Fix get_user_pages() race for write access
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99 pud_ERROR(*pud);
100 pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107 }
108
109 /*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
125 {
126 pmd_t *pmd;
127 unsigned long next;
128 unsigned long start;
129
130 start = addr;
131 pmd = pmd_offset(pud, addr);
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
136 free_pte_range(tlb, pmd);
137 } while (pmd++, addr = next, addr != end);
138
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
146 }
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
158 {
159 pud_t *pud;
160 unsigned long next;
161 unsigned long start;
162
163 start = addr;
164 pud = pud_offset(pgd, addr);
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170 } while (pud++, addr = next, addr != end);
171
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
179 }
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
186 }
187
188 /*
189 * This function frees user-level page tables of a process.
190 *
191 * Must be called with pagetable lock held.
192 */
193 void free_pgd_range(struct mmu_gather **tlb,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
196 {
197 pgd_t *pgd;
198 unsigned long next;
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
226
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
244 pgd = pgd_offset((*tlb)->mm, addr);
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250 } while (pgd++, addr = next, addr != end);
251
252 if (!tlb_is_full_mm(*tlb))
253 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 unsigned long floor, unsigned long ceiling)
258 {
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265 floor, next? next->vm_start: ceiling);
266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
279 vma = next;
280 }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
285 {
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306 out:
307 return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331 out:
332 return pte_offset_kernel(pmd, address);
333 }
334
335 /*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344 static inline void
345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
348 {
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
352
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
362 }
363 }
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
366 }
367
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
373 */
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
377
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
381 }
382
383 /*
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
386 */
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
390 }
391
392 /*
393 * If it's a shared mapping, mark it clean in
394 * the child
395 */
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
400 inc_mm_counter(dst_mm, rss);
401 if (PageAnon(page))
402 inc_mm_counter(dst_mm, anon_rss);
403 set_pte_at(dst_mm, addr, dst_pte, pte);
404 page_dup_rmap(page);
405 }
406
407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 unsigned long addr, unsigned long end)
410 {
411 pte_t *src_pte, *dst_pte;
412 unsigned long vm_flags = vma->vm_flags;
413 int progress;
414
415 again:
416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 if (!dst_pte)
418 return -ENOMEM;
419 src_pte = pte_offset_map_nested(src_pmd, addr);
420
421 progress = 0;
422 spin_lock(&src_mm->page_table_lock);
423 do {
424 /*
425 * We are holding two locks at this point - either of them
426 * could generate latencies in another task on another CPU.
427 */
428 if (progress >= 32 && (need_resched() ||
429 need_lockbreak(&src_mm->page_table_lock) ||
430 need_lockbreak(&dst_mm->page_table_lock)))
431 break;
432 if (pte_none(*src_pte)) {
433 progress++;
434 continue;
435 }
436 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
437 progress += 8;
438 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
439 spin_unlock(&src_mm->page_table_lock);
440
441 pte_unmap_nested(src_pte - 1);
442 pte_unmap(dst_pte - 1);
443 cond_resched_lock(&dst_mm->page_table_lock);
444 if (addr != end)
445 goto again;
446 return 0;
447 }
448
449 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
450 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
451 unsigned long addr, unsigned long end)
452 {
453 pmd_t *src_pmd, *dst_pmd;
454 unsigned long next;
455
456 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
457 if (!dst_pmd)
458 return -ENOMEM;
459 src_pmd = pmd_offset(src_pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(src_pmd))
463 continue;
464 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
465 vma, addr, next))
466 return -ENOMEM;
467 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
468 return 0;
469 }
470
471 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
473 unsigned long addr, unsigned long end)
474 {
475 pud_t *src_pud, *dst_pud;
476 unsigned long next;
477
478 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
479 if (!dst_pud)
480 return -ENOMEM;
481 src_pud = pud_offset(src_pgd, addr);
482 do {
483 next = pud_addr_end(addr, end);
484 if (pud_none_or_clear_bad(src_pud))
485 continue;
486 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
487 vma, addr, next))
488 return -ENOMEM;
489 } while (dst_pud++, src_pud++, addr = next, addr != end);
490 return 0;
491 }
492
493 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494 struct vm_area_struct *vma)
495 {
496 pgd_t *src_pgd, *dst_pgd;
497 unsigned long next;
498 unsigned long addr = vma->vm_start;
499 unsigned long end = vma->vm_end;
500
501 if (is_vm_hugetlb_page(vma))
502 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
503
504 dst_pgd = pgd_offset(dst_mm, addr);
505 src_pgd = pgd_offset(src_mm, addr);
506 do {
507 next = pgd_addr_end(addr, end);
508 if (pgd_none_or_clear_bad(src_pgd))
509 continue;
510 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
511 vma, addr, next))
512 return -ENOMEM;
513 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
514 return 0;
515 }
516
517 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
518 unsigned long addr, unsigned long end,
519 struct zap_details *details)
520 {
521 pte_t *pte;
522
523 pte = pte_offset_map(pmd, addr);
524 do {
525 pte_t ptent = *pte;
526 if (pte_none(ptent))
527 continue;
528 if (pte_present(ptent)) {
529 struct page *page = NULL;
530 unsigned long pfn = pte_pfn(ptent);
531 if (pfn_valid(pfn)) {
532 page = pfn_to_page(pfn);
533 if (PageReserved(page))
534 page = NULL;
535 }
536 if (unlikely(details) && page) {
537 /*
538 * unmap_shared_mapping_pages() wants to
539 * invalidate cache without truncating:
540 * unmap shared but keep private pages.
541 */
542 if (details->check_mapping &&
543 details->check_mapping != page->mapping)
544 continue;
545 /*
546 * Each page->index must be checked when
547 * invalidating or truncating nonlinear.
548 */
549 if (details->nonlinear_vma &&
550 (page->index < details->first_index ||
551 page->index > details->last_index))
552 continue;
553 }
554 ptent = ptep_get_and_clear(tlb->mm, addr, pte);
555 tlb_remove_tlb_entry(tlb, pte, addr);
556 if (unlikely(!page))
557 continue;
558 if (unlikely(details) && details->nonlinear_vma
559 && linear_page_index(details->nonlinear_vma,
560 addr) != page->index)
561 set_pte_at(tlb->mm, addr, pte,
562 pgoff_to_pte(page->index));
563 if (pte_dirty(ptent))
564 set_page_dirty(page);
565 if (PageAnon(page))
566 dec_mm_counter(tlb->mm, anon_rss);
567 else if (pte_young(ptent))
568 mark_page_accessed(page);
569 tlb->freed++;
570 page_remove_rmap(page);
571 tlb_remove_page(tlb, page);
572 continue;
573 }
574 /*
575 * If details->check_mapping, we leave swap entries;
576 * if details->nonlinear_vma, we leave file entries.
