Merge tag 'mac80211-for-davem-2016-04-27' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74
75 #include "internal.h"
76
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89
90 /*
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
96 */
97 void * high_memory;
98
99 EXPORT_SYMBOL(high_memory);
100
101 /*
102 * Randomize the address space (stacks, mmaps, brk, etc.).
103 *
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
106 */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109 1;
110 #else
111 2;
112 #endif
113
114 static int __init disable_randmaps(char *s)
115 {
116 randomize_va_space = 0;
117 return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123
124 EXPORT_SYMBOL(zero_pfn);
125
126 /*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129 static int __init init_zero_pfn(void)
130 {
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
147 }
148 }
149 current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return true;
194 }
195
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return false;
198
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return false;
202
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
211 return true;
212 }
213
214 /* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
235
236 __tlb_reset_range(tlb);
237 }
238
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241 if (!tlb->end)
242 return;
243
244 tlb_flush(tlb);
245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
248 #endif
249 __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
259 }
260 tlb->active = &tlb->local;
261 }
262
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
267 }
268
269 /* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
272 */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275 struct mmu_gather_batch *batch, *next;
276
277 tlb_flush_mmu(tlb);
278
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
281
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
285 }
286 tlb->local.next = NULL;
287 }
288
289 /* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
294 */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297 struct mmu_gather_batch *batch;
298
299 VM_BUG_ON(!tlb->end);
300
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
306 batch = tlb->active;
307 }
308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309
310 return batch->max - batch->nr;
311 }
312
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317 /*
318 * See the comment near struct mmu_table_batch.
319 */
320
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323 /* Simply deliver the interrupt */
324 }
325
326 static void tlb_remove_table_one(void *table)
327 {
328 /*
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
331 *
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
334 */
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
337 }
338
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341 struct mmu_table_batch *batch;
342 int i;
343
344 batch = container_of(head, struct mmu_table_batch, rcu);
345
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
348
349 free_page((unsigned long)batch);
350 }
351
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
359 }
360 }
361
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 /*
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
369 */
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
373 }
374
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
380 }
381 (*batch)->nr = 0;
382 }
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
386 }
387
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389
390 /*
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
393 */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
396 {
397 pgtable_t token = pmd_pgtable(*pmd);
398 pmd_clear(pmd);
399 pte_free_tlb(tlb, token, addr);
400 atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
406 {
407 pmd_t *pmd;
408 unsigned long next;
409 unsigned long start;
410
411 start = addr;
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 free_pte_range(tlb, pmd, addr);
418 } while (pmd++, addr = next, addr != end);
419
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
427 }
428 if (end - 1 > ceiling - 1)
429 return;
430
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
433 pmd_free_tlb(tlb, pmd, start);
434 mm_dec_nr_pmds(tlb->mm);
435 }
436
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
440 {
441 pud_t *pud;
442 unsigned long next;
443 unsigned long start;
444
445 start = addr;
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 } while (pud++, addr = next, addr != end);
453
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
461 }
462 if (end - 1 > ceiling - 1)
463 return;
464
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
467 pud_free_tlb(tlb, pud, start);
468 }
469
470 /*
471 * This function frees user-level page tables of a process.
472 */
473 void free_pgd_range(struct mmu_gather *tlb,
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
476 {
477 pgd_t *pgd;
478 unsigned long next;
479
480 /*
481 * The next few lines have given us lots of grief...
482 *
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
486 *
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
494 *
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
499 *
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
504 */
505
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
511 }
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
516 }
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
521
522 pgd = pgd_offset(tlb->mm, addr);
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 } while (pgd++, addr = next, addr != end);
529 }
530
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 unsigned long floor, unsigned long ceiling)
533 {
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
537
538 /*
539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
541 */
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
544
545 if (is_vm_hugetlb_page(vma)) {
546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 floor, next? next->vm_start: ceiling);
548 } else {
549 /*
550 * Optimization: gather nearby vmas into one call down
551 */
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 && !is_vm_hugetlb_page(next)) {
554 vma = next;
555 next = vma->vm_next;
556 unlink_anon_vmas(vma);
557 unlink_file_vma(vma);
558 }
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
561 }
562 vma = next;
563 }
564 }
565
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 }
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
605
606 smp_wmb(); /* See comment in __pte_alloc */
607
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
612 }
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 int i;
627
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
639 *
640 * The calling function must still handle the error.
641 */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
644 {
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
653
654 /*
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
657 */
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
662 }
663 if (nr_unshown) {
664 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 nr_unshown);
666 nr_unshown = 0;
667 }
668 nr_shown = 0;
669 }
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
672
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
675
676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
677 current->comm,
678 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 if (page)
680 dump_page(page, "bad pte");
681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 /*
684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 */
686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma->vm_file,
688 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 mapping ? mapping->a_ops->readpage : NULL);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694
695 /*
696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697 *
698 * "Special" mappings do not wish to be associated with a "struct page" (either
699 * it doesn't exist, or it exists but they don't want to touch it). In this
700 * case, NULL is returned here. "Normal" mappings do have a struct page.
701 *
702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703 * pte bit, in which case this function is trivial. Secondly, an architecture
704 * may not have a spare pte bit, which requires a more complicated scheme,
705 * described below.
706 *
707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708 * special mapping (even if there are underlying and valid "struct pages").
709 * COWed pages of a VM_PFNMAP are always normal.
710 *
711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714 * mapping will always honor the rule
715 *
716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717 *
718 * And for normal mappings this is false.
719 *
720 * This restricts such mappings to be a linear translation from virtual address
721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
722 * as the vma is not a COW mapping; in that case, we know that all ptes are
723 * special (because none can have been COWed).
724 *
725 *
726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727 *
728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729 * page" backing, however the difference is that _all_ pages with a struct
730 * page (that is, those where pfn_valid is true) are refcounted and considered
731 * normal pages by the VM. The disadvantage is that pages are refcounted
732 * (which can be slower and simply not an option for some PFNMAP users). The
733 * advantage is that we don't have to follow the strict linearity rule of
734 * PFNMAP mappings in order to support COWable mappings.
735 *
736 */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 pte_t pte)
744 {
745 unsigned long pfn = pte_pfn(pte);
746
747 if (HAVE_PTE_SPECIAL) {
748 if (likely(!pte_special(pte)))
749 goto check_pfn;
750 if (vma->vm_ops && vma->vm_ops->find_special_page)
751 return vma->vm_ops->find_special_page(vma, addr);
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
757 }
758
759 /* !HAVE_PTE_SPECIAL case follows: */
760
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
773 }
774 }
775
776 if (is_zero_pfn(pfn))
777 return NULL;
778 check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /*
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
787 */
788 out:
789 return pfn_to_page(pfn);
790 }
791
792 /*
793 * copy one vm_area from one task to the other. Assumes the page tables
794 * already present in the new task to be cleared in the whole range
795 * covered by this vma.
796 */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801 unsigned long addr, int *rss)
802 {
803 unsigned long vm_flags = vma->vm_flags;
804 pte_t pte = *src_pte;
805 struct page *page;
806
807 /* pte contains position in swap or file, so copy. */
808 if (unlikely(!pte_present(pte))) {
809 swp_entry_t entry = pte_to_swp_entry(pte);
810
811 if (likely(!non_swap_entry(entry))) {
812 if (swap_duplicate(entry) < 0)
813 return entry.val;
814
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm->mmlist))) {
817 spin_lock(&mmlist_lock);
818 if (list_empty(&dst_mm->mmlist))
819 list_add(&dst_mm->mmlist,
820 &src_mm->mmlist);
821 spin_unlock(&mmlist_lock);
822 }
823 rss[MM_SWAPENTS]++;
824 } else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
826
827 rss[mm_counter(page)]++;
828
829 if (is_write_migration_entry(entry) &&
830 is_cow_mapping(vm_flags)) {
831 /*
832 * COW mappings require pages in both
833 * parent and child to be set to read.
834 */
835 make_migration_entry_read(&entry);
836 pte = swp_entry_to_pte(entry);
837 if (pte_swp_soft_dirty(*src_pte))
838 pte = pte_swp_mksoft_dirty(pte);
839 set_pte_at(src_mm, addr, src_pte, pte);
840 }
841 }
842 goto out_set_pte;
843 }
844
845 /*
846 * If it's a COW mapping, write protect it both
847 * in the parent and the child
848 */
849 if (is_cow_mapping(vm_flags)) {
850 ptep_set_wrprotect(src_mm, addr, src_pte);
851 pte = pte_wrprotect(pte);
852 }
853
854 /*
855 * If it's a shared mapping, mark it clean in
856 * the child
857 */
858 if (vm_flags & VM_SHARED)
859 pte = pte_mkclean(pte);
860 pte = pte_mkold(pte);
861
862 page = vm_normal_page(vma, addr, pte);
863 if (page) {
864 get_page(page);
865 page_dup_rmap(page, false);
866 rss[mm_counter(page)]++;
867 }
868
869 out_set_pte:
870 set_pte_at(dst_mm, addr, dst_pte, pte);
871 return 0;
872 }
873
874 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
876 unsigned long addr, unsigned long end)
877 {
878 pte_t *orig_src_pte, *orig_dst_pte;
879 pte_t *src_pte, *dst_pte;
880 spinlock_t *src_ptl, *dst_ptl;
881 int progress = 0;
882 int rss[NR_MM_COUNTERS];
883 swp_entry_t entry = (swp_entry_t){0};
884
885 again:
886 init_rss_vec(rss);
887
888 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
889 if (!dst_pte)
890 return -ENOMEM;
891 src_pte = pte_offset_map(src_pmd, addr);
892 src_ptl = pte_lockptr(src_mm, src_pmd);
893 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
894 orig_src_pte = src_pte;
895 orig_dst_pte = dst_pte;
896 arch_enter_lazy_mmu_mode();
897
898 do {
899 /*
900 * We are holding two locks at this point - either of them
901 * could generate latencies in another task on another CPU.
902 */
903 if (progress >= 32) {
904 progress = 0;
905 if (need_resched() ||
906 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
907 break;
908 }
909 if (pte_none(*src_pte)) {
910 progress++;
911 continue;
912 }
913 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
914 vma, addr, rss);
915 if (entry.val)
916 break;
917 progress += 8;
918 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
919
920 arch_leave_lazy_mmu_mode();
921 spin_unlock(src_ptl);
922 pte_unmap(orig_src_pte);
923 add_mm_rss_vec(dst_mm, rss);
924 pte_unmap_unlock(orig_dst_pte, dst_ptl);
925 cond_resched();
926
927 if (entry.val) {
928 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
929 return -ENOMEM;
930 progress = 0;
931 }
932 if (addr != end)
933 goto again;
934 return 0;
935 }
936
937 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
939 unsigned long addr, unsigned long end)
940 {
941 pmd_t *src_pmd, *dst_pmd;
942 unsigned long next;
943
944 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
945 if (!dst_pmd)
946 return -ENOMEM;
947 src_pmd = pmd_offset(src_pud, addr);
948 do {
949 next = pmd_addr_end(addr, end);
950 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
951 int err;
952 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
953 err = copy_huge_pmd(dst_mm, src_mm,
954 dst_pmd, src_pmd, addr, vma);
955 if (err == -ENOMEM)
956 return -ENOMEM;
957 if (!err)
958 continue;
959 /* fall through */
960 }
961 if (pmd_none_or_clear_bad(src_pmd))
962 continue;
963 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
967 return 0;
968 }
969
970 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
972 unsigned long addr, unsigned long end)
973 {
974 pud_t *src_pud, *dst_pud;
975 unsigned long next;
976
977 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
978 if (!dst_pud)
979 return -ENOMEM;
980 src_pud = pud_offset(src_pgd, addr);
981 do {
982 next = pud_addr_end(addr, end);
983 if (pud_none_or_clear_bad(src_pud))
984 continue;
985 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
986 vma, addr, next))
987 return -ENOMEM;
988 } while (dst_pud++, src_pud++, addr = next, addr != end);
989 return 0;
990 }
991
992 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 struct vm_area_struct *vma)
994 {
995 pgd_t *src_pgd, *dst_pgd;
996 unsigned long next;
997 unsigned long addr = vma->vm_start;
998 unsigned long end = vma->vm_end;
999 unsigned long mmun_start; /* For mmu_notifiers */
1000 unsigned long mmun_end; /* For mmu_notifiers */
1001 bool is_cow;
1002 int ret;
1003
1004 /*
1005 * Don't copy ptes where a page fault will fill them correctly.
1006 * Fork becomes much lighter when there are big shared or private
1007 * readonly mappings. The tradeoff is that copy_page_range is more
1008 * efficient than faulting.
1009 */
1010 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1011 !vma->anon_vma)
1012 return 0;
1013
1014 if (is_vm_hugetlb_page(vma))
1015 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1016
1017 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1018 /*
1019 * We do not free on error cases below as remove_vma
1020 * gets called on error from higher level routine
1021 */
1022 ret = track_pfn_copy(vma);
1023 if (ret)
1024 return ret;
1025 }
1026
1027 /*
1028 * We need to invalidate the secondary MMU mappings only when
1029 * there could be a permission downgrade on the ptes of the
1030 * parent mm. And a permission downgrade will only happen if
1031 * is_cow_mapping() returns true.
