3067e40e7be93e68ddca0b1586de11ba24e3def1
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/gfp.h>
37 #include <linux/balloon_compaction.h>
38 #include <linux/mmu_notifier.h>
39 #include <linux/page_idle.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
153
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
158 }
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
162
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
172
173 if (vma->vm_flags & VM_LOCKED)
174 mlock_vma_page(new);
175
176 /* No need to invalidate - it was non-present before */
177 update_mmu_cache(vma, addr, ptep);
178 unlock:
179 pte_unmap_unlock(ptep, ptl);
180 out:
181 return SWAP_AGAIN;
182 }
183
184 /*
185 * Get rid of all migration entries and replace them by
186 * references to the indicated page.
187 */
188 static void remove_migration_ptes(struct page *old, struct page *new)
189 {
190 struct rmap_walk_control rwc = {
191 .rmap_one = remove_migration_pte,
192 .arg = old,
193 };
194
195 rmap_walk(new, &rwc);
196 }
197
198 /*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
202 */
203 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 spinlock_t *ptl)
205 {
206 pte_t pte;
207 swp_entry_t entry;
208 struct page *page;
209
210 spin_lock(ptl);
211 pte = *ptep;
212 if (!is_swap_pte(pte))
213 goto out;
214
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
217 goto out;
218
219 page = migration_entry_to_page(entry);
220
221 /*
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 * will occur again.
227 */
228 if (!get_page_unless_zero(page))
229 goto out;
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
232 put_page(page);
233 return;
234 out:
235 pte_unmap_unlock(ptep, ptl);
236 }
237
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
240 {
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
244 }
245
246 void migration_entry_wait_huge(struct vm_area_struct *vma,
247 struct mm_struct *mm, pte_t *pte)
248 {
249 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
250 __migration_entry_wait(mm, pte, ptl);
251 }
252
253 #ifdef CONFIG_BLOCK
254 /* Returns true if all buffers are successfully locked */
255 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
256 enum migrate_mode mode)
257 {
258 struct buffer_head *bh = head;
259
260 /* Simple case, sync compaction */
261 if (mode != MIGRATE_ASYNC) {
262 do {
263 get_bh(bh);
264 lock_buffer(bh);
265 bh = bh->b_this_page;
266
267 } while (bh != head);
268
269 return true;
270 }
271
272 /* async case, we cannot block on lock_buffer so use trylock_buffer */
273 do {
274 get_bh(bh);
275 if (!trylock_buffer(bh)) {
276 /*
277 * We failed to lock the buffer and cannot stall in
278 * async migration. Release the taken locks
279 */
280 struct buffer_head *failed_bh = bh;
281 put_bh(failed_bh);
282 bh = head;
283 while (bh != failed_bh) {
284 unlock_buffer(bh);
285 put_bh(bh);
286 bh = bh->b_this_page;
287 }
288 return false;
289 }
290
291 bh = bh->b_this_page;
292 } while (bh != head);
293 return true;
294 }
295 #else
296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
297 enum migrate_mode mode)
298 {
299 return true;
300 }
301 #endif /* CONFIG_BLOCK */
302
303 /*
304 * Replace the page in the mapping.
305 *
306 * The number of remaining references must be:
307 * 1 for anonymous pages without a mapping
308 * 2 for pages with a mapping
309 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 */
311 int migrate_page_move_mapping(struct address_space *mapping,
312 struct page *newpage, struct page *page,
313 struct buffer_head *head, enum migrate_mode mode,
314 int extra_count)
315 {
316 int expected_count = 1 + extra_count;
317 void **pslot;
318
319 if (!mapping) {
320 /* Anonymous page without mapping */
321 if (page_count(page) != expected_count)
322 return -EAGAIN;
323
324 /* No turning back from here */
325 set_page_memcg(newpage, page_memcg(page));
326 newpage->index = page->index;
327 newpage->mapping = page->mapping;
328 if (PageSwapBacked(page))
329 SetPageSwapBacked(newpage);
330
331 return MIGRATEPAGE_SUCCESS;
332 }
333
334 spin_lock_irq(&mapping->tree_lock);
335
336 pslot = radix_tree_lookup_slot(&mapping->page_tree,
337 page_index(page));
338
339 expected_count += 1 + page_has_private(page);
340 if (page_count(page) != expected_count ||
341 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
342 spin_unlock_irq(&mapping->tree_lock);
343 return -EAGAIN;
344 }
345
346 if (!page_freeze_refs(page, expected_count)) {
347 spin_unlock_irq(&mapping->tree_lock);
348 return -EAGAIN;
349 }
350
351 /*
352 * In the async migration case of moving a page with buffers, lock the
353 * buffers using trylock before the mapping is moved. If the mapping
354 * was moved, we later failed to lock the buffers and could not move
355 * the mapping back due to an elevated page count, we would have to
356 * block waiting on other references to be dropped.
357 */
358 if (mode == MIGRATE_ASYNC && head &&
359 !buffer_migrate_lock_buffers(head, mode)) {
360 page_unfreeze_refs(page, expected_count);
361 spin_unlock_irq(&mapping->tree_lock);
362 return -EAGAIN;
363 }
364
365 /*
366 * Now we know that no one else is looking at the page:
367 * no turning back from here.
368 */
369 set_page_memcg(newpage, page_memcg(page));
370 newpage->index = page->index;
371 newpage->mapping = page->mapping;
372 if (PageSwapBacked(page))
373 SetPageSwapBacked(newpage);
374
375 get_page(newpage); /* add cache reference */
376 if (PageSwapCache(page)) {
377 SetPageSwapCache(newpage);
378 set_page_private(newpage, page_private(page));
379 }
380
381 radix_tree_replace_slot(pslot, newpage);
382
383 /*
384 * Drop cache reference from old page by unfreezing
385 * to one less reference.
386 * We know this isn't the last reference.
387 */
388 page_unfreeze_refs(page, expected_count - 1);
389
390 /*
391 * If moved to a different zone then also account
392 * the page for that zone. Other VM counters will be
393 * taken care of when we establish references to the
394 * new page and drop references to the old page.
395 *
396 * Note that anonymous pages are accounted for
397 * via NR_FILE_PAGES and NR_ANON_PAGES if they
398 * are mapped to swap space.
