tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 unsigned long vm_flags = vma->vm_flags;
119
120 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
121 if (vma_wants_writenotify(vma)) {
122 vm_flags &= ~VM_SHARED;
123 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
124 vm_flags);
125 }
126 }
127
128 /*
129 * Requires inode->i_mapping->i_mmap_rwsem
130 */
131 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
132 struct file *file, struct address_space *mapping)
133 {
134 if (vma->vm_flags & VM_DENYWRITE)
135 atomic_inc(&file_inode(file)->i_writecount);
136 if (vma->vm_flags & VM_SHARED)
137 mapping_unmap_writable(mapping);
138
139 flush_dcache_mmap_lock(mapping);
140 vma_interval_tree_remove(vma, &mapping->i_mmap);
141 flush_dcache_mmap_unlock(mapping);
142 }
143
144 /*
145 * Unlink a file-based vm structure from its interval tree, to hide
146 * vma from rmap and vmtruncate before freeing its page tables.
147 */
148 void unlink_file_vma(struct vm_area_struct *vma)
149 {
150 struct file *file = vma->vm_file;
151
152 if (file) {
153 struct address_space *mapping = file->f_mapping;
154 i_mmap_lock_write(mapping);
155 __remove_shared_vm_struct(vma, file, mapping);
156 i_mmap_unlock_write(mapping);
157 }
158 }
159
160 /*
161 * Close a vm structure and free it, returning the next.
162 */
163 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
164 {
165 struct vm_area_struct *next = vma->vm_next;
166
167 might_sleep();
168 if (vma->vm_ops && vma->vm_ops->close)
169 vma->vm_ops->close(vma);
170 if (vma->vm_file)
171 fput(vma->vm_file);
172 mpol_put(vma_policy(vma));
173 kmem_cache_free(vm_area_cachep, vma);
174 return next;
175 }
176
177 static int do_brk(unsigned long addr, unsigned long len);
178
179 SYSCALL_DEFINE1(brk, unsigned long, brk)
180 {
181 unsigned long retval;
182 unsigned long newbrk, oldbrk;
183 struct mm_struct *mm = current->mm;
184 unsigned long min_brk;
185 bool populate;
186
187 if (down_write_killable(&mm->mmap_sem))
188 return -EINTR;
189
190 #ifdef CONFIG_COMPAT_BRK
191 /*
192 * CONFIG_COMPAT_BRK can still be overridden by setting
193 * randomize_va_space to 2, which will still cause mm->start_brk
194 * to be arbitrarily shifted
195 */
196 if (current->brk_randomized)
197 min_brk = mm->start_brk;
198 else
199 min_brk = mm->end_data;
200 #else
201 min_brk = mm->start_brk;
202 #endif
203 if (brk < min_brk)
204 goto out;
205
206 /*
207 * Check against rlimit here. If this check is done later after the test
208 * of oldbrk with newbrk then it can escape the test and let the data
209 * segment grow beyond its set limit the in case where the limit is
210 * not page aligned -Ram Gupta
211 */
212 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213 mm->end_data, mm->start_data))
214 goto out;
215
216 newbrk = PAGE_ALIGN(brk);
217 oldbrk = PAGE_ALIGN(mm->brk);
218 if (oldbrk == newbrk)
219 goto set_brk;
220
221 /* Always allow shrinking brk. */
222 if (brk <= mm->brk) {
223 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
224 goto set_brk;
225 goto out;
226 }
227
228 /* Check against existing mmap mappings. */
229 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
230 goto out;
231
232 /* Ok, looks good - let it rip. */
233 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
234 goto out;
235
236 set_brk:
237 mm->brk = brk;
238 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
239 up_write(&mm->mmap_sem);
240 if (populate)
241 mm_populate(oldbrk, newbrk - oldbrk);
242 return brk;
243
244 out:
245 retval = mm->brk;
246 up_write(&mm->mmap_sem);
247 return retval;
248 }
249
250 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
251 {
252 unsigned long max, subtree_gap;
253 max = vma->vm_start;
254 if (vma->vm_prev)
255 max -= vma->vm_prev->vm_end;
256 if (vma->vm_rb.rb_left) {
257 subtree_gap = rb_entry(vma->vm_rb.rb_left,
258 struct vm_area_struct, vm_rb)->rb_subtree_gap;
259 if (subtree_gap > max)
260 max = subtree_gap;
261 }
262 if (vma->vm_rb.rb_right) {
263 subtree_gap = rb_entry(vma->vm_rb.rb_right,
264 struct vm_area_struct, vm_rb)->rb_subtree_gap;
265 if (subtree_gap > max)
266 max = subtree_gap;
267 }
268 return max;
269 }
270
271 #ifdef CONFIG_DEBUG_VM_RB
272 static int browse_rb(struct mm_struct *mm)
273 {
274 struct rb_root *root = &mm->mm_rb;
275 int i = 0, j, bug = 0;
276 struct rb_node *nd, *pn = NULL;
277 unsigned long prev = 0, pend = 0;
278
279 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
280 struct vm_area_struct *vma;
281 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
282 if (vma->vm_start < prev) {
283 pr_emerg("vm_start %lx < prev %lx\n",
284 vma->vm_start, prev);
285 bug = 1;
286 }
287 if (vma->vm_start < pend) {
288 pr_emerg("vm_start %lx < pend %lx\n",
289 vma->vm_start, pend);
290 bug = 1;
291 }
292 if (vma->vm_start > vma->vm_end) {
293 pr_emerg("vm_start %lx > vm_end %lx\n",
294 vma->vm_start, vma->vm_end);
295 bug = 1;
296 }
297 spin_lock(&mm->page_table_lock);
298 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
299 pr_emerg("free gap %lx, correct %lx\n",
300 vma->rb_subtree_gap,
301 vma_compute_subtree_gap(vma));
302 bug = 1;
303 }
304 spin_unlock(&mm->page_table_lock);
305 i++;
306 pn = nd;
307 prev = vma->vm_start;
308 pend = vma->vm_end;
309 }
310 j = 0;
311 for (nd = pn; nd; nd = rb_prev(nd))
312 j++;
313 if (i != j) {
314 pr_emerg("backwards %d, forwards %d\n", j, i);
315 bug = 1;
316 }
317 return bug ? -1 : i;
318 }
319
320 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
321 {
322 struct rb_node *nd;
323
324 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
325 struct vm_area_struct *vma;
326 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
327 VM_BUG_ON_VMA(vma != ignore &&
328 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
329 vma);
330 }
331 }
332
333 static void validate_mm(struct mm_struct *mm)
334 {
335 int bug = 0;
336 int i = 0;
337 unsigned long highest_address = 0;
338 struct vm_area_struct *vma = mm->mmap;
339
340 while (vma) {
341 struct anon_vma *anon_vma = vma->anon_vma;
342 struct anon_vma_chain *avc;
343
344 if (anon_vma) {
345 anon_vma_lock_read(anon_vma);
346 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
347 anon_vma_interval_tree_verify(avc);
348 anon_vma_unlock_read(anon_vma);
349 }
350
351 highest_address = vma->vm_end;
352 vma = vma->vm_next;
353 i++;
354 }
355 if (i != mm->map_count) {
356 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
357 bug = 1;
358 }
359 if (highest_address != mm->highest_vm_end) {
360 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
361 mm->highest_vm_end, highest_address);
362 bug = 1;
363 }
364 i = browse_rb(mm);
365 if (i != mm->map_count) {
366 if (i != -1)
367 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
368 bug = 1;
369 }
370 VM_BUG_ON_MM(bug, mm);
371 }
372 #else
373 #define validate_mm_rb(root, ignore) do { } while (0)
374 #define validate_mm(mm) do { } while (0)
375 #endif
376
377 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
378 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
379
380 /*
381 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
382 * vma->vm_prev->vm_end values changed, without modifying the vma's position
383 * in the rbtree.
384 */
385 static void vma_gap_update(struct vm_area_struct *vma)
386 {
387 /*
388 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
389 * function that does exacltly what we want.
390 */
391 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
392 }
393
394 static inline void vma_rb_insert(struct vm_area_struct *vma,
395 struct rb_root *root)
396 {
397 /* All rb_subtree_gap values must be consistent prior to insertion */
398 validate_mm_rb(root, NULL);
399
400 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
401 }
402
403 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
404 {
405 /*
406 * All rb_subtree_gap values must be consistent prior to erase,
407 * with the possible exception of the vma being erased.
408 */
409 validate_mm_rb(root, vma);
410
411 /*
412 * Note rb_erase_augmented is a fairly large inline function,
413 * so make sure we instantiate it only once with our desired
414 * augmented rbtree callbacks.
415 */
416 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418
419 /*
420 * vma has some anon_vma assigned, and is already inserted on that
421 * anon_vma's interval trees.
422 *
423 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
424 * vma must be removed from the anon_vma's interval trees using
425 * anon_vma_interval_tree_pre_update_vma().
426 *
427 * After the update, the vma will be reinserted using
428 * anon_vma_interval_tree_post_update_vma().
429 *
430 * The entire update must be protected by exclusive mmap_sem and by
431 * the root anon_vma's mutex.
432 */
433 static inline void
434 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
435 {
436 struct anon_vma_chain *avc;
437
438 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
439 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
440 }
441
442 static inline void
443 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
444 {
445 struct anon_vma_chain *avc;
446
447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
449 }
450
451 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
452 unsigned long end, struct vm_area_struct **pprev,
453 struct rb_node ***rb_link, struct rb_node **rb_parent)
454 {
455 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
456
457 __rb_link = &mm->mm_rb.rb_node;
458 rb_prev = __rb_parent = NULL;
459
460 while (*__rb_link) {
461 struct vm_area_struct *vma_tmp;
462
463 __rb_parent = *__rb_link;
464 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
465
466 if (vma_tmp->vm_end > addr) {
467 /* Fail if an existing vma overlaps the area */
468 if (vma_tmp->vm_start < end)
469 return -ENOMEM;
470 __rb_link = &__rb_parent->rb_left;
471 } else {
472 rb_prev = __rb_parent;
473 __rb_link = &__rb_parent->rb_right;
474 }
475 }
476
477 *pprev = NULL;
478 if (rb_prev)
479 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
480 *rb_link = __rb_link;
481 *rb_parent = __rb_parent;
482 return 0;
483 }
484
485 static unsigned long count_vma_pages_range(struct mm_struct *mm,
486 unsigned long addr, unsigned long end)
487 {
488 unsigned long nr_pages = 0;
489 struct vm_area_struct *vma;
490
491 /* Find first overlaping mapping */
492 vma = find_vma_intersection(mm, addr, end);
493 if (!vma)
494 return 0;
495
496 nr_pages = (min(end, vma->vm_end) -
497 max(addr, vma->vm_start)) >> PAGE_SHIFT;
498
499 /* Iterate over the rest of the overlaps */
500 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
501 unsigned long overlap_len;
502
503 if (vma->vm_start > end)
504 break;
505
506 overlap_len = min(end, vma->vm_end) - vma->vm_start;
507 nr_pages += overlap_len >> PAGE_SHIFT;
508 }
509
510 return nr_pages;
511 }
512
513 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
514 struct rb_node **rb_link, struct rb_node *rb_parent)
515 {
516 /* Update tracking information for the gap following the new vma. */
517 if (vma->vm_next)
518 vma_gap_update(vma->vm_next);
519 else
520 mm->highest_vm_end = vma->vm_end;
521
522 /*
523 * vma->vm_prev wasn't known when we followed the rbtree to find the
524 * correct insertion point for that vma. As a result, we could not
525 * update the vma vm_rb parents rb_subtree_gap values on the way down.
526 * So, we first insert the vma with a zero rb_subtree_gap value
527 * (to be consistent with what we did on the way down), and then
528 * immediately update the gap to the correct value. Finally we
529 * rebalance the rbtree after all augmented values have been set.
