Merge branches 'pm-opp-fixes', 'pm-cpufreq-fixes' and 'pm-cpuidle-fixes'
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("MCE: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220 void shake_page(struct page *p, int access)
221 {
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
230
231 /*
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
234 */
235 if (access)
236 drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239
240 /*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262 struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
267 };
268
269 /*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274 /*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283 {
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 pr_err("MCE: Out of memory while machine check handling\n");
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
306 pr_info("MCE: Unable to find user space address %lx in %s\n",
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313 }
314
315 /*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
326 {
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
330 if (forcekill) {
331 /*
332 * In case something went wrong with munmapping
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
335 */
336 if (fail || tk->addr_valid == 0) {
337 pr_err("MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 pfn, tk->tsk->comm, tk->tsk->pid);
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
350 pr_err("MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356 }
357
358 /*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374 }
375
376 /*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384 {
385 struct task_struct *t;
386 if (!tsk->mm)
387 return NULL;
388 if (force_early)
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
396 }
397
398 /*
399 * Collect processes when the error hit an anonymous page.
400 */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 struct to_kill **tkc, int force_early)
403 {
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
407 pgoff_t pgoff;
408
409 av = page_lock_anon_vma_read(page);
410 if (av == NULL) /* Not actually mapped anymore */
411 return;
412
413 pgoff = page_to_pgoff(page);
414 read_lock(&tasklist_lock);
415 for_each_process (tsk) {
416 struct anon_vma_chain *vmac;
417 struct task_struct *t = task_early_kill(tsk, force_early);
418
419 if (!t)
420 continue;
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
423 vma = vmac->vma;
424 if (!page_mapped_in_vma(page, vma))
425 continue;
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
428 }
429 }
430 read_unlock(&tasklist_lock);
431 page_unlock_anon_vma_read(av);
432 }
433
434 /*
435 * Collect processes when the error hit a file mapped page.
436 */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 struct to_kill **tkc, int force_early)
439 {
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
442 struct address_space *mapping = page->mapping;
443
444 i_mmap_lock_read(mapping);
445 read_lock(&tasklist_lock);
446 for_each_process(tsk) {
447 pgoff_t pgoff = page_to_pgoff(page);
448 struct task_struct *t = task_early_kill(tsk, force_early);
449
450 if (!t)
451 continue;
452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 i_mmap_unlock_read(mapping);
467 }
468
469 /*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
477 {
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
487 collect_procs_anon(page, tokill, &tk, force_early);
488 else
489 collect_procs_file(page, tokill, &tk, force_early);
490 kfree(tk);
491 }
492
493 static const char *action_name[] = {
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
498 };
499
500 static const char * const action_page_types[] = {
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
521 };
522
523 /*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
538 /*
539 * drop the page count elevated by isolate_lru_page()
540 */
541 put_page(p);
542 return 0;
543 }
544 return -EIO;
545 }
546
547 /*
548 * Error hit kernel page.
549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
550 * could be more sophisticated.
551 */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 return MF_IGNORED;
555 }
556
557 /*
558 * Page in unknown state. Do nothing.
559 */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 pr_err("MCE %#lx: Unknown page state\n", pfn);
563 return MF_FAILED;
564 }
565
566 /*
567 * Clean (or cleaned) page cache page.
568 */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 int err;
572 int ret = MF_FAILED;
573 struct address_space *mapping;
574
575 delete_from_lru_cache(p);
576
577 /*
578 * For anonymous pages we're done the only reference left
579 * should be the one m_f() holds.
580 */
581 if (PageAnon(p))
582 return MF_RECOVERED;
583
584 /*
585 * Now truncate the page in the page cache. This is really
586 * more like a "temporary hole punch"
587 * Don't do this for block devices when someone else
588 * has a reference, because it could be file system metadata
589 * and that's not safe to truncate.
590 */
591 mapping = page_mapping(p);
592 if (!mapping) {
593 /*
594 * Page has been teared down in the meanwhile
595 */
596 return MF_FAILED;
597 }
598
599 /*
600 * Truncation is a bit tricky. Enable it per file system for now.
601 *
602 * Open: to take i_mutex or not for this? Right now we don't.
603 */
604 if (mapping->a_ops->error_remove_page) {
605 err = mapping->a_ops->error_remove_page(mapping, p);
606 if (err != 0) {
607 pr_info("MCE %#lx: Failed to punch page: %d\n",
608 pfn, err);
609 } else if (page_has_private(p) &&
610 !try_to_release_page(p, GFP_NOIO)) {
611 pr_info("MCE %#lx: failed to release buffers\n", pfn);
612 } else {
613 ret = MF_RECOVERED;
614 }
615 } else {
616 /*
617 * If the file system doesn't support it just invalidate
618 * This fails on dirty or anything with private pages
619 */
620 if (invalidate_inode_page(p))
621 ret = MF_RECOVERED;
622 else
623 pr_info("MCE %#lx: Failed to invalidate\n", pfn);
624 }
625 return ret;
626 }
627
628 /*
629 * Dirty pagecache page
630 * Issues: when the error hit a hole page the error is not properly
631 * propagated.
