mm: workingset: per-cgroup cache thrash detection
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
279 *
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
282 */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291 down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296 up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
310 */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
344 */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348
349 memcg = page->mem_cgroup;
350
351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 memcg = root_mem_cgroup;
353
354 return &memcg->css;
355 }
356
357 /**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
411 unsigned long new_usage_in_excess)
412 {
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452 {
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
456 __mem_cgroup_remove_exceeded(mz, mctz);
457 spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 unsigned long excess;
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
477
478 mctz = soft_limit_tree_from_page(page);
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 mz = mem_cgroup_page_zoneinfo(memcg, page);
485 excess = soft_limit_excess(memcg);
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
494 /* if on-tree, remove it */
495 if (mz->on_tree)
496 __mem_cgroup_remove_exceeded(mz, mctz);
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
502 spin_unlock_irqrestore(&mctz->lock, flags);
503 }
504 }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 struct mem_cgroup_tree_per_zone *mctz;
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
512
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
517 mem_cgroup_remove_exceeded(mz, mctz);
518 }
519 }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528 retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
540 __mem_cgroup_remove_exceeded(mz, mctz);
541 if (!soft_limit_excess(mz->memcg) ||
542 !css_tryget_online(&mz->memcg->css))
543 goto retry;
544 done:
545 return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 struct mem_cgroup_per_zone *mz;
552
553 spin_lock_irq(&mctz->lock);
554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 spin_unlock_irq(&mctz->lock);
556 return mz;
557 }
558
559 /*
560 * Return page count for single (non recursive) @memcg.
561 *
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
578 * implemented.
579 */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 long val = 0;
584 int cpu;
585
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu)
588 val += per_cpu(memcg->stat->count[idx], cpu);
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
595 return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 enum mem_cgroup_events_index idx)
600 {
601 unsigned long val = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 val += per_cpu(memcg->stat->events[idx], cpu);
606 return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 struct page *page,
611 bool compound, int nr_pages)
612 {
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
617 if (PageAnon(page))
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 nr_pages);
620 else
621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 nr_pages);
623
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
628 }
629
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 else {
634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 nr_pages = -nr_pages; /* for event */
636 }
637
638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031 {
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068 }
1069
1070 /**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 /* oom_info_lock ensures that parallel ooms do not interleave */
1155 static DEFINE_MUTEX(oom_info_lock);
1156 struct mem_cgroup *iter;
1157 unsigned int i;
1158
1159 mutex_lock(&oom_info_lock);
1160 rcu_read_lock();
1161
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
1170 pr_cont_cgroup_path(memcg->css.cgroup);
1171 pr_cont("\n");
1172
1173 rcu_read_unlock();
1174
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192 continue;
1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
1203 mutex_unlock(&oom_info_lock);
1204 }
1205
1206 /*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 int num = 0;
1213 struct mem_cgroup *iter;
1214
1215 for_each_mem_cgroup_tree(iter, memcg)
1216 num++;
1217 return num;
1218 }
1219
1220 /*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 unsigned long limit;
1226
1227 limit = memcg->memory.limit;
1228 if (mem_cgroup_swappiness(memcg)) {
1229 unsigned long memsw_limit;
1230 unsigned long swap_limit;
1231
1232 memsw_limit = memcg->memsw.limit;
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
1236 }
1237 return limit;
1238 }
1239
1240 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
1242 {
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
1248 };
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
1255 mutex_lock(&oom_lock);
1256
1257 /*
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
1261 */
1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263 mark_oom_victim(current);
1264 goto unlock;
1265 }
1266
1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269 for_each_mem_cgroup_tree(iter, memcg) {
1270 struct css_task_iter it;
1271 struct task_struct *task;
1272
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
1286 css_task_iter_end(&it);
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
1290 goto unlock;
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
1307 }
1308 css_task_iter_end(&it);
1309 }
1310
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
1315 }
1316 unlock:
1317 mutex_unlock(&oom_lock);
1318 }
1319
1320 #if MAX_NUMNODES > 1
1321
1322 /**
1323 * test_mem_cgroup_node_reclaimable
1324 * @memcg: the target memcg
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 int nid, bool noswap)
1334 {
1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 return true;
1341 return false;
1342
1343 }
1344
1345 /*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 {
1353 int nid;
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
1358 if (!atomic_read(&memcg->numainfo_events))
1359 return;
1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 return;
1362
1363 /* make a nodemask where this memcg uses memory from */
1364 memcg->scan_nodes = node_states[N_MEMORY];
1365
1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
1367
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
1370 }
1371
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
1374 }
1375
1376 /*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 int node;
1391
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
1394
1395 node = next_node(node, memcg->scan_nodes);
1396 if (node == MAX_NUMNODES)
1397 node = first_node(memcg->scan_nodes);
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
1407 memcg->last_scanned_node = node;
1408 return node;
1409 }
1410 #else
1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 {
1413 return 0;
1414 }
1415 #endif
1416
1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421 {
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
1432 excess = soft_limit_excess(root_memcg);
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
1461 if (!soft_limit_excess(root_memcg))
1462 break;
1463 }
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
1466 }
1467
1468 #ifdef CONFIG_LOCKDEP
1469 static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471 };
1472 #endif
1473
1474 static DEFINE_SPINLOCK(memcg_oom_lock);
1475
1476 /*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481 {
1482 struct mem_cgroup *iter, *failed = NULL;
1483
1484 spin_lock(&memcg_oom_lock);
1485
1486 for_each_mem_cgroup_tree(iter, memcg) {
1487 if (iter->oom_lock) {
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
1492 failed = iter;
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
1495 } else
1496 iter->oom_lock = true;
1497 }
1498
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
1510 }
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
1517 }
1518
1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520 {
1521 struct mem_cgroup *iter;
1522
1523 spin_lock(&memcg_oom_lock);
1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525 for_each_mem_cgroup_tree(iter, memcg)
1526 iter->oom_lock = false;
1527 spin_unlock(&memcg_oom_lock);
1528 }
1529
1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 {
1532 struct mem_cgroup *iter;
1533
1534 spin_lock(&memcg_oom_lock);
1535 for_each_mem_cgroup_tree(iter, memcg)
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
1538 }
1539
1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 {
1542 struct mem_cgroup *iter;
1543
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547 */
1548 spin_lock(&memcg_oom_lock);
1549 for_each_mem_cgroup_tree(iter, memcg)
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
1553 }
1554
1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
1557 struct oom_wait_info {
1558 struct mem_cgroup *memcg;
1559 wait_queue_t wait;
1560 };
1561
1562 static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564 {
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570 oom_wait_memcg = oom_wait_info->memcg;
1571
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574 return 0;
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576 }
1577
1578 static void memcg_oom_recover(struct mem_cgroup *memcg)
1579 {
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 }
1591
1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593 {
1594 if (!current->memcg_may_oom)
1595 return;
1596 /*
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
1609 */
1610 css_get(&memcg->css);
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
1614 }
1615
1616 /**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618 * @handle: actually kill/wait or just clean up the OOM state
1619 *
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
1622 *
1623 * Memcg supports userspace OOM handling where failed allocations must
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628 * the end of the page fault to complete the OOM handling.
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
1631 * completed, %false otherwise.
1632 */
1633 bool mem_cgroup_oom_synchronize(bool handle)
1634 {
1635 struct mem_cgroup *memcg = current->memcg_in_oom;
1636 struct oom_wait_info owait;
1637 bool locked;
1638
1639 /* OOM is global, do not handle */
1640 if (!memcg)
1641 return false;
1642
1643 if (!handle || oom_killer_disabled)
1644 goto cleanup;
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
1651
1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
1665 } else {
1666 schedule();
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
1680 cleanup:
1681 current->memcg_in_oom = NULL;
1682 css_put(&memcg->css);
1683 return true;
1684 }
1685
1686 /**
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
1689 *
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
1692 */
1693 struct mem_cgroup *lock_page_memcg(struct page *page)
1694 {
1695 struct mem_cgroup *memcg;
1696 unsigned long flags;
1697
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
1702 *
1703 * The RCU lock also protects the memcg from being freed when
1704 * the page state that is going to change is the only thing
1705 * preventing the page from being uncharged.
1706 * E.g. end-writeback clearing PageWriteback(), which allows
1707 * migration to go ahead and uncharge the page before the
1708 * account transaction might be complete.
1709 */
1710 rcu_read_lock();
1711
1712 if (mem_cgroup_disabled())
1713 return NULL;
1714 again:
1715 memcg = page->mem_cgroup;
1716 if (unlikely(!memcg))
1717 return NULL;
1718
1719 if (atomic_read(&memcg->moving_account) <= 0)
1720 return memcg;
1721
1722 spin_lock_irqsave(&memcg->move_lock, flags);
1723 if (memcg != page->mem_cgroup) {
1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 goto again;
1726 }
1727
1728 /*
1729 * When charge migration first begins, we can have locked and
1730 * unlocked page stat updates happening concurrently. Track
1731 * the task who has the lock for unlock_page_memcg().
1732 */
1733 memcg->move_lock_task = current;
1734 memcg->move_lock_flags = flags;
1735
1736 return memcg;
1737 }
1738 EXPORT_SYMBOL(lock_page_memcg);
1739
1740 /**
1741 * unlock_page_memcg - unlock a page->mem_cgroup binding
1742 * @memcg: the memcg returned by lock_page_memcg()
1743 */
1744 void unlock_page_memcg(struct mem_cgroup *memcg)
1745 {
1746 if (memcg && memcg->move_lock_task == current) {
1747 unsigned long flags = memcg->move_lock_flags;
1748
1749 memcg->move_lock_task = NULL;
1750 memcg->move_lock_flags = 0;
1751
1752 spin_unlock_irqrestore(&memcg->move_lock, flags);
1753 }
1754
1755 rcu_read_unlock();
1756 }
1757 EXPORT_SYMBOL(unlock_page_memcg);
1758
1759 /*
1760 * size of first charge trial. "32" comes from vmscan.c's magic value.
1761 * TODO: maybe necessary to use big numbers in big irons.
1762 */
1763 #define CHARGE_BATCH 32U
1764 struct memcg_stock_pcp {
1765 struct mem_cgroup *cached; /* this never be root cgroup */
1766 unsigned int nr_pages;
1767 struct work_struct work;
1768 unsigned long flags;
1769 #define FLUSHING_CACHED_CHARGE 0
1770 };
1771 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1772 static DEFINE_MUTEX(percpu_charge_mutex);
1773
1774 /**
1775 * consume_stock: Try to consume stocked charge on this cpu.
1776 * @memcg: memcg to consume from.
1777 * @nr_pages: how many pages to charge.
1778 *
1779 * The charges will only happen if @memcg matches the current cpu's memcg
1780 * stock, and at least @nr_pages are available in that stock. Failure to
1781 * service an allocation will refill the stock.
1782 *
1783 * returns true if successful, false otherwise.
1784 */
1785 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1786 {
1787 struct memcg_stock_pcp *stock;
1788 bool ret = false;
1789
1790 if (nr_pages > CHARGE_BATCH)
1791 return ret;
1792
1793 stock = &get_cpu_var(memcg_stock);
1794 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1795 stock->nr_pages -= nr_pages;
1796 ret = true;
1797 }
1798 put_cpu_var(memcg_stock);
1799 return ret;
1800 }
1801
1802 /*
1803 * Returns stocks cached in percpu and reset cached information.
1804 */
1805 static void drain_stock(struct memcg_stock_pcp *stock)
1806 {
1807 struct mem_cgroup *old = stock->cached;
1808
1809 if (stock->nr_pages) {
1810 page_counter_uncharge(&old->memory, stock->nr_pages);
1811 if (do_memsw_account())
1812 page_counter_uncharge(&old->memsw, stock->nr_pages);
1813 css_put_many(&old->css, stock->nr_pages);
1814 stock->nr_pages = 0;
1815 }
1816 stock->cached = NULL;
1817 }
1818
1819 /*
1820 * This must be called under preempt disabled or must be called by
1821 * a thread which is pinned to local cpu.
1822 */
1823 static void drain_local_stock(struct work_struct *dummy)
1824 {
1825 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1826 drain_stock(stock);
1827 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828 }
1829
1830 /*
1831 * Cache charges(val) to local per_cpu area.
1832 * This will be consumed by consume_stock() function, later.
1833 */
1834 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1835 {
1836 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1837
1838 if (stock->cached != memcg) { /* reset if necessary */
1839 drain_stock(stock);
1840 stock->cached = memcg;
1841 }
1842 stock->nr_pages += nr_pages;
1843 put_cpu_var(memcg_stock);
1844 }
1845
1846 /*
1847 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1848 * of the hierarchy under it.
1849 */
1850 static void drain_all_stock(struct mem_cgroup *root_memcg)
1851 {
1852 int cpu, curcpu;
1853
1854 /* If someone's already draining, avoid adding running more workers. */
1855 if (!mutex_trylock(&percpu_charge_mutex))
1856 return;
1857 /* Notify other cpus that system-wide "drain" is running */
1858 get_online_cpus();
1859 curcpu = get_cpu();
1860 for_each_online_cpu(cpu) {
1861 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1862 struct mem_cgroup *memcg;
1863
1864 memcg = stock->cached;
1865 if (!memcg || !stock->nr_pages)
1866 continue;
1867 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1868 continue;
1869 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1870 if (cpu == curcpu)
1871 drain_local_stock(&stock->work);
1872 else
1873 schedule_work_on(cpu, &stock->work);
1874 }
1875 }
1876 put_cpu();
1877 put_online_cpus();
1878 mutex_unlock(&percpu_charge_mutex);
1879 }
1880
1881 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1882 unsigned long action,
1883 void *hcpu)
1884 {
1885 int cpu = (unsigned long)hcpu;
1886 struct memcg_stock_pcp *stock;
1887
1888 if (action == CPU_ONLINE)
1889 return NOTIFY_OK;
1890
1891 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1892 return NOTIFY_OK;
1893
1894 stock = &per_cpu(memcg_stock, cpu);
1895 drain_stock(stock);
1896 return NOTIFY_OK;
1897 }
1898
1899 static void reclaim_high(struct mem_cgroup *memcg,
1900 unsigned int nr_pages,
1901 gfp_t gfp_mask)
1902 {
1903 do {
1904 if (page_counter_read(&memcg->memory) <= memcg->high)
1905 continue;
1906 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1907 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1908 } while ((memcg = parent_mem_cgroup(memcg)));
1909 }
1910
1911 static void high_work_func(struct work_struct *work)
1912 {
1913 struct mem_cgroup *memcg;
1914
1915 memcg = container_of(work, struct mem_cgroup, high_work);
1916 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1917 }
1918
1919 /*
1920 * Scheduled by try_charge() to be executed from the userland return path
1921 * and reclaims memory over the high limit.
1922 */
1923 void mem_cgroup_handle_over_high(void)
1924 {
1925 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1926 struct mem_cgroup *memcg;
1927
1928 if (likely(!nr_pages))
1929 return;
1930
1931 memcg = get_mem_cgroup_from_mm(current->mm);
1932 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1933 css_put(&memcg->css);
1934 current->memcg_nr_pages_over_high = 0;
1935 }
1936
1937 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1938 unsigned int nr_pages)
1939 {
1940 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1941 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1942 struct mem_cgroup *mem_over_limit;
1943 struct page_counter *counter;
1944 unsigned long nr_reclaimed;
1945 bool may_swap = true;
1946 bool drained = false;
1947
1948 if (mem_cgroup_is_root(memcg))
1949 return 0;
1950 retry:
1951 if (consume_stock(memcg, nr_pages))
1952 return 0;
1953
1954 if (!do_memsw_account() ||
1955 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1956 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1957 goto done_restock;
1958 if (do_memsw_account())
1959 page_counter_uncharge(&memcg->memsw, batch);
1960 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1961 } else {
1962 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1963 may_swap = false;
1964 }
1965
1966 if (batch > nr_pages) {
1967 batch = nr_pages;
1968 goto retry;
1969 }
1970
1971 /*
1972 * Unlike in global OOM situations, memcg is not in a physical
1973 * memory shortage. Allow dying and OOM-killed tasks to
1974 * bypass the last charges so that they can exit quickly and
1975 * free their memory.