1032 */
1033 is_cow = is_cow_mapping(vma->vm_flags);
1034 mmun_start = addr;
1035 mmun_end = end;
1036 if (is_cow)
1037 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1038 mmun_end);
1039
1040 ret = 0;
1041 dst_pgd = pgd_offset(dst_mm, addr);
1042 src_pgd = pgd_offset(src_mm, addr);
1043 do {
1044 next = pgd_addr_end(addr, end);
1045 if (pgd_none_or_clear_bad(src_pgd))
1046 continue;
1047 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1048 vma, addr, next))) {
1049 ret = -ENOMEM;
1050 break;
1051 }
1052 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1053
1054 if (is_cow)
1055 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1056 return ret;
1057 }
1058
1059 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1060 struct vm_area_struct *vma, pmd_t *pmd,
1061 unsigned long addr, unsigned long end,
1062 struct zap_details *details)
1063 {
1064 struct mm_struct *mm = tlb->mm;
1065 int force_flush = 0;
1066 int rss[NR_MM_COUNTERS];
1067 spinlock_t *ptl;
1068 pte_t *start_pte;
1069 pte_t *pte;
1070 swp_entry_t entry;
1071
1072 again:
1073 init_rss_vec(rss);
1074 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1075 pte = start_pte;
1076 arch_enter_lazy_mmu_mode();
1077 do {
1078 pte_t ptent = *pte;
1079 if (pte_none(ptent)) {
1080 continue;
1081 }
1082
1083 if (pte_present(ptent)) {
1084 struct page *page;
1085
1086 page = vm_normal_page(vma, addr, ptent);
1087 if (unlikely(details) && page) {
1088 /*
1089 * unmap_shared_mapping_pages() wants to
1090 * invalidate cache without truncating:
1091 * unmap shared but keep private pages.
1092 */
1093 if (details->check_mapping &&
1094 details->check_mapping != page->mapping)
1095 continue;
1096 }
1097 ptent = ptep_get_and_clear_full(mm, addr, pte,
1098 tlb->fullmm);
1099 tlb_remove_tlb_entry(tlb, pte, addr);
1100 if (unlikely(!page))
1101 continue;
1102
1103 if (!PageAnon(page)) {
1104 if (pte_dirty(ptent)) {
1105 /*
1106 * oom_reaper cannot tear down dirty
1107 * pages
1108 */
1109 if (unlikely(details && details->ignore_dirty))
1110 continue;
1111 force_flush = 1;
1112 set_page_dirty(page);
1113 }
1114 if (pte_young(ptent) &&
1115 likely(!(vma->vm_flags & VM_SEQ_READ)))
1116 mark_page_accessed(page);
1117 }
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 if (unlikely(page_mapcount(page) < 0))
1121 print_bad_pte(vma, addr, ptent, page);
1122 if (unlikely(!__tlb_remove_page(tlb, page))) {
1123 force_flush = 1;
1124 addr += PAGE_SIZE;
1125 break;
1126 }
1127 continue;
1128 }
1129 /* only check swap_entries if explicitly asked for in details */
1130 if (unlikely(details && !details->check_swap_entries))
1131 continue;
1132
1133 entry = pte_to_swp_entry(ptent);
1134 if (!non_swap_entry(entry))
1135 rss[MM_SWAPENTS]--;
1136 else if (is_migration_entry(entry)) {
1137 struct page *page;
1138
1139 page = migration_entry_to_page(entry);
1140 rss[mm_counter(page)]--;
1141 }
1142 if (unlikely(!free_swap_and_cache(entry)))
1143 print_bad_pte(vma, addr, ptent, NULL);
1144 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1145 } while (pte++, addr += PAGE_SIZE, addr != end);
1146
1147 add_mm_rss_vec(mm, rss);
1148 arch_leave_lazy_mmu_mode();
1149
1150 /* Do the actual TLB flush before dropping ptl */
1151 if (force_flush)
1152 tlb_flush_mmu_tlbonly(tlb);
1153 pte_unmap_unlock(start_pte, ptl);
1154
1155 /*
1156 * If we forced a TLB flush (either due to running out of
1157 * batch buffers or because we needed to flush dirty TLB
1158 * entries before releasing the ptl), free the batched
1159 * memory too. Restart if we didn't do everything.
1160 */
1161 if (force_flush) {
1162 force_flush = 0;
1163 tlb_flush_mmu_free(tlb);
1164
1165 if (addr != end)
1166 goto again;
1167 }
1168
1169 return addr;
1170 }
1171
1172 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1173 struct vm_area_struct *vma, pud_t *pud,
1174 unsigned long addr, unsigned long end,
1175 struct zap_details *details)
1176 {
1177 pmd_t *pmd;
1178 unsigned long next;
1179
1180 pmd = pmd_offset(pud, addr);
1181 do {
1182 next = pmd_addr_end(addr, end);
1183 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1184 if (next - addr != HPAGE_PMD_SIZE) {
1185 #ifdef CONFIG_DEBUG_VM
1186 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1187 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1188 __func__, addr, end,
1189 vma->vm_start,
1190 vma->vm_end);
1191 BUG();
1192 }
1193 #endif
1194 split_huge_pmd(vma, pmd, addr);
1195 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1196 goto next;
1197 /* fall through */
1198 }
1199 /*
1200 * Here there can be other concurrent MADV_DONTNEED or
1201 * trans huge page faults running, and if the pmd is
1202 * none or trans huge it can change under us. This is
1203 * because MADV_DONTNEED holds the mmap_sem in read
1204 * mode.
1205 */
1206 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1207 goto next;
1208 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1209 next:
1210 cond_resched();
1211 } while (pmd++, addr = next, addr != end);
1212
1213 return addr;
1214 }
1215
1216 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1217 struct vm_area_struct *vma, pgd_t *pgd,
1218 unsigned long addr, unsigned long end,
1219 struct zap_details *details)
1220 {
1221 pud_t *pud;
1222 unsigned long next;
1223
1224 pud = pud_offset(pgd, addr);
1225 do {
1226 next = pud_addr_end(addr, end);
1227 if (pud_none_or_clear_bad(pud))
1228 continue;
1229 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1230 } while (pud++, addr = next, addr != end);
1231
1232 return addr;
1233 }
1234
1235 void unmap_page_range(struct mmu_gather *tlb,
1236 struct vm_area_struct *vma,
1237 unsigned long addr, unsigned long end,
1238 struct zap_details *details)
1239 {
1240 pgd_t *pgd;
1241 unsigned long next;
1242
1243 BUG_ON(addr >= end);
1244 tlb_start_vma(tlb, vma);
1245 pgd = pgd_offset(vma->vm_mm, addr);
1246 do {
1247 next = pgd_addr_end(addr, end);
1248 if (pgd_none_or_clear_bad(pgd))
1249 continue;
1250 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 } while (pgd++, addr = next, addr != end);
1252 tlb_end_vma(tlb, vma);
1253 }
1254
1255
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, unsigned long start_addr,
1258 unsigned long end_addr,
1259 struct zap_details *details)
1260 {
1261 unsigned long start = max(vma->vm_start, start_addr);
1262 unsigned long end;
1263
1264 if (start >= vma->vm_end)
1265 return;
1266 end = min(vma->vm_end, end_addr);
1267 if (end <= vma->vm_start)
1268 return;
1269
1270 if (vma->vm_file)
1271 uprobe_munmap(vma, start, end);
1272
1273 if (unlikely(vma->vm_flags & VM_PFNMAP))
1274 untrack_pfn(vma, 0, 0);
1275
1276 if (start != end) {
1277 if (unlikely(is_vm_hugetlb_page(vma))) {
1278 /*
1279 * It is undesirable to test vma->vm_file as it
1280 * should be non-null for valid hugetlb area.
1281 * However, vm_file will be NULL in the error
1282 * cleanup path of mmap_region. When
1283 * hugetlbfs ->mmap method fails,
1284 * mmap_region() nullifies vma->vm_file
1285 * before calling this function to clean up.
1286 * Since no pte has actually been setup, it is
1287 * safe to do nothing in this case.
1288 */
1289 if (vma->vm_file) {
1290 i_mmap_lock_write(vma->vm_file->f_mapping);
1291 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292 i_mmap_unlock_write(vma->vm_file->f_mapping);
1293 }
1294 } else
1295 unmap_page_range(tlb, vma, start, end, details);
1296 }
1297 }
1298
1299 /**
1300 * unmap_vmas - unmap a range of memory covered by a list of vma's
1301 * @tlb: address of the caller's struct mmu_gather
1302 * @vma: the starting vma
1303 * @start_addr: virtual address at which to start unmapping
1304 * @end_addr: virtual address at which to end unmapping
1305 *
1306 * Unmap all pages in the vma list.
1307 *
1308 * Only addresses between `start' and `end' will be unmapped.
1309 *
1310 * The VMA list must be sorted in ascending virtual address order.
1311 *
1312 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313 * range after unmap_vmas() returns. So the only responsibility here is to
1314 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315 * drops the lock and schedules.
1316 */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318 struct vm_area_struct *vma, unsigned long start_addr,
1319 unsigned long end_addr)
1320 {
1321 struct mm_struct *mm = vma->vm_mm;
1322
1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328
1329 /**
1330 * zap_page_range - remove user pages in a given range
1331 * @vma: vm_area_struct holding the applicable pages
1332 * @start: starting address of pages to zap
1333 * @size: number of bytes to zap
1334 * @details: details of shared cache invalidation
1335 *
1336 * Caller must protect the VMA list
1337 */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 unsigned long size, struct zap_details *details)
1340 {
1341 struct mm_struct *mm = vma->vm_mm;
1342 struct mmu_gather tlb;
1343 unsigned long end = start + size;
1344
1345 lru_add_drain();
1346 tlb_gather_mmu(&tlb, mm, start, end);
1347 update_hiwater_rss(mm);
1348 mmu_notifier_invalidate_range_start(mm, start, end);
1349 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350 unmap_single_vma(&tlb, vma, start, end, details);
1351 mmu_notifier_invalidate_range_end(mm, start, end);
1352 tlb_finish_mmu(&tlb, start, end);
1353 }
1354
1355 /**
1356 * zap_page_range_single - remove user pages in a given range
1357 * @vma: vm_area_struct holding the applicable pages
1358 * @address: starting address of pages to zap
1359 * @size: number of bytes to zap
1360 * @details: details of shared cache invalidation
1361 *
1362 * The range must fit into one VMA.
1363 */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365 unsigned long size, struct zap_details *details)
1366 {
1367 struct mm_struct *mm = vma->vm_mm;
1368 struct mmu_gather tlb;
1369 unsigned long end = address + size;
1370
1371 lru_add_drain();
1372 tlb_gather_mmu(&tlb, mm, address, end);
1373 update_hiwater_rss(mm);
1374 mmu_notifier_invalidate_range_start(mm, address, end);
1375 unmap_single_vma(&tlb, vma, address, end, details);
1376 mmu_notifier_invalidate_range_end(mm, address, end);
1377 tlb_finish_mmu(&tlb, address, end);
1378 }
1379
1380 /**
1381 * zap_vma_ptes - remove ptes mapping the vma
1382 * @vma: vm_area_struct holding ptes to be zapped
1383 * @address: starting address of pages to zap
1384 * @size: number of bytes to zap
1385 *
1386 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387 *
1388 * The entire address range must be fully contained within the vma.
1389 *
1390 * Returns 0 if successful.
1391 */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 unsigned long size)
1394 {
1395 if (address < vma->vm_start || address + size > vma->vm_end ||
1396 !(vma->vm_flags & VM_PFNMAP))
1397 return -1;
1398 zap_page_range_single(vma, address, size, NULL);
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404 spinlock_t **ptl)
1405 {
1406 pgd_t * pgd = pgd_offset(mm, addr);
1407 pud_t * pud = pud_alloc(mm, pgd, addr);
1408 if (pud) {
1409 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410 if (pmd) {
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 }
1414 }
1415 return NULL;
1416 }
1417
1418 /*
1419 * This is the old fallback for page remapping.
1420 *
1421 * For historical reasons, it only allows reserved pages. Only
1422 * old drivers should use this, and they needed to mark their
1423 * pages reserved for the old functions anyway.
