mm: memcontrol: remove double kmem page_counter init
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 memcg = page->mem_cgroup;
386
387 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
388 memcg = root_mem_cgroup;
389
390 return &memcg->css;
391 }
392
393 /**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406 ino_t page_cgroup_ino(struct page *page)
407 {
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419 }
420
421 static struct mem_cgroup_per_zone *
422 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
423 {
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
426
427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
428 }
429
430 static struct mem_cgroup_tree_per_zone *
431 soft_limit_tree_node_zone(int nid, int zid)
432 {
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_from_page(struct page *page)
438 {
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443 }
444
445 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
447 unsigned long new_usage_in_excess)
448 {
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475 }
476
477 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
479 {
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484 }
485
486 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488 {
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
492 __mem_cgroup_remove_exceeded(mz, mctz);
493 spin_unlock_irqrestore(&mctz->lock, flags);
494 }
495
496 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497 {
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506 }
507
508 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509 {
510 unsigned long excess;
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
513
514 mctz = soft_limit_tree_from_page(page);
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
520 mz = mem_cgroup_page_zoneinfo(memcg, page);
521 excess = soft_limit_excess(memcg);
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 /* if on-tree, remove it */
531 if (mz->on_tree)
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
538 spin_unlock_irqrestore(&mctz->lock, flags);
539 }
540 }
541 }
542
543 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544 {
545 struct mem_cgroup_tree_per_zone *mctz;
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
548
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
553 mem_cgroup_remove_exceeded(mz, mctz);
554 }
555 }
556 }
557
558 static struct mem_cgroup_per_zone *
559 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 {
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564 retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
576 __mem_cgroup_remove_exceeded(mz, mctz);
577 if (!soft_limit_excess(mz->memcg) ||
578 !css_tryget_online(&mz->memcg->css))
579 goto retry;
580 done:
581 return mz;
582 }
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 {
587 struct mem_cgroup_per_zone *mz;
588
589 spin_lock_irq(&mctz->lock);
590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
591 spin_unlock_irq(&mctz->lock);
592 return mz;
593 }
594
595 /*
596 * Return page count for single (non recursive) @memcg.
597 *
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
603 * a periodic synchronization of counter in memcg's counter.
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
613 * common workload, threshold and synchronization as vmstat[] should be
614 * implemented.
615 */
616 static unsigned long
617 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
618 {
619 long val = 0;
620 int cpu;
621
622 /* Per-cpu values can be negative, use a signed accumulator */
623 for_each_possible_cpu(cpu)
624 val += per_cpu(memcg->stat->count[idx], cpu);
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
631 return val;
632 }
633
634 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
635 enum mem_cgroup_events_index idx)
636 {
637 unsigned long val = 0;
638 int cpu;
639
640 for_each_possible_cpu(cpu)
641 val += per_cpu(memcg->stat->events[idx], cpu);
642 return val;
643 }
644
645 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
646 struct page *page,
647 bool compound, int nr_pages)
648 {
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
653 if (PageAnon(page))
654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
655 nr_pages);
656 else
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
658 nr_pages);
659
660 if (compound) {
661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
662 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
663 nr_pages);
664 }
665
666 /* pagein of a big page is an event. So, ignore page size */
667 if (nr_pages > 0)
668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
669 else {
670 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
671 nr_pages = -nr_pages; /* for event */
672 }
673
674 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
675 }
676
677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
678 int nid,
679 unsigned int lru_mask)
680 {
681 unsigned long nr = 0;
682 int zid;
683
684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
685
686 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
687 struct mem_cgroup_per_zone *mz;
688 enum lru_list lru;
689
690 for_each_lru(lru) {
691 if (!(BIT(lru) & lru_mask))
692 continue;
693 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
694 nr += mz->lru_size[lru];
695 }
696 }
697 return nr;
698 }
699
700 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
701 unsigned int lru_mask)
702 {
703 unsigned long nr = 0;
704 int nid;
705
706 for_each_node_state(nid, N_MEMORY)
707 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
708 return nr;
709 }
710
711 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
712 enum mem_cgroup_events_target target)
713 {
714 unsigned long val, next;
715
716 val = __this_cpu_read(memcg->stat->nr_page_events);
717 next = __this_cpu_read(memcg->stat->targets[target]);
718 /* from time_after() in jiffies.h */
719 if ((long)next - (long)val < 0) {
720 switch (target) {
721 case MEM_CGROUP_TARGET_THRESH:
722 next = val + THRESHOLDS_EVENTS_TARGET;
723 break;
724 case MEM_CGROUP_TARGET_SOFTLIMIT:
725 next = val + SOFTLIMIT_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_NUMAINFO:
728 next = val + NUMAINFO_EVENTS_TARGET;
729 break;
730 default:
731 break;
732 }
733 __this_cpu_write(memcg->stat->targets[target], next);
734 return true;
735 }
736 return false;
737 }
738
739 /*
740 * Check events in order.
741 *
742 */
743 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
744 {
745 /* threshold event is triggered in finer grain than soft limit */
746 if (unlikely(mem_cgroup_event_ratelimit(memcg,
747 MEM_CGROUP_TARGET_THRESH))) {
748 bool do_softlimit;
749 bool do_numainfo __maybe_unused;
750
751 do_softlimit = mem_cgroup_event_ratelimit(memcg,
752 MEM_CGROUP_TARGET_SOFTLIMIT);
753 #if MAX_NUMNODES > 1
754 do_numainfo = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_NUMAINFO);
756 #endif
757 mem_cgroup_threshold(memcg);
758 if (unlikely(do_softlimit))
759 mem_cgroup_update_tree(memcg, page);
760 #if MAX_NUMNODES > 1
761 if (unlikely(do_numainfo))
762 atomic_inc(&memcg->numainfo_events);
763 #endif
764 }
765 }
766
767 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
768 {
769 /*
770 * mm_update_next_owner() may clear mm->owner to NULL
771 * if it races with swapoff, page migration, etc.
772 * So this can be called with p == NULL.
773 */
774 if (unlikely(!p))
775 return NULL;
776
777 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
778 }
779 EXPORT_SYMBOL(mem_cgroup_from_task);
780
781 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
782 {
783 struct mem_cgroup *memcg = NULL;
784
785 rcu_read_lock();
786 do {
787 /*
788 * Page cache insertions can happen withou an
789 * actual mm context, e.g. during disk probing
790 * on boot, loopback IO, acct() writes etc.
791 */
792 if (unlikely(!mm))
793 memcg = root_mem_cgroup;
794 else {
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!memcg))
797 memcg = root_mem_cgroup;
798 }
799 } while (!css_tryget_online(&memcg->css));
800 rcu_read_unlock();
801 return memcg;
802 }
803
804 /**
805 * mem_cgroup_iter - iterate over memory cgroup hierarchy
806 * @root: hierarchy root
807 * @prev: previously returned memcg, NULL on first invocation
808 * @reclaim: cookie for shared reclaim walks, NULL for full walks
809 *
810 * Returns references to children of the hierarchy below @root, or
811 * @root itself, or %NULL after a full round-trip.
812 *
813 * Caller must pass the return value in @prev on subsequent
814 * invocations for reference counting, or use mem_cgroup_iter_break()
815 * to cancel a hierarchy walk before the round-trip is complete.
816 *
817 * Reclaimers can specify a zone and a priority level in @reclaim to
818 * divide up the memcgs in the hierarchy among all concurrent
819 * reclaimers operating on the same zone and priority.
820 */
821 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
822 struct mem_cgroup *prev,
823 struct mem_cgroup_reclaim_cookie *reclaim)
824 {
825 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
826 struct cgroup_subsys_state *css = NULL;
827 struct mem_cgroup *memcg = NULL;
828 struct mem_cgroup *pos = NULL;
829
830 if (mem_cgroup_disabled())
831 return NULL;
832
833 if (!root)
834 root = root_mem_cgroup;
835
836 if (prev && !reclaim)
837 pos = prev;
838
839 if (!root->use_hierarchy && root != root_mem_cgroup) {
840 if (prev)
841 goto out;
842 return root;
843 }
844
845 rcu_read_lock();
846
847 if (reclaim) {
848 struct mem_cgroup_per_zone *mz;
849
850 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
851 iter = &mz->iter[reclaim->priority];
852
853 if (prev && reclaim->generation != iter->generation)
854 goto out_unlock;
855
856 while (1) {
857 pos = READ_ONCE(iter->position);
858 if (!pos || css_tryget(&pos->css))
859 break;
860 /*
861 * css reference reached zero, so iter->position will
862 * be cleared by ->css_released. However, we should not
863 * rely on this happening soon, because ->css_released
864 * is called from a work queue, and by busy-waiting we
865 * might block it. So we clear iter->position right
866 * away.
867 */
868 (void)cmpxchg(&iter->position, pos, NULL);
869 }
870 }
871
872 if (pos)
873 css = &pos->css;
874
875 for (;;) {
876 css = css_next_descendant_pre(css, &root->css);
877 if (!css) {
878 /*
879 * Reclaimers share the hierarchy walk, and a
880 * new one might jump in right at the end of
881 * the hierarchy - make sure they see at least
882 * one group and restart from the beginning.
883 */
884 if (!prev)
885 continue;
886 break;
887 }
888
889 /*
890 * Verify the css and acquire a reference. The root
891 * is provided by the caller, so we know it's alive
892 * and kicking, and don't take an extra reference.
893 */
894 memcg = mem_cgroup_from_css(css);
895
896 if (css == &root->css)
897 break;
898
899 if (css_tryget(css)) {
900 /*
901 * Make sure the memcg is initialized:
902 * mem_cgroup_css_online() orders the the
903 * initialization against setting the flag.
904 */
905 if (smp_load_acquire(&memcg->initialized))
906 break;
907
908 css_put(css);
909 }
910
911 memcg = NULL;
912 }
913
914 if (reclaim) {
915 /*
916 * The position could have already been updated by a competing
917 * thread, so check that the value hasn't changed since we read
918 * it to avoid reclaiming from the same cgroup twice.
919 */
920 (void)cmpxchg(&iter->position, pos, memcg);
921
922 if (pos)
923 css_put(&pos->css);
924
925 if (!memcg)
926 iter->generation++;
927 else if (!prev)
928 reclaim->generation = iter->generation;
929 }
930
931 out_unlock:
932 rcu_read_unlock();
933 out:
934 if (prev && prev != root)
935 css_put(&prev->css);
936
937 return memcg;
938 }
939
940 /**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
947 {
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952 }
953
954 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
955 {
956 struct mem_cgroup *memcg = dead_memcg;
957 struct mem_cgroup_reclaim_iter *iter;
958 struct mem_cgroup_per_zone *mz;
959 int nid, zid;
960 int i;
961
962 while ((memcg = parent_mem_cgroup(memcg))) {
963 for_each_node(nid) {
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
966 for (i = 0; i <= DEF_PRIORITY; i++) {
967 iter = &mz->iter[i];
968 cmpxchg(&iter->position,
969 dead_memcg, NULL);
970 }
971 }
972 }
973 }
974 }
975
976 /*
977 * Iteration constructs for visiting all cgroups (under a tree). If
978 * loops are exited prematurely (break), mem_cgroup_iter_break() must
979 * be used for reference counting.
980 */
981 #define for_each_mem_cgroup_tree(iter, root) \
982 for (iter = mem_cgroup_iter(root, NULL, NULL); \
983 iter != NULL; \
984 iter = mem_cgroup_iter(root, iter, NULL))
985
986 #define for_each_mem_cgroup(iter) \
987 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
988 iter != NULL; \
989 iter = mem_cgroup_iter(NULL, iter, NULL))
990
991 /**
992 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
993 * @zone: zone of the wanted lruvec
994 * @memcg: memcg of the wanted lruvec
995 *
996 * Returns the lru list vector holding pages for the given @zone and
997 * @mem. This can be the global zone lruvec, if the memory controller
998 * is disabled.
999 */
1000 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1001 struct mem_cgroup *memcg)
1002 {
1003 struct mem_cgroup_per_zone *mz;
1004 struct lruvec *lruvec;
1005
1006 if (mem_cgroup_disabled()) {
1007 lruvec = &zone->lruvec;
1008 goto out;
1009 }
1010
1011 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1012 lruvec = &mz->lruvec;
1013 out:
1014 /*
1015 * Since a node can be onlined after the mem_cgroup was created,
1016 * we have to be prepared to initialize lruvec->zone here;
1017 * and if offlined then reonlined, we need to reinitialize it.
1018 */
1019 if (unlikely(lruvec->zone != zone))
1020 lruvec->zone = zone;
1021 return lruvec;
1022 }
1023
1024 /**
1025 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1026 * @page: the page
1027 * @zone: zone of the page
1028 *
1029 * This function is only safe when following the LRU page isolation
1030 * and putback protocol: the LRU lock must be held, and the page must
1031 * either be PageLRU() or the caller must have isolated/allocated it.
1032 */
1033 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1034 {
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct lruvec *lruvec;
1038
1039 if (mem_cgroup_disabled()) {
1040 lruvec = &zone->lruvec;
1041 goto out;
1042 }
1043
1044 memcg = page->mem_cgroup;
1045 /*
1046 * Swapcache readahead pages are added to the LRU - and
1047 * possibly migrated - before they are charged.
1048 */
1049 if (!memcg)
1050 memcg = root_mem_cgroup;
1051
1052 mz = mem_cgroup_page_zoneinfo(memcg, page);
1053 lruvec = &mz->lruvec;
1054 out:
1055 /*
1056 * Since a node can be onlined after the mem_cgroup was created,
1057 * we have to be prepared to initialize lruvec->zone here;
1058 * and if offlined then reonlined, we need to reinitialize it.
1059 */
1060 if (unlikely(lruvec->zone != zone))
1061 lruvec->zone = zone;
1062 return lruvec;
1063 }
1064
1065 /**
1066 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1067 * @lruvec: mem_cgroup per zone lru vector
1068 * @lru: index of lru list the page is sitting on
1069 * @nr_pages: positive when adding or negative when removing
1070 *
1071 * This function must be called when a page is added to or removed from an
1072 * lru list.
1073 */
1074 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1075 int nr_pages)
1076 {
1077 struct mem_cgroup_per_zone *mz;
1078 unsigned long *lru_size;
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
1083 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1084 lru_size = mz->lru_size + lru;
1085 *lru_size += nr_pages;
1086 VM_BUG_ON((long)(*lru_size) < 0);
1087 }
1088
1089 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1090 {
1091 struct mem_cgroup *task_memcg;
1092 struct task_struct *p;
1093 bool ret;
1094
1095 p = find_lock_task_mm(task);
1096 if (p) {
1097 task_memcg = get_mem_cgroup_from_mm(p->mm);
1098 task_unlock(p);
1099 } else {
1100 /*
1101 * All threads may have already detached their mm's, but the oom
1102 * killer still needs to detect if they have already been oom
1103 * killed to prevent needlessly killing additional tasks.
1104 */
1105 rcu_read_lock();
1106 task_memcg = mem_cgroup_from_task(task);
1107 css_get(&task_memcg->css);
1108 rcu_read_unlock();
1109 }
1110 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1111 css_put(&task_memcg->css);
1112 return ret;
1113 }
1114
1115 /**
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @memcg: the memory cgroup
1118 *
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * pages.
1121 */
1122 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1123 {
1124 unsigned long margin = 0;
1125 unsigned long count;
1126 unsigned long limit;
1127
1128 count = page_counter_read(&memcg->memory);
1129 limit = READ_ONCE(memcg->memory.limit);
1130 if (count < limit)
1131 margin = limit - count;
1132
1133 if (do_memsw_account()) {
1134 count = page_counter_read(&memcg->memsw);
1135 limit = READ_ONCE(memcg->memsw.limit);
1136 if (count <= limit)
1137 margin = min(margin, limit - count);
1138 }
1139
1140 return margin;
1141 }
1142
1143 /*
1144 * A routine for checking "mem" is under move_account() or not.
1145 *
1146 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1147 * moving cgroups. This is for waiting at high-memory pressure
1148 * caused by "move".
1149 */
1150 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1151 {
1152 struct mem_cgroup *from;
1153 struct mem_cgroup *to;
1154 bool ret = false;
1155 /*
1156 * Unlike task_move routines, we access mc.to, mc.from not under
1157 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1158 */
1159 spin_lock(&mc.lock);
1160 from = mc.from;
1161 to = mc.to;
1162 if (!from)
1163 goto unlock;
1164
1165 ret = mem_cgroup_is_descendant(from, memcg) ||
1166 mem_cgroup_is_descendant(to, memcg);
1167 unlock:
1168 spin_unlock(&mc.lock);
1169 return ret;
1170 }
1171
1172 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1173 {
1174 if (mc.moving_task && current != mc.moving_task) {
1175 if (mem_cgroup_under_move(memcg)) {
1176 DEFINE_WAIT(wait);
1177 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1178 /* moving charge context might have finished. */
1179 if (mc.moving_task)
1180 schedule();
1181 finish_wait(&mc.waitq, &wait);
1182 return true;
1183 }
1184 }
1185 return false;
1186 }
1187
1188 #define K(x) ((x) << (PAGE_SHIFT-10))
1189 /**
1190 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1191 * @memcg: The memory cgroup that went over limit
1192 * @p: Task that is going to be killed
1193 *
1194 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1195 * enabled
1196 */
1197 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1198 {
1199 /* oom_info_lock ensures that parallel ooms do not interleave */
1200 static DEFINE_MUTEX(oom_info_lock);
1201 struct mem_cgroup *iter;
1202 unsigned int i;
1203
1204 mutex_lock(&oom_info_lock);
1205 rcu_read_lock();
1206
1207 if (p) {
1208 pr_info("Task in ");
1209 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1210 pr_cont(" killed as a result of limit of ");
1211 } else {
1212 pr_info("Memory limit reached of cgroup ");
1213 }
1214
1215 pr_cont_cgroup_path(memcg->css.cgroup);
1216 pr_cont("\n");
1217
1218 rcu_read_unlock();
1219
1220 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1221 K((u64)page_counter_read(&memcg->memory)),
1222 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1223 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memsw)),
1225 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1226 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->kmem)),
1228 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1229
1230 for_each_mem_cgroup_tree(iter, memcg) {
1231 pr_info("Memory cgroup stats for ");
1232 pr_cont_cgroup_path(iter->css.cgroup);
1233 pr_cont(":");
1234
1235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1236 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1237 continue;
1238 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1239 K(mem_cgroup_read_stat(iter, i)));
1240 }
1241
1242 for (i = 0; i < NR_LRU_LISTS; i++)
1243 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1244 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1245
1246 pr_cont("\n");
1247 }
1248 mutex_unlock(&oom_info_lock);
1249 }
1250
1251 /*
1252 * This function returns the number of memcg under hierarchy tree. Returns
1253 * 1(self count) if no children.