1976 */
1977 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1978 fatal_signal_pending(current) ||
1979 current->flags & PF_EXITING))
1980 goto force;
1981
1982 if (unlikely(task_in_memcg_oom(current)))
1983 goto nomem;
1984
1985 if (!gfpflags_allow_blocking(gfp_mask))
1986 goto nomem;
1987
1988 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1989
1990 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1991 gfp_mask, may_swap);
1992
1993 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1994 goto retry;
1995
1996 if (!drained) {
1997 drain_all_stock(mem_over_limit);
1998 drained = true;
1999 goto retry;
2000 }
2001
2002 if (gfp_mask & __GFP_NORETRY)
2003 goto nomem;
2004 /*
2005 * Even though the limit is exceeded at this point, reclaim
2006 * may have been able to free some pages. Retry the charge
2007 * before killing the task.
2008 *
2009 * Only for regular pages, though: huge pages are rather
2010 * unlikely to succeed so close to the limit, and we fall back
2011 * to regular pages anyway in case of failure.
2012 */
2013 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2014 goto retry;
2015 /*
2016 * At task move, charge accounts can be doubly counted. So, it's
2017 * better to wait until the end of task_move if something is going on.
2018 */
2019 if (mem_cgroup_wait_acct_move(mem_over_limit))
2020 goto retry;
2021
2022 if (nr_retries--)
2023 goto retry;
2024
2025 if (gfp_mask & __GFP_NOFAIL)
2026 goto force;
2027
2028 if (fatal_signal_pending(current))
2029 goto force;
2030
2031 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2032
2033 mem_cgroup_oom(mem_over_limit, gfp_mask,
2034 get_order(nr_pages * PAGE_SIZE));
2035 nomem:
2036 if (!(gfp_mask & __GFP_NOFAIL))
2037 return -ENOMEM;
2038 force:
2039 /*
2040 * The allocation either can't fail or will lead to more memory
2041 * being freed very soon. Allow memory usage go over the limit
2042 * temporarily by force charging it.
2043 */
2044 page_counter_charge(&memcg->memory, nr_pages);
2045 if (do_memsw_account())
2046 page_counter_charge(&memcg->memsw, nr_pages);
2047 css_get_many(&memcg->css, nr_pages);
2048
2049 return 0;
2050
2051 done_restock:
2052 css_get_many(&memcg->css, batch);
2053 if (batch > nr_pages)
2054 refill_stock(memcg, batch - nr_pages);
2055
2056 /*
2057 * If the hierarchy is above the normal consumption range, schedule
2058 * reclaim on returning to userland. We can perform reclaim here
2059 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2060 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2061 * not recorded as it most likely matches current's and won't
2062 * change in the meantime. As high limit is checked again before
2063 * reclaim, the cost of mismatch is negligible.
2064 */
2065 do {
2066 if (page_counter_read(&memcg->memory) > memcg->high) {
2067 /* Don't bother a random interrupted task */
2068 if (in_interrupt()) {
2069 schedule_work(&memcg->high_work);
2070 break;
2071 }
2072 current->memcg_nr_pages_over_high += batch;
2073 set_notify_resume(current);
2074 break;
2075 }
2076 } while ((memcg = parent_mem_cgroup(memcg)));
2077
2078 return 0;
2079 }
2080
2081 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2082 {
2083 if (mem_cgroup_is_root(memcg))
2084 return;
2085
2086 page_counter_uncharge(&memcg->memory, nr_pages);
2087 if (do_memsw_account())
2088 page_counter_uncharge(&memcg->memsw, nr_pages);
2089
2090 css_put_many(&memcg->css, nr_pages);
2091 }
2092
2093 static void lock_page_lru(struct page *page, int *isolated)
2094 {
2095 struct zone *zone = page_zone(page);
2096
2097 spin_lock_irq(&zone->lru_lock);
2098 if (PageLRU(page)) {
2099 struct lruvec *lruvec;
2100
2101 lruvec = mem_cgroup_page_lruvec(page, zone);
2102 ClearPageLRU(page);
2103 del_page_from_lru_list(page, lruvec, page_lru(page));
2104 *isolated = 1;
2105 } else
2106 *isolated = 0;
2107 }
2108
2109 static void unlock_page_lru(struct page *page, int isolated)
2110 {
2111 struct zone *zone = page_zone(page);
2112
2113 if (isolated) {
2114 struct lruvec *lruvec;
2115
2116 lruvec = mem_cgroup_page_lruvec(page, zone);
2117 VM_BUG_ON_PAGE(PageLRU(page), page);
2118 SetPageLRU(page);
2119 add_page_to_lru_list(page, lruvec, page_lru(page));
2120 }
2121 spin_unlock_irq(&zone->lru_lock);
2122 }
2123
2124 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2125 bool lrucare)
2126 {
2127 int isolated;
2128
2129 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2130
2131 /*
2132 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2133 * may already be on some other mem_cgroup's LRU. Take care of it.
2134 */
2135 if (lrucare)
2136 lock_page_lru(page, &isolated);
2137
2138 /*
2139 * Nobody should be changing or seriously looking at
2140 * page->mem_cgroup at this point:
2141 *
2142 * - the page is uncharged
2143 *
2144 * - the page is off-LRU
2145 *
2146 * - an anonymous fault has exclusive page access, except for
2147 * a locked page table
2148 *
2149 * - a page cache insertion, a swapin fault, or a migration
2150 * have the page locked
2151 */
2152 page->mem_cgroup = memcg;
2153
2154 if (lrucare)
2155 unlock_page_lru(page, isolated);
2156 }
2157
2158 #ifndef CONFIG_SLOB
2159 static int memcg_alloc_cache_id(void)
2160 {
2161 int id, size;
2162 int err;
2163
2164 id = ida_simple_get(&memcg_cache_ida,
2165 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2166 if (id < 0)
2167 return id;
2168
2169 if (id < memcg_nr_cache_ids)
2170 return id;
2171
2172 /*
2173 * There's no space for the new id in memcg_caches arrays,
2174 * so we have to grow them.
2175 */
2176 down_write(&memcg_cache_ids_sem);
2177
2178 size = 2 * (id + 1);
2179 if (size < MEMCG_CACHES_MIN_SIZE)
2180 size = MEMCG_CACHES_MIN_SIZE;
2181 else if (size > MEMCG_CACHES_MAX_SIZE)
2182 size = MEMCG_CACHES_MAX_SIZE;
2183
2184 err = memcg_update_all_caches(size);
2185 if (!err)
2186 err = memcg_update_all_list_lrus(size);
2187 if (!err)
2188 memcg_nr_cache_ids = size;
2189
2190 up_write(&memcg_cache_ids_sem);
2191
2192 if (err) {
2193 ida_simple_remove(&memcg_cache_ida, id);
2194 return err;
2195 }
2196 return id;
2197 }
2198
2199 static void memcg_free_cache_id(int id)
2200 {
2201 ida_simple_remove(&memcg_cache_ida, id);
2202 }
2203
2204 struct memcg_kmem_cache_create_work {
2205 struct mem_cgroup *memcg;
2206 struct kmem_cache *cachep;
2207 struct work_struct work;
2208 };
2209
2210 static void memcg_kmem_cache_create_func(struct work_struct *w)
2211 {
2212 struct memcg_kmem_cache_create_work *cw =
2213 container_of(w, struct memcg_kmem_cache_create_work, work);
2214 struct mem_cgroup *memcg = cw->memcg;
2215 struct kmem_cache *cachep = cw->cachep;
2216
2217 memcg_create_kmem_cache(memcg, cachep);
2218
2219 css_put(&memcg->css);
2220 kfree(cw);
2221 }
2222
2223 /*
2224 * Enqueue the creation of a per-memcg kmem_cache.
2225 */
2226 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2227 struct kmem_cache *cachep)
2228 {
2229 struct memcg_kmem_cache_create_work *cw;
2230
2231 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2232 if (!cw)
2233 return;
2234
2235 css_get(&memcg->css);
2236
2237 cw->memcg = memcg;
2238 cw->cachep = cachep;
2239 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2240
2241 schedule_work(&cw->work);
2242 }
2243
2244 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2245 struct kmem_cache *cachep)
2246 {
2247 /*
2248 * We need to stop accounting when we kmalloc, because if the
2249 * corresponding kmalloc cache is not yet created, the first allocation
2250 * in __memcg_schedule_kmem_cache_create will recurse.
2251 *
2252 * However, it is better to enclose the whole function. Depending on
2253 * the debugging options enabled, INIT_WORK(), for instance, can
2254 * trigger an allocation. This too, will make us recurse. Because at
2255 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2256 * the safest choice is to do it like this, wrapping the whole function.
2257 */
2258 current->memcg_kmem_skip_account = 1;
2259 __memcg_schedule_kmem_cache_create(memcg, cachep);
2260 current->memcg_kmem_skip_account = 0;
2261 }
2262
2263 /*
2264 * Return the kmem_cache we're supposed to use for a slab allocation.
2265 * We try to use the current memcg's version of the cache.
2266 *
2267 * If the cache does not exist yet, if we are the first user of it,
2268 * we either create it immediately, if possible, or create it asynchronously
2269 * in a workqueue.
2270 * In the latter case, we will let the current allocation go through with
2271 * the original cache.
2272 *
2273 * Can't be called in interrupt context or from kernel threads.
2274 * This function needs to be called with rcu_read_lock() held.
2275 */
2276 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2277 {
2278 struct mem_cgroup *memcg;
2279 struct kmem_cache *memcg_cachep;
2280 int kmemcg_id;
2281
2282 VM_BUG_ON(!is_root_cache(cachep));
2283
2284 if (cachep->flags & SLAB_ACCOUNT)
2285 gfp |= __GFP_ACCOUNT;
2286
2287 if (!(gfp & __GFP_ACCOUNT))
2288 return cachep;
2289
2290 if (current->memcg_kmem_skip_account)
2291 return cachep;
2292
2293 memcg = get_mem_cgroup_from_mm(current->mm);
2294 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2295 if (kmemcg_id < 0)
2296 goto out;
2297
2298 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2299 if (likely(memcg_cachep))
2300 return memcg_cachep;
2301
2302 /*
2303 * If we are in a safe context (can wait, and not in interrupt
2304 * context), we could be be predictable and return right away.
2305 * This would guarantee that the allocation being performed
2306 * already belongs in the new cache.
2307 *
2308 * However, there are some clashes that can arrive from locking.
2309 * For instance, because we acquire the slab_mutex while doing
2310 * memcg_create_kmem_cache, this means no further allocation
2311 * could happen with the slab_mutex held. So it's better to
2312 * defer everything.
2313 */
2314 memcg_schedule_kmem_cache_create(memcg, cachep);
2315 out:
2316 css_put(&memcg->css);
2317 return cachep;
2318 }
2319
2320 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2321 {
2322 if (!is_root_cache(cachep))
2323 css_put(&cachep->memcg_params.memcg->css);
2324 }
2325
2326 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2327 struct mem_cgroup *memcg)
2328 {
2329 unsigned int nr_pages = 1 << order;
2330 struct page_counter *counter;
2331 int ret;
2332
2333 if (!memcg_kmem_online(memcg))
2334 return 0;
2335
2336 ret = try_charge(memcg, gfp, nr_pages);
2337 if (ret)
2338 return ret;
2339
2340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2341 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2342 cancel_charge(memcg, nr_pages);
2343 return -ENOMEM;
2344 }
2345
2346 page->mem_cgroup = memcg;
2347
2348 return 0;
2349 }
2350
2351 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2352 {
2353 struct mem_cgroup *memcg;
2354 int ret;
2355
2356 memcg = get_mem_cgroup_from_mm(current->mm);
2357 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2358 css_put(&memcg->css);
2359 return ret;
2360 }
2361
2362 void __memcg_kmem_uncharge(struct page *page, int order)
2363 {
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2366
2367 if (!memcg)
2368 return;
2369
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379 page->mem_cgroup = NULL;
2380 css_put_many(&memcg->css, nr_pages);
2381 }
2382 #endif /* !CONFIG_SLOB */
2383
2384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2385
2386 /*
2387 * Because tail pages are not marked as "used", set it. We're under
2388 * zone->lru_lock and migration entries setup in all page mappings.
2389 */
2390 void mem_cgroup_split_huge_fixup(struct page *head)
2391 {
2392 int i;
2393
2394 if (mem_cgroup_disabled())
2395 return;
2396
2397 for (i = 1; i < HPAGE_PMD_NR; i++)
2398 head[i].mem_cgroup = head->mem_cgroup;
2399
2400 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2401 HPAGE_PMD_NR);
2402 }
2403 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2404
2405 #ifdef CONFIG_MEMCG_SWAP
2406 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2407 bool charge)
2408 {
2409 int val = (charge) ? 1 : -1;
2410 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2411 }
2412
2413 /**
2414 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2415 * @entry: swap entry to be moved
2416 * @from: mem_cgroup which the entry is moved from
2417 * @to: mem_cgroup which the entry is moved to
2418 *
2419 * It succeeds only when the swap_cgroup's record for this entry is the same
2420 * as the mem_cgroup's id of @from.
2421 *
2422 * Returns 0 on success, -EINVAL on failure.
2423 *
2424 * The caller must have charged to @to, IOW, called page_counter_charge() about
2425 * both res and memsw, and called css_get().
2426 */
2427 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2428 struct mem_cgroup *from, struct mem_cgroup *to)
2429 {
2430 unsigned short old_id, new_id;
2431
2432 old_id = mem_cgroup_id(from);
2433 new_id = mem_cgroup_id(to);
2434
2435 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2436 mem_cgroup_swap_statistics(from, false);
2437 mem_cgroup_swap_statistics(to, true);
2438 return 0;
2439 }
2440 return -EINVAL;
2441 }
2442 #else
2443 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2444 struct mem_cgroup *from, struct mem_cgroup *to)
2445 {
2446 return -EINVAL;
2447 }
2448 #endif
2449
2450 static DEFINE_MUTEX(memcg_limit_mutex);
2451
2452 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2453 unsigned long limit)
2454 {
2455 unsigned long curusage;
2456 unsigned long oldusage;
2457 bool enlarge = false;
2458 int retry_count;
2459 int ret;
2460
2461 /*
2462 * For keeping hierarchical_reclaim simple, how long we should retry
2463 * is depends on callers. We set our retry-count to be function
2464 * of # of children which we should visit in this loop.
2465 */
2466 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2467 mem_cgroup_count_children(memcg);
2468
2469 oldusage = page_counter_read(&memcg->memory);
2470
2471 do {
2472 if (signal_pending(current)) {
2473 ret = -EINTR;
2474 break;
2475 }
2476
2477 mutex_lock(&memcg_limit_mutex);
2478 if (limit > memcg->memsw.limit) {
2479 mutex_unlock(&memcg_limit_mutex);
2480 ret = -EINVAL;
2481 break;
2482 }
2483 if (limit > memcg->memory.limit)
2484 enlarge = true;
2485 ret = page_counter_limit(&memcg->memory, limit);
2486 mutex_unlock(&memcg_limit_mutex);
2487
2488 if (!ret)
2489 break;
2490
2491 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2492
2493 curusage = page_counter_read(&memcg->memory);
2494 /* Usage is reduced ? */
2495 if (curusage >= oldusage)
2496 retry_count--;
2497 else
2498 oldusage = curusage;
2499 } while (retry_count);
2500
2501 if (!ret && enlarge)
2502 memcg_oom_recover(memcg);
2503
2504 return ret;
2505 }
2506
2507 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2508 unsigned long limit)
2509 {
2510 unsigned long curusage;
2511 unsigned long oldusage;
2512 bool enlarge = false;
2513 int retry_count;
2514 int ret;
2515
2516 /* see mem_cgroup_resize_res_limit */
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
2519
2520 oldusage = page_counter_read(&memcg->memsw);
2521
2522 do {
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit < memcg->memory.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
2531 ret = -EINVAL;
2532 break;
2533 }
2534 if (limit > memcg->memsw.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memsw, limit);
2537 mutex_unlock(&memcg_limit_mutex);
2538
2539 if (!ret)
2540 break;
2541
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2543
2544 curusage = page_counter_read(&memcg->memsw);
2545 /* Usage is reduced ? */
2546 if (curusage >= oldusage)
2547 retry_count--;
2548 else
2549 oldusage = curusage;
2550 } while (retry_count);
2551
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
2554
2555 return ret;
2556 }
2557
2558 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2559 gfp_t gfp_mask,
2560 unsigned long *total_scanned)
2561 {
2562 unsigned long nr_reclaimed = 0;
2563 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2564 unsigned long reclaimed;
2565 int loop = 0;
2566 struct mem_cgroup_tree_per_zone *mctz;
2567 unsigned long excess;
2568 unsigned long nr_scanned;
2569
2570 if (order > 0)
2571 return 0;
2572
2573 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2574 /*
2575 * This loop can run a while, specially if mem_cgroup's continuously
2576 * keep exceeding their soft limit and putting the system under
2577 * pressure
2578 */
2579 do {
2580 if (next_mz)
2581 mz = next_mz;
2582 else
2583 mz = mem_cgroup_largest_soft_limit_node(mctz);
2584 if (!mz)
2585 break;
2586
2587 nr_scanned = 0;
2588 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2589 gfp_mask, &nr_scanned);
2590 nr_reclaimed += reclaimed;
2591 *total_scanned += nr_scanned;
2592 spin_lock_irq(&mctz->lock);
2593 __mem_cgroup_remove_exceeded(mz, mctz);
2594
2595 /*
2596 * If we failed to reclaim anything from this memory cgroup
2597 * it is time to move on to the next cgroup
2598 */
2599 next_mz = NULL;
2600 if (!reclaimed)
2601 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2602
2603 excess = soft_limit_excess(mz->memcg);
2604 /*
2605 * One school of thought says that we should not add
2606 * back the node to the tree if reclaim returns 0.
