mm: page migration use the put_new_page whenever necessary
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/gfp.h>
37 #include <linux/balloon_compaction.h>
38 #include <linux/mmu_notifier.h>
39 #include <linux/page_idle.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
153
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
158 }
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
162
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
172
173 if (vma->vm_flags & VM_LOCKED)
174 mlock_vma_page(new);
175
176 /* No need to invalidate - it was non-present before */
177 update_mmu_cache(vma, addr, ptep);
178 unlock:
179 pte_unmap_unlock(ptep, ptl);
180 out:
181 return SWAP_AGAIN;
182 }
183
184 /*
185 * Get rid of all migration entries and replace them by
186 * references to the indicated page.
187 */
188 static void remove_migration_ptes(struct page *old, struct page *new)
189 {
190 struct rmap_walk_control rwc = {
191 .rmap_one = remove_migration_pte,
192 .arg = old,
193 };
194
195 rmap_walk(new, &rwc);
196 }
197
198 /*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
202 */
203 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 spinlock_t *ptl)
205 {
206 pte_t pte;
207 swp_entry_t entry;
208 struct page *page;
209
210 spin_lock(ptl);
211 pte = *ptep;
212 if (!is_swap_pte(pte))
213 goto out;
214
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
217 goto out;
218
219 page = migration_entry_to_page(entry);
220
221 /*
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 * will occur again.
227 */
228 if (!get_page_unless_zero(page))
229 goto out;
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
232 put_page(page);
233 return;
234 out:
235 pte_unmap_unlock(ptep, ptl);
236 }
237
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
240 {
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
244 }
245
246 void migration_entry_wait_huge(struct vm_area_struct *vma,
247 struct mm_struct *mm, pte_t *pte)
248 {
249 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
250 __migration_entry_wait(mm, pte, ptl);
251 }
252
253 #ifdef CONFIG_BLOCK
254 /* Returns true if all buffers are successfully locked */
255 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
256 enum migrate_mode mode)
257 {
258 struct buffer_head *bh = head;
259
260 /* Simple case, sync compaction */
261 if (mode != MIGRATE_ASYNC) {
262 do {
263 get_bh(bh);
264 lock_buffer(bh);
265 bh = bh->b_this_page;
266
267 } while (bh != head);
268
269 return true;
270 }
271
272 /* async case, we cannot block on lock_buffer so use trylock_buffer */
273 do {
274 get_bh(bh);
275 if (!trylock_buffer(bh)) {
276 /*
277 * We failed to lock the buffer and cannot stall in
278 * async migration. Release the taken locks
279 */
280 struct buffer_head *failed_bh = bh;
281 put_bh(failed_bh);
282 bh = head;
283 while (bh != failed_bh) {
284 unlock_buffer(bh);
285 put_bh(bh);
286 bh = bh->b_this_page;
287 }
288 return false;
289 }
290
291 bh = bh->b_this_page;
292 } while (bh != head);
293 return true;
294 }
295 #else
296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
297 enum migrate_mode mode)
298 {
299 return true;
300 }
301 #endif /* CONFIG_BLOCK */
302
303 /*
304 * Replace the page in the mapping.
305 *
306 * The number of remaining references must be:
307 * 1 for anonymous pages without a mapping
308 * 2 for pages with a mapping
309 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 */
311 int migrate_page_move_mapping(struct address_space *mapping,
312 struct page *newpage, struct page *page,
313 struct buffer_head *head, enum migrate_mode mode,
314 int extra_count)
315 {
316 int expected_count = 1 + extra_count;
317 void **pslot;
318
319 if (!mapping) {
320 /* Anonymous page without mapping */
321 if (page_count(page) != expected_count)
322 return -EAGAIN;
323 return MIGRATEPAGE_SUCCESS;
324 }
325
326 spin_lock_irq(&mapping->tree_lock);
327
328 pslot = radix_tree_lookup_slot(&mapping->page_tree,
329 page_index(page));
330
331 expected_count += 1 + page_has_private(page);
332 if (page_count(page) != expected_count ||
333 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
334 spin_unlock_irq(&mapping->tree_lock);
335 return -EAGAIN;
336 }
337
338 if (!page_freeze_refs(page, expected_count)) {
339 spin_unlock_irq(&mapping->tree_lock);
340 return -EAGAIN;
341 }
342
343 /*
344 * In the async migration case of moving a page with buffers, lock the
345 * buffers using trylock before the mapping is moved. If the mapping
346 * was moved, we later failed to lock the buffers and could not move
347 * the mapping back due to an elevated page count, we would have to
348 * block waiting on other references to be dropped.
349 */
350 if (mode == MIGRATE_ASYNC && head &&
351 !buffer_migrate_lock_buffers(head, mode)) {
352 page_unfreeze_refs(page, expected_count);
353 spin_unlock_irq(&mapping->tree_lock);
354 return -EAGAIN;
355 }
356
357 /*
358 * Now we know that no one else is looking at the page.
359 */
360 get_page(newpage); /* add cache reference */
361 if (PageSwapCache(page)) {
362 SetPageSwapCache(newpage);
363 set_page_private(newpage, page_private(page));
364 }
365
366 radix_tree_replace_slot(pslot, newpage);
367
368 /*
369 * Drop cache reference from old page by unfreezing
370 * to one less reference.
371 * We know this isn't the last reference.
372 */
373 page_unfreeze_refs(page, expected_count - 1);
374
375 /*
376 * If moved to a different zone then also account
377 * the page for that zone. Other VM counters will be
378 * taken care of when we establish references to the
379 * new page and drop references to the old page.
380 *
381 * Note that anonymous pages are accounted for
382 * via NR_FILE_PAGES and NR_ANON_PAGES if they
383 * are mapped to swap space.
384 */
385 __dec_zone_page_state(page, NR_FILE_PAGES);
386 __inc_zone_page_state(newpage, NR_FILE_PAGES);
387 if (!PageSwapCache(page) && PageSwapBacked(page)) {
388 __dec_zone_page_state(page, NR_SHMEM);
389 __inc_zone_page_state(newpage, NR_SHMEM);
390 }
391 spin_unlock_irq(&mapping->tree_lock);
392
393 return MIGRATEPAGE_SUCCESS;
394 }
395
396 /*
397 * The expected number of remaining references is the same as that
398 * of migrate_page_move_mapping().