1254 */
1255 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1256 {
1257 int num = 0;
1258 struct mem_cgroup *iter;
1259
1260 for_each_mem_cgroup_tree(iter, memcg)
1261 num++;
1262 return num;
1263 }
1264
1265 /*
1266 * Return the memory (and swap, if configured) limit for a memcg.
1267 */
1268 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1269 {
1270 unsigned long limit;
1271
1272 limit = memcg->memory.limit;
1273 if (mem_cgroup_swappiness(memcg)) {
1274 unsigned long memsw_limit;
1275
1276 memsw_limit = memcg->memsw.limit;
1277 limit = min(limit + total_swap_pages, memsw_limit);
1278 }
1279 return limit;
1280 }
1281
1282 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1283 int order)
1284 {
1285 struct oom_control oc = {
1286 .zonelist = NULL,
1287 .nodemask = NULL,
1288 .gfp_mask = gfp_mask,
1289 .order = order,
1290 };
1291 struct mem_cgroup *iter;
1292 unsigned long chosen_points = 0;
1293 unsigned long totalpages;
1294 unsigned int points = 0;
1295 struct task_struct *chosen = NULL;
1296
1297 mutex_lock(&oom_lock);
1298
1299 /*
1300 * If current has a pending SIGKILL or is exiting, then automatically
1301 * select it. The goal is to allow it to allocate so that it may
1302 * quickly exit and free its memory.
1303 */
1304 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1305 mark_oom_victim(current);
1306 goto unlock;
1307 }
1308
1309 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1310 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1311 for_each_mem_cgroup_tree(iter, memcg) {
1312 struct css_task_iter it;
1313 struct task_struct *task;
1314
1315 css_task_iter_start(&iter->css, &it);
1316 while ((task = css_task_iter_next(&it))) {
1317 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1318 case OOM_SCAN_SELECT:
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = ULONG_MAX;
1323 get_task_struct(chosen);
1324 /* fall through */
1325 case OOM_SCAN_CONTINUE:
1326 continue;
1327 case OOM_SCAN_ABORT:
1328 css_task_iter_end(&it);
1329 mem_cgroup_iter_break(memcg, iter);
1330 if (chosen)
1331 put_task_struct(chosen);
1332 goto unlock;
1333 case OOM_SCAN_OK:
1334 break;
1335 };
1336 points = oom_badness(task, memcg, NULL, totalpages);
1337 if (!points || points < chosen_points)
1338 continue;
1339 /* Prefer thread group leaders for display purposes */
1340 if (points == chosen_points &&
1341 thread_group_leader(chosen))
1342 continue;
1343
1344 if (chosen)
1345 put_task_struct(chosen);
1346 chosen = task;
1347 chosen_points = points;
1348 get_task_struct(chosen);
1349 }
1350 css_task_iter_end(&it);
1351 }
1352
1353 if (chosen) {
1354 points = chosen_points * 1000 / totalpages;
1355 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1356 "Memory cgroup out of memory");
1357 }
1358 unlock:
1359 mutex_unlock(&oom_lock);
1360 }
1361
1362 #if MAX_NUMNODES > 1
1363
1364 /**
1365 * test_mem_cgroup_node_reclaimable
1366 * @memcg: the target memcg
1367 * @nid: the node ID to be checked.
1368 * @noswap : specify true here if the user wants flle only information.
1369 *
1370 * This function returns whether the specified memcg contains any
1371 * reclaimable pages on a node. Returns true if there are any reclaimable
1372 * pages in the node.
1373 */
1374 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1375 int nid, bool noswap)
1376 {
1377 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1378 return true;
1379 if (noswap || !total_swap_pages)
1380 return false;
1381 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1382 return true;
1383 return false;
1384
1385 }
1386
1387 /*
1388 * Always updating the nodemask is not very good - even if we have an empty
1389 * list or the wrong list here, we can start from some node and traverse all
1390 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1391 *
1392 */
1393 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1394 {
1395 int nid;
1396 /*
1397 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1398 * pagein/pageout changes since the last update.
1399 */
1400 if (!atomic_read(&memcg->numainfo_events))
1401 return;
1402 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1403 return;
1404
1405 /* make a nodemask where this memcg uses memory from */
1406 memcg->scan_nodes = node_states[N_MEMORY];
1407
1408 for_each_node_mask(nid, node_states[N_MEMORY]) {
1409
1410 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1411 node_clear(nid, memcg->scan_nodes);
1412 }
1413
1414 atomic_set(&memcg->numainfo_events, 0);
1415 atomic_set(&memcg->numainfo_updating, 0);
1416 }
1417
1418 /*
1419 * Selecting a node where we start reclaim from. Because what we need is just
1420 * reducing usage counter, start from anywhere is O,K. Considering
1421 * memory reclaim from current node, there are pros. and cons.
1422 *
1423 * Freeing memory from current node means freeing memory from a node which
1424 * we'll use or we've used. So, it may make LRU bad. And if several threads
1425 * hit limits, it will see a contention on a node. But freeing from remote
1426 * node means more costs for memory reclaim because of memory latency.
1427 *
1428 * Now, we use round-robin. Better algorithm is welcomed.
1429 */
1430 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1431 {
1432 int node;
1433
1434 mem_cgroup_may_update_nodemask(memcg);
1435 node = memcg->last_scanned_node;
1436
1437 node = next_node(node, memcg->scan_nodes);
1438 if (node == MAX_NUMNODES)
1439 node = first_node(memcg->scan_nodes);
1440 /*
1441 * We call this when we hit limit, not when pages are added to LRU.
1442 * No LRU may hold pages because all pages are UNEVICTABLE or
1443 * memcg is too small and all pages are not on LRU. In that case,
1444 * we use curret node.
1445 */
1446 if (unlikely(node == MAX_NUMNODES))
1447 node = numa_node_id();
1448
1449 memcg->last_scanned_node = node;
1450 return node;
1451 }
1452 #else
1453 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1460 struct zone *zone,
1461 gfp_t gfp_mask,
1462 unsigned long *total_scanned)
1463 {
1464 struct mem_cgroup *victim = NULL;
1465 int total = 0;
1466 int loop = 0;
1467 unsigned long excess;
1468 unsigned long nr_scanned;
1469 struct mem_cgroup_reclaim_cookie reclaim = {
1470 .zone = zone,
1471 .priority = 0,
1472 };
1473
1474 excess = soft_limit_excess(root_memcg);
1475
1476 while (1) {
1477 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1478 if (!victim) {
1479 loop++;
1480 if (loop >= 2) {
1481 /*
1482 * If we have not been able to reclaim
1483 * anything, it might because there are
1484 * no reclaimable pages under this hierarchy
1485 */
1486 if (!total)
1487 break;
1488 /*
1489 * We want to do more targeted reclaim.
1490 * excess >> 2 is not to excessive so as to
1491 * reclaim too much, nor too less that we keep
1492 * coming back to reclaim from this cgroup
1493 */
1494 if (total >= (excess >> 2) ||
1495 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1496 break;
1497 }
1498 continue;
1499 }
1500 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1501 zone, &nr_scanned);
1502 *total_scanned += nr_scanned;
1503 if (!soft_limit_excess(root_memcg))
1504 break;
1505 }
1506 mem_cgroup_iter_break(root_memcg, victim);
1507 return total;
1508 }
1509
1510 #ifdef CONFIG_LOCKDEP
1511 static struct lockdep_map memcg_oom_lock_dep_map = {
1512 .name = "memcg_oom_lock",
1513 };
1514 #endif
1515
1516 static DEFINE_SPINLOCK(memcg_oom_lock);
1517
1518 /*
1519 * Check OOM-Killer is already running under our hierarchy.
1520 * If someone is running, return false.
1521 */
1522 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1523 {
1524 struct mem_cgroup *iter, *failed = NULL;
1525
1526 spin_lock(&memcg_oom_lock);
1527
1528 for_each_mem_cgroup_tree(iter, memcg) {
1529 if (iter->oom_lock) {
1530 /*
1531 * this subtree of our hierarchy is already locked
1532 * so we cannot give a lock.
1533 */
1534 failed = iter;
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
1537 } else
1538 iter->oom_lock = true;
1539 }
1540
1541 if (failed) {
1542 /*
1543 * OK, we failed to lock the whole subtree so we have
1544 * to clean up what we set up to the failing subtree
1545 */
1546 for_each_mem_cgroup_tree(iter, memcg) {
1547 if (iter == failed) {
1548 mem_cgroup_iter_break(memcg, iter);
1549 break;
1550 }
1551 iter->oom_lock = false;
1552 }
1553 } else
1554 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1555
1556 spin_unlock(&memcg_oom_lock);
1557
1558 return !failed;
1559 }
1560
1561 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1562 {
1563 struct mem_cgroup *iter;
1564
1565 spin_lock(&memcg_oom_lock);
1566 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 iter->oom_lock = false;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1573 {
1574 struct mem_cgroup *iter;
1575
1576 spin_lock(&memcg_oom_lock);
1577 for_each_mem_cgroup_tree(iter, memcg)
1578 iter->under_oom++;
1579 spin_unlock(&memcg_oom_lock);
1580 }
1581
1582 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *iter;
1585
1586 /*
1587 * When a new child is created while the hierarchy is under oom,
1588 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1589 */
1590 spin_lock(&memcg_oom_lock);
1591 for_each_mem_cgroup_tree(iter, memcg)
1592 if (iter->under_oom > 0)
1593 iter->under_oom--;
1594 spin_unlock(&memcg_oom_lock);
1595 }
1596
1597 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1598
1599 struct oom_wait_info {
1600 struct mem_cgroup *memcg;
1601 wait_queue_t wait;
1602 };
1603
1604 static int memcg_oom_wake_function(wait_queue_t *wait,
1605 unsigned mode, int sync, void *arg)
1606 {
1607 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1608 struct mem_cgroup *oom_wait_memcg;
1609 struct oom_wait_info *oom_wait_info;
1610
1611 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1612 oom_wait_memcg = oom_wait_info->memcg;
1613
1614 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1615 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1616 return 0;
1617 return autoremove_wake_function(wait, mode, sync, arg);
1618 }
1619
1620 static void memcg_oom_recover(struct mem_cgroup *memcg)
1621 {
1622 /*
1623 * For the following lockless ->under_oom test, the only required
1624 * guarantee is that it must see the state asserted by an OOM when
1625 * this function is called as a result of userland actions
1626 * triggered by the notification of the OOM. This is trivially
1627 * achieved by invoking mem_cgroup_mark_under_oom() before
1628 * triggering notification.
1629 */
1630 if (memcg && memcg->under_oom)
1631 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1632 }
1633
1634 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1635 {
1636 if (!current->memcg_may_oom)
1637 return;
1638 /*
1639 * We are in the middle of the charge context here, so we
1640 * don't want to block when potentially sitting on a callstack
1641 * that holds all kinds of filesystem and mm locks.
1642 *
1643 * Also, the caller may handle a failed allocation gracefully
1644 * (like optional page cache readahead) and so an OOM killer
1645 * invocation might not even be necessary.
1646 *
1647 * That's why we don't do anything here except remember the
1648 * OOM context and then deal with it at the end of the page
1649 * fault when the stack is unwound, the locks are released,
1650 * and when we know whether the fault was overall successful.
1651 */
1652 css_get(&memcg->css);
1653 current->memcg_in_oom = memcg;
1654 current->memcg_oom_gfp_mask = mask;
1655 current->memcg_oom_order = order;
1656 }
1657
1658 /**
1659 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1660 * @handle: actually kill/wait or just clean up the OOM state
1661 *
1662 * This has to be called at the end of a page fault if the memcg OOM
1663 * handler was enabled.
1664 *
1665 * Memcg supports userspace OOM handling where failed allocations must
1666 * sleep on a waitqueue until the userspace task resolves the
1667 * situation. Sleeping directly in the charge context with all kinds
1668 * of locks held is not a good idea, instead we remember an OOM state
1669 * in the task and mem_cgroup_oom_synchronize() has to be called at
1670 * the end of the page fault to complete the OOM handling.
1671 *
1672 * Returns %true if an ongoing memcg OOM situation was detected and
1673 * completed, %false otherwise.
1674 */
1675 bool mem_cgroup_oom_synchronize(bool handle)
1676 {
1677 struct mem_cgroup *memcg = current->memcg_in_oom;
1678 struct oom_wait_info owait;
1679 bool locked;
1680
1681 /* OOM is global, do not handle */
1682 if (!memcg)
1683 return false;
1684
1685 if (!handle || oom_killer_disabled)
1686 goto cleanup;
1687
1688 owait.memcg = memcg;
1689 owait.wait.flags = 0;
1690 owait.wait.func = memcg_oom_wake_function;
1691 owait.wait.private = current;
1692 INIT_LIST_HEAD(&owait.wait.task_list);
1693
1694 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1695 mem_cgroup_mark_under_oom(memcg);
1696
1697 locked = mem_cgroup_oom_trylock(memcg);
1698
1699 if (locked)
1700 mem_cgroup_oom_notify(memcg);
1701
1702 if (locked && !memcg->oom_kill_disable) {
1703 mem_cgroup_unmark_under_oom(memcg);
1704 finish_wait(&memcg_oom_waitq, &owait.wait);
1705 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1706 current->memcg_oom_order);
1707 } else {
1708 schedule();
1709 mem_cgroup_unmark_under_oom(memcg);
1710 finish_wait(&memcg_oom_waitq, &owait.wait);
1711 }
1712
1713 if (locked) {
1714 mem_cgroup_oom_unlock(memcg);
1715 /*
1716 * There is no guarantee that an OOM-lock contender
1717 * sees the wakeups triggered by the OOM kill
1718 * uncharges. Wake any sleepers explicitely.
1719 */
1720 memcg_oom_recover(memcg);
1721 }
1722 cleanup:
1723 current->memcg_in_oom = NULL;
1724 css_put(&memcg->css);
1725 return true;
1726 }
1727
1728 /**
1729 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1730 * @page: page that is going to change accounted state
1731 *
1732 * This function must mark the beginning of an accounted page state
1733 * change to prevent double accounting when the page is concurrently
1734 * being moved to another memcg:
1735 *
1736 * memcg = mem_cgroup_begin_page_stat(page);
1737 * if (TestClearPageState(page))
1738 * mem_cgroup_update_page_stat(memcg, state, -1);
1739 * mem_cgroup_end_page_stat(memcg);
1740 */
1741 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1742 {
1743 struct mem_cgroup *memcg;
1744 unsigned long flags;
1745
1746 /*
1747 * The RCU lock is held throughout the transaction. The fast
1748 * path can get away without acquiring the memcg->move_lock
1749 * because page moving starts with an RCU grace period.
1750 *
1751 * The RCU lock also protects the memcg from being freed when
1752 * the page state that is going to change is the only thing
1753 * preventing the page from being uncharged.
1754 * E.g. end-writeback clearing PageWriteback(), which allows
1755 * migration to go ahead and uncharge the page before the
1756 * account transaction might be complete.
1757 */
1758 rcu_read_lock();
1759
1760 if (mem_cgroup_disabled())
1761 return NULL;
1762 again:
1763 memcg = page->mem_cgroup;
1764 if (unlikely(!memcg))
1765 return NULL;
1766
1767 if (atomic_read(&memcg->moving_account) <= 0)
1768 return memcg;
1769
1770 spin_lock_irqsave(&memcg->move_lock, flags);
1771 if (memcg != page->mem_cgroup) {
1772 spin_unlock_irqrestore(&memcg->move_lock, flags);
1773 goto again;
1774 }
1775
1776 /*
1777 * When charge migration first begins, we can have locked and
1778 * unlocked page stat updates happening concurrently. Track
1779 * the task who has the lock for mem_cgroup_end_page_stat().
1780 */
1781 memcg->move_lock_task = current;
1782 memcg->move_lock_flags = flags;
1783
1784 return memcg;
1785 }
1786 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1787
1788 /**
1789 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1790 * @memcg: the memcg that was accounted against
1791 */
1792 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1793 {
1794 if (memcg && memcg->move_lock_task == current) {
1795 unsigned long flags = memcg->move_lock_flags;
1796
1797 memcg->move_lock_task = NULL;
1798 memcg->move_lock_flags = 0;
1799
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 }
1802
1803 rcu_read_unlock();
1804 }
1805 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1806
1807 /*
1808 * size of first charge trial. "32" comes from vmscan.c's magic value.
1809 * TODO: maybe necessary to use big numbers in big irons.
1810 */
1811 #define CHARGE_BATCH 32U
1812 struct memcg_stock_pcp {
1813 struct mem_cgroup *cached; /* this never be root cgroup */
1814 unsigned int nr_pages;
1815 struct work_struct work;
1816 unsigned long flags;
1817 #define FLUSHING_CACHED_CHARGE 0
1818 };
1819 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1820 static DEFINE_MUTEX(percpu_charge_mutex);
1821
1822 /**
1823 * consume_stock: Try to consume stocked charge on this cpu.
1824 * @memcg: memcg to consume from.
1825 * @nr_pages: how many pages to charge.
1826 *
1827 * The charges will only happen if @memcg matches the current cpu's memcg
1828 * stock, and at least @nr_pages are available in that stock. Failure to
1829 * service an allocation will refill the stock.
1830 *
1831 * returns true if successful, false otherwise.
1832 */
1833 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1834 {
1835 struct memcg_stock_pcp *stock;
1836 bool ret = false;
1837
1838 if (nr_pages > CHARGE_BATCH)
1839 return ret;
1840
1841 stock = &get_cpu_var(memcg_stock);
1842 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1843 stock->nr_pages -= nr_pages;
1844 ret = true;
1845 }
1846 put_cpu_var(memcg_stock);
1847 return ret;
1848 }
1849
1850 /*
1851 * Returns stocks cached in percpu and reset cached information.
1852 */
1853 static void drain_stock(struct memcg_stock_pcp *stock)
1854 {
1855 struct mem_cgroup *old = stock->cached;
1856
1857 if (stock->nr_pages) {
1858 page_counter_uncharge(&old->memory, stock->nr_pages);
1859 if (do_memsw_account())
1860 page_counter_uncharge(&old->memsw, stock->nr_pages);
1861 css_put_many(&old->css, stock->nr_pages);
1862 stock->nr_pages = 0;
1863 }
1864 stock->cached = NULL;
1865 }
1866
1867 /*
1868 * This must be called under preempt disabled or must be called by
1869 * a thread which is pinned to local cpu.