2607 * But our reclaim could return 0, simply because due
2608 * to priority we are exposing a smaller subset of
2609 * memory to reclaim from. Consider this as a longer
2610 * term TODO.
2611 */
2612 /* If excess == 0, no tree ops */
2613 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2614 spin_unlock_irq(&mctz->lock);
2615 css_put(&mz->memcg->css);
2616 loop++;
2617 /*
2618 * Could not reclaim anything and there are no more
2619 * mem cgroups to try or we seem to be looping without
2620 * reclaiming anything.
2621 */
2622 if (!nr_reclaimed &&
2623 (next_mz == NULL ||
2624 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2625 break;
2626 } while (!nr_reclaimed);
2627 if (next_mz)
2628 css_put(&next_mz->memcg->css);
2629 return nr_reclaimed;
2630 }
2631
2632 /*
2633 * Test whether @memcg has children, dead or alive. Note that this
2634 * function doesn't care whether @memcg has use_hierarchy enabled and
2635 * returns %true if there are child csses according to the cgroup
2636 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2637 */
2638 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2639 {
2640 bool ret;
2641
2642 rcu_read_lock();
2643 ret = css_next_child(NULL, &memcg->css);
2644 rcu_read_unlock();
2645 return ret;
2646 }
2647
2648 /*
2649 * Reclaims as many pages from the given memcg as possible and moves
2650 * the rest to the parent.
2651 *
2652 * Caller is responsible for holding css reference for memcg.
2653 */
2654 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2655 {
2656 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2657
2658 /* we call try-to-free pages for make this cgroup empty */
2659 lru_add_drain_all();
2660 /* try to free all pages in this cgroup */
2661 while (nr_retries && page_counter_read(&memcg->memory)) {
2662 int progress;
2663
2664 if (signal_pending(current))
2665 return -EINTR;
2666
2667 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2668 GFP_KERNEL, true);
2669 if (!progress) {
2670 nr_retries--;
2671 /* maybe some writeback is necessary */
2672 congestion_wait(BLK_RW_ASYNC, HZ/10);
2673 }
2674
2675 }
2676
2677 return 0;
2678 }
2679
2680 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2681 char *buf, size_t nbytes,
2682 loff_t off)
2683 {
2684 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2685
2686 if (mem_cgroup_is_root(memcg))
2687 return -EINVAL;
2688 return mem_cgroup_force_empty(memcg) ?: nbytes;
2689 }
2690
2691 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2692 struct cftype *cft)
2693 {
2694 return mem_cgroup_from_css(css)->use_hierarchy;
2695 }
2696
2697 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2698 struct cftype *cft, u64 val)
2699 {
2700 int retval = 0;
2701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2702 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2703
2704 if (memcg->use_hierarchy == val)
2705 return 0;
2706
2707 /*
2708 * If parent's use_hierarchy is set, we can't make any modifications
2709 * in the child subtrees. If it is unset, then the change can
2710 * occur, provided the current cgroup has no children.
2711 *
2712 * For the root cgroup, parent_mem is NULL, we allow value to be
2713 * set if there are no children.
2714 */
2715 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2716 (val == 1 || val == 0)) {
2717 if (!memcg_has_children(memcg))
2718 memcg->use_hierarchy = val;
2719 else
2720 retval = -EBUSY;
2721 } else
2722 retval = -EINVAL;
2723
2724 return retval;
2725 }
2726
2727 static unsigned long tree_stat(struct mem_cgroup *memcg,
2728 enum mem_cgroup_stat_index idx)
2729 {
2730 struct mem_cgroup *iter;
2731 unsigned long val = 0;
2732
2733 for_each_mem_cgroup_tree(iter, memcg)
2734 val += mem_cgroup_read_stat(iter, idx);
2735
2736 return val;
2737 }
2738
2739 static unsigned long tree_events(struct mem_cgroup *memcg,
2740 enum mem_cgroup_events_index idx)
2741 {
2742 struct mem_cgroup *iter;
2743 unsigned long val = 0;
2744
2745 for_each_mem_cgroup_tree(iter, memcg)
2746 val += mem_cgroup_read_events(iter, idx);
2747
2748 return val;
2749 }
2750
2751 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2752 {
2753 unsigned long val;
2754
2755 if (mem_cgroup_is_root(memcg)) {
2756 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2757 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2758 if (swap)
2759 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2760 } else {
2761 if (!swap)
2762 val = page_counter_read(&memcg->memory);
2763 else
2764 val = page_counter_read(&memcg->memsw);
2765 }
2766 return val;
2767 }
2768
2769 enum {
2770 RES_USAGE,
2771 RES_LIMIT,
2772 RES_MAX_USAGE,
2773 RES_FAILCNT,
2774 RES_SOFT_LIMIT,
2775 };
2776
2777 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2778 struct cftype *cft)
2779 {
2780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2781 struct page_counter *counter;
2782
2783 switch (MEMFILE_TYPE(cft->private)) {
2784 case _MEM:
2785 counter = &memcg->memory;
2786 break;
2787 case _MEMSWAP:
2788 counter = &memcg->memsw;
2789 break;
2790 case _KMEM:
2791 counter = &memcg->kmem;
2792 break;
2793 case _TCP:
2794 counter = &memcg->tcpmem;
2795 break;
2796 default:
2797 BUG();
2798 }
2799
2800 switch (MEMFILE_ATTR(cft->private)) {
2801 case RES_USAGE:
2802 if (counter == &memcg->memory)
2803 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2804 if (counter == &memcg->memsw)
2805 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2806 return (u64)page_counter_read(counter) * PAGE_SIZE;
2807 case RES_LIMIT:
2808 return (u64)counter->limit * PAGE_SIZE;
2809 case RES_MAX_USAGE:
2810 return (u64)counter->watermark * PAGE_SIZE;
2811 case RES_FAILCNT:
2812 return counter->failcnt;
2813 case RES_SOFT_LIMIT:
2814 return (u64)memcg->soft_limit * PAGE_SIZE;
2815 default:
2816 BUG();
2817 }
2818 }
2819
2820 #ifndef CONFIG_SLOB
2821 static int memcg_online_kmem(struct mem_cgroup *memcg)
2822 {
2823 int memcg_id;
2824
2825 BUG_ON(memcg->kmemcg_id >= 0);
2826 BUG_ON(memcg->kmem_state);
2827
2828 memcg_id = memcg_alloc_cache_id();
2829 if (memcg_id < 0)
2830 return memcg_id;
2831
2832 static_branch_inc(&memcg_kmem_enabled_key);
2833 /*
2834 * A memory cgroup is considered kmem-online as soon as it gets
2835 * kmemcg_id. Setting the id after enabling static branching will
2836 * guarantee no one starts accounting before all call sites are
2837 * patched.
2838 */
2839 memcg->kmemcg_id = memcg_id;
2840 memcg->kmem_state = KMEM_ONLINE;
2841
2842 return 0;
2843 }
2844
2845 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2846 struct mem_cgroup *memcg)
2847 {
2848 int ret = 0;
2849
2850 mutex_lock(&memcg_limit_mutex);
2851 /*
2852 * If the parent cgroup is not kmem-online now, it cannot be
2853 * onlined after this point, because it has at least one child
2854 * already.
2855 */
2856 if (memcg_kmem_online(parent) ||
2857 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2858 ret = memcg_online_kmem(memcg);
2859 mutex_unlock(&memcg_limit_mutex);
2860 return ret;
2861 }
2862
2863 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2864 {
2865 struct cgroup_subsys_state *css;
2866 struct mem_cgroup *parent, *child;
2867 int kmemcg_id;
2868
2869 if (memcg->kmem_state != KMEM_ONLINE)
2870 return;
2871 /*
2872 * Clear the online state before clearing memcg_caches array
2873 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2874 * guarantees that no cache will be created for this cgroup
2875 * after we are done (see memcg_create_kmem_cache()).
2876 */
2877 memcg->kmem_state = KMEM_ALLOCATED;
2878
2879 memcg_deactivate_kmem_caches(memcg);
2880
2881 kmemcg_id = memcg->kmemcg_id;
2882 BUG_ON(kmemcg_id < 0);
2883
2884 parent = parent_mem_cgroup(memcg);
2885 if (!parent)
2886 parent = root_mem_cgroup;
2887
2888 /*
2889 * Change kmemcg_id of this cgroup and all its descendants to the
2890 * parent's id, and then move all entries from this cgroup's list_lrus
2891 * to ones of the parent. After we have finished, all list_lrus
2892 * corresponding to this cgroup are guaranteed to remain empty. The
2893 * ordering is imposed by list_lru_node->lock taken by
2894 * memcg_drain_all_list_lrus().
2895 */
2896 css_for_each_descendant_pre(css, &memcg->css) {
2897 child = mem_cgroup_from_css(css);
2898 BUG_ON(child->kmemcg_id != kmemcg_id);
2899 child->kmemcg_id = parent->kmemcg_id;
2900 if (!memcg->use_hierarchy)
2901 break;
2902 }
2903 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905 memcg_free_cache_id(kmemcg_id);
2906 }
2907
2908 static void memcg_free_kmem(struct mem_cgroup *memcg)
2909 {
2910 /* css_alloc() failed, offlining didn't happen */
2911 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912 memcg_offline_kmem(memcg);
2913
2914 if (memcg->kmem_state == KMEM_ALLOCATED) {
2915 memcg_destroy_kmem_caches(memcg);
2916 static_branch_dec(&memcg_kmem_enabled_key);
2917 WARN_ON(page_counter_read(&memcg->kmem));
2918 }
2919 }
2920 #else
2921 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2922 {
2923 return 0;
2924 }
2925 static int memcg_online_kmem(struct mem_cgroup *memcg)
2926 {
2927 return 0;
2928 }
2929 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 static void memcg_free_kmem(struct mem_cgroup *memcg)
2933 {
2934 }
2935 #endif /* !CONFIG_SLOB */
2936
2937 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2938 unsigned long limit)
2939 {
2940 int ret = 0;
2941
2942 mutex_lock(&memcg_limit_mutex);
2943 /* Top-level cgroup doesn't propagate from root */
2944 if (!memcg_kmem_online(memcg)) {
2945 if (cgroup_is_populated(memcg->css.cgroup) ||
2946 (memcg->use_hierarchy && memcg_has_children(memcg)))
2947 ret = -EBUSY;
2948 if (ret)
2949 goto out;
2950 ret = memcg_online_kmem(memcg);
2951 if (ret)
2952 goto out;
2953 }
2954 ret = page_counter_limit(&memcg->kmem, limit);
2955 out:
2956 mutex_unlock(&memcg_limit_mutex);
2957 return ret;
2958 }
2959
2960 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2961 {
2962 int ret;
2963
2964 mutex_lock(&memcg_limit_mutex);
2965
2966 ret = page_counter_limit(&memcg->tcpmem, limit);
2967 if (ret)
2968 goto out;
2969
2970 if (!memcg->tcpmem_active) {
2971 /*
2972 * The active flag needs to be written after the static_key
2973 * update. This is what guarantees that the socket activation
2974 * function is the last one to run. See sock_update_memcg() for
2975 * details, and note that we don't mark any socket as belonging
2976 * to this memcg until that flag is up.
2977 *
2978 * We need to do this, because static_keys will span multiple
2979 * sites, but we can't control their order. If we mark a socket
2980 * as accounted, but the accounting functions are not patched in
2981 * yet, we'll lose accounting.
2982 *
2983 * We never race with the readers in sock_update_memcg(),
2984 * because when this value change, the code to process it is not
2985 * patched in yet.
2986 */
2987 static_branch_inc(&memcg_sockets_enabled_key);
2988 memcg->tcpmem_active = true;
2989 }
2990 out:
2991 mutex_unlock(&memcg_limit_mutex);
2992 return ret;
2993 }
2994
2995 /*
2996 * The user of this function is...
2997 * RES_LIMIT.
2998 */
2999 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3000 char *buf, size_t nbytes, loff_t off)
3001 {
3002 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3003 unsigned long nr_pages;
3004 int ret;
3005
3006 buf = strstrip(buf);
3007 ret = page_counter_memparse(buf, "-1", &nr_pages);
3008 if (ret)
3009 return ret;
3010
3011 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3012 case RES_LIMIT:
3013 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3014 ret = -EINVAL;
3015 break;
3016 }
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3020 break;
3021 case _MEMSWAP:
3022 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3023 break;
3024 case _KMEM:
3025 ret = memcg_update_kmem_limit(memcg, nr_pages);
3026 break;
3027 case _TCP:
3028 ret = memcg_update_tcp_limit(memcg, nr_pages);
3029 break;
3030 }
3031 break;
3032 case RES_SOFT_LIMIT:
3033 memcg->soft_limit = nr_pages;
3034 ret = 0;
3035 break;
3036 }
3037 return ret ?: nbytes;
3038 }
3039
3040 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3041 size_t nbytes, loff_t off)
3042 {
3043 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3044 struct page_counter *counter;
3045
3046 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3047 case _MEM:
3048 counter = &memcg->memory;
3049 break;
3050 case _MEMSWAP:
3051 counter = &memcg->memsw;
3052 break;
3053 case _KMEM:
3054 counter = &memcg->kmem;
3055 break;
3056 case _TCP:
3057 counter = &memcg->tcpmem;
3058 break;
3059 default:
3060 BUG();
3061 }
3062
3063 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3064 case RES_MAX_USAGE:
3065 page_counter_reset_watermark(counter);
3066 break;
3067 case RES_FAILCNT:
3068 counter->failcnt = 0;
3069 break;
3070 default:
3071 BUG();
3072 }
3073
3074 return nbytes;
3075 }
3076
3077 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3078 struct cftype *cft)
3079 {
3080 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3081 }
3082
3083 #ifdef CONFIG_MMU
3084 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3085 struct cftype *cft, u64 val)
3086 {
3087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3088
3089 if (val & ~MOVE_MASK)
3090 return -EINVAL;
3091
3092 /*
3093 * No kind of locking is needed in here, because ->can_attach() will
3094 * check this value once in the beginning of the process, and then carry
3095 * on with stale data. This means that changes to this value will only
3096 * affect task migrations starting after the change.
