tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 static inline bool is_memcg_oom(struct oom_control *oc)
136 {
137 return oc->memcg != NULL;
138 }
139
140 /* return true if the task is not adequate as candidate victim task. */
141 static bool oom_unkillable_task(struct task_struct *p,
142 struct mem_cgroup *memcg, const nodemask_t *nodemask)
143 {
144 if (is_global_init(p))
145 return true;
146 if (p->flags & PF_KTHREAD)
147 return true;
148
149 /* When mem_cgroup_out_of_memory() and p is not member of the group */
150 if (memcg && !task_in_mem_cgroup(p, memcg))
151 return true;
152
153 /* p may not have freeable memory in nodemask */
154 if (!has_intersects_mems_allowed(p, nodemask))
155 return true;
156
157 return false;
158 }
159
160 /**
161 * oom_badness - heuristic function to determine which candidate task to kill
162 * @p: task struct of which task we should calculate
163 * @totalpages: total present RAM allowed for page allocation
164 *
165 * The heuristic for determining which task to kill is made to be as simple and
166 * predictable as possible. The goal is to return the highest value for the
167 * task consuming the most memory to avoid subsequent oom failures.
168 */
169 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
170 const nodemask_t *nodemask, unsigned long totalpages)
171 {
172 long points;
173 long adj;
174
175 if (oom_unkillable_task(p, memcg, nodemask))
176 return 0;
177
178 p = find_lock_task_mm(p);
179 if (!p)
180 return 0;
181
182 /*
183 * Do not even consider tasks which are explicitly marked oom
184 * unkillable or have been already oom reaped or the are in
185 * the middle of vfork
186 */
187 adj = (long)p->signal->oom_score_adj;
188 if (adj == OOM_SCORE_ADJ_MIN ||
189 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
190 in_vfork(p)) {
191 task_unlock(p);
192 return 0;
193 }
194
195 /*
196 * The baseline for the badness score is the proportion of RAM that each
197 * task's rss, pagetable and swap space use.
198 */
199 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
200 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
201 task_unlock(p);
202
203 /*
204 * Root processes get 3% bonus, just like the __vm_enough_memory()
205 * implementation used by LSMs.
206 */
207 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
208 points -= (points * 3) / 100;
209
210 /* Normalize to oom_score_adj units */
211 adj *= totalpages / 1000;
212 points += adj;
213
214 /*
215 * Never return 0 for an eligible task regardless of the root bonus and
216 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
217 */
218 return points > 0 ? points : 1;
219 }
220
221 enum oom_constraint {
222 CONSTRAINT_NONE,
223 CONSTRAINT_CPUSET,
224 CONSTRAINT_MEMORY_POLICY,
225 CONSTRAINT_MEMCG,
226 };
227
228 /*
229 * Determine the type of allocation constraint.
230 */
231 static enum oom_constraint constrained_alloc(struct oom_control *oc)
232 {
233 struct zone *zone;
234 struct zoneref *z;
235 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
236 bool cpuset_limited = false;
237 int nid;
238
239 if (is_memcg_oom(oc)) {
240 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
241 return CONSTRAINT_MEMCG;
242 }
243
244 /* Default to all available memory */
245 oc->totalpages = totalram_pages + total_swap_pages;
246
247 if (!IS_ENABLED(CONFIG_NUMA))
248 return CONSTRAINT_NONE;
249
250 if (!oc->zonelist)
251 return CONSTRAINT_NONE;
252 /*
253 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
254 * to kill current.We have to random task kill in this case.
255 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
256 */
257 if (oc->gfp_mask & __GFP_THISNODE)
258 return CONSTRAINT_NONE;
259
260 /*
261 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
262 * the page allocator means a mempolicy is in effect. Cpuset policy
263 * is enforced in get_page_from_freelist().