530 */
531 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
532 vma->rb_subtree_gap = 0;
533 vma_gap_update(vma);
534 vma_rb_insert(vma, &mm->mm_rb);
535 }
536
537 static void __vma_link_file(struct vm_area_struct *vma)
538 {
539 struct file *file;
540
541 file = vma->vm_file;
542 if (file) {
543 struct address_space *mapping = file->f_mapping;
544
545 if (vma->vm_flags & VM_DENYWRITE)
546 atomic_dec(&file_inode(file)->i_writecount);
547 if (vma->vm_flags & VM_SHARED)
548 atomic_inc(&mapping->i_mmap_writable);
549
550 flush_dcache_mmap_lock(mapping);
551 vma_interval_tree_insert(vma, &mapping->i_mmap);
552 flush_dcache_mmap_unlock(mapping);
553 }
554 }
555
556 static void
557 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
558 struct vm_area_struct *prev, struct rb_node **rb_link,
559 struct rb_node *rb_parent)
560 {
561 __vma_link_list(mm, vma, prev, rb_parent);
562 __vma_link_rb(mm, vma, rb_link, rb_parent);
563 }
564
565 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
566 struct vm_area_struct *prev, struct rb_node **rb_link,
567 struct rb_node *rb_parent)
568 {
569 struct address_space *mapping = NULL;
570
571 if (vma->vm_file) {
572 mapping = vma->vm_file->f_mapping;
573 i_mmap_lock_write(mapping);
574 }
575
576 __vma_link(mm, vma, prev, rb_link, rb_parent);
577 __vma_link_file(vma);
578
579 if (mapping)
580 i_mmap_unlock_write(mapping);
581
582 mm->map_count++;
583 validate_mm(mm);
584 }
585
586 /*
587 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
588 * mm's list and rbtree. It has already been inserted into the interval tree.
589 */
590 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
591 {
592 struct vm_area_struct *prev;
593 struct rb_node **rb_link, *rb_parent;
594
595 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
596 &prev, &rb_link, &rb_parent))
597 BUG();
598 __vma_link(mm, vma, prev, rb_link, rb_parent);
599 mm->map_count++;
600 }
601
602 static inline void
603 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
604 struct vm_area_struct *prev)
605 {
606 struct vm_area_struct *next;
607
608 vma_rb_erase(vma, &mm->mm_rb);
609 prev->vm_next = next = vma->vm_next;
610 if (next)
611 next->vm_prev = prev;
612
613 /* Kill the cache */
614 vmacache_invalidate(mm);
615 }
616
617 /*
618 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
619 * is already present in an i_mmap tree without adjusting the tree.
620 * The following helper function should be used when such adjustments
621 * are necessary. The "insert" vma (if any) is to be inserted
622 * before we drop the necessary locks.
623 */
624 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
625 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
626 {
627 struct mm_struct *mm = vma->vm_mm;
628 struct vm_area_struct *next = vma->vm_next;
629 struct address_space *mapping = NULL;
630 struct rb_root *root = NULL;
631 struct anon_vma *anon_vma = NULL;
632 struct file *file = vma->vm_file;
633 bool start_changed = false, end_changed = false;
634 long adjust_next = 0;
635 int remove_next = 0;
636
637 if (next && !insert) {
638 struct vm_area_struct *exporter = NULL, *importer = NULL;
639
640 if (end >= next->vm_end) {
641 /*
642 * vma expands, overlapping all the next, and
643 * perhaps the one after too (mprotect case 6).
644 */
645 remove_next = 1 + (end > next->vm_end);
646 end = next->vm_end;
647 exporter = next;
648 importer = vma;
649
650 /*
651 * If next doesn't have anon_vma, import from vma after
652 * next, if the vma overlaps with it.
653 */
654 if (remove_next == 2 && next && !next->anon_vma)
655 exporter = next->vm_next;
656
657 } else if (end > next->vm_start) {
658 /*
659 * vma expands, overlapping part of the next:
660 * mprotect case 5 shifting the boundary up.
661 */
662 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
663 exporter = next;
664 importer = vma;
665 } else if (end < vma->vm_end) {
666 /*
667 * vma shrinks, and !insert tells it's not
668 * split_vma inserting another: so it must be
669 * mprotect case 4 shifting the boundary down.
670 */
671 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
672 exporter = vma;
673 importer = next;
674 }
675
676 /*
677 * Easily overlooked: when mprotect shifts the boundary,
678 * make sure the expanding vma has anon_vma set if the
679 * shrinking vma had, to cover any anon pages imported.
680 */
681 if (exporter && exporter->anon_vma && !importer->anon_vma) {
682 int error;
683
684 importer->anon_vma = exporter->anon_vma;
685 error = anon_vma_clone(importer, exporter);
686 if (error)
687 return error;
688 }
689 }
690 again:
691 vma_adjust_trans_huge(vma, start, end, adjust_next);
692
693 if (file) {
694 mapping = file->f_mapping;
695 root = &mapping->i_mmap;
696 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
697
698 if (adjust_next)
699 uprobe_munmap(next, next->vm_start, next->vm_end);
700
701 i_mmap_lock_write(mapping);
702 if (insert) {
703 /*
704 * Put into interval tree now, so instantiated pages
705 * are visible to arm/parisc __flush_dcache_page
706 * throughout; but we cannot insert into address
707 * space until vma start or end is updated.
708 */
709 __vma_link_file(insert);
710 }
711 }
712
713 anon_vma = vma->anon_vma;
714 if (!anon_vma && adjust_next)
715 anon_vma = next->anon_vma;
716 if (anon_vma) {
717 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
718 anon_vma != next->anon_vma, next);
719 anon_vma_lock_write(anon_vma);
720 anon_vma_interval_tree_pre_update_vma(vma);
721 if (adjust_next)
722 anon_vma_interval_tree_pre_update_vma(next);
723 }
724
725 if (root) {
726 flush_dcache_mmap_lock(mapping);
727 vma_interval_tree_remove(vma, root);
728 if (adjust_next)
729 vma_interval_tree_remove(next, root);
730 }
731
732 if (start != vma->vm_start) {
733 vma->vm_start = start;
734 start_changed = true;
735 }
736 if (end != vma->vm_end) {
737 vma->vm_end = end;
738 end_changed = true;
739 }
740 vma->vm_pgoff = pgoff;
741 if (adjust_next) {
742 next->vm_start += adjust_next << PAGE_SHIFT;
743 next->vm_pgoff += adjust_next;
744 }
745
746 if (root) {
747 if (adjust_next)
748 vma_interval_tree_insert(next, root);
749 vma_interval_tree_insert(vma, root);
750 flush_dcache_mmap_unlock(mapping);
751 }
752
753 if (remove_next) {
754 /*
755 * vma_merge has merged next into vma, and needs
756 * us to remove next before dropping the locks.
757 */
758 __vma_unlink(mm, next, vma);
759 if (file)
760 __remove_shared_vm_struct(next, file, mapping);
761 } else if (insert) {
762 /*
763 * split_vma has split insert from vma, and needs
764 * us to insert it before dropping the locks
765 * (it may either follow vma or precede it).
766 */
767 __insert_vm_struct(mm, insert);
768 } else {
769 if (start_changed)
770 vma_gap_update(vma);
771 if (end_changed) {
772 if (!next)
773 mm->highest_vm_end = end;
774 else if (!adjust_next)
775 vma_gap_update(next);
776 }
777 }
778
779 if (anon_vma) {
780 anon_vma_interval_tree_post_update_vma(vma);
781 if (adjust_next)
782 anon_vma_interval_tree_post_update_vma(next);
783 anon_vma_unlock_write(anon_vma);
784 }
785 if (mapping)
786 i_mmap_unlock_write(mapping);
787
788 if (root) {
789 uprobe_mmap(vma);
790
791 if (adjust_next)
792 uprobe_mmap(next);
793 }
794
795 if (remove_next) {
796 if (file) {
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798 fput(file);
799 }
800 if (next->anon_vma)
801 anon_vma_merge(vma, next);
802 mm->map_count--;
803 mpol_put(vma_policy(next));
804 kmem_cache_free(vm_area_cachep, next);
805 /*
806 * In mprotect's case 6 (see comments on vma_merge),
807 * we must remove another next too. It would clutter
808 * up the code too much to do both in one go.
809 */
810 next = vma->vm_next;
811 if (remove_next == 2) {
812 remove_next = 1;
813 end = next->vm_end;
814 goto again;
815 }
816 else if (next)
817 vma_gap_update(next);
818 else
819 mm->highest_vm_end = end;
820 }
821 if (insert && file)
822 uprobe_mmap(insert);
823
824 validate_mm(mm);
825
826 return 0;
827 }
828
829 /*
830 * If the vma has a ->close operation then the driver probably needs to release
831 * per-vma resources, so we don't attempt to merge those.
832 */
833 static inline int is_mergeable_vma(struct vm_area_struct *vma,
834 struct file *file, unsigned long vm_flags,
835 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
836 {
837 /*
838 * VM_SOFTDIRTY should not prevent from VMA merging, if we
839 * match the flags but dirty bit -- the caller should mark
840 * merged VMA as dirty. If dirty bit won't be excluded from
841 * comparison, we increase pressue on the memory system forcing
842 * the kernel to generate new VMAs when old one could be
843 * extended instead.
844 */
845 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
846 return 0;
847 if (vma->vm_file != file)
848 return 0;
849 if (vma->vm_ops && vma->vm_ops->close)
850 return 0;
851 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
852 return 0;
853 return 1;
854 }
855
856 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
857 struct anon_vma *anon_vma2,
858 struct vm_area_struct *vma)
859 {
860 /*
861 * The list_is_singular() test is to avoid merging VMA cloned from
862 * parents. This can improve scalability caused by anon_vma lock.
863 */
864 if ((!anon_vma1 || !anon_vma2) && (!vma ||
865 list_is_singular(&vma->anon_vma_chain)))
866 return 1;
867 return anon_vma1 == anon_vma2;
868 }
869
870 /*
871 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
872 * in front of (at a lower virtual address and file offset than) the vma.
873 *
874 * We cannot merge two vmas if they have differently assigned (non-NULL)
875 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
876 *
877 * We don't check here for the merged mmap wrapping around the end of pagecache
878 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
879 * wrap, nor mmaps which cover the final page at index -1UL.
880 */
881 static int
882 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
883 struct anon_vma *anon_vma, struct file *file,
884 pgoff_t vm_pgoff,
885 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
886 {
887 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
888 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
889 if (vma->vm_pgoff == vm_pgoff)
890 return 1;
891 }
892 return 0;
893 }
894
895 /*
896 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
897 * beyond (at a higher virtual address and file offset than) the vma.
898 *
899 * We cannot merge two vmas if they have differently assigned (non-NULL)
900 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
901 */
902 static int
903 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
904 struct anon_vma *anon_vma, struct file *file,
905 pgoff_t vm_pgoff,
906 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
907 {
908 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
909 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
910 pgoff_t vm_pglen;
911 vm_pglen = vma_pages(vma);
912 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
913 return 1;
914 }
915 return 0;
916 }
917
918 /*
919 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
920 * whether that can be merged with its predecessor or its successor.
921 * Or both (it neatly fills a hole).
922 *
923 * In most cases - when called for mmap, brk or mremap - [addr,end) is
924 * certain not to be mapped by the time vma_merge is called; but when
925 * called for mprotect, it is certain to be already mapped (either at
926 * an offset within prev, or at the start of next), and the flags of
927 * this area are about to be changed to vm_flags - and the no-change
928 * case has already been eliminated.
929 *
930 * The following mprotect cases have to be considered, where AAAA is
931 * the area passed down from mprotect_fixup, never extending beyond one
932 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
933 *
934 * AAAA AAAA AAAA AAAA
935 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
936 * cannot merge might become might become might become
937 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
938 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
939 * mremap move: PPPPNNNNNNNN 8
940 * AAAA
941 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
942 * might become case 1 below case 2 below case 3 below
943 *
944 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
945 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
946 */
947 struct vm_area_struct *vma_merge(struct mm_struct *mm,
948 struct vm_area_struct *prev, unsigned long addr,
949 unsigned long end, unsigned long vm_flags,
950 struct anon_vma *anon_vma, struct file *file,
951 pgoff_t pgoff, struct mempolicy *policy,
952 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
953 {
954 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
955 struct vm_area_struct *area, *next;
956 int err;
957
958 /*
959 * We later require that vma->vm_flags == vm_flags,
960 * so this tests vma->vm_flags & VM_SPECIAL, too.
961 */
962 if (vm_flags & VM_SPECIAL)
963 return NULL;
964
965 if (prev)
966 next = prev->vm_next;
967 else
968 next = mm->mmap;
969 area = next;
970 if (next && next->vm_end == end) /* cases 6, 7, 8 */
971 next = next->vm_next;
972
973 /*
974 * Can it merge with the predecessor?
975 */
976 if (prev && prev->vm_end == addr &&
977 mpol_equal(vma_policy(prev), policy) &&
978 can_vma_merge_after(prev, vm_flags,
979 anon_vma, file, pgoff,
980 vm_userfaultfd_ctx)) {
981 /*
982 * OK, it can. Can we now merge in the successor as well?