399 */
400 __dec_zone_page_state(page, NR_FILE_PAGES);
401 __inc_zone_page_state(newpage, NR_FILE_PAGES);
402 if (!PageSwapCache(page) && PageSwapBacked(page)) {
403 __dec_zone_page_state(page, NR_SHMEM);
404 __inc_zone_page_state(newpage, NR_SHMEM);
405 }
406 spin_unlock_irq(&mapping->tree_lock);
407
408 return MIGRATEPAGE_SUCCESS;
409 }
410
411 /*
412 * The expected number of remaining references is the same as that
413 * of migrate_page_move_mapping().
414 */
415 int migrate_huge_page_move_mapping(struct address_space *mapping,
416 struct page *newpage, struct page *page)
417 {
418 int expected_count;
419 void **pslot;
420
421 spin_lock_irq(&mapping->tree_lock);
422
423 pslot = radix_tree_lookup_slot(&mapping->page_tree,
424 page_index(page));
425
426 expected_count = 2 + page_has_private(page);
427 if (page_count(page) != expected_count ||
428 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
429 spin_unlock_irq(&mapping->tree_lock);
430 return -EAGAIN;
431 }
432
433 if (!page_freeze_refs(page, expected_count)) {
434 spin_unlock_irq(&mapping->tree_lock);
435 return -EAGAIN;
436 }
437
438 set_page_memcg(newpage, page_memcg(page));
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
441 get_page(newpage);
442
443 radix_tree_replace_slot(pslot, newpage);
444
445 page_unfreeze_refs(page, expected_count - 1);
446
447 spin_unlock_irq(&mapping->tree_lock);
448 return MIGRATEPAGE_SUCCESS;
449 }
450
451 /*
452 * Gigantic pages are so large that we do not guarantee that page++ pointer
453 * arithmetic will work across the entire page. We need something more
454 * specialized.
455 */
456 static void __copy_gigantic_page(struct page *dst, struct page *src,
457 int nr_pages)
458 {
459 int i;
460 struct page *dst_base = dst;
461 struct page *src_base = src;
462
463 for (i = 0; i < nr_pages; ) {
464 cond_resched();
465 copy_highpage(dst, src);
466
467 i++;
468 dst = mem_map_next(dst, dst_base, i);
469 src = mem_map_next(src, src_base, i);
470 }
471 }
472
473 static void copy_huge_page(struct page *dst, struct page *src)
474 {
475 int i;
476 int nr_pages;
477
478 if (PageHuge(src)) {
479 /* hugetlbfs page */
480 struct hstate *h = page_hstate(src);
481 nr_pages = pages_per_huge_page(h);
482
483 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
484 __copy_gigantic_page(dst, src, nr_pages);
485 return;
486 }
487 } else {
488 /* thp page */
489 BUG_ON(!PageTransHuge(src));
490 nr_pages = hpage_nr_pages(src);
491 }
492
493 for (i = 0; i < nr_pages; i++) {
494 cond_resched();
495 copy_highpage(dst + i, src + i);
496 }
497 }
498
499 /*
500 * Copy the page to its new location
501 */
502 void migrate_page_copy(struct page *newpage, struct page *page)
503 {
504 int cpupid;
505
506 if (PageHuge(page) || PageTransHuge(page))
507 copy_huge_page(newpage, page);
508 else
509 copy_highpage(newpage, page);
510
511 if (PageError(page))
512 SetPageError(newpage);
513 if (PageReferenced(page))
514 SetPageReferenced(newpage);
515 if (PageUptodate(page))
516 SetPageUptodate(newpage);
517 if (TestClearPageActive(page)) {
518 VM_BUG_ON_PAGE(PageUnevictable(page), page);
519 SetPageActive(newpage);
520 } else if (TestClearPageUnevictable(page))
521 SetPageUnevictable(newpage);
522 if (PageChecked(page))
523 SetPageChecked(newpage);
524 if (PageMappedToDisk(page))
525 SetPageMappedToDisk(newpage);
526
527 if (PageDirty(page)) {
528 clear_page_dirty_for_io(page);
529 /*
530 * Want to mark the page and the radix tree as dirty, and
531 * redo the accounting that clear_page_dirty_for_io undid,
532 * but we can't use set_page_dirty because that function
533 * is actually a signal that all of the page has become dirty.
534 * Whereas only part of our page may be dirty.
535 */
536 if (PageSwapBacked(page))
537 SetPageDirty(newpage);
538 else
539 __set_page_dirty_nobuffers(newpage);
540 }
541
542 if (page_is_young(page))
543 set_page_young(newpage);
544 if (page_is_idle(page))
545 set_page_idle(newpage);
546
547 /*
548 * Copy NUMA information to the new page, to prevent over-eager
549 * future migrations of this same page.
550 */
551 cpupid = page_cpupid_xchg_last(page, -1);
552 page_cpupid_xchg_last(newpage, cpupid);
553
554 ksm_migrate_page(newpage, page);
555 /*
556 * Please do not reorder this without considering how mm/ksm.c's
557 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
558 */
559 if (PageSwapCache(page))
560 ClearPageSwapCache(page);
561 ClearPagePrivate(page);
562 set_page_private(page, 0);
563
564 /*
565 * If any waiters have accumulated on the new page then
566 * wake them up.
567 */
568 if (PageWriteback(newpage))
569 end_page_writeback(newpage);
570 }
571
572 /************************************************************
573 * Migration functions
574 ***********************************************************/
575
576 /*
577 * Common logic to directly migrate a single page suitable for
578 * pages that do not use PagePrivate/PagePrivate2.
579 *
580 * Pages are locked upon entry and exit.
581 */
582 int migrate_page(struct address_space *mapping,
583 struct page *newpage, struct page *page,
584 enum migrate_mode mode)
585 {
586 int rc;
587
588 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
589
590 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
591
592 if (rc != MIGRATEPAGE_SUCCESS)
593 return rc;
594
595 migrate_page_copy(newpage, page);
596 return MIGRATEPAGE_SUCCESS;
597 }
598 EXPORT_SYMBOL(migrate_page);
599
600 #ifdef CONFIG_BLOCK
601 /*
602 * Migration function for pages with buffers. This function can only be used
603 * if the underlying filesystem guarantees that no other references to "page"
604 * exist.