264 */
265 if (oc->nodemask &&
266 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
267 oc->totalpages = total_swap_pages;
268 for_each_node_mask(nid, *oc->nodemask)
269 oc->totalpages += node_spanned_pages(nid);
270 return CONSTRAINT_MEMORY_POLICY;
271 }
272
273 /* Check this allocation failure is caused by cpuset's wall function */
274 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
275 high_zoneidx, oc->nodemask)
276 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
277 cpuset_limited = true;
278
279 if (cpuset_limited) {
280 oc->totalpages = total_swap_pages;
281 for_each_node_mask(nid, cpuset_current_mems_allowed)
282 oc->totalpages += node_spanned_pages(nid);
283 return CONSTRAINT_CPUSET;
284 }
285 return CONSTRAINT_NONE;
286 }
287
288 static int oom_evaluate_task(struct task_struct *task, void *arg)
289 {
290 struct oom_control *oc = arg;
291 unsigned long points;
292
293 if (oom_unkillable_task(task, NULL, oc->nodemask))
294 goto next;
295
296 /*
297 * This task already has access to memory reserves and is being killed.
298 * Don't allow any other task to have access to the reserves unless
299 * the task has MMF_OOM_SKIP because chances that it would release
300 * any memory is quite low.
301 */
302 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
303 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
304 goto next;
305 goto abort;
306 }
307
308 /*
309 * If task is allocating a lot of memory and has been marked to be
310 * killed first if it triggers an oom, then select it.
311 */
312 if (oom_task_origin(task)) {
313 points = ULONG_MAX;
314 goto select;
315 }
316
317 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
318 if (!points || points < oc->chosen_points)
319 goto next;
320
321 /* Prefer thread group leaders for display purposes */
322 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
323 goto next;
324 select:
325 if (oc->chosen)
326 put_task_struct(oc->chosen);
327 get_task_struct(task);
328 oc->chosen = task;
329 oc->chosen_points = points;
330 next:
331 return 0;
332 abort:
333 if (oc->chosen)
334 put_task_struct(oc->chosen);
335 oc->chosen = (void *)-1UL;
336 return 1;
337 }
338
339 /*
340 * Simple selection loop. We choose the process with the highest number of
341 * 'points'. In case scan was aborted, oc->chosen is set to -1.
342 */
343 static void select_bad_process(struct oom_control *oc)
344 {
345 if (is_memcg_oom(oc))
346 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
347 else {
348 struct task_struct *p;
349
350 rcu_read_lock();
351 for_each_process(p)
352 if (oom_evaluate_task(p, oc))
353 break;
354 rcu_read_unlock();
355 }
356
357 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
358 }
359
360 /**
361 * dump_tasks - dump current memory state of all system tasks
362 * @memcg: current's memory controller, if constrained
363 * @nodemask: nodemask passed to page allocator for mempolicy ooms
364 *
365 * Dumps the current memory state of all eligible tasks. Tasks not in the same
366 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
367 * are not shown.
368 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
369 * swapents, oom_score_adj value, and name.
370 */
371 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
372 {
373 struct task_struct *p;
374 struct task_struct *task;
375
376 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
377 rcu_read_lock();
378 for_each_process(p) {
379 if (oom_unkillable_task(p, memcg, nodemask))
380 continue;
381
382 task = find_lock_task_mm(p);
383 if (!task) {
384 /*
385 * This is a kthread or all of p's threads have already
386 * detached their mm's. There's no need to report
387 * them; they can't be oom killed anyway.