983 */
984 if (next && end == next->vm_start &&
985 mpol_equal(policy, vma_policy(next)) &&
986 can_vma_merge_before(next, vm_flags,
987 anon_vma, file,
988 pgoff+pglen,
989 vm_userfaultfd_ctx) &&
990 is_mergeable_anon_vma(prev->anon_vma,
991 next->anon_vma, NULL)) {
992 /* cases 1, 6 */
993 err = vma_adjust(prev, prev->vm_start,
994 next->vm_end, prev->vm_pgoff, NULL);
995 } else /* cases 2, 5, 7 */
996 err = vma_adjust(prev, prev->vm_start,
997 end, prev->vm_pgoff, NULL);
998 if (err)
999 return NULL;
1000 khugepaged_enter_vma_merge(prev, vm_flags);
1001 return prev;
1002 }
1003
1004 /*
1005 * Can this new request be merged in front of next?
1006 */
1007 if (next && end == next->vm_start &&
1008 mpol_equal(policy, vma_policy(next)) &&
1009 can_vma_merge_before(next, vm_flags,
1010 anon_vma, file, pgoff+pglen,
1011 vm_userfaultfd_ctx)) {
1012 if (prev && addr < prev->vm_end) /* case 4 */
1013 err = vma_adjust(prev, prev->vm_start,
1014 addr, prev->vm_pgoff, NULL);
1015 else /* cases 3, 8 */
1016 err = vma_adjust(area, addr, next->vm_end,
1017 next->vm_pgoff - pglen, NULL);
1018 if (err)
1019 return NULL;
1020 khugepaged_enter_vma_merge(area, vm_flags);
1021 return area;
1022 }
1023
1024 return NULL;
1025 }
1026
1027 /*
1028 * Rough compatbility check to quickly see if it's even worth looking
1029 * at sharing an anon_vma.
1030 *
1031 * They need to have the same vm_file, and the flags can only differ
1032 * in things that mprotect may change.
1033 *
1034 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1035 * we can merge the two vma's. For example, we refuse to merge a vma if
1036 * there is a vm_ops->close() function, because that indicates that the
1037 * driver is doing some kind of reference counting. But that doesn't
1038 * really matter for the anon_vma sharing case.
1039 */
1040 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1041 {
1042 return a->vm_end == b->vm_start &&
1043 mpol_equal(vma_policy(a), vma_policy(b)) &&
1044 a->vm_file == b->vm_file &&
1045 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1046 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1047 }
1048
1049 /*
1050 * Do some basic sanity checking to see if we can re-use the anon_vma
1051 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1052 * the same as 'old', the other will be the new one that is trying
1053 * to share the anon_vma.
1054 *
1055 * NOTE! This runs with mm_sem held for reading, so it is possible that
1056 * the anon_vma of 'old' is concurrently in the process of being set up
1057 * by another page fault trying to merge _that_. But that's ok: if it
1058 * is being set up, that automatically means that it will be a singleton
1059 * acceptable for merging, so we can do all of this optimistically. But
1060 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1061 *
1062 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1063 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1064 * is to return an anon_vma that is "complex" due to having gone through
1065 * a fork).
1066 *
1067 * We also make sure that the two vma's are compatible (adjacent,
1068 * and with the same memory policies). That's all stable, even with just
1069 * a read lock on the mm_sem.
1070 */
1071 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1072 {
1073 if (anon_vma_compatible(a, b)) {
1074 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1075
1076 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1077 return anon_vma;
1078 }
1079 return NULL;
1080 }
1081
1082 /*
1083 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1084 * neighbouring vmas for a suitable anon_vma, before it goes off
1085 * to allocate a new anon_vma. It checks because a repetitive
1086 * sequence of mprotects and faults may otherwise lead to distinct
1087 * anon_vmas being allocated, preventing vma merge in subsequent
1088 * mprotect.
1089 */
1090 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1091 {
1092 struct anon_vma *anon_vma;
1093 struct vm_area_struct *near;
1094
1095 near = vma->vm_next;
1096 if (!near)
1097 goto try_prev;
1098
1099 anon_vma = reusable_anon_vma(near, vma, near);
1100 if (anon_vma)
1101 return anon_vma;
1102 try_prev:
1103 near = vma->vm_prev;
1104 if (!near)
1105 goto none;
1106
1107 anon_vma = reusable_anon_vma(near, near, vma);
1108 if (anon_vma)
1109 return anon_vma;
1110 none:
1111 /*
1112 * There's no absolute need to look only at touching neighbours:
1113 * we could search further afield for "compatible" anon_vmas.
1114 * But it would probably just be a waste of time searching,
1115 * or lead to too many vmas hanging off the same anon_vma.
1116 * We're trying to allow mprotect remerging later on,
1117 * not trying to minimize memory used for anon_vmas.
1118 */
1119 return NULL;
1120 }
1121
1122 /*
1123 * If a hint addr is less than mmap_min_addr change hint to be as
1124 * low as possible but still greater than mmap_min_addr
1125 */
1126 static inline unsigned long round_hint_to_min(unsigned long hint)
1127 {
1128 hint &= PAGE_MASK;
1129 if (((void *)hint != NULL) &&
1130 (hint < mmap_min_addr))
1131 return PAGE_ALIGN(mmap_min_addr);
1132 return hint;
1133 }
1134
1135 static inline int mlock_future_check(struct mm_struct *mm,
1136 unsigned long flags,
1137 unsigned long len)
1138 {
1139 unsigned long locked, lock_limit;
1140
1141 /* mlock MCL_FUTURE? */
1142 if (flags & VM_LOCKED) {
1143 locked = len >> PAGE_SHIFT;
1144 locked += mm->locked_vm;
1145 lock_limit = rlimit(RLIMIT_MEMLOCK);
1146 lock_limit >>= PAGE_SHIFT;
1147 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1148 return -EAGAIN;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * The caller must hold down_write(&current->mm->mmap_sem).
1155 */
1156 unsigned long do_mmap(struct file *file, unsigned long addr,
1157 unsigned long len, unsigned long prot,
1158 unsigned long flags, vm_flags_t vm_flags,
1159 unsigned long pgoff, unsigned long *populate)
1160 {
1161 struct mm_struct *mm = current->mm;
1162 int pkey = 0;
1163
1164 *populate = 0;
1165
1166 if (!len)
1167 return -EINVAL;
1168
1169 /*
1170 * Does the application expect PROT_READ to imply PROT_EXEC?
1171 *
1172 * (the exception is when the underlying filesystem is noexec
1173 * mounted, in which case we dont add PROT_EXEC.)
1174 */
1175 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1176 if (!(file && path_noexec(&file->f_path)))
1177 prot |= PROT_EXEC;
1178
1179 if (!(flags & MAP_FIXED))
1180 addr = round_hint_to_min(addr);
1181
1182 /* Careful about overflows.. */
1183 len = PAGE_ALIGN(len);
1184 if (!len)
1185 return -ENOMEM;
1186
1187 /* offset overflow? */
1188 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1189 return -EOVERFLOW;
1190
1191 /* Too many mappings? */
1192 if (mm->map_count > sysctl_max_map_count)
1193 return -ENOMEM;
1194
1195 /* Obtain the address to map to. we verify (or select) it and ensure
1196 * that it represents a valid section of the address space.
1197 */
1198 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1199 if (offset_in_page(addr))
1200 return addr;
1201
1202 if (prot == PROT_EXEC) {
1203 pkey = execute_only_pkey(mm);
1204 if (pkey < 0)
1205 pkey = 0;
1206 }
1207
1208 /* Do simple checking here so the lower-level routines won't have
1209 * to. we assume access permissions have been handled by the open
1210 * of the memory object, so we don't do any here.
1211 */
1212 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1213 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1214
1215 if (flags & MAP_LOCKED)
1216 if (!can_do_mlock())
1217 return -EPERM;
1218
1219 if (mlock_future_check(mm, vm_flags, len))
1220 return -EAGAIN;
1221
1222 if (file) {
1223 struct inode *inode = file_inode(file);
1224
1225 switch (flags & MAP_TYPE) {
1226 case MAP_SHARED:
1227 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1228 return -EACCES;
1229
1230 /*
1231 * Make sure we don't allow writing to an append-only
1232 * file..
1233 */
1234 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1235 return -EACCES;
1236
1237 /*
1238 * Make sure there are no mandatory locks on the file.
1239 */
1240 if (locks_verify_locked(file))
1241 return -EAGAIN;
1242
1243 vm_flags |= VM_SHARED | VM_MAYSHARE;
1244 if (!(file->f_mode & FMODE_WRITE))
1245 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1246
1247 /* fall through */
1248 case MAP_PRIVATE:
1249 if (!(file->f_mode & FMODE_READ))
1250 return -EACCES;
1251 if (path_noexec(&file->f_path)) {
1252 if (vm_flags & VM_EXEC)
1253 return -EPERM;
1254 vm_flags &= ~VM_MAYEXEC;
1255 }
1256
1257 if (!file->f_op->mmap)
1258 return -ENODEV;
1259 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1260 return -EINVAL;
1261 break;
1262
1263 default:
1264 return -EINVAL;
1265 }
1266 } else {
1267 switch (flags & MAP_TYPE) {
1268 case MAP_SHARED:
1269 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1270 return -EINVAL;
1271 /*
1272 * Ignore pgoff.
1273 */
1274 pgoff = 0;
1275 vm_flags |= VM_SHARED | VM_MAYSHARE;
1276 break;
1277 case MAP_PRIVATE:
1278 /*
1279 * Set pgoff according to addr for anon_vma.
1280 */
1281 pgoff = addr >> PAGE_SHIFT;
1282 break;
1283 default:
1284 return -EINVAL;
1285 }
1286 }
1287
1288 /*
1289 * Set 'VM_NORESERVE' if we should not account for the
1290 * memory use of this mapping.
1291 */
1292 if (flags & MAP_NORESERVE) {
1293 /* We honor MAP_NORESERVE if allowed to overcommit */
1294 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1295 vm_flags |= VM_NORESERVE;
1296
1297 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1298 if (file && is_file_hugepages(file))
1299 vm_flags |= VM_NORESERVE;
1300 }
1301
1302 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1303 if (!IS_ERR_VALUE(addr) &&
1304 ((vm_flags & VM_LOCKED) ||
1305 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1306 *populate = len;
1307 return addr;
1308 }
1309
1310 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1311 unsigned long, prot, unsigned long, flags,
1312 unsigned long, fd, unsigned long, pgoff)
1313 {
1314 struct file *file = NULL;
1315 unsigned long retval;
1316
1317 if (!(flags & MAP_ANONYMOUS)) {
1318 audit_mmap_fd(fd, flags);
1319 file = fget(fd);
1320 if (!file)
1321 return -EBADF;
1322 if (is_file_hugepages(file))
1323 len = ALIGN(len, huge_page_size(hstate_file(file)));
1324 retval = -EINVAL;
1325 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1326 goto out_fput;
1327 } else if (flags & MAP_HUGETLB) {
1328 struct user_struct *user = NULL;
1329 struct hstate *hs;
1330
1331 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1332 if (!hs)
1333 return -EINVAL;
1334
1335 len = ALIGN(len, huge_page_size(hs));
1336 /*
1337 * VM_NORESERVE is used because the reservations will be
1338 * taken when vm_ops->mmap() is called
1339 * A dummy user value is used because we are not locking
1340 * memory so no accounting is necessary
1341 */
1342 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1343 VM_NORESERVE,
1344 &user, HUGETLB_ANONHUGE_INODE,
1345 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1346 if (IS_ERR(file))
1347 return PTR_ERR(file);
1348 }
1349
1350 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1351
1352 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1353 out_fput:
1354 if (file)
1355 fput(file);
1356 return retval;
1357 }
1358
1359 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1360 struct mmap_arg_struct {
1361 unsigned long addr;
1362 unsigned long len;
1363 unsigned long prot;
1364 unsigned long flags;
1365 unsigned long fd;
1366 unsigned long offset;
1367 };
1368
1369 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1370 {
1371 struct mmap_arg_struct a;
1372
1373 if (copy_from_user(&a, arg, sizeof(a)))
1374 return -EFAULT;
1375 if (offset_in_page(a.offset))
1376 return -EINVAL;
1377
1378 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1379 a.offset >> PAGE_SHIFT);
1380 }
1381 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1382
1383 /*
1384 * Some shared mappigns will want the pages marked read-only
1385 * to track write events. If so, we'll downgrade vm_page_prot
1386 * to the private version (using protection_map[] without the
1387 * VM_SHARED bit).