605 */
606 int buffer_migrate_page(struct address_space *mapping,
607 struct page *newpage, struct page *page, enum migrate_mode mode)
608 {
609 struct buffer_head *bh, *head;
610 int rc;
611
612 if (!page_has_buffers(page))
613 return migrate_page(mapping, newpage, page, mode);
614
615 head = page_buffers(page);
616
617 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
618
619 if (rc != MIGRATEPAGE_SUCCESS)
620 return rc;
621
622 /*
623 * In the async case, migrate_page_move_mapping locked the buffers
624 * with an IRQ-safe spinlock held. In the sync case, the buffers
625 * need to be locked now
626 */
627 if (mode != MIGRATE_ASYNC)
628 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
629
630 ClearPagePrivate(page);
631 set_page_private(newpage, page_private(page));
632 set_page_private(page, 0);
633 put_page(page);
634 get_page(newpage);
635
636 bh = head;
637 do {
638 set_bh_page(bh, newpage, bh_offset(bh));
639 bh = bh->b_this_page;
640
641 } while (bh != head);
642
643 SetPagePrivate(newpage);
644
645 migrate_page_copy(newpage, page);
646
647 bh = head;
648 do {
649 unlock_buffer(bh);
650 put_bh(bh);
651 bh = bh->b_this_page;
652
653 } while (bh != head);
654
655 return MIGRATEPAGE_SUCCESS;
656 }
657 EXPORT_SYMBOL(buffer_migrate_page);
658 #endif
659
660 /*
661 * Writeback a page to clean the dirty state
662 */
663 static int writeout(struct address_space *mapping, struct page *page)
664 {
665 struct writeback_control wbc = {
666 .sync_mode = WB_SYNC_NONE,
667 .nr_to_write = 1,
668 .range_start = 0,
669 .range_end = LLONG_MAX,
670 .for_reclaim = 1
671 };
672 int rc;
673
674 if (!mapping->a_ops->writepage)
675 /* No write method for the address space */
676 return -EINVAL;
677
678 if (!clear_page_dirty_for_io(page))
679 /* Someone else already triggered a write */
680 return -EAGAIN;
681
682 /*
683 * A dirty page may imply that the underlying filesystem has
684 * the page on some queue. So the page must be clean for
685 * migration. Writeout may mean we loose the lock and the
686 * page state is no longer what we checked for earlier.
687 * At this point we know that the migration attempt cannot
688 * be successful.
689 */
690 remove_migration_ptes(page, page);
691
692 rc = mapping->a_ops->writepage(page, &wbc);
693
694 if (rc != AOP_WRITEPAGE_ACTIVATE)
695 /* unlocked. Relock */
696 lock_page(page);
697
698 return (rc < 0) ? -EIO : -EAGAIN;
699 }
700
701 /*
702 * Default handling if a filesystem does not provide a migration function.
703 */
704 static int fallback_migrate_page(struct address_space *mapping,
705 struct page *newpage, struct page *page, enum migrate_mode mode)
706 {
707 if (PageDirty(page)) {
708 /* Only writeback pages in full synchronous migration */
709 if (mode != MIGRATE_SYNC)
710 return -EBUSY;
711 return writeout(mapping, page);
712 }
713
714 /*
715 * Buffers may be managed in a filesystem specific way.
716 * We must have no buffers or drop them.
717 */
718 if (page_has_private(page) &&
719 !try_to_release_page(page, GFP_KERNEL))
720 return -EAGAIN;
721
722 return migrate_page(mapping, newpage, page, mode);
723 }
724
725 /*
726 * Move a page to a newly allocated page
727 * The page is locked and all ptes have been successfully removed.
728 *
729 * The new page will have replaced the old page if this function
730 * is successful.
731 *
732 * Return value:
733 * < 0 - error code
734 * MIGRATEPAGE_SUCCESS - success
735 */
736 static int move_to_new_page(struct page *newpage, struct page *page,
737 enum migrate_mode mode)
738 {
739 struct address_space *mapping;
740 int rc;
741
742 VM_BUG_ON_PAGE(!PageLocked(page), page);
743 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
744
745 mapping = page_mapping(page);
746 if (!mapping)
747 rc = migrate_page(mapping, newpage, page, mode);
748 else if (mapping->a_ops->migratepage)
749 /*
750 * Most pages have a mapping and most filesystems provide a
751 * migratepage callback. Anonymous pages are part of swap
752 * space which also has its own migratepage callback. This
753 * is the most common path for page migration.
754 */
755 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
756 else
757 rc = fallback_migrate_page(mapping, newpage, page, mode);
758
759 /*
760 * When successful, old pagecache page->mapping must be cleared before
761 * page is freed; but stats require that PageAnon be left as PageAnon.
762 */
763 if (rc == MIGRATEPAGE_SUCCESS) {
764 set_page_memcg(page, NULL);
765 if (!PageAnon(page))
766 page->mapping = NULL;
767 }
768 return rc;
769 }
770
771 static int __unmap_and_move(struct page *page, struct page *newpage,
772 int force, enum migrate_mode mode)
773 {
774 int rc = -EAGAIN;
775 int page_was_mapped = 0;
776 struct anon_vma *anon_vma = NULL;
777
778 if (!trylock_page(page)) {
779 if (!force || mode == MIGRATE_ASYNC)
780 goto out;
781
782 /*
783 * It's not safe for direct compaction to call lock_page.
784 * For example, during page readahead pages are added locked
785 * to the LRU. Later, when the IO completes the pages are
786 * marked uptodate and unlocked. However, the queueing
787 * could be merging multiple pages for one bio (e.g.
788 * mpage_readpages). If an allocation happens for the
789 * second or third page, the process can end up locking
790 * the same page twice and deadlocking. Rather than
791 * trying to be clever about what pages can be locked,
792 * avoid the use of lock_page for direct compaction
793 * altogether.
794 */
795 if (current->flags & PF_MEMALLOC)
796 goto out;
797
798 lock_page(page);
799 }
800
801 if (PageWriteback(page)) {
802 /*
803 * Only in the case of a full synchronous migration is it
804 * necessary to wait for PageWriteback. In the async case,
805 * the retry loop is too short and in the sync-light case,
806 * the overhead of stalling is too much
807 */
808 if (mode != MIGRATE_SYNC) {
809 rc = -EBUSY;
810 goto out_unlock;
811 }
812 if (!force)
813 goto out_unlock;
814 wait_on_page_writeback(page);
815 }
816
817 /*
818 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
819 * we cannot notice that anon_vma is freed while we migrates a page.
820 * This get_anon_vma() delays freeing anon_vma pointer until the end
821 * of migration. File cache pages are no problem because of page_lock()
822 * File Caches may use write_page() or lock_page() in migration, then,
823 * just care Anon page here.