3097 */
3098 memcg->move_charge_at_immigrate = val;
3099 return 0;
3100 }
3101 #else
3102 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3103 struct cftype *cft, u64 val)
3104 {
3105 return -ENOSYS;
3106 }
3107 #endif
3108
3109 #ifdef CONFIG_NUMA
3110 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3111 {
3112 struct numa_stat {
3113 const char *name;
3114 unsigned int lru_mask;
3115 };
3116
3117 static const struct numa_stat stats[] = {
3118 { "total", LRU_ALL },
3119 { "file", LRU_ALL_FILE },
3120 { "anon", LRU_ALL_ANON },
3121 { "unevictable", BIT(LRU_UNEVICTABLE) },
3122 };
3123 const struct numa_stat *stat;
3124 int nid;
3125 unsigned long nr;
3126 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3127
3128 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3129 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3130 seq_printf(m, "%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3133 stat->lru_mask);
3134 seq_printf(m, " N%d=%lu", nid, nr);
3135 }
3136 seq_putc(m, '\n');
3137 }
3138
3139 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3140 struct mem_cgroup *iter;
3141
3142 nr = 0;
3143 for_each_mem_cgroup_tree(iter, memcg)
3144 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3145 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3146 for_each_node_state(nid, N_MEMORY) {
3147 nr = 0;
3148 for_each_mem_cgroup_tree(iter, memcg)
3149 nr += mem_cgroup_node_nr_lru_pages(
3150 iter, nid, stat->lru_mask);
3151 seq_printf(m, " N%d=%lu", nid, nr);
3152 }
3153 seq_putc(m, '\n');
3154 }
3155
3156 return 0;
3157 }
3158 #endif /* CONFIG_NUMA */
3159
3160 static int memcg_stat_show(struct seq_file *m, void *v)
3161 {
3162 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3163 unsigned long memory, memsw;
3164 struct mem_cgroup *mi;
3165 unsigned int i;
3166
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3168 MEM_CGROUP_STAT_NSTATS);
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3170 MEM_CGROUP_EVENTS_NSTATS);
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3172
3173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 continue;
3176 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3177 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3181 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3182 mem_cgroup_read_events(memcg, i));
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++)
3185 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3186 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3187
3188 /* Hierarchical information */
3189 memory = memsw = PAGE_COUNTER_MAX;
3190 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3191 memory = min(memory, mi->memory.limit);
3192 memsw = min(memsw, mi->memsw.limit);
3193 }
3194 seq_printf(m, "hierarchical_memory_limit %llu\n",
3195 (u64)memory * PAGE_SIZE);
3196 if (do_memsw_account())
3197 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3198 (u64)memsw * PAGE_SIZE);
3199
3200 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3201 unsigned long long val = 0;
3202
3203 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3204 continue;
3205 for_each_mem_cgroup_tree(mi, memcg)
3206 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3207 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3208 }
3209
3210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
3214 val += mem_cgroup_read_events(mi, i);
3215 seq_printf(m, "total_%s %llu\n",
3216 mem_cgroup_events_names[i], val);
3217 }
3218
3219 for (i = 0; i < NR_LRU_LISTS; i++) {
3220 unsigned long long val = 0;
3221
3222 for_each_mem_cgroup_tree(mi, memcg)
3223 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3224 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3225 }
3226
3227 #ifdef CONFIG_DEBUG_VM
3228 {
3229 int nid, zid;
3230 struct mem_cgroup_per_zone *mz;
3231 struct zone_reclaim_stat *rstat;
3232 unsigned long recent_rotated[2] = {0, 0};
3233 unsigned long recent_scanned[2] = {0, 0};
3234
3235 for_each_online_node(nid)
3236 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3237 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3238 rstat = &mz->lruvec.reclaim_stat;
3239
3240 recent_rotated[0] += rstat->recent_rotated[0];
3241 recent_rotated[1] += rstat->recent_rotated[1];
3242 recent_scanned[0] += rstat->recent_scanned[0];
3243 recent_scanned[1] += rstat->recent_scanned[1];
3244 }
3245 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3246 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3247 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3248 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3249 }
3250 #endif
3251
3252 return 0;
3253 }
3254
3255 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3256 struct cftype *cft)
3257 {
3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3259
3260 return mem_cgroup_swappiness(memcg);
3261 }
3262
3263 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3264 struct cftype *cft, u64 val)
3265 {
3266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3267
3268 if (val > 100)
3269 return -EINVAL;
3270
3271 if (css->parent)
3272 memcg->swappiness = val;
3273 else
3274 vm_swappiness = val;
3275
3276 return 0;
3277 }
3278
3279 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3280 {
3281 struct mem_cgroup_threshold_ary *t;
3282 unsigned long usage;
3283 int i;
3284
3285 rcu_read_lock();
3286 if (!swap)
3287 t = rcu_dereference(memcg->thresholds.primary);
3288 else
3289 t = rcu_dereference(memcg->memsw_thresholds.primary);
3290
3291 if (!t)
3292 goto unlock;
3293
3294 usage = mem_cgroup_usage(memcg, swap);
3295
3296 /*
3297 * current_threshold points to threshold just below or equal to usage.
3298 * If it's not true, a threshold was crossed after last
3299 * call of __mem_cgroup_threshold().
3300 */
3301 i = t->current_threshold;
3302
3303 /*
3304 * Iterate backward over array of thresholds starting from
3305 * current_threshold and check if a threshold is crossed.
3306 * If none of thresholds below usage is crossed, we read
3307 * only one element of the array here.
3308 */
3309 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3310 eventfd_signal(t->entries[i].eventfd, 1);
3311
3312 /* i = current_threshold + 1 */
3313 i++;
3314
3315 /*
3316 * Iterate forward over array of thresholds starting from
3317 * current_threshold+1 and check if a threshold is crossed.
3318 * If none of thresholds above usage is crossed, we read
3319 * only one element of the array here.
3320 */
3321 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3322 eventfd_signal(t->entries[i].eventfd, 1);
3323
3324 /* Update current_threshold */
3325 t->current_threshold = i - 1;
3326 unlock:
3327 rcu_read_unlock();
3328 }
3329
3330 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3331 {
3332 while (memcg) {
3333 __mem_cgroup_threshold(memcg, false);
3334 if (do_memsw_account())
3335 __mem_cgroup_threshold(memcg, true);
3336
3337 memcg = parent_mem_cgroup(memcg);
3338 }
3339 }
3340
3341 static int compare_thresholds(const void *a, const void *b)
3342 {
3343 const struct mem_cgroup_threshold *_a = a;
3344 const struct mem_cgroup_threshold *_b = b;
3345
3346 if (_a->threshold > _b->threshold)
3347 return 1;
3348
3349 if (_a->threshold < _b->threshold)
3350 return -1;
3351
3352 return 0;
3353 }
3354
3355 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3356 {
3357 struct mem_cgroup_eventfd_list *ev;
3358
3359 spin_lock(&memcg_oom_lock);
3360
3361 list_for_each_entry(ev, &memcg->oom_notify, list)
3362 eventfd_signal(ev->eventfd, 1);
3363
3364 spin_unlock(&memcg_oom_lock);
3365 return 0;
3366 }
3367
3368 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3369 {
3370 struct mem_cgroup *iter;
3371
3372 for_each_mem_cgroup_tree(iter, memcg)
3373 mem_cgroup_oom_notify_cb(iter);
3374 }
3375
3376 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3377 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3378 {
3379 struct mem_cgroup_thresholds *thresholds;
3380 struct mem_cgroup_threshold_ary *new;
3381 unsigned long threshold;
3382 unsigned long usage;
3383 int i, size, ret;
3384
3385 ret = page_counter_memparse(args, "-1", &threshold);
3386 if (ret)
3387 return ret;
3388
3389 mutex_lock(&memcg->thresholds_lock);
3390
3391 if (type == _MEM) {
3392 thresholds = &memcg->thresholds;
3393 usage = mem_cgroup_usage(memcg, false);
3394 } else if (type == _MEMSWAP) {
3395 thresholds = &memcg->memsw_thresholds;
3396 usage = mem_cgroup_usage(memcg, true);
3397 } else
3398 BUG();
3399
3400 /* Check if a threshold crossed before adding a new one */
3401 if (thresholds->primary)
3402 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3403
3404 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3405
3406 /* Allocate memory for new array of thresholds */
3407 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3408 GFP_KERNEL);
3409 if (!new) {
3410 ret = -ENOMEM;
3411 goto unlock;
3412 }
3413 new->size = size;
3414
3415 /* Copy thresholds (if any) to new array */
3416 if (thresholds->primary) {
3417 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3418 sizeof(struct mem_cgroup_threshold));
3419 }
3420
3421 /* Add new threshold */
3422 new->entries[size - 1].eventfd = eventfd;
3423 new->entries[size - 1].threshold = threshold;
3424
3425 /* Sort thresholds. Registering of new threshold isn't time-critical */
3426 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3427 compare_thresholds, NULL);
3428
3429 /* Find current threshold */
3430 new->current_threshold = -1;
3431 for (i = 0; i < size; i++) {
3432 if (new->entries[i].threshold <= usage) {
3433 /*
3434 * new->current_threshold will not be used until
3435 * rcu_assign_pointer(), so it's safe to increment
3436 * it here.
3437 */
3438 ++new->current_threshold;
3439 } else
3440 break;
3441 }
3442
3443 /* Free old spare buffer and save old primary buffer as spare */
3444 kfree(thresholds->spare);
3445 thresholds->spare = thresholds->primary;
3446
3447 rcu_assign_pointer(thresholds->primary, new);
3448
3449 /* To be sure that nobody uses thresholds */
3450 synchronize_rcu();
3451
3452 unlock:
3453 mutex_unlock(&memcg->thresholds_lock);
3454
3455 return ret;
3456 }
3457
3458 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3459 struct eventfd_ctx *eventfd, const char *args)
3460 {
3461 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3462 }
3463
3464 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3465 struct eventfd_ctx *eventfd, const char *args)
3466 {
3467 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3468 }
3469
3470 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3471 struct eventfd_ctx *eventfd, enum res_type type)
3472 {
3473 struct mem_cgroup_thresholds *thresholds;
3474 struct mem_cgroup_threshold_ary *new;
3475 unsigned long usage;
3476 int i, j, size;
3477
3478 mutex_lock(&memcg->thresholds_lock);
3479
3480 if (type == _MEM) {
3481 thresholds = &memcg->thresholds;
3482 usage = mem_cgroup_usage(memcg, false);
3483 } else if (type == _MEMSWAP) {
3484 thresholds = &memcg->memsw_thresholds;
3485 usage = mem_cgroup_usage(memcg, true);
3486 } else
3487 BUG();
3488
3489 if (!thresholds->primary)
3490 goto unlock;
3491
3492 /* Check if a threshold crossed before removing */
3493 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3494
3495 /* Calculate new number of threshold */
3496 size = 0;
3497 for (i = 0; i < thresholds->primary->size; i++) {
3498 if (thresholds->primary->entries[i].eventfd != eventfd)
3499 size++;
3500 }
3501
3502 new = thresholds->spare;
3503
3504 /* Set thresholds array to NULL if we don't have thresholds */
3505 if (!size) {
3506 kfree(new);
3507 new = NULL;
3508 goto swap_buffers;
3509 }
3510
3511 new->size = size;
3512
3513 /* Copy thresholds and find current threshold */
3514 new->current_threshold = -1;
3515 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3516 if (thresholds->primary->entries[i].eventfd == eventfd)
3517 continue;
3518
3519 new->entries[j] = thresholds->primary->entries[i];
3520 if (new->entries[j].threshold <= usage) {
3521 /*
3522 * new->current_threshold will not be used
3523 * until rcu_assign_pointer(), so it's safe to increment
3524 * it here.
3525 */
3526 ++new->current_threshold;
3527 }
3528 j++;
3529 }
3530
3531 swap_buffers:
3532 /* Swap primary and spare array */
3533 thresholds->spare = thresholds->primary;
3534
3535 rcu_assign_pointer(thresholds->primary, new);
3536
3537 /* To be sure that nobody uses thresholds */
3538 synchronize_rcu();
3539
3540 /* If all events are unregistered, free the spare array */
3541 if (!new) {
3542 kfree(thresholds->spare);
3543 thresholds->spare = NULL;
3544 }
3545 unlock:
3546 mutex_unlock(&memcg->thresholds_lock);
3547 }
3548
3549 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3550 struct eventfd_ctx *eventfd)
3551 {
3552 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3553 }
3554
3555 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3556 struct eventfd_ctx *eventfd)
3557 {
3558 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3559 }
3560
3561 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3562 struct eventfd_ctx *eventfd, const char *args)
3563 {
3564 struct mem_cgroup_eventfd_list *event;
3565
3566 event = kmalloc(sizeof(*event), GFP_KERNEL);
3567 if (!event)
3568 return -ENOMEM;
3569
3570 spin_lock(&memcg_oom_lock);
3571
3572 event->eventfd = eventfd;
3573 list_add(&event->list, &memcg->oom_notify);
3574
3575 /* already in OOM ? */
3576 if (memcg->under_oom)
3577 eventfd_signal(eventfd, 1);
3578 spin_unlock(&memcg_oom_lock);
3579
3580 return 0;
3581 }
3582
3583 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3584 struct eventfd_ctx *eventfd)
3585 {
3586 struct mem_cgroup_eventfd_list *ev, *tmp;
3587
3588 spin_lock(&memcg_oom_lock);
3589
3590 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3591 if (ev->eventfd == eventfd) {
3592 list_del(&ev->list);
3593 kfree(ev);
3594 }
3595 }
3596
3597 spin_unlock(&memcg_oom_lock);
3598 }
3599
3600 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3601 {
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3603
3604 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3605 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3606 return 0;
3607 }
3608
3609 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3610 struct cftype *cft, u64 val)
3611 {
3612 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3613
3614 /* cannot set to root cgroup and only 0 and 1 are allowed */
3615 if (!css->parent || !((val == 0) || (val == 1)))
3616 return -EINVAL;
3617
3618 memcg->oom_kill_disable = val;
3619 if (!val)
3620 memcg_oom_recover(memcg);
3621
3622 return 0;
3623 }
3624
3625 #ifdef CONFIG_CGROUP_WRITEBACK
3626
3627 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3628 {
3629 return &memcg->cgwb_list;
3630 }
3631
3632 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3633 {
3634 return wb_domain_init(&memcg->cgwb_domain, gfp);
3635 }
3636
3637 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3638 {
3639 wb_domain_exit(&memcg->cgwb_domain);
3640 }
3641
3642 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3643 {
3644 wb_domain_size_changed(&memcg->cgwb_domain);
3645 }
3646
3647 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650
3651 if (!memcg->css.parent)
3652 return NULL;
3653
3654 return &memcg->cgwb_domain;
3655 }
3656
3657 /**
3658 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3659 * @wb: bdi_writeback in question
3660 * @pfilepages: out parameter for number of file pages
3661 * @pheadroom: out parameter for number of allocatable pages according to memcg
3662 * @pdirty: out parameter for number of dirty pages
3663 * @pwriteback: out parameter for number of pages under writeback
3664 *
3665 * Determine the numbers of file, headroom, dirty, and writeback pages in
3666 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3667 * is a bit more involved.
3668 *
3669 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3670 * headroom is calculated as the lowest headroom of itself and the
3671 * ancestors. Note that this doesn't consider the actual amount of
3672 * available memory in the system. The caller should further cap
3673 * *@pheadroom accordingly.
3674 */
3675 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3676 unsigned long *pheadroom, unsigned long *pdirty,
3677 unsigned long *pwriteback)
3678 {
3679 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3680 struct mem_cgroup *parent;
3681
3682 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3683
3684 /* this should eventually include NR_UNSTABLE_NFS */
3685 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3686 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3687 (1 << LRU_ACTIVE_FILE));
3688 *pheadroom = PAGE_COUNTER_MAX;
3689
3690 while ((parent = parent_mem_cgroup(memcg))) {
3691 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3692 unsigned long used = page_counter_read(&memcg->memory);
3693
3694 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3695 memcg = parent;
3696 }
3697 }
3698
3699 #else /* CONFIG_CGROUP_WRITEBACK */
3700
3701 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3702 {
3703 return 0;
3704 }
3705
3706 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3707 {
3708 }
3709
3710 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3711 {
3712 }
3713
3714 #endif /* CONFIG_CGROUP_WRITEBACK */
3715
3716 /*
3717 * DO NOT USE IN NEW FILES.