399 */
400 int migrate_huge_page_move_mapping(struct address_space *mapping,
401 struct page *newpage, struct page *page)
402 {
403 int expected_count;
404 void **pslot;
405
406 if (!mapping) {
407 if (page_count(page) != 1)
408 return -EAGAIN;
409 return MIGRATEPAGE_SUCCESS;
410 }
411
412 spin_lock_irq(&mapping->tree_lock);
413
414 pslot = radix_tree_lookup_slot(&mapping->page_tree,
415 page_index(page));
416
417 expected_count = 2 + page_has_private(page);
418 if (page_count(page) != expected_count ||
419 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
420 spin_unlock_irq(&mapping->tree_lock);
421 return -EAGAIN;
422 }
423
424 if (!page_freeze_refs(page, expected_count)) {
425 spin_unlock_irq(&mapping->tree_lock);
426 return -EAGAIN;
427 }
428
429 get_page(newpage);
430
431 radix_tree_replace_slot(pslot, newpage);
432
433 page_unfreeze_refs(page, expected_count - 1);
434
435 spin_unlock_irq(&mapping->tree_lock);
436 return MIGRATEPAGE_SUCCESS;
437 }
438
439 /*
440 * Gigantic pages are so large that we do not guarantee that page++ pointer
441 * arithmetic will work across the entire page. We need something more
442 * specialized.
443 */
444 static void __copy_gigantic_page(struct page *dst, struct page *src,
445 int nr_pages)
446 {
447 int i;
448 struct page *dst_base = dst;
449 struct page *src_base = src;
450
451 for (i = 0; i < nr_pages; ) {
452 cond_resched();
453 copy_highpage(dst, src);
454
455 i++;
456 dst = mem_map_next(dst, dst_base, i);
457 src = mem_map_next(src, src_base, i);
458 }
459 }
460
461 static void copy_huge_page(struct page *dst, struct page *src)
462 {
463 int i;
464 int nr_pages;
465
466 if (PageHuge(src)) {
467 /* hugetlbfs page */
468 struct hstate *h = page_hstate(src);
469 nr_pages = pages_per_huge_page(h);
470
471 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
472 __copy_gigantic_page(dst, src, nr_pages);
473 return;
474 }
475 } else {
476 /* thp page */
477 BUG_ON(!PageTransHuge(src));
478 nr_pages = hpage_nr_pages(src);
479 }
480
481 for (i = 0; i < nr_pages; i++) {
482 cond_resched();
483 copy_highpage(dst + i, src + i);
484 }
485 }
486
487 /*
488 * Copy the page to its new location
489 */
490 void migrate_page_copy(struct page *newpage, struct page *page)
491 {
492 int cpupid;
493
494 if (PageHuge(page) || PageTransHuge(page))
495 copy_huge_page(newpage, page);
496 else
497 copy_highpage(newpage, page);
498
499 if (PageError(page))
500 SetPageError(newpage);
501 if (PageReferenced(page))
502 SetPageReferenced(newpage);
503 if (PageUptodate(page))
504 SetPageUptodate(newpage);
505 if (TestClearPageActive(page)) {
506 VM_BUG_ON_PAGE(PageUnevictable(page), page);
507 SetPageActive(newpage);
508 } else if (TestClearPageUnevictable(page))
509 SetPageUnevictable(newpage);
510 if (PageChecked(page))
511 SetPageChecked(newpage);
512 if (PageMappedToDisk(page))
513 SetPageMappedToDisk(newpage);
514
515 if (PageDirty(page)) {
516 clear_page_dirty_for_io(page);
517 /*
518 * Want to mark the page and the radix tree as dirty, and
519 * redo the accounting that clear_page_dirty_for_io undid,
520 * but we can't use set_page_dirty because that function
521 * is actually a signal that all of the page has become dirty.
522 * Whereas only part of our page may be dirty.
523 */
524 if (PageSwapBacked(page))
525 SetPageDirty(newpage);
526 else
527 __set_page_dirty_nobuffers(newpage);
528 }
529
530 if (page_is_young(page))
531 set_page_young(newpage);
532 if (page_is_idle(page))
533 set_page_idle(newpage);
534
535 /*
536 * Copy NUMA information to the new page, to prevent over-eager
537 * future migrations of this same page.
538 */
539 cpupid = page_cpupid_xchg_last(page, -1);
540 page_cpupid_xchg_last(newpage, cpupid);
541
542 ksm_migrate_page(newpage, page);
543 /*
544 * Please do not reorder this without considering how mm/ksm.c's
545 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
546 */
547 if (PageSwapCache(page))
548 ClearPageSwapCache(page);
549 ClearPagePrivate(page);
550 set_page_private(page, 0);
551
552 /*
553 * If any waiters have accumulated on the new page then
554 * wake them up.
555 */
556 if (PageWriteback(newpage))
557 end_page_writeback(newpage);
558 }
559
560 /************************************************************
561 * Migration functions
562 ***********************************************************/
563
564 /*
565 * Common logic to directly migrate a single page suitable for
566 * pages that do not use PagePrivate/PagePrivate2.
567 *
568 * Pages are locked upon entry and exit.
569 */
570 int migrate_page(struct address_space *mapping,
571 struct page *newpage, struct page *page,
572 enum migrate_mode mode)
573 {
574 int rc;
575
576 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
577
578 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
579
580 if (rc != MIGRATEPAGE_SUCCESS)
581 return rc;
582
583 migrate_page_copy(newpage, page);
584 return MIGRATEPAGE_SUCCESS;
585 }
586 EXPORT_SYMBOL(migrate_page);
587
588 #ifdef CONFIG_BLOCK
589 /*
590 * Migration function for pages with buffers. This function can only be used
591 * if the underlying filesystem guarantees that no other references to "page"
592 * exist.