1870 */
1871 static void drain_local_stock(struct work_struct *dummy)
1872 {
1873 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1874 drain_stock(stock);
1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1876 }
1877
1878 /*
1879 * Cache charges(val) to local per_cpu area.
1880 * This will be consumed by consume_stock() function, later.
1881 */
1882 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1883 {
1884 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1885
1886 if (stock->cached != memcg) { /* reset if necessary */
1887 drain_stock(stock);
1888 stock->cached = memcg;
1889 }
1890 stock->nr_pages += nr_pages;
1891 put_cpu_var(memcg_stock);
1892 }
1893
1894 /*
1895 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1896 * of the hierarchy under it.
1897 */
1898 static void drain_all_stock(struct mem_cgroup *root_memcg)
1899 {
1900 int cpu, curcpu;
1901
1902 /* If someone's already draining, avoid adding running more workers. */
1903 if (!mutex_trylock(&percpu_charge_mutex))
1904 return;
1905 /* Notify other cpus that system-wide "drain" is running */
1906 get_online_cpus();
1907 curcpu = get_cpu();
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1910 struct mem_cgroup *memcg;
1911
1912 memcg = stock->cached;
1913 if (!memcg || !stock->nr_pages)
1914 continue;
1915 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1916 continue;
1917 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1918 if (cpu == curcpu)
1919 drain_local_stock(&stock->work);
1920 else
1921 schedule_work_on(cpu, &stock->work);
1922 }
1923 }
1924 put_cpu();
1925 put_online_cpus();
1926 mutex_unlock(&percpu_charge_mutex);
1927 }
1928
1929 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1930 unsigned long action,
1931 void *hcpu)
1932 {
1933 int cpu = (unsigned long)hcpu;
1934 struct memcg_stock_pcp *stock;
1935
1936 if (action == CPU_ONLINE)
1937 return NOTIFY_OK;
1938
1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1940 return NOTIFY_OK;
1941
1942 stock = &per_cpu(memcg_stock, cpu);
1943 drain_stock(stock);
1944 return NOTIFY_OK;
1945 }
1946
1947 static void reclaim_high(struct mem_cgroup *memcg,
1948 unsigned int nr_pages,
1949 gfp_t gfp_mask)
1950 {
1951 do {
1952 if (page_counter_read(&memcg->memory) <= memcg->high)
1953 continue;
1954 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1955 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1956 } while ((memcg = parent_mem_cgroup(memcg)));
1957 }
1958
1959 static void high_work_func(struct work_struct *work)
1960 {
1961 struct mem_cgroup *memcg;
1962
1963 memcg = container_of(work, struct mem_cgroup, high_work);
1964 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1965 }
1966
1967 /*
1968 * Scheduled by try_charge() to be executed from the userland return path
1969 * and reclaims memory over the high limit.
1970 */
1971 void mem_cgroup_handle_over_high(void)
1972 {
1973 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1974 struct mem_cgroup *memcg;
1975
1976 if (likely(!nr_pages))
1977 return;
1978
1979 memcg = get_mem_cgroup_from_mm(current->mm);
1980 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1981 css_put(&memcg->css);
1982 current->memcg_nr_pages_over_high = 0;
1983 }
1984
1985 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1986 unsigned int nr_pages)
1987 {
1988 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1989 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1990 struct mem_cgroup *mem_over_limit;
1991 struct page_counter *counter;
1992 unsigned long nr_reclaimed;
1993 bool may_swap = true;
1994 bool drained = false;
1995
1996 if (mem_cgroup_is_root(memcg))
1997 return 0;
1998 retry:
1999 if (consume_stock(memcg, nr_pages))
2000 return 0;
2001
2002 if (!do_memsw_account() ||
2003 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2004 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2005 goto done_restock;
2006 if (do_memsw_account())
2007 page_counter_uncharge(&memcg->memsw, batch);
2008 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2009 } else {
2010 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2011 may_swap = false;
2012 }
2013
2014 if (batch > nr_pages) {
2015 batch = nr_pages;
2016 goto retry;
2017 }
2018
2019 /*
2020 * Unlike in global OOM situations, memcg is not in a physical
2021 * memory shortage. Allow dying and OOM-killed tasks to
2022 * bypass the last charges so that they can exit quickly and
2023 * free their memory.
2024 */
2025 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2026 fatal_signal_pending(current) ||
2027 current->flags & PF_EXITING))
2028 goto force;
2029
2030 if (unlikely(task_in_memcg_oom(current)))
2031 goto nomem;
2032
2033 if (!gfpflags_allow_blocking(gfp_mask))
2034 goto nomem;
2035
2036 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2037
2038 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2039 gfp_mask, may_swap);
2040
2041 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2042 goto retry;
2043
2044 if (!drained) {
2045 drain_all_stock(mem_over_limit);
2046 drained = true;
2047 goto retry;
2048 }
2049
2050 if (gfp_mask & __GFP_NORETRY)
2051 goto nomem;
2052 /*
2053 * Even though the limit is exceeded at this point, reclaim
2054 * may have been able to free some pages. Retry the charge
2055 * before killing the task.
2056 *
2057 * Only for regular pages, though: huge pages are rather
2058 * unlikely to succeed so close to the limit, and we fall back
2059 * to regular pages anyway in case of failure.
2060 */
2061 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2062 goto retry;
2063 /*
2064 * At task move, charge accounts can be doubly counted. So, it's
2065 * better to wait until the end of task_move if something is going on.
2066 */
2067 if (mem_cgroup_wait_acct_move(mem_over_limit))
2068 goto retry;
2069
2070 if (nr_retries--)
2071 goto retry;
2072
2073 if (gfp_mask & __GFP_NOFAIL)
2074 goto force;
2075
2076 if (fatal_signal_pending(current))
2077 goto force;
2078
2079 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2080
2081 mem_cgroup_oom(mem_over_limit, gfp_mask,
2082 get_order(nr_pages * PAGE_SIZE));
2083 nomem:
2084 if (!(gfp_mask & __GFP_NOFAIL))
2085 return -ENOMEM;
2086 force:
2087 /*
2088 * The allocation either can't fail or will lead to more memory
2089 * being freed very soon. Allow memory usage go over the limit
2090 * temporarily by force charging it.
2091 */
2092 page_counter_charge(&memcg->memory, nr_pages);
2093 if (do_memsw_account())
2094 page_counter_charge(&memcg->memsw, nr_pages);
2095 css_get_many(&memcg->css, nr_pages);
2096
2097 return 0;
2098
2099 done_restock:
2100 css_get_many(&memcg->css, batch);
2101 if (batch > nr_pages)
2102 refill_stock(memcg, batch - nr_pages);
2103
2104 /*
2105 * If the hierarchy is above the normal consumption range, schedule
2106 * reclaim on returning to userland. We can perform reclaim here
2107 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2108 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2109 * not recorded as it most likely matches current's and won't
2110 * change in the meantime. As high limit is checked again before
2111 * reclaim, the cost of mismatch is negligible.
2112 */
2113 do {
2114 if (page_counter_read(&memcg->memory) > memcg->high) {
2115 /* Don't bother a random interrupted task */
2116 if (in_interrupt()) {
2117 schedule_work(&memcg->high_work);
2118 break;
2119 }
2120 current->memcg_nr_pages_over_high += batch;
2121 set_notify_resume(current);
2122 break;
2123 }
2124 } while ((memcg = parent_mem_cgroup(memcg)));
2125
2126 return 0;
2127 }
2128
2129 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 {
2131 if (mem_cgroup_is_root(memcg))
2132 return;
2133
2134 page_counter_uncharge(&memcg->memory, nr_pages);
2135 if (do_memsw_account())
2136 page_counter_uncharge(&memcg->memsw, nr_pages);
2137
2138 css_put_many(&memcg->css, nr_pages);
2139 }
2140
2141 static void lock_page_lru(struct page *page, int *isolated)
2142 {
2143 struct zone *zone = page_zone(page);
2144
2145 spin_lock_irq(&zone->lru_lock);
2146 if (PageLRU(page)) {
2147 struct lruvec *lruvec;
2148
2149 lruvec = mem_cgroup_page_lruvec(page, zone);
2150 ClearPageLRU(page);
2151 del_page_from_lru_list(page, lruvec, page_lru(page));
2152 *isolated = 1;
2153 } else
2154 *isolated = 0;
2155 }
2156
2157 static void unlock_page_lru(struct page *page, int isolated)
2158 {
2159 struct zone *zone = page_zone(page);
2160
2161 if (isolated) {
2162 struct lruvec *lruvec;
2163
2164 lruvec = mem_cgroup_page_lruvec(page, zone);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 SetPageLRU(page);
2167 add_page_to_lru_list(page, lruvec, page_lru(page));
2168 }
2169 spin_unlock_irq(&zone->lru_lock);
2170 }
2171
2172 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2173 bool lrucare)
2174 {
2175 int isolated;
2176
2177 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2178
2179 /*
2180 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2181 * may already be on some other mem_cgroup's LRU. Take care of it.
2182 */
2183 if (lrucare)
2184 lock_page_lru(page, &isolated);
2185
2186 /*
2187 * Nobody should be changing or seriously looking at
2188 * page->mem_cgroup at this point:
2189 *
2190 * - the page is uncharged
2191 *
2192 * - the page is off-LRU
2193 *
2194 * - an anonymous fault has exclusive page access, except for
2195 * a locked page table
2196 *
2197 * - a page cache insertion, a swapin fault, or a migration
2198 * have the page locked
2199 */
2200 page->mem_cgroup = memcg;
2201
2202 if (lrucare)
2203 unlock_page_lru(page, isolated);
2204 }
2205
2206 #ifdef CONFIG_MEMCG_KMEM
2207 static int memcg_alloc_cache_id(void)
2208 {
2209 int id, size;
2210 int err;
2211
2212 id = ida_simple_get(&memcg_cache_ida,
2213 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2214 if (id < 0)
2215 return id;
2216
2217 if (id < memcg_nr_cache_ids)
2218 return id;
2219
2220 /*
2221 * There's no space for the new id in memcg_caches arrays,
2222 * so we have to grow them.
2223 */
2224 down_write(&memcg_cache_ids_sem);
2225
2226 size = 2 * (id + 1);
2227 if (size < MEMCG_CACHES_MIN_SIZE)
2228 size = MEMCG_CACHES_MIN_SIZE;
2229 else if (size > MEMCG_CACHES_MAX_SIZE)
2230 size = MEMCG_CACHES_MAX_SIZE;
2231
2232 err = memcg_update_all_caches(size);
2233 if (!err)
2234 err = memcg_update_all_list_lrus(size);
2235 if (!err)
2236 memcg_nr_cache_ids = size;
2237
2238 up_write(&memcg_cache_ids_sem);
2239
2240 if (err) {
2241 ida_simple_remove(&memcg_cache_ida, id);
2242 return err;
2243 }
2244 return id;
2245 }
2246
2247 static void memcg_free_cache_id(int id)
2248 {
2249 ida_simple_remove(&memcg_cache_ida, id);
2250 }
2251
2252 struct memcg_kmem_cache_create_work {
2253 struct mem_cgroup *memcg;
2254 struct kmem_cache *cachep;
2255 struct work_struct work;
2256 };
2257
2258 static void memcg_kmem_cache_create_func(struct work_struct *w)
2259 {
2260 struct memcg_kmem_cache_create_work *cw =
2261 container_of(w, struct memcg_kmem_cache_create_work, work);
2262 struct mem_cgroup *memcg = cw->memcg;
2263 struct kmem_cache *cachep = cw->cachep;
2264
2265 memcg_create_kmem_cache(memcg, cachep);
2266
2267 css_put(&memcg->css);
2268 kfree(cw);
2269 }
2270
2271 /*
2272 * Enqueue the creation of a per-memcg kmem_cache.
2273 */
2274 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2275 struct kmem_cache *cachep)
2276 {
2277 struct memcg_kmem_cache_create_work *cw;
2278
2279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2280 if (!cw)
2281 return;
2282
2283 css_get(&memcg->css);
2284
2285 cw->memcg = memcg;
2286 cw->cachep = cachep;
2287 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2288
2289 schedule_work(&cw->work);
2290 }
2291
2292 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2293 struct kmem_cache *cachep)
2294 {
2295 /*
2296 * We need to stop accounting when we kmalloc, because if the
2297 * corresponding kmalloc cache is not yet created, the first allocation
2298 * in __memcg_schedule_kmem_cache_create will recurse.
2299 *
2300 * However, it is better to enclose the whole function. Depending on
2301 * the debugging options enabled, INIT_WORK(), for instance, can
2302 * trigger an allocation. This too, will make us recurse. Because at
2303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2304 * the safest choice is to do it like this, wrapping the whole function.
2305 */
2306 current->memcg_kmem_skip_account = 1;
2307 __memcg_schedule_kmem_cache_create(memcg, cachep);
2308 current->memcg_kmem_skip_account = 0;
2309 }
2310
2311 /*
2312 * Return the kmem_cache we're supposed to use for a slab allocation.
2313 * We try to use the current memcg's version of the cache.
2314 *
2315 * If the cache does not exist yet, if we are the first user of it,
2316 * we either create it immediately, if possible, or create it asynchronously
2317 * in a workqueue.
2318 * In the latter case, we will let the current allocation go through with
2319 * the original cache.
2320 *
2321 * Can't be called in interrupt context or from kernel threads.
2322 * This function needs to be called with rcu_read_lock() held.
2323 */
2324 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct kmem_cache *memcg_cachep;
2328 int kmemcg_id;
2329
2330 VM_BUG_ON(!is_root_cache(cachep));
2331
2332 if (cachep->flags & SLAB_ACCOUNT)
2333 gfp |= __GFP_ACCOUNT;
2334
2335 if (!(gfp & __GFP_ACCOUNT))
2336 return cachep;
2337
2338 if (current->memcg_kmem_skip_account)
2339 return cachep;
2340
2341 memcg = get_mem_cgroup_from_mm(current->mm);
2342 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2343 if (kmemcg_id < 0)
2344 goto out;
2345
2346 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2347 if (likely(memcg_cachep))
2348 return memcg_cachep;
2349
2350 /*
2351 * If we are in a safe context (can wait, and not in interrupt
2352 * context), we could be be predictable and return right away.
2353 * This would guarantee that the allocation being performed
2354 * already belongs in the new cache.
2355 *
2356 * However, there are some clashes that can arrive from locking.
2357 * For instance, because we acquire the slab_mutex while doing
2358 * memcg_create_kmem_cache, this means no further allocation
2359 * could happen with the slab_mutex held. So it's better to
2360 * defer everything.
2361 */
2362 memcg_schedule_kmem_cache_create(memcg, cachep);
2363 out:
2364 css_put(&memcg->css);
2365 return cachep;
2366 }
2367
2368 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2369 {
2370 if (!is_root_cache(cachep))
2371 css_put(&cachep->memcg_params.memcg->css);
2372 }
2373
2374 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2375 struct mem_cgroup *memcg)
2376 {
2377 unsigned int nr_pages = 1 << order;
2378 struct page_counter *counter;
2379 int ret;
2380
2381 if (!memcg_kmem_is_active(memcg))
2382 return 0;
2383
2384 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2385 return -ENOMEM;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret) {
2389 page_counter_uncharge(&memcg->kmem, nr_pages);
2390 return ret;
2391 }
2392
2393 page->mem_cgroup = memcg;
2394
2395 return 0;
2396 }
2397
2398 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2399 {
2400 struct mem_cgroup *memcg;
2401 int ret;
2402
2403 memcg = get_mem_cgroup_from_mm(current->mm);
2404 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2405 css_put(&memcg->css);
2406 return ret;
2407 }
2408
2409 void __memcg_kmem_uncharge(struct page *page, int order)
2410 {
2411 struct mem_cgroup *memcg = page->mem_cgroup;
2412 unsigned int nr_pages = 1 << order;
2413
2414 if (!memcg)
2415 return;
2416
2417 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2418
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 page_counter_uncharge(&memcg->memory, nr_pages);
2421 if (do_memsw_account())
2422 page_counter_uncharge(&memcg->memsw, nr_pages);
2423
2424 page->mem_cgroup = NULL;
2425 css_put_many(&memcg->css, nr_pages);
2426 }
2427 #endif /* CONFIG_MEMCG_KMEM */
2428
2429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2430
2431 /*
2432 * Because tail pages are not marked as "used", set it. We're under
2433 * zone->lru_lock and migration entries setup in all page mappings.
2434 */
2435 void mem_cgroup_split_huge_fixup(struct page *head)
2436 {
2437 int i;
2438
2439 if (mem_cgroup_disabled())
2440 return;
2441
2442 for (i = 1; i < HPAGE_PMD_NR; i++)
2443 head[i].mem_cgroup = head->mem_cgroup;
2444
2445 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2446 HPAGE_PMD_NR);
2447 }
2448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2449
2450 #ifdef CONFIG_MEMCG_SWAP
2451 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2452 bool charge)
2453 {
2454 int val = (charge) ? 1 : -1;
2455 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2456 }
2457
2458 /**
2459 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2460 * @entry: swap entry to be moved
2461 * @from: mem_cgroup which the entry is moved from
2462 * @to: mem_cgroup which the entry is moved to
2463 *
2464 * It succeeds only when the swap_cgroup's record for this entry is the same
2465 * as the mem_cgroup's id of @from.
2466 *
2467 * Returns 0 on success, -EINVAL on failure.
2468 *
2469 * The caller must have charged to @to, IOW, called page_counter_charge() about
2470 * both res and memsw, and called css_get().
2471 */
2472 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2473 struct mem_cgroup *from, struct mem_cgroup *to)
2474 {
2475 unsigned short old_id, new_id;
2476
2477 old_id = mem_cgroup_id(from);
2478 new_id = mem_cgroup_id(to);
2479
2480 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2481 mem_cgroup_swap_statistics(from, false);
2482 mem_cgroup_swap_statistics(to, true);
2483 return 0;
2484 }
2485 return -EINVAL;
2486 }
2487 #else
2488 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2489 struct mem_cgroup *from, struct mem_cgroup *to)
2490 {
2491 return -EINVAL;
2492 }
2493 #endif
2494
2495 static DEFINE_MUTEX(memcg_limit_mutex);
2496
2497 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499 {
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /*
2507 * For keeping hierarchical_reclaim simple, how long we should retry
2508 * is depends on callers. We set our retry-count to be function
2509 * of # of children which we should visit in this loop.
