mm: vmscan: invoke slab shrinkers from shrink_zone()
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107 }
108
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119 }
120
121 /*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
150
151 if (ino != hwpoison_filter_memcg)
152 return -EINVAL;
153
154 return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159
160 int hwpoison_filter(struct page *p)
161 {
162 if (!hwpoison_filter_enable)
163 return 0;
164
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
174 return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 return 0;
180 }
181 #endif
182
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185 /*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224 }
225
226 /*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230 void shake_page(struct page *p, int access)
231 {
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages(page_zone(p));
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
240
241 /*
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
244 */
245 if (access) {
246 int nr;
247 int nid = page_to_nid(p);
248 do {
249 nr = shrink_node_slabs(GFP_KERNEL, nid, 1000, 1000);
250 if (page_count(p) == 1)
251 break;
252 } while (nr > 10);
253 }
254 }
255 EXPORT_SYMBOL_GPL(shake_page);
256
257 /*
258 * Kill all processes that have a poisoned page mapped and then isolate
259 * the page.
260 *
261 * General strategy:
262 * Find all processes having the page mapped and kill them.
263 * But we keep a page reference around so that the page is not
264 * actually freed yet.
265 * Then stash the page away
266 *
267 * There's no convenient way to get back to mapped processes
268 * from the VMAs. So do a brute-force search over all
269 * running processes.
270 *
271 * Remember that machine checks are not common (or rather
272 * if they are common you have other problems), so this shouldn't
273 * be a performance issue.
274 *
275 * Also there are some races possible while we get from the
276 * error detection to actually handle it.
277 */
278
279 struct to_kill {
280 struct list_head nd;
281 struct task_struct *tsk;
282 unsigned long addr;
283 char addr_valid;
284 };
285
286 /*
287 * Failure handling: if we can't find or can't kill a process there's
288 * not much we can do. We just print a message and ignore otherwise.
289 */
290
291 /*
292 * Schedule a process for later kill.
293 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
294 * TBD would GFP_NOIO be enough?
295 */
296 static void add_to_kill(struct task_struct *tsk, struct page *p,
297 struct vm_area_struct *vma,
298 struct list_head *to_kill,
299 struct to_kill **tkc)
300 {
301 struct to_kill *tk;
302
303 if (*tkc) {
304 tk = *tkc;
305 *tkc = NULL;
306 } else {
307 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
308 if (!tk) {
309 printk(KERN_ERR
310 "MCE: Out of memory while machine check handling\n");
311 return;
312 }
313 }
314 tk->addr = page_address_in_vma(p, vma);
315 tk->addr_valid = 1;
316
317 /*
318 * In theory we don't have to kill when the page was
319 * munmaped. But it could be also a mremap. Since that's
320 * likely very rare kill anyways just out of paranoia, but use
321 * a SIGKILL because the error is not contained anymore.
322 */
323 if (tk->addr == -EFAULT) {
324 pr_info("MCE: Unable to find user space address %lx in %s\n",
325 page_to_pfn(p), tsk->comm);
326 tk->addr_valid = 0;
327 }
328 get_task_struct(tsk);
329 tk->tsk = tsk;
330 list_add_tail(&tk->nd, to_kill);
331 }
332
333 /*
334 * Kill the processes that have been collected earlier.
335 *
336 * Only do anything when DOIT is set, otherwise just free the list
337 * (this is used for clean pages which do not need killing)
338 * Also when FAIL is set do a force kill because something went
339 * wrong earlier.
340 */
341 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
342 int fail, struct page *page, unsigned long pfn,
343 int flags)
344 {
345 struct to_kill *tk, *next;
346
347 list_for_each_entry_safe (tk, next, to_kill, nd) {
348 if (forcekill) {
349 /*
350 * In case something went wrong with munmapping
351 * make sure the process doesn't catch the
352 * signal and then access the memory. Just kill it.
353 */
354 if (fail || tk->addr_valid == 0) {
355 printk(KERN_ERR
356 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
357 pfn, tk->tsk->comm, tk->tsk->pid);
358 force_sig(SIGKILL, tk->tsk);
359 }
360
361 /*
362 * In theory the process could have mapped
363 * something else on the address in-between. We could
364 * check for that, but we need to tell the
365 * process anyways.
366 */
367 else if (kill_proc(tk->tsk, tk->addr, trapno,
368 pfn, page, flags) < 0)
369 printk(KERN_ERR
370 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
371 pfn, tk->tsk->comm, tk->tsk->pid);
372 }
373 put_task_struct(tk->tsk);
374 kfree(tk);
375 }
376 }
377
378 /*
379 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
380 * on behalf of the thread group. Return task_struct of the (first found)
381 * dedicated thread if found, and return NULL otherwise.
382 *
383 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
384 * have to call rcu_read_lock/unlock() in this function.
385 */
386 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
387 {
388 struct task_struct *t;
389
390 for_each_thread(tsk, t)
391 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
392 return t;
393 return NULL;
394 }
395
396 /*
397 * Determine whether a given process is "early kill" process which expects
398 * to be signaled when some page under the process is hwpoisoned.
399 * Return task_struct of the dedicated thread (main thread unless explicitly
400 * specified) if the process is "early kill," and otherwise returns NULL.
401 */
402 static struct task_struct *task_early_kill(struct task_struct *tsk,
403 int force_early)
404 {
405 struct task_struct *t;
406 if (!tsk->mm)
407 return NULL;
408 if (force_early)
409 return tsk;
410 t = find_early_kill_thread(tsk);
411 if (t)
412 return t;
413 if (sysctl_memory_failure_early_kill)
414 return tsk;
415 return NULL;
416 }
417
418 /*
419 * Collect processes when the error hit an anonymous page.