593 */
594 int buffer_migrate_page(struct address_space *mapping,
595 struct page *newpage, struct page *page, enum migrate_mode mode)
596 {
597 struct buffer_head *bh, *head;
598 int rc;
599
600 if (!page_has_buffers(page))
601 return migrate_page(mapping, newpage, page, mode);
602
603 head = page_buffers(page);
604
605 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
606
607 if (rc != MIGRATEPAGE_SUCCESS)
608 return rc;
609
610 /*
611 * In the async case, migrate_page_move_mapping locked the buffers
612 * with an IRQ-safe spinlock held. In the sync case, the buffers
613 * need to be locked now
614 */
615 if (mode != MIGRATE_ASYNC)
616 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
617
618 ClearPagePrivate(page);
619 set_page_private(newpage, page_private(page));
620 set_page_private(page, 0);
621 put_page(page);
622 get_page(newpage);
623
624 bh = head;
625 do {
626 set_bh_page(bh, newpage, bh_offset(bh));
627 bh = bh->b_this_page;
628
629 } while (bh != head);
630
631 SetPagePrivate(newpage);
632
633 migrate_page_copy(newpage, page);
634
635 bh = head;
636 do {
637 unlock_buffer(bh);
638 put_bh(bh);
639 bh = bh->b_this_page;
640
641 } while (bh != head);
642
643 return MIGRATEPAGE_SUCCESS;
644 }
645 EXPORT_SYMBOL(buffer_migrate_page);
646 #endif
647
648 /*
649 * Writeback a page to clean the dirty state
650 */
651 static int writeout(struct address_space *mapping, struct page *page)
652 {
653 struct writeback_control wbc = {
654 .sync_mode = WB_SYNC_NONE,
655 .nr_to_write = 1,
656 .range_start = 0,
657 .range_end = LLONG_MAX,
658 .for_reclaim = 1
659 };
660 int rc;
661
662 if (!mapping->a_ops->writepage)
663 /* No write method for the address space */
664 return -EINVAL;
665
666 if (!clear_page_dirty_for_io(page))
667 /* Someone else already triggered a write */
668 return -EAGAIN;
669
670 /*
671 * A dirty page may imply that the underlying filesystem has
672 * the page on some queue. So the page must be clean for
673 * migration. Writeout may mean we loose the lock and the
674 * page state is no longer what we checked for earlier.
675 * At this point we know that the migration attempt cannot
676 * be successful.
677 */
678 remove_migration_ptes(page, page);
679
680 rc = mapping->a_ops->writepage(page, &wbc);
681
682 if (rc != AOP_WRITEPAGE_ACTIVATE)
683 /* unlocked. Relock */
684 lock_page(page);
685
686 return (rc < 0) ? -EIO : -EAGAIN;
687 }
688
689 /*
690 * Default handling if a filesystem does not provide a migration function.
691 */
692 static int fallback_migrate_page(struct address_space *mapping,
693 struct page *newpage, struct page *page, enum migrate_mode mode)
694 {
695 if (PageDirty(page)) {
696 /* Only writeback pages in full synchronous migration */
697 if (mode != MIGRATE_SYNC)
698 return -EBUSY;
699 return writeout(mapping, page);
700 }
701
702 /*
703 * Buffers may be managed in a filesystem specific way.
704 * We must have no buffers or drop them.
705 */
706 if (page_has_private(page) &&
707 !try_to_release_page(page, GFP_KERNEL))
708 return -EAGAIN;
709
710 return migrate_page(mapping, newpage, page, mode);
711 }
712
713 /*
714 * Move a page to a newly allocated page
715 * The page is locked and all ptes have been successfully removed.
716 *
717 * The new page will have replaced the old page if this function
718 * is successful.
719 *
720 * Return value:
721 * < 0 - error code
722 * MIGRATEPAGE_SUCCESS - success
723 */
724 static int move_to_new_page(struct page *newpage, struct page *page,
725 int page_was_mapped, enum migrate_mode mode)
726 {
727 struct address_space *mapping;
728 int rc;
729
730 /*
731 * Block others from accessing the page when we get around to
732 * establishing additional references. We are the only one
733 * holding a reference to the new page at this point.
734 */
735 if (!trylock_page(newpage))
736 BUG();
737
738 /* Prepare mapping for the new page.*/
739 newpage->index = page->index;
740 newpage->mapping = page->mapping;
741 if (PageSwapBacked(page))
742 SetPageSwapBacked(newpage);
743
744 /*
745 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus
746 * needs newpage's memcg set to transfer memcg dirty page accounting.
747 * So perform memcg migration in two steps:
748 * 1. set newpage->mem_cgroup (here)
749 * 2. clear page->mem_cgroup (below)
750 */
751 set_page_memcg(newpage, page_memcg(page));
752
753 mapping = page_mapping(page);
754 if (!mapping)
755 rc = migrate_page(mapping, newpage, page, mode);
756 else if (mapping->a_ops->migratepage)
757 /*
758 * Most pages have a mapping and most filesystems provide a
759 * migratepage callback. Anonymous pages are part of swap
760 * space which also has its own migratepage callback. This
761 * is the most common path for page migration.
762 */
763 rc = mapping->a_ops->migratepage(mapping,
764 newpage, page, mode);
765 else
766 rc = fallback_migrate_page(mapping, newpage, page, mode);
767
768 if (rc != MIGRATEPAGE_SUCCESS) {
769 set_page_memcg(newpage, NULL);
770 newpage->mapping = NULL;
771 } else {
772 set_page_memcg(page, NULL);
773 if (page_was_mapped)
774 remove_migration_ptes(page, newpage);
775 page->mapping = NULL;
776 }
777
778 unlock_page(newpage);
779
780 return rc;
781 }
782
783 static int __unmap_and_move(struct page *page, struct page *newpage,
784 int force, enum migrate_mode mode)
785 {
786 int rc = -EAGAIN;
787 int page_was_mapped = 0;
788 struct anon_vma *anon_vma = NULL;
789
790 if (!trylock_page(page)) {
791 if (!force || mode == MIGRATE_ASYNC)
792 goto out;
793
794 /*
795 * It's not safe for direct compaction to call lock_page.
796 * For example, during page readahead pages are added locked
797 * to the LRU. Later, when the IO completes the pages are
798 * marked uptodate and unlocked. However, the queueing
799 * could be merging multiple pages for one bio (e.g.
800 * mpage_readpages). If an allocation happens for the
801 * second or third page, the process can end up locking
802 * the same page twice and deadlocking. Rather than
803 * trying to be clever about what pages can be locked,
804 * avoid the use of lock_page for direct compaction
805 * altogether.
806 */
807 if (current->flags & PF_MEMALLOC)
808 goto out;
809
810 lock_page(page);
811 }
812
813 if (PageWriteback(page)) {
814 /*
815 * Only in the case of a full synchronous migration is it
816 * necessary to wait for PageWriteback. In the async case,
817 * the retry loop is too short and in the sync-light case,
818 * the overhead of stalling is too much
819 */
820 if (mode != MIGRATE_SYNC) {
821 rc = -EBUSY;
822 goto out_unlock;
823 }
824 if (!force)
825 goto out_unlock;
826 wait_on_page_writeback(page);
827 }
828 /*
829 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
830 * we cannot notice that anon_vma is freed while we migrates a page.