2510 */
2511 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2512 mem_cgroup_count_children(memcg);
2513
2514 oldusage = page_counter_read(&memcg->memory);
2515
2516 do {
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
2521
2522 mutex_lock(&memcg_limit_mutex);
2523 if (limit > memcg->memsw.limit) {
2524 mutex_unlock(&memcg_limit_mutex);
2525 ret = -EINVAL;
2526 break;
2527 }
2528 if (limit > memcg->memory.limit)
2529 enlarge = true;
2530 ret = page_counter_limit(&memcg->memory, limit);
2531 mutex_unlock(&memcg_limit_mutex);
2532
2533 if (!ret)
2534 break;
2535
2536 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2537
2538 curusage = page_counter_read(&memcg->memory);
2539 /* Usage is reduced ? */
2540 if (curusage >= oldusage)
2541 retry_count--;
2542 else
2543 oldusage = curusage;
2544 } while (retry_count);
2545
2546 if (!ret && enlarge)
2547 memcg_oom_recover(memcg);
2548
2549 return ret;
2550 }
2551
2552 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2553 unsigned long limit)
2554 {
2555 unsigned long curusage;
2556 unsigned long oldusage;
2557 bool enlarge = false;
2558 int retry_count;
2559 int ret;
2560
2561 /* see mem_cgroup_resize_res_limit */
2562 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2563 mem_cgroup_count_children(memcg);
2564
2565 oldusage = page_counter_read(&memcg->memsw);
2566
2567 do {
2568 if (signal_pending(current)) {
2569 ret = -EINTR;
2570 break;
2571 }
2572
2573 mutex_lock(&memcg_limit_mutex);
2574 if (limit < memcg->memory.limit) {
2575 mutex_unlock(&memcg_limit_mutex);
2576 ret = -EINVAL;
2577 break;
2578 }
2579 if (limit > memcg->memsw.limit)
2580 enlarge = true;
2581 ret = page_counter_limit(&memcg->memsw, limit);
2582 mutex_unlock(&memcg_limit_mutex);
2583
2584 if (!ret)
2585 break;
2586
2587 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2588
2589 curusage = page_counter_read(&memcg->memsw);
2590 /* Usage is reduced ? */
2591 if (curusage >= oldusage)
2592 retry_count--;
2593 else
2594 oldusage = curusage;
2595 } while (retry_count);
2596
2597 if (!ret && enlarge)
2598 memcg_oom_recover(memcg);
2599
2600 return ret;
2601 }
2602
2603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2604 gfp_t gfp_mask,
2605 unsigned long *total_scanned)
2606 {
2607 unsigned long nr_reclaimed = 0;
2608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2609 unsigned long reclaimed;
2610 int loop = 0;
2611 struct mem_cgroup_tree_per_zone *mctz;
2612 unsigned long excess;
2613 unsigned long nr_scanned;
2614
2615 if (order > 0)
2616 return 0;
2617
2618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2619 /*
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2623 */
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2631
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
2637 spin_lock_irq(&mctz->lock);
2638 __mem_cgroup_remove_exceeded(mz, mctz);
2639
2640 /*
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2643 */
2644 next_mz = NULL;
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2647
2648 excess = soft_limit_excess(mz->memcg);
2649 /*
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2656 */
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2659 spin_unlock_irq(&mctz->lock);
2660 css_put(&mz->memcg->css);
2661 loop++;
2662 /*
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2666 */
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2675 }
2676
2677 /*
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2682 */
2683 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2684 {
2685 bool ret;
2686
2687 /*
2688 * The lock does not prevent addition or deletion of children, but
2689 * it prevents a new child from being initialized based on this
2690 * parent in css_online(), so it's enough to decide whether
2691 * hierarchically inherited attributes can still be changed or not.
2692 */
2693 lockdep_assert_held(&memcg_create_mutex);
2694
2695 rcu_read_lock();
2696 ret = css_next_child(NULL, &memcg->css);
2697 rcu_read_unlock();
2698 return ret;
2699 }
2700
2701 /*
2702 * Reclaims as many pages from the given memcg as possible and moves
2703 * the rest to the parent.
2704 *
2705 * Caller is responsible for holding css reference for memcg.
2706 */
2707 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2708 {
2709 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2710
2711 /* we call try-to-free pages for make this cgroup empty */
2712 lru_add_drain_all();
2713 /* try to free all pages in this cgroup */
2714 while (nr_retries && page_counter_read(&memcg->memory)) {
2715 int progress;
2716
2717 if (signal_pending(current))
2718 return -EINTR;
2719
2720 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2721 GFP_KERNEL, true);
2722 if (!progress) {
2723 nr_retries--;
2724 /* maybe some writeback is necessary */
2725 congestion_wait(BLK_RW_ASYNC, HZ/10);
2726 }
2727
2728 }
2729
2730 return 0;
2731 }
2732
2733 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2734 char *buf, size_t nbytes,
2735 loff_t off)
2736 {
2737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2738
2739 if (mem_cgroup_is_root(memcg))
2740 return -EINVAL;
2741 return mem_cgroup_force_empty(memcg) ?: nbytes;
2742 }
2743
2744 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2745 struct cftype *cft)
2746 {
2747 return mem_cgroup_from_css(css)->use_hierarchy;
2748 }
2749
2750 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2751 struct cftype *cft, u64 val)
2752 {
2753 int retval = 0;
2754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2755 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2756
2757 mutex_lock(&memcg_create_mutex);
2758
2759 if (memcg->use_hierarchy == val)
2760 goto out;
2761
2762 /*
2763 * If parent's use_hierarchy is set, we can't make any modifications
2764 * in the child subtrees. If it is unset, then the change can
2765 * occur, provided the current cgroup has no children.
2766 *
2767 * For the root cgroup, parent_mem is NULL, we allow value to be
2768 * set if there are no children.
2769 */
2770 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2771 (val == 1 || val == 0)) {
2772 if (!memcg_has_children(memcg))
2773 memcg->use_hierarchy = val;
2774 else
2775 retval = -EBUSY;
2776 } else
2777 retval = -EINVAL;
2778
2779 out:
2780 mutex_unlock(&memcg_create_mutex);
2781
2782 return retval;
2783 }
2784
2785 static unsigned long tree_stat(struct mem_cgroup *memcg,
2786 enum mem_cgroup_stat_index idx)
2787 {
2788 struct mem_cgroup *iter;
2789 unsigned long val = 0;
2790
2791 for_each_mem_cgroup_tree(iter, memcg)
2792 val += mem_cgroup_read_stat(iter, idx);
2793
2794 return val;
2795 }
2796
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2798 {
2799 unsigned long val;
2800
2801 if (mem_cgroup_is_root(memcg)) {
2802 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2803 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2804 if (swap)
2805 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2806 } else {
2807 if (!swap)
2808 val = page_counter_read(&memcg->memory);
2809 else
2810 val = page_counter_read(&memcg->memsw);
2811 }
2812 return val;
2813 }
2814
2815 enum {
2816 RES_USAGE,
2817 RES_LIMIT,
2818 RES_MAX_USAGE,
2819 RES_FAILCNT,
2820 RES_SOFT_LIMIT,
2821 };
2822
2823 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2824 struct cftype *cft)
2825 {
2826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2827 struct page_counter *counter;
2828
2829 switch (MEMFILE_TYPE(cft->private)) {
2830 case _MEM:
2831 counter = &memcg->memory;
2832 break;
2833 case _MEMSWAP:
2834 counter = &memcg->memsw;
2835 break;
2836 case _KMEM:
2837 counter = &memcg->kmem;
2838 break;
2839 default:
2840 BUG();
2841 }
2842
2843 switch (MEMFILE_ATTR(cft->private)) {
2844 case RES_USAGE:
2845 if (counter == &memcg->memory)
2846 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2847 if (counter == &memcg->memsw)
2848 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2849 return (u64)page_counter_read(counter) * PAGE_SIZE;
2850 case RES_LIMIT:
2851 return (u64)counter->limit * PAGE_SIZE;
2852 case RES_MAX_USAGE:
2853 return (u64)counter->watermark * PAGE_SIZE;
2854 case RES_FAILCNT:
2855 return counter->failcnt;
2856 case RES_SOFT_LIMIT:
2857 return (u64)memcg->soft_limit * PAGE_SIZE;
2858 default:
2859 BUG();
2860 }
2861 }
2862
2863 #ifdef CONFIG_MEMCG_KMEM
2864 static int memcg_activate_kmem(struct mem_cgroup *memcg)
2865 {
2866 int err = 0;
2867 int memcg_id;
2868
2869 BUG_ON(memcg->kmemcg_id >= 0);
2870 BUG_ON(memcg->kmem_acct_activated);
2871 BUG_ON(memcg->kmem_acct_active);
2872
2873 /*
2874 * For simplicity, we won't allow this to be disabled. It also can't
2875 * be changed if the cgroup has children already, or if tasks had
2876 * already joined.
2877 *
2878 * If tasks join before we set the limit, a person looking at
2879 * kmem.usage_in_bytes will have no way to determine when it took
2880 * place, which makes the value quite meaningless.
2881 *
2882 * After it first became limited, changes in the value of the limit are
2883 * of course permitted.
2884 */
2885 mutex_lock(&memcg_create_mutex);
2886 if (cgroup_is_populated(memcg->css.cgroup) ||
2887 (memcg->use_hierarchy && memcg_has_children(memcg)))
2888 err = -EBUSY;
2889 mutex_unlock(&memcg_create_mutex);
2890 if (err)
2891 goto out;
2892
2893 memcg_id = memcg_alloc_cache_id();
2894 if (memcg_id < 0) {
2895 err = memcg_id;
2896 goto out;
2897 }
2898
2899 static_branch_inc(&memcg_kmem_enabled_key);
2900 /*
2901 * A memory cgroup is considered kmem-active as soon as it gets
2902 * kmemcg_id. Setting the id after enabling static branching will
2903 * guarantee no one starts accounting before all call sites are
2904 * patched.
2905 */
2906 memcg->kmemcg_id = memcg_id;
2907 memcg->kmem_acct_activated = true;
2908 memcg->kmem_acct_active = true;
2909 out:
2910 return err;
2911 }
2912
2913 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2914 unsigned long limit)
2915 {
2916 int ret;
2917
2918 mutex_lock(&memcg_limit_mutex);
2919 /* Top-level cgroup doesn't propagate from root */
2920 if (!memcg_kmem_is_active(memcg)) {
2921 ret = memcg_activate_kmem(memcg);
2922 if (ret)
2923 goto out;
2924 }
2925 ret = page_counter_limit(&memcg->kmem, limit);
2926 out:
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
2929 }
2930
2931 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2932 {
2933 int ret = 0;
2934 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2935
2936 if (!parent)
2937 return 0;
2938
2939 mutex_lock(&memcg_limit_mutex);
2940 /*
2941 * If the parent cgroup is not kmem-active now, it cannot be activated
2942 * after this point, because it has at least one child already.
2943 */
2944 if (memcg_kmem_is_active(parent))
2945 ret = memcg_activate_kmem(memcg);
2946 mutex_unlock(&memcg_limit_mutex);
2947 return ret;
2948 }
2949 #else
2950 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2951 unsigned long limit)
2952 {
2953 return -EINVAL;
2954 }
2955 #endif /* CONFIG_MEMCG_KMEM */
2956
2957 /*
2958 * The user of this function is...
2959 * RES_LIMIT.
2960 */
2961 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2962 char *buf, size_t nbytes, loff_t off)
2963 {
2964 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2965 unsigned long nr_pages;
2966 int ret;
2967
2968 buf = strstrip(buf);
2969 ret = page_counter_memparse(buf, "-1", &nr_pages);
2970 if (ret)
2971 return ret;
2972
2973 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2974 case RES_LIMIT:
2975 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2976 ret = -EINVAL;
2977 break;
2978 }
2979 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2980 case _MEM:
2981 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2982 break;
2983 case _MEMSWAP:
2984 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2985 break;
2986 case _KMEM:
2987 ret = memcg_update_kmem_limit(memcg, nr_pages);
2988 break;
2989 }
2990 break;
2991 case RES_SOFT_LIMIT:
2992 memcg->soft_limit = nr_pages;
2993 ret = 0;
2994 break;
2995 }
2996 return ret ?: nbytes;
2997 }
2998
2999 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3000 size_t nbytes, loff_t off)
3001 {
3002 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3003 struct page_counter *counter;
3004
3005 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3006 case _MEM:
3007 counter = &memcg->memory;
3008 break;
3009 case _MEMSWAP:
3010 counter = &memcg->memsw;
3011 break;
3012 case _KMEM:
3013 counter = &memcg->kmem;
3014 break;
3015 default:
3016 BUG();
3017 }
3018
3019 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3020 case RES_MAX_USAGE:
3021 page_counter_reset_watermark(counter);
3022 break;
3023 case RES_FAILCNT:
3024 counter->failcnt = 0;
3025 break;
3026 default:
3027 BUG();
3028 }
3029
3030 return nbytes;
3031 }
3032
3033 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3034 struct cftype *cft)
3035 {
3036 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3037 }
3038
3039 #ifdef CONFIG_MMU
3040 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3041 struct cftype *cft, u64 val)
3042 {
3043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3044
3045 if (val & ~MOVE_MASK)
3046 return -EINVAL;
3047
3048 /*
3049 * No kind of locking is needed in here, because ->can_attach() will
3050 * check this value once in the beginning of the process, and then carry
3051 * on with stale data. This means that changes to this value will only
3052 * affect task migrations starting after the change.
3053 */
3054 memcg->move_charge_at_immigrate = val;
3055 return 0;
3056 }
3057 #else
3058 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3059 struct cftype *cft, u64 val)
3060 {
3061 return -ENOSYS;
3062 }
3063 #endif
3064
3065 #ifdef CONFIG_NUMA
3066 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3067 {
3068 struct numa_stat {
3069 const char *name;
3070 unsigned int lru_mask;
3071 };
3072
3073 static const struct numa_stat stats[] = {
3074 { "total", LRU_ALL },
3075 { "file", LRU_ALL_FILE },
3076 { "anon", LRU_ALL_ANON },
3077 { "unevictable", BIT(LRU_UNEVICTABLE) },
3078 };
3079 const struct numa_stat *stat;
3080 int nid;
3081 unsigned long nr;
3082 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3083
3084 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3085 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3086 seq_printf(m, "%s=%lu", stat->name, nr);
3087 for_each_node_state(nid, N_MEMORY) {
3088 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3089 stat->lru_mask);
3090 seq_printf(m, " N%d=%lu", nid, nr);
3091 }
3092 seq_putc(m, '\n');
3093 }
3094
3095 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3096 struct mem_cgroup *iter;
3097
3098 nr = 0;
3099 for_each_mem_cgroup_tree(iter, memcg)
3100 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3101 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = 0;
3104 for_each_mem_cgroup_tree(iter, memcg)
3105 nr += mem_cgroup_node_nr_lru_pages(
3106 iter, nid, stat->lru_mask);
3107 seq_printf(m, " N%d=%lu", nid, nr);
3108 }
3109 seq_putc(m, '\n');
3110 }
3111
3112 return 0;
3113 }
3114 #endif /* CONFIG_NUMA */
3115
3116 static int memcg_stat_show(struct seq_file *m, void *v)
3117 {
3118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3119 unsigned long memory, memsw;
3120 struct mem_cgroup *mi;
3121 unsigned int i;
3122
3123 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3124 MEM_CGROUP_STAT_NSTATS);
3125 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3126 MEM_CGROUP_EVENTS_NSTATS);
3127 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3128
3129 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3130 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3131 continue;
3132 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3133 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3134 }
3135
3136 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3137 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3138 mem_cgroup_read_events(memcg, i));
3139
3140 for (i = 0; i < NR_LRU_LISTS; i++)
3141 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3142 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3143
3144 /* Hierarchical information */
3145 memory = memsw = PAGE_COUNTER_MAX;
3146 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3147 memory = min(memory, mi->memory.limit);
3148 memsw = min(memsw, mi->memsw.limit);
3149 }
3150 seq_printf(m, "hierarchical_memory_limit %llu\n",
3151 (u64)memory * PAGE_SIZE);
3152 if (do_memsw_account())
3153 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3154 (u64)memsw * PAGE_SIZE);
3155
3156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3157 unsigned long long val = 0;
3158
3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160 continue;
3161 for_each_mem_cgroup_tree(mi, memcg)
3162 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3163 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3164 }
3165
3166 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3167 unsigned long long val = 0;
3168
3169 for_each_mem_cgroup_tree(mi, memcg)
3170 val += mem_cgroup_read_events(mi, i);
3171 seq_printf(m, "total_%s %llu\n",
3172 mem_cgroup_events_names[i], val);
3173 }
3174
3175 for (i = 0; i < NR_LRU_LISTS; i++) {
3176 unsigned long long val = 0;
3177
3178 for_each_mem_cgroup_tree(mi, memcg)
3179 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3180 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3181 }
3182
3183 #ifdef CONFIG_DEBUG_VM
3184 {
3185 int nid, zid;
3186 struct mem_cgroup_per_zone *mz;
3187 struct zone_reclaim_stat *rstat;
3188 unsigned long recent_rotated[2] = {0, 0};
3189 unsigned long recent_scanned[2] = {0, 0};
3190
3191 for_each_online_node(nid)
3192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3193 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3194 rstat = &mz->lruvec.reclaim_stat;
3195
3196 recent_rotated[0] += rstat->recent_rotated[0];
3197 recent_rotated[1] += rstat->recent_rotated[1];
3198 recent_scanned[0] += rstat->recent_scanned[0];
3199 recent_scanned[1] += rstat->recent_scanned[1];
3200 }
3201 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3202 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3203 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3204 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3205 }
3206 #endif
3207
3208 return 0;
3209 }
3210
3211 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3212 struct cftype *cft)
3213 {
3214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3215
3216 return mem_cgroup_swappiness(memcg);
3217 }
3218
3219 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3220 struct cftype *cft, u64 val)
3221 {
3222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3223
3224 if (val > 100)
3225 return -EINVAL;
3226
3227 if (css->parent)
3228 memcg->swappiness = val;
3229 else
3230 vm_swappiness = val;
3231
3232 return 0;
3233 }
3234
3235 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3236 {
3237 struct mem_cgroup_threshold_ary *t;
3238 unsigned long usage;
3239 int i;
3240
3241 rcu_read_lock();
3242 if (!swap)
3243 t = rcu_dereference(memcg->thresholds.primary);
3244 else
3245 t = rcu_dereference(memcg->memsw_thresholds.primary);
3246
3247 if (!t)
3248 goto unlock;
3249
3250 usage = mem_cgroup_usage(memcg, swap);
3251
3252 /*
3253 * current_threshold points to threshold just below or equal to usage.