420 */
421 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
422 struct to_kill **tkc, int force_early)
423 {
424 struct vm_area_struct *vma;
425 struct task_struct *tsk;
426 struct anon_vma *av;
427 pgoff_t pgoff;
428
429 av = page_lock_anon_vma_read(page);
430 if (av == NULL) /* Not actually mapped anymore */
431 return;
432
433 pgoff = page_to_pgoff(page);
434 read_lock(&tasklist_lock);
435 for_each_process (tsk) {
436 struct anon_vma_chain *vmac;
437 struct task_struct *t = task_early_kill(tsk, force_early);
438
439 if (!t)
440 continue;
441 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
442 pgoff, pgoff) {
443 vma = vmac->vma;
444 if (!page_mapped_in_vma(page, vma))
445 continue;
446 if (vma->vm_mm == t->mm)
447 add_to_kill(t, page, vma, to_kill, tkc);
448 }
449 }
450 read_unlock(&tasklist_lock);
451 page_unlock_anon_vma_read(av);
452 }
453
454 /*
455 * Collect processes when the error hit a file mapped page.
456 */
457 static void collect_procs_file(struct page *page, struct list_head *to_kill,
458 struct to_kill **tkc, int force_early)
459 {
460 struct vm_area_struct *vma;
461 struct task_struct *tsk;
462 struct address_space *mapping = page->mapping;
463
464 i_mmap_lock_read(mapping);
465 read_lock(&tasklist_lock);
466 for_each_process(tsk) {
467 pgoff_t pgoff = page_to_pgoff(page);
468 struct task_struct *t = task_early_kill(tsk, force_early);
469
470 if (!t)
471 continue;
472 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
473 pgoff) {
474 /*
475 * Send early kill signal to tasks where a vma covers
476 * the page but the corrupted page is not necessarily
477 * mapped it in its pte.
478 * Assume applications who requested early kill want
479 * to be informed of all such data corruptions.
480 */
481 if (vma->vm_mm == t->mm)
482 add_to_kill(t, page, vma, to_kill, tkc);
483 }
484 }
485 read_unlock(&tasklist_lock);
486 i_mmap_unlock_read(mapping);
487 }
488
489 /*
490 * Collect the processes who have the corrupted page mapped to kill.
491 * This is done in two steps for locking reasons.
492 * First preallocate one tokill structure outside the spin locks,
493 * so that we can kill at least one process reasonably reliable.
494 */
495 static void collect_procs(struct page *page, struct list_head *tokill,
496 int force_early)
497 {
498 struct to_kill *tk;
499
500 if (!page->mapping)
501 return;
502
503 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
504 if (!tk)
505 return;
506 if (PageAnon(page))
507 collect_procs_anon(page, tokill, &tk, force_early);
508 else
509 collect_procs_file(page, tokill, &tk, force_early);
510 kfree(tk);
511 }
512
513 /*
514 * Error handlers for various types of pages.
515 */
516
517 enum outcome {
518 IGNORED, /* Error: cannot be handled */
519 FAILED, /* Error: handling failed */
520 DELAYED, /* Will be handled later */
521 RECOVERED, /* Successfully recovered */
522 };
523
524 static const char *action_name[] = {
525 [IGNORED] = "Ignored",
526 [FAILED] = "Failed",
527 [DELAYED] = "Delayed",
528 [RECOVERED] = "Recovered",
529 };
530
531 /*
532 * XXX: It is possible that a page is isolated from LRU cache,
533 * and then kept in swap cache or failed to remove from page cache.
534 * The page count will stop it from being freed by unpoison.
535 * Stress tests should be aware of this memory leak problem.
536 */
537 static int delete_from_lru_cache(struct page *p)
538 {
539 if (!isolate_lru_page(p)) {
540 /*
541 * Clear sensible page flags, so that the buddy system won't
542 * complain when the page is unpoison-and-freed.
543 */
544 ClearPageActive(p);
545 ClearPageUnevictable(p);
546 /*
547 * drop the page count elevated by isolate_lru_page()
548 */
549 page_cache_release(p);
550 return 0;
551 }
552 return -EIO;
553 }
554
555 /*
556 * Error hit kernel page.
557 * Do nothing, try to be lucky and not touch this instead. For a few cases we
558 * could be more sophisticated.
559 */
560 static int me_kernel(struct page *p, unsigned long pfn)
561 {
562 return IGNORED;
563 }
564
565 /*
566 * Page in unknown state. Do nothing.
567 */
568 static int me_unknown(struct page *p, unsigned long pfn)
569 {
570 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
571 return FAILED;
572 }
573
574 /*
575 * Clean (or cleaned) page cache page.
576 */
577 static int me_pagecache_clean(struct page *p, unsigned long pfn)
578 {
579 int err;
580 int ret = FAILED;
581 struct address_space *mapping;
582
583 delete_from_lru_cache(p);
584
585 /*
586 * For anonymous pages we're done the only reference left
587 * should be the one m_f() holds.
588 */
589 if (PageAnon(p))
590 return RECOVERED;
591
592 /*
593 * Now truncate the page in the page cache. This is really
594 * more like a "temporary hole punch"
595 * Don't do this for block devices when someone else
596 * has a reference, because it could be file system metadata
597 * and that's not safe to truncate.
598 */
599 mapping = page_mapping(p);
600 if (!mapping) {
601 /*
602 * Page has been teared down in the meanwhile
603 */
604 return FAILED;
605 }
606
607 /*
608 * Truncation is a bit tricky. Enable it per file system for now.
609 *
610 * Open: to take i_mutex or not for this? Right now we don't.
611 */
612 if (mapping->a_ops->error_remove_page) {
613 err = mapping->a_ops->error_remove_page(mapping, p);
614 if (err != 0) {
615 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
616 pfn, err);
617 } else if (page_has_private(p) &&
618 !try_to_release_page(p, GFP_NOIO)) {
619 pr_info("MCE %#lx: failed to release buffers\n", pfn);
620 } else {
621 ret = RECOVERED;
622 }
623 } else {
624 /*
625 * If the file system doesn't support it just invalidate
626 * This fails on dirty or anything with private pages
627 */
628 if (invalidate_inode_page(p))
629 ret = RECOVERED;
630 else
631 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
632 pfn);
633 }
634 return ret;
635 }
636
637 /*
638 * Dirty pagecache page
639 * Issues: when the error hit a hole page the error is not properly
640 * propagated.
