Fix: rseq: arm branch to failure
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 return true;
611 }
612
613 static void init_debug_guardpage(void)
614 {
615 if (!debug_pagealloc_enabled())
616 return;
617
618 _debug_guardpage_enabled = true;
619 }
620
621 struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624 };
625
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
631 pr_err("Bad debug_guardpage_minorder value\n");
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
642 {
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
649 if (unlikely(!page_ext))
650 return;
651
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
662 {
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return;
671
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
684 #endif
685
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 set_page_private(page, order);
689 __SetPageBuddy(page);
690 }
691
692 static inline void rmv_page_order(struct page *page)
693 {
694 __ClearPageBuddy(page);
695 set_page_private(page, 0);
696 }
697
698 /*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
701 * (a) the buddy is not in a hole &&
702 * (b) the buddy is in the buddy system &&
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
705 *
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
710 *
711 * For recording page's order, we use page_private(page).
712 */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 unsigned int order)
715 {
716 if (!pfn_valid_within(page_to_pfn(buddy)))
717 return 0;
718
719 if (page_is_guard(buddy) && page_order(buddy) == order) {
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
725 return 1;
726 }
727
728 if (PageBuddy(buddy) && page_order(buddy) == order) {
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
739 return 1;
740 }
741 return 0;
742 }
743
744 /*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
760 * So when we are allocating or freeing one, we can derive the state of the
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
763 * If a block is freed, and its buddy is also free, then this
764 * triggers coalescing into a block of larger size.
765 *
766 * -- nyc
767 */
768
769 static inline void __free_one_page(struct page *page,
770 unsigned long pfn,
771 struct zone *zone, unsigned int order,
772 int migratetype)
773 {
774 unsigned long page_idx;
775 unsigned long combined_idx;
776 unsigned long uninitialized_var(buddy_idx);
777 struct page *buddy;
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 if (likely(!is_migrate_isolate(migratetype)))
787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
788
789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
790
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794 continue_merging:
795 while (order < max_order - 1) {
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
798 if (!page_is_buddy(page, buddy, order))
799 goto done_merging;
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
805 clear_page_guard(zone, buddy, order, migratetype);
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
811 combined_idx = buddy_idx & page_idx;
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841 done_merging:
842 set_page_order(page, order);
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 struct page *higher_page, *higher_buddy;
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 higher_buddy = higher_page + (buddy_idx - combined_idx);
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 zone->free_area[order].nr_free++;
868 }
869
870 /*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875 static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877 {
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885 #endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890 }
891
892 static void free_pages_check_bad(struct page *page)
893 {
894 const char *bad_reason;
895 unsigned long bad_flags;
896
897 bad_reason = NULL;
898 bad_flags = 0;
899
900 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(page_ref_count(page) != 0))
905 bad_reason = "nonzero _refcount";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
910 #ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913 #endif
914 bad_page(page, bad_reason, bad_flags);
915 }
916
917 static inline int free_pages_check(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return 0;
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
924 return 1;
925 }
926
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971 out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975 }
976
977 static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
979 {
980 int bad = 0;
981
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996
997 if (compound)
998 ClearPageDoubleMap(page);
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
1009 if (PageMappingFlags(page))
1010 page->mapping = NULL;
1011 if (memcg_kmem_enabled() && PageKmemcg(page))
1012 memcg_kmem_uncharge(page, order);
1013 if (check_free)
1014 bad += free_pages_check(page);
1015 if (bad)
1016 return false;
1017
1018 page_cpupid_reset_last(page);
1019 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 reset_page_owner(page, order);
1021
1022 if (!PageHighMem(page)) {
1023 debug_check_no_locks_freed(page_address(page),
1024 PAGE_SIZE << order);
1025 debug_check_no_obj_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 }
1028 arch_free_page(page, order);
1029 kernel_poison_pages(page, 1 << order, 0);
1030 kernel_map_pages(page, 1 << order, 0);
1031 kasan_free_pages(page, order);
1032
1033 return true;
1034 }
1035
1036 #ifdef CONFIG_DEBUG_VM
1037 static inline bool free_pcp_prepare(struct page *page)
1038 {
1039 return free_pages_prepare(page, 0, true);
1040 }
1041
1042 static inline bool bulkfree_pcp_prepare(struct page *page)
1043 {
1044 return false;
1045 }
1046 #else
1047 static bool free_pcp_prepare(struct page *page)
1048 {
1049 return free_pages_prepare(page, 0, false);
1050 }
1051
1052 static bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 return free_pages_check(page);
1055 }
1056 #endif /* CONFIG_DEBUG_VM */
1057
1058 /*
1059 * Frees a number of pages from the PCP lists
1060 * Assumes all pages on list are in same zone, and of same order.
1061 * count is the number of pages to free.
1062 *
1063 * If the zone was previously in an "all pages pinned" state then look to
1064 * see if this freeing clears that state.
1065 *
1066 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067 * pinned" detection logic.
1068 */
1069 static void free_pcppages_bulk(struct zone *zone, int count,
1070 struct per_cpu_pages *pcp)
1071 {
1072 int migratetype = 0;
1073 int batch_free = 0;
1074 unsigned long nr_scanned;
1075 bool isolated_pageblocks;
1076
1077 spin_lock(&zone->lock);
1078 isolated_pageblocks = has_isolate_pageblock(zone);
1079 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1080 if (nr_scanned)
1081 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1082
1083 while (count) {
1084 struct page *page;
1085 struct list_head *list;
1086
1087 /*
1088 * Remove pages from lists in a round-robin fashion. A
1089 * batch_free count is maintained that is incremented when an
1090 * empty list is encountered. This is so more pages are freed
1091 * off fuller lists instead of spinning excessively around empty
1092 * lists
1093 */
1094 do {
1095 batch_free++;
1096 if (++migratetype == MIGRATE_PCPTYPES)
1097 migratetype = 0;
1098 list = &pcp->lists[migratetype];
1099 } while (list_empty(list));
1100
1101 /* This is the only non-empty list. Free them all. */
1102 if (batch_free == MIGRATE_PCPTYPES)
1103 batch_free = count;
1104
1105 do {
1106 int mt; /* migratetype of the to-be-freed page */
1107
1108 page = list_last_entry(list, struct page, lru);
1109 /* must delete as __free_one_page list manipulates */
1110 list_del(&page->lru);
1111
1112 mt = get_pcppage_migratetype(page);
1113 /* MIGRATE_ISOLATE page should not go to pcplists */
1114 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 /* Pageblock could have been isolated meanwhile */
1116 if (unlikely(isolated_pageblocks))
1117 mt = get_pageblock_migratetype(page);
1118
1119 if (bulkfree_pcp_prepare(page))
1120 continue;
1121
1122 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1123 trace_mm_page_pcpu_drain(page, 0, mt);
1124 } while (--count && --batch_free && !list_empty(list));
1125 }
1126 spin_unlock(&zone->lock);
1127 }
1128
1129 static void free_one_page(struct zone *zone,
1130 struct page *page, unsigned long pfn,
1131 unsigned int order,
1132 int migratetype)
1133 {
1134 unsigned long nr_scanned;
1135 spin_lock(&zone->lock);
1136 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1137 if (nr_scanned)
1138 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1139
1140 if (unlikely(has_isolate_pageblock(zone) ||
1141 is_migrate_isolate(migratetype))) {
1142 migratetype = get_pfnblock_migratetype(page, pfn);
1143 }
1144 __free_one_page(page, pfn, zone, order, migratetype);
1145 spin_unlock(&zone->lock);
1146 }
1147
1148 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 unsigned long zone, int nid)
1150 {
1151 set_page_links(page, zone, nid, pfn);
1152 init_page_count(page);
1153 page_mapcount_reset(page);
1154 page_cpupid_reset_last(page);
1155
1156 INIT_LIST_HEAD(&page->lru);
1157 #ifdef WANT_PAGE_VIRTUAL
1158 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 if (!is_highmem_idx(zone))
1160 set_page_address(page, __va(pfn << PAGE_SHIFT));
1161 #endif
1162 }
1163
1164 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 int nid)
1166 {
1167 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168 }
1169
1170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171 static void init_reserved_page(unsigned long pfn)
1172 {
1173 pg_data_t *pgdat;
1174 int nid, zid;
1175
1176 if (!early_page_uninitialised(pfn))
1177 return;
1178
1179 nid = early_pfn_to_nid(pfn);
1180 pgdat = NODE_DATA(nid);
1181
1182 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 struct zone *zone = &pgdat->node_zones[zid];
1184
1185 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 break;
1187 }
1188 __init_single_pfn(pfn, zid, nid);
1189 }
1190 #else
1191 static inline void init_reserved_page(unsigned long pfn)
1192 {
1193 }
1194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195
1196 /*
1197 * Initialised pages do not have PageReserved set. This function is
1198 * called for each range allocated by the bootmem allocator and
1199 * marks the pages PageReserved. The remaining valid pages are later
1200 * sent to the buddy page allocator.
1201 */
1202 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 {
1204 unsigned long start_pfn = PFN_DOWN(start);
1205 unsigned long end_pfn = PFN_UP(end);
1206
1207 for (; start_pfn < end_pfn; start_pfn++) {
1208 if (pfn_valid(start_pfn)) {
1209 struct page *page = pfn_to_page(start_pfn);
1210
1211 init_reserved_page(start_pfn);
1212
1213 /* Avoid false-positive PageTail() */
1214 INIT_LIST_HEAD(&page->lru);
1215
1216 SetPageReserved(page);
1217 }
1218 }
1219 }
1220
1221 static void __free_pages_ok(struct page *page, unsigned int order)
1222 {
1223 unsigned long flags;
1224 int migratetype;
1225 unsigned long pfn = page_to_pfn(page);
1226
1227 if (!free_pages_prepare(page, order, true))
1228 return;
1229
1230 migratetype = get_pfnblock_migratetype(page, pfn);
1231 local_irq_save(flags);
1232 __count_vm_events(PGFREE, 1 << order);
1233 free_one_page(page_zone(page), page, pfn, order, migratetype);
1234 local_irq_restore(flags);
1235 }
1236
1237 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 {
1239 unsigned int nr_pages = 1 << order;
1240 struct page *p = page;
1241 unsigned int loop;
1242
1243 prefetchw(p);
1244 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 prefetchw(p + 1);
1246 __ClearPageReserved(p);
1247 set_page_count(p, 0);
1248 }
1249 __ClearPageReserved(p);
1250 set_page_count(p, 0);
1251
1252 page_zone(page)->managed_pages += nr_pages;
1253 set_page_refcounted(page);
1254 __free_pages(page, order);
1255 }
1256
1257 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259
1260 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261
1262 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 {
1264 static DEFINE_SPINLOCK(early_pfn_lock);
1265 int nid;
1266
1267 spin_lock(&early_pfn_lock);
1268 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 if (nid < 0)
1270 nid = first_online_node;
1271 spin_unlock(&early_pfn_lock);
1272
1273 return nid;
1274 }
1275 #endif
1276
1277 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 struct mminit_pfnnid_cache *state)
1280 {
1281 int nid;
1282
1283 nid = __early_pfn_to_nid(pfn, state);
1284 if (nid >= 0 && nid != node)
1285 return false;
1286 return true;
1287 }
1288
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291 {
1292 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293 }
1294
1295 #else
1296
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 {
1299 return true;
1300 }
1301 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
1303 {
1304 return true;
1305 }
1306 #endif
1307
1308
1309 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1310 unsigned int order)
1311 {
1312 if (early_page_uninitialised(pfn))
1313 return;
1314 return __free_pages_boot_core(page, order);
1315 }
1316
1317 /*
1318 * Check that the whole (or subset of) a pageblock given by the interval of
1319 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320 * with the migration of free compaction scanner. The scanners then need to
1321 * use only pfn_valid_within() check for arches that allow holes within
1322 * pageblocks.
1323 *
1324 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325 *
1326 * It's possible on some configurations to have a setup like node0 node1 node0
1327 * i.e. it's possible that all pages within a zones range of pages do not
1328 * belong to a single zone. We assume that a border between node0 and node1
1329 * can occur within a single pageblock, but not a node0 node1 node0
1330 * interleaving within a single pageblock. It is therefore sufficient to check
1331 * the first and last page of a pageblock and avoid checking each individual
1332 * page in a pageblock.