577 */
578 if (unlikely(details))
579 continue;
580 if (!pte_file(ptent))
581 free_swap_and_cache(pte_to_swp_entry(ptent));
582 pte_clear(tlb->mm, addr, pte);
583 } while (pte++, addr += PAGE_SIZE, addr != end);
584 pte_unmap(pte - 1);
585 }
586
587 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
588 unsigned long addr, unsigned long end,
589 struct zap_details *details)
590 {
591 pmd_t *pmd;
592 unsigned long next;
593
594 pmd = pmd_offset(pud, addr);
595 do {
596 next = pmd_addr_end(addr, end);
597 if (pmd_none_or_clear_bad(pmd))
598 continue;
599 zap_pte_range(tlb, pmd, addr, next, details);
600 } while (pmd++, addr = next, addr != end);
601 }
602
603 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
604 unsigned long addr, unsigned long end,
605 struct zap_details *details)
606 {
607 pud_t *pud;
608 unsigned long next;
609
610 pud = pud_offset(pgd, addr);
611 do {
612 next = pud_addr_end(addr, end);
613 if (pud_none_or_clear_bad(pud))
614 continue;
615 zap_pmd_range(tlb, pud, addr, next, details);
616 } while (pud++, addr = next, addr != end);
617 }
618
619 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
620 unsigned long addr, unsigned long end,
621 struct zap_details *details)
622 {
623 pgd_t *pgd;
624 unsigned long next;
625
626 if (details && !details->check_mapping && !details->nonlinear_vma)
627 details = NULL;
628
629 BUG_ON(addr >= end);
630 tlb_start_vma(tlb, vma);
631 pgd = pgd_offset(vma->vm_mm, addr);
632 do {
633 next = pgd_addr_end(addr, end);
634 if (pgd_none_or_clear_bad(pgd))
635 continue;
636 zap_pud_range(tlb, pgd, addr, next, details);
637 } while (pgd++, addr = next, addr != end);
638 tlb_end_vma(tlb, vma);
639 }
640
641 #ifdef CONFIG_PREEMPT
642 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
643 #else
644 /* No preempt: go for improved straight-line efficiency */
645 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
646 #endif
647
648 /**
649 * unmap_vmas - unmap a range of memory covered by a list of vma's
650 * @tlbp: address of the caller's struct mmu_gather
651 * @mm: the controlling mm_struct
652 * @vma: the starting vma
653 * @start_addr: virtual address at which to start unmapping
654 * @end_addr: virtual address at which to end unmapping
655 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
656 * @details: details of nonlinear truncation or shared cache invalidation
657 *
658 * Returns the end address of the unmapping (restart addr if interrupted).
659 *
660 * Unmap all pages in the vma list. Called under page_table_lock.
661 *
662 * We aim to not hold page_table_lock for too long (for scheduling latency
663 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
664 * return the ending mmu_gather to the caller.
665 *
666 * Only addresses between `start' and `end' will be unmapped.
667 *
668 * The VMA list must be sorted in ascending virtual address order.
669 *
670 * unmap_vmas() assumes that the caller will flush the whole unmapped address
671 * range after unmap_vmas() returns. So the only responsibility here is to
672 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
673 * drops the lock and schedules.
674 */
675 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
676 struct vm_area_struct *vma, unsigned long start_addr,
677 unsigned long end_addr, unsigned long *nr_accounted,
678 struct zap_details *details)
679 {
680 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
681 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
682 int tlb_start_valid = 0;
683 unsigned long start = start_addr;
684 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
685 int fullmm = tlb_is_full_mm(*tlbp);
686
687 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
688 unsigned long end;
689
690 start = max(vma->vm_start, start_addr);
691 if (start >= vma->vm_end)
692 continue;
693 end = min(vma->vm_end, end_addr);
694 if (end <= vma->vm_start)
695 continue;
696
697 if (vma->vm_flags & VM_ACCOUNT)
698 *nr_accounted += (end - start) >> PAGE_SHIFT;
699
700 while (start != end) {
701 unsigned long block;
702
703 if (!tlb_start_valid) {
704 tlb_start = start;
705 tlb_start_valid = 1;
706 }
707
708 if (is_vm_hugetlb_page(vma)) {
709 block = end - start;
710 unmap_hugepage_range(vma, start, end);
711 } else {
712 block = min(zap_bytes, end - start);
713 unmap_page_range(*tlbp, vma, start,
714 start + block, details);
715 }
716
717 start += block;
718 zap_bytes -= block;
719 if ((long)zap_bytes > 0)
720 continue;
721
722 tlb_finish_mmu(*tlbp, tlb_start, start);
723
724 if (need_resched() ||
725 need_lockbreak(&mm->page_table_lock) ||
726 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
727 if (i_mmap_lock) {
728 /* must reset count of rss freed */
729 *tlbp = tlb_gather_mmu(mm, fullmm);
730 goto out;
731 }
732 spin_unlock(&mm->page_table_lock);
733 cond_resched();
734 spin_lock(&mm->page_table_lock);
735 }
736
737 *tlbp = tlb_gather_mmu(mm, fullmm);
738 tlb_start_valid = 0;
739 zap_bytes = ZAP_BLOCK_SIZE;
740 }
741 }
742 out:
743 return start; /* which is now the end (or restart) address */
744 }
745
746 /**
747 * zap_page_range - remove user pages in a given range
748 * @vma: vm_area_struct holding the applicable pages
749 * @address: starting address of pages to zap
750 * @size: number of bytes to zap
751 * @details: details of nonlinear truncation or shared cache invalidation
752 */
753 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
754 unsigned long size, struct zap_details *details)
755 {
756 struct mm_struct *mm = vma->vm_mm;
757 struct mmu_gather *tlb;
758 unsigned long end = address + size;
759 unsigned long nr_accounted = 0;
760
761 if (is_vm_hugetlb_page(vma)) {
762 zap_hugepage_range(vma, address, size);
763 return end;
764 }
765
766 lru_add_drain();
767 spin_lock(&mm->page_table_lock);
768 tlb = tlb_gather_mmu(mm, 0);
769 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
770 tlb_finish_mmu(tlb, address, end);
771 spin_unlock(&mm->page_table_lock);
772 return end;
773 }
774
775 /*
776 * Do a quick page-table lookup for a single page.
777 * mm->page_table_lock must be held.
778 */
779 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
780 int read, int write, int accessed)
781 {
782 pgd_t *pgd;
783 pud_t *pud;
784 pmd_t *pmd;
785 pte_t *ptep, pte;
786 unsigned long pfn;
787 struct page *page;
788
789 page = follow_huge_addr(mm, address, write);
790 if (! IS_ERR(page))
791 return page;
792
793 pgd = pgd_offset(mm, address);
794 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
795 goto out;
796
797 pud = pud_offset(pgd, address);
798 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
799 goto out;
800
801 pmd = pmd_offset(pud, address);
802 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
803 goto out;
804 if (pmd_huge(*pmd))
805 return follow_huge_pmd(mm, address, pmd, write);
806
807 ptep = pte_offset_map(pmd, address);
808 if (!ptep)
809 goto out;
810
811 pte = *ptep;
812 pte_unmap(ptep);
813 if (pte_present(pte)) {
814 if (write && !pte_dirty(pte))
815 goto out;
816 if (read && !pte_read(pte))
817 goto out;
818 pfn = pte_pfn(pte);
819 if (pfn_valid(pfn)) {
820 page = pfn_to_page(pfn);
821 if (accessed)
822 mark_page_accessed(page);
823 return page;
824 }
825 }
826
827 out:
828 return NULL;
829 }
830
831 inline struct page *
832 follow_page(struct mm_struct *mm, unsigned long address, int write)
833 {
834 return __follow_page(mm, address, 0, write, 1);
835 }
836
837 /*
838 * check_user_page_readable() can be called frm niterrupt context by oprofile,
839 * so we need to avoid taking any non-irq-safe locks
840 */
841 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
842 {
843 return __follow_page(mm, address, 1, 0, 0) != NULL;
844 }
845 EXPORT_SYMBOL(check_user_page_readable);
846
847 static inline int
848 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
849 unsigned long address)
850 {
851 pgd_t *pgd;
852 pud_t *pud;
853 pmd_t *pmd;
854
855 /* Check if the vma is for an anonymous mapping. */
856 if (vma->vm_ops && vma->vm_ops->nopage)
857 return 0;
858
859 /* Check if page directory entry exists. */
860 pgd = pgd_offset(mm, address);
861 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
862 return 1;
863
864 pud = pud_offset(pgd, address);
865 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
866 return 1;
867
868 /* Check if page middle directory entry exists. */
869 pmd = pmd_offset(pud, address);
870 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
871 return 1;
872
873 /* There is a pte slot for 'address' in 'mm'. */
874 return 0;
875 }
876
877 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
878 unsigned long start, int len, int write, int force,
879 struct page **pages, struct vm_area_struct **vmas)
880 {
881 int i;
882 unsigned int flags;
883
884 /*
885 * Require read or write permissions.