641 */
642 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
643 {
644 struct address_space *mapping = page_mapping(p);
645
646 SetPageError(p);
647 /* TBD: print more information about the file. */
648 if (mapping) {
649 /*
650 * IO error will be reported by write(), fsync(), etc.
651 * who check the mapping.
652 * This way the application knows that something went
653 * wrong with its dirty file data.
654 *
655 * There's one open issue:
656 *
657 * The EIO will be only reported on the next IO
658 * operation and then cleared through the IO map.
659 * Normally Linux has two mechanisms to pass IO error
660 * first through the AS_EIO flag in the address space
661 * and then through the PageError flag in the page.
662 * Since we drop pages on memory failure handling the
663 * only mechanism open to use is through AS_AIO.
664 *
665 * This has the disadvantage that it gets cleared on
666 * the first operation that returns an error, while
667 * the PageError bit is more sticky and only cleared
668 * when the page is reread or dropped. If an
669 * application assumes it will always get error on
670 * fsync, but does other operations on the fd before
671 * and the page is dropped between then the error
672 * will not be properly reported.
673 *
674 * This can already happen even without hwpoisoned
675 * pages: first on metadata IO errors (which only
676 * report through AS_EIO) or when the page is dropped
677 * at the wrong time.
678 *
679 * So right now we assume that the application DTRT on
680 * the first EIO, but we're not worse than other parts
681 * of the kernel.
682 */
683 mapping_set_error(mapping, EIO);
684 }
685
686 return me_pagecache_clean(p, pfn);
687 }
688
689 /*
690 * Clean and dirty swap cache.
691 *
692 * Dirty swap cache page is tricky to handle. The page could live both in page
693 * cache and swap cache(ie. page is freshly swapped in). So it could be
694 * referenced concurrently by 2 types of PTEs:
695 * normal PTEs and swap PTEs. We try to handle them consistently by calling
696 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
697 * and then
698 * - clear dirty bit to prevent IO
699 * - remove from LRU
700 * - but keep in the swap cache, so that when we return to it on
701 * a later page fault, we know the application is accessing
702 * corrupted data and shall be killed (we installed simple
703 * interception code in do_swap_page to catch it).
704 *
705 * Clean swap cache pages can be directly isolated. A later page fault will
706 * bring in the known good data from disk.
707 */
708 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
709 {
710 ClearPageDirty(p);
711 /* Trigger EIO in shmem: */
712 ClearPageUptodate(p);
713
714 if (!delete_from_lru_cache(p))
715 return DELAYED;
716 else
717 return FAILED;
718 }
719
720 static int me_swapcache_clean(struct page *p, unsigned long pfn)
721 {
722 delete_from_swap_cache(p);
723
724 if (!delete_from_lru_cache(p))
725 return RECOVERED;
726 else
727 return FAILED;
728 }
729
730 /*
731 * Huge pages. Needs work.
732 * Issues:
733 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
734 * To narrow down kill region to one page, we need to break up pmd.
735 */
736 static int me_huge_page(struct page *p, unsigned long pfn)
737 {
738 int res = 0;
739 struct page *hpage = compound_head(p);
740 /*
741 * We can safely recover from error on free or reserved (i.e.
742 * not in-use) hugepage by dequeuing it from freelist.
743 * To check whether a hugepage is in-use or not, we can't use
744 * page->lru because it can be used in other hugepage operations,
745 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 * So instead we use page_mapping() and PageAnon().
747 * We assume that this function is called with page lock held,
748 * so there is no race between isolation and mapping/unmapping.
749 */
750 if (!(page_mapping(hpage) || PageAnon(hpage))) {
751 res = dequeue_hwpoisoned_huge_page(hpage);
752 if (!res)
753 return RECOVERED;
754 }
755 return DELAYED;
756 }
757
758 /*
759 * Various page states we can handle.
760 *
761 * A page state is defined by its current page->flags bits.
762 * The table matches them in order and calls the right handler.
763 *
764 * This is quite tricky because we can access page at any time
765 * in its live cycle, so all accesses have to be extremely careful.
766 *
767 * This is not complete. More states could be added.
768 * For any missing state don't attempt recovery.
769 */
770
771 #define dirty (1UL << PG_dirty)
772 #define sc (1UL << PG_swapcache)
773 #define unevict (1UL << PG_unevictable)
774 #define mlock (1UL << PG_mlocked)
775 #define writeback (1UL << PG_writeback)
776 #define lru (1UL << PG_lru)
777 #define swapbacked (1UL << PG_swapbacked)
778 #define head (1UL << PG_head)
779 #define tail (1UL << PG_tail)
780 #define compound (1UL << PG_compound)
781 #define slab (1UL << PG_slab)
782 #define reserved (1UL << PG_reserved)
783
784 static struct page_state {
785 unsigned long mask;
786 unsigned long res;
787 char *msg;
788 int (*action)(struct page *p, unsigned long pfn);
789 } error_states[] = {
790 { reserved, reserved, "reserved kernel", me_kernel },
791 /*
792 * free pages are specially detected outside this table:
793 * PG_buddy pages only make a small fraction of all free pages.
794 */
795
796 /*
797 * Could in theory check if slab page is free or if we can drop
798 * currently unused objects without touching them. But just
799 * treat it as standard kernel for now.
800 */
801 { slab, slab, "kernel slab", me_kernel },
802
803 #ifdef CONFIG_PAGEFLAGS_EXTENDED
804 { head, head, "huge", me_huge_page },
805 { tail, tail, "huge", me_huge_page },
806 #else
807 { compound, compound, "huge", me_huge_page },
808 #endif
809
810 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
811 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
812
813 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
814 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
815
816 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
817 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
818
819 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
820 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
821
822 /*
823 * Catchall entry: must be at end.