1333 */
1334 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 unsigned long end_pfn, struct zone *zone)
1336 {
1337 struct page *start_page;
1338 struct page *end_page;
1339
1340 /* end_pfn is one past the range we are checking */
1341 end_pfn--;
1342
1343 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 return NULL;
1345
1346 start_page = pfn_to_page(start_pfn);
1347
1348 if (page_zone(start_page) != zone)
1349 return NULL;
1350
1351 end_page = pfn_to_page(end_pfn);
1352
1353 /* This gives a shorter code than deriving page_zone(end_page) */
1354 if (page_zone_id(start_page) != page_zone_id(end_page))
1355 return NULL;
1356
1357 return start_page;
1358 }
1359
1360 void set_zone_contiguous(struct zone *zone)
1361 {
1362 unsigned long block_start_pfn = zone->zone_start_pfn;
1363 unsigned long block_end_pfn;
1364
1365 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 for (; block_start_pfn < zone_end_pfn(zone);
1367 block_start_pfn = block_end_pfn,
1368 block_end_pfn += pageblock_nr_pages) {
1369
1370 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371
1372 if (!__pageblock_pfn_to_page(block_start_pfn,
1373 block_end_pfn, zone))
1374 return;
1375 }
1376
1377 /* We confirm that there is no hole */
1378 zone->contiguous = true;
1379 }
1380
1381 void clear_zone_contiguous(struct zone *zone)
1382 {
1383 zone->contiguous = false;
1384 }
1385
1386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1387 static void __init deferred_free_range(struct page *page,
1388 unsigned long pfn, int nr_pages)
1389 {
1390 int i;
1391
1392 if (!page)
1393 return;
1394
1395 /* Free a large naturally-aligned chunk if possible */
1396 if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1399 __free_pages_boot_core(page, MAX_ORDER-1);
1400 return;
1401 }
1402
1403 for (i = 0; i < nr_pages; i++, page++)
1404 __free_pages_boot_core(page, 0);
1405 }
1406
1407 /* Completion tracking for deferred_init_memmap() threads */
1408 static atomic_t pgdat_init_n_undone __initdata;
1409 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410
1411 static inline void __init pgdat_init_report_one_done(void)
1412 {
1413 if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 complete(&pgdat_init_all_done_comp);
1415 }
1416
1417 /* Initialise remaining memory on a node */
1418 static int __init deferred_init_memmap(void *data)
1419 {
1420 pg_data_t *pgdat = data;
1421 int nid = pgdat->node_id;
1422 struct mminit_pfnnid_cache nid_init_state = { };
1423 unsigned long start = jiffies;
1424 unsigned long nr_pages = 0;
1425 unsigned long walk_start, walk_end;
1426 int i, zid;
1427 struct zone *zone;
1428 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1429 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1430
1431 if (first_init_pfn == ULONG_MAX) {
1432 pgdat_init_report_one_done();
1433 return 0;
1434 }
1435
1436 /* Bind memory initialisation thread to a local node if possible */
1437 if (!cpumask_empty(cpumask))
1438 set_cpus_allowed_ptr(current, cpumask);
1439
1440 /* Sanity check boundaries */
1441 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 pgdat->first_deferred_pfn = ULONG_MAX;
1444
1445 /* Only the highest zone is deferred so find it */
1446 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 zone = pgdat->node_zones + zid;
1448 if (first_init_pfn < zone_end_pfn(zone))
1449 break;
1450 }
1451
1452 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 unsigned long pfn, end_pfn;
1454 struct page *page = NULL;
1455 struct page *free_base_page = NULL;
1456 unsigned long free_base_pfn = 0;
1457 int nr_to_free = 0;
1458
1459 end_pfn = min(walk_end, zone_end_pfn(zone));
1460 pfn = first_init_pfn;
1461 if (pfn < walk_start)
1462 pfn = walk_start;
1463 if (pfn < zone->zone_start_pfn)
1464 pfn = zone->zone_start_pfn;
1465
1466 for (; pfn < end_pfn; pfn++) {
1467 if (!pfn_valid_within(pfn))
1468 goto free_range;
1469
1470 /*
1471 * Ensure pfn_valid is checked every
1472 * MAX_ORDER_NR_PAGES for memory holes
1473 */
1474 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 if (!pfn_valid(pfn)) {
1476 page = NULL;
1477 goto free_range;
1478 }
1479 }
1480
1481 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 page = NULL;
1483 goto free_range;
1484 }
1485
1486 /* Minimise pfn page lookups and scheduler checks */
1487 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 page++;
1489 } else {
1490 nr_pages += nr_to_free;
1491 deferred_free_range(free_base_page,
1492 free_base_pfn, nr_to_free);
1493 free_base_page = NULL;
1494 free_base_pfn = nr_to_free = 0;
1495
1496 page = pfn_to_page(pfn);
1497 cond_resched();
1498 }
1499
1500 if (page->flags) {
1501 VM_BUG_ON(page_zone(page) != zone);
1502 goto free_range;
1503 }
1504
1505 __init_single_page(page, pfn, zid, nid);
1506 if (!free_base_page) {
1507 free_base_page = page;
1508 free_base_pfn = pfn;
1509 nr_to_free = 0;
1510 }
1511 nr_to_free++;
1512
1513 /* Where possible, batch up pages for a single free */
1514 continue;
1515 free_range:
1516 /* Free the current block of pages to allocator */
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page, free_base_pfn,
1519 nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1522 }
1523
1524 first_init_pfn = max(end_pfn, first_init_pfn);
1525 }
1526
1527 /* Sanity check that the next zone really is unpopulated */
1528 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529
1530 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1531 jiffies_to_msecs(jiffies - start));
1532
1533 pgdat_init_report_one_done();
1534 return 0;
1535 }
1536 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1537
1538 void __init page_alloc_init_late(void)
1539 {
1540 struct zone *zone;
1541
1542 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1543 int nid;
1544
1545 /* There will be num_node_state(N_MEMORY) threads */
1546 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1547 for_each_node_state(nid, N_MEMORY) {
1548 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 }
1550
1551 /* Block until all are initialised */
1552 wait_for_completion(&pgdat_init_all_done_comp);
1553
1554 /* Reinit limits that are based on free pages after the kernel is up */
1555 files_maxfiles_init();
1556 #endif
1557
1558 for_each_populated_zone(zone)
1559 set_zone_contiguous(zone);
1560 }
1561
1562 #ifdef CONFIG_CMA
1563 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1564 void __init init_cma_reserved_pageblock(struct page *page)
1565 {
1566 unsigned i = pageblock_nr_pages;
1567 struct page *p = page;
1568
1569 do {
1570 __ClearPageReserved(p);
1571 set_page_count(p, 0);
1572 } while (++p, --i);
1573
1574 set_pageblock_migratetype(page, MIGRATE_CMA);
1575
1576 if (pageblock_order >= MAX_ORDER) {
1577 i = pageblock_nr_pages;
1578 p = page;
1579 do {
1580 set_page_refcounted(p);
1581 __free_pages(p, MAX_ORDER - 1);
1582 p += MAX_ORDER_NR_PAGES;
1583 } while (i -= MAX_ORDER_NR_PAGES);
1584 } else {
1585 set_page_refcounted(page);
1586 __free_pages(page, pageblock_order);
1587 }
1588
1589 adjust_managed_page_count(page, pageblock_nr_pages);
1590 }
1591 #endif
1592
1593 /*
1594 * The order of subdivision here is critical for the IO subsystem.
1595 * Please do not alter this order without good reasons and regression
1596 * testing. Specifically, as large blocks of memory are subdivided,
1597 * the order in which smaller blocks are delivered depends on the order
1598 * they're subdivided in this function. This is the primary factor
1599 * influencing the order in which pages are delivered to the IO
1600 * subsystem according to empirical testing, and this is also justified
1601 * by considering the behavior of a buddy system containing a single
1602 * large block of memory acted on by a series of small allocations.
1603 * This behavior is a critical factor in sglist merging's success.
1604 *
1605 * -- nyc
1606 */
1607 static inline void expand(struct zone *zone, struct page *page,
1608 int low, int high, struct free_area *area,
1609 int migratetype)
1610 {
1611 unsigned long size = 1 << high;
1612
1613 while (high > low) {
1614 area--;
1615 high--;
1616 size >>= 1;
1617 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1618
1619 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1620 debug_guardpage_enabled() &&
1621 high < debug_guardpage_minorder()) {
1622 /*
1623 * Mark as guard pages (or page), that will allow to
1624 * merge back to allocator when buddy will be freed.
1625 * Corresponding page table entries will not be touched,
1626 * pages will stay not present in virtual address space
1627 */
1628 set_page_guard(zone, &page[size], high, migratetype);
1629 continue;
1630 }
1631 list_add(&page[size].lru, &area->free_list[migratetype]);
1632 area->nr_free++;
1633 set_page_order(&page[size], high);
1634 }
1635 }
1636
1637 static void check_new_page_bad(struct page *page)
1638 {
1639 const char *bad_reason = NULL;
1640 unsigned long bad_flags = 0;
1641
1642 if (unlikely(atomic_read(&page->_mapcount) != -1))
1643 bad_reason = "nonzero mapcount";
1644 if (unlikely(page->mapping != NULL))
1645 bad_reason = "non-NULL mapping";
1646 if (unlikely(page_ref_count(page) != 0))
1647 bad_reason = "nonzero _count";
1648 if (unlikely(page->flags & __PG_HWPOISON)) {
1649 bad_reason = "HWPoisoned (hardware-corrupted)";
1650 bad_flags = __PG_HWPOISON;
1651 /* Don't complain about hwpoisoned pages */
1652 page_mapcount_reset(page); /* remove PageBuddy */
1653 return;
1654 }
1655 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 }
1659 #ifdef CONFIG_MEMCG
1660 if (unlikely(page->mem_cgroup))
1661 bad_reason = "page still charged to cgroup";
1662 #endif
1663 bad_page(page, bad_reason, bad_flags);
1664 }
1665
1666 /*
1667 * This page is about to be returned from the page allocator
1668 */
1669 static inline int check_new_page(struct page *page)
1670 {
1671 if (likely(page_expected_state(page,
1672 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 return 0;
1674
1675 check_new_page_bad(page);
1676 return 1;
1677 }
1678
1679 static inline bool free_pages_prezeroed(bool poisoned)
1680 {
1681 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 page_poisoning_enabled() && poisoned;
1683 }
1684
1685 #ifdef CONFIG_DEBUG_VM
1686 static bool check_pcp_refill(struct page *page)
1687 {
1688 return false;
1689 }
1690
1691 static bool check_new_pcp(struct page *page)
1692 {
1693 return check_new_page(page);
1694 }
1695 #else
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 return check_new_page(page);
1699 }
1700 static bool check_new_pcp(struct page *page)
1701 {
1702 return false;
1703 }
1704 #endif /* CONFIG_DEBUG_VM */
1705
1706 static bool check_new_pages(struct page *page, unsigned int order)
1707 {
1708 int i;
1709 for (i = 0; i < (1 << order); i++) {
1710 struct page *p = page + i;
1711
1712 if (unlikely(check_new_page(p)))
1713 return true;
1714 }
1715
1716 return false;
1717 }
1718
1719 inline void post_alloc_hook(struct page *page, unsigned int order,
1720 gfp_t gfp_flags)
1721 {
1722 set_page_private(page, 0);
1723 set_page_refcounted(page);
1724
1725 arch_alloc_page(page, order);
1726 kernel_map_pages(page, 1 << order, 1);
1727 kernel_poison_pages(page, 1 << order, 1);
1728 kasan_alloc_pages(page, order);
1729 set_page_owner(page, order, gfp_flags);
1730 }
1731
1732 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1733 unsigned int alloc_flags)
1734 {
1735 int i;
1736 bool poisoned = true;
1737
1738 for (i = 0; i < (1 << order); i++) {
1739 struct page *p = page + i;
1740 if (poisoned)
1741 poisoned &= page_is_poisoned(p);
1742 }
1743
1744 post_alloc_hook(page, order, gfp_flags);
1745
1746 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1747 for (i = 0; i < (1 << order); i++)
1748 clear_highpage(page + i);
1749
1750 if (order && (gfp_flags & __GFP_COMP))
1751 prep_compound_page(page, order);
1752
1753 /*
1754 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1755 * allocate the page. The expectation is that the caller is taking
1756 * steps that will free more memory. The caller should avoid the page
1757 * being used for !PFMEMALLOC purposes.
1758 */
1759 if (alloc_flags & ALLOC_NO_WATERMARKS)
1760 set_page_pfmemalloc(page);
1761 else
1762 clear_page_pfmemalloc(page);
1763 }
1764
1765 /*
1766 * Go through the free lists for the given migratetype and remove
1767 * the smallest available page from the freelists
1768 */
1769 static inline
1770 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1771 int migratetype)
1772 {
1773 unsigned int current_order;
1774 struct free_area *area;
1775 struct page *page;
1776
1777 /* Find a page of the appropriate size in the preferred list */
1778 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1779 area = &(zone->free_area[current_order]);
1780 page = list_first_entry_or_null(&area->free_list[migratetype],
1781 struct page, lru);
1782 if (!page)
1783 continue;
1784 list_del(&page->lru);
1785 rmv_page_order(page);
1786 area->nr_free--;
1787 expand(zone, page, order, current_order, area, migratetype);
1788 set_pcppage_migratetype(page, migratetype);
1789 return page;
1790 }
1791
1792 return NULL;
1793 }
1794
1795
1796 /*
1797 * This array describes the order lists are fallen back to when
1798 * the free lists for the desirable migrate type are depleted
1799 */
1800 static int fallbacks[MIGRATE_TYPES][4] = {
1801 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1802 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1804 #ifdef CONFIG_CMA
1805 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1806 #endif
1807 #ifdef CONFIG_MEMORY_ISOLATION
1808 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 };
1811
1812 #ifdef CONFIG_CMA
1813 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1814 unsigned int order)
1815 {
1816 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1817 }
1818 #else
1819 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 unsigned int order) { return NULL; }
1821 #endif
1822
1823 /*
1824 * Move the free pages in a range to the free lists of the requested type.