886 * If 'force' is set, we only require the "MAY" flags.
887 */
888 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
889 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
890 i = 0;
891
892 do {
893 struct vm_area_struct * vma;
894
895 vma = find_extend_vma(mm, start);
896 if (!vma && in_gate_area(tsk, start)) {
897 unsigned long pg = start & PAGE_MASK;
898 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
899 pgd_t *pgd;
900 pud_t *pud;
901 pmd_t *pmd;
902 pte_t *pte;
903 if (write) /* user gate pages are read-only */
904 return i ? : -EFAULT;
905 if (pg > TASK_SIZE)
906 pgd = pgd_offset_k(pg);
907 else
908 pgd = pgd_offset_gate(mm, pg);
909 BUG_ON(pgd_none(*pgd));
910 pud = pud_offset(pgd, pg);
911 BUG_ON(pud_none(*pud));
912 pmd = pmd_offset(pud, pg);
913 BUG_ON(pmd_none(*pmd));
914 pte = pte_offset_map(pmd, pg);
915 BUG_ON(pte_none(*pte));
916 if (pages) {
917 pages[i] = pte_page(*pte);
918 get_page(pages[i]);
919 }
920 pte_unmap(pte);
921 if (vmas)
922 vmas[i] = gate_vma;
923 i++;
924 start += PAGE_SIZE;
925 len--;
926 continue;
927 }
928
929 if (!vma || (vma->vm_flags & VM_IO)
930 || !(flags & vma->vm_flags))
931 return i ? : -EFAULT;
932
933 if (is_vm_hugetlb_page(vma)) {
934 i = follow_hugetlb_page(mm, vma, pages, vmas,
935 &start, &len, i);
936 continue;
937 }
938 spin_lock(&mm->page_table_lock);
939 do {
940 struct page *page;
941
942 cond_resched_lock(&mm->page_table_lock);
943 while (!(page = follow_page(mm, start, write))) {
944 /*
945 * Shortcut for anonymous pages. We don't want
946 * to force the creation of pages tables for
947 * insanely big anonymously mapped areas that
948 * nobody touched so far. This is important
949 * for doing a core dump for these mappings.
950 */
951 if (!write && untouched_anonymous_page(mm,vma,start)) {
952 page = ZERO_PAGE(start);
953 break;
954 }
955 spin_unlock(&mm->page_table_lock);
956 switch (handle_mm_fault(mm,vma,start,write)) {
957 case VM_FAULT_MINOR:
958 tsk->min_flt++;
959 break;
960 case VM_FAULT_MAJOR:
961 tsk->maj_flt++;
962 break;
963 case VM_FAULT_SIGBUS:
964 return i ? i : -EFAULT;
965 case VM_FAULT_OOM:
966 return i ? i : -ENOMEM;
967 default:
968 BUG();
969 }
970 spin_lock(&mm->page_table_lock);
971 }
972 if (pages) {
973 pages[i] = page;
974 flush_dcache_page(page);
975 if (!PageReserved(page))
976 page_cache_get(page);
977 }
978 if (vmas)
979 vmas[i] = vma;
980 i++;
981 start += PAGE_SIZE;
982 len--;
983 } while (len && start < vma->vm_end);
984 spin_unlock(&mm->page_table_lock);
985 } while (len);
986 return i;
987 }
988 EXPORT_SYMBOL(get_user_pages);
989
990 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
991 unsigned long addr, unsigned long end, pgprot_t prot)
992 {
993 pte_t *pte;
994
995 pte = pte_alloc_map(mm, pmd, addr);
996 if (!pte)
997 return -ENOMEM;
998 do {
999 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1000 BUG_ON(!pte_none(*pte));
1001 set_pte_at(mm, addr, pte, zero_pte);
1002 } while (pte++, addr += PAGE_SIZE, addr != end);
1003 pte_unmap(pte - 1);
1004 return 0;
1005 }
1006
1007 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1008 unsigned long addr, unsigned long end, pgprot_t prot)
1009 {
1010 pmd_t *pmd;
1011 unsigned long next;
1012
1013 pmd = pmd_alloc(mm, pud, addr);
1014 if (!pmd)
1015 return -ENOMEM;
1016 do {
1017 next = pmd_addr_end(addr, end);
1018 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1019 return -ENOMEM;
1020 } while (pmd++, addr = next, addr != end);
1021 return 0;
1022 }
1023
1024 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1025 unsigned long addr, unsigned long end, pgprot_t prot)
1026 {
1027 pud_t *pud;
1028 unsigned long next;
1029
1030 pud = pud_alloc(mm, pgd, addr);
1031 if (!pud)
1032 return -ENOMEM;
1033 do {
1034 next = pud_addr_end(addr, end);
1035 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1036 return -ENOMEM;
1037 } while (pud++, addr = next, addr != end);
1038 return 0;
1039 }
1040
1041 int zeromap_page_range(struct vm_area_struct *vma,
1042 unsigned long addr, unsigned long size, pgprot_t prot)
1043 {
1044 pgd_t *pgd;
1045 unsigned long next;
1046 unsigned long end = addr + size;
1047 struct mm_struct *mm = vma->vm_mm;
1048 int err;
1049
1050 BUG_ON(addr >= end);
1051 pgd = pgd_offset(mm, addr);
1052 flush_cache_range(vma, addr, end);
1053 spin_lock(&mm->page_table_lock);
1054 do {
1055 next = pgd_addr_end(addr, end);
1056 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1057 if (err)
1058 break;
1059 } while (pgd++, addr = next, addr != end);
1060 spin_unlock(&mm->page_table_lock);
1061 return err;
1062 }
1063
1064 /*
1065 * maps a range of physical memory into the requested pages. the old
1066 * mappings are removed. any references to nonexistent pages results
1067 * in null mappings (currently treated as "copy-on-access")
1068 */
1069 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1070 unsigned long addr, unsigned long end,
1071 unsigned long pfn, pgprot_t prot)
1072 {
1073 pte_t *pte;
1074
1075 pte = pte_alloc_map(mm, pmd, addr);
1076 if (!pte)
1077 return -ENOMEM;
1078 do {
1079 BUG_ON(!pte_none(*pte));
1080 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1081 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1082 pfn++;
1083 } while (pte++, addr += PAGE_SIZE, addr != end);
1084 pte_unmap(pte - 1);
1085 return 0;
1086 }
1087
1088 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1089 unsigned long addr, unsigned long end,
1090 unsigned long pfn, pgprot_t prot)
1091 {
1092 pmd_t *pmd;
1093 unsigned long next;
1094
1095 pfn -= addr >> PAGE_SHIFT;
1096 pmd = pmd_alloc(mm, pud, addr);
1097 if (!pmd)
1098 return -ENOMEM;
1099 do {
1100 next = pmd_addr_end(addr, end);
1101 if (remap_pte_range(mm, pmd, addr, next,
1102 pfn + (addr >> PAGE_SHIFT), prot))
1103 return -ENOMEM;
1104 } while (pmd++, addr = next, addr != end);
1105 return 0;
1106 }
1107
1108 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1109 unsigned long addr, unsigned long end,
1110 unsigned long pfn, pgprot_t prot)
1111 {
1112 pud_t *pud;
1113 unsigned long next;
1114
1115 pfn -= addr >> PAGE_SHIFT;
1116 pud = pud_alloc(mm, pgd, addr);
1117 if (!pud)
1118 return -ENOMEM;
1119 do {
1120 next = pud_addr_end(addr, end);
1121 if (remap_pmd_range(mm, pud, addr, next,
1122 pfn + (addr >> PAGE_SHIFT), prot))
1123 return -ENOMEM;
1124 } while (pud++, addr = next, addr != end);
1125 return 0;
1126 }
1127
1128 /* Note: this is only safe if the mm semaphore is held when called. */
1129 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1130 unsigned long pfn, unsigned long size, pgprot_t prot)
1131 {
1132 pgd_t *pgd;
1133 unsigned long next;
1134 unsigned long end = addr + PAGE_ALIGN(size);
1135 struct mm_struct *mm = vma->vm_mm;
1136 int err;
1137
1138 /*
1139 * Physically remapped pages are special. Tell the
1140 * rest of the world about it:
1141 * VM_IO tells people not to look at these pages
1142 * (accesses can have side effects).