632 */
633 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
634 {
635 struct address_space *mapping = page_mapping(p);
636
637 SetPageError(p);
638 /* TBD: print more information about the file. */
639 if (mapping) {
640 /*
641 * IO error will be reported by write(), fsync(), etc.
642 * who check the mapping.
643 * This way the application knows that something went
644 * wrong with its dirty file data.
645 *
646 * There's one open issue:
647 *
648 * The EIO will be only reported on the next IO
649 * operation and then cleared through the IO map.
650 * Normally Linux has two mechanisms to pass IO error
651 * first through the AS_EIO flag in the address space
652 * and then through the PageError flag in the page.
653 * Since we drop pages on memory failure handling the
654 * only mechanism open to use is through AS_AIO.
655 *
656 * This has the disadvantage that it gets cleared on
657 * the first operation that returns an error, while
658 * the PageError bit is more sticky and only cleared
659 * when the page is reread or dropped. If an
660 * application assumes it will always get error on
661 * fsync, but does other operations on the fd before
662 * and the page is dropped between then the error
663 * will not be properly reported.
664 *
665 * This can already happen even without hwpoisoned
666 * pages: first on metadata IO errors (which only
667 * report through AS_EIO) or when the page is dropped
668 * at the wrong time.
669 *
670 * So right now we assume that the application DTRT on
671 * the first EIO, but we're not worse than other parts
672 * of the kernel.
673 */
674 mapping_set_error(mapping, EIO);
675 }
676
677 return me_pagecache_clean(p, pfn);
678 }
679
680 /*
681 * Clean and dirty swap cache.
682 *
683 * Dirty swap cache page is tricky to handle. The page could live both in page
684 * cache and swap cache(ie. page is freshly swapped in). So it could be
685 * referenced concurrently by 2 types of PTEs:
686 * normal PTEs and swap PTEs. We try to handle them consistently by calling
687 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
688 * and then
689 * - clear dirty bit to prevent IO
690 * - remove from LRU
691 * - but keep in the swap cache, so that when we return to it on
692 * a later page fault, we know the application is accessing
693 * corrupted data and shall be killed (we installed simple
694 * interception code in do_swap_page to catch it).
695 *
696 * Clean swap cache pages can be directly isolated. A later page fault will
697 * bring in the known good data from disk.
698 */
699 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
700 {
701 ClearPageDirty(p);
702 /* Trigger EIO in shmem: */
703 ClearPageUptodate(p);
704
705 if (!delete_from_lru_cache(p))
706 return MF_DELAYED;
707 else
708 return MF_FAILED;
709 }
710
711 static int me_swapcache_clean(struct page *p, unsigned long pfn)
712 {
713 delete_from_swap_cache(p);
714
715 if (!delete_from_lru_cache(p))
716 return MF_RECOVERED;
717 else
718 return MF_FAILED;
719 }
720
721 /*
722 * Huge pages. Needs work.
723 * Issues:
724 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
725 * To narrow down kill region to one page, we need to break up pmd.
726 */
727 static int me_huge_page(struct page *p, unsigned long pfn)
728 {
729 int res = 0;
730 struct page *hpage = compound_head(p);
731
732 if (!PageHuge(hpage))
733 return MF_DELAYED;
734
735 /*
736 * We can safely recover from error on free or reserved (i.e.
737 * not in-use) hugepage by dequeuing it from freelist.
738 * To check whether a hugepage is in-use or not, we can't use
739 * page->lru because it can be used in other hugepage operations,
740 * such as __unmap_hugepage_range() and gather_surplus_pages().
741 * So instead we use page_mapping() and PageAnon().
742 * We assume that this function is called with page lock held,
743 * so there is no race between isolation and mapping/unmapping.
744 */
745 if (!(page_mapping(hpage) || PageAnon(hpage))) {
746 res = dequeue_hwpoisoned_huge_page(hpage);
747 if (!res)
748 return MF_RECOVERED;
749 }
750 return MF_DELAYED;
751 }
752
753 /*
754 * Various page states we can handle.
755 *
756 * A page state is defined by its current page->flags bits.
757 * The table matches them in order and calls the right handler.
758 *
759 * This is quite tricky because we can access page at any time
760 * in its live cycle, so all accesses have to be extremely careful.
761 *
762 * This is not complete. More states could be added.
763 * For any missing state don't attempt recovery.