1825 * Note that start_page and end_pages are not aligned on a pageblock
1826 * boundary. If alignment is required, use move_freepages_block()
1827 */
1828 int move_freepages(struct zone *zone,
1829 struct page *start_page, struct page *end_page,
1830 int migratetype)
1831 {
1832 struct page *page;
1833 unsigned int order;
1834 int pages_moved = 0;
1835
1836 #ifndef CONFIG_HOLES_IN_ZONE
1837 /*
1838 * page_zone is not safe to call in this context when
1839 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1840 * anyway as we check zone boundaries in move_freepages_block().
1841 * Remove at a later date when no bug reports exist related to
1842 * grouping pages by mobility
1843 */
1844 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1845 #endif
1846
1847 for (page = start_page; page <= end_page;) {
1848 /* Make sure we are not inadvertently changing nodes */
1849 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1850
1851 if (!pfn_valid_within(page_to_pfn(page))) {
1852 page++;
1853 continue;
1854 }
1855
1856 if (!PageBuddy(page)) {
1857 page++;
1858 continue;
1859 }
1860
1861 order = page_order(page);
1862 list_move(&page->lru,
1863 &zone->free_area[order].free_list[migratetype]);
1864 page += 1 << order;
1865 pages_moved += 1 << order;
1866 }
1867
1868 return pages_moved;
1869 }
1870
1871 int move_freepages_block(struct zone *zone, struct page *page,
1872 int migratetype)
1873 {
1874 unsigned long start_pfn, end_pfn;
1875 struct page *start_page, *end_page;
1876
1877 start_pfn = page_to_pfn(page);
1878 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1879 start_page = pfn_to_page(start_pfn);
1880 end_page = start_page + pageblock_nr_pages - 1;
1881 end_pfn = start_pfn + pageblock_nr_pages - 1;
1882
1883 /* Do not cross zone boundaries */
1884 if (!zone_spans_pfn(zone, start_pfn))
1885 start_page = page;
1886 if (!zone_spans_pfn(zone, end_pfn))
1887 return 0;
1888
1889 return move_freepages(zone, start_page, end_page, migratetype);
1890 }
1891
1892 static void change_pageblock_range(struct page *pageblock_page,
1893 int start_order, int migratetype)
1894 {
1895 int nr_pageblocks = 1 << (start_order - pageblock_order);
1896
1897 while (nr_pageblocks--) {
1898 set_pageblock_migratetype(pageblock_page, migratetype);
1899 pageblock_page += pageblock_nr_pages;
1900 }
1901 }
1902
1903 /*
1904 * When we are falling back to another migratetype during allocation, try to
1905 * steal extra free pages from the same pageblocks to satisfy further
1906 * allocations, instead of polluting multiple pageblocks.
1907 *
1908 * If we are stealing a relatively large buddy page, it is likely there will
1909 * be more free pages in the pageblock, so try to steal them all. For
1910 * reclaimable and unmovable allocations, we steal regardless of page size,
1911 * as fragmentation caused by those allocations polluting movable pageblocks
1912 * is worse than movable allocations stealing from unmovable and reclaimable
1913 * pageblocks.
1914 */
1915 static bool can_steal_fallback(unsigned int order, int start_mt)
1916 {
1917 /*
1918 * Leaving this order check is intended, although there is
1919 * relaxed order check in next check. The reason is that
1920 * we can actually steal whole pageblock if this condition met,
1921 * but, below check doesn't guarantee it and that is just heuristic
1922 * so could be changed anytime.
1923 */
1924 if (order >= pageblock_order)
1925 return true;
1926
1927 if (order >= pageblock_order / 2 ||
1928 start_mt == MIGRATE_RECLAIMABLE ||
1929 start_mt == MIGRATE_UNMOVABLE ||
1930 page_group_by_mobility_disabled)
1931 return true;
1932
1933 return false;
1934 }
1935
1936 /*
1937 * This function implements actual steal behaviour. If order is large enough,
1938 * we can steal whole pageblock. If not, we first move freepages in this
1939 * pageblock and check whether half of pages are moved or not. If half of
1940 * pages are moved, we can change migratetype of pageblock and permanently
1941 * use it's pages as requested migratetype in the future.
1942 */
1943 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1944 int start_type)
1945 {
1946 unsigned int current_order = page_order(page);
1947 int pages;
1948
1949 /* Take ownership for orders >= pageblock_order */
1950 if (current_order >= pageblock_order) {
1951 change_pageblock_range(page, current_order, start_type);
1952 return;
1953 }
1954
1955 pages = move_freepages_block(zone, page, start_type);
1956
1957 /* Claim the whole block if over half of it is free */
1958 if (pages >= (1 << (pageblock_order-1)) ||
1959 page_group_by_mobility_disabled)
1960 set_pageblock_migratetype(page, start_type);
1961 }
1962
1963 /*
1964 * Check whether there is a suitable fallback freepage with requested order.
1965 * If only_stealable is true, this function returns fallback_mt only if
1966 * we can steal other freepages all together. This would help to reduce
1967 * fragmentation due to mixed migratetype pages in one pageblock.
1968 */
1969 int find_suitable_fallback(struct free_area *area, unsigned int order,
1970 int migratetype, bool only_stealable, bool *can_steal)
1971 {
1972 int i;
1973 int fallback_mt;
1974
1975 if (area->nr_free == 0)
1976 return -1;
1977
1978 *can_steal = false;
1979 for (i = 0;; i++) {
1980 fallback_mt = fallbacks[migratetype][i];
1981 if (fallback_mt == MIGRATE_TYPES)
1982 break;
1983
1984 if (list_empty(&area->free_list[fallback_mt]))
1985 continue;
1986
1987 if (can_steal_fallback(order, migratetype))
1988 *can_steal = true;
1989
1990 if (!only_stealable)
1991 return fallback_mt;
1992
1993 if (*can_steal)
1994 return fallback_mt;
1995 }
1996
1997 return -1;
1998 }
1999
2000 /*
2001 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2002 * there are no empty page blocks that contain a page with a suitable order
2003 */
2004 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2005 unsigned int alloc_order)
2006 {
2007 int mt;
2008 unsigned long max_managed, flags;
2009
2010 /*
2011 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2012 * Check is race-prone but harmless.
2013 */
2014 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2015 if (zone->nr_reserved_highatomic >= max_managed)
2016 return;
2017
2018 spin_lock_irqsave(&zone->lock, flags);
2019
2020 /* Recheck the nr_reserved_highatomic limit under the lock */
2021 if (zone->nr_reserved_highatomic >= max_managed)
2022 goto out_unlock;
2023
2024 /* Yoink! */
2025 mt = get_pageblock_migratetype(page);
2026 if (mt != MIGRATE_HIGHATOMIC &&
2027 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2028 zone->nr_reserved_highatomic += pageblock_nr_pages;
2029 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2030 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2031 }
2032
2033 out_unlock:
2034 spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036
2037 /*
2038 * Used when an allocation is about to fail under memory pressure. This
2039 * potentially hurts the reliability of high-order allocations when under
2040 * intense memory pressure but failed atomic allocations should be easier
2041 * to recover from than an OOM.
2042 */
2043 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2044 {
2045 struct zonelist *zonelist = ac->zonelist;
2046 unsigned long flags;
2047 struct zoneref *z;
2048 struct zone *zone;
2049 struct page *page;
2050 int order;
2051
2052 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2053 ac->nodemask) {
2054 /* Preserve at least one pageblock */
2055 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2056 continue;
2057
2058 spin_lock_irqsave(&zone->lock, flags);
2059 for (order = 0; order < MAX_ORDER; order++) {
2060 struct free_area *area = &(zone->free_area[order]);
2061
2062 page = list_first_entry_or_null(
2063 &area->free_list[MIGRATE_HIGHATOMIC],
2064 struct page, lru);
2065 if (!page)
2066 continue;
2067
2068 /*
2069 * It should never happen but changes to locking could
2070 * inadvertently allow a per-cpu drain to add pages
2071 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2072 * and watch for underflows.
2073 */
2074 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2075 zone->nr_reserved_highatomic);
2076
2077 /*
2078 * Convert to ac->migratetype and avoid the normal
2079 * pageblock stealing heuristics. Minimally, the caller
2080 * is doing the work and needs the pages. More
2081 * importantly, if the block was always converted to
2082 * MIGRATE_UNMOVABLE or another type then the number
2083 * of pageblocks that cannot be completely freed
2084 * may increase.
2085 */
2086 set_pageblock_migratetype(page, ac->migratetype);
2087 move_freepages_block(zone, page, ac->migratetype);
2088 spin_unlock_irqrestore(&zone->lock, flags);
2089 return;
2090 }
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 }
2093 }
2094
2095 /* Remove an element from the buddy allocator from the fallback list */
2096 static inline struct page *
2097 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2098 {
2099 struct free_area *area;
2100 unsigned int current_order;
2101 struct page *page;
2102 int fallback_mt;
2103 bool can_steal;
2104
2105 /* Find the largest possible block of pages in the other list */
2106 for (current_order = MAX_ORDER-1;
2107 current_order >= order && current_order <= MAX_ORDER-1;
2108 --current_order) {
2109 area = &(zone->free_area[current_order]);
2110 fallback_mt = find_suitable_fallback(area, current_order,
2111 start_migratetype, false, &can_steal);
2112 if (fallback_mt == -1)
2113 continue;
2114
2115 page = list_first_entry(&area->free_list[fallback_mt],
2116 struct page, lru);
2117 if (can_steal)
2118 steal_suitable_fallback(zone, page, start_migratetype);
2119
2120 /* Remove the page from the freelists */
2121 area->nr_free--;
2122 list_del(&page->lru);
2123 rmv_page_order(page);
2124
2125 expand(zone, page, order, current_order, area,
2126 start_migratetype);
2127 /*
2128 * The pcppage_migratetype may differ from pageblock's
2129 * migratetype depending on the decisions in
2130 * find_suitable_fallback(). This is OK as long as it does not
2131 * differ for MIGRATE_CMA pageblocks. Those can be used as
2132 * fallback only via special __rmqueue_cma_fallback() function
2133 */
2134 set_pcppage_migratetype(page, start_migratetype);
2135
2136 trace_mm_page_alloc_extfrag(page, order, current_order,
2137 start_migratetype, fallback_mt);
2138
2139 return page;
2140 }
2141
2142 return NULL;
2143 }
2144
2145 /*
2146 * Do the hard work of removing an element from the buddy allocator.
2147 * Call me with the zone->lock already held.
2148 */
2149 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2150 int migratetype)
2151 {
2152 struct page *page;
2153
2154 page = __rmqueue_smallest(zone, order, migratetype);
2155 if (unlikely(!page)) {
2156 if (migratetype == MIGRATE_MOVABLE)
2157 page = __rmqueue_cma_fallback(zone, order);
2158
2159 if (!page)
2160 page = __rmqueue_fallback(zone, order, migratetype);
2161 }
2162
2163 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2164 return page;
2165 }
2166
2167 /*
2168 * Obtain a specified number of elements from the buddy allocator, all under
2169 * a single hold of the lock, for efficiency. Add them to the supplied list.
2170 * Returns the number of new pages which were placed at *list.
2171 */
2172 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2173 unsigned long count, struct list_head *list,
2174 int migratetype, bool cold)
2175 {
2176 int i;
2177
2178 spin_lock(&zone->lock);
2179 for (i = 0; i < count; ++i) {
2180 struct page *page = __rmqueue(zone, order, migratetype);
2181 if (unlikely(page == NULL))
2182 break;
2183
2184 if (unlikely(check_pcp_refill(page)))
2185 continue;
2186
2187 /*
2188 * Split buddy pages returned by expand() are received here
2189 * in physical page order. The page is added to the callers and
2190 * list and the list head then moves forward. From the callers
2191 * perspective, the linked list is ordered by page number in
2192 * some conditions. This is useful for IO devices that can
2193 * merge IO requests if the physical pages are ordered
2194 * properly.
2195 */
2196 if (likely(!cold))
2197 list_add(&page->lru, list);
2198 else
2199 list_add_tail(&page->lru, list);
2200 list = &page->lru;
2201 if (is_migrate_cma(get_pcppage_migratetype(page)))
2202 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2203 -(1 << order));
2204 }
2205 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 spin_unlock(&zone->lock);
2207 return i;
2208 }
2209
2210 #ifdef CONFIG_NUMA
2211 /*
2212 * Called from the vmstat counter updater to drain pagesets of this
2213 * currently executing processor on remote nodes after they have
2214 * expired.
2215 *
2216 * Note that this function must be called with the thread pinned to
2217 * a single processor.
2218 */
2219 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2220 {
2221 unsigned long flags;
2222 int to_drain, batch;
2223
2224 local_irq_save(flags);
2225 batch = READ_ONCE(pcp->batch);
2226 to_drain = min(pcp->count, batch);
2227 if (to_drain > 0) {
2228 free_pcppages_bulk(zone, to_drain, pcp);
2229 pcp->count -= to_drain;
2230 }
2231 local_irq_restore(flags);
2232 }
2233 #endif
2234
2235 /*
2236 * Drain pcplists of the indicated processor and zone.