1143 * VM_RESERVED tells swapout not to try to touch
1144 * this region.
1145 */
1146 vma->vm_flags |= VM_IO | VM_RESERVED;
1147
1148 BUG_ON(addr >= end);
1149 pfn -= addr >> PAGE_SHIFT;
1150 pgd = pgd_offset(mm, addr);
1151 flush_cache_range(vma, addr, end);
1152 spin_lock(&mm->page_table_lock);
1153 do {
1154 next = pgd_addr_end(addr, end);
1155 err = remap_pud_range(mm, pgd, addr, next,
1156 pfn + (addr >> PAGE_SHIFT), prot);
1157 if (err)
1158 break;
1159 } while (pgd++, addr = next, addr != end);
1160 spin_unlock(&mm->page_table_lock);
1161 return err;
1162 }
1163 EXPORT_SYMBOL(remap_pfn_range);
1164
1165 /*
1166 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1167 * servicing faults for write access. In the normal case, do always want
1168 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1169 * that do not have writing enabled, when used by access_process_vm.
1170 */
1171 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1172 {
1173 if (likely(vma->vm_flags & VM_WRITE))
1174 pte = pte_mkwrite(pte);
1175 return pte;
1176 }
1177
1178 /*
1179 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1180 */
1181 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1182 pte_t *page_table)
1183 {
1184 pte_t entry;
1185
1186 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1187 vma);
1188 ptep_establish(vma, address, page_table, entry);
1189 update_mmu_cache(vma, address, entry);
1190 lazy_mmu_prot_update(entry);
1191 }
1192
1193 /*
1194 * This routine handles present pages, when users try to write
1195 * to a shared page. It is done by copying the page to a new address
1196 * and decrementing the shared-page counter for the old page.
1197 *
1198 * Goto-purists beware: the only reason for goto's here is that it results
1199 * in better assembly code.. The "default" path will see no jumps at all.
1200 *
1201 * Note that this routine assumes that the protection checks have been
1202 * done by the caller (the low-level page fault routine in most cases).
1203 * Thus we can safely just mark it writable once we've done any necessary
1204 * COW.
1205 *
1206 * We also mark the page dirty at this point even though the page will
1207 * change only once the write actually happens. This avoids a few races,
1208 * and potentially makes it more efficient.
1209 *
1210 * We hold the mm semaphore and the page_table_lock on entry and exit
1211 * with the page_table_lock released.
1212 */
1213 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1214 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1215 {
1216 struct page *old_page, *new_page;
1217 unsigned long pfn = pte_pfn(pte);
1218 pte_t entry;
1219
1220 if (unlikely(!pfn_valid(pfn))) {
1221 /*
1222 * This should really halt the system so it can be debugged or
1223 * at least the kernel stops what it's doing before it corrupts
1224 * data, but for the moment just pretend this is OOM.
1225 */
1226 pte_unmap(page_table);
1227 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1228 address);
1229 spin_unlock(&mm->page_table_lock);
1230 return VM_FAULT_OOM;
1231 }
1232 old_page = pfn_to_page(pfn);
1233
1234 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1235 int reuse = can_share_swap_page(old_page);
1236 unlock_page(old_page);
1237 if (reuse) {
1238 flush_cache_page(vma, address, pfn);
1239 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1240 vma);
1241 ptep_set_access_flags(vma, address, page_table, entry, 1);
1242 update_mmu_cache(vma, address, entry);
1243 lazy_mmu_prot_update(entry);
1244 pte_unmap(page_table);
1245 spin_unlock(&mm->page_table_lock);
1246 return VM_FAULT_MINOR;
1247 }
1248 }
1249 pte_unmap(page_table);
1250
1251 /*
1252 * Ok, we need to copy. Oh, well..
1253 */
1254 if (!PageReserved(old_page))
1255 page_cache_get(old_page);
1256 spin_unlock(&mm->page_table_lock);
1257
1258 if (unlikely(anon_vma_prepare(vma)))
1259 goto no_new_page;
1260 if (old_page == ZERO_PAGE(address)) {
1261 new_page = alloc_zeroed_user_highpage(vma, address);
1262 if (!new_page)
1263 goto no_new_page;
1264 } else {
1265 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1266 if (!new_page)
1267 goto no_new_page;
1268 copy_user_highpage(new_page, old_page, address);
1269 }
1270 /*
1271 * Re-check the pte - we dropped the lock
1272 */
1273 spin_lock(&mm->page_table_lock);
1274 page_table = pte_offset_map(pmd, address);
1275 if (likely(pte_same(*page_table, pte))) {
1276 if (PageAnon(old_page))
1277 dec_mm_counter(mm, anon_rss);
1278 if (PageReserved(old_page))
1279 inc_mm_counter(mm, rss);
1280 else
1281 page_remove_rmap(old_page);
1282 flush_cache_page(vma, address, pfn);
1283 break_cow(vma, new_page, address, page_table);
1284 lru_cache_add_active(new_page);
1285 page_add_anon_rmap(new_page, vma, address);
1286
1287 /* Free the old page.. */
1288 new_page = old_page;
1289 }
1290 pte_unmap(page_table);
1291 page_cache_release(new_page);
1292 page_cache_release(old_page);
1293 spin_unlock(&mm->page_table_lock);
1294 return VM_FAULT_MINOR;
1295
1296 no_new_page:
1297 page_cache_release(old_page);
1298 return VM_FAULT_OOM;
1299 }
1300
1301 /*
1302 * Helper functions for unmap_mapping_range().
1303 *
1304 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1305 *
1306 * We have to restart searching the prio_tree whenever we drop the lock,
1307 * since the iterator is only valid while the lock is held, and anyway
1308 * a later vma might be split and reinserted earlier while lock dropped.
1309 *
1310 * The list of nonlinear vmas could be handled more efficiently, using
1311 * a placeholder, but handle it in the same way until a need is shown.
1312 * It is important to search the prio_tree before nonlinear list: a vma
1313 * may become nonlinear and be shifted from prio_tree to nonlinear list
1314 * while the lock is dropped; but never shifted from list to prio_tree.