1424 */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 struct page *page, pgprot_t prot)
1427 {
1428 struct mm_struct *mm = vma->vm_mm;
1429 int retval;
1430 pte_t *pte;
1431 spinlock_t *ptl;
1432
1433 retval = -EINVAL;
1434 if (PageAnon(page))
1435 goto out;
1436 retval = -ENOMEM;
1437 flush_dcache_page(page);
1438 pte = get_locked_pte(mm, addr, &ptl);
1439 if (!pte)
1440 goto out;
1441 retval = -EBUSY;
1442 if (!pte_none(*pte))
1443 goto out_unlock;
1444
1445 /* Ok, finally just insert the thing.. */
1446 get_page(page);
1447 inc_mm_counter_fast(mm, mm_counter_file(page));
1448 page_add_file_rmap(page);
1449 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450
1451 retval = 0;
1452 pte_unmap_unlock(pte, ptl);
1453 return retval;
1454 out_unlock:
1455 pte_unmap_unlock(pte, ptl);
1456 out:
1457 return retval;
1458 }
1459
1460 /**
1461 * vm_insert_page - insert single page into user vma
1462 * @vma: user vma to map to
1463 * @addr: target user address of this page
1464 * @page: source kernel page
1465 *
1466 * This allows drivers to insert individual pages they've allocated
1467 * into a user vma.
1468 *
1469 * The page has to be a nice clean _individual_ kernel allocation.
1470 * If you allocate a compound page, you need to have marked it as
1471 * such (__GFP_COMP), or manually just split the page up yourself
1472 * (see split_page()).
1473 *
1474 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475 * took an arbitrary page protection parameter. This doesn't allow
1476 * that. Your vma protection will have to be set up correctly, which
1477 * means that if you want a shared writable mapping, you'd better
1478 * ask for a shared writable mapping!
1479 *
1480 * The page does not need to be reserved.
1481 *
1482 * Usually this function is called from f_op->mmap() handler
1483 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485 * function from other places, for example from page-fault handler.
1486 */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 struct page *page)
1489 {
1490 if (addr < vma->vm_start || addr >= vma->vm_end)
1491 return -EFAULT;
1492 if (!page_count(page))
1493 return -EINVAL;
1494 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 vma->vm_flags |= VM_MIXEDMAP;
1498 }
1499 return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504 pfn_t pfn, pgprot_t prot)
1505 {
1506 struct mm_struct *mm = vma->vm_mm;
1507 int retval;
1508 pte_t *pte, entry;
1509 spinlock_t *ptl;
1510
1511 retval = -ENOMEM;
1512 pte = get_locked_pte(mm, addr, &ptl);
1513 if (!pte)
1514 goto out;
1515 retval = -EBUSY;
1516 if (!pte_none(*pte))
1517 goto out_unlock;
1518
1519 /* Ok, finally just insert the thing.. */
1520 if (pfn_t_devmap(pfn))
1521 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 else
1523 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524 set_pte_at(mm, addr, pte, entry);
1525 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526
1527 retval = 0;
1528 out_unlock:
1529 pte_unmap_unlock(pte, ptl);
1530 out:
1531 return retval;
1532 }
1533
1534 /**
1535 * vm_insert_pfn - insert single pfn into user vma
1536 * @vma: user vma to map to
1537 * @addr: target user address of this page
1538 * @pfn: source kernel pfn
1539 *
1540 * Similar to vm_insert_page, this allows drivers to insert individual pages
1541 * they've allocated into a user vma. Same comments apply.
1542 *
1543 * This function should only be called from a vm_ops->fault handler, and
1544 * in that case the handler should return NULL.
1545 *
1546 * vma cannot be a COW mapping.
1547 *
1548 * As this is called only for pages that do not currently exist, we
1549 * do not need to flush old virtual caches or the TLB.
1550 */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 unsigned long pfn)
1553 {
1554 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1555 }
1556 EXPORT_SYMBOL(vm_insert_pfn);
1557
1558 /**
1559 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1560 * @vma: user vma to map to
1561 * @addr: target user address of this page
1562 * @pfn: source kernel pfn
1563 * @pgprot: pgprot flags for the inserted page
1564 *
1565 * This is exactly like vm_insert_pfn, except that it allows drivers to
1566 * to override pgprot on a per-page basis.
1567 *
1568 * This only makes sense for IO mappings, and it makes no sense for
1569 * cow mappings. In general, using multiple vmas is preferable;
1570 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1571 * impractical.
1572 */
1573 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1574 unsigned long pfn, pgprot_t pgprot)
1575 {
1576 int ret;
1577 /*
1578 * Technically, architectures with pte_special can avoid all these
1579 * restrictions (same for remap_pfn_range). However we would like
1580 * consistency in testing and feature parity among all, so we should
1581 * try to keep these invariants in place for everybody.
1582 */
1583 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1584 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1585 (VM_PFNMAP|VM_MIXEDMAP));
1586 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1587 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1588
1589 if (addr < vma->vm_start || addr >= vma->vm_end)
1590 return -EFAULT;
1591 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1592 return -EINVAL;
1593
1594 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1595
1596 return ret;
1597 }
1598 EXPORT_SYMBOL(vm_insert_pfn_prot);
1599
1600 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1601 pfn_t pfn)
1602 {
1603 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1604
1605 if (addr < vma->vm_start || addr >= vma->vm_end)
1606 return -EFAULT;
1607
1608 /*
1609 * If we don't have pte special, then we have to use the pfn_valid()
1610 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1611 * refcount the page if pfn_valid is true (hence insert_page rather
1612 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1613 * without pte special, it would there be refcounted as a normal page.
1614 */
1615 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1616 struct page *page;
1617
1618 /*
1619 * At this point we are committed to insert_page()
1620 * regardless of whether the caller specified flags that
1621 * result in pfn_t_has_page() == false.
1622 */
1623 page = pfn_to_page(pfn_t_to_pfn(pfn));
1624 return insert_page(vma, addr, page, vma->vm_page_prot);
1625 }
1626 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1627 }
1628 EXPORT_SYMBOL(vm_insert_mixed);
1629
1630 /*
1631 * maps a range of physical memory into the requested pages. the old
1632 * mappings are removed. any references to nonexistent pages results
1633 * in null mappings (currently treated as "copy-on-access")
1634 */
1635 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1636 unsigned long addr, unsigned long end,
1637 unsigned long pfn, pgprot_t prot)
1638 {
1639 pte_t *pte;
1640 spinlock_t *ptl;
1641
1642 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1643 if (!pte)
1644 return -ENOMEM;
1645 arch_enter_lazy_mmu_mode();
1646 do {
1647 BUG_ON(!pte_none(*pte));
1648 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1649 pfn++;
1650 } while (pte++, addr += PAGE_SIZE, addr != end);
1651 arch_leave_lazy_mmu_mode();
1652 pte_unmap_unlock(pte - 1, ptl);
1653 return 0;
1654 }
1655
1656 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1657 unsigned long addr, unsigned long end,
1658 unsigned long pfn, pgprot_t prot)
1659 {
1660 pmd_t *pmd;
1661 unsigned long next;
1662
1663 pfn -= addr >> PAGE_SHIFT;
1664 pmd = pmd_alloc(mm, pud, addr);
1665 if (!pmd)
1666 return -ENOMEM;
1667 VM_BUG_ON(pmd_trans_huge(*pmd));
1668 do {
1669 next = pmd_addr_end(addr, end);
1670 if (remap_pte_range(mm, pmd, addr, next,
1671 pfn + (addr >> PAGE_SHIFT), prot))
1672 return -ENOMEM;
1673 } while (pmd++, addr = next, addr != end);
1674 return 0;
1675 }
1676
1677 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1678 unsigned long addr, unsigned long end,
1679 unsigned long pfn, pgprot_t prot)
1680 {
1681 pud_t *pud;
1682 unsigned long next;
1683
1684 pfn -= addr >> PAGE_SHIFT;
1685 pud = pud_alloc(mm, pgd, addr);
1686 if (!pud)
1687 return -ENOMEM;
1688 do {
1689 next = pud_addr_end(addr, end);
1690 if (remap_pmd_range(mm, pud, addr, next,
1691 pfn + (addr >> PAGE_SHIFT), prot))
1692 return -ENOMEM;
1693 } while (pud++, addr = next, addr != end);
1694 return 0;
1695 }
1696
1697 /**
1698 * remap_pfn_range - remap kernel memory to userspace
1699 * @vma: user vma to map to
1700 * @addr: target user address to start at
1701 * @pfn: physical address of kernel memory
1702 * @size: size of map area
1703 * @prot: page protection flags for this mapping
1704 *
1705 * Note: this is only safe if the mm semaphore is held when called.
1706 */
1707 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1708 unsigned long pfn, unsigned long size, pgprot_t prot)
1709 {
1710 pgd_t *pgd;
1711 unsigned long next;
1712 unsigned long end = addr + PAGE_ALIGN(size);
1713 struct mm_struct *mm = vma->vm_mm;
1714 int err;
1715
1716 /*
1717 * Physically remapped pages are special. Tell the
1718 * rest of the world about it:
1719 * VM_IO tells people not to look at these pages
1720 * (accesses can have side effects).
1721 * VM_PFNMAP tells the core MM that the base pages are just
1722 * raw PFN mappings, and do not have a "struct page" associated
1723 * with them.
1724 * VM_DONTEXPAND
1725 * Disable vma merging and expanding with mremap().
1726 * VM_DONTDUMP
1727 * Omit vma from core dump, even when VM_IO turned off.
1728 *
1729 * There's a horrible special case to handle copy-on-write
1730 * behaviour that some programs depend on. We mark the "original"
1731 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1732 * See vm_normal_page() for details.
1733 */
1734 if (is_cow_mapping(vma->vm_flags)) {
1735 if (addr != vma->vm_start || end != vma->vm_end)
1736 return -EINVAL;
1737 vma->vm_pgoff = pfn;
1738 }
1739
1740 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1741 if (err)
1742 return -EINVAL;
1743
1744 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1745
1746 BUG_ON(addr >= end);
1747 pfn -= addr >> PAGE_SHIFT;
1748 pgd = pgd_offset(mm, addr);
1749 flush_cache_range(vma, addr, end);
1750 do {
1751 next = pgd_addr_end(addr, end);
1752 err = remap_pud_range(mm, pgd, addr, next,
1753 pfn + (addr >> PAGE_SHIFT), prot);
1754 if (err)
1755 break;
1756 } while (pgd++, addr = next, addr != end);
1757
1758 if (err)
1759 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1760
1761 return err;
1762 }
1763 EXPORT_SYMBOL(remap_pfn_range);
1764
1765 /**
1766 * vm_iomap_memory - remap memory to userspace
1767 * @vma: user vma to map to
1768 * @start: start of area
1769 * @len: size of area
1770 *
1771 * This is a simplified io_remap_pfn_range() for common driver use. The
1772 * driver just needs to give us the physical memory range to be mapped,
1773 * we'll figure out the rest from the vma information.
1774 *
1775 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1776 * whatever write-combining details or similar.
1777 */
1778 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1779 {
1780 unsigned long vm_len, pfn, pages;
1781
1782 /* Check that the physical memory area passed in looks valid */
1783 if (start + len < start)
1784 return -EINVAL;
1785 /*
1786 * You *really* shouldn't map things that aren't page-aligned,
1787 * but we've historically allowed it because IO memory might
1788 * just have smaller alignment.
1789 */
1790 len += start & ~PAGE_MASK;
1791 pfn = start >> PAGE_SHIFT;
1792 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1793 if (pfn + pages < pfn)
1794 return -EINVAL;
1795
1796 /* We start the mapping 'vm_pgoff' pages into the area */
1797 if (vma->vm_pgoff > pages)
1798 return -EINVAL;
1799 pfn += vma->vm_pgoff;
1800 pages -= vma->vm_pgoff;
1801
1802 /* Can we fit all of the mapping? */
1803 vm_len = vma->vm_end - vma->vm_start;
1804 if (vm_len >> PAGE_SHIFT > pages)
1805 return -EINVAL;
1806
1807 /* Ok, let it rip */
1808 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1809 }
1810 EXPORT_SYMBOL(vm_iomap_memory);
1811
1812 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1813 unsigned long addr, unsigned long end,
1814 pte_fn_t fn, void *data)
1815 {
1816 pte_t *pte;
1817 int err;
1818 pgtable_t token;
1819 spinlock_t *uninitialized_var(ptl);
1820
1821 pte = (mm == &init_mm) ?