764 */
765
766 #define dirty (1UL << PG_dirty)
767 #define sc (1UL << PG_swapcache)
768 #define unevict (1UL << PG_unevictable)
769 #define mlock (1UL << PG_mlocked)
770 #define writeback (1UL << PG_writeback)
771 #define lru (1UL << PG_lru)
772 #define swapbacked (1UL << PG_swapbacked)
773 #define head (1UL << PG_head)
774 #define slab (1UL << PG_slab)
775 #define reserved (1UL << PG_reserved)
776
777 static struct page_state {
778 unsigned long mask;
779 unsigned long res;
780 enum mf_action_page_type type;
781 int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
784 /*
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
787 */
788
789 /*
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
793 */
794 { slab, slab, MF_MSG_SLAB, me_kernel },
795
796 { head, head, MF_MSG_HUGE, me_huge_page },
797
798 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
799 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
800
801 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
802 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
803
804 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
805 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
806
807 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
808 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
809
810 /*
811 * Catchall entry: must be at end.
812 */
813 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
814 };
815
816 #undef dirty
817 #undef sc
818 #undef unevict
819 #undef mlock
820 #undef writeback
821 #undef lru
822 #undef swapbacked
823 #undef head
824 #undef slab
825 #undef reserved
826
827 /*
828 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
829 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
830 */
831 static void action_result(unsigned long pfn, enum mf_action_page_type type,
832 enum mf_result result)
833 {
834 trace_memory_failure_event(pfn, type, result);
835
836 pr_err("MCE %#lx: recovery action for %s: %s\n",
837 pfn, action_page_types[type], action_name[result]);
838 }
839
840 static int page_action(struct page_state *ps, struct page *p,
841 unsigned long pfn)
842 {
843 int result;
844 int count;
845
846 result = ps->action(p, pfn);
847
848 count = page_count(p) - 1;
849 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
850 count--;
851 if (count != 0) {
852 pr_err("MCE %#lx: %s still referenced by %d users\n",
853 pfn, action_page_types[ps->type], count);
854 result = MF_FAILED;
855 }
856 action_result(pfn, ps->type, result);
857
858 /* Could do more checks here if page looks ok */
859 /*
860 * Could adjust zone counters here to correct for the missing page.
861 */
862
863 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
864 }
865
866 /**
867 * get_hwpoison_page() - Get refcount for memory error handling:
868 * @page: raw error page (hit by memory error)
869 *
870 * Return: return 0 if failed to grab the refcount, otherwise true (some
871 * non-zero value.)
872 */
873 int get_hwpoison_page(struct page *page)
874 {
875 struct page *head = compound_head(page);
876
877 if (!PageHuge(head) && PageTransHuge(head)) {
878 /*
879 * Non anonymous thp exists only in allocation/free time. We
880 * can't handle such a case correctly, so let's give it up.
881 * This should be better than triggering BUG_ON when kernel
882 * tries to touch the "partially handled" page.
883 */
884 if (!PageAnon(head)) {
885 pr_err("MCE: %#lx: non anonymous thp\n",
886 page_to_pfn(page));
887 return 0;
888 }
889 }
890
891 if (get_page_unless_zero(head)) {
892 if (head == compound_head(page))
893 return 1;
894
895 pr_info("MCE: %#lx cannot catch tail\n", page_to_pfn(page));
896 put_page(head);
897 }
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(get_hwpoison_page);
902
903 /*
904 * Do all that is necessary to remove user space mappings. Unmap
905 * the pages and send SIGBUS to the processes if the data was dirty.
906 */
907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
908 int trapno, int flags, struct page **hpagep)
909 {
910 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
911 struct address_space *mapping;
912 LIST_HEAD(tokill);
913 int ret;
914 int kill = 1, forcekill;
915 struct page *hpage = *hpagep;
916
917 /*
918 * Here we are interested only in user-mapped pages, so skip any
919 * other types of pages.
920 */
921 if (PageReserved(p) || PageSlab(p))
922 return SWAP_SUCCESS;
923 if (!(PageLRU(hpage) || PageHuge(p)))
924 return SWAP_SUCCESS;
925
926 /*
927 * This check implies we don't kill processes if their pages
928 * are in the swap cache early. Those are always late kills.
929 */
930 if (!page_mapped(hpage))
931 return SWAP_SUCCESS;
932
933 if (PageKsm(p)) {
934 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
935 return SWAP_FAIL;
936 }
937
938 if (PageSwapCache(p)) {
939 pr_err("MCE %#lx: keeping poisoned page in swap cache\n", pfn);
940 ttu |= TTU_IGNORE_HWPOISON;
941 }
942
943 /*
944 * Propagate the dirty bit from PTEs to struct page first, because we
945 * need this to decide if we should kill or just drop the page.
946 * XXX: the dirty test could be racy: set_page_dirty() may not always
947 * be called inside page lock (it's recommended but not enforced).
948 */
949 mapping = page_mapping(hpage);
950 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
951 mapping_cap_writeback_dirty(mapping)) {
952 if (page_mkclean(hpage)) {
953 SetPageDirty(hpage);
954 } else {
955 kill = 0;
956 ttu |= TTU_IGNORE_HWPOISON;
957 pr_info("MCE %#lx: corrupted page was clean: dropped without side effects\n",
958 pfn);
959 }
960 }
961
962 /*
963 * First collect all the processes that have the page
964 * mapped in dirty form. This has to be done before try_to_unmap,
965 * because ttu takes the rmap data structures down.