1315 *
1316 * In order to make forward progress despite restarting the search,
1317 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1318 * quickly skip it next time around. Since the prio_tree search only
1319 * shows us those vmas affected by unmapping the range in question, we
1320 * can't efficiently keep all vmas in step with mapping->truncate_count:
1321 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1322 * mapping->truncate_count and vma->vm_truncate_count are protected by
1323 * i_mmap_lock.
1324 *
1325 * In order to make forward progress despite repeatedly restarting some
1326 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1327 * and restart from that address when we reach that vma again. It might
1328 * have been split or merged, shrunk or extended, but never shifted: so
1329 * restart_addr remains valid so long as it remains in the vma's range.
1330 * unmap_mapping_range forces truncate_count to leap over page-aligned
1331 * values so we can save vma's restart_addr in its truncate_count field.
1332 */
1333 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1334
1335 static void reset_vma_truncate_counts(struct address_space *mapping)
1336 {
1337 struct vm_area_struct *vma;
1338 struct prio_tree_iter iter;
1339
1340 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1341 vma->vm_truncate_count = 0;
1342 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1343 vma->vm_truncate_count = 0;
1344 }
1345
1346 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1347 unsigned long start_addr, unsigned long end_addr,
1348 struct zap_details *details)
1349 {
1350 unsigned long restart_addr;
1351 int need_break;
1352
1353 again:
1354 restart_addr = vma->vm_truncate_count;
1355 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1356 start_addr = restart_addr;
1357 if (start_addr >= end_addr) {
1358 /* Top of vma has been split off since last time */
1359 vma->vm_truncate_count = details->truncate_count;
1360 return 0;
1361 }
1362 }
1363
1364 restart_addr = zap_page_range(vma, start_addr,
1365 end_addr - start_addr, details);
1366
1367 /*
1368 * We cannot rely on the break test in unmap_vmas:
1369 * on the one hand, we don't want to restart our loop
1370 * just because that broke out for the page_table_lock;
1371 * on the other hand, it does no test when vma is small.
1372 */
1373 need_break = need_resched() ||
1374 need_lockbreak(details->i_mmap_lock);
1375
1376 if (restart_addr >= end_addr) {
1377 /* We have now completed this vma: mark it so */
1378 vma->vm_truncate_count = details->truncate_count;
1379 if (!need_break)
1380 return 0;
1381 } else {
1382 /* Note restart_addr in vma's truncate_count field */
1383 vma->vm_truncate_count = restart_addr;
1384 if (!need_break)
1385 goto again;
1386 }
1387
1388 spin_unlock(details->i_mmap_lock);
1389 cond_resched();
1390 spin_lock(details->i_mmap_lock);
1391 return -EINTR;
1392 }
1393
1394 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1395 struct zap_details *details)
1396 {
1397 struct vm_area_struct *vma;
1398 struct prio_tree_iter iter;
1399 pgoff_t vba, vea, zba, zea;
1400
1401 restart:
1402 vma_prio_tree_foreach(vma, &iter, root,
1403 details->first_index, details->last_index) {
1404 /* Skip quickly over those we have already dealt with */
1405 if (vma->vm_truncate_count == details->truncate_count)
1406 continue;
1407
1408 vba = vma->vm_pgoff;
1409 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1410 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1411 zba = details->first_index;
1412 if (zba < vba)
1413 zba = vba;
1414 zea = details->last_index;
1415 if (zea > vea)
1416 zea = vea;
1417
1418 if (unmap_mapping_range_vma(vma,
1419 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1420 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1421 details) < 0)
1422 goto restart;
1423 }
1424 }
1425
1426 static inline void unmap_mapping_range_list(struct list_head *head,
1427 struct zap_details *details)
1428 {
1429 struct vm_area_struct *vma;
1430
1431 /*
1432 * In nonlinear VMAs there is no correspondence between virtual address
1433 * offset and file offset. So we must perform an exhaustive search
1434 * across *all* the pages in each nonlinear VMA, not just the pages
1435 * whose virtual address lies outside the file truncation point.
1436 */
1437 restart:
1438 list_for_each_entry(vma, head, shared.vm_set.list) {
1439 /* Skip quickly over those we have already dealt with */
1440 if (vma->vm_truncate_count == details->truncate_count)
1441 continue;
1442 details->nonlinear_vma = vma;
1443 if (unmap_mapping_range_vma(vma, vma->vm_start,
1444 vma->vm_end, details) < 0)
1445 goto restart;
1446 }
1447 }
1448
1449 /**
1450 * unmap_mapping_range - unmap the portion of all mmaps
1451 * in the specified address_space corresponding to the specified
1452 * page range in the underlying file.
1453 * @mapping: the address space containing mmaps to be unmapped.
1454 * @holebegin: byte in first page to unmap, relative to the start of
1455 * the underlying file. This will be rounded down to a PAGE_SIZE
1456 * boundary. Note that this is different from vmtruncate(), which
1457 * must keep the partial page. In contrast, we must get rid of
1458 * partial pages.
1459 * @holelen: size of prospective hole in bytes. This will be rounded
1460 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1461 * end of the file.
1462 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1463 * but 0 when invalidating pagecache, don't throw away private data.
1464 */
1465 void unmap_mapping_range(struct address_space *mapping,
1466 loff_t const holebegin, loff_t const holelen, int even_cows)
1467 {
1468 struct zap_details details;
1469 pgoff_t hba = holebegin >> PAGE_SHIFT;
1470 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471
1472 /* Check for overflow. */
1473 if (sizeof(holelen) > sizeof(hlen)) {
1474 long long holeend =
1475 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476 if (holeend & ~(long long)ULONG_MAX)
1477 hlen = ULONG_MAX - hba + 1;
1478 }
1479
1480 details.check_mapping = even_cows? NULL: mapping;
1481 details.nonlinear_vma = NULL;
1482 details.first_index = hba;
1483 details.last_index = hba + hlen - 1;
1484 if (details.last_index < details.first_index)
1485 details.last_index = ULONG_MAX;
1486 details.i_mmap_lock = &mapping->i_mmap_lock;
1487
1488 spin_lock(&mapping->i_mmap_lock);
1489
1490 /* serialize i_size write against truncate_count write */
1491 smp_wmb();
1492 /* Protect against page faults, and endless unmapping loops */
1493 mapping->truncate_count++;
1494 /*
1495 * For archs where spin_lock has inclusive semantics like ia64
1496 * this smp_mb() will prevent to read pagetable contents
1497 * before the truncate_count increment is visible to
1498 * other cpus.
1499 */
1500 smp_mb();
1501 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1502 if (mapping->truncate_count == 0)
1503 reset_vma_truncate_counts(mapping);
1504 mapping->truncate_count++;
1505 }
1506 details.truncate_count = mapping->truncate_count;
1507
1508 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1509 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1510 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1511 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1512 spin_unlock(&mapping->i_mmap_lock);
1513 }
1514 EXPORT_SYMBOL(unmap_mapping_range);
1515
1516 /*
1517 * Handle all mappings that got truncated by a "truncate()"
1518 * system call.
1519 *
1520 * NOTE! We have to be ready to update the memory sharing
1521 * between the file and the memory map for a potential last
1522 * incomplete page. Ugly, but necessary.
1523 */
1524 int vmtruncate(struct inode * inode, loff_t offset)
1525 {
1526 struct address_space *mapping = inode->i_mapping;
1527 unsigned long limit;
1528
1529 if (inode->i_size < offset)
1530 goto do_expand;
1531 /*
1532 * truncation of in-use swapfiles is disallowed - it would cause
1533 * subsequent swapout to scribble on the now-freed blocks.