1388 */
1389 int vma_wants_writenotify(struct vm_area_struct *vma)
1390 {
1391 vm_flags_t vm_flags = vma->vm_flags;
1392 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1393
1394 /* If it was private or non-writable, the write bit is already clear */
1395 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1396 return 0;
1397
1398 /* The backer wishes to know when pages are first written to? */
1399 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1400 return 1;
1401
1402 /* The open routine did something to the protections that pgprot_modify
1403 * won't preserve? */
1404 if (pgprot_val(vma->vm_page_prot) !=
1405 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1406 return 0;
1407
1408 /* Do we need to track softdirty? */
1409 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1410 return 1;
1411
1412 /* Specialty mapping? */
1413 if (vm_flags & VM_PFNMAP)
1414 return 0;
1415
1416 /* Can the mapping track the dirty pages? */
1417 return vma->vm_file && vma->vm_file->f_mapping &&
1418 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1419 }
1420
1421 /*
1422 * We account for memory if it's a private writeable mapping,
1423 * not hugepages and VM_NORESERVE wasn't set.
1424 */
1425 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1426 {
1427 /*
1428 * hugetlb has its own accounting separate from the core VM
1429 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1430 */
1431 if (file && is_file_hugepages(file))
1432 return 0;
1433
1434 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1435 }
1436
1437 unsigned long mmap_region(struct file *file, unsigned long addr,
1438 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1439 {
1440 struct mm_struct *mm = current->mm;
1441 struct vm_area_struct *vma, *prev;
1442 int error;
1443 struct rb_node **rb_link, *rb_parent;
1444 unsigned long charged = 0;
1445
1446 /* Check against address space limit. */
1447 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1448 unsigned long nr_pages;
1449
1450 /*
1451 * MAP_FIXED may remove pages of mappings that intersects with
1452 * requested mapping. Account for the pages it would unmap.
1453 */
1454 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1455
1456 if (!may_expand_vm(mm, vm_flags,
1457 (len >> PAGE_SHIFT) - nr_pages))
1458 return -ENOMEM;
1459 }
1460
1461 /* Clear old maps */
1462 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1463 &rb_parent)) {
1464 if (do_munmap(mm, addr, len))
1465 return -ENOMEM;
1466 }
1467
1468 /*
1469 * Private writable mapping: check memory availability
1470 */
1471 if (accountable_mapping(file, vm_flags)) {
1472 charged = len >> PAGE_SHIFT;
1473 if (security_vm_enough_memory_mm(mm, charged))
1474 return -ENOMEM;
1475 vm_flags |= VM_ACCOUNT;
1476 }
1477
1478 /*
1479 * Can we just expand an old mapping?
1480 */
1481 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1482 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1483 if (vma)
1484 goto out;
1485
1486 /*
1487 * Determine the object being mapped and call the appropriate
1488 * specific mapper. the address has already been validated, but
1489 * not unmapped, but the maps are removed from the list.
1490 */
1491 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1492 if (!vma) {
1493 error = -ENOMEM;
1494 goto unacct_error;
1495 }
1496
1497 vma->vm_mm = mm;
1498 vma->vm_start = addr;
1499 vma->vm_end = addr + len;
1500 vma->vm_flags = vm_flags;
1501 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1502 vma->vm_pgoff = pgoff;
1503 INIT_LIST_HEAD(&vma->anon_vma_chain);
1504
1505 if (file) {
1506 if (vm_flags & VM_DENYWRITE) {
1507 error = deny_write_access(file);
1508 if (error)
1509 goto free_vma;
1510 }
1511 if (vm_flags & VM_SHARED) {
1512 error = mapping_map_writable(file->f_mapping);
1513 if (error)
1514 goto allow_write_and_free_vma;
1515 }
1516
1517 /* ->mmap() can change vma->vm_file, but must guarantee that
1518 * vma_link() below can deny write-access if VM_DENYWRITE is set
1519 * and map writably if VM_SHARED is set. This usually means the
1520 * new file must not have been exposed to user-space, yet.
1521 */
1522 vma->vm_file = get_file(file);
1523 error = file->f_op->mmap(file, vma);
1524 if (error)
1525 goto unmap_and_free_vma;
1526
1527 /* Can addr have changed??
1528 *
1529 * Answer: Yes, several device drivers can do it in their
1530 * f_op->mmap method. -DaveM
1531 * Bug: If addr is changed, prev, rb_link, rb_parent should
1532 * be updated for vma_link()
1533 */
1534 WARN_ON_ONCE(addr != vma->vm_start);
1535
1536 addr = vma->vm_start;
1537 vm_flags = vma->vm_flags;
1538 } else if (vm_flags & VM_SHARED) {
1539 error = shmem_zero_setup(vma);
1540 if (error)
1541 goto free_vma;
1542 }
1543
1544 vma_link(mm, vma, prev, rb_link, rb_parent);
1545 /* Once vma denies write, undo our temporary denial count */
1546 if (file) {
1547 if (vm_flags & VM_SHARED)
1548 mapping_unmap_writable(file->f_mapping);
1549 if (vm_flags & VM_DENYWRITE)
1550 allow_write_access(file);
1551 }
1552 file = vma->vm_file;
1553 out:
1554 perf_event_mmap(vma);
1555
1556 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1557 if (vm_flags & VM_LOCKED) {
1558 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1559 vma == get_gate_vma(current->mm)))
1560 mm->locked_vm += (len >> PAGE_SHIFT);
1561 else
1562 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1563 }
1564
1565 if (file)
1566 uprobe_mmap(vma);
1567
1568 /*
1569 * New (or expanded) vma always get soft dirty status.
1570 * Otherwise user-space soft-dirty page tracker won't
1571 * be able to distinguish situation when vma area unmapped,
1572 * then new mapped in-place (which must be aimed as
1573 * a completely new data area).
1574 */
1575 vma->vm_flags |= VM_SOFTDIRTY;
1576
1577 vma_set_page_prot(vma);
1578
1579 return addr;
1580
1581 unmap_and_free_vma:
1582 vma->vm_file = NULL;
1583 fput(file);
1584
1585 /* Undo any partial mapping done by a device driver. */
1586 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1587 charged = 0;
1588 if (vm_flags & VM_SHARED)
1589 mapping_unmap_writable(file->f_mapping);
1590 allow_write_and_free_vma:
1591 if (vm_flags & VM_DENYWRITE)
1592 allow_write_access(file);
1593 free_vma:
1594 kmem_cache_free(vm_area_cachep, vma);
1595 unacct_error:
1596 if (charged)
1597 vm_unacct_memory(charged);
1598 return error;
1599 }
1600
1601 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1602 {
1603 /*
1604 * We implement the search by looking for an rbtree node that
1605 * immediately follows a suitable gap. That is,
1606 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1607 * - gap_end = vma->vm_start >= info->low_limit + length;
1608 * - gap_end - gap_start >= length
1609 */
1610
1611 struct mm_struct *mm = current->mm;
1612 struct vm_area_struct *vma;
1613 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1614
1615 /* Adjust search length to account for worst case alignment overhead */
1616 length = info->length + info->align_mask;
1617 if (length < info->length)
1618 return -ENOMEM;
1619
1620 /* Adjust search limits by the desired length */
1621 if (info->high_limit < length)
1622 return -ENOMEM;
1623 high_limit = info->high_limit - length;
1624
1625 if (info->low_limit > high_limit)
1626 return -ENOMEM;
1627 low_limit = info->low_limit + length;
1628
1629 /* Check if rbtree root looks promising */
1630 if (RB_EMPTY_ROOT(&mm->mm_rb))
1631 goto check_highest;
1632 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1633 if (vma->rb_subtree_gap < length)
1634 goto check_highest;
1635
1636 while (true) {
1637 /* Visit left subtree if it looks promising */
1638 gap_end = vma->vm_start;
1639 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1640 struct vm_area_struct *left =
1641 rb_entry(vma->vm_rb.rb_left,
1642 struct vm_area_struct, vm_rb);
1643 if (left->rb_subtree_gap >= length) {
1644 vma = left;
1645 continue;
1646 }
1647 }
1648
1649 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1650 check_current:
1651 /* Check if current node has a suitable gap */
1652 if (gap_start > high_limit)
1653 return -ENOMEM;
1654 if (gap_end >= low_limit && gap_end - gap_start >= length)
1655 goto found;
1656
1657 /* Visit right subtree if it looks promising */
1658 if (vma->vm_rb.rb_right) {
1659 struct vm_area_struct *right =
1660 rb_entry(vma->vm_rb.rb_right,
1661 struct vm_area_struct, vm_rb);
1662 if (right->rb_subtree_gap >= length) {
1663 vma = right;
1664 continue;
1665 }
1666 }
1667
1668 /* Go back up the rbtree to find next candidate node */
1669 while (true) {
1670 struct rb_node *prev = &vma->vm_rb;
1671 if (!rb_parent(prev))
1672 goto check_highest;
1673 vma = rb_entry(rb_parent(prev),
1674 struct vm_area_struct, vm_rb);
1675 if (prev == vma->vm_rb.rb_left) {
1676 gap_start = vma->vm_prev->vm_end;
1677 gap_end = vma->vm_start;
1678 goto check_current;
1679 }
1680 }
1681 }
1682
1683 check_highest:
1684 /* Check highest gap, which does not precede any rbtree node */
1685 gap_start = mm->highest_vm_end;
1686 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1687 if (gap_start > high_limit)
1688 return -ENOMEM;
1689
1690 found:
1691 /* We found a suitable gap. Clip it with the original low_limit. */
1692 if (gap_start < info->low_limit)
1693 gap_start = info->low_limit;
1694
1695 /* Adjust gap address to the desired alignment */
1696 gap_start += (info->align_offset - gap_start) & info->align_mask;
1697
1698 VM_BUG_ON(gap_start + info->length > info->high_limit);
1699 VM_BUG_ON(gap_start + info->length > gap_end);
1700 return gap_start;
1701 }
1702
1703 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1704 {
1705 struct mm_struct *mm = current->mm;
1706 struct vm_area_struct *vma;
1707 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708
1709 /* Adjust search length to account for worst case alignment overhead */
1710 length = info->length + info->align_mask;
1711 if (length < info->length)
1712 return -ENOMEM;
1713
1714 /*
1715 * Adjust search limits by the desired length.
1716 * See implementation comment at top of unmapped_area().
1717 */
1718 gap_end = info->high_limit;
1719 if (gap_end < length)
1720 return -ENOMEM;
1721 high_limit = gap_end - length;
1722
1723 if (info->low_limit > high_limit)
1724 return -ENOMEM;
1725 low_limit = info->low_limit + length;
1726
1727 /* Check highest gap, which does not precede any rbtree node */
1728 gap_start = mm->highest_vm_end;
1729 if (gap_start <= high_limit)
1730 goto found_highest;
1731
1732 /* Check if rbtree root looks promising */
1733 if (RB_EMPTY_ROOT(&mm->mm_rb))
1734 return -ENOMEM;
1735 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736 if (vma->rb_subtree_gap < length)
1737 return -ENOMEM;
1738
1739 while (true) {
1740 /* Visit right subtree if it looks promising */
1741 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1742 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1743 struct vm_area_struct *right =
1744 rb_entry(vma->vm_rb.rb_right,
1745 struct vm_area_struct, vm_rb);
1746 if (right->rb_subtree_gap >= length) {
1747 vma = right;
1748 continue;
1749 }
1750 }
1751
1752 check_current:
1753 /* Check if current node has a suitable gap */
1754 gap_end = vma->vm_start;
1755 if (gap_end < low_limit)
1756 return -ENOMEM;
1757 if (gap_start <= high_limit && gap_end - gap_start >= length)
1758 goto found;
1759
1760 /* Visit left subtree if it looks promising */
1761 if (vma->vm_rb.rb_left) {
1762 struct vm_area_struct *left =
1763 rb_entry(vma->vm_rb.rb_left,
1764 struct vm_area_struct, vm_rb);
1765 if (left->rb_subtree_gap >= length) {
1766 vma = left;
1767 continue;
1768 }
1769 }
1770
1771 /* Go back up the rbtree to find next candidate node */
1772 while (true) {
1773 struct rb_node *prev = &vma->vm_rb;
1774 if (!rb_parent(prev))
1775 return -ENOMEM;
1776 vma = rb_entry(rb_parent(prev),
1777 struct vm_area_struct, vm_rb);
1778 if (prev == vma->vm_rb.rb_right) {
1779 gap_start = vma->vm_prev ?