831 * This get_anon_vma() delays freeing anon_vma pointer until the end
832 * of migration. File cache pages are no problem because of page_lock()
833 * File Caches may use write_page() or lock_page() in migration, then,
834 * just care Anon page here.
835 */
836 if (PageAnon(page) && !PageKsm(page)) {
837 /*
838 * Only page_lock_anon_vma_read() understands the subtleties of
839 * getting a hold on an anon_vma from outside one of its mms.
840 */
841 anon_vma = page_get_anon_vma(page);
842 if (anon_vma) {
843 /*
844 * Anon page
845 */
846 } else if (PageSwapCache(page)) {
847 /*
848 * We cannot be sure that the anon_vma of an unmapped
849 * swapcache page is safe to use because we don't
850 * know in advance if the VMA that this page belonged
851 * to still exists. If the VMA and others sharing the
852 * data have been freed, then the anon_vma could
853 * already be invalid.
854 *
855 * To avoid this possibility, swapcache pages get
856 * migrated but are not remapped when migration
857 * completes
858 */
859 } else {
860 goto out_unlock;
861 }
862 }
863
864 if (unlikely(isolated_balloon_page(page))) {
865 /*
866 * A ballooned page does not need any special attention from
867 * physical to virtual reverse mapping procedures.
868 * Skip any attempt to unmap PTEs or to remap swap cache,
869 * in order to avoid burning cycles at rmap level, and perform
870 * the page migration right away (proteced by page lock).
871 */
872 rc = balloon_page_migrate(newpage, page, mode);
873 goto out_unlock;
874 }
875
876 /*
877 * Corner case handling:
878 * 1. When a new swap-cache page is read into, it is added to the LRU
879 * and treated as swapcache but it has no rmap yet.
880 * Calling try_to_unmap() against a page->mapping==NULL page will
881 * trigger a BUG. So handle it here.
882 * 2. An orphaned page (see truncate_complete_page) might have
883 * fs-private metadata. The page can be picked up due to memory
884 * offlining. Everywhere else except page reclaim, the page is
885 * invisible to the vm, so the page can not be migrated. So try to
886 * free the metadata, so the page can be freed.
887 */
888 if (!page->mapping) {
889 VM_BUG_ON_PAGE(PageAnon(page), page);
890 if (page_has_private(page)) {
891 try_to_free_buffers(page);
892 goto out_unlock;
893 }
894 goto skip_unmap;
895 }
896
897 /* Establish migration ptes or remove ptes */
898 if (page_mapped(page)) {
899 try_to_unmap(page,
900 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
901 page_was_mapped = 1;
902 }
903
904 skip_unmap:
905 if (!page_mapped(page))
906 rc = move_to_new_page(newpage, page, page_was_mapped, mode);
907
908 if (rc && page_was_mapped)
909 remove_migration_ptes(page, page);
910
911 /* Drop an anon_vma reference if we took one */
912 if (anon_vma)
913 put_anon_vma(anon_vma);
914
915 out_unlock:
916 unlock_page(page);
917 out:
918 return rc;
919 }
920
921 /*
922 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
923 * around it.
924 */
925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
926 #define ICE_noinline noinline
927 #else
928 #define ICE_noinline
929 #endif
930
931 /*
932 * Obtain the lock on page, remove all ptes and migrate the page
933 * to the newly allocated page in newpage.
934 */
935 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
936 free_page_t put_new_page,
937 unsigned long private, struct page *page,
938 int force, enum migrate_mode mode,
939 enum migrate_reason reason)
940 {
941 int rc = MIGRATEPAGE_SUCCESS;
942 int *result = NULL;
943 struct page *newpage;
944
945 newpage = get_new_page(page, private, &result);
946 if (!newpage)
947 return -ENOMEM;
948
949 if (page_count(page) == 1) {
950 /* page was freed from under us. So we are done. */
951 goto out;
952 }
953
954 if (unlikely(PageTransHuge(page)))
955 if (unlikely(split_huge_page(page)))
956 goto out;
957
958 rc = __unmap_and_move(page, newpage, force, mode);
959 if (rc == MIGRATEPAGE_SUCCESS)
960 put_new_page = NULL;
961
962 out:
963 if (rc != -EAGAIN) {
964 /*
965 * A page that has been migrated has all references
966 * removed and will be freed. A page that has not been
967 * migrated will have kepts its references and be
968 * restored.
969 */
970 list_del(&page->lru);
971 dec_zone_page_state(page, NR_ISOLATED_ANON +
972 page_is_file_cache(page));
973 /* Soft-offlined page shouldn't go through lru cache list */
974 if (reason == MR_MEMORY_FAILURE) {
975 put_page(page);
976 if (!test_set_page_hwpoison(page))
977 num_poisoned_pages_inc();
978 } else
979 putback_lru_page(page);
980 }
981
982 /*
983 * If migration was not successful and there's a freeing callback, use
984 * it. Otherwise, putback_lru_page() will drop the reference grabbed
985 * during isolation.
986 */
987 if (put_new_page) {
988 ClearPageSwapBacked(newpage);
989 put_new_page(newpage, private);
990 } else if (unlikely(__is_movable_balloon_page(newpage))) {
991 /* drop our reference, page already in the balloon */
992 put_page(newpage);
993 } else
994 putback_lru_page(newpage);
995
996 if (result) {
997 if (rc)
998 *result = rc;
999 else
1000 *result = page_to_nid(newpage);
1001 }
1002 return rc;
1003 }
1004
1005 /*
1006 * Counterpart of unmap_and_move_page() for hugepage migration.
1007 *
1008 * This function doesn't wait the completion of hugepage I/O
1009 * because there is no race between I/O and migration for hugepage.
1010 * Note that currently hugepage I/O occurs only in direct I/O
1011 * where no lock is held and PG_writeback is irrelevant,
1012 * and writeback status of all subpages are counted in the reference
1013 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1014 * under direct I/O, the reference of the head page is 512 and a bit more.)
1015 * This means that when we try to migrate hugepage whose subpages are
1016 * doing direct I/O, some references remain after try_to_unmap() and
1017 * hugepage migration fails without data corruption.
1018 *
1019 * There is also no race when direct I/O is issued on the page under migration,
1020 * because then pte is replaced with migration swap entry and direct I/O code
1021 * will wait in the page fault for migration to complete.