824 *
825 * Only page_get_anon_vma() understands the subtleties of
826 * getting a hold on an anon_vma from outside one of its mms.
827 * But if we cannot get anon_vma, then we won't need it anyway,
828 * because that implies that the anon page is no longer mapped
829 * (and cannot be remapped so long as we hold the page lock).
830 */
831 if (PageAnon(page) && !PageKsm(page))
832 anon_vma = page_get_anon_vma(page);
833
834 /*
835 * Block others from accessing the new page when we get around to
836 * establishing additional references. We are usually the only one
837 * holding a reference to newpage at this point. We used to have a BUG
838 * here if trylock_page(newpage) fails, but would like to allow for
839 * cases where there might be a race with the previous use of newpage.
840 * This is much like races on refcount of oldpage: just don't BUG().
841 */
842 if (unlikely(!trylock_page(newpage)))
843 goto out_unlock;
844
845 if (unlikely(isolated_balloon_page(page))) {
846 /*
847 * A ballooned page does not need any special attention from
848 * physical to virtual reverse mapping procedures.
849 * Skip any attempt to unmap PTEs or to remap swap cache,
850 * in order to avoid burning cycles at rmap level, and perform
851 * the page migration right away (proteced by page lock).
852 */
853 rc = balloon_page_migrate(newpage, page, mode);
854 goto out_unlock_both;
855 }
856
857 /*
858 * Corner case handling:
859 * 1. When a new swap-cache page is read into, it is added to the LRU
860 * and treated as swapcache but it has no rmap yet.
861 * Calling try_to_unmap() against a page->mapping==NULL page will
862 * trigger a BUG. So handle it here.
863 * 2. An orphaned page (see truncate_complete_page) might have
864 * fs-private metadata. The page can be picked up due to memory
865 * offlining. Everywhere else except page reclaim, the page is
866 * invisible to the vm, so the page can not be migrated. So try to
867 * free the metadata, so the page can be freed.
868 */
869 if (!page->mapping) {
870 VM_BUG_ON_PAGE(PageAnon(page), page);
871 if (page_has_private(page)) {
872 try_to_free_buffers(page);
873 goto out_unlock_both;
874 }
875 } else if (page_mapped(page)) {
876 /* Establish migration ptes */
877 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
878 page);
879 try_to_unmap(page,
880 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
881 page_was_mapped = 1;
882 }
883
884 if (!page_mapped(page))
885 rc = move_to_new_page(newpage, page, mode);
886
887 if (page_was_mapped)
888 remove_migration_ptes(page,
889 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
890
891 out_unlock_both:
892 unlock_page(newpage);
893 out_unlock:
894 /* Drop an anon_vma reference if we took one */
895 if (anon_vma)
896 put_anon_vma(anon_vma);
897 unlock_page(page);
898 out:
899 return rc;
900 }
901
902 /*
903 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
904 * around it.
905 */
906 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
907 #define ICE_noinline noinline
908 #else
909 #define ICE_noinline
910 #endif
911
912 /*
913 * Obtain the lock on page, remove all ptes and migrate the page
914 * to the newly allocated page in newpage.
915 */
916 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
917 free_page_t put_new_page,
918 unsigned long private, struct page *page,
919 int force, enum migrate_mode mode,
920 enum migrate_reason reason)
921 {
922 int rc = MIGRATEPAGE_SUCCESS;
923 int *result = NULL;
924 struct page *newpage;
925
926 newpage = get_new_page(page, private, &result);
927 if (!newpage)
928 return -ENOMEM;
929
930 if (page_count(page) == 1) {
931 /* page was freed from under us. So we are done. */
932 goto out;
933 }
934
935 if (unlikely(PageTransHuge(page)))
936 if (unlikely(split_huge_page(page)))
937 goto out;
938
939 rc = __unmap_and_move(page, newpage, force, mode);
940 if (rc == MIGRATEPAGE_SUCCESS)
941 put_new_page = NULL;
942
943 out:
944 if (rc != -EAGAIN) {
945 /*
946 * A page that has been migrated has all references
947 * removed and will be freed. A page that has not been
948 * migrated will have kepts its references and be
949 * restored.
950 */
951 list_del(&page->lru);
952 dec_zone_page_state(page, NR_ISOLATED_ANON +
953 page_is_file_cache(page));
954 /* Soft-offlined page shouldn't go through lru cache list */
955 if (reason == MR_MEMORY_FAILURE) {
956 put_page(page);
957 if (!test_set_page_hwpoison(page))
958 num_poisoned_pages_inc();
959 } else
960 putback_lru_page(page);
961 }
962
963 /*
964 * If migration was not successful and there's a freeing callback, use
965 * it. Otherwise, putback_lru_page() will drop the reference grabbed
966 * during isolation.
967 */
968 if (put_new_page)
969 put_new_page(newpage, private);
970 else if (unlikely(__is_movable_balloon_page(newpage))) {
971 /* drop our reference, page already in the balloon */
972 put_page(newpage);
973 } else
974 putback_lru_page(newpage);
975
976 if (result) {
977 if (rc)
978 *result = rc;
979 else
980 *result = page_to_nid(newpage);
981 }
982 return rc;
983 }
984
985 /*
986 * Counterpart of unmap_and_move_page() for hugepage migration.
987 *
988 * This function doesn't wait the completion of hugepage I/O
989 * because there is no race between I/O and migration for hugepage.
990 * Note that currently hugepage I/O occurs only in direct I/O
991 * where no lock is held and PG_writeback is irrelevant,
992 * and writeback status of all subpages are counted in the reference
993 * count of the head page (i.e. if all subpages of a 2MB hugepage are
994 * under direct I/O, the reference of the head page is 512 and a bit more.)
995 * This means that when we try to migrate hugepage whose subpages are
996 * doing direct I/O, some references remain after try_to_unmap() and
997 * hugepage migration fails without data corruption.
998 *
999 * There is also no race when direct I/O is issued on the page under migration,
1000 * because then pte is replaced with migration swap entry and direct I/O code
1001 * will wait in the page fault for migration to complete.
1002 */
1003 static int unmap_and_move_huge_page(new_page_t get_new_page,
1004 free_page_t put_new_page, unsigned long private,
1005 struct page *hpage, int force,
1006 enum migrate_mode mode)
1007 {
1008 int rc = -EAGAIN;
1009 int *result = NULL;
1010 int page_was_mapped = 0;
1011 struct page *new_hpage;
1012 struct anon_vma *anon_vma = NULL;
1013
1014 /*
1015 * Movability of hugepages depends on architectures and hugepage size.