388 */
389 continue;
390 }
391
392 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
393 task->pid, from_kuid(&init_user_ns, task_uid(task)),
394 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
395 atomic_long_read(&task->mm->nr_ptes),
396 mm_nr_pmds(task->mm),
397 get_mm_counter(task->mm, MM_SWAPENTS),
398 task->signal->oom_score_adj, task->comm);
399 task_unlock(task);
400 }
401 rcu_read_unlock();
402 }
403
404 static void dump_header(struct oom_control *oc, struct task_struct *p)
405 {
406 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
407 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
408 current->signal->oom_score_adj);
409 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
410 pr_warn("COMPACTION is disabled!!!\n");
411
412 cpuset_print_current_mems_allowed();
413 dump_stack();
414 if (oc->memcg)
415 mem_cgroup_print_oom_info(oc->memcg, p);
416 else
417 show_mem(SHOW_MEM_FILTER_NODES);
418 if (sysctl_oom_dump_tasks)
419 dump_tasks(oc->memcg, oc->nodemask);
420 }
421
422 /*
423 * Number of OOM victims in flight
424 */
425 static atomic_t oom_victims = ATOMIC_INIT(0);
426 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
427
428 static bool oom_killer_disabled __read_mostly;
429
430 #define K(x) ((x) << (PAGE_SHIFT-10))
431
432 /*
433 * task->mm can be NULL if the task is the exited group leader. So to
434 * determine whether the task is using a particular mm, we examine all the
435 * task's threads: if one of those is using this mm then this task was also
436 * using it.
437 */
438 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
439 {
440 struct task_struct *t;
441
442 for_each_thread(p, t) {
443 struct mm_struct *t_mm = READ_ONCE(t->mm);
444 if (t_mm)
445 return t_mm == mm;
446 }
447 return false;
448 }
449
450
451 #ifdef CONFIG_MMU
452 /*
453 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
454 * victim (if that is possible) to help the OOM killer to move on.
455 */
456 static struct task_struct *oom_reaper_th;
457 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
458 static struct task_struct *oom_reaper_list;
459 static DEFINE_SPINLOCK(oom_reaper_lock);
460
461 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
462 {
463 struct mmu_gather tlb;
464 struct vm_area_struct *vma;
465 struct zap_details details = {.check_swap_entries = true,
466 .ignore_dirty = true};
467 bool ret = true;
468
469 /*
470 * We have to make sure to not race with the victim exit path
471 * and cause premature new oom victim selection:
472 * __oom_reap_task_mm exit_mm
473 * mmget_not_zero
474 * mmput
475 * atomic_dec_and_test
476 * exit_oom_victim
477 * [...]
478 * out_of_memory
479 * select_bad_process
480 * # no TIF_MEMDIE task selects new victim
481 * unmap_page_range # frees some memory
482 */
483 mutex_lock(&oom_lock);
484
485 if (!down_read_trylock(&mm->mmap_sem)) {
486 ret = false;
487 goto unlock_oom;
488 }
489
490 /*
491 * increase mm_users only after we know we will reap something so
492 * that the mmput_async is called only when we have reaped something
493 * and delayed __mmput doesn't matter that much
494 */
495 if (!mmget_not_zero(mm)) {
496 up_read(&mm->mmap_sem);
497 goto unlock_oom;
498 }
499
500 /*
501 * Tell all users of get_user/copy_from_user etc... that the content
502 * is no longer stable. No barriers really needed because unmapping
503 * should imply barriers already and the reader would hit a page fault
504 * if it stumbled over a reaped memory.
505 */
506 set_bit(MMF_UNSTABLE, &mm->flags);
507
508 tlb_gather_mmu(&tlb, mm, 0, -1);
509 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
510 if (is_vm_hugetlb_page(vma))
511 continue;
512
513 /*
514 * mlocked VMAs require explicit munlocking before unmap.
515 * Let's keep it simple here and skip such VMAs.
516 */
517 if (vma->vm_flags & VM_LOCKED)
518 continue;
519
520 /*
521 * Only anonymous pages have a good chance to be dropped
522 * without additional steps which we cannot afford as we
523 * are OOM already.
524 *
525 * We do not even care about fs backed pages because all
526 * which are reclaimable have already been reclaimed and
527 * we do not want to block exit_mmap by keeping mm ref
528 * count elevated without a good reason.
529 */
530 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
531 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
532 &details);
533 }
534 tlb_finish_mmu(&tlb, 0, -1);
535 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
536 task_pid_nr(tsk), tsk->comm,
537 K(get_mm_counter(mm, MM_ANONPAGES)),
538 K(get_mm_counter(mm, MM_FILEPAGES)),
539 K(get_mm_counter(mm, MM_SHMEMPAGES)));
540 up_read(&mm->mmap_sem);
541
542 /*
543 * Drop our reference but make sure the mmput slow path is called from a
544 * different context because we shouldn't risk we get stuck there and
545 * put the oom_reaper out of the way.