966 *
967 * Error handling: We ignore errors here because
968 * there's nothing that can be done.
969 */
970 if (kill)
971 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
972
973 ret = try_to_unmap(hpage, ttu);
974 if (ret != SWAP_SUCCESS)
975 pr_err("MCE %#lx: failed to unmap page (mapcount=%d)\n",
976 pfn, page_mapcount(hpage));
977
978 /*
979 * Now that the dirty bit has been propagated to the
980 * struct page and all unmaps done we can decide if
981 * killing is needed or not. Only kill when the page
982 * was dirty or the process is not restartable,
983 * otherwise the tokill list is merely
984 * freed. When there was a problem unmapping earlier
985 * use a more force-full uncatchable kill to prevent
986 * any accesses to the poisoned memory.
987 */
988 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
989 kill_procs(&tokill, forcekill, trapno,
990 ret != SWAP_SUCCESS, p, pfn, flags);
991
992 return ret;
993 }
994
995 static void set_page_hwpoison_huge_page(struct page *hpage)
996 {
997 int i;
998 int nr_pages = 1 << compound_order(hpage);
999 for (i = 0; i < nr_pages; i++)
1000 SetPageHWPoison(hpage + i);
1001 }
1002
1003 static void clear_page_hwpoison_huge_page(struct page *hpage)
1004 {
1005 int i;
1006 int nr_pages = 1 << compound_order(hpage);
1007 for (i = 0; i < nr_pages; i++)
1008 ClearPageHWPoison(hpage + i);
1009 }
1010
1011 /**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029 int memory_failure(unsigned long pfn, int trapno, int flags)
1030 {
1031 struct page_state *ps;
1032 struct page *p;
1033 struct page *hpage;
1034 struct page *orig_head;
1035 int res;
1036 unsigned int nr_pages;
1037 unsigned long page_flags;
1038
1039 if (!sysctl_memory_failure_recovery)
1040 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042 if (!pfn_valid(pfn)) {
1043 pr_err("MCE %#lx: memory outside kernel control\n", pfn);
1044 return -ENXIO;
1045 }
1046
1047 p = pfn_to_page(pfn);
1048 orig_head = hpage = compound_head(p);
1049 if (TestSetPageHWPoison(p)) {
1050 pr_err("MCE %#lx: already hardware poisoned\n", pfn);
1051 return 0;
1052 }
1053
1054 /*
1055 * Currently errors on hugetlbfs pages are measured in hugepage units,
1056 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1057 * transparent hugepages, they are supposed to be split and error
1058 * measurement is done in normal page units. So nr_pages should be one
1059 * in this case.
1060 */
1061 if (PageHuge(p))
1062 nr_pages = 1 << compound_order(hpage);
1063 else /* normal page or thp */
1064 nr_pages = 1;
1065 num_poisoned_pages_add(nr_pages);
1066
1067 /*
1068 * We need/can do nothing about count=0 pages.
1069 * 1) it's a free page, and therefore in safe hand:
1070 * prep_new_page() will be the gate keeper.
1071 * 2) it's a free hugepage, which is also safe:
1072 * an affected hugepage will be dequeued from hugepage freelist,
1073 * so there's no concern about reusing it ever after.
1074 * 3) it's part of a non-compound high order page.
1075 * Implies some kernel user: cannot stop them from
1076 * R/W the page; let's pray that the page has been
1077 * used and will be freed some time later.
1078 * In fact it's dangerous to directly bump up page count from 0,
1079 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1080 */
1081 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1082 if (is_free_buddy_page(p)) {
1083 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1084 return 0;
1085 } else if (PageHuge(hpage)) {
1086 /*
1087 * Check "filter hit" and "race with other subpage."
1088 */
1089 lock_page(hpage);
1090 if (PageHWPoison(hpage)) {
1091 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 || (p != hpage && TestSetPageHWPoison(hpage))) {
1093 num_poisoned_pages_sub(nr_pages);
1094 unlock_page(hpage);
1095 return 0;
1096 }
1097 }
1098 set_page_hwpoison_huge_page(hpage);
1099 res = dequeue_hwpoisoned_huge_page(hpage);
1100 action_result(pfn, MF_MSG_FREE_HUGE,
1101 res ? MF_IGNORED : MF_DELAYED);
1102 unlock_page(hpage);
1103 return res;
1104 } else {
1105 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1106 return -EBUSY;
1107 }
1108 }
1109
1110 if (!PageHuge(p) && PageTransHuge(hpage)) {
1111 lock_page(hpage);
1112 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1113 unlock_page(hpage);
1114 if (!PageAnon(hpage))
1115 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1116 else
1117 pr_err("MCE: %#lx: thp split failed\n", pfn);
1118 if (TestClearPageHWPoison(p))
1119 num_poisoned_pages_sub(nr_pages);
1120 put_hwpoison_page(p);
1121 return -EBUSY;
1122 }
1123 unlock_page(hpage);
1124 get_hwpoison_page(p);
1125 put_hwpoison_page(hpage);
1126 VM_BUG_ON_PAGE(!page_count(p), p);
1127 hpage = compound_head(p);
1128 }
1129
1130 /*
1131 * We ignore non-LRU pages for good reasons.