1016 * This check is necessary because some callers of hugepage migration
1017 * like soft offline and memory hotremove don't walk through page
1018 * tables or check whether the hugepage is pmd-based or not before
1019 * kicking migration.
1020 */
1021 if (!hugepage_migration_supported(page_hstate(hpage))) {
1022 putback_active_hugepage(hpage);
1023 return -ENOSYS;
1024 }
1025
1026 new_hpage = get_new_page(hpage, private, &result);
1027 if (!new_hpage)
1028 return -ENOMEM;
1029
1030 if (!trylock_page(hpage)) {
1031 if (!force || mode != MIGRATE_SYNC)
1032 goto out;
1033 lock_page(hpage);
1034 }
1035
1036 if (PageAnon(hpage))
1037 anon_vma = page_get_anon_vma(hpage);
1038
1039 if (unlikely(!trylock_page(new_hpage)))
1040 goto put_anon;
1041
1042 if (page_mapped(hpage)) {
1043 try_to_unmap(hpage,
1044 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1045 page_was_mapped = 1;
1046 }
1047
1048 if (!page_mapped(hpage))
1049 rc = move_to_new_page(new_hpage, hpage, mode);
1050
1051 if (page_was_mapped)
1052 remove_migration_ptes(hpage,
1053 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1054
1055 unlock_page(new_hpage);
1056
1057 put_anon:
1058 if (anon_vma)
1059 put_anon_vma(anon_vma);
1060
1061 if (rc == MIGRATEPAGE_SUCCESS) {
1062 hugetlb_cgroup_migrate(hpage, new_hpage);
1063 put_new_page = NULL;
1064 }
1065
1066 unlock_page(hpage);
1067 out:
1068 if (rc != -EAGAIN)
1069 putback_active_hugepage(hpage);
1070
1071 /*
1072 * If migration was not successful and there's a freeing callback, use
1073 * it. Otherwise, put_page() will drop the reference grabbed during
1074 * isolation.
1075 */
1076 if (put_new_page)
1077 put_new_page(new_hpage, private);
1078 else
1079 putback_active_hugepage(new_hpage);
1080
1081 if (result) {
1082 if (rc)
1083 *result = rc;
1084 else
1085 *result = page_to_nid(new_hpage);
1086 }
1087 return rc;
1088 }
1089
1090 /*
1091 * migrate_pages - migrate the pages specified in a list, to the free pages
1092 * supplied as the target for the page migration
1093 *
1094 * @from: The list of pages to be migrated.
1095 * @get_new_page: The function used to allocate free pages to be used
1096 * as the target of the page migration.
1097 * @put_new_page: The function used to free target pages if migration
1098 * fails, or NULL if no special handling is necessary.
1099 * @private: Private data to be passed on to get_new_page()
1100 * @mode: The migration mode that specifies the constraints for
1101 * page migration, if any.
1102 * @reason: The reason for page migration.
1103 *
1104 * The function returns after 10 attempts or if no pages are movable any more
1105 * because the list has become empty or no retryable pages exist any more.
1106 * The caller should call putback_movable_pages() to return pages to the LRU
1107 * or free list only if ret != 0.
1108 *
1109 * Returns the number of pages that were not migrated, or an error code.
1110 */
1111 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1112 free_page_t put_new_page, unsigned long private,
1113 enum migrate_mode mode, int reason)
1114 {
1115 int retry = 1;
1116 int nr_failed = 0;
1117 int nr_succeeded = 0;
1118 int pass = 0;
1119 struct page *page;
1120 struct page *page2;
1121 int swapwrite = current->flags & PF_SWAPWRITE;
1122 int rc;
1123
1124 if (!swapwrite)
1125 current->flags |= PF_SWAPWRITE;
1126
1127 for(pass = 0; pass < 10 && retry; pass++) {
1128 retry = 0;
1129
1130 list_for_each_entry_safe(page, page2, from, lru) {
1131 cond_resched();
1132
1133 if (PageHuge(page))
1134 rc = unmap_and_move_huge_page(get_new_page,
1135 put_new_page, private, page,
1136 pass > 2, mode);
1137 else
1138 rc = unmap_and_move(get_new_page, put_new_page,
1139 private, page, pass > 2, mode,
1140 reason);
1141
1142 switch(rc) {
1143 case -ENOMEM:
1144 goto out;
1145 case -EAGAIN:
1146 retry++;
1147 break;
1148 case MIGRATEPAGE_SUCCESS:
1149 nr_succeeded++;
1150 break;
1151 default:
1152 /*
1153 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1154 * unlike -EAGAIN case, the failed page is
1155 * removed from migration page list and not
1156 * retried in the next outer loop.
1157 */
1158 nr_failed++;
1159 break;
1160 }
1161 }
1162 }
1163 nr_failed += retry;
1164 rc = nr_failed;
1165 out:
1166 if (nr_succeeded)
1167 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1168 if (nr_failed)
1169 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1170 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1171
1172 if (!swapwrite)
1173 current->flags &= ~PF_SWAPWRITE;
1174
1175 return rc;
1176 }
1177
1178 #ifdef CONFIG_NUMA
1179 /*
1180 * Move a list of individual pages
1181 */
1182 struct page_to_node {
1183 unsigned long addr;
1184 struct page *page;
1185 int node;
1186 int status;
1187 };
1188
1189 static struct page *new_page_node(struct page *p, unsigned long private,
1190 int **result)
1191 {
1192 struct page_to_node *pm = (struct page_to_node *)private;
1193
1194 while (pm->node != MAX_NUMNODES && pm->page != p)
1195 pm++;
1196
1197 if (pm->node == MAX_NUMNODES)
1198 return NULL;
1199
1200 *result = &pm->status;
1201
1202 if (PageHuge(p))
1203 return alloc_huge_page_node(page_hstate(compound_head(p)),
1204 pm->node);
1205 else
1206 return __alloc_pages_node(pm->node,
1207 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1208 }
1209
1210 /*
1211 * Move a set of pages as indicated in the pm array. The addr
1212 * field must be set to the virtual address of the page to be moved
1213 * and the node number must contain a valid target node.
1214 * The pm array ends with node = MAX_NUMNODES.