546 */
547 mmput_async(mm);
548 unlock_oom:
549 mutex_unlock(&oom_lock);
550 return ret;
551 }
552
553 #define MAX_OOM_REAP_RETRIES 10
554 static void oom_reap_task(struct task_struct *tsk)
555 {
556 int attempts = 0;
557 struct mm_struct *mm = tsk->signal->oom_mm;
558
559 /* Retry the down_read_trylock(mmap_sem) a few times */
560 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
561 schedule_timeout_idle(HZ/10);
562
563 if (attempts <= MAX_OOM_REAP_RETRIES)
564 goto done;
565
566
567 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
568 task_pid_nr(tsk), tsk->comm);
569 debug_show_all_locks();
570
571 done:
572 tsk->oom_reaper_list = NULL;
573
574 /*
575 * Hide this mm from OOM killer because it has been either reaped or
576 * somebody can't call up_write(mmap_sem).
577 */
578 set_bit(MMF_OOM_SKIP, &mm->flags);
579
580 /* Drop a reference taken by wake_oom_reaper */
581 put_task_struct(tsk);
582 }
583
584 static int oom_reaper(void *unused)
585 {
586 while (true) {
587 struct task_struct *tsk = NULL;
588
589 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
590 spin_lock(&oom_reaper_lock);
591 if (oom_reaper_list != NULL) {
592 tsk = oom_reaper_list;
593 oom_reaper_list = tsk->oom_reaper_list;
594 }
595 spin_unlock(&oom_reaper_lock);
596
597 if (tsk)
598 oom_reap_task(tsk);
599 }
600
601 return 0;
602 }
603
604 static void wake_oom_reaper(struct task_struct *tsk)
605 {
606 if (!oom_reaper_th)
607 return;
608
609 /* tsk is already queued? */
610 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
611 return;
612
613 get_task_struct(tsk);
614
615 spin_lock(&oom_reaper_lock);
616 tsk->oom_reaper_list = oom_reaper_list;
617 oom_reaper_list = tsk;
618 spin_unlock(&oom_reaper_lock);
619 wake_up(&oom_reaper_wait);
620 }
621
622 static int __init oom_init(void)
623 {
624 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
625 if (IS_ERR(oom_reaper_th)) {
626 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
627 PTR_ERR(oom_reaper_th));
628 oom_reaper_th = NULL;
629 }
630 return 0;
631 }
632 subsys_initcall(oom_init)
633 #else
634 static inline void wake_oom_reaper(struct task_struct *tsk)
635 {
636 }
637 #endif /* CONFIG_MMU */
638
639 /**
640 * mark_oom_victim - mark the given task as OOM victim
641 * @tsk: task to mark
642 *
643 * Has to be called with oom_lock held and never after
644 * oom has been disabled already.
645 *
646 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
647 * under task_lock or operate on the current).
648 */
649 static void mark_oom_victim(struct task_struct *tsk)
650 {
651 struct mm_struct *mm = tsk->mm;
652
653 WARN_ON(oom_killer_disabled);
654 /* OOM killer might race with memcg OOM */
655 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
656 return;
657
658 /* oom_mm is bound to the signal struct life time. */
659 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
660 atomic_inc(&tsk->signal->oom_mm->mm_count);
661
662 /*
663 * Make sure that the task is woken up from uninterruptible sleep
664 * if it is frozen because OOM killer wouldn't be able to free
665 * any memory and livelock. freezing_slow_path will tell the freezer
666 * that TIF_MEMDIE tasks should be ignored.