1534 */
1535 if (IS_SWAPFILE(inode))
1536 goto out_busy;
1537 i_size_write(inode, offset);
1538 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1539 truncate_inode_pages(mapping, offset);
1540 goto out_truncate;
1541
1542 do_expand:
1543 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1544 if (limit != RLIM_INFINITY && offset > limit)
1545 goto out_sig;
1546 if (offset > inode->i_sb->s_maxbytes)
1547 goto out_big;
1548 i_size_write(inode, offset);
1549
1550 out_truncate:
1551 if (inode->i_op && inode->i_op->truncate)
1552 inode->i_op->truncate(inode);
1553 return 0;
1554 out_sig:
1555 send_sig(SIGXFSZ, current, 0);
1556 out_big:
1557 return -EFBIG;
1558 out_busy:
1559 return -ETXTBSY;
1560 }
1561
1562 EXPORT_SYMBOL(vmtruncate);
1563
1564 /*
1565 * Primitive swap readahead code. We simply read an aligned block of
1566 * (1 << page_cluster) entries in the swap area. This method is chosen
1567 * because it doesn't cost us any seek time. We also make sure to queue
1568 * the 'original' request together with the readahead ones...
1569 *
1570 * This has been extended to use the NUMA policies from the mm triggering
1571 * the readahead.
1572 *
1573 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1574 */
1575 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1576 {
1577 #ifdef CONFIG_NUMA
1578 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1579 #endif
1580 int i, num;
1581 struct page *new_page;
1582 unsigned long offset;
1583
1584 /*
1585 * Get the number of handles we should do readahead io to.
1586 */
1587 num = valid_swaphandles(entry, &offset);
1588 for (i = 0; i < num; offset++, i++) {
1589 /* Ok, do the async read-ahead now */
1590 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1591 offset), vma, addr);
1592 if (!new_page)
1593 break;
1594 page_cache_release(new_page);
1595 #ifdef CONFIG_NUMA
1596 /*
1597 * Find the next applicable VMA for the NUMA policy.
1598 */
1599 addr += PAGE_SIZE;
1600 if (addr == 0)
1601 vma = NULL;
1602 if (vma) {
1603 if (addr >= vma->vm_end) {
1604 vma = next_vma;
1605 next_vma = vma ? vma->vm_next : NULL;
1606 }
1607 if (vma && addr < vma->vm_start)
1608 vma = NULL;
1609 } else {
1610 if (next_vma && addr >= next_vma->vm_start) {
1611 vma = next_vma;
1612 next_vma = vma->vm_next;
1613 }
1614 }
1615 #endif
1616 }
1617 lru_add_drain(); /* Push any new pages onto the LRU now */
1618 }
1619
1620 /*
1621 * We hold the mm semaphore and the page_table_lock on entry and
1622 * should release the pagetable lock on exit..
1623 */
1624 static int do_swap_page(struct mm_struct * mm,
1625 struct vm_area_struct * vma, unsigned long address,
1626 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1627 {
1628 struct page *page;
1629 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1630 pte_t pte;
1631 int ret = VM_FAULT_MINOR;
1632
1633 pte_unmap(page_table);
1634 spin_unlock(&mm->page_table_lock);
1635 page = lookup_swap_cache(entry);
1636 if (!page) {
1637 swapin_readahead(entry, address, vma);
1638 page = read_swap_cache_async(entry, vma, address);
1639 if (!page) {
1640 /*
1641 * Back out if somebody else faulted in this pte while
1642 * we released the page table lock.
1643 */
1644 spin_lock(&mm->page_table_lock);
1645 page_table = pte_offset_map(pmd, address);
1646 if (likely(pte_same(*page_table, orig_pte)))
1647 ret = VM_FAULT_OOM;
1648 else
1649 ret = VM_FAULT_MINOR;
1650 pte_unmap(page_table);
1651 spin_unlock(&mm->page_table_lock);
1652 goto out;
1653 }
1654
1655 /* Had to read the page from swap area: Major fault */
1656 ret = VM_FAULT_MAJOR;
1657 inc_page_state(pgmajfault);
1658 grab_swap_token();
1659 }
1660
1661 mark_page_accessed(page);
1662 lock_page(page);
1663
1664 /*
1665 * Back out if somebody else faulted in this pte while we
1666 * released the page table lock.
1667 */
1668 spin_lock(&mm->page_table_lock);
1669 page_table = pte_offset_map(pmd, address);
1670 if (unlikely(!pte_same(*page_table, orig_pte))) {
1671 ret = VM_FAULT_MINOR;
1672 goto out_nomap;
1673 }
1674
1675 if (unlikely(!PageUptodate(page))) {
1676 ret = VM_FAULT_SIGBUS;
1677 goto out_nomap;
1678 }
1679
1680 /* The page isn't present yet, go ahead with the fault. */
1681
1682 inc_mm_counter(mm, rss);
1683 pte = mk_pte(page, vma->vm_page_prot);
1684 if (write_access && can_share_swap_page(page)) {
1685 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1686 write_access = 0;
1687 }
1688
1689 flush_icache_page(vma, page);
1690 set_pte_at(mm, address, page_table, pte);
1691 page_add_anon_rmap(page, vma, address);
1692
1693 swap_free(entry);
1694 if (vm_swap_full())
1695 remove_exclusive_swap_page(page);
1696 unlock_page(page);
1697
1698 if (write_access) {
1699 if (do_wp_page(mm, vma, address,
1700 page_table, pmd, pte) == VM_FAULT_OOM)
1701 ret = VM_FAULT_OOM;
1702 goto out;
1703 }
1704
1705 /* No need to invalidate - it was non-present before */
1706 update_mmu_cache(vma, address, pte);
1707 lazy_mmu_prot_update(pte);
1708 pte_unmap(page_table);
1709 spin_unlock(&mm->page_table_lock);
1710 out:
1711 return ret;
1712 out_nomap:
1713 pte_unmap(page_table);
1714 spin_unlock(&mm->page_table_lock);
1715 unlock_page(page);
1716 page_cache_release(page);
1717 goto out;
1718 }
1719
1720 /*
1721 * We are called with the MM semaphore and page_table_lock
1722 * spinlock held to protect against concurrent faults in
1723 * multithreaded programs.
1724 */
1725 static int
1726 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1727 pte_t *page_table, pmd_t *pmd, int write_access,
1728 unsigned long addr)
1729 {
1730 pte_t entry;
1731 struct page * page = ZERO_PAGE(addr);
1732
1733 /* Read-only mapping of ZERO_PAGE. */
1734 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1735
1736 /* ..except if it's a write access */
1737 if (write_access) {
1738 /* Allocate our own private page. */
1739 pte_unmap(page_table);
1740 spin_unlock(&mm->page_table_lock);
1741
1742 if (unlikely(anon_vma_prepare(vma)))
1743 goto no_mem;
1744 page = alloc_zeroed_user_highpage(vma, addr);
1745 if (!page)
1746 goto no_mem;
1747
1748 spin_lock(&mm->page_table_lock);
1749 page_table = pte_offset_map(pmd, addr);
1750
1751 if (!pte_none(*page_table)) {
1752 pte_unmap(page_table);
1753 page_cache_release(page);
1754 spin_unlock(&mm->page_table_lock);
1755 goto out;
1756 }
1757 inc_mm_counter(mm, rss);
1758 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1759 vma->vm_page_prot)),
1760 vma);
1761 lru_cache_add_active(page);
1762 SetPageReferenced(page);
1763 page_add_anon_rmap(page, vma, addr);
1764 }
1765
1766 set_pte_at(mm, addr, page_table, entry);
1767 pte_unmap(page_table);
1768
1769 /* No need to invalidate - it was non-present before */
1770 update_mmu_cache(vma, addr, entry);
1771 lazy_mmu_prot_update(entry);
1772 spin_unlock(&mm->page_table_lock);
1773 out:
1774 return VM_FAULT_MINOR;
1775 no_mem:
1776 return VM_FAULT_OOM;
1777 }
1778
1779 /*
1780 * do_no_page() tries to create a new page mapping. It aggressively
1781 * tries to share with existing pages, but makes a separate copy if
1782 * the "write_access" parameter is true in order to avoid the next
1783 * page fault.