2237 *
2238 * The processor must either be the current processor and the
2239 * thread pinned to the current processor or a processor that
2240 * is not online.
2241 */
2242 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2243 {
2244 unsigned long flags;
2245 struct per_cpu_pageset *pset;
2246 struct per_cpu_pages *pcp;
2247
2248 local_irq_save(flags);
2249 pset = per_cpu_ptr(zone->pageset, cpu);
2250
2251 pcp = &pset->pcp;
2252 if (pcp->count) {
2253 free_pcppages_bulk(zone, pcp->count, pcp);
2254 pcp->count = 0;
2255 }
2256 local_irq_restore(flags);
2257 }
2258
2259 /*
2260 * Drain pcplists of all zones on the indicated processor.
2261 *
2262 * The processor must either be the current processor and the
2263 * thread pinned to the current processor or a processor that
2264 * is not online.
2265 */
2266 static void drain_pages(unsigned int cpu)
2267 {
2268 struct zone *zone;
2269
2270 for_each_populated_zone(zone) {
2271 drain_pages_zone(cpu, zone);
2272 }
2273 }
2274
2275 /*
2276 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2277 *
2278 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2279 * the single zone's pages.
2280 */
2281 void drain_local_pages(struct zone *zone)
2282 {
2283 int cpu = smp_processor_id();
2284
2285 if (zone)
2286 drain_pages_zone(cpu, zone);
2287 else
2288 drain_pages(cpu);
2289 }
2290
2291 /*
2292 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2293 *
2294 * When zone parameter is non-NULL, spill just the single zone's pages.
2295 *
2296 * Note that this code is protected against sending an IPI to an offline
2297 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2298 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2299 * nothing keeps CPUs from showing up after we populated the cpumask and
2300 * before the call to on_each_cpu_mask().
2301 */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 int cpu;
2305
2306 /*
2307 * Allocate in the BSS so we wont require allocation in
2308 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2309 */
2310 static cpumask_t cpus_with_pcps;
2311
2312 /*
2313 * We don't care about racing with CPU hotplug event
2314 * as offline notification will cause the notified
2315 * cpu to drain that CPU pcps and on_each_cpu_mask
2316 * disables preemption as part of its processing
2317 */
2318 for_each_online_cpu(cpu) {
2319 struct per_cpu_pageset *pcp;
2320 struct zone *z;
2321 bool has_pcps = false;
2322
2323 if (zone) {
2324 pcp = per_cpu_ptr(zone->pageset, cpu);
2325 if (pcp->pcp.count)
2326 has_pcps = true;
2327 } else {
2328 for_each_populated_zone(z) {
2329 pcp = per_cpu_ptr(z->pageset, cpu);
2330 if (pcp->pcp.count) {
2331 has_pcps = true;
2332 break;
2333 }
2334 }
2335 }
2336
2337 if (has_pcps)
2338 cpumask_set_cpu(cpu, &cpus_with_pcps);
2339 else
2340 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2341 }
2342 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2343 zone, 1);
2344 }
2345
2346 #ifdef CONFIG_HIBERNATION
2347
2348 void mark_free_pages(struct zone *zone)
2349 {
2350 unsigned long pfn, max_zone_pfn;
2351 unsigned long flags;
2352 unsigned int order, t;
2353 struct page *page;
2354
2355 if (zone_is_empty(zone))
2356 return;
2357
2358 spin_lock_irqsave(&zone->lock, flags);
2359
2360 max_zone_pfn = zone_end_pfn(zone);
2361 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2362 if (pfn_valid(pfn)) {
2363 page = pfn_to_page(pfn);
2364
2365 if (page_zone(page) != zone)
2366 continue;
2367
2368 if (!swsusp_page_is_forbidden(page))
2369 swsusp_unset_page_free(page);
2370 }
2371
2372 for_each_migratetype_order(order, t) {
2373 list_for_each_entry(page,
2374 &zone->free_area[order].free_list[t], lru) {
2375 unsigned long i;
2376
2377 pfn = page_to_pfn(page);
2378 for (i = 0; i < (1UL << order); i++)
2379 swsusp_set_page_free(pfn_to_page(pfn + i));
2380 }
2381 }
2382 spin_unlock_irqrestore(&zone->lock, flags);
2383 }
2384 #endif /* CONFIG_PM */
2385
2386 /*
2387 * Free a 0-order page
2388 * cold == true ? free a cold page : free a hot page
2389 */
2390 void free_hot_cold_page(struct page *page, bool cold)
2391 {
2392 struct zone *zone = page_zone(page);
2393 struct per_cpu_pages *pcp;
2394 unsigned long flags;
2395 unsigned long pfn = page_to_pfn(page);
2396 int migratetype;
2397
2398 if (!free_pcp_prepare(page))
2399 return;
2400
2401 migratetype = get_pfnblock_migratetype(page, pfn);
2402 set_pcppage_migratetype(page, migratetype);
2403 local_irq_save(flags);
2404 __count_vm_event(PGFREE);
2405
2406 /*
2407 * We only track unmovable, reclaimable and movable on pcp lists.
2408 * Free ISOLATE pages back to the allocator because they are being
2409 * offlined but treat RESERVE as movable pages so we can get those
2410 * areas back if necessary. Otherwise, we may have to free
2411 * excessively into the page allocator
2412 */
2413 if (migratetype >= MIGRATE_PCPTYPES) {
2414 if (unlikely(is_migrate_isolate(migratetype))) {
2415 free_one_page(zone, page, pfn, 0, migratetype);
2416 goto out;
2417 }
2418 migratetype = MIGRATE_MOVABLE;
2419 }
2420
2421 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2422 if (!cold)
2423 list_add(&page->lru, &pcp->lists[migratetype]);
2424 else
2425 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2426 pcp->count++;
2427 if (pcp->count >= pcp->high) {
2428 unsigned long batch = READ_ONCE(pcp->batch);
2429 free_pcppages_bulk(zone, batch, pcp);
2430 pcp->count -= batch;
2431 }
2432
2433 out:
2434 local_irq_restore(flags);
2435 }
2436
2437 /*
2438 * Free a list of 0-order pages
2439 */
2440 void free_hot_cold_page_list(struct list_head *list, bool cold)
2441 {
2442 struct page *page, *next;
2443
2444 list_for_each_entry_safe(page, next, list, lru) {
2445 trace_mm_page_free_batched(page, cold);
2446 free_hot_cold_page(page, cold);
2447 }
2448 }
2449
2450 /*
2451 * split_page takes a non-compound higher-order page, and splits it into
2452 * n (1<<order) sub-pages: page[0..n]
2453 * Each sub-page must be freed individually.
2454 *
2455 * Note: this is probably too low level an operation for use in drivers.
2456 * Please consult with lkml before using this in your driver.
2457 */
2458 void split_page(struct page *page, unsigned int order)
2459 {
2460 int i;
2461
2462 VM_BUG_ON_PAGE(PageCompound(page), page);
2463 VM_BUG_ON_PAGE(!page_count(page), page);
2464
2465 #ifdef CONFIG_KMEMCHECK
2466 /*
2467 * Split shadow pages too, because free(page[0]) would
2468 * otherwise free the whole shadow.
2469 */
2470 if (kmemcheck_page_is_tracked(page))
2471 split_page(virt_to_page(page[0].shadow), order);
2472 #endif
2473
2474 for (i = 1; i < (1 << order); i++)
2475 set_page_refcounted(page + i);
2476 split_page_owner(page, order);
2477 }
2478 EXPORT_SYMBOL_GPL(split_page);
2479
2480 int __isolate_free_page(struct page *page, unsigned int order)
2481 {
2482 unsigned long watermark;
2483 struct zone *zone;
2484 int mt;
2485
2486 BUG_ON(!PageBuddy(page));
2487
2488 zone = page_zone(page);
2489 mt = get_pageblock_migratetype(page);
2490
2491 if (!is_migrate_isolate(mt)) {
2492 /* Obey watermarks as if the page was being allocated */
2493 watermark = low_wmark_pages(zone) + (1 << order);
2494 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2495 return 0;
2496
2497 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2498 }
2499
2500 /* Remove page from free list */
2501 list_del(&page->lru);
2502 zone->free_area[order].nr_free--;
2503 rmv_page_order(page);
2504
2505 /*
2506 * Set the pageblock if the isolated page is at least half of a
2507 * pageblock
2508 */
2509 if (order >= pageblock_order - 1) {
2510 struct page *endpage = page + (1 << order) - 1;
2511 for (; page < endpage; page += pageblock_nr_pages) {
2512 int mt = get_pageblock_migratetype(page);
2513 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2514 set_pageblock_migratetype(page,
2515 MIGRATE_MOVABLE);
2516 }
2517 }
2518
2519
2520 return 1UL << order;
2521 }
2522
2523 /*
2524 * Update NUMA hit/miss statistics
2525 *
2526 * Must be called with interrupts disabled.
2527 *
2528 * When __GFP_OTHER_NODE is set assume the node of the preferred
2529 * zone is the local node. This is useful for daemons who allocate
2530 * memory on behalf of other processes.
2531 */
2532 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 gfp_t flags)
2534 {
2535 #ifdef CONFIG_NUMA
2536 int local_nid = numa_node_id();
2537 enum zone_stat_item local_stat = NUMA_LOCAL;
2538
2539 if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 local_stat = NUMA_OTHER;
2541 local_nid = preferred_zone->node;
2542 }
2543
2544 if (z->node == local_nid) {
2545 __inc_zone_state(z, NUMA_HIT);
2546 __inc_zone_state(z, local_stat);
2547 } else {
2548 __inc_zone_state(z, NUMA_MISS);
2549 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 }
2551 #endif
2552 }
2553
2554 /*
2555 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2556 */
2557 static inline
2558 struct page *buffered_rmqueue(struct zone *preferred_zone,
2559 struct zone *zone, unsigned int order,
2560 gfp_t gfp_flags, unsigned int alloc_flags,
2561 int migratetype)
2562 {
2563 unsigned long flags;
2564 struct page *page;
2565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2566
2567 if (likely(order == 0)) {
2568 struct per_cpu_pages *pcp;
2569 struct list_head *list;
2570
2571 local_irq_save(flags);
2572 do {
2573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 list = &pcp->lists[migratetype];
2575 if (list_empty(list)) {
2576 pcp->count += rmqueue_bulk(zone, 0,
2577 pcp->batch, list,
2578 migratetype, cold);
2579 if (unlikely(list_empty(list)))
2580 goto failed;
2581 }
2582
2583 if (cold)
2584 page = list_last_entry(list, struct page, lru);
2585 else
2586 page = list_first_entry(list, struct page, lru);
2587
2588 list_del(&page->lru);
2589 pcp->count--;
2590
2591 } while (check_new_pcp(page));
2592 } else {
2593 /*
2594 * We most definitely don't want callers attempting to
2595 * allocate greater than order-1 page units with __GFP_NOFAIL.
2596 */
2597 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2598 spin_lock_irqsave(&zone->lock, flags);
2599
2600 do {
2601 page = NULL;
2602 if (alloc_flags & ALLOC_HARDER) {
2603 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2604 if (page)
2605 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2606 }
2607 if (!page)
2608 page = __rmqueue(zone, order, migratetype);
2609 } while (page && check_new_pages(page, order));
2610 spin_unlock(&zone->lock);
2611 if (!page)
2612 goto failed;
2613 __mod_zone_freepage_state(zone, -(1 << order),
2614 get_pcppage_migratetype(page));
2615 }
2616
2617 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2618 zone_statistics(preferred_zone, zone, gfp_flags);
2619 local_irq_restore(flags);
2620
2621 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2622 return page;
2623
2624 failed:
2625 local_irq_restore(flags);
2626 return NULL;
2627 }
2628
2629 #ifdef CONFIG_FAIL_PAGE_ALLOC
2630
2631 static struct {
2632 struct fault_attr attr;
2633
2634 bool ignore_gfp_highmem;
2635 bool ignore_gfp_reclaim;
2636 u32 min_order;
2637 } fail_page_alloc = {
2638 .attr = FAULT_ATTR_INITIALIZER,
2639 .ignore_gfp_reclaim = true,
2640 .ignore_gfp_highmem = true,
2641 .min_order = 1,
2642 };
2643
2644 static int __init setup_fail_page_alloc(char *str)
2645 {
2646 return setup_fault_attr(&fail_page_alloc.attr, str);
2647 }
2648 __setup("fail_page_alloc=", setup_fail_page_alloc);
2649
2650 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2651 {
2652 if (order < fail_page_alloc.min_order)
2653 return false;
2654 if (gfp_mask & __GFP_NOFAIL)
2655 return false;
2656 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2657 return false;
2658 if (fail_page_alloc.ignore_gfp_reclaim &&
2659 (gfp_mask & __GFP_DIRECT_RECLAIM))
2660 return false;
2661
2662 return should_fail(&fail_page_alloc.attr, 1 << order);
2663 }
2664
2665 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2666
2667 static int __init fail_page_alloc_debugfs(void)
2668 {
2669 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2670 struct dentry *dir;
2671
2672 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2673 &fail_page_alloc.attr);
2674 if (IS_ERR(dir))
2675 return PTR_ERR(dir);
2676
2677 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2678 &fail_page_alloc.ignore_gfp_reclaim))
2679 goto fail;
2680 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2681 &fail_page_alloc.ignore_gfp_highmem))
2682 goto fail;
2683 if (!debugfs_create_u32("min-order", mode, dir,
2684 &fail_page_alloc.min_order))
2685 goto fail;
2686
2687 return 0;
2688 fail:
2689 debugfs_remove_recursive(dir);
2690
2691 return -ENOMEM;
2692 }
2693
2694 late_initcall(fail_page_alloc_debugfs);
2695
2696 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2697
2698 #else /* CONFIG_FAIL_PAGE_ALLOC */
2699
2700 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2701 {
2702 return false;
2703 }
2704
2705 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2706
2707 /*
2708 * Return true if free base pages are above 'mark'. For high-order checks it
2709 * will return true of the order-0 watermark is reached and there is at least
2710 * one free page of a suitable size. Checking now avoids taking the zone lock
2711 * to check in the allocation paths if no pages are free.