1822 pte_alloc_kernel(pmd, addr) :
1823 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1824 if (!pte)
1825 return -ENOMEM;
1826
1827 BUG_ON(pmd_huge(*pmd));
1828
1829 arch_enter_lazy_mmu_mode();
1830
1831 token = pmd_pgtable(*pmd);
1832
1833 do {
1834 err = fn(pte++, token, addr, data);
1835 if (err)
1836 break;
1837 } while (addr += PAGE_SIZE, addr != end);
1838
1839 arch_leave_lazy_mmu_mode();
1840
1841 if (mm != &init_mm)
1842 pte_unmap_unlock(pte-1, ptl);
1843 return err;
1844 }
1845
1846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1847 unsigned long addr, unsigned long end,
1848 pte_fn_t fn, void *data)
1849 {
1850 pmd_t *pmd;
1851 unsigned long next;
1852 int err;
1853
1854 BUG_ON(pud_huge(*pud));
1855
1856 pmd = pmd_alloc(mm, pud, addr);
1857 if (!pmd)
1858 return -ENOMEM;
1859 do {
1860 next = pmd_addr_end(addr, end);
1861 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1862 if (err)
1863 break;
1864 } while (pmd++, addr = next, addr != end);
1865 return err;
1866 }
1867
1868 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1869 unsigned long addr, unsigned long end,
1870 pte_fn_t fn, void *data)
1871 {
1872 pud_t *pud;
1873 unsigned long next;
1874 int err;
1875
1876 pud = pud_alloc(mm, pgd, addr);
1877 if (!pud)
1878 return -ENOMEM;
1879 do {
1880 next = pud_addr_end(addr, end);
1881 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1882 if (err)
1883 break;
1884 } while (pud++, addr = next, addr != end);
1885 return err;
1886 }
1887
1888 /*
1889 * Scan a region of virtual memory, filling in page tables as necessary
1890 * and calling a provided function on each leaf page table.
1891 */
1892 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1893 unsigned long size, pte_fn_t fn, void *data)
1894 {
1895 pgd_t *pgd;
1896 unsigned long next;
1897 unsigned long end = addr + size;
1898 int err;
1899
1900 if (WARN_ON(addr >= end))
1901 return -EINVAL;
1902
1903 pgd = pgd_offset(mm, addr);
1904 do {
1905 next = pgd_addr_end(addr, end);
1906 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1907 if (err)
1908 break;
1909 } while (pgd++, addr = next, addr != end);
1910
1911 return err;
1912 }
1913 EXPORT_SYMBOL_GPL(apply_to_page_range);
1914
1915 /*
1916 * handle_pte_fault chooses page fault handler according to an entry which was
1917 * read non-atomically. Before making any commitment, on those architectures
1918 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1919 * parts, do_swap_page must check under lock before unmapping the pte and
1920 * proceeding (but do_wp_page is only called after already making such a check;
1921 * and do_anonymous_page can safely check later on).
1922 */
1923 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1924 pte_t *page_table, pte_t orig_pte)
1925 {
1926 int same = 1;
1927 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1928 if (sizeof(pte_t) > sizeof(unsigned long)) {
1929 spinlock_t *ptl = pte_lockptr(mm, pmd);
1930 spin_lock(ptl);
1931 same = pte_same(*page_table, orig_pte);
1932 spin_unlock(ptl);
1933 }
1934 #endif
1935 pte_unmap(page_table);
1936 return same;
1937 }
1938
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941 debug_dma_assert_idle(src);
1942
1943 /*
1944 * If the source page was a PFN mapping, we don't have
1945 * a "struct page" for it. We do a best-effort copy by
1946 * just copying from the original user address. If that
1947 * fails, we just zero-fill it. Live with it.
1948 */
1949 if (unlikely(!src)) {
1950 void *kaddr = kmap_atomic(dst);
1951 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1952
1953 /*
1954 * This really shouldn't fail, because the page is there
1955 * in the page tables. But it might just be unreadable,
1956 * in which case we just give up and fill the result with
1957 * zeroes.
1958 */
1959 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1960 clear_page(kaddr);
1961 kunmap_atomic(kaddr);
1962 flush_dcache_page(dst);
1963 } else
1964 copy_user_highpage(dst, src, va, vma);
1965 }
1966
1967 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1968 {
1969 struct file *vm_file = vma->vm_file;
1970
1971 if (vm_file)
1972 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1973
1974 /*
1975 * Special mappings (e.g. VDSO) do not have any file so fake
1976 * a default GFP_KERNEL for them.
1977 */
1978 return GFP_KERNEL;
1979 }
1980
1981 /*
1982 * Notify the address space that the page is about to become writable so that
1983 * it can prohibit this or wait for the page to get into an appropriate state.
1984 *
1985 * We do this without the lock held, so that it can sleep if it needs to.
1986 */
1987 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1988 unsigned long address)
1989 {
1990 struct vm_fault vmf;
1991 int ret;
1992
1993 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1994 vmf.pgoff = page->index;
1995 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1996 vmf.gfp_mask = __get_fault_gfp_mask(vma);
1997 vmf.page = page;
1998 vmf.cow_page = NULL;
1999
2000 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2001 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2002 return ret;
2003 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2004 lock_page(page);
2005 if (!page->mapping) {
2006 unlock_page(page);
2007 return 0; /* retry */
2008 }
2009 ret |= VM_FAULT_LOCKED;
2010 } else
2011 VM_BUG_ON_PAGE(!PageLocked(page), page);
2012 return ret;
2013 }
2014
2015 /*
2016 * Handle write page faults for pages that can be reused in the current vma
2017 *
2018 * This can happen either due to the mapping being with the VM_SHARED flag,
2019 * or due to us being the last reference standing to the page. In either
2020 * case, all we need to do here is to mark the page as writable and update
2021 * any related book-keeping.
2022 */
2023 static inline int wp_page_reuse(struct mm_struct *mm,
2024 struct vm_area_struct *vma, unsigned long address,
2025 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2026 struct page *page, int page_mkwrite,
2027 int dirty_shared)
2028 __releases(ptl)
2029 {
2030 pte_t entry;
2031 /*
2032 * Clear the pages cpupid information as the existing
2033 * information potentially belongs to a now completely
2034 * unrelated process.
2035 */
2036 if (page)
2037 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2038
2039 flush_cache_page(vma, address, pte_pfn(orig_pte));
2040 entry = pte_mkyoung(orig_pte);
2041 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2042 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2043 update_mmu_cache(vma, address, page_table);
2044 pte_unmap_unlock(page_table, ptl);
2045
2046 if (dirty_shared) {
2047 struct address_space *mapping;
2048 int dirtied;
2049
2050 if (!page_mkwrite)
2051 lock_page(page);
2052
2053 dirtied = set_page_dirty(page);
2054 VM_BUG_ON_PAGE(PageAnon(page), page);
2055 mapping = page->mapping;
2056 unlock_page(page);
2057 put_page(page);
2058
2059 if ((dirtied || page_mkwrite) && mapping) {
2060 /*
2061 * Some device drivers do not set page.mapping
2062 * but still dirty their pages
2063 */
2064 balance_dirty_pages_ratelimited(mapping);
2065 }
2066
2067 if (!page_mkwrite)
2068 file_update_time(vma->vm_file);
2069 }
2070
2071 return VM_FAULT_WRITE;
2072 }
2073
2074 /*
2075 * Handle the case of a page which we actually need to copy to a new page.
2076 *
2077 * Called with mmap_sem locked and the old page referenced, but
2078 * without the ptl held.
2079 *
2080 * High level logic flow:
2081 *
2082 * - Allocate a page, copy the content of the old page to the new one.
2083 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2084 * - Take the PTL. If the pte changed, bail out and release the allocated page
2085 * - If the pte is still the way we remember it, update the page table and all
2086 * relevant references. This includes dropping the reference the page-table
2087 * held to the old page, as well as updating the rmap.
2088 * - In any case, unlock the PTL and drop the reference we took to the old page.
2089 */
2090 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2091 unsigned long address, pte_t *page_table, pmd_t *pmd,
2092 pte_t orig_pte, struct page *old_page)
2093 {
2094 struct page *new_page = NULL;
2095 spinlock_t *ptl = NULL;
2096 pte_t entry;
2097 int page_copied = 0;
2098 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2099 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2100 struct mem_cgroup *memcg;
2101
2102 if (unlikely(anon_vma_prepare(vma)))
2103 goto oom;
2104
2105 if (is_zero_pfn(pte_pfn(orig_pte))) {
2106 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2107 if (!new_page)
2108 goto oom;
2109 } else {
2110 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2111 if (!new_page)
2112 goto oom;
2113 cow_user_page(new_page, old_page, address, vma);
2114 }
2115
2116 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2117 goto oom_free_new;
2118
2119 __SetPageUptodate(new_page);
2120
2121 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2122
2123 /*
2124 * Re-check the pte - we dropped the lock
2125 */
2126 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2127 if (likely(pte_same(*page_table, orig_pte))) {
2128 if (old_page) {
2129 if (!PageAnon(old_page)) {
2130 dec_mm_counter_fast(mm,
2131 mm_counter_file(old_page));
2132 inc_mm_counter_fast(mm, MM_ANONPAGES);
2133 }
2134 } else {
2135 inc_mm_counter_fast(mm, MM_ANONPAGES);
2136 }
2137 flush_cache_page(vma, address, pte_pfn(orig_pte));
2138 entry = mk_pte(new_page, vma->vm_page_prot);
2139 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2140 /*
2141 * Clear the pte entry and flush it first, before updating the
2142 * pte with the new entry. This will avoid a race condition
2143 * seen in the presence of one thread doing SMC and another
2144 * thread doing COW.
2145 */
2146 ptep_clear_flush_notify(vma, address, page_table);
2147 page_add_new_anon_rmap(new_page, vma, address, false);
2148 mem_cgroup_commit_charge(new_page, memcg, false, false);
2149 lru_cache_add_active_or_unevictable(new_page, vma);
2150 /*
2151 * We call the notify macro here because, when using secondary
2152 * mmu page tables (such as kvm shadow page tables), we want the
2153 * new page to be mapped directly into the secondary page table.
2154 */
2155 set_pte_at_notify(mm, address, page_table, entry);
2156 update_mmu_cache(vma, address, page_table);
2157 if (old_page) {
2158 /*
2159 * Only after switching the pte to the new page may
2160 * we remove the mapcount here. Otherwise another
2161 * process may come and find the rmap count decremented
2162 * before the pte is switched to the new page, and
2163 * "reuse" the old page writing into it while our pte
2164 * here still points into it and can be read by other
2165 * threads.
2166 *
2167 * The critical issue is to order this
2168 * page_remove_rmap with the ptp_clear_flush above.
2169 * Those stores are ordered by (if nothing else,)
2170 * the barrier present in the atomic_add_negative
2171 * in page_remove_rmap.
2172 *
2173 * Then the TLB flush in ptep_clear_flush ensures that
2174 * no process can access the old page before the
2175 * decremented mapcount is visible. And the old page
2176 * cannot be reused until after the decremented
2177 * mapcount is visible. So transitively, TLBs to
2178 * old page will be flushed before it can be reused.
2179 */
2180 page_remove_rmap(old_page, false);
2181 }
2182
2183 /* Free the old page.. */
2184 new_page = old_page;
2185 page_copied = 1;
2186 } else {
2187 mem_cgroup_cancel_charge(new_page, memcg, false);
2188 }
2189
2190 if (new_page)
2191 put_page(new_page);
2192
2193 pte_unmap_unlock(page_table, ptl);
2194 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2195 if (old_page) {
2196 /*
2197 * Don't let another task, with possibly unlocked vma,
2198 * keep the mlocked page.
2199 */
2200 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2201 lock_page(old_page); /* LRU manipulation */
2202 if (PageMlocked(old_page))
2203 munlock_vma_page(old_page);
2204 unlock_page(old_page);
2205 }
2206 put_page(old_page);
2207 }
2208 return page_copied ? VM_FAULT_WRITE : 0;
2209 oom_free_new:
2210 put_page(new_page);
2211 oom:
2212 if (old_page)
2213 put_page(old_page);
2214 return VM_FAULT_OOM;
2215 }
2216
2217 /*
2218 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2219 * mapping
2220 */
2221 static int wp_pfn_shared(struct mm_struct *mm,
2222 struct vm_area_struct *vma, unsigned long address,
2223 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2224 pmd_t *pmd)
2225 {
2226 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2227 struct vm_fault vmf = {
2228 .page = NULL,
2229 .pgoff = linear_page_index(vma, address),
2230 .virtual_address = (void __user *)(address & PAGE_MASK),
2231 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2232 };
2233 int ret;
2234
2235 pte_unmap_unlock(page_table, ptl);
2236 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2237 if (ret & VM_FAULT_ERROR)
2238 return ret;
2239 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2240 /*
2241 * We might have raced with another page fault while we
2242 * released the pte_offset_map_lock.
2243 */
2244 if (!pte_same(*page_table, orig_pte)) {
2245 pte_unmap_unlock(page_table, ptl);
2246 return 0;
2247 }
2248 }
2249 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2250 NULL, 0, 0);
2251 }
2252
2253 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2254 unsigned long address, pte_t *page_table,
2255 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2256 struct page *old_page)
2257 __releases(ptl)
2258 {
2259 int page_mkwrite = 0;
2260
2261 get_page(old_page);
2262
2263 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2264 int tmp;
2265
2266 pte_unmap_unlock(page_table, ptl);
2267 tmp = do_page_mkwrite(vma, old_page, address);
2268 if (unlikely(!tmp || (tmp &
2269 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2270 put_page(old_page);
2271 return tmp;
2272 }
2273 /*
2274 * Since we dropped the lock we need to revalidate
2275 * the PTE as someone else may have changed it. If
2276 * they did, we just return, as we can count on the
2277 * MMU to tell us if they didn't also make it writable.