824 */
825 { 0, 0, "unknown page state", me_unknown },
826 };
827
828 #undef dirty
829 #undef sc
830 #undef unevict
831 #undef mlock
832 #undef writeback
833 #undef lru
834 #undef swapbacked
835 #undef head
836 #undef tail
837 #undef compound
838 #undef slab
839 #undef reserved
840
841 /*
842 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
843 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
844 */
845 static void action_result(unsigned long pfn, char *msg, int result)
846 {
847 pr_err("MCE %#lx: %s page recovery: %s\n",
848 pfn, msg, action_name[result]);
849 }
850
851 static int page_action(struct page_state *ps, struct page *p,
852 unsigned long pfn)
853 {
854 int result;
855 int count;
856
857 result = ps->action(p, pfn);
858
859 count = page_count(p) - 1;
860 if (ps->action == me_swapcache_dirty && result == DELAYED)
861 count--;
862 if (count != 0) {
863 printk(KERN_ERR
864 "MCE %#lx: %s page still referenced by %d users\n",
865 pfn, ps->msg, count);
866 result = FAILED;
867 }
868 action_result(pfn, ps->msg, result);
869
870 /* Could do more checks here if page looks ok */
871 /*
872 * Could adjust zone counters here to correct for the missing page.
873 */
874
875 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
876 }
877
878 /*
879 * Do all that is necessary to remove user space mappings. Unmap
880 * the pages and send SIGBUS to the processes if the data was dirty.
881 */
882 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
883 int trapno, int flags, struct page **hpagep)
884 {
885 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
886 struct address_space *mapping;
887 LIST_HEAD(tokill);
888 int ret;
889 int kill = 1, forcekill;
890 struct page *hpage = *hpagep;
891 struct page *ppage;
892
893 /*
894 * Here we are interested only in user-mapped pages, so skip any
895 * other types of pages.
896 */
897 if (PageReserved(p) || PageSlab(p))
898 return SWAP_SUCCESS;
899 if (!(PageLRU(hpage) || PageHuge(p)))
900 return SWAP_SUCCESS;
901
902 /*
903 * This check implies we don't kill processes if their pages
904 * are in the swap cache early. Those are always late kills.
905 */
906 if (!page_mapped(hpage))
907 return SWAP_SUCCESS;
908
909 if (PageKsm(p)) {
910 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
911 return SWAP_FAIL;
912 }
913
914 if (PageSwapCache(p)) {
915 printk(KERN_ERR
916 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
917 ttu |= TTU_IGNORE_HWPOISON;
918 }
919
920 /*
921 * Propagate the dirty bit from PTEs to struct page first, because we
922 * need this to decide if we should kill or just drop the page.
923 * XXX: the dirty test could be racy: set_page_dirty() may not always
924 * be called inside page lock (it's recommended but not enforced).
925 */
926 mapping = page_mapping(hpage);
927 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
928 mapping_cap_writeback_dirty(mapping)) {
929 if (page_mkclean(hpage)) {
930 SetPageDirty(hpage);
931 } else {
932 kill = 0;
933 ttu |= TTU_IGNORE_HWPOISON;
934 printk(KERN_INFO
935 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
936 pfn);
937 }
938 }
939
940 /*
941 * ppage: poisoned page
942 * if p is regular page(4k page)
943 * ppage == real poisoned page;
944 * else p is hugetlb or THP, ppage == head page.
945 */
946 ppage = hpage;
947
948 if (PageTransHuge(hpage)) {
949 /*
950 * Verify that this isn't a hugetlbfs head page, the check for
951 * PageAnon is just for avoid tripping a split_huge_page
952 * internal debug check, as split_huge_page refuses to deal with
953 * anything that isn't an anon page. PageAnon can't go away fro
954 * under us because we hold a refcount on the hpage, without a
955 * refcount on the hpage. split_huge_page can't be safely called
956 * in the first place, having a refcount on the tail isn't
957 * enough * to be safe.
958 */
959 if (!PageHuge(hpage) && PageAnon(hpage)) {
960 if (unlikely(split_huge_page(hpage))) {
961 /*
962 * FIXME: if splitting THP is failed, it is
963 * better to stop the following operation rather
964 * than causing panic by unmapping. System might
965 * survive if the page is freed later.
966 */
967 printk(KERN_INFO
968 "MCE %#lx: failed to split THP\n", pfn);
969
970 BUG_ON(!PageHWPoison(p));
971 return SWAP_FAIL;
972 }
973 /*
974 * We pinned the head page for hwpoison handling,
975 * now we split the thp and we are interested in
976 * the hwpoisoned raw page, so move the refcount
977 * to it. Similarly, page lock is shifted.
978 */
979 if (hpage != p) {
980 if (!(flags & MF_COUNT_INCREASED)) {
981 put_page(hpage);
982 get_page(p);
983 }
984 lock_page(p);
985 unlock_page(hpage);
986 *hpagep = p;
987 }
988 /* THP is split, so ppage should be the real poisoned page. */
989 ppage = p;
990 }
991 }
992
993 /*
994 * First collect all the processes that have the page
995 * mapped in dirty form. This has to be done before try_to_unmap,
996 * because ttu takes the rmap data structures down.
997 *
998 * Error handling: We ignore errors here because
999 * there's nothing that can be done.
1000 */
1001 if (kill)
1002 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1003
1004 ret = try_to_unmap(ppage, ttu);
1005 if (ret != SWAP_SUCCESS)
1006 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1007 pfn, page_mapcount(ppage));
1008
1009 /*
1010 * Now that the dirty bit has been propagated to the
1011 * struct page and all unmaps done we can decide if
1012 * killing is needed or not. Only kill when the page
1013 * was dirty or the process is not restartable,
1014 * otherwise the tokill list is merely
1015 * freed. When there was a problem unmapping earlier
1016 * use a more force-full uncatchable kill to prevent
1017 * any accesses to the poisoned memory.