2712 */
2713 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2714 int classzone_idx, unsigned int alloc_flags,
2715 long free_pages)
2716 {
2717 long min = mark;
2718 int o;
2719 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2720
2721 /* free_pages may go negative - that's OK */
2722 free_pages -= (1 << order) - 1;
2723
2724 if (alloc_flags & ALLOC_HIGH)
2725 min -= min / 2;
2726
2727 /*
2728 * If the caller does not have rights to ALLOC_HARDER then subtract
2729 * the high-atomic reserves. This will over-estimate the size of the
2730 * atomic reserve but it avoids a search.
2731 */
2732 if (likely(!alloc_harder))
2733 free_pages -= z->nr_reserved_highatomic;
2734 else
2735 min -= min / 4;
2736
2737 #ifdef CONFIG_CMA
2738 /* If allocation can't use CMA areas don't use free CMA pages */
2739 if (!(alloc_flags & ALLOC_CMA))
2740 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2741 #endif
2742
2743 /*
2744 * Check watermarks for an order-0 allocation request. If these
2745 * are not met, then a high-order request also cannot go ahead
2746 * even if a suitable page happened to be free.
2747 */
2748 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2749 return false;
2750
2751 /* If this is an order-0 request then the watermark is fine */
2752 if (!order)
2753 return true;
2754
2755 /* For a high-order request, check at least one suitable page is free */
2756 for (o = order; o < MAX_ORDER; o++) {
2757 struct free_area *area = &z->free_area[o];
2758 int mt;
2759
2760 if (!area->nr_free)
2761 continue;
2762
2763 if (alloc_harder)
2764 return true;
2765
2766 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2767 if (!list_empty(&area->free_list[mt]))
2768 return true;
2769 }
2770
2771 #ifdef CONFIG_CMA
2772 if ((alloc_flags & ALLOC_CMA) &&
2773 !list_empty(&area->free_list[MIGRATE_CMA])) {
2774 return true;
2775 }
2776 #endif
2777 }
2778 return false;
2779 }
2780
2781 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2782 int classzone_idx, unsigned int alloc_flags)
2783 {
2784 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2785 zone_page_state(z, NR_FREE_PAGES));
2786 }
2787
2788 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2789 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2790 {
2791 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2792 long cma_pages = 0;
2793
2794 #ifdef CONFIG_CMA
2795 /* If allocation can't use CMA areas don't use free CMA pages */
2796 if (!(alloc_flags & ALLOC_CMA))
2797 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2798 #endif
2799
2800 /*
2801 * Fast check for order-0 only. If this fails then the reserves
2802 * need to be calculated. There is a corner case where the check
2803 * passes but only the high-order atomic reserve are free. If
2804 * the caller is !atomic then it'll uselessly search the free
2805 * list. That corner case is then slower but it is harmless.
2806 */
2807 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2808 return true;
2809
2810 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2811 free_pages);
2812 }
2813
2814 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2815 unsigned long mark, int classzone_idx)
2816 {
2817 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2818
2819 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2820 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2821
2822 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2823 free_pages);
2824 }
2825
2826 #ifdef CONFIG_NUMA
2827 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2828 {
2829 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2830 RECLAIM_DISTANCE;
2831 }
2832 #else /* CONFIG_NUMA */
2833 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2834 {
2835 return true;
2836 }
2837 #endif /* CONFIG_NUMA */
2838
2839 /*
2840 * get_page_from_freelist goes through the zonelist trying to allocate
2841 * a page.
2842 */
2843 static struct page *
2844 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2845 const struct alloc_context *ac)
2846 {
2847 struct zoneref *z = ac->preferred_zoneref;
2848 struct zone *zone;
2849 struct pglist_data *last_pgdat_dirty_limit = NULL;
2850
2851 /*
2852 * Scan zonelist, looking for a zone with enough free.
2853 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2854 */
2855 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2856 ac->nodemask) {
2857 struct page *page;
2858 unsigned long mark;
2859
2860 if (cpusets_enabled() &&
2861 (alloc_flags & ALLOC_CPUSET) &&
2862 !__cpuset_zone_allowed(zone, gfp_mask))
2863 continue;
2864 /*
2865 * When allocating a page cache page for writing, we
2866 * want to get it from a node that is within its dirty
2867 * limit, such that no single node holds more than its
2868 * proportional share of globally allowed dirty pages.
2869 * The dirty limits take into account the node's
2870 * lowmem reserves and high watermark so that kswapd
2871 * should be able to balance it without having to
2872 * write pages from its LRU list.
2873 *
2874 * XXX: For now, allow allocations to potentially
2875 * exceed the per-node dirty limit in the slowpath
2876 * (spread_dirty_pages unset) before going into reclaim,
2877 * which is important when on a NUMA setup the allowed
2878 * nodes are together not big enough to reach the
2879 * global limit. The proper fix for these situations
2880 * will require awareness of nodes in the
2881 * dirty-throttling and the flusher threads.
2882 */
2883 if (ac->spread_dirty_pages) {
2884 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2885 continue;
2886
2887 if (!node_dirty_ok(zone->zone_pgdat)) {
2888 last_pgdat_dirty_limit = zone->zone_pgdat;
2889 continue;
2890 }
2891 }
2892
2893 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2894 if (!zone_watermark_fast(zone, order, mark,
2895 ac_classzone_idx(ac), alloc_flags)) {
2896 int ret;
2897
2898 /* Checked here to keep the fast path fast */
2899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2900 if (alloc_flags & ALLOC_NO_WATERMARKS)
2901 goto try_this_zone;
2902
2903 if (node_reclaim_mode == 0 ||
2904 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2905 continue;
2906
2907 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2908 switch (ret) {
2909 case NODE_RECLAIM_NOSCAN:
2910 /* did not scan */
2911 continue;
2912 case NODE_RECLAIM_FULL:
2913 /* scanned but unreclaimable */
2914 continue;
2915 default:
2916 /* did we reclaim enough */
2917 if (zone_watermark_ok(zone, order, mark,
2918 ac_classzone_idx(ac), alloc_flags))
2919 goto try_this_zone;
2920
2921 continue;
2922 }
2923 }
2924
2925 try_this_zone:
2926 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2927 gfp_mask, alloc_flags, ac->migratetype);
2928 if (page) {
2929 prep_new_page(page, order, gfp_mask, alloc_flags);
2930
2931 /*
2932 * If this is a high-order atomic allocation then check
2933 * if the pageblock should be reserved for the future
2934 */
2935 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2936 reserve_highatomic_pageblock(page, zone, order);
2937
2938 return page;
2939 }
2940 }
2941
2942 return NULL;
2943 }
2944
2945 /*
2946 * Large machines with many possible nodes should not always dump per-node
2947 * meminfo in irq context.
2948 */
2949 static inline bool should_suppress_show_mem(void)
2950 {
2951 bool ret = false;
2952
2953 #if NODES_SHIFT > 8
2954 ret = in_interrupt();
2955 #endif
2956 return ret;
2957 }
2958
2959 static DEFINE_RATELIMIT_STATE(nopage_rs,
2960 DEFAULT_RATELIMIT_INTERVAL,
2961 DEFAULT_RATELIMIT_BURST);
2962
2963 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2964 {
2965 unsigned int filter = SHOW_MEM_FILTER_NODES;
2966
2967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2968 debug_guardpage_minorder() > 0)
2969 return;
2970
2971 /*
2972 * This documents exceptions given to allocations in certain
2973 * contexts that are allowed to allocate outside current's set
2974 * of allowed nodes.
2975 */
2976 if (!(gfp_mask & __GFP_NOMEMALLOC))
2977 if (test_thread_flag(TIF_MEMDIE) ||
2978 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2979 filter &= ~SHOW_MEM_FILTER_NODES;
2980 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
2982
2983 if (fmt) {
2984 struct va_format vaf;
2985 va_list args;
2986
2987 va_start(args, fmt);
2988
2989 vaf.fmt = fmt;
2990 vaf.va = &args;
2991
2992 pr_warn("%pV", &vaf);
2993
2994 va_end(args);
2995 }
2996
2997 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2998 current->comm, order, gfp_mask, &gfp_mask);
2999 dump_stack();
3000 if (!should_suppress_show_mem())
3001 show_mem(filter);
3002 }
3003
3004 static inline struct page *
3005 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3006 const struct alloc_context *ac, unsigned long *did_some_progress)
3007 {
3008 struct oom_control oc = {
3009 .zonelist = ac->zonelist,
3010 .nodemask = ac->nodemask,
3011 .memcg = NULL,
3012 .gfp_mask = gfp_mask,
3013 .order = order,
3014 };
3015 struct page *page;
3016
3017 *did_some_progress = 0;
3018
3019 /*
3020 * Acquire the oom lock. If that fails, somebody else is
3021 * making progress for us.
3022 */
3023 if (!mutex_trylock(&oom_lock)) {
3024 *did_some_progress = 1;
3025 schedule_timeout_uninterruptible(1);
3026 return NULL;
3027 }
3028
3029 /*
3030 * Go through the zonelist yet one more time, keep very high watermark
3031 * here, this is only to catch a parallel oom killing, we must fail if
3032 * we're still under heavy pressure.
3033 */
3034 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3035 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3036 if (page)
3037 goto out;
3038
3039 if (!(gfp_mask & __GFP_NOFAIL)) {
3040 /* Coredumps can quickly deplete all memory reserves */
3041 if (current->flags & PF_DUMPCORE)
3042 goto out;
3043 /* The OOM killer will not help higher order allocs */
3044 if (order > PAGE_ALLOC_COSTLY_ORDER)
3045 goto out;
3046 /* The OOM killer does not needlessly kill tasks for lowmem */
3047 if (ac->high_zoneidx < ZONE_NORMAL)
3048 goto out;
3049 if (pm_suspended_storage())
3050 goto out;
3051 /*
3052 * XXX: GFP_NOFS allocations should rather fail than rely on
3053 * other request to make a forward progress.
3054 * We are in an unfortunate situation where out_of_memory cannot
3055 * do much for this context but let's try it to at least get
3056 * access to memory reserved if the current task is killed (see
3057 * out_of_memory). Once filesystems are ready to handle allocation
3058 * failures more gracefully we should just bail out here.
3059 */
3060
3061 /* The OOM killer may not free memory on a specific node */
3062 if (gfp_mask & __GFP_THISNODE)
3063 goto out;
3064 }
3065 /* Exhausted what can be done so it's blamo time */
3066 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3067 *did_some_progress = 1;
3068
3069 if (gfp_mask & __GFP_NOFAIL) {
3070 page = get_page_from_freelist(gfp_mask, order,
3071 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3072 /*
3073 * fallback to ignore cpuset restriction if our nodes
3074 * are depleted
3075 */
3076 if (!page)
3077 page = get_page_from_freelist(gfp_mask, order,
3078 ALLOC_NO_WATERMARKS, ac);
3079 }
3080 }
3081 out:
3082 mutex_unlock(&oom_lock);
3083 return page;
3084 }
3085
3086 /*
3087 * Maximum number of compaction retries wit a progress before OOM
3088 * killer is consider as the only way to move forward.
3089 */
3090 #define MAX_COMPACT_RETRIES 16
3091
3092 #ifdef CONFIG_COMPACTION
3093 /* Try memory compaction for high-order allocations before reclaim */
3094 static struct page *
3095 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3096 unsigned int alloc_flags, const struct alloc_context *ac,
3097 enum compact_priority prio, enum compact_result *compact_result)
3098 {
3099 struct page *page;
3100
3101 if (!order)
3102 return NULL;
3103
3104 current->flags |= PF_MEMALLOC;
3105 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3106 prio);
3107 current->flags &= ~PF_MEMALLOC;
3108
3109 if (*compact_result <= COMPACT_INACTIVE)
3110 return NULL;
3111
3112 /*
3113 * At least in one zone compaction wasn't deferred or skipped, so let's
3114 * count a compaction stall
3115 */
3116 count_vm_event(COMPACTSTALL);
3117
3118 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3119
3120 if (page) {
3121 struct zone *zone = page_zone(page);
3122
3123 zone->compact_blockskip_flush = false;
3124 compaction_defer_reset(zone, order, true);
3125 count_vm_event(COMPACTSUCCESS);
3126 return page;
3127 }
3128
3129 /*
3130 * It's bad if compaction run occurs and fails. The most likely reason
3131 * is that pages exist, but not enough to satisfy watermarks.