2278 */
2279 page_table = pte_offset_map_lock(mm, pmd, address,
2280 &ptl);
2281 if (!pte_same(*page_table, orig_pte)) {
2282 unlock_page(old_page);
2283 pte_unmap_unlock(page_table, ptl);
2284 put_page(old_page);
2285 return 0;
2286 }
2287 page_mkwrite = 1;
2288 }
2289
2290 return wp_page_reuse(mm, vma, address, page_table, ptl,
2291 orig_pte, old_page, page_mkwrite, 1);
2292 }
2293
2294 /*
2295 * This routine handles present pages, when users try to write
2296 * to a shared page. It is done by copying the page to a new address
2297 * and decrementing the shared-page counter for the old page.
2298 *
2299 * Note that this routine assumes that the protection checks have been
2300 * done by the caller (the low-level page fault routine in most cases).
2301 * Thus we can safely just mark it writable once we've done any necessary
2302 * COW.
2303 *
2304 * We also mark the page dirty at this point even though the page will
2305 * change only once the write actually happens. This avoids a few races,
2306 * and potentially makes it more efficient.
2307 *
2308 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2309 * but allow concurrent faults), with pte both mapped and locked.
2310 * We return with mmap_sem still held, but pte unmapped and unlocked.
2311 */
2312 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2313 unsigned long address, pte_t *page_table, pmd_t *pmd,
2314 spinlock_t *ptl, pte_t orig_pte)
2315 __releases(ptl)
2316 {
2317 struct page *old_page;
2318
2319 old_page = vm_normal_page(vma, address, orig_pte);
2320 if (!old_page) {
2321 /*
2322 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2323 * VM_PFNMAP VMA.
2324 *
2325 * We should not cow pages in a shared writeable mapping.
2326 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2327 */
2328 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2329 (VM_WRITE|VM_SHARED))
2330 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2331 orig_pte, pmd);
2332
2333 pte_unmap_unlock(page_table, ptl);
2334 return wp_page_copy(mm, vma, address, page_table, pmd,
2335 orig_pte, old_page);
2336 }
2337
2338 /*
2339 * Take out anonymous pages first, anonymous shared vmas are
2340 * not dirty accountable.
2341 */
2342 if (PageAnon(old_page) && !PageKsm(old_page)) {
2343 if (!trylock_page(old_page)) {
2344 get_page(old_page);
2345 pte_unmap_unlock(page_table, ptl);
2346 lock_page(old_page);
2347 page_table = pte_offset_map_lock(mm, pmd, address,
2348 &ptl);
2349 if (!pte_same(*page_table, orig_pte)) {
2350 unlock_page(old_page);
2351 pte_unmap_unlock(page_table, ptl);
2352 put_page(old_page);
2353 return 0;
2354 }
2355 put_page(old_page);
2356 }
2357 if (reuse_swap_page(old_page)) {
2358 /*
2359 * The page is all ours. Move it to our anon_vma so
2360 * the rmap code will not search our parent or siblings.
2361 * Protected against the rmap code by the page lock.
2362 */
2363 page_move_anon_rmap(old_page, vma, address);
2364 unlock_page(old_page);
2365 return wp_page_reuse(mm, vma, address, page_table, ptl,
2366 orig_pte, old_page, 0, 0);
2367 }
2368 unlock_page(old_page);
2369 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2370 (VM_WRITE|VM_SHARED))) {
2371 return wp_page_shared(mm, vma, address, page_table, pmd,
2372 ptl, orig_pte, old_page);
2373 }
2374
2375 /*
2376 * Ok, we need to copy. Oh, well..
2377 */
2378 get_page(old_page);
2379
2380 pte_unmap_unlock(page_table, ptl);
2381 return wp_page_copy(mm, vma, address, page_table, pmd,
2382 orig_pte, old_page);
2383 }
2384
2385 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2386 unsigned long start_addr, unsigned long end_addr,
2387 struct zap_details *details)
2388 {
2389 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2390 }
2391
2392 static inline void unmap_mapping_range_tree(struct rb_root *root,
2393 struct zap_details *details)
2394 {
2395 struct vm_area_struct *vma;
2396 pgoff_t vba, vea, zba, zea;
2397
2398 vma_interval_tree_foreach(vma, root,
2399 details->first_index, details->last_index) {
2400
2401 vba = vma->vm_pgoff;
2402 vea = vba + vma_pages(vma) - 1;
2403 zba = details->first_index;
2404 if (zba < vba)
2405 zba = vba;
2406 zea = details->last_index;
2407 if (zea > vea)
2408 zea = vea;
2409
2410 unmap_mapping_range_vma(vma,
2411 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2412 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2413 details);
2414 }
2415 }
2416
2417 /**
2418 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2419 * address_space corresponding to the specified page range in the underlying
2420 * file.
2421 *
2422 * @mapping: the address space containing mmaps to be unmapped.
2423 * @holebegin: byte in first page to unmap, relative to the start of
2424 * the underlying file. This will be rounded down to a PAGE_SIZE
2425 * boundary. Note that this is different from truncate_pagecache(), which
2426 * must keep the partial page. In contrast, we must get rid of
2427 * partial pages.
2428 * @holelen: size of prospective hole in bytes. This will be rounded
2429 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2430 * end of the file.
2431 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432 * but 0 when invalidating pagecache, don't throw away private data.
2433 */
2434 void unmap_mapping_range(struct address_space *mapping,
2435 loff_t const holebegin, loff_t const holelen, int even_cows)
2436 {
2437 struct zap_details details = { };
2438 pgoff_t hba = holebegin >> PAGE_SHIFT;
2439 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2440
2441 /* Check for overflow. */
2442 if (sizeof(holelen) > sizeof(hlen)) {
2443 long long holeend =
2444 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445 if (holeend & ~(long long)ULONG_MAX)
2446 hlen = ULONG_MAX - hba + 1;
2447 }
2448
2449 details.check_mapping = even_cows? NULL: mapping;
2450 details.first_index = hba;
2451 details.last_index = hba + hlen - 1;
2452 if (details.last_index < details.first_index)
2453 details.last_index = ULONG_MAX;
2454
2455
2456 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2457 i_mmap_lock_write(mapping);
2458 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2459 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460 i_mmap_unlock_write(mapping);
2461 }
2462 EXPORT_SYMBOL(unmap_mapping_range);
2463
2464 /*
2465 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2466 * but allow concurrent faults), and pte mapped but not yet locked.
2467 * We return with pte unmapped and unlocked.
2468 *
2469 * We return with the mmap_sem locked or unlocked in the same cases
2470 * as does filemap_fault().
2471 */
2472 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2473 unsigned long address, pte_t *page_table, pmd_t *pmd,
2474 unsigned int flags, pte_t orig_pte)
2475 {
2476 spinlock_t *ptl;
2477 struct page *page, *swapcache;
2478 struct mem_cgroup *memcg;
2479 swp_entry_t entry;
2480 pte_t pte;
2481 int locked;
2482 int exclusive = 0;
2483 int ret = 0;
2484
2485 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2486 goto out;
2487
2488 entry = pte_to_swp_entry(orig_pte);
2489 if (unlikely(non_swap_entry(entry))) {
2490 if (is_migration_entry(entry)) {
2491 migration_entry_wait(mm, pmd, address);
2492 } else if (is_hwpoison_entry(entry)) {
2493 ret = VM_FAULT_HWPOISON;
2494 } else {
2495 print_bad_pte(vma, address, orig_pte, NULL);
2496 ret = VM_FAULT_SIGBUS;
2497 }
2498 goto out;
2499 }
2500 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2501 page = lookup_swap_cache(entry);
2502 if (!page) {
2503 page = swapin_readahead(entry,
2504 GFP_HIGHUSER_MOVABLE, vma, address);
2505 if (!page) {
2506 /*
2507 * Back out if somebody else faulted in this pte
2508 * while we released the pte lock.
2509 */
2510 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2511 if (likely(pte_same(*page_table, orig_pte)))
2512 ret = VM_FAULT_OOM;
2513 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514 goto unlock;
2515 }
2516
2517 /* Had to read the page from swap area: Major fault */
2518 ret = VM_FAULT_MAJOR;
2519 count_vm_event(PGMAJFAULT);
2520 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2521 } else if (PageHWPoison(page)) {
2522 /*
2523 * hwpoisoned dirty swapcache pages are kept for killing
2524 * owner processes (which may be unknown at hwpoison time)
2525 */
2526 ret = VM_FAULT_HWPOISON;
2527 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528 swapcache = page;
2529 goto out_release;
2530 }
2531
2532 swapcache = page;
2533 locked = lock_page_or_retry(page, mm, flags);
2534
2535 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536 if (!locked) {
2537 ret |= VM_FAULT_RETRY;
2538 goto out_release;
2539 }
2540
2541 /*
2542 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2543 * release the swapcache from under us. The page pin, and pte_same
2544 * test below, are not enough to exclude that. Even if it is still
2545 * swapcache, we need to check that the page's swap has not changed.
2546 */
2547 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2548 goto out_page;
2549
2550 page = ksm_might_need_to_copy(page, vma, address);
2551 if (unlikely(!page)) {
2552 ret = VM_FAULT_OOM;
2553 page = swapcache;
2554 goto out_page;
2555 }
2556
2557 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2558 ret = VM_FAULT_OOM;
2559 goto out_page;
2560 }
2561
2562 /*
2563 * Back out if somebody else already faulted in this pte.
2564 */
2565 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2566 if (unlikely(!pte_same(*page_table, orig_pte)))
2567 goto out_nomap;
2568
2569 if (unlikely(!PageUptodate(page))) {
2570 ret = VM_FAULT_SIGBUS;
2571 goto out_nomap;
2572 }
2573
2574 /*
2575 * The page isn't present yet, go ahead with the fault.
2576 *
2577 * Be careful about the sequence of operations here.
2578 * To get its accounting right, reuse_swap_page() must be called
2579 * while the page is counted on swap but not yet in mapcount i.e.
2580 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2581 * must be called after the swap_free(), or it will never succeed.
2582 */
2583
2584 inc_mm_counter_fast(mm, MM_ANONPAGES);
2585 dec_mm_counter_fast(mm, MM_SWAPENTS);
2586 pte = mk_pte(page, vma->vm_page_prot);
2587 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2588 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2589 flags &= ~FAULT_FLAG_WRITE;
2590 ret |= VM_FAULT_WRITE;
2591 exclusive = RMAP_EXCLUSIVE;
2592 }
2593 flush_icache_page(vma, page);
2594 if (pte_swp_soft_dirty(orig_pte))
2595 pte = pte_mksoft_dirty(pte);
2596 set_pte_at(mm, address, page_table, pte);
2597 if (page == swapcache) {
2598 do_page_add_anon_rmap(page, vma, address, exclusive);
2599 mem_cgroup_commit_charge(page, memcg, true, false);
2600 } else { /* ksm created a completely new copy */
2601 page_add_new_anon_rmap(page, vma, address, false);
2602 mem_cgroup_commit_charge(page, memcg, false, false);
2603 lru_cache_add_active_or_unevictable(page, vma);
2604 }
2605
2606 swap_free(entry);
2607 if (mem_cgroup_swap_full(page) ||
2608 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2609 try_to_free_swap(page);
2610 unlock_page(page);
2611 if (page != swapcache) {
2612 /*
2613 * Hold the lock to avoid the swap entry to be reused
2614 * until we take the PT lock for the pte_same() check
2615 * (to avoid false positives from pte_same). For
2616 * further safety release the lock after the swap_free
2617 * so that the swap count won't change under a
2618 * parallel locked swapcache.
2619 */
2620 unlock_page(swapcache);
2621 put_page(swapcache);
2622 }
2623
2624 if (flags & FAULT_FLAG_WRITE) {
2625 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 if (ret & VM_FAULT_ERROR)
2627 ret &= VM_FAULT_ERROR;
2628 goto out;
2629 }
2630
2631 /* No need to invalidate - it was non-present before */
2632 update_mmu_cache(vma, address, page_table);
2633 unlock:
2634 pte_unmap_unlock(page_table, ptl);
2635 out:
2636 return ret;
2637 out_nomap:
2638 mem_cgroup_cancel_charge(page, memcg, false);
2639 pte_unmap_unlock(page_table, ptl);
2640 out_page:
2641 unlock_page(page);
2642 out_release:
2643 put_page(page);
2644 if (page != swapcache) {
2645 unlock_page(swapcache);
2646 put_page(swapcache);
2647 }
2648 return ret;
2649 }
2650
2651 /*
2652 * This is like a special single-page "expand_{down|up}wards()",
2653 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2654 * doesn't hit another vma.
2655 */
2656 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2657 {
2658 address &= PAGE_MASK;
2659 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2660 struct vm_area_struct *prev = vma->vm_prev;
2661
2662 /*
2663 * Is there a mapping abutting this one below?
2664 *
2665 * That's only ok if it's the same stack mapping
2666 * that has gotten split..