3254 * If it's not true, a threshold was crossed after last
3255 * call of __mem_cgroup_threshold().
3256 */
3257 i = t->current_threshold;
3258
3259 /*
3260 * Iterate backward over array of thresholds starting from
3261 * current_threshold and check if a threshold is crossed.
3262 * If none of thresholds below usage is crossed, we read
3263 * only one element of the array here.
3264 */
3265 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3266 eventfd_signal(t->entries[i].eventfd, 1);
3267
3268 /* i = current_threshold + 1 */
3269 i++;
3270
3271 /*
3272 * Iterate forward over array of thresholds starting from
3273 * current_threshold+1 and check if a threshold is crossed.
3274 * If none of thresholds above usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* Update current_threshold */
3281 t->current_threshold = i - 1;
3282 unlock:
3283 rcu_read_unlock();
3284 }
3285
3286 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3287 {
3288 while (memcg) {
3289 __mem_cgroup_threshold(memcg, false);
3290 if (do_memsw_account())
3291 __mem_cgroup_threshold(memcg, true);
3292
3293 memcg = parent_mem_cgroup(memcg);
3294 }
3295 }
3296
3297 static int compare_thresholds(const void *a, const void *b)
3298 {
3299 const struct mem_cgroup_threshold *_a = a;
3300 const struct mem_cgroup_threshold *_b = b;
3301
3302 if (_a->threshold > _b->threshold)
3303 return 1;
3304
3305 if (_a->threshold < _b->threshold)
3306 return -1;
3307
3308 return 0;
3309 }
3310
3311 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3312 {
3313 struct mem_cgroup_eventfd_list *ev;
3314
3315 spin_lock(&memcg_oom_lock);
3316
3317 list_for_each_entry(ev, &memcg->oom_notify, list)
3318 eventfd_signal(ev->eventfd, 1);
3319
3320 spin_unlock(&memcg_oom_lock);
3321 return 0;
3322 }
3323
3324 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3325 {
3326 struct mem_cgroup *iter;
3327
3328 for_each_mem_cgroup_tree(iter, memcg)
3329 mem_cgroup_oom_notify_cb(iter);
3330 }
3331
3332 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3333 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3334 {
3335 struct mem_cgroup_thresholds *thresholds;
3336 struct mem_cgroup_threshold_ary *new;
3337 unsigned long threshold;
3338 unsigned long usage;
3339 int i, size, ret;
3340
3341 ret = page_counter_memparse(args, "-1", &threshold);
3342 if (ret)
3343 return ret;
3344
3345 mutex_lock(&memcg->thresholds_lock);
3346
3347 if (type == _MEM) {
3348 thresholds = &memcg->thresholds;
3349 usage = mem_cgroup_usage(memcg, false);
3350 } else if (type == _MEMSWAP) {
3351 thresholds = &memcg->memsw_thresholds;
3352 usage = mem_cgroup_usage(memcg, true);
3353 } else
3354 BUG();
3355
3356 /* Check if a threshold crossed before adding a new one */
3357 if (thresholds->primary)
3358 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3359
3360 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3361
3362 /* Allocate memory for new array of thresholds */
3363 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3364 GFP_KERNEL);
3365 if (!new) {
3366 ret = -ENOMEM;
3367 goto unlock;
3368 }
3369 new->size = size;
3370
3371 /* Copy thresholds (if any) to new array */
3372 if (thresholds->primary) {
3373 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3374 sizeof(struct mem_cgroup_threshold));
3375 }
3376
3377 /* Add new threshold */
3378 new->entries[size - 1].eventfd = eventfd;
3379 new->entries[size - 1].threshold = threshold;
3380
3381 /* Sort thresholds. Registering of new threshold isn't time-critical */
3382 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3383 compare_thresholds, NULL);
3384
3385 /* Find current threshold */
3386 new->current_threshold = -1;
3387 for (i = 0; i < size; i++) {
3388 if (new->entries[i].threshold <= usage) {
3389 /*
3390 * new->current_threshold will not be used until
3391 * rcu_assign_pointer(), so it's safe to increment
3392 * it here.
3393 */
3394 ++new->current_threshold;
3395 } else
3396 break;
3397 }
3398
3399 /* Free old spare buffer and save old primary buffer as spare */
3400 kfree(thresholds->spare);
3401 thresholds->spare = thresholds->primary;
3402
3403 rcu_assign_pointer(thresholds->primary, new);
3404
3405 /* To be sure that nobody uses thresholds */
3406 synchronize_rcu();
3407
3408 unlock:
3409 mutex_unlock(&memcg->thresholds_lock);
3410
3411 return ret;
3412 }
3413
3414 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3415 struct eventfd_ctx *eventfd, const char *args)
3416 {
3417 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3418 }
3419
3420 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3421 struct eventfd_ctx *eventfd, const char *args)
3422 {
3423 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3424 }
3425
3426 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, enum res_type type)
3428 {
3429 struct mem_cgroup_thresholds *thresholds;
3430 struct mem_cgroup_threshold_ary *new;
3431 unsigned long usage;
3432 int i, j, size;
3433
3434 mutex_lock(&memcg->thresholds_lock);
3435
3436 if (type == _MEM) {
3437 thresholds = &memcg->thresholds;
3438 usage = mem_cgroup_usage(memcg, false);
3439 } else if (type == _MEMSWAP) {
3440 thresholds = &memcg->memsw_thresholds;
3441 usage = mem_cgroup_usage(memcg, true);
3442 } else
3443 BUG();
3444
3445 if (!thresholds->primary)
3446 goto unlock;
3447
3448 /* Check if a threshold crossed before removing */
3449 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3450
3451 /* Calculate new number of threshold */
3452 size = 0;
3453 for (i = 0; i < thresholds->primary->size; i++) {
3454 if (thresholds->primary->entries[i].eventfd != eventfd)
3455 size++;
3456 }
3457
3458 new = thresholds->spare;
3459
3460 /* Set thresholds array to NULL if we don't have thresholds */
3461 if (!size) {
3462 kfree(new);
3463 new = NULL;
3464 goto swap_buffers;
3465 }
3466
3467 new->size = size;
3468
3469 /* Copy thresholds and find current threshold */
3470 new->current_threshold = -1;
3471 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3472 if (thresholds->primary->entries[i].eventfd == eventfd)
3473 continue;
3474
3475 new->entries[j] = thresholds->primary->entries[i];
3476 if (new->entries[j].threshold <= usage) {
3477 /*
3478 * new->current_threshold will not be used
3479 * until rcu_assign_pointer(), so it's safe to increment
3480 * it here.
3481 */
3482 ++new->current_threshold;
3483 }
3484 j++;
3485 }
3486
3487 swap_buffers:
3488 /* Swap primary and spare array */
3489 thresholds->spare = thresholds->primary;
3490
3491 rcu_assign_pointer(thresholds->primary, new);
3492
3493 /* To be sure that nobody uses thresholds */
3494 synchronize_rcu();
3495
3496 /* If all events are unregistered, free the spare array */
3497 if (!new) {
3498 kfree(thresholds->spare);
3499 thresholds->spare = NULL;
3500 }
3501 unlock:
3502 mutex_unlock(&memcg->thresholds_lock);
3503 }
3504
3505 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3506 struct eventfd_ctx *eventfd)
3507 {
3508 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3509 }
3510
3511 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3512 struct eventfd_ctx *eventfd)
3513 {
3514 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3515 }
3516
3517 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd, const char *args)
3519 {
3520 struct mem_cgroup_eventfd_list *event;
3521
3522 event = kmalloc(sizeof(*event), GFP_KERNEL);
3523 if (!event)
3524 return -ENOMEM;
3525
3526 spin_lock(&memcg_oom_lock);
3527
3528 event->eventfd = eventfd;
3529 list_add(&event->list, &memcg->oom_notify);
3530
3531 /* already in OOM ? */
3532 if (memcg->under_oom)
3533 eventfd_signal(eventfd, 1);
3534 spin_unlock(&memcg_oom_lock);
3535
3536 return 0;
3537 }
3538
3539 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3540 struct eventfd_ctx *eventfd)
3541 {
3542 struct mem_cgroup_eventfd_list *ev, *tmp;
3543
3544 spin_lock(&memcg_oom_lock);
3545
3546 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3547 if (ev->eventfd == eventfd) {
3548 list_del(&ev->list);
3549 kfree(ev);
3550 }
3551 }
3552
3553 spin_unlock(&memcg_oom_lock);
3554 }
3555
3556 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3557 {
3558 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3559
3560 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3561 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3562 return 0;
3563 }
3564
3565 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3566 struct cftype *cft, u64 val)
3567 {
3568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3569
3570 /* cannot set to root cgroup and only 0 and 1 are allowed */
3571 if (!css->parent || !((val == 0) || (val == 1)))
3572 return -EINVAL;
3573
3574 memcg->oom_kill_disable = val;
3575 if (!val)
3576 memcg_oom_recover(memcg);
3577
3578 return 0;
3579 }
3580
3581 #ifdef CONFIG_MEMCG_KMEM
3582 static int memcg_init_kmem(struct mem_cgroup *memcg)
3583 {
3584 int ret;
3585
3586 ret = memcg_propagate_kmem(memcg);
3587 if (ret)
3588 return ret;
3589
3590 return tcp_init_cgroup(memcg);
3591 }
3592
3593 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3594 {
3595 struct cgroup_subsys_state *css;
3596 struct mem_cgroup *parent, *child;
3597 int kmemcg_id;
3598
3599 if (!memcg->kmem_acct_active)
3600 return;
3601
3602 /*
3603 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3604 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3605 * guarantees no cache will be created for this cgroup after we are
3606 * done (see memcg_create_kmem_cache()).
3607 */
3608 memcg->kmem_acct_active = false;
3609
3610 memcg_deactivate_kmem_caches(memcg);
3611
3612 kmemcg_id = memcg->kmemcg_id;
3613 BUG_ON(kmemcg_id < 0);
3614
3615 parent = parent_mem_cgroup(memcg);
3616 if (!parent)
3617 parent = root_mem_cgroup;
3618
3619 /*
3620 * Change kmemcg_id of this cgroup and all its descendants to the
3621 * parent's id, and then move all entries from this cgroup's list_lrus
3622 * to ones of the parent. After we have finished, all list_lrus
3623 * corresponding to this cgroup are guaranteed to remain empty. The
3624 * ordering is imposed by list_lru_node->lock taken by
3625 * memcg_drain_all_list_lrus().
3626 */
3627 css_for_each_descendant_pre(css, &memcg->css) {
3628 child = mem_cgroup_from_css(css);
3629 BUG_ON(child->kmemcg_id != kmemcg_id);
3630 child->kmemcg_id = parent->kmemcg_id;
3631 if (!memcg->use_hierarchy)
3632 break;
3633 }
3634 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3635
3636 memcg_free_cache_id(kmemcg_id);
3637 }
3638
3639 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3640 {
3641 if (memcg->kmem_acct_activated) {
3642 memcg_destroy_kmem_caches(memcg);
3643 static_branch_dec(&memcg_kmem_enabled_key);
3644 WARN_ON(page_counter_read(&memcg->kmem));
3645 }
3646 tcp_destroy_cgroup(memcg);
3647 }
3648 #else
3649 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3650 {
3651 return 0;
3652 }
3653
3654 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3655 {
3656 }
3657
3658 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3659 {
3660 }
3661 #endif
3662
3663 #ifdef CONFIG_CGROUP_WRITEBACK
3664
3665 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3666 {
3667 return &memcg->cgwb_list;
3668 }
3669
3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671 {
3672 return wb_domain_init(&memcg->cgwb_domain, gfp);
3673 }
3674
3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3676 {
3677 wb_domain_exit(&memcg->cgwb_domain);
3678 }
3679
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 wb_domain_size_changed(&memcg->cgwb_domain);
3683 }
3684
3685 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3686 {
3687 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3688
3689 if (!memcg->css.parent)
3690 return NULL;
3691
3692 return &memcg->cgwb_domain;
3693 }
3694
3695 /**
3696 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3697 * @wb: bdi_writeback in question
3698 * @pfilepages: out parameter for number of file pages
3699 * @pheadroom: out parameter for number of allocatable pages according to memcg
3700 * @pdirty: out parameter for number of dirty pages
3701 * @pwriteback: out parameter for number of pages under writeback
3702 *
3703 * Determine the numbers of file, headroom, dirty, and writeback pages in
3704 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3705 * is a bit more involved.
3706 *
3707 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3708 * headroom is calculated as the lowest headroom of itself and the
3709 * ancestors. Note that this doesn't consider the actual amount of
3710 * available memory in the system. The caller should further cap
3711 * *@pheadroom accordingly.
3712 */
3713 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3714 unsigned long *pheadroom, unsigned long *pdirty,
3715 unsigned long *pwriteback)
3716 {
3717 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3718 struct mem_cgroup *parent;
3719
3720 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3721
3722 /* this should eventually include NR_UNSTABLE_NFS */
3723 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3724 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3725 (1 << LRU_ACTIVE_FILE));
3726 *pheadroom = PAGE_COUNTER_MAX;
3727
3728 while ((parent = parent_mem_cgroup(memcg))) {
3729 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3730 unsigned long used = page_counter_read(&memcg->memory);
3731
3732 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3733 memcg = parent;
3734 }
3735 }
3736
3737 #else /* CONFIG_CGROUP_WRITEBACK */
3738
3739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3740 {
3741 return 0;
3742 }
3743
3744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3745 {
3746 }
3747
3748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3749 {
3750 }
3751
3752 #endif /* CONFIG_CGROUP_WRITEBACK */
3753
3754 /*
3755 * DO NOT USE IN NEW FILES.
3756 *
3757 * "cgroup.event_control" implementation.
3758 *
3759 * This is way over-engineered. It tries to support fully configurable
3760 * events for each user. Such level of flexibility is completely
3761 * unnecessary especially in the light of the planned unified hierarchy.
3762 *
3763 * Please deprecate this and replace with something simpler if at all
3764 * possible.
3765 */
3766
3767 /*
3768 * Unregister event and free resources.
3769 *
3770 * Gets called from workqueue.
3771 */
3772 static void memcg_event_remove(struct work_struct *work)
3773 {
3774 struct mem_cgroup_event *event =
3775 container_of(work, struct mem_cgroup_event, remove);
3776 struct mem_cgroup *memcg = event->memcg;
3777
3778 remove_wait_queue(event->wqh, &event->wait);
3779
3780 event->unregister_event(memcg, event->eventfd);
3781
3782 /* Notify userspace the event is going away. */
3783 eventfd_signal(event->eventfd, 1);
3784
3785 eventfd_ctx_put(event->eventfd);
3786 kfree(event);
3787 css_put(&memcg->css);
3788 }
3789
3790 /*
3791 * Gets called on POLLHUP on eventfd when user closes it.
3792 *
3793 * Called with wqh->lock held and interrupts disabled.
3794 */
3795 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3796 int sync, void *key)
3797 {
3798 struct mem_cgroup_event *event =
3799 container_of(wait, struct mem_cgroup_event, wait);
3800 struct mem_cgroup *memcg = event->memcg;
3801 unsigned long flags = (unsigned long)key;
3802
3803 if (flags & POLLHUP) {
3804 /*
3805 * If the event has been detached at cgroup removal, we
3806 * can simply return knowing the other side will cleanup
3807 * for us.
3808 *
3809 * We can't race against event freeing since the other
3810 * side will require wqh->lock via remove_wait_queue(),
3811 * which we hold.
3812 */
3813 spin_lock(&memcg->event_list_lock);
3814 if (!list_empty(&event->list)) {
3815 list_del_init(&event->list);
3816 /*
3817 * We are in atomic context, but cgroup_event_remove()
3818 * may sleep, so we have to call it in workqueue.
3819 */
3820 schedule_work(&event->remove);
3821 }
3822 spin_unlock(&memcg->event_list_lock);
3823 }
3824
3825 return 0;
3826 }
3827
3828 static void memcg_event_ptable_queue_proc(struct file *file,
3829 wait_queue_head_t *wqh, poll_table *pt)
3830 {
3831 struct mem_cgroup_event *event =
3832 container_of(pt, struct mem_cgroup_event, pt);
3833
3834 event->wqh = wqh;
3835 add_wait_queue(wqh, &event->wait);
3836 }
3837
3838 /*
3839 * DO NOT USE IN NEW FILES.
3840 *
3841 * Parse input and register new cgroup event handler.
3842 *
3843 * Input must be in format '<event_fd> <control_fd> <args>'.
3844 * Interpretation of args is defined by control file implementation.
3845 */
3846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3847 char *buf, size_t nbytes, loff_t off)
3848 {
3849 struct cgroup_subsys_state *css = of_css(of);
3850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3851 struct mem_cgroup_event *event;
3852 struct cgroup_subsys_state *cfile_css;
3853 unsigned int efd, cfd;
3854 struct fd efile;
3855 struct fd cfile;
3856 const char *name;
3857 char *endp;
3858 int ret;
3859
3860 buf = strstrip(buf);
3861
3862 efd = simple_strtoul(buf, &endp, 10);
3863 if (*endp != ' ')
3864 return -EINVAL;
3865 buf = endp + 1;
3866
3867 cfd = simple_strtoul(buf, &endp, 10);
3868 if ((*endp != ' ') && (*endp != '\0'))
3869 return -EINVAL;
3870 buf = endp + 1;
3871
3872 event = kzalloc(sizeof(*event), GFP_KERNEL);
3873 if (!event)
3874 return -ENOMEM;
3875
3876 event->memcg = memcg;
3877 INIT_LIST_HEAD(&event->list);
3878 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3879 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3880 INIT_WORK(&event->remove, memcg_event_remove);
3881
3882 efile = fdget(efd);
3883 if (!efile.file) {
3884 ret = -EBADF;
3885 goto out_kfree;
3886 }
3887
3888 event->eventfd = eventfd_ctx_fileget(efile.file);
3889 if (IS_ERR(event->eventfd)) {
3890 ret = PTR_ERR(event->eventfd);
3891 goto out_put_efile;
3892 }
3893
3894 cfile = fdget(cfd);
3895 if (!cfile.file) {
3896 ret = -EBADF;
3897 goto out_put_eventfd;
3898 }
3899
3900 /* the process need read permission on control file */
3901 /* AV: shouldn't we check that it's been opened for read instead? */
3902 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3903 if (ret < 0)
3904 goto out_put_cfile;
3905
3906 /*
3907 * Determine the event callbacks and set them in @event. This used
3908 * to be done via struct cftype but cgroup core no longer knows
3909 * about these events. The following is crude but the whole thing
3910 * is for compatibility anyway.