1018 */
1019 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1020 kill_procs(&tokill, forcekill, trapno,
1021 ret != SWAP_SUCCESS, p, pfn, flags);
1022
1023 return ret;
1024 }
1025
1026 static void set_page_hwpoison_huge_page(struct page *hpage)
1027 {
1028 int i;
1029 int nr_pages = 1 << compound_order(hpage);
1030 for (i = 0; i < nr_pages; i++)
1031 SetPageHWPoison(hpage + i);
1032 }
1033
1034 static void clear_page_hwpoison_huge_page(struct page *hpage)
1035 {
1036 int i;
1037 int nr_pages = 1 << compound_order(hpage);
1038 for (i = 0; i < nr_pages; i++)
1039 ClearPageHWPoison(hpage + i);
1040 }
1041
1042 /**
1043 * memory_failure - Handle memory failure of a page.
1044 * @pfn: Page Number of the corrupted page
1045 * @trapno: Trap number reported in the signal to user space.
1046 * @flags: fine tune action taken
1047 *
1048 * This function is called by the low level machine check code
1049 * of an architecture when it detects hardware memory corruption
1050 * of a page. It tries its best to recover, which includes
1051 * dropping pages, killing processes etc.
1052 *
1053 * The function is primarily of use for corruptions that
1054 * happen outside the current execution context (e.g. when
1055 * detected by a background scrubber)
1056 *
1057 * Must run in process context (e.g. a work queue) with interrupts
1058 * enabled and no spinlocks hold.
1059 */
1060 int memory_failure(unsigned long pfn, int trapno, int flags)
1061 {
1062 struct page_state *ps;
1063 struct page *p;
1064 struct page *hpage;
1065 int res;
1066 unsigned int nr_pages;
1067 unsigned long page_flags;
1068
1069 if (!sysctl_memory_failure_recovery)
1070 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1071
1072 if (!pfn_valid(pfn)) {
1073 printk(KERN_ERR
1074 "MCE %#lx: memory outside kernel control\n",
1075 pfn);
1076 return -ENXIO;
1077 }
1078
1079 p = pfn_to_page(pfn);
1080 hpage = compound_head(p);
1081 if (TestSetPageHWPoison(p)) {
1082 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1083 return 0;
1084 }
1085
1086 /*
1087 * Currently errors on hugetlbfs pages are measured in hugepage units,
1088 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1089 * transparent hugepages, they are supposed to be split and error
1090 * measurement is done in normal page units. So nr_pages should be one
1091 * in this case.
1092 */
1093 if (PageHuge(p))
1094 nr_pages = 1 << compound_order(hpage);
1095 else /* normal page or thp */
1096 nr_pages = 1;
1097 atomic_long_add(nr_pages, &num_poisoned_pages);
1098
1099 /*
1100 * We need/can do nothing about count=0 pages.
1101 * 1) it's a free page, and therefore in safe hand:
1102 * prep_new_page() will be the gate keeper.
1103 * 2) it's a free hugepage, which is also safe:
1104 * an affected hugepage will be dequeued from hugepage freelist,
1105 * so there's no concern about reusing it ever after.
1106 * 3) it's part of a non-compound high order page.
1107 * Implies some kernel user: cannot stop them from
1108 * R/W the page; let's pray that the page has been
1109 * used and will be freed some time later.
1110 * In fact it's dangerous to directly bump up page count from 0,
1111 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1112 */
1113 if (!(flags & MF_COUNT_INCREASED) &&
1114 !get_page_unless_zero(hpage)) {
1115 if (is_free_buddy_page(p)) {
1116 action_result(pfn, "free buddy", DELAYED);
1117 return 0;
1118 } else if (PageHuge(hpage)) {
1119 /*
1120 * Check "filter hit" and "race with other subpage."
1121 */
1122 lock_page(hpage);
1123 if (PageHWPoison(hpage)) {
1124 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1125 || (p != hpage && TestSetPageHWPoison(hpage))) {
1126 atomic_long_sub(nr_pages, &num_poisoned_pages);
1127 unlock_page(hpage);
1128 return 0;
1129 }
1130 }
1131 set_page_hwpoison_huge_page(hpage);
1132 res = dequeue_hwpoisoned_huge_page(hpage);
1133 action_result(pfn, "free huge",
1134 res ? IGNORED : DELAYED);
1135 unlock_page(hpage);
1136 return res;
1137 } else {
1138 action_result(pfn, "high order kernel", IGNORED);
1139 return -EBUSY;
1140 }
1141 }
1142
1143 /*
1144 * We ignore non-LRU pages for good reasons.
1145 * - PG_locked is only well defined for LRU pages and a few others
1146 * - to avoid races with __set_page_locked()
1147 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1148 * The check (unnecessarily) ignores LRU pages being isolated and
1149 * walked by the page reclaim code, however that's not a big loss.
1150 */
1151 if (!PageHuge(p) && !PageTransTail(p)) {
1152 if (!PageLRU(p))
1153 shake_page(p, 0);
1154 if (!PageLRU(p)) {
1155 /*
1156 * shake_page could have turned it free.
1157 */
1158 if (is_free_buddy_page(p)) {
1159 if (flags & MF_COUNT_INCREASED)
1160 action_result(pfn, "free buddy", DELAYED);
1161 else
1162 action_result(pfn, "free buddy, 2nd try", DELAYED);
1163 return 0;
1164 }
1165 }
1166 }
1167
1168 lock_page(hpage);
1169
1170 /*
1171 * The page could have changed compound pages during the locking.
1172 * If this happens just bail out.