1022 */
1023 static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 free_page_t put_new_page, unsigned long private,
1025 struct page *hpage, int force,
1026 enum migrate_mode mode)
1027 {
1028 int rc = -EAGAIN;
1029 int *result = NULL;
1030 int page_was_mapped = 0;
1031 struct page *new_hpage;
1032 struct anon_vma *anon_vma = NULL;
1033
1034 /*
1035 * Movability of hugepages depends on architectures and hugepage size.
1036 * This check is necessary because some callers of hugepage migration
1037 * like soft offline and memory hotremove don't walk through page
1038 * tables or check whether the hugepage is pmd-based or not before
1039 * kicking migration.
1040 */
1041 if (!hugepage_migration_supported(page_hstate(hpage))) {
1042 putback_active_hugepage(hpage);
1043 return -ENOSYS;
1044 }
1045
1046 new_hpage = get_new_page(hpage, private, &result);
1047 if (!new_hpage)
1048 return -ENOMEM;
1049
1050 if (!trylock_page(hpage)) {
1051 if (!force || mode != MIGRATE_SYNC)
1052 goto out;
1053 lock_page(hpage);
1054 }
1055
1056 if (PageAnon(hpage))
1057 anon_vma = page_get_anon_vma(hpage);
1058
1059 if (page_mapped(hpage)) {
1060 try_to_unmap(hpage,
1061 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1062 page_was_mapped = 1;
1063 }
1064
1065 if (!page_mapped(hpage))
1066 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1067
1068 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1069 remove_migration_ptes(hpage, hpage);
1070
1071 if (anon_vma)
1072 put_anon_vma(anon_vma);
1073
1074 if (rc == MIGRATEPAGE_SUCCESS) {
1075 hugetlb_cgroup_migrate(hpage, new_hpage);
1076 put_new_page = NULL;
1077 }
1078
1079 unlock_page(hpage);
1080 out:
1081 if (rc != -EAGAIN)
1082 putback_active_hugepage(hpage);
1083
1084 /*
1085 * If migration was not successful and there's a freeing callback, use
1086 * it. Otherwise, put_page() will drop the reference grabbed during
1087 * isolation.
1088 */
1089 if (put_new_page)
1090 put_new_page(new_hpage, private);
1091 else
1092 putback_active_hugepage(new_hpage);
1093
1094 if (result) {
1095 if (rc)
1096 *result = rc;
1097 else
1098 *result = page_to_nid(new_hpage);
1099 }
1100 return rc;
1101 }
1102
1103 /*
1104 * migrate_pages - migrate the pages specified in a list, to the free pages
1105 * supplied as the target for the page migration
1106 *
1107 * @from: The list of pages to be migrated.
1108 * @get_new_page: The function used to allocate free pages to be used
1109 * as the target of the page migration.
1110 * @put_new_page: The function used to free target pages if migration
1111 * fails, or NULL if no special handling is necessary.
1112 * @private: Private data to be passed on to get_new_page()
1113 * @mode: The migration mode that specifies the constraints for
1114 * page migration, if any.
1115 * @reason: The reason for page migration.
1116 *
1117 * The function returns after 10 attempts or if no pages are movable any more
1118 * because the list has become empty or no retryable pages exist any more.
1119 * The caller should call putback_movable_pages() to return pages to the LRU
1120 * or free list only if ret != 0.
1121 *
1122 * Returns the number of pages that were not migrated, or an error code.
1123 */
1124 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1125 free_page_t put_new_page, unsigned long private,
1126 enum migrate_mode mode, int reason)
1127 {
1128 int retry = 1;
1129 int nr_failed = 0;
1130 int nr_succeeded = 0;
1131 int pass = 0;
1132 struct page *page;
1133 struct page *page2;
1134 int swapwrite = current->flags & PF_SWAPWRITE;
1135 int rc;
1136
1137 if (!swapwrite)
1138 current->flags |= PF_SWAPWRITE;
1139
1140 for(pass = 0; pass < 10 && retry; pass++) {
1141 retry = 0;
1142
1143 list_for_each_entry_safe(page, page2, from, lru) {
1144 cond_resched();
1145
1146 if (PageHuge(page))
1147 rc = unmap_and_move_huge_page(get_new_page,
1148 put_new_page, private, page,
1149 pass > 2, mode);
1150 else
1151 rc = unmap_and_move(get_new_page, put_new_page,
1152 private, page, pass > 2, mode,
1153 reason);
1154
1155 switch(rc) {
1156 case -ENOMEM:
1157 goto out;
1158 case -EAGAIN:
1159 retry++;
1160 break;
1161 case MIGRATEPAGE_SUCCESS:
1162 nr_succeeded++;
1163 break;
1164 default:
1165 /*
1166 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1167 * unlike -EAGAIN case, the failed page is
1168 * removed from migration page list and not
1169 * retried in the next outer loop.
1170 */
1171 nr_failed++;
1172 break;
1173 }
1174 }
1175 }
1176 nr_failed += retry;
1177 rc = nr_failed;
1178 out:
1179 if (nr_succeeded)
1180 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1181 if (nr_failed)
1182 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1183 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1184
1185 if (!swapwrite)
1186 current->flags &= ~PF_SWAPWRITE;
1187
1188 return rc;
1189 }
1190
1191 #ifdef CONFIG_NUMA
1192 /*
1193 * Move a list of individual pages
1194 */
1195 struct page_to_node {
1196 unsigned long addr;
1197 struct page *page;
1198 int node;
1199 int status;
1200 };
1201
1202 static struct page *new_page_node(struct page *p, unsigned long private,
1203 int **result)
1204 {
1205 struct page_to_node *pm = (struct page_to_node *)private;
1206
1207 while (pm->node != MAX_NUMNODES && pm->page != p)
1208 pm++;
1209
1210 if (pm->node == MAX_NUMNODES)
1211 return NULL;
1212
1213 *result = &pm->status;
1214
1215 if (PageHuge(p))
1216 return alloc_huge_page_node(page_hstate(compound_head(p)),
1217 pm->node);
1218 else
1219 return __alloc_pages_node(pm->node,
1220 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1221 }
1222
1223 /*
1224 * Move a set of pages as indicated in the pm array. The addr
1225 * field must be set to the virtual address of the page to be moved
1226 * and the node number must contain a valid target node.
1227 * The pm array ends with node = MAX_NUMNODES.