1132 * - PG_locked is only well defined for LRU pages and a few others
1133 * - to avoid races with __SetPageLocked()
1134 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1135 * The check (unnecessarily) ignores LRU pages being isolated and
1136 * walked by the page reclaim code, however that's not a big loss.
1137 */
1138 if (!PageHuge(p)) {
1139 if (!PageLRU(p))
1140 shake_page(p, 0);
1141 if (!PageLRU(p)) {
1142 /*
1143 * shake_page could have turned it free.
1144 */
1145 if (is_free_buddy_page(p)) {
1146 if (flags & MF_COUNT_INCREASED)
1147 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1148 else
1149 action_result(pfn, MF_MSG_BUDDY_2ND,
1150 MF_DELAYED);
1151 return 0;
1152 }
1153 }
1154 }
1155
1156 lock_page(hpage);
1157
1158 /*
1159 * The page could have changed compound pages during the locking.
1160 * If this happens just bail out.
1161 */
1162 if (PageCompound(p) && compound_head(p) != orig_head) {
1163 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1164 res = -EBUSY;
1165 goto out;
1166 }
1167
1168 /*
1169 * We use page flags to determine what action should be taken, but
1170 * the flags can be modified by the error containment action. One
1171 * example is an mlocked page, where PG_mlocked is cleared by
1172 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1173 * correctly, we save a copy of the page flags at this time.
1174 */
1175 page_flags = p->flags;
1176
1177 /*
1178 * unpoison always clear PG_hwpoison inside page lock
1179 */
1180 if (!PageHWPoison(p)) {
1181 pr_err("MCE %#lx: just unpoisoned\n", pfn);
1182 num_poisoned_pages_sub(nr_pages);
1183 unlock_page(hpage);
1184 put_hwpoison_page(hpage);
1185 return 0;
1186 }
1187 if (hwpoison_filter(p)) {
1188 if (TestClearPageHWPoison(p))
1189 num_poisoned_pages_sub(nr_pages);
1190 unlock_page(hpage);
1191 put_hwpoison_page(hpage);
1192 return 0;
1193 }
1194
1195 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1196 goto identify_page_state;
1197
1198 /*
1199 * For error on the tail page, we should set PG_hwpoison
1200 * on the head page to show that the hugepage is hwpoisoned
1201 */
1202 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1203 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1204 unlock_page(hpage);
1205 put_hwpoison_page(hpage);
1206 return 0;
1207 }
1208 /*
1209 * Set PG_hwpoison on all pages in an error hugepage,
1210 * because containment is done in hugepage unit for now.
1211 * Since we have done TestSetPageHWPoison() for the head page with
1212 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1213 */
1214 if (PageHuge(p))
1215 set_page_hwpoison_huge_page(hpage);
1216
1217 /*
1218 * It's very difficult to mess with pages currently under IO
1219 * and in many cases impossible, so we just avoid it here.
1220 */
1221 wait_on_page_writeback(p);
1222
1223 /*
1224 * Now take care of user space mappings.
1225 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1226 *
1227 * When the raw error page is thp tail page, hpage points to the raw
1228 * page after thp split.
1229 */
1230 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1231 != SWAP_SUCCESS) {
1232 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1233 res = -EBUSY;
1234 goto out;
1235 }
1236
1237 /*
1238 * Torn down by someone else?
1239 */
1240 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1241 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1242 res = -EBUSY;
1243 goto out;
1244 }
1245
1246 identify_page_state:
1247 res = -EBUSY;
1248 /*
1249 * The first check uses the current page flags which may not have any
1250 * relevant information. The second check with the saved page flagss is
1251 * carried out only if the first check can't determine the page status.
1252 */
1253 for (ps = error_states;; ps++)
1254 if ((p->flags & ps->mask) == ps->res)
1255 break;
1256
1257 page_flags |= (p->flags & (1UL << PG_dirty));
1258
1259 if (!ps->mask)
1260 for (ps = error_states;; ps++)
1261 if ((page_flags & ps->mask) == ps->res)
1262 break;
1263 res = page_action(ps, p, pfn);
1264 out:
1265 unlock_page(hpage);
1266 return res;
1267 }
1268 EXPORT_SYMBOL_GPL(memory_failure);
1269
1270 #define MEMORY_FAILURE_FIFO_ORDER 4
1271 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1272
1273 struct memory_failure_entry {
1274 unsigned long pfn;
1275 int trapno;
1276 int flags;
1277 };
1278
1279 struct memory_failure_cpu {
1280 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1281 MEMORY_FAILURE_FIFO_SIZE);
1282 spinlock_t lock;
1283 struct work_struct work;
1284 };
1285
1286 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1287
1288 /**
1289 * memory_failure_queue - Schedule handling memory failure of a page.