1173 */
1174 if (compound_head(p) != hpage) {
1175 action_result(pfn, "different compound page after locking", IGNORED);
1176 res = -EBUSY;
1177 goto out;
1178 }
1179
1180 /*
1181 * We use page flags to determine what action should be taken, but
1182 * the flags can be modified by the error containment action. One
1183 * example is an mlocked page, where PG_mlocked is cleared by
1184 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185 * correctly, we save a copy of the page flags at this time.
1186 */
1187 page_flags = p->flags;
1188
1189 /*
1190 * unpoison always clear PG_hwpoison inside page lock
1191 */
1192 if (!PageHWPoison(p)) {
1193 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1194 atomic_long_sub(nr_pages, &num_poisoned_pages);
1195 put_page(hpage);
1196 res = 0;
1197 goto out;
1198 }
1199 if (hwpoison_filter(p)) {
1200 if (TestClearPageHWPoison(p))
1201 atomic_long_sub(nr_pages, &num_poisoned_pages);
1202 unlock_page(hpage);
1203 put_page(hpage);
1204 return 0;
1205 }
1206
1207 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1208 goto identify_page_state;
1209
1210 /*
1211 * For error on the tail page, we should set PG_hwpoison
1212 * on the head page to show that the hugepage is hwpoisoned
1213 */
1214 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1215 action_result(pfn, "hugepage already hardware poisoned",
1216 IGNORED);
1217 unlock_page(hpage);
1218 put_page(hpage);
1219 return 0;
1220 }
1221 /*
1222 * Set PG_hwpoison on all pages in an error hugepage,
1223 * because containment is done in hugepage unit for now.
1224 * Since we have done TestSetPageHWPoison() for the head page with
1225 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1226 */
1227 if (PageHuge(p))
1228 set_page_hwpoison_huge_page(hpage);
1229
1230 /*
1231 * It's very difficult to mess with pages currently under IO
1232 * and in many cases impossible, so we just avoid it here.
1233 */
1234 wait_on_page_writeback(p);
1235
1236 /*
1237 * Now take care of user space mappings.
1238 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1239 *
1240 * When the raw error page is thp tail page, hpage points to the raw
1241 * page after thp split.
1242 */
1243 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1244 != SWAP_SUCCESS) {
1245 action_result(pfn, "unmapping failed", IGNORED);
1246 res = -EBUSY;
1247 goto out;
1248 }
1249
1250 /*
1251 * Torn down by someone else?
1252 */
1253 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1254 action_result(pfn, "already truncated LRU", IGNORED);
1255 res = -EBUSY;
1256 goto out;
1257 }
1258
1259 identify_page_state:
1260 res = -EBUSY;
1261 /*
1262 * The first check uses the current page flags which may not have any
1263 * relevant information. The second check with the saved page flagss is
1264 * carried out only if the first check can't determine the page status.
1265 */
1266 for (ps = error_states;; ps++)
1267 if ((p->flags & ps->mask) == ps->res)
1268 break;
1269
1270 page_flags |= (p->flags & (1UL << PG_dirty));
1271
1272 if (!ps->mask)
1273 for (ps = error_states;; ps++)
1274 if ((page_flags & ps->mask) == ps->res)
1275 break;
1276 res = page_action(ps, p, pfn);
1277 out:
1278 unlock_page(hpage);
1279 return res;
1280 }
1281 EXPORT_SYMBOL_GPL(memory_failure);
1282
1283 #define MEMORY_FAILURE_FIFO_ORDER 4
1284 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1285
1286 struct memory_failure_entry {
1287 unsigned long pfn;
1288 int trapno;
1289 int flags;
1290 };
1291
1292 struct memory_failure_cpu {
1293 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1294 MEMORY_FAILURE_FIFO_SIZE);
1295 spinlock_t lock;
1296 struct work_struct work;
1297 };
1298
1299 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1300
1301 /**
1302 * memory_failure_queue - Schedule handling memory failure of a page.
1303 * @pfn: Page Number of the corrupted page
1304 * @trapno: Trap number reported in the signal to user space.
1305 * @flags: Flags for memory failure handling
1306 *
1307 * This function is called by the low level hardware error handler
1308 * when it detects hardware memory corruption of a page. It schedules
1309 * the recovering of error page, including dropping pages, killing
1310 * processes etc.
1311 *
1312 * The function is primarily of use for corruptions that
1313 * happen outside the current execution context (e.g. when
1314 * detected by a background scrubber)
1315 *
1316 * Can run in IRQ context.
1317 */
1318 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1319 {
1320 struct memory_failure_cpu *mf_cpu;
1321 unsigned long proc_flags;
1322 struct memory_failure_entry entry = {
1323 .pfn = pfn,
1324 .trapno = trapno,
1325 .flags = flags,
1326 };
1327
1328 mf_cpu = &get_cpu_var(memory_failure_cpu);
1329 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1330 if (kfifo_put(&mf_cpu->fifo, entry))
1331 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1332 else
1333 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1334 pfn);
1335 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1336 put_cpu_var(memory_failure_cpu);
1337 }
1338 EXPORT_SYMBOL_GPL(memory_failure_queue);
1339
1340 static void memory_failure_work_func(struct work_struct *work)
1341 {
1342 struct memory_failure_cpu *mf_cpu;
1343 struct memory_failure_entry entry = { 0, };
1344 unsigned long proc_flags;
1345 int gotten;
1346
1347 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1348 for (;;) {
1349 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1350 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1351 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352 if (!gotten)
1353 break;
1354 if (entry.flags & MF_SOFT_OFFLINE)
1355 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1356 else
1357 memory_failure(entry.pfn, entry.trapno, entry.flags);
1358 }
1359 }
1360
1361 static int __init memory_failure_init(void)
1362 {
1363 struct memory_failure_cpu *mf_cpu;
1364 int cpu;
1365
1366 for_each_possible_cpu(cpu) {
1367 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1368 spin_lock_init(&mf_cpu->lock);
1369 INIT_KFIFO(mf_cpu->fifo);
1370 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1371 }
1372
1373 return 0;
1374 }
1375 core_initcall(memory_failure_init);
1376
1377 /**
1378 * unpoison_memory - Unpoison a previously poisoned page
1379 * @pfn: Page number of the to be unpoisoned page
1380 *
1381 * Software-unpoison a page that has been poisoned by
1382 * memory_failure() earlier.