1228 */
1229 static int do_move_page_to_node_array(struct mm_struct *mm,
1230 struct page_to_node *pm,
1231 int migrate_all)
1232 {
1233 int err;
1234 struct page_to_node *pp;
1235 LIST_HEAD(pagelist);
1236
1237 down_read(&mm->mmap_sem);
1238
1239 /*
1240 * Build a list of pages to migrate
1241 */
1242 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1243 struct vm_area_struct *vma;
1244 struct page *page;
1245
1246 err = -EFAULT;
1247 vma = find_vma(mm, pp->addr);
1248 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1249 goto set_status;
1250
1251 /* FOLL_DUMP to ignore special (like zero) pages */
1252 page = follow_page(vma, pp->addr,
1253 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1254
1255 err = PTR_ERR(page);
1256 if (IS_ERR(page))
1257 goto set_status;
1258
1259 err = -ENOENT;
1260 if (!page)
1261 goto set_status;
1262
1263 pp->page = page;
1264 err = page_to_nid(page);
1265
1266 if (err == pp->node)
1267 /*
1268 * Node already in the right place
1269 */
1270 goto put_and_set;
1271
1272 err = -EACCES;
1273 if (page_mapcount(page) > 1 &&
1274 !migrate_all)
1275 goto put_and_set;
1276
1277 if (PageHuge(page)) {
1278 if (PageHead(page))
1279 isolate_huge_page(page, &pagelist);
1280 goto put_and_set;
1281 }
1282
1283 err = isolate_lru_page(page);
1284 if (!err) {
1285 list_add_tail(&page->lru, &pagelist);
1286 inc_zone_page_state(page, NR_ISOLATED_ANON +
1287 page_is_file_cache(page));
1288 }
1289 put_and_set:
1290 /*
1291 * Either remove the duplicate refcount from
1292 * isolate_lru_page() or drop the page ref if it was
1293 * not isolated.
1294 */
1295 put_page(page);
1296 set_status:
1297 pp->status = err;
1298 }
1299
1300 err = 0;
1301 if (!list_empty(&pagelist)) {
1302 err = migrate_pages(&pagelist, new_page_node, NULL,
1303 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1304 if (err)
1305 putback_movable_pages(&pagelist);
1306 }
1307
1308 up_read(&mm->mmap_sem);
1309 return err;
1310 }
1311
1312 /*
1313 * Migrate an array of page address onto an array of nodes and fill
1314 * the corresponding array of status.
1315 */
1316 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1317 unsigned long nr_pages,
1318 const void __user * __user *pages,
1319 const int __user *nodes,
1320 int __user *status, int flags)
1321 {
1322 struct page_to_node *pm;
1323 unsigned long chunk_nr_pages;
1324 unsigned long chunk_start;
1325 int err;
1326
1327 err = -ENOMEM;
1328 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1329 if (!pm)
1330 goto out;
1331
1332 migrate_prep();
1333
1334 /*
1335 * Store a chunk of page_to_node array in a page,
1336 * but keep the last one as a marker
1337 */
1338 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1339
1340 for (chunk_start = 0;
1341 chunk_start < nr_pages;
1342 chunk_start += chunk_nr_pages) {
1343 int j;
1344
1345 if (chunk_start + chunk_nr_pages > nr_pages)
1346 chunk_nr_pages = nr_pages - chunk_start;
1347
1348 /* fill the chunk pm with addrs and nodes from user-space */
1349 for (j = 0; j < chunk_nr_pages; j++) {
1350 const void __user *p;
1351 int node;
1352
1353 err = -EFAULT;
1354 if (get_user(p, pages + j + chunk_start))
1355 goto out_pm;
1356 pm[j].addr = (unsigned long) p;
1357
1358 if (get_user(node, nodes + j + chunk_start))
1359 goto out_pm;
1360
1361 err = -ENODEV;
1362 if (node < 0 || node >= MAX_NUMNODES)
1363 goto out_pm;
1364
1365 if (!node_state(node, N_MEMORY))
1366 goto out_pm;
1367
1368 err = -EACCES;
1369 if (!node_isset(node, task_nodes))
1370 goto out_pm;
1371
1372 pm[j].node = node;
1373 }
1374
1375 /* End marker for this chunk */
1376 pm[chunk_nr_pages].node = MAX_NUMNODES;
1377
1378 /* Migrate this chunk */
1379 err = do_move_page_to_node_array(mm, pm,
1380 flags & MPOL_MF_MOVE_ALL);
1381 if (err < 0)
1382 goto out_pm;
1383
1384 /* Return status information */
1385 for (j = 0; j < chunk_nr_pages; j++)
1386 if (put_user(pm[j].status, status + j + chunk_start)) {
1387 err = -EFAULT;
1388 goto out_pm;
1389 }
1390 }
1391 err = 0;
1392
1393 out_pm:
1394 free_page((unsigned long)pm);
1395 out:
1396 return err;
1397 }
1398
1399 /*
1400 * Determine the nodes of an array of pages and store it in an array of status.
1401 */
1402 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1403 const void __user **pages, int *status)
1404 {
1405 unsigned long i;
1406
1407 down_read(&mm->mmap_sem);
1408
1409 for (i = 0; i < nr_pages; i++) {
1410 unsigned long addr = (unsigned long)(*pages);
1411 struct vm_area_struct *vma;
1412 struct page *page;
1413 int err = -EFAULT;
1414
1415 vma = find_vma(mm, addr);
1416 if (!vma || addr < vma->vm_start)
1417 goto set_status;
1418
1419 /* FOLL_DUMP to ignore special (like zero) pages */
1420 page = follow_page(vma, addr, FOLL_DUMP);
1421
1422 err = PTR_ERR(page);
1423 if (IS_ERR(page))
1424 goto set_status;
1425
1426 err = page ? page_to_nid(page) : -ENOENT;
1427 set_status:
1428 *status = err;
1429
1430 pages++;
1431 status++;
1432 }
1433
1434 up_read(&mm->mmap_sem);
1435 }
1436
1437 /*
1438 * Determine the nodes of a user array of pages and store it in
1439 * a user array of status.
1440 */
1441 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1442 const void __user * __user *pages,
1443 int __user *status)
1444 {
1445 #define DO_PAGES_STAT_CHUNK_NR 16
1446 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1447 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1448
1449 while (nr_pages) {
1450 unsigned long chunk_nr;
1451
1452 chunk_nr = nr_pages;
1453 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1454 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1455
1456 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1457 break;
1458
1459 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1460
1461 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1462 break;
1463
1464 pages += chunk_nr;
1465 status += chunk_nr;
1466 nr_pages -= chunk_nr;
1467 }
1468 return nr_pages ? -EFAULT : 0;
1469 }
1470
1471 /*
1472 * Move a list of pages in the address space of the currently executing
1473 * process.