3718 *
3719 * "cgroup.event_control" implementation.
3720 *
3721 * This is way over-engineered. It tries to support fully configurable
3722 * events for each user. Such level of flexibility is completely
3723 * unnecessary especially in the light of the planned unified hierarchy.
3724 *
3725 * Please deprecate this and replace with something simpler if at all
3726 * possible.
3727 */
3728
3729 /*
3730 * Unregister event and free resources.
3731 *
3732 * Gets called from workqueue.
3733 */
3734 static void memcg_event_remove(struct work_struct *work)
3735 {
3736 struct mem_cgroup_event *event =
3737 container_of(work, struct mem_cgroup_event, remove);
3738 struct mem_cgroup *memcg = event->memcg;
3739
3740 remove_wait_queue(event->wqh, &event->wait);
3741
3742 event->unregister_event(memcg, event->eventfd);
3743
3744 /* Notify userspace the event is going away. */
3745 eventfd_signal(event->eventfd, 1);
3746
3747 eventfd_ctx_put(event->eventfd);
3748 kfree(event);
3749 css_put(&memcg->css);
3750 }
3751
3752 /*
3753 * Gets called on POLLHUP on eventfd when user closes it.
3754 *
3755 * Called with wqh->lock held and interrupts disabled.
3756 */
3757 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3758 int sync, void *key)
3759 {
3760 struct mem_cgroup_event *event =
3761 container_of(wait, struct mem_cgroup_event, wait);
3762 struct mem_cgroup *memcg = event->memcg;
3763 unsigned long flags = (unsigned long)key;
3764
3765 if (flags & POLLHUP) {
3766 /*
3767 * If the event has been detached at cgroup removal, we
3768 * can simply return knowing the other side will cleanup
3769 * for us.
3770 *
3771 * We can't race against event freeing since the other
3772 * side will require wqh->lock via remove_wait_queue(),
3773 * which we hold.
3774 */
3775 spin_lock(&memcg->event_list_lock);
3776 if (!list_empty(&event->list)) {
3777 list_del_init(&event->list);
3778 /*
3779 * We are in atomic context, but cgroup_event_remove()
3780 * may sleep, so we have to call it in workqueue.
3781 */
3782 schedule_work(&event->remove);
3783 }
3784 spin_unlock(&memcg->event_list_lock);
3785 }
3786
3787 return 0;
3788 }
3789
3790 static void memcg_event_ptable_queue_proc(struct file *file,
3791 wait_queue_head_t *wqh, poll_table *pt)
3792 {
3793 struct mem_cgroup_event *event =
3794 container_of(pt, struct mem_cgroup_event, pt);
3795
3796 event->wqh = wqh;
3797 add_wait_queue(wqh, &event->wait);
3798 }
3799
3800 /*
3801 * DO NOT USE IN NEW FILES.
3802 *
3803 * Parse input and register new cgroup event handler.
3804 *
3805 * Input must be in format '<event_fd> <control_fd> <args>'.
3806 * Interpretation of args is defined by control file implementation.
3807 */
3808 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3809 char *buf, size_t nbytes, loff_t off)
3810 {
3811 struct cgroup_subsys_state *css = of_css(of);
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3813 struct mem_cgroup_event *event;
3814 struct cgroup_subsys_state *cfile_css;
3815 unsigned int efd, cfd;
3816 struct fd efile;
3817 struct fd cfile;
3818 const char *name;
3819 char *endp;
3820 int ret;
3821
3822 buf = strstrip(buf);
3823
3824 efd = simple_strtoul(buf, &endp, 10);
3825 if (*endp != ' ')
3826 return -EINVAL;
3827 buf = endp + 1;
3828
3829 cfd = simple_strtoul(buf, &endp, 10);
3830 if ((*endp != ' ') && (*endp != '\0'))
3831 return -EINVAL;
3832 buf = endp + 1;
3833
3834 event = kzalloc(sizeof(*event), GFP_KERNEL);
3835 if (!event)
3836 return -ENOMEM;
3837
3838 event->memcg = memcg;
3839 INIT_LIST_HEAD(&event->list);
3840 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3841 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3842 INIT_WORK(&event->remove, memcg_event_remove);
3843
3844 efile = fdget(efd);
3845 if (!efile.file) {
3846 ret = -EBADF;
3847 goto out_kfree;
3848 }
3849
3850 event->eventfd = eventfd_ctx_fileget(efile.file);
3851 if (IS_ERR(event->eventfd)) {
3852 ret = PTR_ERR(event->eventfd);
3853 goto out_put_efile;
3854 }
3855
3856 cfile = fdget(cfd);
3857 if (!cfile.file) {
3858 ret = -EBADF;
3859 goto out_put_eventfd;
3860 }
3861
3862 /* the process need read permission on control file */
3863 /* AV: shouldn't we check that it's been opened for read instead? */
3864 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3865 if (ret < 0)
3866 goto out_put_cfile;
3867
3868 /*
3869 * Determine the event callbacks and set them in @event. This used
3870 * to be done via struct cftype but cgroup core no longer knows
3871 * about these events. The following is crude but the whole thing
3872 * is for compatibility anyway.
3873 *
3874 * DO NOT ADD NEW FILES.
3875 */
3876 name = cfile.file->f_path.dentry->d_name.name;
3877
3878 if (!strcmp(name, "memory.usage_in_bytes")) {
3879 event->register_event = mem_cgroup_usage_register_event;
3880 event->unregister_event = mem_cgroup_usage_unregister_event;
3881 } else if (!strcmp(name, "memory.oom_control")) {
3882 event->register_event = mem_cgroup_oom_register_event;
3883 event->unregister_event = mem_cgroup_oom_unregister_event;
3884 } else if (!strcmp(name, "memory.pressure_level")) {
3885 event->register_event = vmpressure_register_event;
3886 event->unregister_event = vmpressure_unregister_event;
3887 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3888 event->register_event = memsw_cgroup_usage_register_event;
3889 event->unregister_event = memsw_cgroup_usage_unregister_event;
3890 } else {
3891 ret = -EINVAL;
3892 goto out_put_cfile;
3893 }
3894
3895 /*
3896 * Verify @cfile should belong to @css. Also, remaining events are
3897 * automatically removed on cgroup destruction but the removal is
3898 * asynchronous, so take an extra ref on @css.
3899 */
3900 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3901 &memory_cgrp_subsys);
3902 ret = -EINVAL;
3903 if (IS_ERR(cfile_css))
3904 goto out_put_cfile;
3905 if (cfile_css != css) {
3906 css_put(cfile_css);
3907 goto out_put_cfile;
3908 }
3909
3910 ret = event->register_event(memcg, event->eventfd, buf);
3911 if (ret)
3912 goto out_put_css;
3913
3914 efile.file->f_op->poll(efile.file, &event->pt);
3915
3916 spin_lock(&memcg->event_list_lock);
3917 list_add(&event->list, &memcg->event_list);
3918 spin_unlock(&memcg->event_list_lock);
3919
3920 fdput(cfile);
3921 fdput(efile);
3922
3923 return nbytes;
3924
3925 out_put_css:
3926 css_put(css);
3927 out_put_cfile:
3928 fdput(cfile);
3929 out_put_eventfd:
3930 eventfd_ctx_put(event->eventfd);
3931 out_put_efile:
3932 fdput(efile);
3933 out_kfree:
3934 kfree(event);
3935
3936 return ret;
3937 }
3938
3939 static struct cftype mem_cgroup_legacy_files[] = {
3940 {
3941 .name = "usage_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3943 .read_u64 = mem_cgroup_read_u64,
3944 },
3945 {
3946 .name = "max_usage_in_bytes",
3947 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3948 .write = mem_cgroup_reset,
3949 .read_u64 = mem_cgroup_read_u64,
3950 },
3951 {
3952 .name = "limit_in_bytes",
3953 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3954 .write = mem_cgroup_write,
3955 .read_u64 = mem_cgroup_read_u64,
3956 },
3957 {
3958 .name = "soft_limit_in_bytes",
3959 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3960 .write = mem_cgroup_write,
3961 .read_u64 = mem_cgroup_read_u64,
3962 },
3963 {
3964 .name = "failcnt",
3965 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3966 .write = mem_cgroup_reset,
3967 .read_u64 = mem_cgroup_read_u64,
3968 },
3969 {
3970 .name = "stat",
3971 .seq_show = memcg_stat_show,
3972 },
3973 {
3974 .name = "force_empty",
3975 .write = mem_cgroup_force_empty_write,
3976 },
3977 {
3978 .name = "use_hierarchy",
3979 .write_u64 = mem_cgroup_hierarchy_write,
3980 .read_u64 = mem_cgroup_hierarchy_read,
3981 },
3982 {
3983 .name = "cgroup.event_control", /* XXX: for compat */
3984 .write = memcg_write_event_control,
3985 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3986 },
3987 {
3988 .name = "swappiness",
3989 .read_u64 = mem_cgroup_swappiness_read,
3990 .write_u64 = mem_cgroup_swappiness_write,
3991 },
3992 {
3993 .name = "move_charge_at_immigrate",
3994 .read_u64 = mem_cgroup_move_charge_read,
3995 .write_u64 = mem_cgroup_move_charge_write,
3996 },
3997 {
3998 .name = "oom_control",
3999 .seq_show = mem_cgroup_oom_control_read,
4000 .write_u64 = mem_cgroup_oom_control_write,
4001 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4002 },
4003 {
4004 .name = "pressure_level",
4005 },
4006 #ifdef CONFIG_NUMA
4007 {
4008 .name = "numa_stat",
4009 .seq_show = memcg_numa_stat_show,
4010 },
4011 #endif
4012 {
4013 .name = "kmem.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.failcnt",
4025 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 #ifdef CONFIG_SLABINFO
4036 {
4037 .name = "kmem.slabinfo",
4038 .seq_start = slab_start,
4039 .seq_next = slab_next,
4040 .seq_stop = slab_stop,
4041 .seq_show = memcg_slab_show,
4042 },
4043 #endif
4044 {
4045 .name = "kmem.tcp.limit_in_bytes",
4046 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4047 .write = mem_cgroup_write,
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.usage_in_bytes",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.tcp.failcnt",
4057 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4058 .write = mem_cgroup_reset,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 {
4062 .name = "kmem.tcp.max_usage_in_bytes",
4063 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4064 .write = mem_cgroup_reset,
4065 .read_u64 = mem_cgroup_read_u64,
4066 },
4067 { }, /* terminate */
4068 };
4069
4070 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4071 {
4072 struct mem_cgroup_per_node *pn;
4073 struct mem_cgroup_per_zone *mz;
4074 int zone, tmp = node;
4075 /*
4076 * This routine is called against possible nodes.
4077 * But it's BUG to call kmalloc() against offline node.
4078 *
4079 * TODO: this routine can waste much memory for nodes which will
4080 * never be onlined. It's better to use memory hotplug callback
4081 * function.
4082 */
4083 if (!node_state(node, N_NORMAL_MEMORY))
4084 tmp = -1;
4085 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4086 if (!pn)
4087 return 1;
4088
4089 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4090 mz = &pn->zoneinfo[zone];
4091 lruvec_init(&mz->lruvec);
4092 mz->usage_in_excess = 0;
4093 mz->on_tree = false;
4094 mz->memcg = memcg;
4095 }
4096 memcg->nodeinfo[node] = pn;
4097 return 0;
4098 }
4099
4100 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4101 {
4102 kfree(memcg->nodeinfo[node]);
4103 }
4104
4105 static void mem_cgroup_free(struct mem_cgroup *memcg)
4106 {
4107 int node;
4108
4109 memcg_wb_domain_exit(memcg);
4110 for_each_node(node)
4111 free_mem_cgroup_per_zone_info(memcg, node);
4112 free_percpu(memcg->stat);
4113 kfree(memcg);
4114 }
4115
4116 static struct mem_cgroup *mem_cgroup_alloc(void)
4117 {
4118 struct mem_cgroup *memcg;
4119 size_t size;
4120 int node;
4121
4122 size = sizeof(struct mem_cgroup);
4123 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4124
4125 memcg = kzalloc(size, GFP_KERNEL);
4126 if (!memcg)
4127 return NULL;
4128
4129 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4130 if (!memcg->stat)
4131 goto fail;
4132
4133 for_each_node(node)
4134 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4135 goto fail;
4136
4137 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4138 goto fail;
4139
4140 INIT_WORK(&memcg->high_work, high_work_func);
4141 memcg->last_scanned_node = MAX_NUMNODES;
4142 INIT_LIST_HEAD(&memcg->oom_notify);
4143 mutex_init(&memcg->thresholds_lock);
4144 spin_lock_init(&memcg->move_lock);
4145 vmpressure_init(&memcg->vmpressure);
4146 INIT_LIST_HEAD(&memcg->event_list);
4147 spin_lock_init(&memcg->event_list_lock);
4148 memcg->socket_pressure = jiffies;
4149 #ifndef CONFIG_SLOB
4150 memcg->kmemcg_id = -1;
4151 #endif
4152 #ifdef CONFIG_CGROUP_WRITEBACK
4153 INIT_LIST_HEAD(&memcg->cgwb_list);
4154 #endif
4155 return memcg;
4156 fail:
4157 mem_cgroup_free(memcg);
4158 return NULL;
4159 }
4160
4161 static struct cgroup_subsys_state * __ref
4162 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4163 {
4164 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4165 struct mem_cgroup *memcg;
4166 long error = -ENOMEM;
4167
4168 memcg = mem_cgroup_alloc();
4169 if (!memcg)
4170 return ERR_PTR(error);
4171
4172 memcg->high = PAGE_COUNTER_MAX;
4173 memcg->soft_limit = PAGE_COUNTER_MAX;
4174 if (parent) {
4175 memcg->swappiness = mem_cgroup_swappiness(parent);
4176 memcg->oom_kill_disable = parent->oom_kill_disable;
4177 }
4178 if (parent && parent->use_hierarchy) {
4179 memcg->use_hierarchy = true;
4180 page_counter_init(&memcg->memory, &parent->memory);
4181 page_counter_init(&memcg->swap, &parent->swap);
4182 page_counter_init(&memcg->memsw, &parent->memsw);
4183 page_counter_init(&memcg->kmem, &parent->kmem);
4184 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4185 } else {
4186 page_counter_init(&memcg->memory, NULL);
4187 page_counter_init(&memcg->swap, NULL);
4188 page_counter_init(&memcg->memsw, NULL);
4189 page_counter_init(&memcg->kmem, NULL);
4190 page_counter_init(&memcg->tcpmem, NULL);
4191 /*
4192 * Deeper hierachy with use_hierarchy == false doesn't make
4193 * much sense so let cgroup subsystem know about this
4194 * unfortunate state in our controller.
4195 */
4196 if (parent != root_mem_cgroup)
4197 memory_cgrp_subsys.broken_hierarchy = true;
4198 }
4199
4200 /* The following stuff does not apply to the root */
4201 if (!parent) {
4202 root_mem_cgroup = memcg;
4203 return &memcg->css;
4204 }
4205
4206 error = memcg_propagate_kmem(parent, memcg);
4207 if (error)
4208 goto fail;
4209
4210 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4211 static_branch_inc(&memcg_sockets_enabled_key);
4212
4213 return &memcg->css;
4214 fail:
4215 mem_cgroup_free(memcg);
4216 return NULL;
4217 }
4218
4219 static int
4220 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4221 {
4222 if (css->id > MEM_CGROUP_ID_MAX)
4223 return -ENOSPC;
4224
4225 return 0;
4226 }
4227
4228 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4229 {
4230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4231 struct mem_cgroup_event *event, *tmp;
4232
4233 /*
4234 * Unregister events and notify userspace.
4235 * Notify userspace about cgroup removing only after rmdir of cgroup
4236 * directory to avoid race between userspace and kernelspace.