667 */
668 __thaw_task(tsk);
669 atomic_inc(&oom_victims);
670 }
671
672 /**
673 * exit_oom_victim - note the exit of an OOM victim
674 */
675 void exit_oom_victim(void)
676 {
677 clear_thread_flag(TIF_MEMDIE);
678
679 if (!atomic_dec_return(&oom_victims))
680 wake_up_all(&oom_victims_wait);
681 }
682
683 /**
684 * oom_killer_enable - enable OOM killer
685 */
686 void oom_killer_enable(void)
687 {
688 oom_killer_disabled = false;
689 }
690
691 /**
692 * oom_killer_disable - disable OOM killer
693 * @timeout: maximum timeout to wait for oom victims in jiffies
694 *
695 * Forces all page allocations to fail rather than trigger OOM killer.
696 * Will block and wait until all OOM victims are killed or the given
697 * timeout expires.
698 *
699 * The function cannot be called when there are runnable user tasks because
700 * the userspace would see unexpected allocation failures as a result. Any
701 * new usage of this function should be consulted with MM people.
702 *
703 * Returns true if successful and false if the OOM killer cannot be
704 * disabled.
705 */
706 bool oom_killer_disable(signed long timeout)
707 {
708 signed long ret;
709
710 /*
711 * Make sure to not race with an ongoing OOM killer. Check that the
712 * current is not killed (possibly due to sharing the victim's memory).
713 */
714 if (mutex_lock_killable(&oom_lock))
715 return false;
716 oom_killer_disabled = true;
717 mutex_unlock(&oom_lock);
718
719 ret = wait_event_interruptible_timeout(oom_victims_wait,
720 !atomic_read(&oom_victims), timeout);
721 if (ret <= 0) {
722 oom_killer_enable();
723 return false;
724 }
725
726 return true;
727 }
728
729 static inline bool __task_will_free_mem(struct task_struct *task)
730 {
731 struct signal_struct *sig = task->signal;
732
733 /*
734 * A coredumping process may sleep for an extended period in exit_mm(),
735 * so the oom killer cannot assume that the process will promptly exit
736 * and release memory.
737 */
738 if (sig->flags & SIGNAL_GROUP_COREDUMP)
739 return false;
740
741 if (sig->flags & SIGNAL_GROUP_EXIT)
742 return true;
743
744 if (thread_group_empty(task) && (task->flags & PF_EXITING))
745 return true;
746
747 return false;
748 }
749
750 /*
751 * Checks whether the given task is dying or exiting and likely to
752 * release its address space. This means that all threads and processes
753 * sharing the same mm have to be killed or exiting.
754 * Caller has to make sure that task->mm is stable (hold task_lock or
755 * it operates on the current).
756 */
757 static bool task_will_free_mem(struct task_struct *task)
758 {
759 struct mm_struct *mm = task->mm;
760 struct task_struct *p;
761 bool ret = true;
762
763 /*
764 * Skip tasks without mm because it might have passed its exit_mm and
765 * exit_oom_victim. oom_reaper could have rescued that but do not rely
766 * on that for now. We can consider find_lock_task_mm in future.
767 */
768 if (!mm)
769 return false;
770
771 if (!__task_will_free_mem(task))
772 return false;
773
774 /*
775 * This task has already been drained by the oom reaper so there are
776 * only small chances it will free some more
777 */
778 if (test_bit(MMF_OOM_SKIP, &mm->flags))
779 return false;
780
781 if (atomic_read(&mm->mm_users) <= 1)
782 return true;
783
784 /*
785 * Make sure that all tasks which share the mm with the given tasks
786 * are dying as well to make sure that a) nobody pins its mm and
787 * b) the task is also reapable by the oom reaper.