2667 */
2668 if (prev && prev->vm_end == address)
2669 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2670
2671 return expand_downwards(vma, address - PAGE_SIZE);
2672 }
2673 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2674 struct vm_area_struct *next = vma->vm_next;
2675
2676 /* As VM_GROWSDOWN but s/below/above/ */
2677 if (next && next->vm_start == address + PAGE_SIZE)
2678 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2679
2680 return expand_upwards(vma, address + PAGE_SIZE);
2681 }
2682 return 0;
2683 }
2684
2685 /*
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), and pte mapped but not yet locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
2689 */
2690 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691 unsigned long address, pte_t *page_table, pmd_t *pmd,
2692 unsigned int flags)
2693 {
2694 struct mem_cgroup *memcg;
2695 struct page *page;
2696 spinlock_t *ptl;
2697 pte_t entry;
2698
2699 pte_unmap(page_table);
2700
2701 /* File mapping without ->vm_ops ? */
2702 if (vma->vm_flags & VM_SHARED)
2703 return VM_FAULT_SIGBUS;
2704
2705 /* Check if we need to add a guard page to the stack */
2706 if (check_stack_guard_page(vma, address) < 0)
2707 return VM_FAULT_SIGSEGV;
2708
2709 /* Use the zero-page for reads */
2710 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2711 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2712 vma->vm_page_prot));
2713 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2714 if (!pte_none(*page_table))
2715 goto unlock;
2716 /* Deliver the page fault to userland, check inside PT lock */
2717 if (userfaultfd_missing(vma)) {
2718 pte_unmap_unlock(page_table, ptl);
2719 return handle_userfault(vma, address, flags,
2720 VM_UFFD_MISSING);
2721 }
2722 goto setpte;
2723 }
2724
2725 /* Allocate our own private page. */
2726 if (unlikely(anon_vma_prepare(vma)))
2727 goto oom;
2728 page = alloc_zeroed_user_highpage_movable(vma, address);
2729 if (!page)
2730 goto oom;
2731
2732 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2733 goto oom_free_page;
2734
2735 /*
2736 * The memory barrier inside __SetPageUptodate makes sure that
2737 * preceeding stores to the page contents become visible before
2738 * the set_pte_at() write.
2739 */
2740 __SetPageUptodate(page);
2741
2742 entry = mk_pte(page, vma->vm_page_prot);
2743 if (vma->vm_flags & VM_WRITE)
2744 entry = pte_mkwrite(pte_mkdirty(entry));
2745
2746 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2747 if (!pte_none(*page_table))
2748 goto release;
2749
2750 /* Deliver the page fault to userland, check inside PT lock */
2751 if (userfaultfd_missing(vma)) {
2752 pte_unmap_unlock(page_table, ptl);
2753 mem_cgroup_cancel_charge(page, memcg, false);
2754 put_page(page);
2755 return handle_userfault(vma, address, flags,
2756 VM_UFFD_MISSING);
2757 }
2758
2759 inc_mm_counter_fast(mm, MM_ANONPAGES);
2760 page_add_new_anon_rmap(page, vma, address, false);
2761 mem_cgroup_commit_charge(page, memcg, false, false);
2762 lru_cache_add_active_or_unevictable(page, vma);
2763 setpte:
2764 set_pte_at(mm, address, page_table, entry);
2765
2766 /* No need to invalidate - it was non-present before */
2767 update_mmu_cache(vma, address, page_table);
2768 unlock:
2769 pte_unmap_unlock(page_table, ptl);
2770 return 0;
2771 release:
2772 mem_cgroup_cancel_charge(page, memcg, false);
2773 put_page(page);
2774 goto unlock;
2775 oom_free_page:
2776 put_page(page);
2777 oom:
2778 return VM_FAULT_OOM;
2779 }
2780
2781 /*
2782 * The mmap_sem must have been held on entry, and may have been
2783 * released depending on flags and vma->vm_ops->fault() return value.
2784 * See filemap_fault() and __lock_page_retry().
2785 */
2786 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2787 pgoff_t pgoff, unsigned int flags,
2788 struct page *cow_page, struct page **page)
2789 {
2790 struct vm_fault vmf;
2791 int ret;
2792
2793 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2794 vmf.pgoff = pgoff;
2795 vmf.flags = flags;
2796 vmf.page = NULL;
2797 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2798 vmf.cow_page = cow_page;
2799
2800 ret = vma->vm_ops->fault(vma, &vmf);
2801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2802 return ret;
2803 if (!vmf.page)
2804 goto out;
2805
2806 if (unlikely(PageHWPoison(vmf.page))) {
2807 if (ret & VM_FAULT_LOCKED)
2808 unlock_page(vmf.page);
2809 put_page(vmf.page);
2810 return VM_FAULT_HWPOISON;
2811 }
2812
2813 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2814 lock_page(vmf.page);
2815 else
2816 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2817
2818 out:
2819 *page = vmf.page;
2820 return ret;
2821 }
2822
2823 /**
2824 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2825 *
2826 * @vma: virtual memory area
2827 * @address: user virtual address
2828 * @page: page to map
2829 * @pte: pointer to target page table entry
2830 * @write: true, if new entry is writable
2831 * @anon: true, if it's anonymous page
2832 *
2833 * Caller must hold page table lock relevant for @pte.
2834 *
2835 * Target users are page handler itself and implementations of
2836 * vm_ops->map_pages.
2837 */
2838 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2839 struct page *page, pte_t *pte, bool write, bool anon)
2840 {
2841 pte_t entry;
2842
2843 flush_icache_page(vma, page);
2844 entry = mk_pte(page, vma->vm_page_prot);
2845 if (write)
2846 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2847 if (anon) {
2848 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2849 page_add_new_anon_rmap(page, vma, address, false);
2850 } else {
2851 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2852 page_add_file_rmap(page);
2853 }
2854 set_pte_at(vma->vm_mm, address, pte, entry);
2855
2856 /* no need to invalidate: a not-present page won't be cached */
2857 update_mmu_cache(vma, address, pte);
2858 }
2859
2860 static unsigned long fault_around_bytes __read_mostly =
2861 rounddown_pow_of_two(65536);
2862
2863 #ifdef CONFIG_DEBUG_FS
2864 static int fault_around_bytes_get(void *data, u64 *val)
2865 {
2866 *val = fault_around_bytes;
2867 return 0;
2868 }
2869
2870 /*
2871 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2872 * rounded down to nearest page order. It's what do_fault_around() expects to
2873 * see.
2874 */
2875 static int fault_around_bytes_set(void *data, u64 val)
2876 {
2877 if (val / PAGE_SIZE > PTRS_PER_PTE)
2878 return -EINVAL;
2879 if (val > PAGE_SIZE)
2880 fault_around_bytes = rounddown_pow_of_two(val);
2881 else
2882 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2883 return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2886 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2887
2888 static int __init fault_around_debugfs(void)
2889 {
2890 void *ret;
2891
2892 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2893 &fault_around_bytes_fops);
2894 if (!ret)
2895 pr_warn("Failed to create fault_around_bytes in debugfs");
2896 return 0;
2897 }
2898 late_initcall(fault_around_debugfs);
2899 #endif
2900
2901 /*
2902 * do_fault_around() tries to map few pages around the fault address. The hope
2903 * is that the pages will be needed soon and this will lower the number of
2904 * faults to handle.
2905 *
2906 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2907 * not ready to be mapped: not up-to-date, locked, etc.
2908 *
2909 * This function is called with the page table lock taken. In the split ptlock
2910 * case the page table lock only protects only those entries which belong to
2911 * the page table corresponding to the fault address.
2912 *
2913 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2914 * only once.
2915 *
2916 * fault_around_pages() defines how many pages we'll try to map.
2917 * do_fault_around() expects it to return a power of two less than or equal to
2918 * PTRS_PER_PTE.
2919 *
2920 * The virtual address of the area that we map is naturally aligned to the
2921 * fault_around_pages() value (and therefore to page order). This way it's
2922 * easier to guarantee that we don't cross page table boundaries.
2923 */
2924 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2925 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2926 {
2927 unsigned long start_addr, nr_pages, mask;
2928 pgoff_t max_pgoff;
2929 struct vm_fault vmf;
2930 int off;
2931
2932 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2933 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2934
2935 start_addr = max(address & mask, vma->vm_start);
2936 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2937 pte -= off;
2938 pgoff -= off;
2939
2940 /*
2941 * max_pgoff is either end of page table or end of vma
2942 * or fault_around_pages() from pgoff, depending what is nearest.
2943 */
2944 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2945 PTRS_PER_PTE - 1;
2946 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2947 pgoff + nr_pages - 1);
2948
2949 /* Check if it makes any sense to call ->map_pages */
2950 while (!pte_none(*pte)) {
2951 if (++pgoff > max_pgoff)
2952 return;
2953 start_addr += PAGE_SIZE;
2954 if (start_addr >= vma->vm_end)
2955 return;
2956 pte++;
2957 }
2958
2959 vmf.virtual_address = (void __user *) start_addr;
2960 vmf.pte = pte;
2961 vmf.pgoff = pgoff;
2962 vmf.max_pgoff = max_pgoff;
2963 vmf.flags = flags;
2964 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2965 vma->vm_ops->map_pages(vma, &vmf);
2966 }
2967
2968 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969 unsigned long address, pmd_t *pmd,
2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2971 {
2972 struct page *fault_page;
2973 spinlock_t *ptl;
2974 pte_t *pte;
2975 int ret = 0;
2976
2977 /*
2978 * Let's call ->map_pages() first and use ->fault() as fallback
2979 * if page by the offset is not ready to be mapped (cold cache or
2980 * something).
2981 */
2982 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2983 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2984 do_fault_around(vma, address, pte, pgoff, flags);
2985 if (!pte_same(*pte, orig_pte))
2986 goto unlock_out;
2987 pte_unmap_unlock(pte, ptl);
2988 }
2989
2990 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2991 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2992 return ret;
2993
2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 if (unlikely(!pte_same(*pte, orig_pte))) {
2996 pte_unmap_unlock(pte, ptl);
2997 unlock_page(fault_page);
2998 put_page(fault_page);
2999 return ret;
3000 }
3001 do_set_pte(vma, address, fault_page, pte, false, false);
3002 unlock_page(fault_page);
3003 unlock_out:
3004 pte_unmap_unlock(pte, ptl);
3005 return ret;
3006 }
3007
3008 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pmd_t *pmd,
3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012 struct page *fault_page, *new_page;
3013 struct mem_cgroup *memcg;
3014 spinlock_t *ptl;
3015 pte_t *pte;
3016 int ret;
3017
3018 if (unlikely(anon_vma_prepare(vma)))
3019 return VM_FAULT_OOM;
3020
3021 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3022 if (!new_page)
3023 return VM_FAULT_OOM;
3024
3025 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3026 put_page(new_page);
3027 return VM_FAULT_OOM;
3028 }
3029
3030 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 goto uncharge_out;
3033
3034 if (fault_page)
3035 copy_user_highpage(new_page, fault_page, address, vma);
3036 __SetPageUptodate(new_page);
3037
3038 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 if (unlikely(!pte_same(*pte, orig_pte))) {
3040 pte_unmap_unlock(pte, ptl);
3041 if (fault_page) {
3042 unlock_page(fault_page);
3043 put_page(fault_page);
3044 } else {
3045 /*
3046 * The fault handler has no page to lock, so it holds
3047 * i_mmap_lock for read to protect against truncate.
3048 */
3049 i_mmap_unlock_read(vma->vm_file->f_mapping);
3050 }
3051 goto uncharge_out;
3052 }
3053 do_set_pte(vma, address, new_page, pte, true, true);
3054 mem_cgroup_commit_charge(new_page, memcg, false, false);
3055 lru_cache_add_active_or_unevictable(new_page, vma);
3056 pte_unmap_unlock(pte, ptl);
3057 if (fault_page) {
3058 unlock_page(fault_page);
3059 put_page(fault_page);
3060 } else {
3061 /*
3062 * The fault handler has no page to lock, so it holds
3063 * i_mmap_lock for read to protect against truncate.