1780 vma->vm_prev->vm_end : 0;
1781 goto check_current;
1782 }
1783 }
1784 }
1785
1786 found:
1787 /* We found a suitable gap. Clip it with the original high_limit. */
1788 if (gap_end > info->high_limit)
1789 gap_end = info->high_limit;
1790
1791 found_highest:
1792 /* Compute highest gap address at the desired alignment */
1793 gap_end -= info->length;
1794 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1795
1796 VM_BUG_ON(gap_end < info->low_limit);
1797 VM_BUG_ON(gap_end < gap_start);
1798 return gap_end;
1799 }
1800
1801 /* Get an address range which is currently unmapped.
1802 * For shmat() with addr=0.
1803 *
1804 * Ugly calling convention alert:
1805 * Return value with the low bits set means error value,
1806 * ie
1807 * if (ret & ~PAGE_MASK)
1808 * error = ret;
1809 *
1810 * This function "knows" that -ENOMEM has the bits set.
1811 */
1812 #ifndef HAVE_ARCH_UNMAPPED_AREA
1813 unsigned long
1814 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1815 unsigned long len, unsigned long pgoff, unsigned long flags)
1816 {
1817 struct mm_struct *mm = current->mm;
1818 struct vm_area_struct *vma;
1819 struct vm_unmapped_area_info info;
1820
1821 if (len > TASK_SIZE - mmap_min_addr)
1822 return -ENOMEM;
1823
1824 if (flags & MAP_FIXED)
1825 return addr;
1826
1827 if (addr) {
1828 addr = PAGE_ALIGN(addr);
1829 vma = find_vma(mm, addr);
1830 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1831 (!vma || addr + len <= vma->vm_start))
1832 return addr;
1833 }
1834
1835 info.flags = 0;
1836 info.length = len;
1837 info.low_limit = mm->mmap_base;
1838 info.high_limit = TASK_SIZE;
1839 info.align_mask = 0;
1840 return vm_unmapped_area(&info);
1841 }
1842 #endif
1843
1844 /*
1845 * This mmap-allocator allocates new areas top-down from below the
1846 * stack's low limit (the base):
1847 */
1848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1849 unsigned long
1850 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1851 const unsigned long len, const unsigned long pgoff,
1852 const unsigned long flags)
1853 {
1854 struct vm_area_struct *vma;
1855 struct mm_struct *mm = current->mm;
1856 unsigned long addr = addr0;
1857 struct vm_unmapped_area_info info;
1858
1859 /* requested length too big for entire address space */
1860 if (len > TASK_SIZE - mmap_min_addr)
1861 return -ENOMEM;
1862
1863 if (flags & MAP_FIXED)
1864 return addr;
1865
1866 /* requesting a specific address */
1867 if (addr) {
1868 addr = PAGE_ALIGN(addr);
1869 vma = find_vma(mm, addr);
1870 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1871 (!vma || addr + len <= vma->vm_start))
1872 return addr;
1873 }
1874
1875 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1876 info.length = len;
1877 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1878 info.high_limit = mm->mmap_base;
1879 info.align_mask = 0;
1880 addr = vm_unmapped_area(&info);
1881
1882 /*
1883 * A failed mmap() very likely causes application failure,
1884 * so fall back to the bottom-up function here. This scenario
1885 * can happen with large stack limits and large mmap()
1886 * allocations.
1887 */
1888 if (offset_in_page(addr)) {
1889 VM_BUG_ON(addr != -ENOMEM);
1890 info.flags = 0;
1891 info.low_limit = TASK_UNMAPPED_BASE;
1892 info.high_limit = TASK_SIZE;
1893 addr = vm_unmapped_area(&info);
1894 }
1895
1896 return addr;
1897 }
1898 #endif
1899
1900 unsigned long
1901 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1902 unsigned long pgoff, unsigned long flags)
1903 {
1904 unsigned long (*get_area)(struct file *, unsigned long,
1905 unsigned long, unsigned long, unsigned long);
1906
1907 unsigned long error = arch_mmap_check(addr, len, flags);
1908 if (error)
1909 return error;
1910
1911 /* Careful about overflows.. */
1912 if (len > TASK_SIZE)
1913 return -ENOMEM;
1914
1915 get_area = current->mm->get_unmapped_area;
1916 if (file) {
1917 if (file->f_op->get_unmapped_area)
1918 get_area = file->f_op->get_unmapped_area;
1919 } else if (flags & MAP_SHARED) {
1920 /*
1921 * mmap_region() will call shmem_zero_setup() to create a file,
1922 * so use shmem's get_unmapped_area in case it can be huge.
1923 * do_mmap_pgoff() will clear pgoff, so match alignment.
1924 */
1925 pgoff = 0;
1926 get_area = shmem_get_unmapped_area;
1927 }
1928
1929 addr = get_area(file, addr, len, pgoff, flags);
1930 if (IS_ERR_VALUE(addr))
1931 return addr;
1932
1933 if (addr > TASK_SIZE - len)
1934 return -ENOMEM;
1935 if (offset_in_page(addr))
1936 return -EINVAL;
1937
1938 error = security_mmap_addr(addr);
1939 return error ? error : addr;
1940 }
1941
1942 EXPORT_SYMBOL(get_unmapped_area);
1943
1944 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1945 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1946 {
1947 struct rb_node *rb_node;
1948 struct vm_area_struct *vma;
1949
1950 /* Check the cache first. */
1951 vma = vmacache_find(mm, addr);
1952 if (likely(vma))
1953 return vma;
1954
1955 rb_node = mm->mm_rb.rb_node;
1956
1957 while (rb_node) {
1958 struct vm_area_struct *tmp;
1959
1960 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1961
1962 if (tmp->vm_end > addr) {
1963 vma = tmp;
1964 if (tmp->vm_start <= addr)
1965 break;
1966 rb_node = rb_node->rb_left;
1967 } else
1968 rb_node = rb_node->rb_right;
1969 }
1970
1971 if (vma)
1972 vmacache_update(addr, vma);
1973 return vma;
1974 }
1975
1976 EXPORT_SYMBOL(find_vma);
1977
1978 /*
1979 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1980 */
1981 struct vm_area_struct *
1982 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1983 struct vm_area_struct **pprev)
1984 {
1985 struct vm_area_struct *vma;
1986
1987 vma = find_vma(mm, addr);
1988 if (vma) {
1989 *pprev = vma->vm_prev;
1990 } else {
1991 struct rb_node *rb_node = mm->mm_rb.rb_node;
1992 *pprev = NULL;
1993 while (rb_node) {
1994 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1995 rb_node = rb_node->rb_right;
1996 }
1997 }
1998 return vma;
1999 }
2000
2001 /*
2002 * Verify that the stack growth is acceptable and
2003 * update accounting. This is shared with both the
2004 * grow-up and grow-down cases.
2005 */
2006 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2007 {
2008 struct mm_struct *mm = vma->vm_mm;
2009 struct rlimit *rlim = current->signal->rlim;
2010 unsigned long new_start, actual_size;
2011
2012 /* address space limit tests */
2013 if (!may_expand_vm(mm, vma->vm_flags, grow))
2014 return -ENOMEM;
2015
2016 /* Stack limit test */
2017 actual_size = size;
2018 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2019 actual_size -= PAGE_SIZE;
2020 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2021 return -ENOMEM;
2022
2023 /* mlock limit tests */
2024 if (vma->vm_flags & VM_LOCKED) {
2025 unsigned long locked;
2026 unsigned long limit;
2027 locked = mm->locked_vm + grow;
2028 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2029 limit >>= PAGE_SHIFT;
2030 if (locked > limit && !capable(CAP_IPC_LOCK))
2031 return -ENOMEM;
2032 }
2033
2034 /* Check to ensure the stack will not grow into a hugetlb-only region */
2035 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2036 vma->vm_end - size;
2037 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2038 return -EFAULT;
2039
2040 /*
2041 * Overcommit.. This must be the final test, as it will
2042 * update security statistics.
2043 */
2044 if (security_vm_enough_memory_mm(mm, grow))
2045 return -ENOMEM;
2046
2047 return 0;
2048 }
2049
2050 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2051 /*
2052 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2053 * vma is the last one with address > vma->vm_end. Have to extend vma.
2054 */
2055 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2056 {
2057 struct mm_struct *mm = vma->vm_mm;
2058 int error = 0;
2059
2060 if (!(vma->vm_flags & VM_GROWSUP))
2061 return -EFAULT;
2062
2063 /* Guard against wrapping around to address 0. */
2064 if (address < PAGE_ALIGN(address+4))
2065 address = PAGE_ALIGN(address+4);
2066 else
2067 return -ENOMEM;
2068
2069 /* We must make sure the anon_vma is allocated. */
2070 if (unlikely(anon_vma_prepare(vma)))
2071 return -ENOMEM;
2072
2073 /*
2074 * vma->vm_start/vm_end cannot change under us because the caller
2075 * is required to hold the mmap_sem in read mode. We need the
2076 * anon_vma lock to serialize against concurrent expand_stacks.
2077 */
2078 anon_vma_lock_write(vma->anon_vma);
2079
2080 /* Somebody else might have raced and expanded it already */
2081 if (address > vma->vm_end) {
2082 unsigned long size, grow;
2083
2084 size = address - vma->vm_start;
2085 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2086
2087 error = -ENOMEM;
2088 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2089 error = acct_stack_growth(vma, size, grow);
2090 if (!error) {
2091 /*
2092 * vma_gap_update() doesn't support concurrent
2093 * updates, but we only hold a shared mmap_sem
2094 * lock here, so we need to protect against
2095 * concurrent vma expansions.
2096 * anon_vma_lock_write() doesn't help here, as
2097 * we don't guarantee that all growable vmas
2098 * in a mm share the same root anon vma.
2099 * So, we reuse mm->page_table_lock to guard
2100 * against concurrent vma expansions.
2101 */
2102 spin_lock(&mm->page_table_lock);
2103 if (vma->vm_flags & VM_LOCKED)
2104 mm->locked_vm += grow;
2105 vm_stat_account(mm, vma->vm_flags, grow);
2106 anon_vma_interval_tree_pre_update_vma(vma);
2107 vma->vm_end = address;
2108 anon_vma_interval_tree_post_update_vma(vma);
2109 if (vma->vm_next)
2110 vma_gap_update(vma->vm_next);
2111 else
2112 mm->highest_vm_end = address;
2113 spin_unlock(&mm->page_table_lock);
2114
2115 perf_event_mmap(vma);
2116 }
2117 }
2118 }
2119 anon_vma_unlock_write(vma->anon_vma);
2120 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2121 validate_mm(mm);
2122 return error;
2123 }
2124 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2125
2126 /*
2127 * vma is the first one with address < vma->vm_start. Have to extend vma.
2128 */
2129 int expand_downwards(struct vm_area_struct *vma,
2130 unsigned long address)
2131 {
2132 struct mm_struct *mm = vma->vm_mm;
2133 int error;
2134
2135 address &= PAGE_MASK;
2136 error = security_mmap_addr(address);
2137 if (error)
2138 return error;
2139
2140 /* We must make sure the anon_vma is allocated. */
2141 if (unlikely(anon_vma_prepare(vma)))
2142 return -ENOMEM;
2143
2144 /*
2145 * vma->vm_start/vm_end cannot change under us because the caller
2146 * is required to hold the mmap_sem in read mode. We need the
2147 * anon_vma lock to serialize against concurrent expand_stacks.
2148 */
2149 anon_vma_lock_write(vma->anon_vma);
2150
2151 /* Somebody else might have raced and expanded it already */
2152 if (address < vma->vm_start) {
2153 unsigned long size, grow;
2154
2155 size = vma->vm_end - address;
2156 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2157
2158 error = -ENOMEM;
2159 if (grow <= vma->vm_pgoff) {
2160 error = acct_stack_growth(vma, size, grow);
2161 if (!error) {
2162 /*
2163 * vma_gap_update() doesn't support concurrent
2164 * updates, but we only hold a shared mmap_sem
2165 * lock here, so we need to protect against
2166 * concurrent vma expansions.
2167 * anon_vma_lock_write() doesn't help here, as
2168 * we don't guarantee that all growable vmas
2169 * in a mm share the same root anon vma.
2170 * So, we reuse mm->page_table_lock to guard
2171 * against concurrent vma expansions.