3911 *
3912 * DO NOT ADD NEW FILES.
3913 */
3914 name = cfile.file->f_path.dentry->d_name.name;
3915
3916 if (!strcmp(name, "memory.usage_in_bytes")) {
3917 event->register_event = mem_cgroup_usage_register_event;
3918 event->unregister_event = mem_cgroup_usage_unregister_event;
3919 } else if (!strcmp(name, "memory.oom_control")) {
3920 event->register_event = mem_cgroup_oom_register_event;
3921 event->unregister_event = mem_cgroup_oom_unregister_event;
3922 } else if (!strcmp(name, "memory.pressure_level")) {
3923 event->register_event = vmpressure_register_event;
3924 event->unregister_event = vmpressure_unregister_event;
3925 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3926 event->register_event = memsw_cgroup_usage_register_event;
3927 event->unregister_event = memsw_cgroup_usage_unregister_event;
3928 } else {
3929 ret = -EINVAL;
3930 goto out_put_cfile;
3931 }
3932
3933 /*
3934 * Verify @cfile should belong to @css. Also, remaining events are
3935 * automatically removed on cgroup destruction but the removal is
3936 * asynchronous, so take an extra ref on @css.
3937 */
3938 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3939 &memory_cgrp_subsys);
3940 ret = -EINVAL;
3941 if (IS_ERR(cfile_css))
3942 goto out_put_cfile;
3943 if (cfile_css != css) {
3944 css_put(cfile_css);
3945 goto out_put_cfile;
3946 }
3947
3948 ret = event->register_event(memcg, event->eventfd, buf);
3949 if (ret)
3950 goto out_put_css;
3951
3952 efile.file->f_op->poll(efile.file, &event->pt);
3953
3954 spin_lock(&memcg->event_list_lock);
3955 list_add(&event->list, &memcg->event_list);
3956 spin_unlock(&memcg->event_list_lock);
3957
3958 fdput(cfile);
3959 fdput(efile);
3960
3961 return nbytes;
3962
3963 out_put_css:
3964 css_put(css);
3965 out_put_cfile:
3966 fdput(cfile);
3967 out_put_eventfd:
3968 eventfd_ctx_put(event->eventfd);
3969 out_put_efile:
3970 fdput(efile);
3971 out_kfree:
3972 kfree(event);
3973
3974 return ret;
3975 }
3976
3977 static struct cftype mem_cgroup_legacy_files[] = {
3978 {
3979 .name = "usage_in_bytes",
3980 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "max_usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3986 .write = mem_cgroup_reset,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "limit_in_bytes",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3992 .write = mem_cgroup_write,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "soft_limit_in_bytes",
3997 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3998 .write = mem_cgroup_write,
3999 .read_u64 = mem_cgroup_read_u64,
4000 },
4001 {
4002 .name = "failcnt",
4003 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4004 .write = mem_cgroup_reset,
4005 .read_u64 = mem_cgroup_read_u64,
4006 },
4007 {
4008 .name = "stat",
4009 .seq_show = memcg_stat_show,
4010 },
4011 {
4012 .name = "force_empty",
4013 .write = mem_cgroup_force_empty_write,
4014 },
4015 {
4016 .name = "use_hierarchy",
4017 .write_u64 = mem_cgroup_hierarchy_write,
4018 .read_u64 = mem_cgroup_hierarchy_read,
4019 },
4020 {
4021 .name = "cgroup.event_control", /* XXX: for compat */
4022 .write = memcg_write_event_control,
4023 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4024 },
4025 {
4026 .name = "swappiness",
4027 .read_u64 = mem_cgroup_swappiness_read,
4028 .write_u64 = mem_cgroup_swappiness_write,
4029 },
4030 {
4031 .name = "move_charge_at_immigrate",
4032 .read_u64 = mem_cgroup_move_charge_read,
4033 .write_u64 = mem_cgroup_move_charge_write,
4034 },
4035 {
4036 .name = "oom_control",
4037 .seq_show = mem_cgroup_oom_control_read,
4038 .write_u64 = mem_cgroup_oom_control_write,
4039 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4040 },
4041 {
4042 .name = "pressure_level",
4043 },
4044 #ifdef CONFIG_NUMA
4045 {
4046 .name = "numa_stat",
4047 .seq_show = memcg_numa_stat_show,
4048 },
4049 #endif
4050 #ifdef CONFIG_MEMCG_KMEM
4051 {
4052 .name = "kmem.limit_in_bytes",
4053 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4054 .write = mem_cgroup_write,
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
4057 {
4058 .name = "kmem.usage_in_bytes",
4059 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
4062 {
4063 .name = "kmem.failcnt",
4064 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4065 .write = mem_cgroup_reset,
4066 .read_u64 = mem_cgroup_read_u64,
4067 },
4068 {
4069 .name = "kmem.max_usage_in_bytes",
4070 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4071 .write = mem_cgroup_reset,
4072 .read_u64 = mem_cgroup_read_u64,
4073 },
4074 #ifdef CONFIG_SLABINFO
4075 {
4076 .name = "kmem.slabinfo",
4077 .seq_start = slab_start,
4078 .seq_next = slab_next,
4079 .seq_stop = slab_stop,
4080 .seq_show = memcg_slab_show,
4081 },
4082 #endif
4083 #endif
4084 { }, /* terminate */
4085 };
4086
4087 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4088 {
4089 struct mem_cgroup_per_node *pn;
4090 struct mem_cgroup_per_zone *mz;
4091 int zone, tmp = node;
4092 /*
4093 * This routine is called against possible nodes.
4094 * But it's BUG to call kmalloc() against offline node.
4095 *
4096 * TODO: this routine can waste much memory for nodes which will
4097 * never be onlined. It's better to use memory hotplug callback
4098 * function.
4099 */
4100 if (!node_state(node, N_NORMAL_MEMORY))
4101 tmp = -1;
4102 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4103 if (!pn)
4104 return 1;
4105
4106 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4107 mz = &pn->zoneinfo[zone];
4108 lruvec_init(&mz->lruvec);
4109 mz->usage_in_excess = 0;
4110 mz->on_tree = false;
4111 mz->memcg = memcg;
4112 }
4113 memcg->nodeinfo[node] = pn;
4114 return 0;
4115 }
4116
4117 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4118 {
4119 kfree(memcg->nodeinfo[node]);
4120 }
4121
4122 static struct mem_cgroup *mem_cgroup_alloc(void)
4123 {
4124 struct mem_cgroup *memcg;
4125 size_t size;
4126
4127 size = sizeof(struct mem_cgroup);
4128 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4129
4130 memcg = kzalloc(size, GFP_KERNEL);
4131 if (!memcg)
4132 return NULL;
4133
4134 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4135 if (!memcg->stat)
4136 goto out_free;
4137
4138 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4139 goto out_free_stat;
4140
4141 return memcg;
4142
4143 out_free_stat:
4144 free_percpu(memcg->stat);
4145 out_free:
4146 kfree(memcg);
4147 return NULL;
4148 }
4149
4150 /*
4151 * At destroying mem_cgroup, references from swap_cgroup can remain.
4152 * (scanning all at force_empty is too costly...)
4153 *
4154 * Instead of clearing all references at force_empty, we remember
4155 * the number of reference from swap_cgroup and free mem_cgroup when
4156 * it goes down to 0.
4157 *
4158 * Removal of cgroup itself succeeds regardless of refs from swap.
4159 */
4160
4161 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4162 {
4163 int node;
4164
4165 cancel_work_sync(&memcg->high_work);
4166
4167 mem_cgroup_remove_from_trees(memcg);
4168
4169 for_each_node(node)
4170 free_mem_cgroup_per_zone_info(memcg, node);
4171
4172 free_percpu(memcg->stat);
4173 memcg_wb_domain_exit(memcg);
4174 kfree(memcg);
4175 }
4176
4177 static struct cgroup_subsys_state * __ref
4178 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4179 {
4180 struct mem_cgroup *memcg;
4181 long error = -ENOMEM;
4182 int node;
4183
4184 memcg = mem_cgroup_alloc();
4185 if (!memcg)
4186 return ERR_PTR(error);
4187
4188 for_each_node(node)
4189 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4190 goto free_out;
4191
4192 /* root ? */
4193 if (parent_css == NULL) {
4194 root_mem_cgroup = memcg;
4195 page_counter_init(&memcg->memory, NULL);
4196 memcg->high = PAGE_COUNTER_MAX;
4197 memcg->soft_limit = PAGE_COUNTER_MAX;
4198 page_counter_init(&memcg->memsw, NULL);
4199 page_counter_init(&memcg->kmem, NULL);
4200 }
4201
4202 INIT_WORK(&memcg->high_work, high_work_func);
4203 memcg->last_scanned_node = MAX_NUMNODES;
4204 INIT_LIST_HEAD(&memcg->oom_notify);
4205 memcg->move_charge_at_immigrate = 0;
4206 mutex_init(&memcg->thresholds_lock);
4207 spin_lock_init(&memcg->move_lock);
4208 vmpressure_init(&memcg->vmpressure);
4209 INIT_LIST_HEAD(&memcg->event_list);
4210 spin_lock_init(&memcg->event_list_lock);
4211 #ifdef CONFIG_MEMCG_KMEM
4212 memcg->kmemcg_id = -1;
4213 #endif
4214 #ifdef CONFIG_CGROUP_WRITEBACK
4215 INIT_LIST_HEAD(&memcg->cgwb_list);
4216 #endif
4217 #ifdef CONFIG_INET
4218 memcg->socket_pressure = jiffies;
4219 #endif
4220 return &memcg->css;
4221
4222 free_out:
4223 __mem_cgroup_free(memcg);
4224 return ERR_PTR(error);
4225 }
4226
4227 static int
4228 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4229 {
4230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4231 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4232 int ret;
4233
4234 if (css->id > MEM_CGROUP_ID_MAX)
4235 return -ENOSPC;
4236
4237 if (!parent)
4238 return 0;
4239
4240 mutex_lock(&memcg_create_mutex);
4241
4242 memcg->use_hierarchy = parent->use_hierarchy;
4243 memcg->oom_kill_disable = parent->oom_kill_disable;
4244 memcg->swappiness = mem_cgroup_swappiness(parent);
4245
4246 if (parent->use_hierarchy) {
4247 page_counter_init(&memcg->memory, &parent->memory);
4248 memcg->high = PAGE_COUNTER_MAX;
4249 memcg->soft_limit = PAGE_COUNTER_MAX;
4250 page_counter_init(&memcg->memsw, &parent->memsw);
4251 page_counter_init(&memcg->kmem, &parent->kmem);
4252
4253 /*
4254 * No need to take a reference to the parent because cgroup
4255 * core guarantees its existence.
4256 */
4257 } else {
4258 page_counter_init(&memcg->memory, NULL);
4259 memcg->high = PAGE_COUNTER_MAX;
4260 memcg->soft_limit = PAGE_COUNTER_MAX;
4261 page_counter_init(&memcg->memsw, NULL);
4262 page_counter_init(&memcg->kmem, NULL);
4263 /*
4264 * Deeper hierachy with use_hierarchy == false doesn't make
4265 * much sense so let cgroup subsystem know about this
4266 * unfortunate state in our controller.
4267 */
4268 if (parent != root_mem_cgroup)
4269 memory_cgrp_subsys.broken_hierarchy = true;
4270 }
4271 mutex_unlock(&memcg_create_mutex);
4272
4273 ret = memcg_init_kmem(memcg);
4274 if (ret)
4275 return ret;
4276
4277 #ifdef CONFIG_INET
4278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4279 static_branch_inc(&memcg_sockets_enabled_key);
4280 #endif
4281
4282 /*
4283 * Make sure the memcg is initialized: mem_cgroup_iter()
4284 * orders reading memcg->initialized against its callers
4285 * reading the memcg members.
4286 */
4287 smp_store_release(&memcg->initialized, 1);
4288
4289 return 0;
4290 }
4291
4292 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4293 {
4294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4295 struct mem_cgroup_event *event, *tmp;
4296
4297 /*
4298 * Unregister events and notify userspace.
4299 * Notify userspace about cgroup removing only after rmdir of cgroup
4300 * directory to avoid race between userspace and kernelspace.
4301 */
4302 spin_lock(&memcg->event_list_lock);
4303 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4304 list_del_init(&event->list);
4305 schedule_work(&event->remove);
4306 }
4307 spin_unlock(&memcg->event_list_lock);
4308
4309 vmpressure_cleanup(&memcg->vmpressure);
4310
4311 memcg_deactivate_kmem(memcg);
4312
4313 wb_memcg_offline(memcg);
4314 }
4315
4316 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4317 {
4318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4319
4320 invalidate_reclaim_iterators(memcg);
4321 }
4322
4323 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4324 {
4325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4326
4327 memcg_destroy_kmem(memcg);
4328 #ifdef CONFIG_INET
4329 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4330 static_branch_dec(&memcg_sockets_enabled_key);
4331 #endif
4332 __mem_cgroup_free(memcg);
4333 }
4334
4335 /**
4336 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4337 * @css: the target css
4338 *
4339 * Reset the states of the mem_cgroup associated with @css. This is
4340 * invoked when the userland requests disabling on the default hierarchy
4341 * but the memcg is pinned through dependency. The memcg should stop
4342 * applying policies and should revert to the vanilla state as it may be
4343 * made visible again.
4344 *
4345 * The current implementation only resets the essential configurations.
4346 * This needs to be expanded to cover all the visible parts.
4347 */
4348 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4349 {
4350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4351
4352 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4353 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4354 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4355 memcg->low = 0;
4356 memcg->high = PAGE_COUNTER_MAX;
4357 memcg->soft_limit = PAGE_COUNTER_MAX;
4358 memcg_wb_domain_size_changed(memcg);
4359 }
4360
4361 #ifdef CONFIG_MMU
4362 /* Handlers for move charge at task migration. */
4363 static int mem_cgroup_do_precharge(unsigned long count)
4364 {
4365 int ret;
4366
4367 /* Try a single bulk charge without reclaim first, kswapd may wake */
4368 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4369 if (!ret) {
4370 mc.precharge += count;
4371 return ret;
4372 }
4373
4374 /* Try charges one by one with reclaim */
4375 while (count--) {
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4377 if (ret)
4378 return ret;
4379 mc.precharge++;
4380 cond_resched();
4381 }
4382 return 0;
4383 }
4384
4385 /**
4386 * get_mctgt_type - get target type of moving charge
4387 * @vma: the vma the pte to be checked belongs
4388 * @addr: the address corresponding to the pte to be checked
4389 * @ptent: the pte to be checked
4390 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4391 *
4392 * Returns
4393 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4394 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4395 * move charge. if @target is not NULL, the page is stored in target->page
4396 * with extra refcnt got(Callers should handle it).
4397 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4398 * target for charge migration. if @target is not NULL, the entry is stored
4399 * in target->ent.
4400 *
4401 * Called with pte lock held.
4402 */
4403 union mc_target {
4404 struct page *page;
4405 swp_entry_t ent;
4406 };
4407
4408 enum mc_target_type {
4409 MC_TARGET_NONE = 0,
4410 MC_TARGET_PAGE,
4411 MC_TARGET_SWAP,
4412 };
4413
4414 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4415 unsigned long addr, pte_t ptent)
4416 {
4417 struct page *page = vm_normal_page(vma, addr, ptent);
4418
4419 if (!page || !page_mapped(page))
4420 return NULL;
4421 if (PageAnon(page)) {
4422 if (!(mc.flags & MOVE_ANON))
4423 return NULL;
4424 } else {
4425 if (!(mc.flags & MOVE_FILE))
4426 return NULL;
4427 }
4428 if (!get_page_unless_zero(page))
4429 return NULL;
4430
4431 return page;
4432 }
4433
4434 #ifdef CONFIG_SWAP
4435 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4436 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4437 {
4438 struct page *page = NULL;
4439 swp_entry_t ent = pte_to_swp_entry(ptent);
4440
4441 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4442 return NULL;
4443 /*
4444 * Because lookup_swap_cache() updates some statistics counter,
4445 * we call find_get_page() with swapper_space directly.
4446 */
4447 page = find_get_page(swap_address_space(ent), ent.val);
4448 if (do_memsw_account())
4449 entry->val = ent.val;
4450
4451 return page;
4452 }
4453 #else
4454 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4455 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4456 {
4457 return NULL;
4458 }
4459 #endif
4460
4461 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4462 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4463 {
4464 struct page *page = NULL;
4465 struct address_space *mapping;
4466 pgoff_t pgoff;
4467
4468 if (!vma->vm_file) /* anonymous vma */
4469 return NULL;
4470 if (!(mc.flags & MOVE_FILE))
4471 return NULL;
4472
4473 mapping = vma->vm_file->f_mapping;
4474 pgoff = linear_page_index(vma, addr);
4475
4476 /* page is moved even if it's not RSS of this task(page-faulted). */
4477 #ifdef CONFIG_SWAP
4478 /* shmem/tmpfs may report page out on swap: account for that too. */
4479 if (shmem_mapping(mapping)) {
4480 page = find_get_entry(mapping, pgoff);
4481 if (radix_tree_exceptional_entry(page)) {
4482 swp_entry_t swp = radix_to_swp_entry(page);
4483 if (do_memsw_account())
4484 *entry = swp;
4485 page = find_get_page(swap_address_space(swp), swp.val);
4486 }
4487 } else
4488 page = find_get_page(mapping, pgoff);
4489 #else
4490 page = find_get_page(mapping, pgoff);
4491 #endif
4492 return page;
4493 }
4494
4495 /**
4496 * mem_cgroup_move_account - move account of the page
4497 * @page: the page
4498 * @nr_pages: number of regular pages (>1 for huge pages)
4499 * @from: mem_cgroup which the page is moved from.
4500 * @to: mem_cgroup which the page is moved to. @from != @to.
4501 *
4502 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4503 *
4504 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4505 * from old cgroup.
4506 */
4507 static int mem_cgroup_move_account(struct page *page,
4508 bool compound,
4509 struct mem_cgroup *from,
4510 struct mem_cgroup *to)
4511 {
4512 unsigned long flags;
4513 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4514 int ret;
4515 bool anon;
4516
4517 VM_BUG_ON(from == to);
4518 VM_BUG_ON_PAGE(PageLRU(page), page);
4519 VM_BUG_ON(compound && !PageTransHuge(page));
4520
4521 /*
4522 * Prevent mem_cgroup_replace_page() from looking at
4523 * page->mem_cgroup of its source page while we change it.