1290 * @pfn: Page Number of the corrupted page
1291 * @trapno: Trap number reported in the signal to user space.
1292 * @flags: Flags for memory failure handling
1293 *
1294 * This function is called by the low level hardware error handler
1295 * when it detects hardware memory corruption of a page. It schedules
1296 * the recovering of error page, including dropping pages, killing
1297 * processes etc.
1298 *
1299 * The function is primarily of use for corruptions that
1300 * happen outside the current execution context (e.g. when
1301 * detected by a background scrubber)
1302 *
1303 * Can run in IRQ context.
1304 */
1305 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1306 {
1307 struct memory_failure_cpu *mf_cpu;
1308 unsigned long proc_flags;
1309 struct memory_failure_entry entry = {
1310 .pfn = pfn,
1311 .trapno = trapno,
1312 .flags = flags,
1313 };
1314
1315 mf_cpu = &get_cpu_var(memory_failure_cpu);
1316 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1317 if (kfifo_put(&mf_cpu->fifo, entry))
1318 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1319 else
1320 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1321 pfn);
1322 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1323 put_cpu_var(memory_failure_cpu);
1324 }
1325 EXPORT_SYMBOL_GPL(memory_failure_queue);
1326
1327 static void memory_failure_work_func(struct work_struct *work)
1328 {
1329 struct memory_failure_cpu *mf_cpu;
1330 struct memory_failure_entry entry = { 0, };
1331 unsigned long proc_flags;
1332 int gotten;
1333
1334 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1335 for (;;) {
1336 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1337 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1338 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1339 if (!gotten)
1340 break;
1341 if (entry.flags & MF_SOFT_OFFLINE)
1342 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1343 else
1344 memory_failure(entry.pfn, entry.trapno, entry.flags);
1345 }
1346 }
1347
1348 static int __init memory_failure_init(void)
1349 {
1350 struct memory_failure_cpu *mf_cpu;
1351 int cpu;
1352
1353 for_each_possible_cpu(cpu) {
1354 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1355 spin_lock_init(&mf_cpu->lock);
1356 INIT_KFIFO(mf_cpu->fifo);
1357 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1358 }
1359
1360 return 0;
1361 }
1362 core_initcall(memory_failure_init);
1363
1364 #define unpoison_pr_info(fmt, pfn, rs) \
1365 ({ \
1366 if (__ratelimit(rs)) \
1367 pr_info(fmt, pfn); \
1368 })
1369
1370 /**
1371 * unpoison_memory - Unpoison a previously poisoned page
1372 * @pfn: Page number of the to be unpoisoned page
1373 *
1374 * Software-unpoison a page that has been poisoned by
1375 * memory_failure() earlier.
1376 *
1377 * This is only done on the software-level, so it only works
1378 * for linux injected failures, not real hardware failures
1379 *
1380 * Returns 0 for success, otherwise -errno.
1381 */
1382 int unpoison_memory(unsigned long pfn)
1383 {
1384 struct page *page;
1385 struct page *p;
1386 int freeit = 0;
1387 unsigned int nr_pages;
1388 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1389 DEFAULT_RATELIMIT_BURST);
1390
1391 if (!pfn_valid(pfn))
1392 return -ENXIO;
1393
1394 p = pfn_to_page(pfn);
1395 page = compound_head(p);
1396
1397 if (!PageHWPoison(p)) {
1398 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1399 pfn, &unpoison_rs);
1400 return 0;
1401 }
1402
1403 if (page_count(page) > 1) {
1404 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1405 pfn, &unpoison_rs);
1406 return 0;
1407 }
1408
1409 if (page_mapped(page)) {
1410 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1411 pfn, &unpoison_rs);
1412 return 0;
1413 }
1414
1415 if (page_mapping(page)) {
1416 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1417 pfn, &unpoison_rs);
1418 return 0;
1419 }
1420
1421 /*
1422 * unpoison_memory() can encounter thp only when the thp is being
1423 * worked by memory_failure() and the page lock is not held yet.
1424 * In such case, we yield to memory_failure() and make unpoison fail.
1425 */
1426 if (!PageHuge(page) && PageTransHuge(page)) {
1427 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1428 pfn, &unpoison_rs);
1429 return 0;
1430 }
1431
1432 nr_pages = 1 << compound_order(page);
1433
1434 if (!get_hwpoison_page(p)) {
1435 /*
1436 * Since HWPoisoned hugepage should have non-zero refcount,
1437 * race between memory failure and unpoison seems to happen.
1438 * In such case unpoison fails and memory failure runs
1439 * to the end.
1440 */
1441 if (PageHuge(page)) {
1442 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1443 pfn, &unpoison_rs);
1444 return 0;
1445 }
1446 if (TestClearPageHWPoison(p))
1447 num_poisoned_pages_dec();
1448 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1449 pfn, &unpoison_rs);
1450 return 0;
1451 }
1452
1453 lock_page(page);
1454 /*
1455 * This test is racy because PG_hwpoison is set outside of page lock.