4237 */
4238 spin_lock(&memcg->event_list_lock);
4239 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4240 list_del_init(&event->list);
4241 schedule_work(&event->remove);
4242 }
4243 spin_unlock(&memcg->event_list_lock);
4244
4245 memcg_offline_kmem(memcg);
4246 wb_memcg_offline(memcg);
4247 }
4248
4249 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4250 {
4251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4252
4253 invalidate_reclaim_iterators(memcg);
4254 }
4255
4256 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4257 {
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259
4260 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4261 static_branch_dec(&memcg_sockets_enabled_key);
4262
4263 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4264 static_branch_dec(&memcg_sockets_enabled_key);
4265
4266 vmpressure_cleanup(&memcg->vmpressure);
4267 cancel_work_sync(&memcg->high_work);
4268 mem_cgroup_remove_from_trees(memcg);
4269 memcg_free_kmem(memcg);
4270 mem_cgroup_free(memcg);
4271 }
4272
4273 /**
4274 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4275 * @css: the target css
4276 *
4277 * Reset the states of the mem_cgroup associated with @css. This is
4278 * invoked when the userland requests disabling on the default hierarchy
4279 * but the memcg is pinned through dependency. The memcg should stop
4280 * applying policies and should revert to the vanilla state as it may be
4281 * made visible again.
4282 *
4283 * The current implementation only resets the essential configurations.
4284 * This needs to be expanded to cover all the visible parts.
4285 */
4286 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289
4290 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4291 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4292 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4293 memcg->low = 0;
4294 memcg->high = PAGE_COUNTER_MAX;
4295 memcg->soft_limit = PAGE_COUNTER_MAX;
4296 memcg_wb_domain_size_changed(memcg);
4297 }
4298
4299 #ifdef CONFIG_MMU
4300 /* Handlers for move charge at task migration. */
4301 static int mem_cgroup_do_precharge(unsigned long count)
4302 {
4303 int ret;
4304
4305 /* Try a single bulk charge without reclaim first, kswapd may wake */
4306 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4307 if (!ret) {
4308 mc.precharge += count;
4309 return ret;
4310 }
4311
4312 /* Try charges one by one with reclaim */
4313 while (count--) {
4314 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4315 if (ret)
4316 return ret;
4317 mc.precharge++;
4318 cond_resched();
4319 }
4320 return 0;
4321 }
4322
4323 /**
4324 * get_mctgt_type - get target type of moving charge
4325 * @vma: the vma the pte to be checked belongs
4326 * @addr: the address corresponding to the pte to be checked
4327 * @ptent: the pte to be checked
4328 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4329 *
4330 * Returns
4331 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4332 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4333 * move charge. if @target is not NULL, the page is stored in target->page
4334 * with extra refcnt got(Callers should handle it).
4335 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4336 * target for charge migration. if @target is not NULL, the entry is stored
4337 * in target->ent.
4338 *
4339 * Called with pte lock held.
4340 */
4341 union mc_target {
4342 struct page *page;
4343 swp_entry_t ent;
4344 };
4345
4346 enum mc_target_type {
4347 MC_TARGET_NONE = 0,
4348 MC_TARGET_PAGE,
4349 MC_TARGET_SWAP,
4350 };
4351
4352 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4353 unsigned long addr, pte_t ptent)
4354 {
4355 struct page *page = vm_normal_page(vma, addr, ptent);
4356
4357 if (!page || !page_mapped(page))
4358 return NULL;
4359 if (PageAnon(page)) {
4360 if (!(mc.flags & MOVE_ANON))
4361 return NULL;
4362 } else {
4363 if (!(mc.flags & MOVE_FILE))
4364 return NULL;
4365 }
4366 if (!get_page_unless_zero(page))
4367 return NULL;
4368
4369 return page;
4370 }
4371
4372 #ifdef CONFIG_SWAP
4373 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4375 {
4376 struct page *page = NULL;
4377 swp_entry_t ent = pte_to_swp_entry(ptent);
4378
4379 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4380 return NULL;
4381 /*
4382 * Because lookup_swap_cache() updates some statistics counter,
4383 * we call find_get_page() with swapper_space directly.
4384 */
4385 page = find_get_page(swap_address_space(ent), ent.val);
4386 if (do_memsw_account())
4387 entry->val = ent.val;
4388
4389 return page;
4390 }
4391 #else
4392 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4393 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4394 {
4395 return NULL;
4396 }
4397 #endif
4398
4399 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4401 {
4402 struct page *page = NULL;
4403 struct address_space *mapping;
4404 pgoff_t pgoff;
4405
4406 if (!vma->vm_file) /* anonymous vma */
4407 return NULL;
4408 if (!(mc.flags & MOVE_FILE))
4409 return NULL;
4410
4411 mapping = vma->vm_file->f_mapping;
4412 pgoff = linear_page_index(vma, addr);
4413
4414 /* page is moved even if it's not RSS of this task(page-faulted). */
4415 #ifdef CONFIG_SWAP
4416 /* shmem/tmpfs may report page out on swap: account for that too. */
4417 if (shmem_mapping(mapping)) {
4418 page = find_get_entry(mapping, pgoff);
4419 if (radix_tree_exceptional_entry(page)) {
4420 swp_entry_t swp = radix_to_swp_entry(page);
4421 if (do_memsw_account())
4422 *entry = swp;
4423 page = find_get_page(swap_address_space(swp), swp.val);
4424 }
4425 } else
4426 page = find_get_page(mapping, pgoff);
4427 #else
4428 page = find_get_page(mapping, pgoff);
4429 #endif
4430 return page;
4431 }
4432
4433 /**
4434 * mem_cgroup_move_account - move account of the page
4435 * @page: the page
4436 * @nr_pages: number of regular pages (>1 for huge pages)
4437 * @from: mem_cgroup which the page is moved from.
4438 * @to: mem_cgroup which the page is moved to. @from != @to.
4439 *
4440 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4441 *
4442 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4443 * from old cgroup.
4444 */
4445 static int mem_cgroup_move_account(struct page *page,
4446 bool compound,
4447 struct mem_cgroup *from,
4448 struct mem_cgroup *to)
4449 {
4450 unsigned long flags;
4451 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4452 int ret;
4453 bool anon;
4454
4455 VM_BUG_ON(from == to);
4456 VM_BUG_ON_PAGE(PageLRU(page), page);
4457 VM_BUG_ON(compound && !PageTransHuge(page));
4458
4459 /*
4460 * Prevent mem_cgroup_replace_page() from looking at
4461 * page->mem_cgroup of its source page while we change it.
4462 */
4463 ret = -EBUSY;
4464 if (!trylock_page(page))
4465 goto out;
4466
4467 ret = -EINVAL;
4468 if (page->mem_cgroup != from)
4469 goto out_unlock;
4470
4471 anon = PageAnon(page);
4472
4473 spin_lock_irqsave(&from->move_lock, flags);
4474
4475 if (!anon && page_mapped(page)) {
4476 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4477 nr_pages);
4478 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4479 nr_pages);
4480 }
4481
4482 /*
4483 * move_lock grabbed above and caller set from->moving_account, so
4484 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4485 * So mapping should be stable for dirty pages.
4486 */
4487 if (!anon && PageDirty(page)) {
4488 struct address_space *mapping = page_mapping(page);
4489
4490 if (mapping_cap_account_dirty(mapping)) {
4491 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4492 nr_pages);
4493 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4494 nr_pages);
4495 }
4496 }
4497
4498 if (PageWriteback(page)) {
4499 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4500 nr_pages);
4501 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4502 nr_pages);
4503 }
4504
4505 /*
4506 * It is safe to change page->mem_cgroup here because the page
4507 * is referenced, charged, and isolated - we can't race with
4508 * uncharging, charging, migration, or LRU putback.
4509 */
4510
4511 /* caller should have done css_get */
4512 page->mem_cgroup = to;
4513 spin_unlock_irqrestore(&from->move_lock, flags);
4514
4515 ret = 0;
4516
4517 local_irq_disable();
4518 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4519 memcg_check_events(to, page);
4520 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4521 memcg_check_events(from, page);
4522 local_irq_enable();
4523 out_unlock:
4524 unlock_page(page);
4525 out:
4526 return ret;
4527 }
4528
4529 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4530 unsigned long addr, pte_t ptent, union mc_target *target)
4531 {
4532 struct page *page = NULL;
4533 enum mc_target_type ret = MC_TARGET_NONE;
4534 swp_entry_t ent = { .val = 0 };
4535
4536 if (pte_present(ptent))
4537 page = mc_handle_present_pte(vma, addr, ptent);
4538 else if (is_swap_pte(ptent))
4539 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4540 else if (pte_none(ptent))
4541 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4542
4543 if (!page && !ent.val)
4544 return ret;
4545 if (page) {
4546 /*
4547 * Do only loose check w/o serialization.
4548 * mem_cgroup_move_account() checks the page is valid or
4549 * not under LRU exclusion.
4550 */
4551 if (page->mem_cgroup == mc.from) {
4552 ret = MC_TARGET_PAGE;
4553 if (target)
4554 target->page = page;
4555 }
4556 if (!ret || !target)
4557 put_page(page);
4558 }
4559 /* There is a swap entry and a page doesn't exist or isn't charged */
4560 if (ent.val && !ret &&
4561 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4562 ret = MC_TARGET_SWAP;
4563 if (target)
4564 target->ent = ent;
4565 }
4566 return ret;
4567 }
4568
4569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4570 /*
4571 * We don't consider swapping or file mapped pages because THP does not
4572 * support them for now.
4573 * Caller should make sure that pmd_trans_huge(pmd) is true.
4574 */
4575 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4576 unsigned long addr, pmd_t pmd, union mc_target *target)
4577 {
4578 struct page *page = NULL;
4579 enum mc_target_type ret = MC_TARGET_NONE;
4580
4581 page = pmd_page(pmd);
4582 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4583 if (!(mc.flags & MOVE_ANON))
4584 return ret;
4585 if (page->mem_cgroup == mc.from) {
4586 ret = MC_TARGET_PAGE;
4587 if (target) {
4588 get_page(page);
4589 target->page = page;
4590 }
4591 }
4592 return ret;
4593 }
4594 #else
4595 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4596 unsigned long addr, pmd_t pmd, union mc_target *target)
4597 {
4598 return MC_TARGET_NONE;
4599 }
4600 #endif
4601
4602 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4603 unsigned long addr, unsigned long end,
4604 struct mm_walk *walk)
4605 {
4606 struct vm_area_struct *vma = walk->vma;
4607 pte_t *pte;
4608 spinlock_t *ptl;
4609
4610 ptl = pmd_trans_huge_lock(pmd, vma);
4611 if (ptl) {
4612 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4613 mc.precharge += HPAGE_PMD_NR;
4614 spin_unlock(ptl);
4615 return 0;
4616 }
4617
4618 if (pmd_trans_unstable(pmd))
4619 return 0;
4620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4621 for (; addr != end; pte++, addr += PAGE_SIZE)
4622 if (get_mctgt_type(vma, addr, *pte, NULL))
4623 mc.precharge++; /* increment precharge temporarily */
4624 pte_unmap_unlock(pte - 1, ptl);
4625 cond_resched();
4626
4627 return 0;
4628 }
4629
4630 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4631 {
4632 unsigned long precharge;
4633
4634 struct mm_walk mem_cgroup_count_precharge_walk = {
4635 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4636 .mm = mm,
4637 };
4638 down_read(&mm->mmap_sem);
4639 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4640 up_read(&mm->mmap_sem);
4641
4642 precharge = mc.precharge;
4643 mc.precharge = 0;
4644
4645 return precharge;
4646 }
4647
4648 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4649 {
4650 unsigned long precharge = mem_cgroup_count_precharge(mm);
4651
4652 VM_BUG_ON(mc.moving_task);
4653 mc.moving_task = current;
4654 return mem_cgroup_do_precharge(precharge);
4655 }
4656
4657 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4658 static void __mem_cgroup_clear_mc(void)
4659 {
4660 struct mem_cgroup *from = mc.from;
4661 struct mem_cgroup *to = mc.to;
4662
4663 /* we must uncharge all the leftover precharges from mc.to */
4664 if (mc.precharge) {
4665 cancel_charge(mc.to, mc.precharge);
4666 mc.precharge = 0;
4667 }
4668 /*
4669 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4670 * we must uncharge here.
4671 */
4672 if (mc.moved_charge) {
4673 cancel_charge(mc.from, mc.moved_charge);
4674 mc.moved_charge = 0;
4675 }
4676 /* we must fixup refcnts and charges */
4677 if (mc.moved_swap) {
4678 /* uncharge swap account from the old cgroup */
4679 if (!mem_cgroup_is_root(mc.from))
4680 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4681
4682 /*
4683 * we charged both to->memory and to->memsw, so we
4684 * should uncharge to->memory.
4685 */
4686 if (!mem_cgroup_is_root(mc.to))
4687 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4688
4689 css_put_many(&mc.from->css, mc.moved_swap);
4690
4691 /* we've already done css_get(mc.to) */
4692 mc.moved_swap = 0;
4693 }
4694 memcg_oom_recover(from);
4695 memcg_oom_recover(to);
4696 wake_up_all(&mc.waitq);
4697 }
4698
4699 static void mem_cgroup_clear_mc(void)
4700 {
4701 /*
4702 * we must clear moving_task before waking up waiters at the end of
4703 * task migration.
4704 */
4705 mc.moving_task = NULL;
4706 __mem_cgroup_clear_mc();
4707 spin_lock(&mc.lock);
4708 mc.from = NULL;
4709 mc.to = NULL;
4710 spin_unlock(&mc.lock);
4711 }
4712
4713 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4714 {
4715 struct cgroup_subsys_state *css;
4716 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4717 struct mem_cgroup *from;
4718 struct task_struct *leader, *p;
4719 struct mm_struct *mm;
4720 unsigned long move_flags;
4721 int ret = 0;
4722
4723 /* charge immigration isn't supported on the default hierarchy */
4724 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4725 return 0;
4726
4727 /*
4728 * Multi-process migrations only happen on the default hierarchy
4729 * where charge immigration is not used. Perform charge
4730 * immigration if @tset contains a leader and whine if there are
4731 * multiple.
4732 */
4733 p = NULL;
4734 cgroup_taskset_for_each_leader(leader, css, tset) {
4735 WARN_ON_ONCE(p);
4736 p = leader;
4737 memcg = mem_cgroup_from_css(css);
4738 }
4739 if (!p)
4740 return 0;
4741
4742 /*
4743 * We are now commited to this value whatever it is. Changes in this
4744 * tunable will only affect upcoming migrations, not the current one.
4745 * So we need to save it, and keep it going.
4746 */
4747 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4748 if (!move_flags)
4749 return 0;
4750
4751 from = mem_cgroup_from_task(p);
4752
4753 VM_BUG_ON(from == memcg);
4754
4755 mm = get_task_mm(p);
4756 if (!mm)
4757 return 0;
4758 /* We move charges only when we move a owner of the mm */
4759 if (mm->owner == p) {
4760 VM_BUG_ON(mc.from);
4761 VM_BUG_ON(mc.to);
4762 VM_BUG_ON(mc.precharge);
4763 VM_BUG_ON(mc.moved_charge);
4764 VM_BUG_ON(mc.moved_swap);
4765
4766 spin_lock(&mc.lock);
4767 mc.from = from;
4768 mc.to = memcg;
4769 mc.flags = move_flags;
4770 spin_unlock(&mc.lock);
4771 /* We set mc.moving_task later */
4772
4773 ret = mem_cgroup_precharge_mc(mm);
4774 if (ret)
4775 mem_cgroup_clear_mc();
4776 }
4777 mmput(mm);
4778 return ret;
4779 }
4780
4781 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4782 {
4783 if (mc.to)
4784 mem_cgroup_clear_mc();
4785 }
4786
4787 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4788 unsigned long addr, unsigned long end,
4789 struct mm_walk *walk)
4790 {
4791 int ret = 0;
4792 struct vm_area_struct *vma = walk->vma;
4793 pte_t *pte;
4794 spinlock_t *ptl;
4795 enum mc_target_type target_type;
4796 union mc_target target;
4797 struct page *page;
4798
4799 ptl = pmd_trans_huge_lock(pmd, vma);
4800 if (ptl) {
4801 if (mc.precharge < HPAGE_PMD_NR) {
4802 spin_unlock(ptl);
4803 return 0;
4804 }
4805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4806 if (target_type == MC_TARGET_PAGE) {
4807 page = target.page;
4808 if (!isolate_lru_page(page)) {
4809 if (!mem_cgroup_move_account(page, true,
4810 mc.from, mc.to)) {
4811 mc.precharge -= HPAGE_PMD_NR;
4812 mc.moved_charge += HPAGE_PMD_NR;
4813 }
4814 putback_lru_page(page);
4815 }
4816 put_page(page);
4817 }
4818 spin_unlock(ptl);
4819 return 0;
4820 }
4821
4822 if (pmd_trans_unstable(pmd))
4823 return 0;
4824 retry:
4825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4826 for (; addr != end; addr += PAGE_SIZE) {
4827 pte_t ptent = *(pte++);
4828 swp_entry_t ent;
4829
4830 if (!mc.precharge)
4831 break;
4832
4833 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4834 case MC_TARGET_PAGE:
4835 page = target.page;
4836 /*
4837 * We can have a part of the split pmd here. Moving it
4838 * can be done but it would be too convoluted so simply
4839 * ignore such a partial THP and keep it in original
4840 * memcg. There should be somebody mapping the head.