4524 */
4525 ret = -EBUSY;
4526 if (!trylock_page(page))
4527 goto out;
4528
4529 ret = -EINVAL;
4530 if (page->mem_cgroup != from)
4531 goto out_unlock;
4532
4533 anon = PageAnon(page);
4534
4535 spin_lock_irqsave(&from->move_lock, flags);
4536
4537 if (!anon && page_mapped(page)) {
4538 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4539 nr_pages);
4540 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4541 nr_pages);
4542 }
4543
4544 /*
4545 * move_lock grabbed above and caller set from->moving_account, so
4546 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4547 * So mapping should be stable for dirty pages.
4548 */
4549 if (!anon && PageDirty(page)) {
4550 struct address_space *mapping = page_mapping(page);
4551
4552 if (mapping_cap_account_dirty(mapping)) {
4553 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4554 nr_pages);
4555 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4556 nr_pages);
4557 }
4558 }
4559
4560 if (PageWriteback(page)) {
4561 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4562 nr_pages);
4563 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4564 nr_pages);
4565 }
4566
4567 /*
4568 * It is safe to change page->mem_cgroup here because the page
4569 * is referenced, charged, and isolated - we can't race with
4570 * uncharging, charging, migration, or LRU putback.
4571 */
4572
4573 /* caller should have done css_get */
4574 page->mem_cgroup = to;
4575 spin_unlock_irqrestore(&from->move_lock, flags);
4576
4577 ret = 0;
4578
4579 local_irq_disable();
4580 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4581 memcg_check_events(to, page);
4582 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4583 memcg_check_events(from, page);
4584 local_irq_enable();
4585 out_unlock:
4586 unlock_page(page);
4587 out:
4588 return ret;
4589 }
4590
4591 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4592 unsigned long addr, pte_t ptent, union mc_target *target)
4593 {
4594 struct page *page = NULL;
4595 enum mc_target_type ret = MC_TARGET_NONE;
4596 swp_entry_t ent = { .val = 0 };
4597
4598 if (pte_present(ptent))
4599 page = mc_handle_present_pte(vma, addr, ptent);
4600 else if (is_swap_pte(ptent))
4601 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4602 else if (pte_none(ptent))
4603 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4604
4605 if (!page && !ent.val)
4606 return ret;
4607 if (page) {
4608 /*
4609 * Do only loose check w/o serialization.
4610 * mem_cgroup_move_account() checks the page is valid or
4611 * not under LRU exclusion.
4612 */
4613 if (page->mem_cgroup == mc.from) {
4614 ret = MC_TARGET_PAGE;
4615 if (target)
4616 target->page = page;
4617 }
4618 if (!ret || !target)
4619 put_page(page);
4620 }
4621 /* There is a swap entry and a page doesn't exist or isn't charged */
4622 if (ent.val && !ret &&
4623 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4624 ret = MC_TARGET_SWAP;
4625 if (target)
4626 target->ent = ent;
4627 }
4628 return ret;
4629 }
4630
4631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4632 /*
4633 * We don't consider swapping or file mapped pages because THP does not
4634 * support them for now.
4635 * Caller should make sure that pmd_trans_huge(pmd) is true.
4636 */
4637 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4638 unsigned long addr, pmd_t pmd, union mc_target *target)
4639 {
4640 struct page *page = NULL;
4641 enum mc_target_type ret = MC_TARGET_NONE;
4642
4643 page = pmd_page(pmd);
4644 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4645 if (!(mc.flags & MOVE_ANON))
4646 return ret;
4647 if (page->mem_cgroup == mc.from) {
4648 ret = MC_TARGET_PAGE;
4649 if (target) {
4650 get_page(page);
4651 target->page = page;
4652 }
4653 }
4654 return ret;
4655 }
4656 #else
4657 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4658 unsigned long addr, pmd_t pmd, union mc_target *target)
4659 {
4660 return MC_TARGET_NONE;
4661 }
4662 #endif
4663
4664 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4665 unsigned long addr, unsigned long end,
4666 struct mm_walk *walk)
4667 {
4668 struct vm_area_struct *vma = walk->vma;
4669 pte_t *pte;
4670 spinlock_t *ptl;
4671
4672 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4673 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4674 mc.precharge += HPAGE_PMD_NR;
4675 spin_unlock(ptl);
4676 return 0;
4677 }
4678
4679 if (pmd_trans_unstable(pmd))
4680 return 0;
4681 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4682 for (; addr != end; pte++, addr += PAGE_SIZE)
4683 if (get_mctgt_type(vma, addr, *pte, NULL))
4684 mc.precharge++; /* increment precharge temporarily */
4685 pte_unmap_unlock(pte - 1, ptl);
4686 cond_resched();
4687
4688 return 0;
4689 }
4690
4691 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4692 {
4693 unsigned long precharge;
4694
4695 struct mm_walk mem_cgroup_count_precharge_walk = {
4696 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4697 .mm = mm,
4698 };
4699 down_read(&mm->mmap_sem);
4700 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4701 up_read(&mm->mmap_sem);
4702
4703 precharge = mc.precharge;
4704 mc.precharge = 0;
4705
4706 return precharge;
4707 }
4708
4709 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4710 {
4711 unsigned long precharge = mem_cgroup_count_precharge(mm);
4712
4713 VM_BUG_ON(mc.moving_task);
4714 mc.moving_task = current;
4715 return mem_cgroup_do_precharge(precharge);
4716 }
4717
4718 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4719 static void __mem_cgroup_clear_mc(void)
4720 {
4721 struct mem_cgroup *from = mc.from;
4722 struct mem_cgroup *to = mc.to;
4723
4724 /* we must uncharge all the leftover precharges from mc.to */
4725 if (mc.precharge) {
4726 cancel_charge(mc.to, mc.precharge);
4727 mc.precharge = 0;
4728 }
4729 /*
4730 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4731 * we must uncharge here.
4732 */
4733 if (mc.moved_charge) {
4734 cancel_charge(mc.from, mc.moved_charge);
4735 mc.moved_charge = 0;
4736 }
4737 /* we must fixup refcnts and charges */
4738 if (mc.moved_swap) {
4739 /* uncharge swap account from the old cgroup */
4740 if (!mem_cgroup_is_root(mc.from))
4741 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4742
4743 /*
4744 * we charged both to->memory and to->memsw, so we
4745 * should uncharge to->memory.
4746 */
4747 if (!mem_cgroup_is_root(mc.to))
4748 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4749
4750 css_put_many(&mc.from->css, mc.moved_swap);
4751
4752 /* we've already done css_get(mc.to) */
4753 mc.moved_swap = 0;
4754 }
4755 memcg_oom_recover(from);
4756 memcg_oom_recover(to);
4757 wake_up_all(&mc.waitq);
4758 }
4759
4760 static void mem_cgroup_clear_mc(void)
4761 {
4762 /*
4763 * we must clear moving_task before waking up waiters at the end of
4764 * task migration.
4765 */
4766 mc.moving_task = NULL;
4767 __mem_cgroup_clear_mc();
4768 spin_lock(&mc.lock);
4769 mc.from = NULL;
4770 mc.to = NULL;
4771 spin_unlock(&mc.lock);
4772 }
4773
4774 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4775 {
4776 struct cgroup_subsys_state *css;
4777 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4778 struct mem_cgroup *from;
4779 struct task_struct *leader, *p;
4780 struct mm_struct *mm;
4781 unsigned long move_flags;
4782 int ret = 0;
4783
4784 /* charge immigration isn't supported on the default hierarchy */
4785 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4786 return 0;
4787
4788 /*
4789 * Multi-process migrations only happen on the default hierarchy
4790 * where charge immigration is not used. Perform charge
4791 * immigration if @tset contains a leader and whine if there are
4792 * multiple.
4793 */
4794 p = NULL;
4795 cgroup_taskset_for_each_leader(leader, css, tset) {
4796 WARN_ON_ONCE(p);
4797 p = leader;
4798 memcg = mem_cgroup_from_css(css);
4799 }
4800 if (!p)
4801 return 0;
4802
4803 /*
4804 * We are now commited to this value whatever it is. Changes in this
4805 * tunable will only affect upcoming migrations, not the current one.
4806 * So we need to save it, and keep it going.
4807 */
4808 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4809 if (!move_flags)
4810 return 0;
4811
4812 from = mem_cgroup_from_task(p);
4813
4814 VM_BUG_ON(from == memcg);
4815
4816 mm = get_task_mm(p);
4817 if (!mm)
4818 return 0;
4819 /* We move charges only when we move a owner of the mm */
4820 if (mm->owner == p) {
4821 VM_BUG_ON(mc.from);
4822 VM_BUG_ON(mc.to);
4823 VM_BUG_ON(mc.precharge);
4824 VM_BUG_ON(mc.moved_charge);
4825 VM_BUG_ON(mc.moved_swap);
4826
4827 spin_lock(&mc.lock);
4828 mc.from = from;
4829 mc.to = memcg;
4830 mc.flags = move_flags;
4831 spin_unlock(&mc.lock);
4832 /* We set mc.moving_task later */
4833
4834 ret = mem_cgroup_precharge_mc(mm);
4835 if (ret)
4836 mem_cgroup_clear_mc();
4837 }
4838 mmput(mm);
4839 return ret;
4840 }
4841
4842 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4843 {
4844 if (mc.to)
4845 mem_cgroup_clear_mc();
4846 }
4847
4848 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4849 unsigned long addr, unsigned long end,
4850 struct mm_walk *walk)
4851 {
4852 int ret = 0;
4853 struct vm_area_struct *vma = walk->vma;
4854 pte_t *pte;
4855 spinlock_t *ptl;
4856 enum mc_target_type target_type;
4857 union mc_target target;
4858 struct page *page;
4859
4860 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4861 if (mc.precharge < HPAGE_PMD_NR) {
4862 spin_unlock(ptl);
4863 return 0;
4864 }
4865 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4866 if (target_type == MC_TARGET_PAGE) {
4867 page = target.page;
4868 if (!isolate_lru_page(page)) {
4869 if (!mem_cgroup_move_account(page, true,
4870 mc.from, mc.to)) {
4871 mc.precharge -= HPAGE_PMD_NR;
4872 mc.moved_charge += HPAGE_PMD_NR;
4873 }
4874 putback_lru_page(page);
4875 }
4876 put_page(page);
4877 }
4878 spin_unlock(ptl);
4879 return 0;
4880 }
4881
4882 if (pmd_trans_unstable(pmd))
4883 return 0;
4884 retry:
4885 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4886 for (; addr != end; addr += PAGE_SIZE) {
4887 pte_t ptent = *(pte++);
4888 swp_entry_t ent;
4889
4890 if (!mc.precharge)
4891 break;
4892
4893 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4894 case MC_TARGET_PAGE:
4895 page = target.page;
4896 /*
4897 * We can have a part of the split pmd here. Moving it
4898 * can be done but it would be too convoluted so simply
4899 * ignore such a partial THP and keep it in original
4900 * memcg. There should be somebody mapping the head.
4901 */
4902 if (PageTransCompound(page))
4903 goto put;
4904 if (isolate_lru_page(page))
4905 goto put;
4906 if (!mem_cgroup_move_account(page, false,
4907 mc.from, mc.to)) {
4908 mc.precharge--;
4909 /* we uncharge from mc.from later. */
4910 mc.moved_charge++;
4911 }
4912 putback_lru_page(page);
4913 put: /* get_mctgt_type() gets the page */
4914 put_page(page);
4915 break;
4916 case MC_TARGET_SWAP:
4917 ent = target.ent;
4918 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4919 mc.precharge--;
4920 /* we fixup refcnts and charges later. */
4921 mc.moved_swap++;
4922 }
4923 break;
4924 default:
4925 break;
4926 }
4927 }
4928 pte_unmap_unlock(pte - 1, ptl);
4929 cond_resched();
4930
4931 if (addr != end) {
4932 /*
4933 * We have consumed all precharges we got in can_attach().
4934 * We try charge one by one, but don't do any additional
4935 * charges to mc.to if we have failed in charge once in attach()
4936 * phase.
4937 */
4938 ret = mem_cgroup_do_precharge(1);
4939 if (!ret)
4940 goto retry;
4941 }
4942
4943 return ret;
4944 }
4945
4946 static void mem_cgroup_move_charge(struct mm_struct *mm)
4947 {
4948 struct mm_walk mem_cgroup_move_charge_walk = {
4949 .pmd_entry = mem_cgroup_move_charge_pte_range,
4950 .mm = mm,
4951 };
4952
4953 lru_add_drain_all();
4954 /*
4955 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4956 * move_lock while we're moving its pages to another memcg.
4957 * Then wait for already started RCU-only updates to finish.
4958 */
4959 atomic_inc(&mc.from->moving_account);
4960 synchronize_rcu();
4961 retry:
4962 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4963 /*
4964 * Someone who are holding the mmap_sem might be waiting in
4965 * waitq. So we cancel all extra charges, wake up all waiters,
4966 * and retry. Because we cancel precharges, we might not be able
4967 * to move enough charges, but moving charge is a best-effort
4968 * feature anyway, so it wouldn't be a big problem.
4969 */
4970 __mem_cgroup_clear_mc();
4971 cond_resched();
4972 goto retry;
4973 }
4974 /*
4975 * When we have consumed all precharges and failed in doing
4976 * additional charge, the page walk just aborts.
4977 */
4978 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4979 up_read(&mm->mmap_sem);
4980 atomic_dec(&mc.from->moving_account);
4981 }
4982
4983 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4984 {
4985 struct cgroup_subsys_state *css;
4986 struct task_struct *p = cgroup_taskset_first(tset, &css);
4987 struct mm_struct *mm = get_task_mm(p);
4988
4989 if (mm) {
4990 if (mc.to)
4991 mem_cgroup_move_charge(mm);
4992 mmput(mm);
4993 }
4994 if (mc.to)
4995 mem_cgroup_clear_mc();
4996 }
4997 #else /* !CONFIG_MMU */
4998 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4999 {
5000 return 0;
5001 }
5002 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5003 {
5004 }
5005 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5006 {
5007 }
5008 #endif
5009
5010 /*
5011 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5012 * to verify whether we're attached to the default hierarchy on each mount
5013 * attempt.
5014 */
5015 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5016 {
5017 /*
5018 * use_hierarchy is forced on the default hierarchy. cgroup core
5019 * guarantees that @root doesn't have any children, so turning it
5020 * on for the root memcg is enough.
5021 */
5022 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5023 root_mem_cgroup->use_hierarchy = true;
5024 else
5025 root_mem_cgroup->use_hierarchy = false;
5026 }
5027
5028 static u64 memory_current_read(struct cgroup_subsys_state *css,
5029 struct cftype *cft)
5030 {
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032
5033 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5034 }
5035
5036 static int memory_low_show(struct seq_file *m, void *v)
5037 {
5038 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5039 unsigned long low = READ_ONCE(memcg->low);
5040
5041 if (low == PAGE_COUNTER_MAX)
5042 seq_puts(m, "max\n");
5043 else
5044 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5045
5046 return 0;
5047 }
5048
5049 static ssize_t memory_low_write(struct kernfs_open_file *of,
5050 char *buf, size_t nbytes, loff_t off)
5051 {
5052 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5053 unsigned long low;
5054 int err;
5055
5056 buf = strstrip(buf);
5057 err = page_counter_memparse(buf, "max", &low);
5058 if (err)
5059 return err;
5060
5061 memcg->low = low;
5062
5063 return nbytes;
5064 }
5065
5066 static int memory_high_show(struct seq_file *m, void *v)
5067 {
5068 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5069 unsigned long high = READ_ONCE(memcg->high);
5070
5071 if (high == PAGE_COUNTER_MAX)
5072 seq_puts(m, "max\n");
5073 else
5074 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5075
5076 return 0;
5077 }
5078
5079 static ssize_t memory_high_write(struct kernfs_open_file *of,
5080 char *buf, size_t nbytes, loff_t off)
5081 {
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5083 unsigned long high;
5084 int err;
5085
5086 buf = strstrip(buf);
5087 err = page_counter_memparse(buf, "max", &high);
5088 if (err)
5089 return err;
5090
5091 memcg->high = high;
5092
5093 memcg_wb_domain_size_changed(memcg);
5094 return nbytes;
5095 }
5096
5097 static int memory_max_show(struct seq_file *m, void *v)
5098 {
5099 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5100 unsigned long max = READ_ONCE(memcg->memory.limit);
5101
5102 if (max == PAGE_COUNTER_MAX)
5103 seq_puts(m, "max\n");
5104 else
5105 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5106
5107 return 0;
5108 }
5109
5110 static ssize_t memory_max_write(struct kernfs_open_file *of,
5111 char *buf, size_t nbytes, loff_t off)
5112 {
5113 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
5118 err = page_counter_memparse(buf, "max", &max);
5119 if (err)
5120 return err;
5121
5122 err = mem_cgroup_resize_limit(memcg, max);
5123 if (err)
5124 return err;
5125
5126 memcg_wb_domain_size_changed(memcg);
5127 return nbytes;
5128 }
5129
5130 static int memory_events_show(struct seq_file *m, void *v)
5131 {
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5133
5134 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5135 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5136 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5137 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5138
5139 return 0;
5140 }
5141
5142 static struct cftype memory_files[] = {
5143 {
5144 .name = "current",
5145 .flags = CFTYPE_NOT_ON_ROOT,
5146 .read_u64 = memory_current_read,
5147 },
5148 {
5149 .name = "low",
5150 .flags = CFTYPE_NOT_ON_ROOT,
5151 .seq_show = memory_low_show,
5152 .write = memory_low_write,
5153 },
5154 {
5155 .name = "high",
5156 .flags = CFTYPE_NOT_ON_ROOT,
5157 .seq_show = memory_high_show,
5158 .write = memory_high_write,
5159 },
5160 {
5161 .name = "max",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_max_show,
5164 .write = memory_max_write,
5165 },
5166 {
5167 .name = "events",
5168 .flags = CFTYPE_NOT_ON_ROOT,
5169 .file_offset = offsetof(struct mem_cgroup, events_file),
5170 .seq_show = memory_events_show,
5171 },
5172 { } /* terminate */
5173 };
5174
5175 struct cgroup_subsys memory_cgrp_subsys = {
5176 .css_alloc = mem_cgroup_css_alloc,
5177 .css_online = mem_cgroup_css_online,
5178 .css_offline = mem_cgroup_css_offline,
5179 .css_released = mem_cgroup_css_released,
5180 .css_free = mem_cgroup_css_free,
5181 .css_reset = mem_cgroup_css_reset,
5182 .can_attach = mem_cgroup_can_attach,
5183 .cancel_attach = mem_cgroup_cancel_attach,
5184 .attach = mem_cgroup_move_task,
5185 .bind = mem_cgroup_bind,
5186 .dfl_cftypes = memory_files,
5187 .legacy_cftypes = mem_cgroup_legacy_files,
5188 .early_init = 0,
5189 };
5190
5191 /**
5192 * mem_cgroup_low - check if memory consumption is below the normal range
5193 * @root: the highest ancestor to consider
5194 * @memcg: the memory cgroup to check
5195 *
5196 * Returns %true if memory consumption of @memcg, and that of all
5197 * configurable ancestors up to @root, is below the normal range.