1215 */
1216 static int do_move_page_to_node_array(struct mm_struct *mm,
1217 struct page_to_node *pm,
1218 int migrate_all)
1219 {
1220 int err;
1221 struct page_to_node *pp;
1222 LIST_HEAD(pagelist);
1223
1224 down_read(&mm->mmap_sem);
1225
1226 /*
1227 * Build a list of pages to migrate
1228 */
1229 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1230 struct vm_area_struct *vma;
1231 struct page *page;
1232
1233 err = -EFAULT;
1234 vma = find_vma(mm, pp->addr);
1235 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1236 goto set_status;
1237
1238 /* FOLL_DUMP to ignore special (like zero) pages */
1239 page = follow_page(vma, pp->addr,
1240 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1241
1242 err = PTR_ERR(page);
1243 if (IS_ERR(page))
1244 goto set_status;
1245
1246 err = -ENOENT;
1247 if (!page)
1248 goto set_status;
1249
1250 pp->page = page;
1251 err = page_to_nid(page);
1252
1253 if (err == pp->node)
1254 /*
1255 * Node already in the right place
1256 */
1257 goto put_and_set;
1258
1259 err = -EACCES;
1260 if (page_mapcount(page) > 1 &&
1261 !migrate_all)
1262 goto put_and_set;
1263
1264 if (PageHuge(page)) {
1265 if (PageHead(page))
1266 isolate_huge_page(page, &pagelist);
1267 goto put_and_set;
1268 }
1269
1270 err = isolate_lru_page(page);
1271 if (!err) {
1272 list_add_tail(&page->lru, &pagelist);
1273 inc_zone_page_state(page, NR_ISOLATED_ANON +
1274 page_is_file_cache(page));
1275 }
1276 put_and_set:
1277 /*
1278 * Either remove the duplicate refcount from
1279 * isolate_lru_page() or drop the page ref if it was
1280 * not isolated.
1281 */
1282 put_page(page);
1283 set_status:
1284 pp->status = err;
1285 }
1286
1287 err = 0;
1288 if (!list_empty(&pagelist)) {
1289 err = migrate_pages(&pagelist, new_page_node, NULL,
1290 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1291 if (err)
1292 putback_movable_pages(&pagelist);
1293 }
1294
1295 up_read(&mm->mmap_sem);
1296 return err;
1297 }
1298
1299 /*
1300 * Migrate an array of page address onto an array of nodes and fill
1301 * the corresponding array of status.
1302 */
1303 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1304 unsigned long nr_pages,
1305 const void __user * __user *pages,
1306 const int __user *nodes,
1307 int __user *status, int flags)
1308 {
1309 struct page_to_node *pm;
1310 unsigned long chunk_nr_pages;
1311 unsigned long chunk_start;
1312 int err;
1313
1314 err = -ENOMEM;
1315 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1316 if (!pm)
1317 goto out;
1318
1319 migrate_prep();
1320
1321 /*
1322 * Store a chunk of page_to_node array in a page,
1323 * but keep the last one as a marker
1324 */
1325 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1326
1327 for (chunk_start = 0;
1328 chunk_start < nr_pages;
1329 chunk_start += chunk_nr_pages) {
1330 int j;
1331
1332 if (chunk_start + chunk_nr_pages > nr_pages)
1333 chunk_nr_pages = nr_pages - chunk_start;
1334
1335 /* fill the chunk pm with addrs and nodes from user-space */
1336 for (j = 0; j < chunk_nr_pages; j++) {
1337 const void __user *p;
1338 int node;
1339
1340 err = -EFAULT;
1341 if (get_user(p, pages + j + chunk_start))
1342 goto out_pm;
1343 pm[j].addr = (unsigned long) p;
1344
1345 if (get_user(node, nodes + j + chunk_start))
1346 goto out_pm;
1347
1348 err = -ENODEV;
1349 if (node < 0 || node >= MAX_NUMNODES)
1350 goto out_pm;
1351
1352 if (!node_state(node, N_MEMORY))
1353 goto out_pm;
1354
1355 err = -EACCES;
1356 if (!node_isset(node, task_nodes))
1357 goto out_pm;
1358
1359 pm[j].node = node;
1360 }
1361
1362 /* End marker for this chunk */
1363 pm[chunk_nr_pages].node = MAX_NUMNODES;
1364
1365 /* Migrate this chunk */
1366 err = do_move_page_to_node_array(mm, pm,
1367 flags & MPOL_MF_MOVE_ALL);
1368 if (err < 0)
1369 goto out_pm;
1370
1371 /* Return status information */
1372 for (j = 0; j < chunk_nr_pages; j++)
1373 if (put_user(pm[j].status, status + j + chunk_start)) {
1374 err = -EFAULT;
1375 goto out_pm;
1376 }
1377 }
1378 err = 0;
1379
1380 out_pm:
1381 free_page((unsigned long)pm);
1382 out:
1383 return err;
1384 }
1385
1386 /*
1387 * Determine the nodes of an array of pages and store it in an array of status.
1388 */
1389 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1390 const void __user **pages, int *status)
1391 {
1392 unsigned long i;
1393
1394 down_read(&mm->mmap_sem);
1395
1396 for (i = 0; i < nr_pages; i++) {
1397 unsigned long addr = (unsigned long)(*pages);
1398 struct vm_area_struct *vma;
1399 struct page *page;
1400 int err = -EFAULT;
1401
1402 vma = find_vma(mm, addr);
1403 if (!vma || addr < vma->vm_start)
1404 goto set_status;
1405
1406 /* FOLL_DUMP to ignore special (like zero) pages */
1407 page = follow_page(vma, addr, FOLL_DUMP);
1408
1409 err = PTR_ERR(page);
1410 if (IS_ERR(page))
1411 goto set_status;
1412
1413 err = page ? page_to_nid(page) : -ENOENT;
1414 set_status:
1415 *status = err;
1416
1417 pages++;
1418 status++;
1419 }
1420
1421 up_read(&mm->mmap_sem);
1422 }
1423
1424 /*
1425 * Determine the nodes of a user array of pages and store it in
1426 * a user array of status.
1427 */
1428 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1429 const void __user * __user *pages,
1430 int __user *status)
1431 {
1432 #define DO_PAGES_STAT_CHUNK_NR 16
1433 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1434 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1435
1436 while (nr_pages) {
1437 unsigned long chunk_nr;
1438
1439 chunk_nr = nr_pages;
1440 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1441 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1442
1443 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1444 break;
1445
1446 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1447
1448 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1449 break;
1450
1451 pages += chunk_nr;
1452 status += chunk_nr;
1453 nr_pages -= chunk_nr;
1454 }
1455 return nr_pages ? -EFAULT : 0;
1456 }
1457
1458 /*
1459 * Move a list of pages in the address space of the currently executing
1460 * process.