788 */
789 rcu_read_lock();
790 for_each_process(p) {
791 if (!process_shares_mm(p, mm))
792 continue;
793 if (same_thread_group(task, p))
794 continue;
795 ret = __task_will_free_mem(p);
796 if (!ret)
797 break;
798 }
799 rcu_read_unlock();
800
801 return ret;
802 }
803
804 static void oom_kill_process(struct oom_control *oc, const char *message)
805 {
806 struct task_struct *p = oc->chosen;
807 unsigned int points = oc->chosen_points;
808 struct task_struct *victim = p;
809 struct task_struct *child;
810 struct task_struct *t;
811 struct mm_struct *mm;
812 unsigned int victim_points = 0;
813 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
814 DEFAULT_RATELIMIT_BURST);
815 bool can_oom_reap = true;
816
817 /*
818 * If the task is already exiting, don't alarm the sysadmin or kill
819 * its children or threads, just set TIF_MEMDIE so it can die quickly
820 */
821 task_lock(p);
822 if (task_will_free_mem(p)) {
823 mark_oom_victim(p);
824 wake_oom_reaper(p);
825 task_unlock(p);
826 put_task_struct(p);
827 return;
828 }
829 task_unlock(p);
830
831 if (__ratelimit(&oom_rs))
832 dump_header(oc, p);
833
834 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
835 message, task_pid_nr(p), p->comm, points);
836
837 /*
838 * If any of p's children has a different mm and is eligible for kill,
839 * the one with the highest oom_badness() score is sacrificed for its
840 * parent. This attempts to lose the minimal amount of work done while
841 * still freeing memory.
842 */
843 read_lock(&tasklist_lock);
844 for_each_thread(p, t) {
845 list_for_each_entry(child, &t->children, sibling) {
846 unsigned int child_points;
847
848 if (process_shares_mm(child, p->mm))
849 continue;
850 /*
851 * oom_badness() returns 0 if the thread is unkillable
852 */
853 child_points = oom_badness(child,
854 oc->memcg, oc->nodemask, oc->totalpages);
855 if (child_points > victim_points) {
856 put_task_struct(victim);
857 victim = child;
858 victim_points = child_points;
859 get_task_struct(victim);
860 }
861 }
862 }
863 read_unlock(&tasklist_lock);
864
865 p = find_lock_task_mm(victim);
866 if (!p) {
867 put_task_struct(victim);
868 return;
869 } else if (victim != p) {
870 get_task_struct(p);
871 put_task_struct(victim);
872 victim = p;
873 }
874
875 /* Get a reference to safely compare mm after task_unlock(victim) */
876 mm = victim->mm;
877 atomic_inc(&mm->mm_count);
878 /*
879 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
880 * the OOM victim from depleting the memory reserves from the user
881 * space under its control.
882 */
883 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
884 mark_oom_victim(victim);
885 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
886 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
887 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
888 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
889 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
890 task_unlock(victim);
891
892 /*
893 * Kill all user processes sharing victim->mm in other thread groups, if
894 * any. They don't get access to memory reserves, though, to avoid
895 * depletion of all memory. This prevents mm->mmap_sem livelock when an
896 * oom killed thread cannot exit because it requires the semaphore and
897 * its contended by another thread trying to allocate memory itself.
898 * That thread will now get access to memory reserves since it has a
899 * pending fatal signal.
900 */
901 rcu_read_lock();
902 for_each_process(p) {
903 if (!process_shares_mm(p, mm))
904 continue;
905 if (same_thread_group(p, victim))
906 continue;
907 if (is_global_init(p)) {
908 can_oom_reap = false;
909 set_bit(MMF_OOM_SKIP, &mm->flags);
910 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
911 task_pid_nr(victim), victim->comm,
912 task_pid_nr(p), p->comm);
913 continue;
914 }
915 /*
916 * No use_mm() user needs to read from the userspace so we are
917 * ok to reap it.
918 */
919 if (unlikely(p->flags & PF_KTHREAD))
920 continue;
921 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
922 }
923 rcu_read_unlock();
924
925 if (can_oom_reap)
926 wake_oom_reaper(victim);
927
928 mmdrop(mm);
929 put_task_struct(victim);
930 }
931 #undef K
932
933 /*
934 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
935 */
936 static void check_panic_on_oom(struct oom_control *oc,
937 enum oom_constraint constraint)
938 {
939 if (likely(!sysctl_panic_on_oom))
940 return;
941 if (sysctl_panic_on_oom != 2) {
942 /*
943 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
944 * does not panic for cpuset, mempolicy, or memcg allocation
945 * failures.