1456 * That's acceptable because that won't trigger kernel panic. Instead,
1457 * the PG_hwpoison page will be caught and isolated on the entrance to
1458 * the free buddy page pool.
1459 */
1460 if (TestClearPageHWPoison(page)) {
1461 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1462 pfn, &unpoison_rs);
1463 num_poisoned_pages_sub(nr_pages);
1464 freeit = 1;
1465 if (PageHuge(page))
1466 clear_page_hwpoison_huge_page(page);
1467 }
1468 unlock_page(page);
1469
1470 put_hwpoison_page(page);
1471 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1472 put_hwpoison_page(page);
1473
1474 return 0;
1475 }
1476 EXPORT_SYMBOL(unpoison_memory);
1477
1478 static struct page *new_page(struct page *p, unsigned long private, int **x)
1479 {
1480 int nid = page_to_nid(p);
1481 if (PageHuge(p))
1482 return alloc_huge_page_node(page_hstate(compound_head(p)),
1483 nid);
1484 else
1485 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1486 }
1487
1488 /*
1489 * Safely get reference count of an arbitrary page.
1490 * Returns 0 for a free page, -EIO for a zero refcount page
1491 * that is not free, and 1 for any other page type.
1492 * For 1 the page is returned with increased page count, otherwise not.
1493 */
1494 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1495 {
1496 int ret;
1497
1498 if (flags & MF_COUNT_INCREASED)
1499 return 1;
1500
1501 /*
1502 * When the target page is a free hugepage, just remove it
1503 * from free hugepage list.
1504 */
1505 if (!get_hwpoison_page(p)) {
1506 if (PageHuge(p)) {
1507 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1508 ret = 0;
1509 } else if (is_free_buddy_page(p)) {
1510 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1511 ret = 0;
1512 } else {
1513 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1514 __func__, pfn, p->flags);
1515 ret = -EIO;
1516 }
1517 } else {
1518 /* Not a free page */
1519 ret = 1;
1520 }
1521 return ret;
1522 }
1523
1524 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1525 {
1526 int ret = __get_any_page(page, pfn, flags);
1527
1528 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1529 /*
1530 * Try to free it.
1531 */
1532 put_hwpoison_page(page);
1533 shake_page(page, 1);
1534
1535 /*
1536 * Did it turn free?
1537 */
1538 ret = __get_any_page(page, pfn, 0);
1539 if (ret == 1 && !PageLRU(page)) {
1540 /* Drop page reference which is from __get_any_page() */
1541 put_hwpoison_page(page);
1542 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1543 pfn, page->flags);
1544 return -EIO;
1545 }
1546 }
1547 return ret;
1548 }
1549
1550 static int soft_offline_huge_page(struct page *page, int flags)
1551 {
1552 int ret;
1553 unsigned long pfn = page_to_pfn(page);
1554 struct page *hpage = compound_head(page);
1555 LIST_HEAD(pagelist);
1556
1557 /*
1558 * This double-check of PageHWPoison is to avoid the race with
1559 * memory_failure(). See also comment in __soft_offline_page().
1560 */
1561 lock_page(hpage);
1562 if (PageHWPoison(hpage)) {
1563 unlock_page(hpage);
1564 put_hwpoison_page(hpage);
1565 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1566 return -EBUSY;
1567 }
1568 unlock_page(hpage);
1569
1570 ret = isolate_huge_page(hpage, &pagelist);
1571 /*
1572 * get_any_page() and isolate_huge_page() takes a refcount each,
1573 * so need to drop one here.
1574 */
1575 put_hwpoison_page(hpage);
1576 if (!ret) {
1577 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1578 return -EBUSY;
1579 }
1580
1581 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1582 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1583 if (ret) {
1584 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1585 pfn, ret, page->flags);
1586 /*
1587 * We know that soft_offline_huge_page() tries to migrate
1588 * only one hugepage pointed to by hpage, so we need not
1589 * run through the pagelist here.
1590 */
1591 putback_active_hugepage(hpage);
1592 if (ret > 0)
1593 ret = -EIO;
1594 } else {
1595 /* overcommit hugetlb page will be freed to buddy */
1596 if (PageHuge(page)) {
1597 set_page_hwpoison_huge_page(hpage);
1598 dequeue_hwpoisoned_huge_page(hpage);
1599 num_poisoned_pages_add(1 << compound_order(hpage));
1600 } else {
1601 SetPageHWPoison(page);
1602 num_poisoned_pages_inc();
1603 }
1604 }
1605 return ret;
1606 }
1607
1608 static int __soft_offline_page(struct page *page, int flags)
1609 {
1610 int ret;
1611 unsigned long pfn = page_to_pfn(page);
1612
1613 /*
1614 * Check PageHWPoison again inside page lock because PageHWPoison
1615 * is set by memory_failure() outside page lock. Note that
1616 * memory_failure() also double-checks PageHWPoison inside page lock,
1617 * so there's no race between soft_offline_page() and memory_failure().