2172 */
2173 spin_lock(&mm->page_table_lock);
2174 if (vma->vm_flags & VM_LOCKED)
2175 mm->locked_vm += grow;
2176 vm_stat_account(mm, vma->vm_flags, grow);
2177 anon_vma_interval_tree_pre_update_vma(vma);
2178 vma->vm_start = address;
2179 vma->vm_pgoff -= grow;
2180 anon_vma_interval_tree_post_update_vma(vma);
2181 vma_gap_update(vma);
2182 spin_unlock(&mm->page_table_lock);
2183
2184 perf_event_mmap(vma);
2185 }
2186 }
2187 }
2188 anon_vma_unlock_write(vma->anon_vma);
2189 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2190 validate_mm(mm);
2191 return error;
2192 }
2193
2194 /*
2195 * Note how expand_stack() refuses to expand the stack all the way to
2196 * abut the next virtual mapping, *unless* that mapping itself is also
2197 * a stack mapping. We want to leave room for a guard page, after all
2198 * (the guard page itself is not added here, that is done by the
2199 * actual page faulting logic)
2200 *
2201 * This matches the behavior of the guard page logic (see mm/memory.c:
2202 * check_stack_guard_page()), which only allows the guard page to be
2203 * removed under these circumstances.
2204 */
2205 #ifdef CONFIG_STACK_GROWSUP
2206 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2207 {
2208 struct vm_area_struct *next;
2209
2210 address &= PAGE_MASK;
2211 next = vma->vm_next;
2212 if (next && next->vm_start == address + PAGE_SIZE) {
2213 if (!(next->vm_flags & VM_GROWSUP))
2214 return -ENOMEM;
2215 }
2216 return expand_upwards(vma, address);
2217 }
2218
2219 struct vm_area_struct *
2220 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2221 {
2222 struct vm_area_struct *vma, *prev;
2223
2224 addr &= PAGE_MASK;
2225 vma = find_vma_prev(mm, addr, &prev);
2226 if (vma && (vma->vm_start <= addr))
2227 return vma;
2228 if (!prev || expand_stack(prev, addr))
2229 return NULL;
2230 if (prev->vm_flags & VM_LOCKED)
2231 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2232 return prev;
2233 }
2234 #else
2235 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2236 {
2237 struct vm_area_struct *prev;
2238
2239 address &= PAGE_MASK;
2240 prev = vma->vm_prev;
2241 if (prev && prev->vm_end == address) {
2242 if (!(prev->vm_flags & VM_GROWSDOWN))
2243 return -ENOMEM;
2244 }
2245 return expand_downwards(vma, address);
2246 }
2247
2248 struct vm_area_struct *
2249 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2250 {
2251 struct vm_area_struct *vma;
2252 unsigned long start;
2253
2254 addr &= PAGE_MASK;
2255 vma = find_vma(mm, addr);
2256 if (!vma)
2257 return NULL;
2258 if (vma->vm_start <= addr)
2259 return vma;
2260 if (!(vma->vm_flags & VM_GROWSDOWN))
2261 return NULL;
2262 start = vma->vm_start;
2263 if (expand_stack(vma, addr))
2264 return NULL;
2265 if (vma->vm_flags & VM_LOCKED)
2266 populate_vma_page_range(vma, addr, start, NULL);
2267 return vma;
2268 }
2269 #endif
2270
2271 EXPORT_SYMBOL_GPL(find_extend_vma);
2272
2273 /*
2274 * Ok - we have the memory areas we should free on the vma list,
2275 * so release them, and do the vma updates.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2280 {
2281 unsigned long nr_accounted = 0;
2282
2283 /* Update high watermark before we lower total_vm */
2284 update_hiwater_vm(mm);
2285 do {
2286 long nrpages = vma_pages(vma);
2287
2288 if (vma->vm_flags & VM_ACCOUNT)
2289 nr_accounted += nrpages;
2290 vm_stat_account(mm, vma->vm_flags, -nrpages);
2291 vma = remove_vma(vma);
2292 } while (vma);
2293 vm_unacct_memory(nr_accounted);
2294 validate_mm(mm);
2295 }
2296
2297 /*
2298 * Get rid of page table information in the indicated region.
2299 *
2300 * Called with the mm semaphore held.
2301 */
2302 static void unmap_region(struct mm_struct *mm,
2303 struct vm_area_struct *vma, struct vm_area_struct *prev,
2304 unsigned long start, unsigned long end)
2305 {
2306 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2307 struct mmu_gather tlb;
2308
2309 lru_add_drain();
2310 tlb_gather_mmu(&tlb, mm, start, end);
2311 update_hiwater_rss(mm);
2312 unmap_vmas(&tlb, vma, start, end);
2313 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2314 next ? next->vm_start : USER_PGTABLES_CEILING);
2315 tlb_finish_mmu(&tlb, start, end);
2316 }
2317
2318 /*
2319 * Create a list of vma's touched by the unmap, removing them from the mm's
2320 * vma list as we go..
2321 */
2322 static void
2323 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2324 struct vm_area_struct *prev, unsigned long end)
2325 {
2326 struct vm_area_struct **insertion_point;
2327 struct vm_area_struct *tail_vma = NULL;
2328
2329 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2330 vma->vm_prev = NULL;
2331 do {
2332 vma_rb_erase(vma, &mm->mm_rb);
2333 mm->map_count--;
2334 tail_vma = vma;
2335 vma = vma->vm_next;
2336 } while (vma && vma->vm_start < end);
2337 *insertion_point = vma;
2338 if (vma) {
2339 vma->vm_prev = prev;
2340 vma_gap_update(vma);
2341 } else
2342 mm->highest_vm_end = prev ? prev->vm_end : 0;
2343 tail_vma->vm_next = NULL;
2344
2345 /* Kill the cache */
2346 vmacache_invalidate(mm);
2347 }
2348
2349 /*
2350 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2351 * munmap path where it doesn't make sense to fail.
2352 */
2353 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2354 unsigned long addr, int new_below)
2355 {
2356 struct vm_area_struct *new;
2357 int err;
2358
2359 if (is_vm_hugetlb_page(vma) && (addr &
2360 ~(huge_page_mask(hstate_vma(vma)))))
2361 return -EINVAL;
2362
2363 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2364 if (!new)
2365 return -ENOMEM;
2366
2367 /* most fields are the same, copy all, and then fixup */
2368 *new = *vma;
2369
2370 INIT_LIST_HEAD(&new->anon_vma_chain);
2371
2372 if (new_below)
2373 new->vm_end = addr;
2374 else {
2375 new->vm_start = addr;
2376 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2377 }
2378
2379 err = vma_dup_policy(vma, new);
2380 if (err)
2381 goto out_free_vma;
2382
2383 err = anon_vma_clone(new, vma);
2384 if (err)
2385 goto out_free_mpol;
2386
2387 if (new->vm_file)
2388 get_file(new->vm_file);
2389
2390 if (new->vm_ops && new->vm_ops->open)
2391 new->vm_ops->open(new);
2392
2393 if (new_below)
2394 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2395 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2396 else
2397 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2398
2399 /* Success. */
2400 if (!err)
2401 return 0;
2402
2403 /* Clean everything up if vma_adjust failed. */
2404 if (new->vm_ops && new->vm_ops->close)
2405 new->vm_ops->close(new);
2406 if (new->vm_file)
2407 fput(new->vm_file);
2408 unlink_anon_vmas(new);
2409 out_free_mpol:
2410 mpol_put(vma_policy(new));
2411 out_free_vma:
2412 kmem_cache_free(vm_area_cachep, new);
2413 return err;
2414 }
2415
2416 /*
2417 * Split a vma into two pieces at address 'addr', a new vma is allocated
2418 * either for the first part or the tail.
2419 */
2420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2421 unsigned long addr, int new_below)
2422 {
2423 if (mm->map_count >= sysctl_max_map_count)
2424 return -ENOMEM;
2425
2426 return __split_vma(mm, vma, addr, new_below);
2427 }
2428
2429 /* Munmap is split into 2 main parts -- this part which finds
2430 * what needs doing, and the areas themselves, which do the
2431 * work. This now handles partial unmappings.
2432 * Jeremy Fitzhardinge <jeremy@goop.org>
2433 */
2434 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2435 {
2436 unsigned long end;
2437 struct vm_area_struct *vma, *prev, *last;
2438
2439 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2440 return -EINVAL;
2441
2442 len = PAGE_ALIGN(len);
2443 if (len == 0)
2444 return -EINVAL;
2445
2446 /* Find the first overlapping VMA */
2447 vma = find_vma(mm, start);
2448 if (!vma)
2449 return 0;
2450 prev = vma->vm_prev;
2451 /* we have start < vma->vm_end */
2452
2453 /* if it doesn't overlap, we have nothing.. */
2454 end = start + len;
2455 if (vma->vm_start >= end)
2456 return 0;
2457
2458 /*
2459 * If we need to split any vma, do it now to save pain later.
2460 *
2461 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2462 * unmapped vm_area_struct will remain in use: so lower split_vma
2463 * places tmp vma above, and higher split_vma places tmp vma below.
2464 */
2465 if (start > vma->vm_start) {
2466 int error;
2467
2468 /*
2469 * Make sure that map_count on return from munmap() will
2470 * not exceed its limit; but let map_count go just above
2471 * its limit temporarily, to help free resources as expected.
2472 */
2473 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2474 return -ENOMEM;
2475
2476 error = __split_vma(mm, vma, start, 0);
2477 if (error)
2478 return error;
2479 prev = vma;
2480 }
2481
2482 /* Does it split the last one? */
2483 last = find_vma(mm, end);
2484 if (last && end > last->vm_start) {
2485 int error = __split_vma(mm, last, end, 1);
2486 if (error)
2487 return error;
2488 }
2489 vma = prev ? prev->vm_next : mm->mmap;
2490
2491 /*
2492 * unlock any mlock()ed ranges before detaching vmas
2493 */
2494 if (mm->locked_vm) {
2495 struct vm_area_struct *tmp = vma;
2496 while (tmp && tmp->vm_start < end) {
2497 if (tmp->vm_flags & VM_LOCKED) {
2498 mm->locked_vm -= vma_pages(tmp);
2499 munlock_vma_pages_all(tmp);
2500 }
2501 tmp = tmp->vm_next;
2502 }
2503 }
2504
2505 /*
2506 * Remove the vma's, and unmap the actual pages
2507 */
2508 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2509 unmap_region(mm, vma, prev, start, end);
2510
2511 arch_unmap(mm, vma, start, end);
2512
2513 /* Fix up all other VM information */
2514 remove_vma_list(mm, vma);
2515
2516 return 0;
2517 }
2518
2519 int vm_munmap(unsigned long start, size_t len)
2520 {
2521 int ret;
2522 struct mm_struct *mm = current->mm;
2523
2524 if (down_write_killable(&mm->mmap_sem))
2525 return -EINTR;
2526
2527 ret = do_munmap(mm, start, len);
2528 up_write(&mm->mmap_sem);
2529 return ret;
2530 }
2531 EXPORT_SYMBOL(vm_munmap);
2532
2533 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2534 {
2535 int ret;
2536 struct mm_struct *mm = current->mm;
2537
2538 profile_munmap(addr);
2539 if (down_write_killable(&mm->mmap_sem))
2540 return -EINTR;
2541 ret = do_munmap(mm, addr, len);
2542 up_write(&mm->mmap_sem);
2543 return ret;
2544 }
2545
2546
2547 /*
2548 * Emulation of deprecated remap_file_pages() syscall.
2549 */
2550 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2551 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2552 {
2553
2554 struct mm_struct *mm = current->mm;
2555 struct vm_area_struct *vma;
2556 unsigned long populate = 0;
2557 unsigned long ret = -EINVAL;
2558 struct file *file;
2559
2560 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2561 current->comm, current->pid);
2562
2563 if (prot)
2564 return ret;
2565 start = start & PAGE_MASK;
2566 size = size & PAGE_MASK;
2567
2568 if (start + size <= start)
2569 return ret;
2570
2571 /* Does pgoff wrap? */
2572 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2573 return ret;
2574
2575 if (down_write_killable(&mm->mmap_sem))
2576 return -EINTR;
2577
2578 vma = find_vma(mm, start);
2579
2580 if (!vma || !(vma->vm_flags & VM_SHARED))
2581 goto out;
2582
2583 if (start < vma->vm_start)
2584 goto out;
2585
2586 if (start + size > vma->vm_end) {
2587 struct vm_area_struct *next;
2588
2589 for (next = vma->vm_next; next; next = next->vm_next) {
2590 /* hole between vmas ? */
2591 if (next->vm_start != next->vm_prev->vm_end)
2592 goto out;
2593
2594 if (next->vm_file != vma->vm_file)
2595 goto out;
2596
2597 if (next->vm_flags != vma->vm_flags)
2598 goto out;
2599
2600 if (start + size <= next->vm_end)
2601 break;
2602 }
2603
2604 if (!next)
2605 goto out;
2606 }
2607
2608 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2609 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2610 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2611
2612 flags &= MAP_NONBLOCK;
2613 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2614 if (vma->vm_flags & VM_LOCKED) {
2615 struct vm_area_struct *tmp;
2616 flags |= MAP_LOCKED;
2617
2618 /* drop PG_Mlocked flag for over-mapped range */
2619 for (tmp = vma; tmp->vm_start >= start + size;
2620 tmp = tmp->vm_next) {
2621 /*
2622 * Split pmd and munlock page on the border
2623 * of the range.