3132 */
3133 count_vm_event(COMPACTFAIL);
3134
3135 cond_resched();
3136
3137 return NULL;
3138 }
3139
3140 static inline bool
3141 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3142 enum compact_result compact_result,
3143 enum compact_priority *compact_priority,
3144 int compaction_retries)
3145 {
3146 int max_retries = MAX_COMPACT_RETRIES;
3147
3148 if (!order)
3149 return false;
3150
3151 /*
3152 * compaction considers all the zone as desperately out of memory
3153 * so it doesn't really make much sense to retry except when the
3154 * failure could be caused by insufficient priority
3155 */
3156 if (compaction_failed(compact_result)) {
3157 if (*compact_priority > MIN_COMPACT_PRIORITY) {
3158 (*compact_priority)--;
3159 return true;
3160 }
3161 return false;
3162 }
3163
3164 /*
3165 * make sure the compaction wasn't deferred or didn't bail out early
3166 * due to locks contention before we declare that we should give up.
3167 * But do not retry if the given zonelist is not suitable for
3168 * compaction.
3169 */
3170 if (compaction_withdrawn(compact_result))
3171 return compaction_zonelist_suitable(ac, order, alloc_flags);
3172
3173 /*
3174 * !costly requests are much more important than __GFP_REPEAT
3175 * costly ones because they are de facto nofail and invoke OOM
3176 * killer to move on while costly can fail and users are ready
3177 * to cope with that. 1/4 retries is rather arbitrary but we
3178 * would need much more detailed feedback from compaction to
3179 * make a better decision.
3180 */
3181 if (order > PAGE_ALLOC_COSTLY_ORDER)
3182 max_retries /= 4;
3183 if (compaction_retries <= max_retries)
3184 return true;
3185
3186 return false;
3187 }
3188 #else
3189 static inline struct page *
3190 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3191 unsigned int alloc_flags, const struct alloc_context *ac,
3192 enum compact_priority prio, enum compact_result *compact_result)
3193 {
3194 *compact_result = COMPACT_SKIPPED;
3195 return NULL;
3196 }
3197
3198 static inline bool
3199 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3200 enum compact_result compact_result,
3201 enum compact_priority *compact_priority,
3202 int compaction_retries)
3203 {
3204 struct zone *zone;
3205 struct zoneref *z;
3206
3207 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3208 return false;
3209
3210 /*
3211 * There are setups with compaction disabled which would prefer to loop
3212 * inside the allocator rather than hit the oom killer prematurely.
3213 * Let's give them a good hope and keep retrying while the order-0
3214 * watermarks are OK.
3215 */
3216 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3217 ac->nodemask) {
3218 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3219 ac_classzone_idx(ac), alloc_flags))
3220 return true;
3221 }
3222 return false;
3223 }
3224 #endif /* CONFIG_COMPACTION */
3225
3226 /* Perform direct synchronous page reclaim */
3227 static int
3228 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3229 const struct alloc_context *ac)
3230 {
3231 struct reclaim_state reclaim_state;
3232 int progress;
3233
3234 cond_resched();
3235
3236 /* We now go into synchronous reclaim */
3237 cpuset_memory_pressure_bump();
3238 current->flags |= PF_MEMALLOC;
3239 lockdep_set_current_reclaim_state(gfp_mask);
3240 reclaim_state.reclaimed_slab = 0;
3241 current->reclaim_state = &reclaim_state;
3242
3243 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3244 ac->nodemask);
3245
3246 current->reclaim_state = NULL;
3247 lockdep_clear_current_reclaim_state();
3248 current->flags &= ~PF_MEMALLOC;
3249
3250 cond_resched();
3251
3252 return progress;
3253 }
3254
3255 /* The really slow allocator path where we enter direct reclaim */
3256 static inline struct page *
3257 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3258 unsigned int alloc_flags, const struct alloc_context *ac,
3259 unsigned long *did_some_progress)
3260 {
3261 struct page *page = NULL;
3262 bool drained = false;
3263
3264 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3265 if (unlikely(!(*did_some_progress)))
3266 return NULL;
3267
3268 retry:
3269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3270
3271 /*
3272 * If an allocation failed after direct reclaim, it could be because
3273 * pages are pinned on the per-cpu lists or in high alloc reserves.
3274 * Shrink them them and try again
3275 */
3276 if (!page && !drained) {
3277 unreserve_highatomic_pageblock(ac);
3278 drain_all_pages(NULL);
3279 drained = true;
3280 goto retry;
3281 }
3282
3283 return page;
3284 }
3285
3286 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3287 {
3288 struct zoneref *z;
3289 struct zone *zone;
3290 pg_data_t *last_pgdat = NULL;
3291
3292 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3293 ac->high_zoneidx, ac->nodemask) {
3294 if (last_pgdat != zone->zone_pgdat)
3295 wakeup_kswapd(zone, order, ac->high_zoneidx);
3296 last_pgdat = zone->zone_pgdat;
3297 }
3298 }
3299
3300 static inline unsigned int
3301 gfp_to_alloc_flags(gfp_t gfp_mask)
3302 {
3303 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3304
3305 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3306 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3307
3308 /*
3309 * The caller may dip into page reserves a bit more if the caller
3310 * cannot run direct reclaim, or if the caller has realtime scheduling
3311 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3312 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3313 */
3314 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3315
3316 if (gfp_mask & __GFP_ATOMIC) {
3317 /*
3318 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3319 * if it can't schedule.
3320 */
3321 if (!(gfp_mask & __GFP_NOMEMALLOC))
3322 alloc_flags |= ALLOC_HARDER;
3323 /*
3324 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3325 * comment for __cpuset_node_allowed().
3326 */
3327 alloc_flags &= ~ALLOC_CPUSET;
3328 } else if (unlikely(rt_task(current)) && !in_interrupt())
3329 alloc_flags |= ALLOC_HARDER;
3330
3331 #ifdef CONFIG_CMA
3332 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3333 alloc_flags |= ALLOC_CMA;
3334 #endif
3335 return alloc_flags;
3336 }
3337
3338 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3339 {
3340 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3341 return false;
3342
3343 if (gfp_mask & __GFP_MEMALLOC)
3344 return true;
3345 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3346 return true;
3347 if (!in_interrupt() &&
3348 ((current->flags & PF_MEMALLOC) ||
3349 unlikely(test_thread_flag(TIF_MEMDIE))))
3350 return true;
3351
3352 return false;
3353 }
3354
3355 /*
3356 * Maximum number of reclaim retries without any progress before OOM killer
3357 * is consider as the only way to move forward.
3358 */
3359 #define MAX_RECLAIM_RETRIES 16
3360
3361 /*
3362 * Checks whether it makes sense to retry the reclaim to make a forward progress
3363 * for the given allocation request.
3364 * The reclaim feedback represented by did_some_progress (any progress during
3365 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3366 * any progress in a row) is considered as well as the reclaimable pages on the
3367 * applicable zone list (with a backoff mechanism which is a function of
3368 * no_progress_loops).
3369 *
3370 * Returns true if a retry is viable or false to enter the oom path.
3371 */
3372 static inline bool
3373 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3374 struct alloc_context *ac, int alloc_flags,
3375 bool did_some_progress, int no_progress_loops)
3376 {
3377 struct zone *zone;
3378 struct zoneref *z;
3379
3380 /*
3381 * Make sure we converge to OOM if we cannot make any progress
3382 * several times in the row.
3383 */
3384 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3385 return false;
3386
3387 /*
3388 * Keep reclaiming pages while there is a chance this will lead
3389 * somewhere. If none of the target zones can satisfy our allocation
3390 * request even if all reclaimable pages are considered then we are
3391 * screwed and have to go OOM.
3392 */
3393 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3394 ac->nodemask) {
3395 unsigned long available;
3396 unsigned long reclaimable;
3397
3398 available = reclaimable = zone_reclaimable_pages(zone);
3399 available -= DIV_ROUND_UP(no_progress_loops * available,
3400 MAX_RECLAIM_RETRIES);
3401 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3402
3403 /*
3404 * Would the allocation succeed if we reclaimed the whole
3405 * available?
3406 */
3407 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3408 ac_classzone_idx(ac), alloc_flags, available)) {
3409 /*
3410 * If we didn't make any progress and have a lot of
3411 * dirty + writeback pages then we should wait for
3412 * an IO to complete to slow down the reclaim and
3413 * prevent from pre mature OOM
3414 */
3415 if (!did_some_progress) {
3416 unsigned long write_pending;
3417
3418 write_pending = zone_page_state_snapshot(zone,
3419 NR_ZONE_WRITE_PENDING);
3420
3421 if (2 * write_pending > reclaimable) {
3422 congestion_wait(BLK_RW_ASYNC, HZ/10);
3423 return true;
3424 }
3425 }
3426
3427 /*
3428 * Memory allocation/reclaim might be called from a WQ
3429 * context and the current implementation of the WQ
3430 * concurrency control doesn't recognize that
3431 * a particular WQ is congested if the worker thread is
3432 * looping without ever sleeping. Therefore we have to
3433 * do a short sleep here rather than calling
3434 * cond_resched().
3435 */
3436 if (current->flags & PF_WQ_WORKER)
3437 schedule_timeout_uninterruptible(1);
3438 else
3439 cond_resched();
3440
3441 return true;
3442 }
3443 }
3444
3445 return false;
3446 }
3447
3448 static inline struct page *
3449 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3450 struct alloc_context *ac)
3451 {
3452 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3453 struct page *page = NULL;
3454 unsigned int alloc_flags;
3455 unsigned long did_some_progress;
3456 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3457 enum compact_result compact_result;
3458 int compaction_retries = 0;
3459 int no_progress_loops = 0;
3460
3461 /*
3462 * In the slowpath, we sanity check order to avoid ever trying to
3463 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3464 * be using allocators in order of preference for an area that is
3465 * too large.
3466 */
3467 if (order >= MAX_ORDER) {
3468 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3469 return NULL;
3470 }
3471
3472 /*
3473 * We also sanity check to catch abuse of atomic reserves being used by
3474 * callers that are not in atomic context.
3475 */
3476 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3477 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3478 gfp_mask &= ~__GFP_ATOMIC;
3479
3480 /*
3481 * The fast path uses conservative alloc_flags to succeed only until
3482 * kswapd needs to be woken up, and to avoid the cost of setting up
3483 * alloc_flags precisely. So we do that now.
3484 */
3485 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3486
3487 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3488 wake_all_kswapds(order, ac);
3489
3490 /*
3491 * The adjusted alloc_flags might result in immediate success, so try
3492 * that first
3493 */
3494 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3495 if (page)
3496 goto got_pg;
3497
3498 /*
3499 * For costly allocations, try direct compaction first, as it's likely
3500 * that we have enough base pages and don't need to reclaim. Don't try
3501 * that for allocations that are allowed to ignore watermarks, as the
3502 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3503 */
3504 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3505 !gfp_pfmemalloc_allowed(gfp_mask)) {
3506 page = __alloc_pages_direct_compact(gfp_mask, order,
3507 alloc_flags, ac,
3508 INIT_COMPACT_PRIORITY,
3509 &compact_result);
3510 if (page)
3511 goto got_pg;
3512
3513 /*
3514 * Checks for costly allocations with __GFP_NORETRY, which
3515 * includes THP page fault allocations
3516 */
3517 if (gfp_mask & __GFP_NORETRY) {
3518 /*
3519 * If compaction is deferred for high-order allocations,
3520 * it is because sync compaction recently failed. If
3521 * this is the case and the caller requested a THP
3522 * allocation, we do not want to heavily disrupt the
3523 * system, so we fail the allocation instead of entering
3524 * direct reclaim.
3525 */
3526 if (compact_result == COMPACT_DEFERRED)
3527 goto nopage;
3528
3529 /*
3530 * Looks like reclaim/compaction is worth trying, but
3531 * sync compaction could be very expensive, so keep
3532 * using async compaction.
3533 */
3534 compact_priority = INIT_COMPACT_PRIORITY;
3535 }
3536 }
3537
3538 retry:
3539 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3540 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3541 wake_all_kswapds(order, ac);
3542
3543 if (gfp_pfmemalloc_allowed(gfp_mask))
3544 alloc_flags = ALLOC_NO_WATERMARKS;
3545
3546 /*
3547 * Reset the zonelist iterators if memory policies can be ignored.
3548 * These allocations are high priority and system rather than user
3549 * orientated.