5198 */
5199 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5200 {
5201 if (mem_cgroup_disabled())
5202 return false;
5203
5204 /*
5205 * The toplevel group doesn't have a configurable range, so
5206 * it's never low when looked at directly, and it is not
5207 * considered an ancestor when assessing the hierarchy.
5208 */
5209
5210 if (memcg == root_mem_cgroup)
5211 return false;
5212
5213 if (page_counter_read(&memcg->memory) >= memcg->low)
5214 return false;
5215
5216 while (memcg != root) {
5217 memcg = parent_mem_cgroup(memcg);
5218
5219 if (memcg == root_mem_cgroup)
5220 break;
5221
5222 if (page_counter_read(&memcg->memory) >= memcg->low)
5223 return false;
5224 }
5225 return true;
5226 }
5227
5228 /**
5229 * mem_cgroup_try_charge - try charging a page
5230 * @page: page to charge
5231 * @mm: mm context of the victim
5232 * @gfp_mask: reclaim mode
5233 * @memcgp: charged memcg return
5234 *
5235 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5236 * pages according to @gfp_mask if necessary.
5237 *
5238 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5239 * Otherwise, an error code is returned.
5240 *
5241 * After page->mapping has been set up, the caller must finalize the
5242 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5243 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5244 */
5245 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5246 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5247 bool compound)
5248 {
5249 struct mem_cgroup *memcg = NULL;
5250 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5251 int ret = 0;
5252
5253 if (mem_cgroup_disabled())
5254 goto out;
5255
5256 if (PageSwapCache(page)) {
5257 /*
5258 * Every swap fault against a single page tries to charge the
5259 * page, bail as early as possible. shmem_unuse() encounters
5260 * already charged pages, too. The USED bit is protected by
5261 * the page lock, which serializes swap cache removal, which
5262 * in turn serializes uncharging.
5263 */
5264 VM_BUG_ON_PAGE(!PageLocked(page), page);
5265 if (page->mem_cgroup)
5266 goto out;
5267
5268 if (do_memsw_account()) {
5269 swp_entry_t ent = { .val = page_private(page), };
5270 unsigned short id = lookup_swap_cgroup_id(ent);
5271
5272 rcu_read_lock();
5273 memcg = mem_cgroup_from_id(id);
5274 if (memcg && !css_tryget_online(&memcg->css))
5275 memcg = NULL;
5276 rcu_read_unlock();
5277 }
5278 }
5279
5280 if (!memcg)
5281 memcg = get_mem_cgroup_from_mm(mm);
5282
5283 ret = try_charge(memcg, gfp_mask, nr_pages);
5284
5285 css_put(&memcg->css);
5286 out:
5287 *memcgp = memcg;
5288 return ret;
5289 }
5290
5291 /**
5292 * mem_cgroup_commit_charge - commit a page charge
5293 * @page: page to charge
5294 * @memcg: memcg to charge the page to
5295 * @lrucare: page might be on LRU already
5296 *
5297 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5298 * after page->mapping has been set up. This must happen atomically
5299 * as part of the page instantiation, i.e. under the page table lock
5300 * for anonymous pages, under the page lock for page and swap cache.
5301 *
5302 * In addition, the page must not be on the LRU during the commit, to
5303 * prevent racing with task migration. If it might be, use @lrucare.
5304 *
5305 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5306 */
5307 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5308 bool lrucare, bool compound)
5309 {
5310 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5311
5312 VM_BUG_ON_PAGE(!page->mapping, page);
5313 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5314
5315 if (mem_cgroup_disabled())
5316 return;
5317 /*
5318 * Swap faults will attempt to charge the same page multiple
5319 * times. But reuse_swap_page() might have removed the page
5320 * from swapcache already, so we can't check PageSwapCache().
5321 */
5322 if (!memcg)
5323 return;
5324
5325 commit_charge(page, memcg, lrucare);
5326
5327 local_irq_disable();
5328 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5329 memcg_check_events(memcg, page);
5330 local_irq_enable();
5331
5332 if (do_memsw_account() && PageSwapCache(page)) {
5333 swp_entry_t entry = { .val = page_private(page) };
5334 /*
5335 * The swap entry might not get freed for a long time,
5336 * let's not wait for it. The page already received a
5337 * memory+swap charge, drop the swap entry duplicate.
5338 */
5339 mem_cgroup_uncharge_swap(entry);
5340 }
5341 }
5342
5343 /**
5344 * mem_cgroup_cancel_charge - cancel a page charge
5345 * @page: page to charge
5346 * @memcg: memcg to charge the page to
5347 *
5348 * Cancel a charge transaction started by mem_cgroup_try_charge().
5349 */
5350 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5351 bool compound)
5352 {
5353 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5354
5355 if (mem_cgroup_disabled())
5356 return;
5357 /*
5358 * Swap faults will attempt to charge the same page multiple
5359 * times. But reuse_swap_page() might have removed the page
5360 * from swapcache already, so we can't check PageSwapCache().
5361 */
5362 if (!memcg)
5363 return;
5364
5365 cancel_charge(memcg, nr_pages);
5366 }
5367
5368 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5369 unsigned long nr_anon, unsigned long nr_file,
5370 unsigned long nr_huge, struct page *dummy_page)
5371 {
5372 unsigned long nr_pages = nr_anon + nr_file;
5373 unsigned long flags;
5374
5375 if (!mem_cgroup_is_root(memcg)) {
5376 page_counter_uncharge(&memcg->memory, nr_pages);
5377 if (do_memsw_account())
5378 page_counter_uncharge(&memcg->memsw, nr_pages);
5379 memcg_oom_recover(memcg);
5380 }
5381
5382 local_irq_save(flags);
5383 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5384 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5385 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5386 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5387 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5388 memcg_check_events(memcg, dummy_page);
5389 local_irq_restore(flags);
5390
5391 if (!mem_cgroup_is_root(memcg))
5392 css_put_many(&memcg->css, nr_pages);
5393 }
5394
5395 static void uncharge_list(struct list_head *page_list)
5396 {
5397 struct mem_cgroup *memcg = NULL;
5398 unsigned long nr_anon = 0;
5399 unsigned long nr_file = 0;
5400 unsigned long nr_huge = 0;
5401 unsigned long pgpgout = 0;
5402 struct list_head *next;
5403 struct page *page;
5404
5405 next = page_list->next;
5406 do {
5407 unsigned int nr_pages = 1;
5408
5409 page = list_entry(next, struct page, lru);
5410 next = page->lru.next;
5411
5412 VM_BUG_ON_PAGE(PageLRU(page), page);
5413 VM_BUG_ON_PAGE(page_count(page), page);
5414
5415 if (!page->mem_cgroup)
5416 continue;
5417
5418 /*
5419 * Nobody should be changing or seriously looking at
5420 * page->mem_cgroup at this point, we have fully
5421 * exclusive access to the page.
5422 */
5423
5424 if (memcg != page->mem_cgroup) {
5425 if (memcg) {
5426 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5427 nr_huge, page);
5428 pgpgout = nr_anon = nr_file = nr_huge = 0;
5429 }
5430 memcg = page->mem_cgroup;
5431 }
5432
5433 if (PageTransHuge(page)) {
5434 nr_pages <<= compound_order(page);
5435 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5436 nr_huge += nr_pages;
5437 }
5438
5439 if (PageAnon(page))
5440 nr_anon += nr_pages;
5441 else
5442 nr_file += nr_pages;
5443
5444 page->mem_cgroup = NULL;
5445
5446 pgpgout++;
5447 } while (next != page_list);
5448
5449 if (memcg)
5450 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5451 nr_huge, page);
5452 }
5453
5454 /**
5455 * mem_cgroup_uncharge - uncharge a page
5456 * @page: page to uncharge
5457 *
5458 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5459 * mem_cgroup_commit_charge().
5460 */
5461 void mem_cgroup_uncharge(struct page *page)
5462 {
5463 if (mem_cgroup_disabled())
5464 return;
5465
5466 /* Don't touch page->lru of any random page, pre-check: */
5467 if (!page->mem_cgroup)
5468 return;
5469
5470 INIT_LIST_HEAD(&page->lru);
5471 uncharge_list(&page->lru);
5472 }
5473
5474 /**
5475 * mem_cgroup_uncharge_list - uncharge a list of page
5476 * @page_list: list of pages to uncharge
5477 *
5478 * Uncharge a list of pages previously charged with
5479 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5480 */
5481 void mem_cgroup_uncharge_list(struct list_head *page_list)
5482 {
5483 if (mem_cgroup_disabled())
5484 return;
5485
5486 if (!list_empty(page_list))
5487 uncharge_list(page_list);
5488 }
5489
5490 /**
5491 * mem_cgroup_replace_page - migrate a charge to another page
5492 * @oldpage: currently charged page
5493 * @newpage: page to transfer the charge to
5494 *
5495 * Migrate the charge from @oldpage to @newpage.
5496 *
5497 * Both pages must be locked, @newpage->mapping must be set up.
5498 * Either or both pages might be on the LRU already.
5499 */
5500 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5501 {
5502 struct mem_cgroup *memcg;
5503 int isolated;
5504
5505 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5506 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5507 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5508 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5509 newpage);
5510
5511 if (mem_cgroup_disabled())
5512 return;
5513
5514 /* Page cache replacement: new page already charged? */
5515 if (newpage->mem_cgroup)
5516 return;
5517
5518 /* Swapcache readahead pages can get replaced before being charged */
5519 memcg = oldpage->mem_cgroup;
5520 if (!memcg)
5521 return;
5522
5523 lock_page_lru(oldpage, &isolated);
5524 oldpage->mem_cgroup = NULL;
5525 unlock_page_lru(oldpage, isolated);
5526
5527 commit_charge(newpage, memcg, true);
5528 }
5529
5530 #ifdef CONFIG_INET
5531
5532 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5533 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5534
5535 void sock_update_memcg(struct sock *sk)
5536 {
5537 struct mem_cgroup *memcg;
5538
5539 /* Socket cloning can throw us here with sk_cgrp already
5540 * filled. It won't however, necessarily happen from
5541 * process context. So the test for root memcg given
5542 * the current task's memcg won't help us in this case.
5543 *
5544 * Respecting the original socket's memcg is a better
5545 * decision in this case.
5546 */
5547 if (sk->sk_memcg) {
5548 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5549 css_get(&sk->sk_memcg->css);
5550 return;
5551 }
5552
5553 rcu_read_lock();
5554 memcg = mem_cgroup_from_task(current);
5555 if (memcg == root_mem_cgroup)
5556 goto out;
5557 #ifdef CONFIG_MEMCG_KMEM
5558 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5559 goto out;
5560 #endif
5561 if (css_tryget_online(&memcg->css))
5562 sk->sk_memcg = memcg;
5563 out:
5564 rcu_read_unlock();
5565 }
5566 EXPORT_SYMBOL(sock_update_memcg);
5567
5568 void sock_release_memcg(struct sock *sk)
5569 {
5570 WARN_ON(!sk->sk_memcg);
5571 css_put(&sk->sk_memcg->css);
5572 }
5573
5574 /**
5575 * mem_cgroup_charge_skmem - charge socket memory
5576 * @memcg: memcg to charge
5577 * @nr_pages: number of pages to charge
5578 *
5579 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5580 * @memcg's configured limit, %false if the charge had to be forced.
5581 */
5582 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5583 {
5584 gfp_t gfp_mask = GFP_KERNEL;
5585
5586 #ifdef CONFIG_MEMCG_KMEM
5587 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5588 struct page_counter *counter;
5589
5590 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5591 nr_pages, &counter)) {
5592 memcg->tcp_mem.memory_pressure = 0;
5593 return true;
5594 }
5595 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5596 memcg->tcp_mem.memory_pressure = 1;
5597 return false;
5598 }
5599 #endif
5600 /* Don't block in the packet receive path */
5601 if (in_softirq())
5602 gfp_mask = GFP_NOWAIT;
5603
5604 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5605 return true;
5606
5607 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5608 return false;
5609 }
5610
5611 /**
5612 * mem_cgroup_uncharge_skmem - uncharge socket memory
5613 * @memcg - memcg to uncharge
5614 * @nr_pages - number of pages to uncharge
5615 */
5616 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5617 {
5618 #ifdef CONFIG_MEMCG_KMEM
5619 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5620 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5621 nr_pages);
5622 return;
5623 }
5624 #endif
5625 page_counter_uncharge(&memcg->memory, nr_pages);
5626 css_put_many(&memcg->css, nr_pages);
5627 }
5628
5629 #endif /* CONFIG_INET */
5630
5631 static int __init cgroup_memory(char *s)
5632 {
5633 char *token;
5634
5635 while ((token = strsep(&s, ",")) != NULL) {
5636 if (!*token)
5637 continue;
5638 if (!strcmp(token, "nosocket"))
5639 cgroup_memory_nosocket = true;
5640 }
5641 return 0;
5642 }
5643 __setup("cgroup.memory=", cgroup_memory);
5644
5645 /*
5646 * subsys_initcall() for memory controller.
5647 *
5648 * Some parts like hotcpu_notifier() have to be initialized from this context
5649 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5650 * everything that doesn't depend on a specific mem_cgroup structure should
5651 * be initialized from here.
5652 */
5653 static int __init mem_cgroup_init(void)
5654 {
5655 int cpu, node;
5656
5657 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5658
5659 for_each_possible_cpu(cpu)
5660 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5661 drain_local_stock);
5662
5663 for_each_node(node) {
5664 struct mem_cgroup_tree_per_node *rtpn;
5665 int zone;
5666
5667 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5668 node_online(node) ? node : NUMA_NO_NODE);
5669
5670 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5671 struct mem_cgroup_tree_per_zone *rtpz;
5672
5673 rtpz = &rtpn->rb_tree_per_zone[zone];
5674 rtpz->rb_root = RB_ROOT;
5675 spin_lock_init(&rtpz->lock);
5676 }
5677 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5678 }
5679
5680 return 0;
5681 }
5682 subsys_initcall(mem_cgroup_init);
5683
5684 #ifdef CONFIG_MEMCG_SWAP
5685 /**
5686 * mem_cgroup_swapout - transfer a memsw charge to swap
5687 * @page: page whose memsw charge to transfer
5688 * @entry: swap entry to move the charge to
5689 *
5690 * Transfer the memsw charge of @page to @entry.
5691 */
5692 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5693 {
5694 struct mem_cgroup *memcg;
5695 unsigned short oldid;
5696
5697 VM_BUG_ON_PAGE(PageLRU(page), page);
5698 VM_BUG_ON_PAGE(page_count(page), page);
5699
5700 if (!do_memsw_account())
5701 return;
5702
5703 memcg = page->mem_cgroup;
5704
5705 /* Readahead page, never charged */
5706 if (!memcg)
5707 return;
5708
5709 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5710 VM_BUG_ON_PAGE(oldid, page);
5711 mem_cgroup_swap_statistics(memcg, true);
5712
5713 page->mem_cgroup = NULL;
5714
5715 if (!mem_cgroup_is_root(memcg))
5716 page_counter_uncharge(&memcg->memory, 1);
5717
5718 /*
5719 * Interrupts should be disabled here because the caller holds the
5720 * mapping->tree_lock lock which is taken with interrupts-off. It is
5721 * important here to have the interrupts disabled because it is the
5722 * only synchronisation we have for udpating the per-CPU variables.
5723 */
5724 VM_BUG_ON(!irqs_disabled());
5725 mem_cgroup_charge_statistics(memcg, page, false, -1);
5726 memcg_check_events(memcg, page);
5727 }
5728
5729 /**
5730 * mem_cgroup_uncharge_swap - uncharge a swap entry
5731 * @entry: swap entry to uncharge
5732 *
5733 * Drop the memsw charge associated with @entry.
5734 */
5735 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5736 {
5737 struct mem_cgroup *memcg;
5738 unsigned short id;
5739
5740 if (!do_memsw_account())
5741 return;
5742
5743 id = swap_cgroup_record(entry, 0);
5744 rcu_read_lock();
5745 memcg = mem_cgroup_from_id(id);
5746 if (memcg) {
5747 if (!mem_cgroup_is_root(memcg))
5748 page_counter_uncharge(&memcg->memsw, 1);
5749 mem_cgroup_swap_statistics(memcg, false);
5750 css_put(&memcg->css);
5751 }
5752 rcu_read_unlock();
5753 }
5754
5755 /* for remember boot option*/
5756 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5757 static int really_do_swap_account __initdata = 1;
5758 #else
5759 static int really_do_swap_account __initdata;
5760 #endif
5761
5762 static int __init enable_swap_account(char *s)
5763 {
5764 if (!strcmp(s, "1"))
5765 really_do_swap_account = 1;
5766 else if (!strcmp(s, "0"))
5767 really_do_swap_account = 0;
5768 return 1;
5769 }
5770 __setup("swapaccount=", enable_swap_account);
5771
5772 static struct cftype memsw_cgroup_files[] = {
5773 {
5774 .name = "memsw.usage_in_bytes",
5775 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5776 .read_u64 = mem_cgroup_read_u64,
5777 },
5778 {
5779 .name = "memsw.max_usage_in_bytes",
5780 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5781 .write = mem_cgroup_reset,
5782 .read_u64 = mem_cgroup_read_u64,
5783 },
5784 {
5785 .name = "memsw.limit_in_bytes",
5786 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5787 .write = mem_cgroup_write,
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.failcnt",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5793 .write = mem_cgroup_reset,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 { }, /* terminate */
5797 };
5798
5799 static int __init mem_cgroup_swap_init(void)
5800 {
5801 if (!mem_cgroup_disabled() && really_do_swap_account) {
5802 do_swap_account = 1;
5803 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5804 memsw_cgroup_files));
5805 }
5806 return 0;
5807 }
5808 subsys_initcall(mem_cgroup_swap_init);
5809
5810 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.148438 seconds and 5 git commands to generate.