2624 */
2625 vma_adjust_trans_huge(tmp, start, start + size, 0);
2626
2627 munlock_vma_pages_range(tmp,
2628 max(tmp->vm_start, start),
2629 min(tmp->vm_end, start + size));
2630 }
2631 }
2632
2633 file = get_file(vma->vm_file);
2634 ret = do_mmap_pgoff(vma->vm_file, start, size,
2635 prot, flags, pgoff, &populate);
2636 fput(file);
2637 out:
2638 up_write(&mm->mmap_sem);
2639 if (populate)
2640 mm_populate(ret, populate);
2641 if (!IS_ERR_VALUE(ret))
2642 ret = 0;
2643 return ret;
2644 }
2645
2646 static inline void verify_mm_writelocked(struct mm_struct *mm)
2647 {
2648 #ifdef CONFIG_DEBUG_VM
2649 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2650 WARN_ON(1);
2651 up_read(&mm->mmap_sem);
2652 }
2653 #endif
2654 }
2655
2656 /*
2657 * this is really a simplified "do_mmap". it only handles
2658 * anonymous maps. eventually we may be able to do some
2659 * brk-specific accounting here.
2660 */
2661 static int do_brk(unsigned long addr, unsigned long request)
2662 {
2663 struct mm_struct *mm = current->mm;
2664 struct vm_area_struct *vma, *prev;
2665 unsigned long flags, len;
2666 struct rb_node **rb_link, *rb_parent;
2667 pgoff_t pgoff = addr >> PAGE_SHIFT;
2668 int error;
2669
2670 len = PAGE_ALIGN(request);
2671 if (len < request)
2672 return -ENOMEM;
2673 if (!len)
2674 return 0;
2675
2676 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2677
2678 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2679 if (offset_in_page(error))
2680 return error;
2681
2682 error = mlock_future_check(mm, mm->def_flags, len);
2683 if (error)
2684 return error;
2685
2686 /*
2687 * mm->mmap_sem is required to protect against another thread
2688 * changing the mappings in case we sleep.
2689 */
2690 verify_mm_writelocked(mm);
2691
2692 /*
2693 * Clear old maps. this also does some error checking for us
2694 */
2695 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2696 &rb_parent)) {
2697 if (do_munmap(mm, addr, len))
2698 return -ENOMEM;
2699 }
2700
2701 /* Check against address space limits *after* clearing old maps... */
2702 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2703 return -ENOMEM;
2704
2705 if (mm->map_count > sysctl_max_map_count)
2706 return -ENOMEM;
2707
2708 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2709 return -ENOMEM;
2710
2711 /* Can we just expand an old private anonymous mapping? */
2712 vma = vma_merge(mm, prev, addr, addr + len, flags,
2713 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2714 if (vma)
2715 goto out;
2716
2717 /*
2718 * create a vma struct for an anonymous mapping
2719 */
2720 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2721 if (!vma) {
2722 vm_unacct_memory(len >> PAGE_SHIFT);
2723 return -ENOMEM;
2724 }
2725
2726 INIT_LIST_HEAD(&vma->anon_vma_chain);
2727 vma->vm_mm = mm;
2728 vma->vm_start = addr;
2729 vma->vm_end = addr + len;
2730 vma->vm_pgoff = pgoff;
2731 vma->vm_flags = flags;
2732 vma->vm_page_prot = vm_get_page_prot(flags);
2733 vma_link(mm, vma, prev, rb_link, rb_parent);
2734 out:
2735 perf_event_mmap(vma);
2736 mm->total_vm += len >> PAGE_SHIFT;
2737 mm->data_vm += len >> PAGE_SHIFT;
2738 if (flags & VM_LOCKED)
2739 mm->locked_vm += (len >> PAGE_SHIFT);
2740 vma->vm_flags |= VM_SOFTDIRTY;
2741 return 0;
2742 }
2743
2744 int vm_brk(unsigned long addr, unsigned long len)
2745 {
2746 struct mm_struct *mm = current->mm;
2747 int ret;
2748 bool populate;
2749
2750 if (down_write_killable(&mm->mmap_sem))
2751 return -EINTR;
2752
2753 ret = do_brk(addr, len);
2754 populate = ((mm->def_flags & VM_LOCKED) != 0);
2755 up_write(&mm->mmap_sem);
2756 if (populate && !ret)
2757 mm_populate(addr, len);
2758 return ret;
2759 }
2760 EXPORT_SYMBOL(vm_brk);
2761
2762 /* Release all mmaps. */
2763 void exit_mmap(struct mm_struct *mm)
2764 {
2765 struct mmu_gather tlb;
2766 struct vm_area_struct *vma;
2767 unsigned long nr_accounted = 0;
2768
2769 /* mm's last user has gone, and its about to be pulled down */
2770 mmu_notifier_release(mm);
2771
2772 if (mm->locked_vm) {
2773 vma = mm->mmap;
2774 while (vma) {
2775 if (vma->vm_flags & VM_LOCKED)
2776 munlock_vma_pages_all(vma);
2777 vma = vma->vm_next;
2778 }
2779 }
2780
2781 arch_exit_mmap(mm);
2782
2783 vma = mm->mmap;
2784 if (!vma) /* Can happen if dup_mmap() received an OOM */
2785 return;
2786
2787 lru_add_drain();
2788 flush_cache_mm(mm);
2789 tlb_gather_mmu(&tlb, mm, 0, -1);
2790 /* update_hiwater_rss(mm) here? but nobody should be looking */
2791 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2792 unmap_vmas(&tlb, vma, 0, -1);
2793
2794 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2795 tlb_finish_mmu(&tlb, 0, -1);
2796
2797 /*
2798 * Walk the list again, actually closing and freeing it,
2799 * with preemption enabled, without holding any MM locks.
2800 */
2801 while (vma) {
2802 if (vma->vm_flags & VM_ACCOUNT)
2803 nr_accounted += vma_pages(vma);
2804 vma = remove_vma(vma);
2805 }
2806 vm_unacct_memory(nr_accounted);
2807 }
2808
2809 /* Insert vm structure into process list sorted by address
2810 * and into the inode's i_mmap tree. If vm_file is non-NULL
2811 * then i_mmap_rwsem is taken here.
2812 */
2813 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2814 {
2815 struct vm_area_struct *prev;
2816 struct rb_node **rb_link, *rb_parent;
2817
2818 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2819 &prev, &rb_link, &rb_parent))
2820 return -ENOMEM;
2821 if ((vma->vm_flags & VM_ACCOUNT) &&
2822 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2823 return -ENOMEM;
2824
2825 /*
2826 * The vm_pgoff of a purely anonymous vma should be irrelevant
2827 * until its first write fault, when page's anon_vma and index
2828 * are set. But now set the vm_pgoff it will almost certainly
2829 * end up with (unless mremap moves it elsewhere before that
2830 * first wfault), so /proc/pid/maps tells a consistent story.
2831 *
2832 * By setting it to reflect the virtual start address of the
2833 * vma, merges and splits can happen in a seamless way, just
2834 * using the existing file pgoff checks and manipulations.
2835 * Similarly in do_mmap_pgoff and in do_brk.
2836 */
2837 if (vma_is_anonymous(vma)) {
2838 BUG_ON(vma->anon_vma);
2839 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2840 }
2841
2842 vma_link(mm, vma, prev, rb_link, rb_parent);
2843 return 0;
2844 }
2845
2846 /*
2847 * Copy the vma structure to a new location in the same mm,
2848 * prior to moving page table entries, to effect an mremap move.
2849 */
2850 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2851 unsigned long addr, unsigned long len, pgoff_t pgoff,
2852 bool *need_rmap_locks)
2853 {
2854 struct vm_area_struct *vma = *vmap;
2855 unsigned long vma_start = vma->vm_start;
2856 struct mm_struct *mm = vma->vm_mm;
2857 struct vm_area_struct *new_vma, *prev;
2858 struct rb_node **rb_link, *rb_parent;
2859 bool faulted_in_anon_vma = true;
2860
2861 /*
2862 * If anonymous vma has not yet been faulted, update new pgoff
2863 * to match new location, to increase its chance of merging.
2864 */
2865 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2866 pgoff = addr >> PAGE_SHIFT;
2867 faulted_in_anon_vma = false;
2868 }
2869
2870 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2871 return NULL; /* should never get here */
2872 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2873 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2874 vma->vm_userfaultfd_ctx);
2875 if (new_vma) {
2876 /*
2877 * Source vma may have been merged into new_vma
2878 */
2879 if (unlikely(vma_start >= new_vma->vm_start &&
2880 vma_start < new_vma->vm_end)) {
2881 /*
2882 * The only way we can get a vma_merge with
2883 * self during an mremap is if the vma hasn't
2884 * been faulted in yet and we were allowed to
2885 * reset the dst vma->vm_pgoff to the
2886 * destination address of the mremap to allow
2887 * the merge to happen. mremap must change the
2888 * vm_pgoff linearity between src and dst vmas
2889 * (in turn preventing a vma_merge) to be
2890 * safe. It is only safe to keep the vm_pgoff
2891 * linear if there are no pages mapped yet.
2892 */
2893 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2894 *vmap = vma = new_vma;
2895 }
2896 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2897 } else {
2898 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2899 if (!new_vma)
2900 goto out;
2901 *new_vma = *vma;
2902 new_vma->vm_start = addr;
2903 new_vma->vm_end = addr + len;
2904 new_vma->vm_pgoff = pgoff;
2905 if (vma_dup_policy(vma, new_vma))
2906 goto out_free_vma;
2907 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2908 if (anon_vma_clone(new_vma, vma))
2909 goto out_free_mempol;
2910 if (new_vma->vm_file)
2911 get_file(new_vma->vm_file);
2912 if (new_vma->vm_ops && new_vma->vm_ops->open)
2913 new_vma->vm_ops->open(new_vma);
2914 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2915 *need_rmap_locks = false;
2916 }
2917 return new_vma;
2918
2919 out_free_mempol:
2920 mpol_put(vma_policy(new_vma));
2921 out_free_vma:
2922 kmem_cache_free(vm_area_cachep, new_vma);
2923 out:
2924 return NULL;
2925 }
2926
2927 /*
2928 * Return true if the calling process may expand its vm space by the passed
2929 * number of pages
2930 */
2931 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2932 {
2933 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2934 return false;
2935
2936 if (is_data_mapping(flags) &&
2937 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2938 /* Workaround for Valgrind */
2939 if (rlimit(RLIMIT_DATA) == 0 &&
2940 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2941 return true;
2942 if (!ignore_rlimit_data) {
2943 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2944 current->comm, current->pid,
2945 (mm->data_vm + npages) << PAGE_SHIFT,
2946 rlimit(RLIMIT_DATA));
2947 return false;
2948 }
2949 }
2950
2951 return true;
2952 }
2953
2954 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2955 {
2956 mm->total_vm += npages;
2957
2958 if (is_exec_mapping(flags))
2959 mm->exec_vm += npages;
2960 else if (is_stack_mapping(flags))
2961 mm->stack_vm += npages;
2962 else if (is_data_mapping(flags))
2963 mm->data_vm += npages;
2964 }
2965
2966 static int special_mapping_fault(struct vm_area_struct *vma,
2967 struct vm_fault *vmf);
2968
2969 /*
2970 * Having a close hook prevents vma merging regardless of flags.