4841 */
4842 if (PageTransCompound(page))
4843 goto put;
4844 if (isolate_lru_page(page))
4845 goto put;
4846 if (!mem_cgroup_move_account(page, false,
4847 mc.from, mc.to)) {
4848 mc.precharge--;
4849 /* we uncharge from mc.from later. */
4850 mc.moved_charge++;
4851 }
4852 putback_lru_page(page);
4853 put: /* get_mctgt_type() gets the page */
4854 put_page(page);
4855 break;
4856 case MC_TARGET_SWAP:
4857 ent = target.ent;
4858 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4859 mc.precharge--;
4860 /* we fixup refcnts and charges later. */
4861 mc.moved_swap++;
4862 }
4863 break;
4864 default:
4865 break;
4866 }
4867 }
4868 pte_unmap_unlock(pte - 1, ptl);
4869 cond_resched();
4870
4871 if (addr != end) {
4872 /*
4873 * We have consumed all precharges we got in can_attach().
4874 * We try charge one by one, but don't do any additional
4875 * charges to mc.to if we have failed in charge once in attach()
4876 * phase.
4877 */
4878 ret = mem_cgroup_do_precharge(1);
4879 if (!ret)
4880 goto retry;
4881 }
4882
4883 return ret;
4884 }
4885
4886 static void mem_cgroup_move_charge(struct mm_struct *mm)
4887 {
4888 struct mm_walk mem_cgroup_move_charge_walk = {
4889 .pmd_entry = mem_cgroup_move_charge_pte_range,
4890 .mm = mm,
4891 };
4892
4893 lru_add_drain_all();
4894 /*
4895 * Signal lock_page_memcg() to take the memcg's move_lock
4896 * while we're moving its pages to another memcg. Then wait
4897 * for already started RCU-only updates to finish.
4898 */
4899 atomic_inc(&mc.from->moving_account);
4900 synchronize_rcu();
4901 retry:
4902 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4903 /*
4904 * Someone who are holding the mmap_sem might be waiting in
4905 * waitq. So we cancel all extra charges, wake up all waiters,
4906 * and retry. Because we cancel precharges, we might not be able
4907 * to move enough charges, but moving charge is a best-effort
4908 * feature anyway, so it wouldn't be a big problem.
4909 */
4910 __mem_cgroup_clear_mc();
4911 cond_resched();
4912 goto retry;
4913 }
4914 /*
4915 * When we have consumed all precharges and failed in doing
4916 * additional charge, the page walk just aborts.
4917 */
4918 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4919 up_read(&mm->mmap_sem);
4920 atomic_dec(&mc.from->moving_account);
4921 }
4922
4923 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4924 {
4925 struct cgroup_subsys_state *css;
4926 struct task_struct *p = cgroup_taskset_first(tset, &css);
4927 struct mm_struct *mm = get_task_mm(p);
4928
4929 if (mm) {
4930 if (mc.to)
4931 mem_cgroup_move_charge(mm);
4932 mmput(mm);
4933 }
4934 if (mc.to)
4935 mem_cgroup_clear_mc();
4936 }
4937 #else /* !CONFIG_MMU */
4938 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4939 {
4940 return 0;
4941 }
4942 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4943 {
4944 }
4945 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4946 {
4947 }
4948 #endif
4949
4950 /*
4951 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4952 * to verify whether we're attached to the default hierarchy on each mount
4953 * attempt.
4954 */
4955 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4956 {
4957 /*
4958 * use_hierarchy is forced on the default hierarchy. cgroup core
4959 * guarantees that @root doesn't have any children, so turning it
4960 * on for the root memcg is enough.
4961 */
4962 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4963 root_mem_cgroup->use_hierarchy = true;
4964 else
4965 root_mem_cgroup->use_hierarchy = false;
4966 }
4967
4968 static u64 memory_current_read(struct cgroup_subsys_state *css,
4969 struct cftype *cft)
4970 {
4971 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4972
4973 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4974 }
4975
4976 static int memory_low_show(struct seq_file *m, void *v)
4977 {
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long low = READ_ONCE(memcg->low);
4980
4981 if (low == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4985
4986 return 0;
4987 }
4988
4989 static ssize_t memory_low_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991 {
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long low;
4994 int err;
4995
4996 buf = strstrip(buf);
4997 err = page_counter_memparse(buf, "max", &low);
4998 if (err)
4999 return err;
5000
5001 memcg->low = low;
5002
5003 return nbytes;
5004 }
5005
5006 static int memory_high_show(struct seq_file *m, void *v)
5007 {
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5009 unsigned long high = READ_ONCE(memcg->high);
5010
5011 if (high == PAGE_COUNTER_MAX)
5012 seq_puts(m, "max\n");
5013 else
5014 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5015
5016 return 0;
5017 }
5018
5019 static ssize_t memory_high_write(struct kernfs_open_file *of,
5020 char *buf, size_t nbytes, loff_t off)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5023 unsigned long high;
5024 int err;
5025
5026 buf = strstrip(buf);
5027 err = page_counter_memparse(buf, "max", &high);
5028 if (err)
5029 return err;
5030
5031 memcg->high = high;
5032
5033 memcg_wb_domain_size_changed(memcg);
5034 return nbytes;
5035 }
5036
5037 static int memory_max_show(struct seq_file *m, void *v)
5038 {
5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040 unsigned long max = READ_ONCE(memcg->memory.limit);
5041
5042 if (max == PAGE_COUNTER_MAX)
5043 seq_puts(m, "max\n");
5044 else
5045 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5046
5047 return 0;
5048 }
5049
5050 static ssize_t memory_max_write(struct kernfs_open_file *of,
5051 char *buf, size_t nbytes, loff_t off)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054 unsigned long max;
5055 int err;
5056
5057 buf = strstrip(buf);
5058 err = page_counter_memparse(buf, "max", &max);
5059 if (err)
5060 return err;
5061
5062 err = mem_cgroup_resize_limit(memcg, max);
5063 if (err)
5064 return err;
5065
5066 memcg_wb_domain_size_changed(memcg);
5067 return nbytes;
5068 }
5069
5070 static int memory_events_show(struct seq_file *m, void *v)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073
5074 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5075 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5076 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5077 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5078
5079 return 0;
5080 }
5081
5082 static int memory_stat_show(struct seq_file *m, void *v)
5083 {
5084 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085 int i;
5086
5087 /*
5088 * Provide statistics on the state of the memory subsystem as
5089 * well as cumulative event counters that show past behavior.
5090 *
5091 * This list is ordered following a combination of these gradients:
5092 * 1) generic big picture -> specifics and details
5093 * 2) reflecting userspace activity -> reflecting kernel heuristics
5094 *
5095 * Current memory state:
5096 */
5097
5098 seq_printf(m, "anon %llu\n",
5099 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5100 seq_printf(m, "file %llu\n",
5101 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
5102 seq_printf(m, "sock %llu\n",
5103 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
5104
5105 seq_printf(m, "file_mapped %llu\n",
5106 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5107 PAGE_SIZE);
5108 seq_printf(m, "file_dirty %llu\n",
5109 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5110 PAGE_SIZE);
5111 seq_printf(m, "file_writeback %llu\n",
5112 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5113 PAGE_SIZE);
5114
5115 for (i = 0; i < NR_LRU_LISTS; i++) {
5116 struct mem_cgroup *mi;
5117 unsigned long val = 0;
5118
5119 for_each_mem_cgroup_tree(mi, memcg)
5120 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5121 seq_printf(m, "%s %llu\n",
5122 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5123 }
5124
5125 /* Accumulated memory events */
5126
5127 seq_printf(m, "pgfault %lu\n",
5128 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5129 seq_printf(m, "pgmajfault %lu\n",
5130 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5131
5132 return 0;
5133 }
5134
5135 static struct cftype memory_files[] = {
5136 {
5137 .name = "current",
5138 .flags = CFTYPE_NOT_ON_ROOT,
5139 .read_u64 = memory_current_read,
5140 },
5141 {
5142 .name = "low",
5143 .flags = CFTYPE_NOT_ON_ROOT,
5144 .seq_show = memory_low_show,
5145 .write = memory_low_write,
5146 },
5147 {
5148 .name = "high",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .seq_show = memory_high_show,
5151 .write = memory_high_write,
5152 },
5153 {
5154 .name = "max",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .seq_show = memory_max_show,
5157 .write = memory_max_write,
5158 },
5159 {
5160 .name = "events",
5161 .flags = CFTYPE_NOT_ON_ROOT,
5162 .file_offset = offsetof(struct mem_cgroup, events_file),
5163 .seq_show = memory_events_show,
5164 },
5165 {
5166 .name = "stat",
5167 .flags = CFTYPE_NOT_ON_ROOT,
5168 .seq_show = memory_stat_show,
5169 },
5170 { } /* terminate */
5171 };
5172
5173 struct cgroup_subsys memory_cgrp_subsys = {
5174 .css_alloc = mem_cgroup_css_alloc,
5175 .css_online = mem_cgroup_css_online,
5176 .css_offline = mem_cgroup_css_offline,
5177 .css_released = mem_cgroup_css_released,
5178 .css_free = mem_cgroup_css_free,
5179 .css_reset = mem_cgroup_css_reset,
5180 .can_attach = mem_cgroup_can_attach,
5181 .cancel_attach = mem_cgroup_cancel_attach,
5182 .attach = mem_cgroup_move_task,
5183 .bind = mem_cgroup_bind,
5184 .dfl_cftypes = memory_files,
5185 .legacy_cftypes = mem_cgroup_legacy_files,
5186 .early_init = 0,
5187 };
5188
5189 /**
5190 * mem_cgroup_low - check if memory consumption is below the normal range
5191 * @root: the highest ancestor to consider
5192 * @memcg: the memory cgroup to check
5193 *
5194 * Returns %true if memory consumption of @memcg, and that of all
5195 * configurable ancestors up to @root, is below the normal range.
5196 */
5197 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5198 {
5199 if (mem_cgroup_disabled())
5200 return false;
5201
5202 /*
5203 * The toplevel group doesn't have a configurable range, so
5204 * it's never low when looked at directly, and it is not
5205 * considered an ancestor when assessing the hierarchy.
5206 */
5207
5208 if (memcg == root_mem_cgroup)
5209 return false;
5210
5211 if (page_counter_read(&memcg->memory) >= memcg->low)
5212 return false;
5213
5214 while (memcg != root) {
5215 memcg = parent_mem_cgroup(memcg);
5216
5217 if (memcg == root_mem_cgroup)
5218 break;
5219
5220 if (page_counter_read(&memcg->memory) >= memcg->low)
5221 return false;
5222 }
5223 return true;
5224 }
5225
5226 /**
5227 * mem_cgroup_try_charge - try charging a page
5228 * @page: page to charge
5229 * @mm: mm context of the victim
5230 * @gfp_mask: reclaim mode
5231 * @memcgp: charged memcg return
5232 *
5233 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5234 * pages according to @gfp_mask if necessary.
5235 *
5236 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5237 * Otherwise, an error code is returned.
5238 *
5239 * After page->mapping has been set up, the caller must finalize the
5240 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5241 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5242 */
5243 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5244 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5245 bool compound)
5246 {
5247 struct mem_cgroup *memcg = NULL;
5248 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5249 int ret = 0;
5250
5251 if (mem_cgroup_disabled())
5252 goto out;
5253
5254 if (PageSwapCache(page)) {
5255 /*
5256 * Every swap fault against a single page tries to charge the
5257 * page, bail as early as possible. shmem_unuse() encounters
5258 * already charged pages, too. The USED bit is protected by
5259 * the page lock, which serializes swap cache removal, which
5260 * in turn serializes uncharging.
5261 */
5262 VM_BUG_ON_PAGE(!PageLocked(page), page);
5263 if (page->mem_cgroup)
5264 goto out;
5265
5266 if (do_swap_account) {
5267 swp_entry_t ent = { .val = page_private(page), };
5268 unsigned short id = lookup_swap_cgroup_id(ent);
5269
5270 rcu_read_lock();
5271 memcg = mem_cgroup_from_id(id);
5272 if (memcg && !css_tryget_online(&memcg->css))
5273 memcg = NULL;
5274 rcu_read_unlock();
5275 }
5276 }
5277
5278 if (!memcg)
5279 memcg = get_mem_cgroup_from_mm(mm);
5280
5281 ret = try_charge(memcg, gfp_mask, nr_pages);
5282
5283 css_put(&memcg->css);
5284 out:
5285 *memcgp = memcg;
5286 return ret;
5287 }
5288
5289 /**
5290 * mem_cgroup_commit_charge - commit a page charge
5291 * @page: page to charge
5292 * @memcg: memcg to charge the page to
5293 * @lrucare: page might be on LRU already
5294 *
5295 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5296 * after page->mapping has been set up. This must happen atomically
5297 * as part of the page instantiation, i.e. under the page table lock
5298 * for anonymous pages, under the page lock for page and swap cache.
5299 *
5300 * In addition, the page must not be on the LRU during the commit, to
5301 * prevent racing with task migration. If it might be, use @lrucare.
5302 *
5303 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5304 */
5305 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5306 bool lrucare, bool compound)
5307 {
5308 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5309
5310 VM_BUG_ON_PAGE(!page->mapping, page);
5311 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5312
5313 if (mem_cgroup_disabled())
5314 return;
5315 /*
5316 * Swap faults will attempt to charge the same page multiple
5317 * times. But reuse_swap_page() might have removed the page
5318 * from swapcache already, so we can't check PageSwapCache().
5319 */
5320 if (!memcg)
5321 return;
5322
5323 commit_charge(page, memcg, lrucare);
5324
5325 local_irq_disable();
5326 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5327 memcg_check_events(memcg, page);
5328 local_irq_enable();
5329
5330 if (do_memsw_account() && PageSwapCache(page)) {
5331 swp_entry_t entry = { .val = page_private(page) };
5332 /*
5333 * The swap entry might not get freed for a long time,
5334 * let's not wait for it. The page already received a
5335 * memory+swap charge, drop the swap entry duplicate.
5336 */
5337 mem_cgroup_uncharge_swap(entry);
5338 }
5339 }
5340
5341 /**
5342 * mem_cgroup_cancel_charge - cancel a page charge
5343 * @page: page to charge
5344 * @memcg: memcg to charge the page to
5345 *
5346 * Cancel a charge transaction started by mem_cgroup_try_charge().