1383 *
1384 * This is only done on the software-level, so it only works
1385 * for linux injected failures, not real hardware failures
1386 *
1387 * Returns 0 for success, otherwise -errno.
1388 */
1389 int unpoison_memory(unsigned long pfn)
1390 {
1391 struct page *page;
1392 struct page *p;
1393 int freeit = 0;
1394 unsigned int nr_pages;
1395
1396 if (!pfn_valid(pfn))
1397 return -ENXIO;
1398
1399 p = pfn_to_page(pfn);
1400 page = compound_head(p);
1401
1402 if (!PageHWPoison(p)) {
1403 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1404 return 0;
1405 }
1406
1407 /*
1408 * unpoison_memory() can encounter thp only when the thp is being
1409 * worked by memory_failure() and the page lock is not held yet.
1410 * In such case, we yield to memory_failure() and make unpoison fail.
1411 */
1412 if (!PageHuge(page) && PageTransHuge(page)) {
1413 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1414 return 0;
1415 }
1416
1417 nr_pages = 1 << compound_order(page);
1418
1419 if (!get_page_unless_zero(page)) {
1420 /*
1421 * Since HWPoisoned hugepage should have non-zero refcount,
1422 * race between memory failure and unpoison seems to happen.
1423 * In such case unpoison fails and memory failure runs
1424 * to the end.
1425 */
1426 if (PageHuge(page)) {
1427 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1428 return 0;
1429 }
1430 if (TestClearPageHWPoison(p))
1431 atomic_long_dec(&num_poisoned_pages);
1432 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1433 return 0;
1434 }
1435
1436 lock_page(page);
1437 /*
1438 * This test is racy because PG_hwpoison is set outside of page lock.
1439 * That's acceptable because that won't trigger kernel panic. Instead,
1440 * the PG_hwpoison page will be caught and isolated on the entrance to
1441 * the free buddy page pool.
1442 */
1443 if (TestClearPageHWPoison(page)) {
1444 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1445 atomic_long_sub(nr_pages, &num_poisoned_pages);
1446 freeit = 1;
1447 if (PageHuge(page))
1448 clear_page_hwpoison_huge_page(page);
1449 }
1450 unlock_page(page);
1451
1452 put_page(page);
1453 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1454 put_page(page);
1455
1456 return 0;
1457 }
1458 EXPORT_SYMBOL(unpoison_memory);
1459
1460 static struct page *new_page(struct page *p, unsigned long private, int **x)
1461 {
1462 int nid = page_to_nid(p);
1463 if (PageHuge(p))
1464 return alloc_huge_page_node(page_hstate(compound_head(p)),
1465 nid);
1466 else
1467 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1468 }
1469
1470 /*
1471 * Safely get reference count of an arbitrary page.
1472 * Returns 0 for a free page, -EIO for a zero refcount page
1473 * that is not free, and 1 for any other page type.
1474 * For 1 the page is returned with increased page count, otherwise not.
1475 */
1476 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1477 {
1478 int ret;
1479
1480 if (flags & MF_COUNT_INCREASED)
1481 return 1;
1482
1483 /*
1484 * When the target page is a free hugepage, just remove it
1485 * from free hugepage list.
1486 */
1487 if (!get_page_unless_zero(compound_head(p))) {
1488 if (PageHuge(p)) {
1489 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1490 ret = 0;
1491 } else if (is_free_buddy_page(p)) {
1492 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1493 ret = 0;
1494 } else {
1495 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1496 __func__, pfn, p->flags);
1497 ret = -EIO;
1498 }
1499 } else {
1500 /* Not a free page */
1501 ret = 1;
1502 }
1503 return ret;
1504 }
1505
1506 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1507 {
1508 int ret = __get_any_page(page, pfn, flags);
1509
1510 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1511 /*
1512 * Try to free it.
1513 */
1514 put_page(page);
1515 shake_page(page, 1);
1516
1517 /*
1518 * Did it turn free?
1519 */
1520 ret = __get_any_page(page, pfn, 0);
1521 if (!PageLRU(page)) {
1522 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1523 pfn, page->flags);
1524 return -EIO;
1525 }
1526 }
1527 return ret;
1528 }
1529
1530 static int soft_offline_huge_page(struct page *page, int flags)
1531 {
1532 int ret;
1533 unsigned long pfn = page_to_pfn(page);
1534 struct page *hpage = compound_head(page);
1535 LIST_HEAD(pagelist);
1536
1537 /*
1538 * This double-check of PageHWPoison is to avoid the race with
1539 * memory_failure(). See also comment in __soft_offline_page().
1540 */
1541 lock_page(hpage);
1542 if (PageHWPoison(hpage)) {
1543 unlock_page(hpage);
1544 put_page(hpage);
1545 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1546 return -EBUSY;
1547 }
1548 unlock_page(hpage);
1549
1550 /* Keep page count to indicate a given hugepage is isolated. */
1551 list_move(&hpage->lru, &pagelist);
1552 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1553 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1554 if (ret) {
1555 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1556 pfn, ret, page->flags);
1557 /*
1558 * We know that soft_offline_huge_page() tries to migrate
1559 * only one hugepage pointed to by hpage, so we need not
1560 * run through the pagelist here.