2971 */
2972 static void special_mapping_close(struct vm_area_struct *vma)
2973 {
2974 }
2975
2976 static const char *special_mapping_name(struct vm_area_struct *vma)
2977 {
2978 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2979 }
2980
2981 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2982 {
2983 struct vm_special_mapping *sm = new_vma->vm_private_data;
2984
2985 if (sm->mremap)
2986 return sm->mremap(sm, new_vma);
2987 return 0;
2988 }
2989
2990 static const struct vm_operations_struct special_mapping_vmops = {
2991 .close = special_mapping_close,
2992 .fault = special_mapping_fault,
2993 .mremap = special_mapping_mremap,
2994 .name = special_mapping_name,
2995 };
2996
2997 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2998 .close = special_mapping_close,
2999 .fault = special_mapping_fault,
3000 };
3001
3002 static int special_mapping_fault(struct vm_area_struct *vma,
3003 struct vm_fault *vmf)
3004 {
3005 pgoff_t pgoff;
3006 struct page **pages;
3007
3008 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3009 pages = vma->vm_private_data;
3010 } else {
3011 struct vm_special_mapping *sm = vma->vm_private_data;
3012
3013 if (sm->fault)
3014 return sm->fault(sm, vma, vmf);
3015
3016 pages = sm->pages;
3017 }
3018
3019 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3020 pgoff--;
3021
3022 if (*pages) {
3023 struct page *page = *pages;
3024 get_page(page);
3025 vmf->page = page;
3026 return 0;
3027 }
3028
3029 return VM_FAULT_SIGBUS;
3030 }
3031
3032 static struct vm_area_struct *__install_special_mapping(
3033 struct mm_struct *mm,
3034 unsigned long addr, unsigned long len,
3035 unsigned long vm_flags, void *priv,
3036 const struct vm_operations_struct *ops)
3037 {
3038 int ret;
3039 struct vm_area_struct *vma;
3040
3041 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3042 if (unlikely(vma == NULL))
3043 return ERR_PTR(-ENOMEM);
3044
3045 INIT_LIST_HEAD(&vma->anon_vma_chain);
3046 vma->vm_mm = mm;
3047 vma->vm_start = addr;
3048 vma->vm_end = addr + len;
3049
3050 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3051 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3052
3053 vma->vm_ops = ops;
3054 vma->vm_private_data = priv;
3055
3056 ret = insert_vm_struct(mm, vma);
3057 if (ret)
3058 goto out;
3059
3060 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3061
3062 perf_event_mmap(vma);
3063
3064 return vma;
3065
3066 out:
3067 kmem_cache_free(vm_area_cachep, vma);
3068 return ERR_PTR(ret);
3069 }
3070
3071 /*
3072 * Called with mm->mmap_sem held for writing.
3073 * Insert a new vma covering the given region, with the given flags.
3074 * Its pages are supplied by the given array of struct page *.
3075 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3076 * The region past the last page supplied will always produce SIGBUS.
3077 * The array pointer and the pages it points to are assumed to stay alive
3078 * for as long as this mapping might exist.
3079 */
3080 struct vm_area_struct *_install_special_mapping(
3081 struct mm_struct *mm,
3082 unsigned long addr, unsigned long len,
3083 unsigned long vm_flags, const struct vm_special_mapping *spec)
3084 {
3085 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3086 &special_mapping_vmops);
3087 }
3088
3089 int install_special_mapping(struct mm_struct *mm,
3090 unsigned long addr, unsigned long len,
3091 unsigned long vm_flags, struct page **pages)
3092 {
3093 struct vm_area_struct *vma = __install_special_mapping(
3094 mm, addr, len, vm_flags, (void *)pages,
3095 &legacy_special_mapping_vmops);
3096
3097 return PTR_ERR_OR_ZERO(vma);
3098 }
3099
3100 static DEFINE_MUTEX(mm_all_locks_mutex);
3101
3102 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3103 {
3104 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3105 /*
3106 * The LSB of head.next can't change from under us
3107 * because we hold the mm_all_locks_mutex.
3108 */
3109 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3110 /*
3111 * We can safely modify head.next after taking the
3112 * anon_vma->root->rwsem. If some other vma in this mm shares
3113 * the same anon_vma we won't take it again.
3114 *
3115 * No need of atomic instructions here, head.next
3116 * can't change from under us thanks to the
3117 * anon_vma->root->rwsem.
3118 */
3119 if (__test_and_set_bit(0, (unsigned long *)
3120 &anon_vma->root->rb_root.rb_node))
3121 BUG();
3122 }
3123 }
3124
3125 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3126 {
3127 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3128 /*
3129 * AS_MM_ALL_LOCKS can't change from under us because
3130 * we hold the mm_all_locks_mutex.
3131 *
3132 * Operations on ->flags have to be atomic because
3133 * even if AS_MM_ALL_LOCKS is stable thanks to the
3134 * mm_all_locks_mutex, there may be other cpus
3135 * changing other bitflags in parallel to us.
3136 */
3137 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3138 BUG();
3139 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3140 }
3141 }
3142
3143 /*
3144 * This operation locks against the VM for all pte/vma/mm related
3145 * operations that could ever happen on a certain mm. This includes
3146 * vmtruncate, try_to_unmap, and all page faults.
3147 *
3148 * The caller must take the mmap_sem in write mode before calling
3149 * mm_take_all_locks(). The caller isn't allowed to release the
3150 * mmap_sem until mm_drop_all_locks() returns.
3151 *
3152 * mmap_sem in write mode is required in order to block all operations
3153 * that could modify pagetables and free pages without need of
3154 * altering the vma layout. It's also needed in write mode to avoid new
3155 * anon_vmas to be associated with existing vmas.
3156 *
3157 * A single task can't take more than one mm_take_all_locks() in a row
3158 * or it would deadlock.
3159 *
3160 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3161 * mapping->flags avoid to take the same lock twice, if more than one
3162 * vma in this mm is backed by the same anon_vma or address_space.
3163 *
3164 * We take locks in following order, accordingly to comment at beginning
3165 * of mm/rmap.c:
3166 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3167 * hugetlb mapping);
3168 * - all i_mmap_rwsem locks;
3169 * - all anon_vma->rwseml
3170 *
3171 * We can take all locks within these types randomly because the VM code
3172 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3173 * mm_all_locks_mutex.
3174 *
3175 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3176 * that may have to take thousand of locks.
3177 *
3178 * mm_take_all_locks() can fail if it's interrupted by signals.
3179 */
3180 int mm_take_all_locks(struct mm_struct *mm)
3181 {
3182 struct vm_area_struct *vma;
3183 struct anon_vma_chain *avc;
3184
3185 BUG_ON(down_read_trylock(&mm->mmap_sem));
3186
3187 mutex_lock(&mm_all_locks_mutex);
3188
3189 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3190 if (signal_pending(current))
3191 goto out_unlock;
3192 if (vma->vm_file && vma->vm_file->f_mapping &&
3193 is_vm_hugetlb_page(vma))
3194 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3195 }
3196
3197 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198 if (signal_pending(current))
3199 goto out_unlock;
3200 if (vma->vm_file && vma->vm_file->f_mapping &&
3201 !is_vm_hugetlb_page(vma))
3202 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3203 }
3204
3205 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3206 if (signal_pending(current))
3207 goto out_unlock;
3208 if (vma->anon_vma)
3209 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3210 vm_lock_anon_vma(mm, avc->anon_vma);
3211 }
3212
3213 return 0;
3214
3215 out_unlock:
3216 mm_drop_all_locks(mm);
3217 return -EINTR;
3218 }
3219
3220 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3221 {
3222 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3223 /*
3224 * The LSB of head.next can't change to 0 from under
3225 * us because we hold the mm_all_locks_mutex.
3226 *
3227 * We must however clear the bitflag before unlocking
3228 * the vma so the users using the anon_vma->rb_root will
3229 * never see our bitflag.
3230 *
3231 * No need of atomic instructions here, head.next
3232 * can't change from under us until we release the
3233 * anon_vma->root->rwsem.
3234 */
3235 if (!__test_and_clear_bit(0, (unsigned long *)
3236 &anon_vma->root->rb_root.rb_node))
3237 BUG();
3238 anon_vma_unlock_write(anon_vma);
3239 }
3240 }
3241
3242 static void vm_unlock_mapping(struct address_space *mapping)
3243 {
3244 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3245 /*
3246 * AS_MM_ALL_LOCKS can't change to 0 from under us
3247 * because we hold the mm_all_locks_mutex.
3248 */
3249 i_mmap_unlock_write(mapping);
3250 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3251 &mapping->flags))
3252 BUG();
3253 }
3254 }
3255
3256 /*
3257 * The mmap_sem cannot be released by the caller until
3258 * mm_drop_all_locks() returns.
3259 */
3260 void mm_drop_all_locks(struct mm_struct *mm)
3261 {
3262 struct vm_area_struct *vma;
3263 struct anon_vma_chain *avc;
3264
3265 BUG_ON(down_read_trylock(&mm->mmap_sem));
3266 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3267
3268 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3269 if (vma->anon_vma)
3270 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3271 vm_unlock_anon_vma(avc->anon_vma);
3272 if (vma->vm_file && vma->vm_file->f_mapping)
3273 vm_unlock_mapping(vma->vm_file->f_mapping);
3274 }
3275
3276 mutex_unlock(&mm_all_locks_mutex);
3277 }
3278
3279 /*
3280 * initialise the VMA slab
3281 */
3282 void __init mmap_init(void)
3283 {
3284 int ret;
3285
3286 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3287 VM_BUG_ON(ret);
3288 }
3289
3290 /*
3291 * Initialise sysctl_user_reserve_kbytes.
3292 *
3293 * This is intended to prevent a user from starting a single memory hogging
3294 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3295 * mode.
3296 *
3297 * The default value is min(3% of free memory, 128MB)
3298 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3299 */
3300 static int init_user_reserve(void)
3301 {
3302 unsigned long free_kbytes;
3303
3304 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3305
3306 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3307 return 0;
3308 }
3309 subsys_initcall(init_user_reserve);
3310
3311 /*
3312 * Initialise sysctl_admin_reserve_kbytes.
3313 *
3314 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3315 * to log in and kill a memory hogging process.
3316 *
3317 * Systems with more than 256MB will reserve 8MB, enough to recover
3318 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3319 * only reserve 3% of free pages by default.
3320 */
3321 static int init_admin_reserve(void)
3322 {
3323 unsigned long free_kbytes;
3324
3325 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3326
3327 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3328 return 0;
3329 }
3330 subsys_initcall(init_admin_reserve);
3331
3332 /*
3333 * Reinititalise user and admin reserves if memory is added or removed.
3334 *
3335 * The default user reserve max is 128MB, and the default max for the
3336 * admin reserve is 8MB. These are usually, but not always, enough to
3337 * enable recovery from a memory hogging process using login/sshd, a shell,
3338 * and tools like top. It may make sense to increase or even disable the
3339 * reserve depending on the existence of swap or variations in the recovery
3340 * tools. So, the admin may have changed them.
3341 *
3342 * If memory is added and the reserves have been eliminated or increased above
3343 * the default max, then we'll trust the admin.
3344 *
3345 * If memory is removed and there isn't enough free memory, then we
3346 * need to reset the reserves.
3347 *
3348 * Otherwise keep the reserve set by the admin.
3349 */
3350 static int reserve_mem_notifier(struct notifier_block *nb,
3351 unsigned long action, void *data)
3352 {
3353 unsigned long tmp, free_kbytes;
3354
3355 switch (action) {
3356 case MEM_ONLINE:
3357 /* Default max is 128MB. Leave alone if modified by operator. */
3358 tmp = sysctl_user_reserve_kbytes;
3359 if (0 < tmp && tmp < (1UL << 17))
3360 init_user_reserve();
3361
3362 /* Default max is 8MB. Leave alone if modified by operator. */
3363 tmp = sysctl_admin_reserve_kbytes;
3364 if (0 < tmp && tmp < (1UL << 13))
3365 init_admin_reserve();
3366
3367 break;
3368 case MEM_OFFLINE:
3369 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3370
3371 if (sysctl_user_reserve_kbytes > free_kbytes) {
3372 init_user_reserve();
3373 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3374 sysctl_user_reserve_kbytes);
3375 }
3376
3377 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3378 init_admin_reserve();
3379 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3380 sysctl_admin_reserve_kbytes);
3381 }
3382 break;
3383 default:
3384 break;
3385 }
3386 return NOTIFY_OK;
3387 }
3388
3389 static struct notifier_block reserve_mem_nb = {
3390 .notifier_call = reserve_mem_notifier,
3391 };
3392
3393 static int __meminit init_reserve_notifier(void)
3394 {
3395 if (register_hotmemory_notifier(&reserve_mem_nb))
3396 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3397
3398 return 0;
3399 }
3400 subsys_initcall(init_reserve_notifier);
This page took 0.103106 seconds and 5 git commands to generate.