1618 */
1619 lock_page(page);
1620 wait_on_page_writeback(page);
1621 if (PageHWPoison(page)) {
1622 unlock_page(page);
1623 put_hwpoison_page(page);
1624 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1625 return -EBUSY;
1626 }
1627 /*
1628 * Try to invalidate first. This should work for
1629 * non dirty unmapped page cache pages.
1630 */
1631 ret = invalidate_inode_page(page);
1632 unlock_page(page);
1633 /*
1634 * RED-PEN would be better to keep it isolated here, but we
1635 * would need to fix isolation locking first.
1636 */
1637 if (ret == 1) {
1638 put_hwpoison_page(page);
1639 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1640 SetPageHWPoison(page);
1641 num_poisoned_pages_inc();
1642 return 0;
1643 }
1644
1645 /*
1646 * Simple invalidation didn't work.
1647 * Try to migrate to a new page instead. migrate.c
1648 * handles a large number of cases for us.
1649 */
1650 ret = isolate_lru_page(page);
1651 /*
1652 * Drop page reference which is came from get_any_page()
1653 * successful isolate_lru_page() already took another one.
1654 */
1655 put_hwpoison_page(page);
1656 if (!ret) {
1657 LIST_HEAD(pagelist);
1658 inc_zone_page_state(page, NR_ISOLATED_ANON +
1659 page_is_file_cache(page));
1660 list_add(&page->lru, &pagelist);
1661 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1662 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1663 if (ret) {
1664 if (!list_empty(&pagelist)) {
1665 list_del(&page->lru);
1666 dec_zone_page_state(page, NR_ISOLATED_ANON +
1667 page_is_file_cache(page));
1668 putback_lru_page(page);
1669 }
1670
1671 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1672 pfn, ret, page->flags);
1673 if (ret > 0)
1674 ret = -EIO;
1675 }
1676 } else {
1677 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1678 pfn, ret, page_count(page), page->flags);
1679 }
1680 return ret;
1681 }
1682
1683 static int soft_offline_in_use_page(struct page *page, int flags)
1684 {
1685 int ret;
1686 struct page *hpage = compound_head(page);
1687
1688 if (!PageHuge(page) && PageTransHuge(hpage)) {
1689 lock_page(hpage);
1690 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1691 unlock_page(hpage);
1692 if (!PageAnon(hpage))
1693 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1694 else
1695 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1696 put_hwpoison_page(hpage);
1697 return -EBUSY;
1698 }
1699 unlock_page(hpage);
1700 get_hwpoison_page(page);
1701 put_hwpoison_page(hpage);
1702 }
1703
1704 if (PageHuge(page))
1705 ret = soft_offline_huge_page(page, flags);
1706 else
1707 ret = __soft_offline_page(page, flags);
1708
1709 return ret;
1710 }
1711
1712 static void soft_offline_free_page(struct page *page)
1713 {
1714 if (PageHuge(page)) {
1715 struct page *hpage = compound_head(page);
1716
1717 set_page_hwpoison_huge_page(hpage);
1718 if (!dequeue_hwpoisoned_huge_page(hpage))
1719 num_poisoned_pages_add(1 << compound_order(hpage));
1720 } else {
1721 if (!TestSetPageHWPoison(page))
1722 num_poisoned_pages_inc();
1723 }
1724 }
1725
1726 /**
1727 * soft_offline_page - Soft offline a page.
1728 * @page: page to offline
1729 * @flags: flags. Same as memory_failure().
1730 *
1731 * Returns 0 on success, otherwise negated errno.
1732 *
1733 * Soft offline a page, by migration or invalidation,
1734 * without killing anything. This is for the case when
1735 * a page is not corrupted yet (so it's still valid to access),
1736 * but has had a number of corrected errors and is better taken
1737 * out.
1738 *
1739 * The actual policy on when to do that is maintained by
1740 * user space.
1741 *
1742 * This should never impact any application or cause data loss,
1743 * however it might take some time.
1744 *
1745 * This is not a 100% solution for all memory, but tries to be
1746 * ``good enough'' for the majority of memory.
1747 */
1748 int soft_offline_page(struct page *page, int flags)
1749 {
1750 int ret;
1751 unsigned long pfn = page_to_pfn(page);
1752
1753 if (PageHWPoison(page)) {
1754 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755 if (flags & MF_COUNT_INCREASED)
1756 put_hwpoison_page(page);
1757 return -EBUSY;
1758 }
1759
1760 get_online_mems();
1761 ret = get_any_page(page, pfn, flags);
1762 put_online_mems();
1763
1764 if (ret > 0)
1765 ret = soft_offline_in_use_page(page, flags);
1766 else if (ret == 0)
1767 soft_offline_free_page(page);
1768
1769 return ret;
1770 }
This page took 0.066878 seconds and 5 git commands to generate.