1461 */
1462 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1463 const void __user * __user *, pages,
1464 const int __user *, nodes,
1465 int __user *, status, int, flags)
1466 {
1467 const struct cred *cred = current_cred(), *tcred;
1468 struct task_struct *task;
1469 struct mm_struct *mm;
1470 int err;
1471 nodemask_t task_nodes;
1472
1473 /* Check flags */
1474 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1475 return -EINVAL;
1476
1477 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1478 return -EPERM;
1479
1480 /* Find the mm_struct */
1481 rcu_read_lock();
1482 task = pid ? find_task_by_vpid(pid) : current;
1483 if (!task) {
1484 rcu_read_unlock();
1485 return -ESRCH;
1486 }
1487 get_task_struct(task);
1488
1489 /*
1490 * Check if this process has the right to modify the specified
1491 * process. The right exists if the process has administrative
1492 * capabilities, superuser privileges or the same
1493 * userid as the target process.
1494 */
1495 tcred = __task_cred(task);
1496 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1497 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1498 !capable(CAP_SYS_NICE)) {
1499 rcu_read_unlock();
1500 err = -EPERM;
1501 goto out;
1502 }
1503 rcu_read_unlock();
1504
1505 err = security_task_movememory(task);
1506 if (err)
1507 goto out;
1508
1509 task_nodes = cpuset_mems_allowed(task);
1510 mm = get_task_mm(task);
1511 put_task_struct(task);
1512
1513 if (!mm)
1514 return -EINVAL;
1515
1516 if (nodes)
1517 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1518 nodes, status, flags);
1519 else
1520 err = do_pages_stat(mm, nr_pages, pages, status);
1521
1522 mmput(mm);
1523 return err;
1524
1525 out:
1526 put_task_struct(task);
1527 return err;
1528 }
1529
1530 #ifdef CONFIG_NUMA_BALANCING
1531 /*
1532 * Returns true if this is a safe migration target node for misplaced NUMA
1533 * pages. Currently it only checks the watermarks which crude
1534 */
1535 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1536 unsigned long nr_migrate_pages)
1537 {
1538 int z;
1539 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1540 struct zone *zone = pgdat->node_zones + z;
1541
1542 if (!populated_zone(zone))
1543 continue;
1544
1545 if (!zone_reclaimable(zone))
1546 continue;
1547
1548 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1549 if (!zone_watermark_ok(zone, 0,
1550 high_wmark_pages(zone) +
1551 nr_migrate_pages,
1552 0, 0))
1553 continue;
1554 return true;
1555 }
1556 return false;
1557 }
1558
1559 static struct page *alloc_misplaced_dst_page(struct page *page,
1560 unsigned long data,
1561 int **result)
1562 {
1563 int nid = (int) data;
1564 struct page *newpage;
1565
1566 newpage = __alloc_pages_node(nid,
1567 (GFP_HIGHUSER_MOVABLE |
1568 __GFP_THISNODE | __GFP_NOMEMALLOC |
1569 __GFP_NORETRY | __GFP_NOWARN) &
1570 ~GFP_IOFS, 0);
1571
1572 return newpage;
1573 }
1574
1575 /*
1576 * page migration rate limiting control.
1577 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1578 * window of time. Default here says do not migrate more than 1280M per second.
1579 */
1580 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1581 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1582
1583 /* Returns true if the node is migrate rate-limited after the update */
1584 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1585 unsigned long nr_pages)
1586 {
1587 /*
1588 * Rate-limit the amount of data that is being migrated to a node.
1589 * Optimal placement is no good if the memory bus is saturated and
1590 * all the time is being spent migrating!
1591 */
1592 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1593 spin_lock(&pgdat->numabalancing_migrate_lock);
1594 pgdat->numabalancing_migrate_nr_pages = 0;
1595 pgdat->numabalancing_migrate_next_window = jiffies +
1596 msecs_to_jiffies(migrate_interval_millisecs);
1597 spin_unlock(&pgdat->numabalancing_migrate_lock);
1598 }
1599 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1600 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1601 nr_pages);
1602 return true;
1603 }
1604
1605 /*
1606 * This is an unlocked non-atomic update so errors are possible.
1607 * The consequences are failing to migrate when we potentiall should
1608 * have which is not severe enough to warrant locking. If it is ever
1609 * a problem, it can be converted to a per-cpu counter.
1610 */
1611 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1612 return false;
1613 }
1614
1615 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1616 {
1617 int page_lru;
1618
1619 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1620
1621 /* Avoid migrating to a node that is nearly full */
1622 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1623 return 0;
1624
1625 if (isolate_lru_page(page))
1626 return 0;
1627
1628 /*
1629 * migrate_misplaced_transhuge_page() skips page migration's usual
1630 * check on page_count(), so we must do it here, now that the page
1631 * has been isolated: a GUP pin, or any other pin, prevents migration.
1632 * The expected page count is 3: 1 for page's mapcount and 1 for the
1633 * caller's pin and 1 for the reference taken by isolate_lru_page().
1634 */
1635 if (PageTransHuge(page) && page_count(page) != 3) {
1636 putback_lru_page(page);
1637 return 0;
1638 }
1639
1640 page_lru = page_is_file_cache(page);
1641 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1642 hpage_nr_pages(page));
1643
1644 /*
1645 * Isolating the page has taken another reference, so the
1646 * caller's reference can be safely dropped without the page
1647 * disappearing underneath us during migration.
1648 */
1649 put_page(page);
1650 return 1;
1651 }
1652
1653 bool pmd_trans_migrating(pmd_t pmd)
1654 {
1655 struct page *page = pmd_page(pmd);
1656 return PageLocked(page);
1657 }
1658
1659 /*
1660 * Attempt to migrate a misplaced page to the specified destination
1661 * node. Caller is expected to have an elevated reference count on
1662 * the page that will be dropped by this function before returning.
1663 */
1664 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1665 int node)
1666 {
1667 pg_data_t *pgdat = NODE_DATA(node);
1668 int isolated;
1669 int nr_remaining;
1670 LIST_HEAD(migratepages);
1671
1672 /*
1673 * Don't migrate file pages that are mapped in multiple processes
1674 * with execute permissions as they are probably shared libraries.