1784 *
1785 * As this is called only for pages that do not currently exist, we
1786 * do not need to flush old virtual caches or the TLB.
1787 *
1788 * This is called with the MM semaphore held and the page table
1789 * spinlock held. Exit with the spinlock released.
1790 */
1791 static int
1792 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1793 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1794 {
1795 struct page * new_page;
1796 struct address_space *mapping = NULL;
1797 pte_t entry;
1798 unsigned int sequence = 0;
1799 int ret = VM_FAULT_MINOR;
1800 int anon = 0;
1801
1802 if (!vma->vm_ops || !vma->vm_ops->nopage)
1803 return do_anonymous_page(mm, vma, page_table,
1804 pmd, write_access, address);
1805 pte_unmap(page_table);
1806 spin_unlock(&mm->page_table_lock);
1807
1808 if (vma->vm_file) {
1809 mapping = vma->vm_file->f_mapping;
1810 sequence = mapping->truncate_count;
1811 smp_rmb(); /* serializes i_size against truncate_count */
1812 }
1813 retry:
1814 cond_resched();
1815 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1816 /*
1817 * No smp_rmb is needed here as long as there's a full
1818 * spin_lock/unlock sequence inside the ->nopage callback
1819 * (for the pagecache lookup) that acts as an implicit
1820 * smp_mb() and prevents the i_size read to happen
1821 * after the next truncate_count read.
1822 */
1823
1824 /* no page was available -- either SIGBUS or OOM */
1825 if (new_page == NOPAGE_SIGBUS)
1826 return VM_FAULT_SIGBUS;
1827 if (new_page == NOPAGE_OOM)
1828 return VM_FAULT_OOM;
1829
1830 /*
1831 * Should we do an early C-O-W break?
1832 */
1833 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1834 struct page *page;
1835
1836 if (unlikely(anon_vma_prepare(vma)))
1837 goto oom;
1838 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1839 if (!page)
1840 goto oom;
1841 copy_user_highpage(page, new_page, address);
1842 page_cache_release(new_page);
1843 new_page = page;
1844 anon = 1;
1845 }
1846
1847 spin_lock(&mm->page_table_lock);
1848 /*
1849 * For a file-backed vma, someone could have truncated or otherwise
1850 * invalidated this page. If unmap_mapping_range got called,
1851 * retry getting the page.
1852 */
1853 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1854 sequence = mapping->truncate_count;
1855 spin_unlock(&mm->page_table_lock);
1856 page_cache_release(new_page);
1857 goto retry;
1858 }
1859 page_table = pte_offset_map(pmd, address);
1860
1861 /*
1862 * This silly early PAGE_DIRTY setting removes a race
1863 * due to the bad i386 page protection. But it's valid
1864 * for other architectures too.
1865 *
1866 * Note that if write_access is true, we either now have
1867 * an exclusive copy of the page, or this is a shared mapping,
1868 * so we can make it writable and dirty to avoid having to
1869 * handle that later.
1870 */
1871 /* Only go through if we didn't race with anybody else... */
1872 if (pte_none(*page_table)) {
1873 if (!PageReserved(new_page))
1874 inc_mm_counter(mm, rss);
1875
1876 flush_icache_page(vma, new_page);
1877 entry = mk_pte(new_page, vma->vm_page_prot);
1878 if (write_access)
1879 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1880 set_pte_at(mm, address, page_table, entry);
1881 if (anon) {
1882 lru_cache_add_active(new_page);
1883 page_add_anon_rmap(new_page, vma, address);
1884 } else
1885 page_add_file_rmap(new_page);
1886 pte_unmap(page_table);
1887 } else {
1888 /* One of our sibling threads was faster, back out. */
1889 pte_unmap(page_table);
1890 page_cache_release(new_page);
1891 spin_unlock(&mm->page_table_lock);
1892 goto out;
1893 }
1894
1895 /* no need to invalidate: a not-present page shouldn't be cached */
1896 update_mmu_cache(vma, address, entry);
1897 lazy_mmu_prot_update(entry);
1898 spin_unlock(&mm->page_table_lock);
1899 out:
1900 return ret;
1901 oom:
1902 page_cache_release(new_page);
1903 ret = VM_FAULT_OOM;
1904 goto out;
1905 }
1906
1907 /*
1908 * Fault of a previously existing named mapping. Repopulate the pte
1909 * from the encoded file_pte if possible. This enables swappable
1910 * nonlinear vmas.
1911 */
1912 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1913 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1914 {
1915 unsigned long pgoff;
1916 int err;
1917
1918 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1919 /*
1920 * Fall back to the linear mapping if the fs does not support
1921 * ->populate:
1922 */
1923 if (!vma->vm_ops || !vma->vm_ops->populate ||
1924 (write_access && !(vma->vm_flags & VM_SHARED))) {
1925 pte_clear(mm, address, pte);
1926 return do_no_page(mm, vma, address, write_access, pte, pmd);
1927 }
1928
1929 pgoff = pte_to_pgoff(*pte);
1930
1931 pte_unmap(pte);
1932 spin_unlock(&mm->page_table_lock);
1933
1934 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1935 if (err == -ENOMEM)
1936 return VM_FAULT_OOM;
1937 if (err)
1938 return VM_FAULT_SIGBUS;
1939 return VM_FAULT_MAJOR;
1940 }
1941
1942 /*
1943 * These routines also need to handle stuff like marking pages dirty
1944 * and/or accessed for architectures that don't do it in hardware (most
1945 * RISC architectures). The early dirtying is also good on the i386.
1946 *
1947 * There is also a hook called "update_mmu_cache()" that architectures
1948 * with external mmu caches can use to update those (ie the Sparc or
1949 * PowerPC hashed page tables that act as extended TLBs).
1950 *
1951 * Note the "page_table_lock". It is to protect against kswapd removing
1952 * pages from under us. Note that kswapd only ever _removes_ pages, never
1953 * adds them. As such, once we have noticed that the page is not present,
1954 * we can drop the lock early.
1955 *
1956 * The adding of pages is protected by the MM semaphore (which we hold),
1957 * so we don't need to worry about a page being suddenly been added into
1958 * our VM.
1959 *
1960 * We enter with the pagetable spinlock held, we are supposed to
1961 * release it when done.
1962 */
1963 static inline int handle_pte_fault(struct mm_struct *mm,
1964 struct vm_area_struct * vma, unsigned long address,
1965 int write_access, pte_t *pte, pmd_t *pmd)
1966 {
1967 pte_t entry;
1968
1969 entry = *pte;
1970 if (!pte_present(entry)) {
1971 /*
1972 * If it truly wasn't present, we know that kswapd
1973 * and the PTE updates will not touch it later. So
1974 * drop the lock.