1474 */
1475 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1476 const void __user * __user *, pages,
1477 const int __user *, nodes,
1478 int __user *, status, int, flags)
1479 {
1480 const struct cred *cred = current_cred(), *tcred;
1481 struct task_struct *task;
1482 struct mm_struct *mm;
1483 int err;
1484 nodemask_t task_nodes;
1485
1486 /* Check flags */
1487 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1488 return -EINVAL;
1489
1490 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1491 return -EPERM;
1492
1493 /* Find the mm_struct */
1494 rcu_read_lock();
1495 task = pid ? find_task_by_vpid(pid) : current;
1496 if (!task) {
1497 rcu_read_unlock();
1498 return -ESRCH;
1499 }
1500 get_task_struct(task);
1501
1502 /*
1503 * Check if this process has the right to modify the specified
1504 * process. The right exists if the process has administrative
1505 * capabilities, superuser privileges or the same
1506 * userid as the target process.
1507 */
1508 tcred = __task_cred(task);
1509 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1510 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1511 !capable(CAP_SYS_NICE)) {
1512 rcu_read_unlock();
1513 err = -EPERM;
1514 goto out;
1515 }
1516 rcu_read_unlock();
1517
1518 err = security_task_movememory(task);
1519 if (err)
1520 goto out;
1521
1522 task_nodes = cpuset_mems_allowed(task);
1523 mm = get_task_mm(task);
1524 put_task_struct(task);
1525
1526 if (!mm)
1527 return -EINVAL;
1528
1529 if (nodes)
1530 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1531 nodes, status, flags);
1532 else
1533 err = do_pages_stat(mm, nr_pages, pages, status);
1534
1535 mmput(mm);
1536 return err;
1537
1538 out:
1539 put_task_struct(task);
1540 return err;
1541 }
1542
1543 #ifdef CONFIG_NUMA_BALANCING
1544 /*
1545 * Returns true if this is a safe migration target node for misplaced NUMA
1546 * pages. Currently it only checks the watermarks which crude
1547 */
1548 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1549 unsigned long nr_migrate_pages)
1550 {
1551 int z;
1552 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1553 struct zone *zone = pgdat->node_zones + z;
1554
1555 if (!populated_zone(zone))
1556 continue;
1557
1558 if (!zone_reclaimable(zone))
1559 continue;
1560
1561 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1562 if (!zone_watermark_ok(zone, 0,
1563 high_wmark_pages(zone) +
1564 nr_migrate_pages,
1565 0, 0))
1566 continue;
1567 return true;
1568 }
1569 return false;
1570 }
1571
1572 static struct page *alloc_misplaced_dst_page(struct page *page,
1573 unsigned long data,
1574 int **result)
1575 {
1576 int nid = (int) data;
1577 struct page *newpage;
1578
1579 newpage = __alloc_pages_node(nid,
1580 (GFP_HIGHUSER_MOVABLE |
1581 __GFP_THISNODE | __GFP_NOMEMALLOC |
1582 __GFP_NORETRY | __GFP_NOWARN) &
1583 ~GFP_IOFS, 0);
1584
1585 return newpage;
1586 }
1587
1588 /*
1589 * page migration rate limiting control.
1590 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1591 * window of time. Default here says do not migrate more than 1280M per second.
1592 */
1593 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1594 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1595
1596 /* Returns true if the node is migrate rate-limited after the update */
1597 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1598 unsigned long nr_pages)
1599 {
1600 /*
1601 * Rate-limit the amount of data that is being migrated to a node.
1602 * Optimal placement is no good if the memory bus is saturated and
1603 * all the time is being spent migrating!
1604 */
1605 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1606 spin_lock(&pgdat->numabalancing_migrate_lock);
1607 pgdat->numabalancing_migrate_nr_pages = 0;
1608 pgdat->numabalancing_migrate_next_window = jiffies +
1609 msecs_to_jiffies(migrate_interval_millisecs);
1610 spin_unlock(&pgdat->numabalancing_migrate_lock);
1611 }
1612 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1613 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1614 nr_pages);
1615 return true;
1616 }
1617
1618 /*
1619 * This is an unlocked non-atomic update so errors are possible.
1620 * The consequences are failing to migrate when we potentiall should
1621 * have which is not severe enough to warrant locking. If it is ever
1622 * a problem, it can be converted to a per-cpu counter.
1623 */
1624 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1625 return false;
1626 }
1627
1628 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1629 {
1630 int page_lru;
1631
1632 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1633
1634 /* Avoid migrating to a node that is nearly full */
1635 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1636 return 0;
1637
1638 if (isolate_lru_page(page))
1639 return 0;
1640
1641 /*
1642 * migrate_misplaced_transhuge_page() skips page migration's usual
1643 * check on page_count(), so we must do it here, now that the page
1644 * has been isolated: a GUP pin, or any other pin, prevents migration.
1645 * The expected page count is 3: 1 for page's mapcount and 1 for the
1646 * caller's pin and 1 for the reference taken by isolate_lru_page().
1647 */
1648 if (PageTransHuge(page) && page_count(page) != 3) {
1649 putback_lru_page(page);
1650 return 0;
1651 }
1652
1653 page_lru = page_is_file_cache(page);
1654 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1655 hpage_nr_pages(page));
1656
1657 /*
1658 * Isolating the page has taken another reference, so the
1659 * caller's reference can be safely dropped without the page
1660 * disappearing underneath us during migration.
1661 */
1662 put_page(page);
1663 return 1;
1664 }
1665
1666 bool pmd_trans_migrating(pmd_t pmd)
1667 {
1668 struct page *page = pmd_page(pmd);
1669 return PageLocked(page);
1670 }
1671
1672 /*
1673 * Attempt to migrate a misplaced page to the specified destination
1674 * node. Caller is expected to have an elevated reference count on
1675 * the page that will be dropped by this function before returning.
1676 */
1677 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1678 int node)
1679 {
1680 pg_data_t *pgdat = NODE_DATA(node);
1681 int isolated;
1682 int nr_remaining;
1683 LIST_HEAD(migratepages);
1684
1685 /*
1686 * Don't migrate file pages that are mapped in multiple processes
1687 * with execute permissions as they are probably shared libraries.