1675 */
1676 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1677 (vma->vm_flags & VM_EXEC))
1678 goto out;
1679
1680 /*
1681 * Rate-limit the amount of data that is being migrated to a node.
1682 * Optimal placement is no good if the memory bus is saturated and
1683 * all the time is being spent migrating!
1684 */
1685 if (numamigrate_update_ratelimit(pgdat, 1))
1686 goto out;
1687
1688 isolated = numamigrate_isolate_page(pgdat, page);
1689 if (!isolated)
1690 goto out;
1691
1692 list_add(&page->lru, &migratepages);
1693 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1694 NULL, node, MIGRATE_ASYNC,
1695 MR_NUMA_MISPLACED);
1696 if (nr_remaining) {
1697 if (!list_empty(&migratepages)) {
1698 list_del(&page->lru);
1699 dec_zone_page_state(page, NR_ISOLATED_ANON +
1700 page_is_file_cache(page));
1701 putback_lru_page(page);
1702 }
1703 isolated = 0;
1704 } else
1705 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1706 BUG_ON(!list_empty(&migratepages));
1707 return isolated;
1708
1709 out:
1710 put_page(page);
1711 return 0;
1712 }
1713 #endif /* CONFIG_NUMA_BALANCING */
1714
1715 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1716 /*
1717 * Migrates a THP to a given target node. page must be locked and is unlocked
1718 * before returning.
1719 */
1720 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1721 struct vm_area_struct *vma,
1722 pmd_t *pmd, pmd_t entry,
1723 unsigned long address,
1724 struct page *page, int node)
1725 {
1726 spinlock_t *ptl;
1727 pg_data_t *pgdat = NODE_DATA(node);
1728 int isolated = 0;
1729 struct page *new_page = NULL;
1730 int page_lru = page_is_file_cache(page);
1731 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1732 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1733 pmd_t orig_entry;
1734
1735 /*
1736 * Rate-limit the amount of data that is being migrated to a node.
1737 * Optimal placement is no good if the memory bus is saturated and
1738 * all the time is being spent migrating!
1739 */
1740 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1741 goto out_dropref;
1742
1743 new_page = alloc_pages_node(node,
1744 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1745 HPAGE_PMD_ORDER);
1746 if (!new_page)
1747 goto out_fail;
1748
1749 isolated = numamigrate_isolate_page(pgdat, page);
1750 if (!isolated) {
1751 put_page(new_page);
1752 goto out_fail;
1753 }
1754
1755 if (mm_tlb_flush_pending(mm))
1756 flush_tlb_range(vma, mmun_start, mmun_end);
1757
1758 /* Prepare a page as a migration target */
1759 __set_page_locked(new_page);
1760 SetPageSwapBacked(new_page);
1761
1762 /* anon mapping, we can simply copy page->mapping to the new page: */
1763 new_page->mapping = page->mapping;
1764 new_page->index = page->index;
1765 migrate_page_copy(new_page, page);
1766 WARN_ON(PageLRU(new_page));
1767
1768 /* Recheck the target PMD */
1769 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1770 ptl = pmd_lock(mm, pmd);
1771 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1772 fail_putback:
1773 spin_unlock(ptl);
1774 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1775
1776 /* Reverse changes made by migrate_page_copy() */
1777 if (TestClearPageActive(new_page))
1778 SetPageActive(page);
1779 if (TestClearPageUnevictable(new_page))
1780 SetPageUnevictable(page);
1781
1782 unlock_page(new_page);
1783 put_page(new_page); /* Free it */
1784
1785 /* Retake the callers reference and putback on LRU */
1786 get_page(page);
1787 putback_lru_page(page);
1788 mod_zone_page_state(page_zone(page),
1789 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1790
1791 goto out_unlock;
1792 }
1793
1794 orig_entry = *pmd;
1795 entry = mk_pmd(new_page, vma->vm_page_prot);
1796 entry = pmd_mkhuge(entry);
1797 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1798
1799 /*
1800 * Clear the old entry under pagetable lock and establish the new PTE.
1801 * Any parallel GUP will either observe the old page blocking on the
1802 * page lock, block on the page table lock or observe the new page.
1803 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1804 * guarantee the copy is visible before the pagetable update.
1805 */
1806 flush_cache_range(vma, mmun_start, mmun_end);
1807 page_add_anon_rmap(new_page, vma, mmun_start);
1808 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1809 set_pmd_at(mm, mmun_start, pmd, entry);
1810 flush_tlb_range(vma, mmun_start, mmun_end);
1811 update_mmu_cache_pmd(vma, address, &entry);
1812
1813 if (page_count(page) != 2) {
1814 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1815 flush_tlb_range(vma, mmun_start, mmun_end);
1816 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1817 update_mmu_cache_pmd(vma, address, &entry);
1818 page_remove_rmap(new_page);
1819 goto fail_putback;
1820 }
1821
1822 mlock_migrate_page(new_page, page);
1823 set_page_memcg(new_page, page_memcg(page));
1824 set_page_memcg(page, NULL);
1825 page_remove_rmap(page);
1826
1827 spin_unlock(ptl);
1828 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1829
1830 /* Take an "isolate" reference and put new page on the LRU. */
1831 get_page(new_page);
1832 putback_lru_page(new_page);
1833
1834 unlock_page(new_page);
1835 unlock_page(page);
1836 put_page(page); /* Drop the rmap reference */
1837 put_page(page); /* Drop the LRU isolation reference */
1838
1839 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1840 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1841
1842 mod_zone_page_state(page_zone(page),
1843 NR_ISOLATED_ANON + page_lru,
1844 -HPAGE_PMD_NR);
1845 return isolated;
1846
1847 out_fail:
1848 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1849 out_dropref:
1850 ptl = pmd_lock(mm, pmd);
1851 if (pmd_same(*pmd, entry)) {
1852 entry = pmd_modify(entry, vma->vm_page_prot);
1853 set_pmd_at(mm, mmun_start, pmd, entry);
1854 update_mmu_cache_pmd(vma, address, &entry);
1855 }
1856 spin_unlock(ptl);
1857
1858 out_unlock:
1859 unlock_page(page);
1860 put_page(page);
1861 return 0;
1862 }
1863 #endif /* CONFIG_NUMA_BALANCING */
1864
1865 #endif /* CONFIG_NUMA */
This page took 0.06407 seconds and 4 git commands to generate.