946 */
947 if (constraint != CONSTRAINT_NONE)
948 return;
949 }
950 /* Do not panic for oom kills triggered by sysrq */
951 if (is_sysrq_oom(oc))
952 return;
953 dump_header(oc, NULL);
954 panic("Out of memory: %s panic_on_oom is enabled\n",
955 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
956 }
957
958 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
959
960 int register_oom_notifier(struct notifier_block *nb)
961 {
962 return blocking_notifier_chain_register(&oom_notify_list, nb);
963 }
964 EXPORT_SYMBOL_GPL(register_oom_notifier);
965
966 int unregister_oom_notifier(struct notifier_block *nb)
967 {
968 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
969 }
970 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
971
972 /**
973 * out_of_memory - kill the "best" process when we run out of memory
974 * @oc: pointer to struct oom_control
975 *
976 * If we run out of memory, we have the choice between either
977 * killing a random task (bad), letting the system crash (worse)
978 * OR try to be smart about which process to kill. Note that we
979 * don't have to be perfect here, we just have to be good.
980 */
981 bool out_of_memory(struct oom_control *oc)
982 {
983 unsigned long freed = 0;
984 enum oom_constraint constraint = CONSTRAINT_NONE;
985
986 if (oom_killer_disabled)
987 return false;
988
989 if (!is_memcg_oom(oc)) {
990 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
991 if (freed > 0)
992 /* Got some memory back in the last second. */
993 return true;
994 }
995
996 /*
997 * If current has a pending SIGKILL or is exiting, then automatically
998 * select it. The goal is to allow it to allocate so that it may
999 * quickly exit and free its memory.
1000 */
1001 if (task_will_free_mem(current)) {
1002 mark_oom_victim(current);
1003 wake_oom_reaper(current);
1004 return true;
1005 }
1006
1007 /*
1008 * The OOM killer does not compensate for IO-less reclaim.
1009 * pagefault_out_of_memory lost its gfp context so we have to
1010 * make sure exclude 0 mask - all other users should have at least
1011 * ___GFP_DIRECT_RECLAIM to get here.
1012 */
1013 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1014 return true;
1015
1016 /*
1017 * Check if there were limitations on the allocation (only relevant for
1018 * NUMA and memcg) that may require different handling.
1019 */
1020 constraint = constrained_alloc(oc);
1021 if (constraint != CONSTRAINT_MEMORY_POLICY)
1022 oc->nodemask = NULL;
1023 check_panic_on_oom(oc, constraint);
1024
1025 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1026 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1027 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1028 get_task_struct(current);
1029 oc->chosen = current;
1030 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1031 return true;
1032 }
1033
1034 select_bad_process(oc);
1035 /* Found nothing?!?! Either we hang forever, or we panic. */
1036 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1037 dump_header(oc, NULL);
1038 panic("Out of memory and no killable processes...\n");
1039 }
1040 if (oc->chosen && oc->chosen != (void *)-1UL) {
1041 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1042 "Memory cgroup out of memory");
1043 /*
1044 * Give the killed process a good chance to exit before trying
1045 * to allocate memory again.
1046 */
1047 schedule_timeout_killable(1);
1048 }
1049 return !!oc->chosen;
1050 }
1051
1052 /*
1053 * The pagefault handler calls here because it is out of memory, so kill a
1054 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1055 * killing is already in progress so do nothing.
1056 */
1057 void pagefault_out_of_memory(void)
1058 {
1059 struct oom_control oc = {
1060 .zonelist = NULL,
1061 .nodemask = NULL,
1062 .memcg = NULL,
1063 .gfp_mask = 0,
1064 .order = 0,
1065 };
1066
1067 if (mem_cgroup_oom_synchronize(true))
1068 return;
1069
1070 if (!mutex_trylock(&oom_lock))
1071 return;
1072 out_of_memory(&oc);
1073 mutex_unlock(&oom_lock);
1074 }
This page took 0.054641 seconds and 5 git commands to generate.