3064 */
3065 i_mmap_unlock_read(vma->vm_file->f_mapping);
3066 }
3067 return ret;
3068 uncharge_out:
3069 mem_cgroup_cancel_charge(new_page, memcg, false);
3070 put_page(new_page);
3071 return ret;
3072 }
3073
3074 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3075 unsigned long address, pmd_t *pmd,
3076 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3077 {
3078 struct page *fault_page;
3079 struct address_space *mapping;
3080 spinlock_t *ptl;
3081 pte_t *pte;
3082 int dirtied = 0;
3083 int ret, tmp;
3084
3085 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3086 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3087 return ret;
3088
3089 /*
3090 * Check if the backing address space wants to know that the page is
3091 * about to become writable
3092 */
3093 if (vma->vm_ops->page_mkwrite) {
3094 unlock_page(fault_page);
3095 tmp = do_page_mkwrite(vma, fault_page, address);
3096 if (unlikely(!tmp ||
3097 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3098 put_page(fault_page);
3099 return tmp;
3100 }
3101 }
3102
3103 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3104 if (unlikely(!pte_same(*pte, orig_pte))) {
3105 pte_unmap_unlock(pte, ptl);
3106 unlock_page(fault_page);
3107 put_page(fault_page);
3108 return ret;
3109 }
3110 do_set_pte(vma, address, fault_page, pte, true, false);
3111 pte_unmap_unlock(pte, ptl);
3112
3113 if (set_page_dirty(fault_page))
3114 dirtied = 1;
3115 /*
3116 * Take a local copy of the address_space - page.mapping may be zeroed
3117 * by truncate after unlock_page(). The address_space itself remains
3118 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3119 * release semantics to prevent the compiler from undoing this copying.
3120 */
3121 mapping = page_rmapping(fault_page);
3122 unlock_page(fault_page);
3123 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3124 /*
3125 * Some device drivers do not set page.mapping but still
3126 * dirty their pages
3127 */
3128 balance_dirty_pages_ratelimited(mapping);
3129 }
3130
3131 if (!vma->vm_ops->page_mkwrite)
3132 file_update_time(vma->vm_file);
3133
3134 return ret;
3135 }
3136
3137 /*
3138 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139 * but allow concurrent faults).
3140 * The mmap_sem may have been released depending on flags and our
3141 * return value. See filemap_fault() and __lock_page_or_retry().
3142 */
3143 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3144 unsigned long address, pte_t *page_table, pmd_t *pmd,
3145 unsigned int flags, pte_t orig_pte)
3146 {
3147 pgoff_t pgoff = linear_page_index(vma, address);
3148
3149 pte_unmap(page_table);
3150 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3151 if (!vma->vm_ops->fault)
3152 return VM_FAULT_SIGBUS;
3153 if (!(flags & FAULT_FLAG_WRITE))
3154 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3155 orig_pte);
3156 if (!(vma->vm_flags & VM_SHARED))
3157 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3158 orig_pte);
3159 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3160 }
3161
3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3163 unsigned long addr, int page_nid,
3164 int *flags)
3165 {
3166 get_page(page);
3167
3168 count_vm_numa_event(NUMA_HINT_FAULTS);
3169 if (page_nid == numa_node_id()) {
3170 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3171 *flags |= TNF_FAULT_LOCAL;
3172 }
3173
3174 return mpol_misplaced(page, vma, addr);
3175 }
3176
3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3178 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3179 {
3180 struct page *page = NULL;
3181 spinlock_t *ptl;
3182 int page_nid = -1;
3183 int last_cpupid;
3184 int target_nid;
3185 bool migrated = false;
3186 bool was_writable = pte_write(pte);
3187 int flags = 0;
3188
3189 /* A PROT_NONE fault should not end up here */
3190 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3191
3192 /*
3193 * The "pte" at this point cannot be used safely without
3194 * validation through pte_unmap_same(). It's of NUMA type but
3195 * the pfn may be screwed if the read is non atomic.
3196 *
3197 * We can safely just do a "set_pte_at()", because the old
3198 * page table entry is not accessible, so there would be no
3199 * concurrent hardware modifications to the PTE.
3200 */
3201 ptl = pte_lockptr(mm, pmd);
3202 spin_lock(ptl);
3203 if (unlikely(!pte_same(*ptep, pte))) {
3204 pte_unmap_unlock(ptep, ptl);
3205 goto out;
3206 }
3207
3208 /* Make it present again */
3209 pte = pte_modify(pte, vma->vm_page_prot);
3210 pte = pte_mkyoung(pte);
3211 if (was_writable)
3212 pte = pte_mkwrite(pte);
3213 set_pte_at(mm, addr, ptep, pte);
3214 update_mmu_cache(vma, addr, ptep);
3215
3216 page = vm_normal_page(vma, addr, pte);
3217 if (!page) {
3218 pte_unmap_unlock(ptep, ptl);
3219 return 0;
3220 }
3221
3222 /* TODO: handle PTE-mapped THP */
3223 if (PageCompound(page)) {
3224 pte_unmap_unlock(ptep, ptl);
3225 return 0;
3226 }
3227
3228 /*
3229 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3230 * much anyway since they can be in shared cache state. This misses
3231 * the case where a mapping is writable but the process never writes
3232 * to it but pte_write gets cleared during protection updates and
3233 * pte_dirty has unpredictable behaviour between PTE scan updates,
3234 * background writeback, dirty balancing and application behaviour.
3235 */
3236 if (!(vma->vm_flags & VM_WRITE))
3237 flags |= TNF_NO_GROUP;
3238
3239 /*
3240 * Flag if the page is shared between multiple address spaces. This
3241 * is later used when determining whether to group tasks together
3242 */
3243 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3244 flags |= TNF_SHARED;
3245
3246 last_cpupid = page_cpupid_last(page);
3247 page_nid = page_to_nid(page);
3248 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3249 pte_unmap_unlock(ptep, ptl);
3250 if (target_nid == -1) {
3251 put_page(page);
3252 goto out;
3253 }
3254
3255 /* Migrate to the requested node */
3256 migrated = migrate_misplaced_page(page, vma, target_nid);
3257 if (migrated) {
3258 page_nid = target_nid;
3259 flags |= TNF_MIGRATED;
3260 } else
3261 flags |= TNF_MIGRATE_FAIL;
3262
3263 out:
3264 if (page_nid != -1)
3265 task_numa_fault(last_cpupid, page_nid, 1, flags);
3266 return 0;
3267 }
3268
3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3270 unsigned long address, pmd_t *pmd, unsigned int flags)
3271 {
3272 if (vma_is_anonymous(vma))
3273 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3274 if (vma->vm_ops->pmd_fault)
3275 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3276 return VM_FAULT_FALLBACK;
3277 }
3278
3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3280 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3281 unsigned int flags)
3282 {
3283 if (vma_is_anonymous(vma))
3284 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3285 if (vma->vm_ops->pmd_fault)
3286 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3287 return VM_FAULT_FALLBACK;
3288 }
3289
3290 /*
3291 * These routines also need to handle stuff like marking pages dirty
3292 * and/or accessed for architectures that don't do it in hardware (most
3293 * RISC architectures). The early dirtying is also good on the i386.
3294 *
3295 * There is also a hook called "update_mmu_cache()" that architectures
3296 * with external mmu caches can use to update those (ie the Sparc or
3297 * PowerPC hashed page tables that act as extended TLBs).
3298 *
3299 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300 * but allow concurrent faults), and pte mapped but not yet locked.
3301 * We return with pte unmapped and unlocked.
3302 *
3303 * The mmap_sem may have been released depending on flags and our
3304 * return value. See filemap_fault() and __lock_page_or_retry().
3305 */
3306 static int handle_pte_fault(struct mm_struct *mm,
3307 struct vm_area_struct *vma, unsigned long address,
3308 pte_t *pte, pmd_t *pmd, unsigned int flags)
3309 {
3310 pte_t entry;
3311 spinlock_t *ptl;
3312
3313 /*
3314 * some architectures can have larger ptes than wordsize,
3315 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3316 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3317 * The code below just needs a consistent view for the ifs and
3318 * we later double check anyway with the ptl lock held. So here
3319 * a barrier will do.
3320 */
3321 entry = *pte;
3322 barrier();
3323 if (!pte_present(entry)) {
3324 if (pte_none(entry)) {
3325 if (vma_is_anonymous(vma))
3326 return do_anonymous_page(mm, vma, address,
3327 pte, pmd, flags);
3328 else
3329 return do_fault(mm, vma, address, pte, pmd,
3330 flags, entry);
3331 }
3332 return do_swap_page(mm, vma, address,
3333 pte, pmd, flags, entry);
3334 }
3335
3336 if (pte_protnone(entry))
3337 return do_numa_page(mm, vma, address, entry, pte, pmd);
3338
3339 ptl = pte_lockptr(mm, pmd);
3340 spin_lock(ptl);
3341 if (unlikely(!pte_same(*pte, entry)))
3342 goto unlock;
3343 if (flags & FAULT_FLAG_WRITE) {
3344 if (!pte_write(entry))
3345 return do_wp_page(mm, vma, address,
3346 pte, pmd, ptl, entry);
3347 entry = pte_mkdirty(entry);
3348 }
3349 entry = pte_mkyoung(entry);
3350 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3351 update_mmu_cache(vma, address, pte);
3352 } else {
3353 /*
3354 * This is needed only for protection faults but the arch code
3355 * is not yet telling us if this is a protection fault or not.
3356 * This still avoids useless tlb flushes for .text page faults
3357 * with threads.
3358 */
3359 if (flags & FAULT_FLAG_WRITE)
3360 flush_tlb_fix_spurious_fault(vma, address);
3361 }
3362 unlock:
3363 pte_unmap_unlock(pte, ptl);
3364 return 0;
3365 }
3366
3367 /*
3368 * By the time we get here, we already hold the mm semaphore
3369 *
3370 * The mmap_sem may have been released depending on flags and our
3371 * return value. See filemap_fault() and __lock_page_or_retry().
3372 */
3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3374 unsigned long address, unsigned int flags)
3375 {
3376 pgd_t *pgd;
3377 pud_t *pud;
3378 pmd_t *pmd;
3379 pte_t *pte;
3380
3381 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3382 flags & FAULT_FLAG_INSTRUCTION,
3383 flags & FAULT_FLAG_REMOTE))
3384 return VM_FAULT_SIGSEGV;
3385
3386 if (unlikely(is_vm_hugetlb_page(vma)))
3387 return hugetlb_fault(mm, vma, address, flags);
3388
3389 pgd = pgd_offset(mm, address);
3390 pud = pud_alloc(mm, pgd, address);
3391 if (!pud)
3392 return VM_FAULT_OOM;
3393 pmd = pmd_alloc(mm, pud, address);
3394 if (!pmd)
3395 return VM_FAULT_OOM;
3396 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3397 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3398 if (!(ret & VM_FAULT_FALLBACK))
3399 return ret;
3400 } else {
3401 pmd_t orig_pmd = *pmd;
3402 int ret;
3403
3404 barrier();
3405 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3406 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3407
3408 if (pmd_protnone(orig_pmd))
3409 return do_huge_pmd_numa_page(mm, vma, address,
3410 orig_pmd, pmd);
3411
3412 if (dirty && !pmd_write(orig_pmd)) {
3413 ret = wp_huge_pmd(mm, vma, address, pmd,
3414 orig_pmd, flags);
3415 if (!(ret & VM_FAULT_FALLBACK))
3416 return ret;
3417 } else {
3418 huge_pmd_set_accessed(mm, vma, address, pmd,
3419 orig_pmd, dirty);
3420 return 0;
3421 }
3422 }
3423 }
3424
3425 /*
3426 * Use pte_alloc() instead of pte_alloc_map, because we can't
3427 * run pte_offset_map on the pmd, if an huge pmd could
3428 * materialize from under us from a different thread.
3429 */
3430 if (unlikely(pte_alloc(mm, pmd, address)))
3431 return VM_FAULT_OOM;
3432 /*
3433 * If a huge pmd materialized under us just retry later. Use
3434 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3435 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3436 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3437 * in a different thread of this mm, in turn leading to a misleading
3438 * pmd_trans_huge() retval. All we have to ensure is that it is a
3439 * regular pmd that we can walk with pte_offset_map() and we can do that
3440 * through an atomic read in C, which is what pmd_trans_unstable()
3441 * provides.
3442 */
3443 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3444 return 0;
3445 /*
3446 * A regular pmd is established and it can't morph into a huge pmd
3447 * from under us anymore at this point because we hold the mmap_sem
3448 * read mode and khugepaged takes it in write mode. So now it's
3449 * safe to run pte_offset_map().
3450 */
3451 pte = pte_offset_map(pmd, address);
3452
3453 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3454 }
3455
3456 /*
3457 * By the time we get here, we already hold the mm semaphore
3458 *
3459 * The mmap_sem may have been released depending on flags and our
3460 * return value. See filemap_fault() and __lock_page_or_retry().
3461 */
3462 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3463 unsigned long address, unsigned int flags)
3464 {
3465 int ret;
3466
3467 __set_current_state(TASK_RUNNING);
3468
3469 count_vm_event(PGFAULT);
3470 mem_cgroup_count_vm_event(mm, PGFAULT);
3471
3472 /* do counter updates before entering really critical section. */
3473 check_sync_rss_stat(current);
3474
3475 /*
3476 * Enable the memcg OOM handling for faults triggered in user
3477 * space. Kernel faults are handled more gracefully.
3478 */
3479 if (flags & FAULT_FLAG_USER)
3480 mem_cgroup_oom_enable();
3481
3482 ret = __handle_mm_fault(mm, vma, address, flags);
3483
3484 if (flags & FAULT_FLAG_USER) {
3485 mem_cgroup_oom_disable();
3486 /*
3487 * The task may have entered a memcg OOM situation but
3488 * if the allocation error was handled gracefully (no
3489 * VM_FAULT_OOM), there is no need to kill anything.