5347 */
5348 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5349 bool compound)
5350 {
5351 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5352
5353 if (mem_cgroup_disabled())
5354 return;
5355 /*
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5359 */
5360 if (!memcg)
5361 return;
5362
5363 cancel_charge(memcg, nr_pages);
5364 }
5365
5366 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5367 unsigned long nr_anon, unsigned long nr_file,
5368 unsigned long nr_huge, struct page *dummy_page)
5369 {
5370 unsigned long nr_pages = nr_anon + nr_file;
5371 unsigned long flags;
5372
5373 if (!mem_cgroup_is_root(memcg)) {
5374 page_counter_uncharge(&memcg->memory, nr_pages);
5375 if (do_memsw_account())
5376 page_counter_uncharge(&memcg->memsw, nr_pages);
5377 memcg_oom_recover(memcg);
5378 }
5379
5380 local_irq_save(flags);
5381 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5382 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5383 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5384 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5385 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5386 memcg_check_events(memcg, dummy_page);
5387 local_irq_restore(flags);
5388
5389 if (!mem_cgroup_is_root(memcg))
5390 css_put_many(&memcg->css, nr_pages);
5391 }
5392
5393 static void uncharge_list(struct list_head *page_list)
5394 {
5395 struct mem_cgroup *memcg = NULL;
5396 unsigned long nr_anon = 0;
5397 unsigned long nr_file = 0;
5398 unsigned long nr_huge = 0;
5399 unsigned long pgpgout = 0;
5400 struct list_head *next;
5401 struct page *page;
5402
5403 next = page_list->next;
5404 do {
5405 unsigned int nr_pages = 1;
5406
5407 page = list_entry(next, struct page, lru);
5408 next = page->lru.next;
5409
5410 VM_BUG_ON_PAGE(PageLRU(page), page);
5411 VM_BUG_ON_PAGE(page_count(page), page);
5412
5413 if (!page->mem_cgroup)
5414 continue;
5415
5416 /*
5417 * Nobody should be changing or seriously looking at
5418 * page->mem_cgroup at this point, we have fully
5419 * exclusive access to the page.
5420 */
5421
5422 if (memcg != page->mem_cgroup) {
5423 if (memcg) {
5424 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5425 nr_huge, page);
5426 pgpgout = nr_anon = nr_file = nr_huge = 0;
5427 }
5428 memcg = page->mem_cgroup;
5429 }
5430
5431 if (PageTransHuge(page)) {
5432 nr_pages <<= compound_order(page);
5433 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5434 nr_huge += nr_pages;
5435 }
5436
5437 if (PageAnon(page))
5438 nr_anon += nr_pages;
5439 else
5440 nr_file += nr_pages;
5441
5442 page->mem_cgroup = NULL;
5443
5444 pgpgout++;
5445 } while (next != page_list);
5446
5447 if (memcg)
5448 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5449 nr_huge, page);
5450 }
5451
5452 /**
5453 * mem_cgroup_uncharge - uncharge a page
5454 * @page: page to uncharge
5455 *
5456 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5457 * mem_cgroup_commit_charge().
5458 */
5459 void mem_cgroup_uncharge(struct page *page)
5460 {
5461 if (mem_cgroup_disabled())
5462 return;
5463
5464 /* Don't touch page->lru of any random page, pre-check: */
5465 if (!page->mem_cgroup)
5466 return;
5467
5468 INIT_LIST_HEAD(&page->lru);
5469 uncharge_list(&page->lru);
5470 }
5471
5472 /**
5473 * mem_cgroup_uncharge_list - uncharge a list of page
5474 * @page_list: list of pages to uncharge
5475 *
5476 * Uncharge a list of pages previously charged with
5477 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5478 */
5479 void mem_cgroup_uncharge_list(struct list_head *page_list)
5480 {
5481 if (mem_cgroup_disabled())
5482 return;
5483
5484 if (!list_empty(page_list))
5485 uncharge_list(page_list);
5486 }
5487
5488 /**
5489 * mem_cgroup_replace_page - migrate a charge to another page
5490 * @oldpage: currently charged page
5491 * @newpage: page to transfer the charge to
5492 *
5493 * Migrate the charge from @oldpage to @newpage.
5494 *
5495 * Both pages must be locked, @newpage->mapping must be set up.
5496 * Either or both pages might be on the LRU already.
5497 */
5498 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5499 {
5500 struct mem_cgroup *memcg;
5501 unsigned int nr_pages;
5502 bool compound;
5503
5504 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5505 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5506 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5507 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5508 newpage);
5509
5510 if (mem_cgroup_disabled())
5511 return;
5512
5513 /* Page cache replacement: new page already charged? */
5514 if (newpage->mem_cgroup)
5515 return;
5516
5517 /* Swapcache readahead pages can get replaced before being charged */
5518 memcg = oldpage->mem_cgroup;
5519 if (!memcg)
5520 return;
5521
5522 /* Force-charge the new page. The old one will be freed soon */
5523 compound = PageTransHuge(newpage);
5524 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5525
5526 page_counter_charge(&memcg->memory, nr_pages);
5527 if (do_memsw_account())
5528 page_counter_charge(&memcg->memsw, nr_pages);
5529 css_get_many(&memcg->css, nr_pages);
5530
5531 commit_charge(newpage, memcg, true);
5532
5533 local_irq_disable();
5534 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5535 memcg_check_events(memcg, newpage);
5536 local_irq_enable();
5537 }
5538
5539 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5540 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5541
5542 void sock_update_memcg(struct sock *sk)
5543 {
5544 struct mem_cgroup *memcg;
5545
5546 /* Socket cloning can throw us here with sk_cgrp already
5547 * filled. It won't however, necessarily happen from
5548 * process context. So the test for root memcg given
5549 * the current task's memcg won't help us in this case.
5550 *
5551 * Respecting the original socket's memcg is a better
5552 * decision in this case.
5553 */
5554 if (sk->sk_memcg) {
5555 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5556 css_get(&sk->sk_memcg->css);
5557 return;
5558 }
5559
5560 rcu_read_lock();
5561 memcg = mem_cgroup_from_task(current);
5562 if (memcg == root_mem_cgroup)
5563 goto out;
5564 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5565 goto out;
5566 if (css_tryget_online(&memcg->css))
5567 sk->sk_memcg = memcg;
5568 out:
5569 rcu_read_unlock();
5570 }
5571 EXPORT_SYMBOL(sock_update_memcg);
5572
5573 void sock_release_memcg(struct sock *sk)
5574 {
5575 WARN_ON(!sk->sk_memcg);
5576 css_put(&sk->sk_memcg->css);
5577 }
5578
5579 /**
5580 * mem_cgroup_charge_skmem - charge socket memory
5581 * @memcg: memcg to charge
5582 * @nr_pages: number of pages to charge
5583 *
5584 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5585 * @memcg's configured limit, %false if the charge had to be forced.
5586 */
5587 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5588 {
5589 gfp_t gfp_mask = GFP_KERNEL;
5590
5591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5592 struct page_counter *fail;
5593
5594 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5595 memcg->tcpmem_pressure = 0;
5596 return true;
5597 }
5598 page_counter_charge(&memcg->tcpmem, nr_pages);
5599 memcg->tcpmem_pressure = 1;
5600 return false;
5601 }
5602
5603 /* Don't block in the packet receive path */
5604 if (in_softirq())
5605 gfp_mask = GFP_NOWAIT;
5606
5607 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5608
5609 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5610 return true;
5611
5612 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5613 return false;
5614 }
5615
5616 /**
5617 * mem_cgroup_uncharge_skmem - uncharge socket memory
5618 * @memcg - memcg to uncharge
5619 * @nr_pages - number of pages to uncharge
5620 */
5621 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5622 {
5623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5624 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5625 return;
5626 }
5627
5628 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 page_counter_uncharge(&memcg->memory, nr_pages);
5631 css_put_many(&memcg->css, nr_pages);
5632 }
5633
5634 static int __init cgroup_memory(char *s)
5635 {
5636 char *token;
5637
5638 while ((token = strsep(&s, ",")) != NULL) {
5639 if (!*token)
5640 continue;
5641 if (!strcmp(token, "nosocket"))
5642 cgroup_memory_nosocket = true;
5643 if (!strcmp(token, "nokmem"))
5644 cgroup_memory_nokmem = true;
5645 }
5646 return 0;
5647 }
5648 __setup("cgroup.memory=", cgroup_memory);
5649
5650 /*
5651 * subsys_initcall() for memory controller.
5652 *
5653 * Some parts like hotcpu_notifier() have to be initialized from this context
5654 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5655 * everything that doesn't depend on a specific mem_cgroup structure should
5656 * be initialized from here.
5657 */
5658 static int __init mem_cgroup_init(void)
5659 {
5660 int cpu, node;
5661
5662 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5663
5664 for_each_possible_cpu(cpu)
5665 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5666 drain_local_stock);
5667
5668 for_each_node(node) {
5669 struct mem_cgroup_tree_per_node *rtpn;
5670 int zone;
5671
5672 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5673 node_online(node) ? node : NUMA_NO_NODE);
5674
5675 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5676 struct mem_cgroup_tree_per_zone *rtpz;
5677
5678 rtpz = &rtpn->rb_tree_per_zone[zone];
5679 rtpz->rb_root = RB_ROOT;
5680 spin_lock_init(&rtpz->lock);
5681 }
5682 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5683 }
5684
5685 return 0;
5686 }
5687 subsys_initcall(mem_cgroup_init);
5688
5689 #ifdef CONFIG_MEMCG_SWAP
5690 /**
5691 * mem_cgroup_swapout - transfer a memsw charge to swap
5692 * @page: page whose memsw charge to transfer
5693 * @entry: swap entry to move the charge to
5694 *
5695 * Transfer the memsw charge of @page to @entry.
5696 */
5697 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5698 {
5699 struct mem_cgroup *memcg;
5700 unsigned short oldid;
5701
5702 VM_BUG_ON_PAGE(PageLRU(page), page);
5703 VM_BUG_ON_PAGE(page_count(page), page);
5704
5705 if (!do_memsw_account())
5706 return;
5707
5708 memcg = page->mem_cgroup;
5709
5710 /* Readahead page, never charged */
5711 if (!memcg)
5712 return;
5713
5714 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5715 VM_BUG_ON_PAGE(oldid, page);
5716 mem_cgroup_swap_statistics(memcg, true);
5717
5718 page->mem_cgroup = NULL;
5719
5720 if (!mem_cgroup_is_root(memcg))
5721 page_counter_uncharge(&memcg->memory, 1);
5722
5723 /*
5724 * Interrupts should be disabled here because the caller holds the
5725 * mapping->tree_lock lock which is taken with interrupts-off. It is
5726 * important here to have the interrupts disabled because it is the
5727 * only synchronisation we have for udpating the per-CPU variables.
5728 */
5729 VM_BUG_ON(!irqs_disabled());
5730 mem_cgroup_charge_statistics(memcg, page, false, -1);
5731 memcg_check_events(memcg, page);
5732 }
5733
5734 /*
5735 * mem_cgroup_try_charge_swap - try charging a swap entry
5736 * @page: page being added to swap
5737 * @entry: swap entry to charge
5738 *
5739 * Try to charge @entry to the memcg that @page belongs to.
5740 *
5741 * Returns 0 on success, -ENOMEM on failure.
5742 */
5743 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5744 {
5745 struct mem_cgroup *memcg;
5746 struct page_counter *counter;
5747 unsigned short oldid;
5748
5749 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5750 return 0;
5751
5752 memcg = page->mem_cgroup;
5753
5754 /* Readahead page, never charged */
5755 if (!memcg)
5756 return 0;
5757
5758 if (!mem_cgroup_is_root(memcg) &&
5759 !page_counter_try_charge(&memcg->swap, 1, &counter))
5760 return -ENOMEM;
5761
5762 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5763 VM_BUG_ON_PAGE(oldid, page);
5764 mem_cgroup_swap_statistics(memcg, true);
5765
5766 css_get(&memcg->css);
5767 return 0;
5768 }
5769
5770 /**
5771 * mem_cgroup_uncharge_swap - uncharge a swap entry
5772 * @entry: swap entry to uncharge
5773 *
5774 * Drop the swap charge associated with @entry.
5775 */
5776 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5777 {
5778 struct mem_cgroup *memcg;
5779 unsigned short id;
5780
5781 if (!do_swap_account)
5782 return;
5783
5784 id = swap_cgroup_record(entry, 0);
5785 rcu_read_lock();
5786 memcg = mem_cgroup_from_id(id);
5787 if (memcg) {
5788 if (!mem_cgroup_is_root(memcg)) {
5789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5790 page_counter_uncharge(&memcg->swap, 1);
5791 else
5792 page_counter_uncharge(&memcg->memsw, 1);
5793 }
5794 mem_cgroup_swap_statistics(memcg, false);
5795 css_put(&memcg->css);
5796 }
5797 rcu_read_unlock();
5798 }
5799
5800 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5801 {
5802 long nr_swap_pages = get_nr_swap_pages();
5803
5804 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5805 return nr_swap_pages;
5806 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5807 nr_swap_pages = min_t(long, nr_swap_pages,
5808 READ_ONCE(memcg->swap.limit) -
5809 page_counter_read(&memcg->swap));
5810 return nr_swap_pages;
5811 }
5812
5813 bool mem_cgroup_swap_full(struct page *page)
5814 {
5815 struct mem_cgroup *memcg;
5816
5817 VM_BUG_ON_PAGE(!PageLocked(page), page);
5818
5819 if (vm_swap_full())
5820 return true;
5821 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5822 return false;
5823
5824 memcg = page->mem_cgroup;
5825 if (!memcg)
5826 return false;
5827
5828 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5829 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5830 return true;
5831
5832 return false;
5833 }
5834
5835 /* for remember boot option*/
5836 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5837 static int really_do_swap_account __initdata = 1;
5838 #else
5839 static int really_do_swap_account __initdata;
5840 #endif
5841
5842 static int __init enable_swap_account(char *s)
5843 {
5844 if (!strcmp(s, "1"))
5845 really_do_swap_account = 1;
5846 else if (!strcmp(s, "0"))
5847 really_do_swap_account = 0;
5848 return 1;
5849 }
5850 __setup("swapaccount=", enable_swap_account);
5851
5852 static u64 swap_current_read(struct cgroup_subsys_state *css,
5853 struct cftype *cft)
5854 {
5855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5856
5857 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5858 }
5859
5860 static int swap_max_show(struct seq_file *m, void *v)
5861 {
5862 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5863 unsigned long max = READ_ONCE(memcg->swap.limit);
5864
5865 if (max == PAGE_COUNTER_MAX)
5866 seq_puts(m, "max\n");
5867 else
5868 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5869
5870 return 0;
5871 }
5872
5873 static ssize_t swap_max_write(struct kernfs_open_file *of,
5874 char *buf, size_t nbytes, loff_t off)
5875 {
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5877 unsigned long max;
5878 int err;
5879
5880 buf = strstrip(buf);
5881 err = page_counter_memparse(buf, "max", &max);
5882 if (err)
5883 return err;
5884
5885 mutex_lock(&memcg_limit_mutex);
5886 err = page_counter_limit(&memcg->swap, max);
5887 mutex_unlock(&memcg_limit_mutex);
5888 if (err)
5889 return err;
5890
5891 return nbytes;
5892 }
5893
5894 static struct cftype swap_files[] = {
5895 {
5896 .name = "swap.current",
5897 .flags = CFTYPE_NOT_ON_ROOT,
5898 .read_u64 = swap_current_read,
5899 },
5900 {
5901 .name = "swap.max",
5902 .flags = CFTYPE_NOT_ON_ROOT,
5903 .seq_show = swap_max_show,
5904 .write = swap_max_write,
5905 },
5906 { } /* terminate */
5907 };
5908
5909 static struct cftype memsw_cgroup_files[] = {
5910 {
5911 .name = "memsw.usage_in_bytes",
5912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5913 .read_u64 = mem_cgroup_read_u64,
5914 },
5915 {
5916 .name = "memsw.max_usage_in_bytes",
5917 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5918 .write = mem_cgroup_reset,
5919 .read_u64 = mem_cgroup_read_u64,
5920 },
5921 {
5922 .name = "memsw.limit_in_bytes",
5923 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5924 .write = mem_cgroup_write,
5925 .read_u64 = mem_cgroup_read_u64,
5926 },
5927 {
5928 .name = "memsw.failcnt",
5929 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5930 .write = mem_cgroup_reset,
5931 .read_u64 = mem_cgroup_read_u64,
5932 },
5933 { }, /* terminate */
5934 };
5935
5936 static int __init mem_cgroup_swap_init(void)
5937 {
5938 if (!mem_cgroup_disabled() && really_do_swap_account) {
5939 do_swap_account = 1;
5940 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5941 swap_files));
5942 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5943 memsw_cgroup_files));
5944 }
5945 return 0;
5946 }
5947 subsys_initcall(mem_cgroup_swap_init);
5948
5949 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.149933 seconds and 5 git commands to generate.