1561 */
1562 putback_active_hugepage(hpage);
1563 if (ret > 0)
1564 ret = -EIO;
1565 } else {
1566 /* overcommit hugetlb page will be freed to buddy */
1567 if (PageHuge(page)) {
1568 set_page_hwpoison_huge_page(hpage);
1569 dequeue_hwpoisoned_huge_page(hpage);
1570 atomic_long_add(1 << compound_order(hpage),
1571 &num_poisoned_pages);
1572 } else {
1573 SetPageHWPoison(page);
1574 atomic_long_inc(&num_poisoned_pages);
1575 }
1576 }
1577 return ret;
1578 }
1579
1580 static int __soft_offline_page(struct page *page, int flags)
1581 {
1582 int ret;
1583 unsigned long pfn = page_to_pfn(page);
1584
1585 /*
1586 * Check PageHWPoison again inside page lock because PageHWPoison
1587 * is set by memory_failure() outside page lock. Note that
1588 * memory_failure() also double-checks PageHWPoison inside page lock,
1589 * so there's no race between soft_offline_page() and memory_failure().
1590 */
1591 lock_page(page);
1592 wait_on_page_writeback(page);
1593 if (PageHWPoison(page)) {
1594 unlock_page(page);
1595 put_page(page);
1596 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1597 return -EBUSY;
1598 }
1599 /*
1600 * Try to invalidate first. This should work for
1601 * non dirty unmapped page cache pages.
1602 */
1603 ret = invalidate_inode_page(page);
1604 unlock_page(page);
1605 /*
1606 * RED-PEN would be better to keep it isolated here, but we
1607 * would need to fix isolation locking first.
1608 */
1609 if (ret == 1) {
1610 put_page(page);
1611 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1612 SetPageHWPoison(page);
1613 atomic_long_inc(&num_poisoned_pages);
1614 return 0;
1615 }
1616
1617 /*
1618 * Simple invalidation didn't work.
1619 * Try to migrate to a new page instead. migrate.c
1620 * handles a large number of cases for us.
1621 */
1622 ret = isolate_lru_page(page);
1623 /*
1624 * Drop page reference which is came from get_any_page()
1625 * successful isolate_lru_page() already took another one.
1626 */
1627 put_page(page);
1628 if (!ret) {
1629 LIST_HEAD(pagelist);
1630 inc_zone_page_state(page, NR_ISOLATED_ANON +
1631 page_is_file_cache(page));
1632 list_add(&page->lru, &pagelist);
1633 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1634 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1635 if (ret) {
1636 if (!list_empty(&pagelist)) {
1637 list_del(&page->lru);
1638 dec_zone_page_state(page, NR_ISOLATED_ANON +
1639 page_is_file_cache(page));
1640 putback_lru_page(page);
1641 }
1642
1643 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1644 pfn, ret, page->flags);
1645 if (ret > 0)
1646 ret = -EIO;
1647 } else {
1648 /*
1649 * After page migration succeeds, the source page can
1650 * be trapped in pagevec and actual freeing is delayed.
1651 * Freeing code works differently based on PG_hwpoison,
1652 * so there's a race. We need to make sure that the
1653 * source page should be freed back to buddy before
1654 * setting PG_hwpoison.
1655 */
1656 if (!is_free_buddy_page(page))
1657 lru_add_drain_all();
1658 if (!is_free_buddy_page(page))
1659 drain_all_pages(page_zone(page));
1660 SetPageHWPoison(page);
1661 if (!is_free_buddy_page(page))
1662 pr_info("soft offline: %#lx: page leaked\n",
1663 pfn);
1664 atomic_long_inc(&num_poisoned_pages);
1665 }
1666 } else {
1667 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1668 pfn, ret, page_count(page), page->flags);
1669 }
1670 return ret;
1671 }
1672
1673 /**
1674 * soft_offline_page - Soft offline a page.
1675 * @page: page to offline
1676 * @flags: flags. Same as memory_failure().
1677 *
1678 * Returns 0 on success, otherwise negated errno.
1679 *
1680 * Soft offline a page, by migration or invalidation,
1681 * without killing anything. This is for the case when
1682 * a page is not corrupted yet (so it's still valid to access),
1683 * but has had a number of corrected errors and is better taken
1684 * out.
1685 *
1686 * The actual policy on when to do that is maintained by
1687 * user space.
1688 *
1689 * This should never impact any application or cause data loss,
1690 * however it might take some time.
1691 *
1692 * This is not a 100% solution for all memory, but tries to be
1693 * ``good enough'' for the majority of memory.
1694 */
1695 int soft_offline_page(struct page *page, int flags)
1696 {
1697 int ret;
1698 unsigned long pfn = page_to_pfn(page);
1699 struct page *hpage = compound_head(page);
1700
1701 if (PageHWPoison(page)) {
1702 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1703 return -EBUSY;
1704 }
1705 if (!PageHuge(page) && PageTransHuge(hpage)) {
1706 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1707 pr_info("soft offline: %#lx: failed to split THP\n",
1708 pfn);
1709 return -EBUSY;
1710 }
1711 }
1712
1713 get_online_mems();
1714
1715 /*
1716 * Isolate the page, so that it doesn't get reallocated if it
1717 * was free. This flag should be kept set until the source page
1718 * is freed and PG_hwpoison on it is set.
1719 */
1720 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1721 set_migratetype_isolate(page, true);
1722
1723 ret = get_any_page(page, pfn, flags);
1724 put_online_mems();
1725 if (ret > 0) { /* for in-use pages */
1726 if (PageHuge(page))
1727 ret = soft_offline_huge_page(page, flags);
1728 else
1729 ret = __soft_offline_page(page, flags);
1730 } else if (ret == 0) { /* for free pages */
1731 if (PageHuge(page)) {
1732 set_page_hwpoison_huge_page(hpage);
1733 dequeue_hwpoisoned_huge_page(hpage);
1734 atomic_long_add(1 << compound_order(hpage),
1735 &num_poisoned_pages);
1736 } else {
1737 SetPageHWPoison(page);
1738 atomic_long_inc(&num_poisoned_pages);
1739 }
1740 }
1741 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1742 return ret;
1743 }
This page took 0.065532 seconds and 5 git commands to generate.