3490 * Just clean up the OOM state peacefully.
3491 */
3492 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3493 mem_cgroup_oom_synchronize(false);
3494 }
3495
3496 return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(handle_mm_fault);
3499
3500 #ifndef __PAGETABLE_PUD_FOLDED
3501 /*
3502 * Allocate page upper directory.
3503 * We've already handled the fast-path in-line.
3504 */
3505 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3506 {
3507 pud_t *new = pud_alloc_one(mm, address);
3508 if (!new)
3509 return -ENOMEM;
3510
3511 smp_wmb(); /* See comment in __pte_alloc */
3512
3513 spin_lock(&mm->page_table_lock);
3514 if (pgd_present(*pgd)) /* Another has populated it */
3515 pud_free(mm, new);
3516 else
3517 pgd_populate(mm, pgd, new);
3518 spin_unlock(&mm->page_table_lock);
3519 return 0;
3520 }
3521 #endif /* __PAGETABLE_PUD_FOLDED */
3522
3523 #ifndef __PAGETABLE_PMD_FOLDED
3524 /*
3525 * Allocate page middle directory.
3526 * We've already handled the fast-path in-line.
3527 */
3528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3529 {
3530 pmd_t *new = pmd_alloc_one(mm, address);
3531 if (!new)
3532 return -ENOMEM;
3533
3534 smp_wmb(); /* See comment in __pte_alloc */
3535
3536 spin_lock(&mm->page_table_lock);
3537 #ifndef __ARCH_HAS_4LEVEL_HACK
3538 if (!pud_present(*pud)) {
3539 mm_inc_nr_pmds(mm);
3540 pud_populate(mm, pud, new);
3541 } else /* Another has populated it */
3542 pmd_free(mm, new);
3543 #else
3544 if (!pgd_present(*pud)) {
3545 mm_inc_nr_pmds(mm);
3546 pgd_populate(mm, pud, new);
3547 } else /* Another has populated it */
3548 pmd_free(mm, new);
3549 #endif /* __ARCH_HAS_4LEVEL_HACK */
3550 spin_unlock(&mm->page_table_lock);
3551 return 0;
3552 }
3553 #endif /* __PAGETABLE_PMD_FOLDED */
3554
3555 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3556 pte_t **ptepp, spinlock_t **ptlp)
3557 {
3558 pgd_t *pgd;
3559 pud_t *pud;
3560 pmd_t *pmd;
3561 pte_t *ptep;
3562
3563 pgd = pgd_offset(mm, address);
3564 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3565 goto out;
3566
3567 pud = pud_offset(pgd, address);
3568 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3569 goto out;
3570
3571 pmd = pmd_offset(pud, address);
3572 VM_BUG_ON(pmd_trans_huge(*pmd));
3573 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3574 goto out;
3575
3576 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3577 if (pmd_huge(*pmd))
3578 goto out;
3579
3580 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3581 if (!ptep)
3582 goto out;
3583 if (!pte_present(*ptep))
3584 goto unlock;
3585 *ptepp = ptep;
3586 return 0;
3587 unlock:
3588 pte_unmap_unlock(ptep, *ptlp);
3589 out:
3590 return -EINVAL;
3591 }
3592
3593 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3594 pte_t **ptepp, spinlock_t **ptlp)
3595 {
3596 int res;
3597
3598 /* (void) is needed to make gcc happy */
3599 (void) __cond_lock(*ptlp,
3600 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3601 return res;
3602 }
3603
3604 /**
3605 * follow_pfn - look up PFN at a user virtual address
3606 * @vma: memory mapping
3607 * @address: user virtual address
3608 * @pfn: location to store found PFN
3609 *
3610 * Only IO mappings and raw PFN mappings are allowed.
3611 *
3612 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3613 */
3614 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3615 unsigned long *pfn)
3616 {
3617 int ret = -EINVAL;
3618 spinlock_t *ptl;
3619 pte_t *ptep;
3620
3621 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3622 return ret;
3623
3624 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3625 if (ret)
3626 return ret;
3627 *pfn = pte_pfn(*ptep);
3628 pte_unmap_unlock(ptep, ptl);
3629 return 0;
3630 }
3631 EXPORT_SYMBOL(follow_pfn);
3632
3633 #ifdef CONFIG_HAVE_IOREMAP_PROT
3634 int follow_phys(struct vm_area_struct *vma,
3635 unsigned long address, unsigned int flags,
3636 unsigned long *prot, resource_size_t *phys)
3637 {
3638 int ret = -EINVAL;
3639 pte_t *ptep, pte;
3640 spinlock_t *ptl;
3641
3642 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3643 goto out;
3644
3645 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3646 goto out;
3647 pte = *ptep;
3648
3649 if ((flags & FOLL_WRITE) && !pte_write(pte))
3650 goto unlock;
3651
3652 *prot = pgprot_val(pte_pgprot(pte));
3653 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3654
3655 ret = 0;
3656 unlock:
3657 pte_unmap_unlock(ptep, ptl);
3658 out:
3659 return ret;
3660 }
3661
3662 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3663 void *buf, int len, int write)
3664 {
3665 resource_size_t phys_addr;
3666 unsigned long prot = 0;
3667 void __iomem *maddr;
3668 int offset = addr & (PAGE_SIZE-1);
3669
3670 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3671 return -EINVAL;
3672
3673 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3674 if (write)
3675 memcpy_toio(maddr + offset, buf, len);
3676 else
3677 memcpy_fromio(buf, maddr + offset, len);
3678 iounmap(maddr);
3679
3680 return len;
3681 }
3682 EXPORT_SYMBOL_GPL(generic_access_phys);
3683 #endif
3684
3685 /*
3686 * Access another process' address space as given in mm. If non-NULL, use the
3687 * given task for page fault accounting.
3688 */
3689 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3690 unsigned long addr, void *buf, int len, int write)
3691 {
3692 struct vm_area_struct *vma;
3693 void *old_buf = buf;
3694
3695 down_read(&mm->mmap_sem);
3696 /* ignore errors, just check how much was successfully transferred */
3697 while (len) {
3698 int bytes, ret, offset;
3699 void *maddr;
3700 struct page *page = NULL;
3701
3702 ret = get_user_pages_remote(tsk, mm, addr, 1,
3703 write, 1, &page, &vma);
3704 if (ret <= 0) {
3705 #ifndef CONFIG_HAVE_IOREMAP_PROT
3706 break;
3707 #else
3708 /*
3709 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3710 * we can access using slightly different code.
3711 */
3712 vma = find_vma(mm, addr);
3713 if (!vma || vma->vm_start > addr)
3714 break;
3715 if (vma->vm_ops && vma->vm_ops->access)
3716 ret = vma->vm_ops->access(vma, addr, buf,
3717 len, write);
3718 if (ret <= 0)
3719 break;
3720 bytes = ret;
3721 #endif
3722 } else {
3723 bytes = len;
3724 offset = addr & (PAGE_SIZE-1);
3725 if (bytes > PAGE_SIZE-offset)
3726 bytes = PAGE_SIZE-offset;
3727
3728 maddr = kmap(page);
3729 if (write) {
3730 copy_to_user_page(vma, page, addr,
3731 maddr + offset, buf, bytes);
3732 set_page_dirty_lock(page);
3733 } else {
3734 copy_from_user_page(vma, page, addr,
3735 buf, maddr + offset, bytes);
3736 }
3737 kunmap(page);
3738 put_page(page);
3739 }
3740 len -= bytes;
3741 buf += bytes;
3742 addr += bytes;
3743 }
3744 up_read(&mm->mmap_sem);
3745
3746 return buf - old_buf;
3747 }
3748
3749 /**
3750 * access_remote_vm - access another process' address space
3751 * @mm: the mm_struct of the target address space
3752 * @addr: start address to access
3753 * @buf: source or destination buffer
3754 * @len: number of bytes to transfer
3755 * @write: whether the access is a write
3756 *
3757 * The caller must hold a reference on @mm.
3758 */
3759 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3760 void *buf, int len, int write)
3761 {
3762 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3763 }
3764
3765 /*
3766 * Access another process' address space.
3767 * Source/target buffer must be kernel space,
3768 * Do not walk the page table directly, use get_user_pages
3769 */
3770 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3771 void *buf, int len, int write)
3772 {
3773 struct mm_struct *mm;
3774 int ret;
3775
3776 mm = get_task_mm(tsk);
3777 if (!mm)
3778 return 0;
3779
3780 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3781 mmput(mm);
3782
3783 return ret;
3784 }
3785
3786 /*
3787 * Print the name of a VMA.
3788 */
3789 void print_vma_addr(char *prefix, unsigned long ip)
3790 {
3791 struct mm_struct *mm = current->mm;
3792 struct vm_area_struct *vma;
3793
3794 /*
3795 * Do not print if we are in atomic
3796 * contexts (in exception stacks, etc.):
3797 */
3798 if (preempt_count())
3799 return;
3800
3801 down_read(&mm->mmap_sem);
3802 vma = find_vma(mm, ip);
3803 if (vma && vma->vm_file) {
3804 struct file *f = vma->vm_file;
3805 char *buf = (char *)__get_free_page(GFP_KERNEL);
3806 if (buf) {
3807 char *p;
3808
3809 p = file_path(f, buf, PAGE_SIZE);
3810 if (IS_ERR(p))
3811 p = "?";
3812 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3813 vma->vm_start,
3814 vma->vm_end - vma->vm_start);
3815 free_page((unsigned long)buf);
3816 }
3817 }
3818 up_read(&mm->mmap_sem);
3819 }
3820
3821 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3822 void __might_fault(const char *file, int line)
3823 {
3824 /*
3825 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3826 * holding the mmap_sem, this is safe because kernel memory doesn't
3827 * get paged out, therefore we'll never actually fault, and the
3828 * below annotations will generate false positives.
3829 */
3830 if (segment_eq(get_fs(), KERNEL_DS))
3831 return;
3832 if (pagefault_disabled())
3833 return;
3834 __might_sleep(file, line, 0);
3835 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3836 if (current->mm)
3837 might_lock_read(&current->mm->mmap_sem);
3838 #endif
3839 }
3840 EXPORT_SYMBOL(__might_fault);
3841 #endif
3842
3843 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3844 static void clear_gigantic_page(struct page *page,
3845 unsigned long addr,
3846 unsigned int pages_per_huge_page)
3847 {
3848 int i;
3849 struct page *p = page;
3850
3851 might_sleep();
3852 for (i = 0; i < pages_per_huge_page;
3853 i++, p = mem_map_next(p, page, i)) {
3854 cond_resched();
3855 clear_user_highpage(p, addr + i * PAGE_SIZE);
3856 }
3857 }
3858 void clear_huge_page(struct page *page,
3859 unsigned long addr, unsigned int pages_per_huge_page)
3860 {
3861 int i;
3862
3863 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3864 clear_gigantic_page(page, addr, pages_per_huge_page);
3865 return;
3866 }
3867
3868 might_sleep();
3869 for (i = 0; i < pages_per_huge_page; i++) {
3870 cond_resched();
3871 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3872 }
3873 }
3874
3875 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3876 unsigned long addr,
3877 struct vm_area_struct *vma,
3878 unsigned int pages_per_huge_page)
3879 {
3880 int i;
3881 struct page *dst_base = dst;
3882 struct page *src_base = src;
3883
3884 for (i = 0; i < pages_per_huge_page; ) {
3885 cond_resched();
3886 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3887
3888 i++;
3889 dst = mem_map_next(dst, dst_base, i);
3890 src = mem_map_next(src, src_base, i);
3891 }
3892 }
3893
3894 void copy_user_huge_page(struct page *dst, struct page *src,
3895 unsigned long addr, struct vm_area_struct *vma,
3896 unsigned int pages_per_huge_page)
3897 {
3898 int i;
3899
3900 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3901 copy_user_gigantic_page(dst, src, addr, vma,
3902 pages_per_huge_page);
3903 return;
3904 }
3905
3906 might_sleep();
3907 for (i = 0; i < pages_per_huge_page; i++) {
3908 cond_resched();
3909 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3910 }
3911 }
3912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3913
3914 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3915
3916 static struct kmem_cache *page_ptl_cachep;
3917
3918 void __init ptlock_cache_init(void)
3919 {
3920 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3921 SLAB_PANIC, NULL);
3922 }
3923
3924 bool ptlock_alloc(struct page *page)
3925 {
3926 spinlock_t *ptl;
3927
3928 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3929 if (!ptl)
3930 return false;
3931 page->ptl = ptl;
3932 return true;
3933 }
3934
3935 void ptlock_free(struct page *page)
3936 {
3937 kmem_cache_free(page_ptl_cachep, page->ptl);
3938 }
3939 #endif
This page took 0.104406 seconds and 6 git commands to generate.