1688 */
1689 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1690 (vma->vm_flags & VM_EXEC))
1691 goto out;
1692
1693 /*
1694 * Rate-limit the amount of data that is being migrated to a node.
1695 * Optimal placement is no good if the memory bus is saturated and
1696 * all the time is being spent migrating!
1697 */
1698 if (numamigrate_update_ratelimit(pgdat, 1))
1699 goto out;
1700
1701 isolated = numamigrate_isolate_page(pgdat, page);
1702 if (!isolated)
1703 goto out;
1704
1705 list_add(&page->lru, &migratepages);
1706 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1707 NULL, node, MIGRATE_ASYNC,
1708 MR_NUMA_MISPLACED);
1709 if (nr_remaining) {
1710 if (!list_empty(&migratepages)) {
1711 list_del(&page->lru);
1712 dec_zone_page_state(page, NR_ISOLATED_ANON +
1713 page_is_file_cache(page));
1714 putback_lru_page(page);
1715 }
1716 isolated = 0;
1717 } else
1718 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1719 BUG_ON(!list_empty(&migratepages));
1720 return isolated;
1721
1722 out:
1723 put_page(page);
1724 return 0;
1725 }
1726 #endif /* CONFIG_NUMA_BALANCING */
1727
1728 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1729 /*
1730 * Migrates a THP to a given target node. page must be locked and is unlocked
1731 * before returning.
1732 */
1733 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1734 struct vm_area_struct *vma,
1735 pmd_t *pmd, pmd_t entry,
1736 unsigned long address,
1737 struct page *page, int node)
1738 {
1739 spinlock_t *ptl;
1740 pg_data_t *pgdat = NODE_DATA(node);
1741 int isolated = 0;
1742 struct page *new_page = NULL;
1743 int page_lru = page_is_file_cache(page);
1744 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1745 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1746 pmd_t orig_entry;
1747
1748 /*
1749 * Rate-limit the amount of data that is being migrated to a node.
1750 * Optimal placement is no good if the memory bus is saturated and
1751 * all the time is being spent migrating!
1752 */
1753 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1754 goto out_dropref;
1755
1756 new_page = alloc_pages_node(node,
1757 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1758 HPAGE_PMD_ORDER);
1759 if (!new_page)
1760 goto out_fail;
1761
1762 isolated = numamigrate_isolate_page(pgdat, page);
1763 if (!isolated) {
1764 put_page(new_page);
1765 goto out_fail;
1766 }
1767
1768 if (mm_tlb_flush_pending(mm))
1769 flush_tlb_range(vma, mmun_start, mmun_end);
1770
1771 /* Prepare a page as a migration target */
1772 __set_page_locked(new_page);
1773 SetPageSwapBacked(new_page);
1774
1775 /* anon mapping, we can simply copy page->mapping to the new page: */
1776 new_page->mapping = page->mapping;
1777 new_page->index = page->index;
1778 migrate_page_copy(new_page, page);
1779 WARN_ON(PageLRU(new_page));
1780
1781 /* Recheck the target PMD */
1782 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1783 ptl = pmd_lock(mm, pmd);
1784 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1785 fail_putback:
1786 spin_unlock(ptl);
1787 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1788
1789 /* Reverse changes made by migrate_page_copy() */
1790 if (TestClearPageActive(new_page))
1791 SetPageActive(page);
1792 if (TestClearPageUnevictable(new_page))
1793 SetPageUnevictable(page);
1794
1795 unlock_page(new_page);
1796 put_page(new_page); /* Free it */
1797
1798 /* Retake the callers reference and putback on LRU */
1799 get_page(page);
1800 putback_lru_page(page);
1801 mod_zone_page_state(page_zone(page),
1802 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1803
1804 goto out_unlock;
1805 }
1806
1807 orig_entry = *pmd;
1808 entry = mk_pmd(new_page, vma->vm_page_prot);
1809 entry = pmd_mkhuge(entry);
1810 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1811
1812 /*
1813 * Clear the old entry under pagetable lock and establish the new PTE.
1814 * Any parallel GUP will either observe the old page blocking on the
1815 * page lock, block on the page table lock or observe the new page.
1816 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1817 * guarantee the copy is visible before the pagetable update.
1818 */
1819 flush_cache_range(vma, mmun_start, mmun_end);
1820 page_add_anon_rmap(new_page, vma, mmun_start);
1821 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1822 set_pmd_at(mm, mmun_start, pmd, entry);
1823 flush_tlb_range(vma, mmun_start, mmun_end);
1824 update_mmu_cache_pmd(vma, address, &entry);
1825
1826 if (page_count(page) != 2) {
1827 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1828 flush_tlb_range(vma, mmun_start, mmun_end);
1829 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1830 update_mmu_cache_pmd(vma, address, &entry);
1831 page_remove_rmap(new_page);
1832 goto fail_putback;
1833 }
1834
1835 mlock_migrate_page(new_page, page);
1836 set_page_memcg(new_page, page_memcg(page));
1837 set_page_memcg(page, NULL);
1838 page_remove_rmap(page);
1839
1840 spin_unlock(ptl);
1841 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1842
1843 /* Take an "isolate" reference and put new page on the LRU. */
1844 get_page(new_page);
1845 putback_lru_page(new_page);
1846
1847 unlock_page(new_page);
1848 unlock_page(page);
1849 put_page(page); /* Drop the rmap reference */
1850 put_page(page); /* Drop the LRU isolation reference */
1851
1852 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1853 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1854
1855 mod_zone_page_state(page_zone(page),
1856 NR_ISOLATED_ANON + page_lru,
1857 -HPAGE_PMD_NR);
1858 return isolated;
1859
1860 out_fail:
1861 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1862 out_dropref:
1863 ptl = pmd_lock(mm, pmd);
1864 if (pmd_same(*pmd, entry)) {
1865 entry = pmd_modify(entry, vma->vm_page_prot);
1866 set_pmd_at(mm, mmun_start, pmd, entry);
1867 update_mmu_cache_pmd(vma, address, &entry);
1868 }
1869 spin_unlock(ptl);
1870
1871 out_unlock:
1872 unlock_page(page);
1873 put_page(page);
1874 return 0;
1875 }
1876 #endif /* CONFIG_NUMA_BALANCING */
1877
1878 #endif /* CONFIG_NUMA */
This page took 0.068249 seconds and 5 git commands to generate.