3550 */
3551 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3552 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3553 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3554 ac->high_zoneidx, ac->nodemask);
3555 }
3556
3557 /* Attempt with potentially adjusted zonelist and alloc_flags */
3558 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3559 if (page)
3560 goto got_pg;
3561
3562 /* Caller is not willing to reclaim, we can't balance anything */
3563 if (!can_direct_reclaim) {
3564 /*
3565 * All existing users of the __GFP_NOFAIL are blockable, so warn
3566 * of any new users that actually allow this type of allocation
3567 * to fail.
3568 */
3569 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3570 goto nopage;
3571 }
3572
3573 /* Avoid recursion of direct reclaim */
3574 if (current->flags & PF_MEMALLOC) {
3575 /*
3576 * __GFP_NOFAIL request from this context is rather bizarre
3577 * because we cannot reclaim anything and only can loop waiting
3578 * for somebody to do a work for us.
3579 */
3580 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3581 cond_resched();
3582 goto retry;
3583 }
3584 goto nopage;
3585 }
3586
3587 /* Avoid allocations with no watermarks from looping endlessly */
3588 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3589 goto nopage;
3590
3591
3592 /* Try direct reclaim and then allocating */
3593 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3594 &did_some_progress);
3595 if (page)
3596 goto got_pg;
3597
3598 /* Try direct compaction and then allocating */
3599 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3600 compact_priority, &compact_result);
3601 if (page)
3602 goto got_pg;
3603
3604 if (order && compaction_made_progress(compact_result))
3605 compaction_retries++;
3606
3607 /* Do not loop if specifically requested */
3608 if (gfp_mask & __GFP_NORETRY)
3609 goto nopage;
3610
3611 /*
3612 * Do not retry costly high order allocations unless they are
3613 * __GFP_REPEAT
3614 */
3615 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3616 goto nopage;
3617
3618 /*
3619 * Costly allocations might have made a progress but this doesn't mean
3620 * their order will become available due to high fragmentation so
3621 * always increment the no progress counter for them
3622 */
3623 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3624 no_progress_loops = 0;
3625 else
3626 no_progress_loops++;
3627
3628 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3629 did_some_progress > 0, no_progress_loops))
3630 goto retry;
3631
3632 /*
3633 * It doesn't make any sense to retry for the compaction if the order-0
3634 * reclaim is not able to make any progress because the current
3635 * implementation of the compaction depends on the sufficient amount
3636 * of free memory (see __compaction_suitable)
3637 */
3638 if (did_some_progress > 0 &&
3639 should_compact_retry(ac, order, alloc_flags,
3640 compact_result, &compact_priority,
3641 compaction_retries))
3642 goto retry;
3643
3644 /* Reclaim has failed us, start killing things */
3645 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3646 if (page)
3647 goto got_pg;
3648
3649 /* Retry as long as the OOM killer is making progress */
3650 if (did_some_progress) {
3651 no_progress_loops = 0;
3652 goto retry;
3653 }
3654
3655 nopage:
3656 warn_alloc_failed(gfp_mask, order, NULL);
3657 got_pg:
3658 return page;
3659 }
3660
3661 /*
3662 * This is the 'heart' of the zoned buddy allocator.
3663 */
3664 struct page *
3665 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3666 struct zonelist *zonelist, nodemask_t *nodemask)
3667 {
3668 struct page *page;
3669 unsigned int cpuset_mems_cookie;
3670 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3671 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3672 struct alloc_context ac = {
3673 .high_zoneidx = gfp_zone(gfp_mask),
3674 .zonelist = zonelist,
3675 .nodemask = nodemask,
3676 .migratetype = gfpflags_to_migratetype(gfp_mask),
3677 };
3678
3679 if (cpusets_enabled()) {
3680 alloc_mask |= __GFP_HARDWALL;
3681 alloc_flags |= ALLOC_CPUSET;
3682 if (!ac.nodemask)
3683 ac.nodemask = &cpuset_current_mems_allowed;
3684 }
3685
3686 gfp_mask &= gfp_allowed_mask;
3687
3688 lockdep_trace_alloc(gfp_mask);
3689
3690 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3691
3692 if (should_fail_alloc_page(gfp_mask, order))
3693 return NULL;
3694
3695 /*
3696 * Check the zones suitable for the gfp_mask contain at least one
3697 * valid zone. It's possible to have an empty zonelist as a result
3698 * of __GFP_THISNODE and a memoryless node
3699 */
3700 if (unlikely(!zonelist->_zonerefs->zone))
3701 return NULL;
3702
3703 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3704 alloc_flags |= ALLOC_CMA;
3705
3706 retry_cpuset:
3707 cpuset_mems_cookie = read_mems_allowed_begin();
3708
3709 /* Dirty zone balancing only done in the fast path */
3710 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3711
3712 /*
3713 * The preferred zone is used for statistics but crucially it is
3714 * also used as the starting point for the zonelist iterator. It
3715 * may get reset for allocations that ignore memory policies.
3716 */
3717 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3718 ac.high_zoneidx, ac.nodemask);
3719 if (!ac.preferred_zoneref) {
3720 page = NULL;
3721 goto no_zone;
3722 }
3723
3724 /* First allocation attempt */
3725 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3726 if (likely(page))
3727 goto out;
3728
3729 /*
3730 * Runtime PM, block IO and its error handling path can deadlock
3731 * because I/O on the device might not complete.
3732 */
3733 alloc_mask = memalloc_noio_flags(gfp_mask);
3734 ac.spread_dirty_pages = false;
3735
3736 /*
3737 * Restore the original nodemask if it was potentially replaced with
3738 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3739 */
3740 if (cpusets_enabled())
3741 ac.nodemask = nodemask;
3742 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3743
3744 no_zone:
3745 /*
3746 * When updating a task's mems_allowed, it is possible to race with
3747 * parallel threads in such a way that an allocation can fail while
3748 * the mask is being updated. If a page allocation is about to fail,
3749 * check if the cpuset changed during allocation and if so, retry.
3750 */
3751 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3752 alloc_mask = gfp_mask;
3753 goto retry_cpuset;
3754 }
3755
3756 out:
3757 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3758 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3759 __free_pages(page, order);
3760 page = NULL;
3761 }
3762
3763 if (kmemcheck_enabled && page)
3764 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3765
3766 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3767
3768 return page;
3769 }
3770 EXPORT_SYMBOL(__alloc_pages_nodemask);
3771
3772 /*
3773 * Common helper functions.
3774 */
3775 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3776 {
3777 struct page *page;
3778
3779 /*
3780 * __get_free_pages() returns a 32-bit address, which cannot represent
3781 * a highmem page
3782 */
3783 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3784
3785 page = alloc_pages(gfp_mask, order);
3786 if (!page)
3787 return 0;
3788 return (unsigned long) page_address(page);
3789 }
3790 EXPORT_SYMBOL(__get_free_pages);
3791
3792 unsigned long get_zeroed_page(gfp_t gfp_mask)
3793 {
3794 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3795 }
3796 EXPORT_SYMBOL(get_zeroed_page);
3797
3798 void __free_pages(struct page *page, unsigned int order)
3799 {
3800 if (put_page_testzero(page)) {
3801 if (order == 0)
3802 free_hot_cold_page(page, false);
3803 else
3804 __free_pages_ok(page, order);
3805 }
3806 }
3807
3808 EXPORT_SYMBOL(__free_pages);
3809
3810 void free_pages(unsigned long addr, unsigned int order)
3811 {
3812 if (addr != 0) {
3813 VM_BUG_ON(!virt_addr_valid((void *)addr));
3814 __free_pages(virt_to_page((void *)addr), order);
3815 }
3816 }
3817
3818 EXPORT_SYMBOL(free_pages);
3819
3820 /*
3821 * Page Fragment:
3822 * An arbitrary-length arbitrary-offset area of memory which resides
3823 * within a 0 or higher order page. Multiple fragments within that page
3824 * are individually refcounted, in the page's reference counter.
3825 *
3826 * The page_frag functions below provide a simple allocation framework for
3827 * page fragments. This is used by the network stack and network device
3828 * drivers to provide a backing region of memory for use as either an
3829 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3830 */
3831 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3832 gfp_t gfp_mask)
3833 {
3834 struct page *page = NULL;
3835 gfp_t gfp = gfp_mask;
3836
3837 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3838 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3839 __GFP_NOMEMALLOC;
3840 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3841 PAGE_FRAG_CACHE_MAX_ORDER);
3842 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3843 #endif
3844 if (unlikely(!page))
3845 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3846
3847 nc->va = page ? page_address(page) : NULL;
3848
3849 return page;
3850 }
3851
3852 void *__alloc_page_frag(struct page_frag_cache *nc,
3853 unsigned int fragsz, gfp_t gfp_mask)
3854 {
3855 unsigned int size = PAGE_SIZE;
3856 struct page *page;
3857 int offset;
3858
3859 if (unlikely(!nc->va)) {
3860 refill:
3861 page = __page_frag_refill(nc, gfp_mask);
3862 if (!page)
3863 return NULL;
3864
3865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3866 /* if size can vary use size else just use PAGE_SIZE */
3867 size = nc->size;
3868 #endif
3869 /* Even if we own the page, we do not use atomic_set().
3870 * This would break get_page_unless_zero() users.
3871 */
3872 page_ref_add(page, size - 1);
3873
3874 /* reset page count bias and offset to start of new frag */
3875 nc->pfmemalloc = page_is_pfmemalloc(page);
3876 nc->pagecnt_bias = size;
3877 nc->offset = size;
3878 }
3879
3880 offset = nc->offset - fragsz;
3881 if (unlikely(offset < 0)) {
3882 page = virt_to_page(nc->va);
3883
3884 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3885 goto refill;
3886
3887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3888 /* if size can vary use size else just use PAGE_SIZE */
3889 size = nc->size;
3890 #endif
3891 /* OK, page count is 0, we can safely set it */
3892 set_page_count(page, size);
3893
3894 /* reset page count bias and offset to start of new frag */
3895 nc->pagecnt_bias = size;
3896 offset = size - fragsz;
3897 }
3898
3899 nc->pagecnt_bias--;
3900 nc->offset = offset;
3901
3902 return nc->va + offset;
3903 }
3904 EXPORT_SYMBOL(__alloc_page_frag);
3905
3906 /*
3907 * Frees a page fragment allocated out of either a compound or order 0 page.
3908 */
3909 void __free_page_frag(void *addr)
3910 {
3911 struct page *page = virt_to_head_page(addr);
3912
3913 if (unlikely(put_page_testzero(page)))
3914 __free_pages_ok(page, compound_order(page));
3915 }
3916 EXPORT_SYMBOL(__free_page_frag);
3917
3918 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3919 size_t size)
3920 {
3921 if (addr) {
3922 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3923 unsigned long used = addr + PAGE_ALIGN(size);
3924
3925 split_page(virt_to_page((void *)addr), order);
3926 while (used < alloc_end) {
3927 free_page(used);
3928 used += PAGE_SIZE;
3929 }
3930 }
3931 return (void *)addr;
3932 }
3933
3934 /**
3935 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3936 * @size: the number of bytes to allocate
3937 * @gfp_mask: GFP flags for the allocation
3938 *
3939 * This function is similar to alloc_pages(), except that it allocates the
3940 * minimum number of pages to satisfy the request. alloc_pages() can only
3941 * allocate memory in power-of-two pages.
3942 *
3943 * This function is also limited by MAX_ORDER.
3944 *
3945 * Memory allocated by this function must be released by free_pages_exact().
3946 */
3947 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3948 {
3949 unsigned int order = get_order(size);
3950 unsigned long addr;
3951
3952 addr = __get_free_pages(gfp_mask, order);
3953 return make_alloc_exact(addr, order, size);
3954 }
3955 EXPORT_SYMBOL(alloc_pages_exact);
3956
3957 /**
3958 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3959 * pages on a node.
3960 * @nid: the preferred node ID where memory should be allocated
3961 * @size: the number of bytes to allocate
3962 * @gfp_mask: GFP flags for the allocation
3963 *
3964 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3965 * back.
3966 */
3967 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3968 {
3969 unsigned int order = get_order(size);
3970 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3971 if (!p)
3972 return NULL;
3973 return make_alloc_exact((unsigned long)page_address(p), order, size);
3974 }
3975
3976 /**
3977 * free_pages_exact - release memory allocated via alloc_pages_exact()
3978 * @virt: the value returned by alloc_pages_exact.
3979 * @size: size of allocation, same value as passed to alloc_pages_exact().
3980 *
3981 * Release the memory allocated by a previous call to alloc_pages_exact.
3982 */
3983 void free_pages_exact(void *virt, size_t size)
3984 {
3985 unsigned long addr = (unsigned long)virt;
3986 unsigned long end = addr + PAGE_ALIGN(size);
3987
3988 while (addr < end) {
3989 free_page(addr);
3990 addr += PAGE_SIZE;
3991 }
3992 }
3993 EXPORT_SYMBOL(free_pages_exact);
3994
3995 /**
3996 * nr_free_zone_pages - count number of pages beyond high watermark
3997 * @offset: The zone index of the highest zone
3998 *
3999 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4000 * high watermark within all zones at or below a given zone index. For each
4001 * zone, the number of pages is calculated as:
4002 * managed_pages - high_pages
4003 */
4004 static unsigned long nr_free_zone_pages(int offset)
4005 {
4006 struct zoneref *z;
4007 struct zone *zone;
4008
4009 /* Just pick one node, since fallback list is circular */
4010 unsigned long sum = 0;
4011
4012 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4013
4014 for_each_zone_zonelist(zone, z, zonelist, offset) {
4015 unsigned long size = zone->managed_pages;
4016 unsigned long high = high_wmark_pages(zone);
4017 if (size > high)
4018 sum += size - high;
4019 }
4020
4021 return sum;
4022 }
4023
4024 /**
4025 * nr_free_buffer_pages - count number of pages beyond high watermark
4026 *
4027 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4028 * watermark within ZONE_DMA and ZONE_NORMAL.