1975 */
1976 if (pte_none(entry))
1977 return do_no_page(mm, vma, address, write_access, pte, pmd);
1978 if (pte_file(entry))
1979 return do_file_page(mm, vma, address, write_access, pte, pmd);
1980 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1981 }
1982
1983 if (write_access) {
1984 if (!pte_write(entry))
1985 return do_wp_page(mm, vma, address, pte, pmd, entry);
1986
1987 entry = pte_mkdirty(entry);
1988 }
1989 entry = pte_mkyoung(entry);
1990 ptep_set_access_flags(vma, address, pte, entry, write_access);
1991 update_mmu_cache(vma, address, entry);
1992 lazy_mmu_prot_update(entry);
1993 pte_unmap(pte);
1994 spin_unlock(&mm->page_table_lock);
1995 return VM_FAULT_MINOR;
1996 }
1997
1998 /*
1999 * By the time we get here, we already hold the mm semaphore
2000 */
2001 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2002 unsigned long address, int write_access)
2003 {
2004 pgd_t *pgd;
2005 pud_t *pud;
2006 pmd_t *pmd;
2007 pte_t *pte;
2008
2009 __set_current_state(TASK_RUNNING);
2010
2011 inc_page_state(pgfault);
2012
2013 if (is_vm_hugetlb_page(vma))
2014 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
2015
2016 /*
2017 * We need the page table lock to synchronize with kswapd
2018 * and the SMP-safe atomic PTE updates.
2019 */
2020 pgd = pgd_offset(mm, address);
2021 spin_lock(&mm->page_table_lock);
2022
2023 pud = pud_alloc(mm, pgd, address);
2024 if (!pud)
2025 goto oom;
2026
2027 pmd = pmd_alloc(mm, pud, address);
2028 if (!pmd)
2029 goto oom;
2030
2031 pte = pte_alloc_map(mm, pmd, address);
2032 if (!pte)
2033 goto oom;
2034
2035 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2036
2037 oom:
2038 spin_unlock(&mm->page_table_lock);
2039 return VM_FAULT_OOM;
2040 }
2041
2042 #ifndef __PAGETABLE_PUD_FOLDED
2043 /*
2044 * Allocate page upper directory.
2045 *
2046 * We've already handled the fast-path in-line, and we own the
2047 * page table lock.
2048 */
2049 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2050 {
2051 pud_t *new;
2052
2053 spin_unlock(&mm->page_table_lock);
2054 new = pud_alloc_one(mm, address);
2055 spin_lock(&mm->page_table_lock);
2056 if (!new)
2057 return NULL;
2058
2059 /*
2060 * Because we dropped the lock, we should re-check the
2061 * entry, as somebody else could have populated it..
2062 */
2063 if (pgd_present(*pgd)) {
2064 pud_free(new);
2065 goto out;
2066 }
2067 pgd_populate(mm, pgd, new);
2068 out:
2069 return pud_offset(pgd, address);
2070 }
2071 #endif /* __PAGETABLE_PUD_FOLDED */
2072
2073 #ifndef __PAGETABLE_PMD_FOLDED
2074 /*
2075 * Allocate page middle directory.
2076 *
2077 * We've already handled the fast-path in-line, and we own the
2078 * page table lock.
2079 */
2080 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2081 {
2082 pmd_t *new;
2083
2084 spin_unlock(&mm->page_table_lock);
2085 new = pmd_alloc_one(mm, address);
2086 spin_lock(&mm->page_table_lock);
2087 if (!new)
2088 return NULL;
2089
2090 /*
2091 * Because we dropped the lock, we should re-check the
2092 * entry, as somebody else could have populated it..
2093 */
2094 #ifndef __ARCH_HAS_4LEVEL_HACK
2095 if (pud_present(*pud)) {
2096 pmd_free(new);
2097 goto out;
2098 }
2099 pud_populate(mm, pud, new);
2100 #else
2101 if (pgd_present(*pud)) {
2102 pmd_free(new);
2103 goto out;
2104 }
2105 pgd_populate(mm, pud, new);
2106 #endif /* __ARCH_HAS_4LEVEL_HACK */
2107
2108 out:
2109 return pmd_offset(pud, address);
2110 }
2111 #endif /* __PAGETABLE_PMD_FOLDED */
2112
2113 int make_pages_present(unsigned long addr, unsigned long end)
2114 {
2115 int ret, len, write;
2116 struct vm_area_struct * vma;
2117
2118 vma = find_vma(current->mm, addr);
2119 if (!vma)
2120 return -1;
2121 write = (vma->vm_flags & VM_WRITE) != 0;
2122 if (addr >= end)
2123 BUG();
2124 if (end > vma->vm_end)
2125 BUG();
2126 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2127 ret = get_user_pages(current, current->mm, addr,
2128 len, write, 0, NULL, NULL);
2129 if (ret < 0)
2130 return ret;
2131 return ret == len ? 0 : -1;
2132 }
2133
2134 /*
2135 * Map a vmalloc()-space virtual address to the physical page.
2136 */
2137 struct page * vmalloc_to_page(void * vmalloc_addr)
2138 {
2139 unsigned long addr = (unsigned long) vmalloc_addr;
2140 struct page *page = NULL;
2141 pgd_t *pgd = pgd_offset_k(addr);
2142 pud_t *pud;
2143 pmd_t *pmd;
2144 pte_t *ptep, pte;
2145
2146 if (!pgd_none(*pgd)) {
2147 pud = pud_offset(pgd, addr);
2148 if (!pud_none(*pud)) {
2149 pmd = pmd_offset(pud, addr);
2150 if (!pmd_none(*pmd)) {
2151 ptep = pte_offset_map(pmd, addr);
2152 pte = *ptep;
2153 if (pte_present(pte))
2154 page = pte_page(pte);
2155 pte_unmap(ptep);
2156 }
2157 }
2158 }
2159 return page;
2160 }
2161
2162 EXPORT_SYMBOL(vmalloc_to_page);
2163
2164 /*
2165 * Map a vmalloc()-space virtual address to the physical page frame number.
2166 */
2167 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2168 {
2169 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2170 }
2171
2172 EXPORT_SYMBOL(vmalloc_to_pfn);
2173
2174 /*
2175 * update_mem_hiwater
2176 * - update per process rss and vm high water data
2177 */
2178 void update_mem_hiwater(struct task_struct *tsk)
2179 {
2180 if (tsk->mm) {
2181 unsigned long rss = get_mm_counter(tsk->mm, rss);
2182
2183 if (tsk->mm->hiwater_rss < rss)
2184 tsk->mm->hiwater_rss = rss;
2185 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2186 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2187 }
2188 }
2189
2190 #if !defined(__HAVE_ARCH_GATE_AREA)
2191
2192 #if defined(AT_SYSINFO_EHDR)
2193 struct vm_area_struct gate_vma;
2194
2195 static int __init gate_vma_init(void)
2196 {
2197 gate_vma.vm_mm = NULL;
2198 gate_vma.vm_start = FIXADDR_USER_START;
2199 gate_vma.vm_end = FIXADDR_USER_END;
2200 gate_vma.vm_page_prot = PAGE_READONLY;
2201 gate_vma.vm_flags = 0;
2202 return 0;
2203 }
2204 __initcall(gate_vma_init);
2205 #endif
2206
2207 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2208 {
2209 #ifdef AT_SYSINFO_EHDR
2210 return &gate_vma;
2211 #else
2212 return NULL;
2213 #endif
2214 }
2215
2216 int in_gate_area_no_task(unsigned long addr)
2217 {
2218 #ifdef AT_SYSINFO_EHDR
2219 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2220 return 1;
2221 #endif
2222 return 0;
2223 }
2224
2225 #endif /* __HAVE_ARCH_GATE_AREA */
This page took 0.08019 seconds and 5 git commands to generate.