_ON_PAGE(page_count(page), page);
5828
5829 if (!do_swap_account)
5830 return;
5831
5832 memcg = page->mem_cgroup;
5833
5834 /* Readahead page, never charged */
5835 if (!memcg)
5836 return;
5837
5838 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5839 VM_BUG_ON_PAGE(oldid, page);
5840 mem_cgroup_swap_statistics(memcg, true);
5841
5842 page->mem_cgroup = NULL;
5843
5844 if (!mem_cgroup_is_root(memcg))
5845 page_counter_uncharge(&memcg->memory, 1);
5846
5847 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5848 VM_BUG_ON(!irqs_disabled());
5849
5850 mem_cgroup_charge_statistics(memcg, page, -1);
5851 memcg_check_events(memcg, page);
5852 }
5853
5854 /**
5855 * mem_cgroup_uncharge_swap - uncharge a swap entry
5856 * @entry: swap entry to uncharge
5857 *
5858 * Drop the memsw charge associated with @entry.
5859 */
5860 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5861 {
5862 struct mem_cgroup *memcg;
5863 unsigned short id;
5864
5865 if (!do_swap_account)
5866 return;
5867
5868 id = swap_cgroup_record(entry, 0);
5869 rcu_read_lock();
5870 memcg = mem_cgroup_lookup(id);
5871 if (memcg) {
5872 if (!mem_cgroup_is_root(memcg))
5873 page_counter_uncharge(&memcg->memsw, 1);
5874 mem_cgroup_swap_statistics(memcg, false);
5875 css_put(&memcg->css);
5876 }
5877 rcu_read_unlock();
5878 }
5879
5880 /* for remember boot option*/
5881 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5882 static int really_do_swap_account __initdata = 1;
5883 #else
5884 static int really_do_swap_account __initdata;
5885 #endif
5886
5887 static int __init enable_swap_account(char *s)
5888 {
5889 if (!strcmp(s, "1"))
5890 really_do_swap_account = 1;
5891 else if (!strcmp(s, "0"))
5892 really_do_swap_account = 0;
5893 return 1;
5894 }
5895 __setup("swapaccount=", enable_swap_account);
5896
5897 static struct cftype memsw_cgroup_files[] = {
5898 {
5899 .name = "memsw.usage_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5901 .read_u64 = mem_cgroup_read_u64,
5902 },
5903 {
5904 .name = "memsw.max_usage_in_bytes",
5905 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5906 .write = mem_cgroup_reset,
5907 .read_u64 = mem_cgroup_read_u64,
5908 },
5909 {
5910 .name = "memsw.limit_in_bytes",
5911 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5912 .write = mem_cgroup_write,
5913 .read_u64 = mem_cgroup_read_u64,
5914 },
5915 {
5916 .name = "memsw.failcnt",
5917 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5918 .write = mem_cgroup_reset,
5919 .read_u64 = mem_cgroup_read_u64,
5920 },
5921 { }, /* terminate */
5922 };
5923
5924 static int __init mem_cgroup_swap_init(void)
5925 {
5926 if (!mem_cgroup_disabled() && really_do_swap_account) {
5927 do_swap_account = 1;
5928 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5929 memsw_cgroup_files));
5930 }
5931 return 0;
5932 }
5933 subsys_initcall(mem_cgroup_swap_init);
5934
5935 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.151509 seconds and 5 git commands to generate.