4029 */
4030 unsigned long nr_free_buffer_pages(void)
4031 {
4032 return nr_free_zone_pages(gfp_zone(GFP_USER));
4033 }
4034 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4035
4036 /**
4037 * nr_free_pagecache_pages - count number of pages beyond high watermark
4038 *
4039 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4040 * high watermark within all zones.
4041 */
4042 unsigned long nr_free_pagecache_pages(void)
4043 {
4044 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4045 }
4046
4047 static inline void show_node(struct zone *zone)
4048 {
4049 if (IS_ENABLED(CONFIG_NUMA))
4050 printk("Node %d ", zone_to_nid(zone));
4051 }
4052
4053 long si_mem_available(void)
4054 {
4055 long available;
4056 unsigned long pagecache;
4057 unsigned long wmark_low = 0;
4058 unsigned long pages[NR_LRU_LISTS];
4059 struct zone *zone;
4060 int lru;
4061
4062 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4063 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4064
4065 for_each_zone(zone)
4066 wmark_low += zone->watermark[WMARK_LOW];
4067
4068 /*
4069 * Estimate the amount of memory available for userspace allocations,
4070 * without causing swapping.
4071 */
4072 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4073
4074 /*
4075 * Not all the page cache can be freed, otherwise the system will
4076 * start swapping. Assume at least half of the page cache, or the
4077 * low watermark worth of cache, needs to stay.
4078 */
4079 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4080 pagecache -= min(pagecache / 2, wmark_low);
4081 available += pagecache;
4082
4083 /*
4084 * Part of the reclaimable slab consists of items that are in use,
4085 * and cannot be freed. Cap this estimate at the low watermark.
4086 */
4087 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4088 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4089
4090 if (available < 0)
4091 available = 0;
4092 return available;
4093 }
4094 EXPORT_SYMBOL_GPL(si_mem_available);
4095
4096 void si_meminfo(struct sysinfo *val)
4097 {
4098 val->totalram = totalram_pages;
4099 val->sharedram = global_node_page_state(NR_SHMEM);
4100 val->freeram = global_page_state(NR_FREE_PAGES);
4101 val->bufferram = nr_blockdev_pages();
4102 val->totalhigh = totalhigh_pages;
4103 val->freehigh = nr_free_highpages();
4104 val->mem_unit = PAGE_SIZE;
4105 }
4106
4107 EXPORT_SYMBOL(si_meminfo);
4108
4109 #ifdef CONFIG_NUMA
4110 void si_meminfo_node(struct sysinfo *val, int nid)
4111 {
4112 int zone_type; /* needs to be signed */
4113 unsigned long managed_pages = 0;
4114 unsigned long managed_highpages = 0;
4115 unsigned long free_highpages = 0;
4116 pg_data_t *pgdat = NODE_DATA(nid);
4117
4118 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4119 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4120 val->totalram = managed_pages;
4121 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4122 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4123 #ifdef CONFIG_HIGHMEM
4124 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4125 struct zone *zone = &pgdat->node_zones[zone_type];
4126
4127 if (is_highmem(zone)) {
4128 managed_highpages += zone->managed_pages;
4129 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4130 }
4131 }
4132 val->totalhigh = managed_highpages;
4133 val->freehigh = free_highpages;
4134 #else
4135 val->totalhigh = managed_highpages;
4136 val->freehigh = free_highpages;
4137 #endif
4138 val->mem_unit = PAGE_SIZE;
4139 }
4140 #endif
4141
4142 /*
4143 * Determine whether the node should be displayed or not, depending on whether
4144 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4145 */
4146 bool skip_free_areas_node(unsigned int flags, int nid)
4147 {
4148 bool ret = false;
4149 unsigned int cpuset_mems_cookie;
4150
4151 if (!(flags & SHOW_MEM_FILTER_NODES))
4152 goto out;
4153
4154 do {
4155 cpuset_mems_cookie = read_mems_allowed_begin();
4156 ret = !node_isset(nid, cpuset_current_mems_allowed);
4157 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4158 out:
4159 return ret;
4160 }
4161
4162 #define K(x) ((x) << (PAGE_SHIFT-10))
4163
4164 static void show_migration_types(unsigned char type)
4165 {
4166 static const char types[MIGRATE_TYPES] = {
4167 [MIGRATE_UNMOVABLE] = 'U',
4168 [MIGRATE_MOVABLE] = 'M',
4169 [MIGRATE_RECLAIMABLE] = 'E',
4170 [MIGRATE_HIGHATOMIC] = 'H',
4171 #ifdef CONFIG_CMA
4172 [MIGRATE_CMA] = 'C',
4173 #endif
4174 #ifdef CONFIG_MEMORY_ISOLATION
4175 [MIGRATE_ISOLATE] = 'I',
4176 #endif
4177 };
4178 char tmp[MIGRATE_TYPES + 1];
4179 char *p = tmp;
4180 int i;
4181
4182 for (i = 0; i < MIGRATE_TYPES; i++) {
4183 if (type & (1 << i))
4184 *p++ = types[i];
4185 }
4186
4187 *p = '\0';
4188 printk("(%s) ", tmp);
4189 }
4190
4191 /*
4192 * Show free area list (used inside shift_scroll-lock stuff)
4193 * We also calculate the percentage fragmentation. We do this by counting the
4194 * memory on each free list with the exception of the first item on the list.
4195 *
4196 * Bits in @filter:
4197 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4198 * cpuset.
4199 */
4200 void show_free_areas(unsigned int filter)
4201 {
4202 unsigned long free_pcp = 0;
4203 int cpu;
4204 struct zone *zone;
4205 pg_data_t *pgdat;
4206
4207 for_each_populated_zone(zone) {
4208 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4209 continue;
4210
4211 for_each_online_cpu(cpu)
4212 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4213 }
4214
4215 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4216 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4217 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4218 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4219 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4220 " free:%lu free_pcp:%lu free_cma:%lu\n",
4221 global_node_page_state(NR_ACTIVE_ANON),
4222 global_node_page_state(NR_INACTIVE_ANON),
4223 global_node_page_state(NR_ISOLATED_ANON),
4224 global_node_page_state(NR_ACTIVE_FILE),
4225 global_node_page_state(NR_INACTIVE_FILE),
4226 global_node_page_state(NR_ISOLATED_FILE),
4227 global_node_page_state(NR_UNEVICTABLE),
4228 global_node_page_state(NR_FILE_DIRTY),
4229 global_node_page_state(NR_WRITEBACK),
4230 global_node_page_state(NR_UNSTABLE_NFS),
4231 global_page_state(NR_SLAB_RECLAIMABLE),
4232 global_page_state(NR_SLAB_UNRECLAIMABLE),
4233 global_node_page_state(NR_FILE_MAPPED),
4234 global_node_page_state(NR_SHMEM),
4235 global_page_state(NR_PAGETABLE),
4236 global_page_state(NR_BOUNCE),
4237 global_page_state(NR_FREE_PAGES),
4238 free_pcp,
4239 global_page_state(NR_FREE_CMA_PAGES));
4240
4241 for_each_online_pgdat(pgdat) {
4242 printk("Node %d"
4243 " active_anon:%lukB"
4244 " inactive_anon:%lukB"
4245 " active_file:%lukB"
4246 " inactive_file:%lukB"
4247 " unevictable:%lukB"
4248 " isolated(anon):%lukB"
4249 " isolated(file):%lukB"
4250 " mapped:%lukB"
4251 " dirty:%lukB"
4252 " writeback:%lukB"
4253 " shmem:%lukB"
4254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4255 " shmem_thp: %lukB"
4256 " shmem_pmdmapped: %lukB"
4257 " anon_thp: %lukB"
4258 #endif
4259 " writeback_tmp:%lukB"
4260 " unstable:%lukB"
4261 " pages_scanned:%lu"
4262 " all_unreclaimable? %s"
4263 "\n",
4264 pgdat->node_id,
4265 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4266 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4267 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4268 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4269 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4270 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4271 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4272 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4273 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4274 K(node_page_state(pgdat, NR_WRITEBACK)),
4275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4276 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4277 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4278 * HPAGE_PMD_NR),
4279 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4280 #endif
4281 K(node_page_state(pgdat, NR_SHMEM)),
4282 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4283 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4284 node_page_state(pgdat, NR_PAGES_SCANNED),
4285 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4286 }
4287
4288 for_each_populated_zone(zone) {
4289 int i;
4290
4291 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4292 continue;
4293
4294 free_pcp = 0;
4295 for_each_online_cpu(cpu)
4296 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4297
4298 show_node(zone);
4299 printk("%s"
4300 " free:%lukB"
4301 " min:%lukB"
4302 " low:%lukB"
4303 " high:%lukB"
4304 " active_anon:%lukB"
4305 " inactive_anon:%lukB"
4306 " active_file:%lukB"
4307 " inactive_file:%lukB"
4308 " unevictable:%lukB"
4309 " writepending:%lukB"
4310 " present:%lukB"
4311 " managed:%lukB"
4312 " mlocked:%lukB"
4313 " slab_reclaimable:%lukB"
4314 " slab_unreclaimable:%lukB"
4315 " kernel_stack:%lukB"
4316 " pagetables:%lukB"
4317 " bounce:%lukB"
4318 " free_pcp:%lukB"
4319 " local_pcp:%ukB"
4320 " free_cma:%lukB"
4321 "\n",
4322 zone->name,
4323 K(zone_page_state(zone, NR_FREE_PAGES)),
4324 K(min_wmark_pages(zone)),
4325 K(low_wmark_pages(zone)),
4326 K(high_wmark_pages(zone)),
4327 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4328 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4329 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4330 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4331 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4332 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4333 K(zone->present_pages),
4334 K(zone->managed_pages),
4335 K(zone_page_state(zone, NR_MLOCK)),
4336 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4337 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4338 zone_page_state(zone, NR_KERNEL_STACK_KB),
4339 K(zone_page_state(zone, NR_PAGETABLE)),
4340 K(zone_page_state(zone, NR_BOUNCE)),
4341 K(free_pcp),
4342 K(this_cpu_read(zone->pageset->pcp.count)),
4343 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4344 printk("lowmem_reserve[]:");
4345 for (i = 0; i < MAX_NR_ZONES; i++)
4346 printk(" %ld", zone->lowmem_reserve[i]);
4347 printk("\n");
4348 }
4349
4350 for_each_populated_zone(zone) {
4351 unsigned int order;
4352 unsigned long nr[MAX_ORDER], flags, total = 0;
4353 unsigned char types[MAX_ORDER];
4354
4355 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4356 continue;
4357 show_node(zone);
4358 printk("%s: ", zone->name);
4359
4360 spin_lock_irqsave(&zone->lock, flags);
4361 for (order = 0; order < MAX_ORDER; order++) {
4362 struct free_area *area = &zone->free_area[order];
4363 int type;
4364
4365 nr[order] = area->nr_free;
4366 total += nr[order] << order;
4367
4368 types[order] = 0;
4369 for (type = 0; type < MIGRATE_TYPES; type++) {
4370 if (!list_empty(&area->free_list[type]))
4371 types[order] |= 1 << type;
4372 }
4373 }
4374 spin_unlock_irqrestore(&zone->lock, flags);
4375 for (order = 0; order < MAX_ORDER; order++) {
4376 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4377 if (nr[order])
4378 show_migration_types(types[order]);
4379 }
4380 printk("= %lukB\n", K(total));
4381 }
4382
4383 hugetlb_show_meminfo();
4384
4385 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4386
4387 show_swap_cache_info();
4388 }
4389
4390 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4391 {
4392 zoneref->zone = zone;
4393 zoneref->zone_idx = zone_idx(zone);
4394 }
4395
4396 /*
4397 * Builds allocation fallback zone lists.
4398 *
4399 * Add all populated zones of a node to the zonelist.
4400 */
4401 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4402 int nr_zones)
4403 {
4404 struct zone *zone;
4405 enum zone_type zone_type = MAX_NR_ZONES;
4406
4407 do {
4408 zone_type--;
4409 zone = pgdat->node_zones + zone_type;
4410 if (populated_zone(zone)) {
4411 zoneref_set_zone(zone,
4412 &zonelist->_zonerefs[nr_zones++]);
4413 check_highest_zone(zone_type);
4414 }
4415 } while (zone_type);
4416
4417 return nr_zones;
4418 }
4419
4420
4421 /*
4422 * zonelist_order:
4423 * 0 = automatic detection of better ordering.
4424 * 1 = order by ([node] distance, -zonetype)
4425 * 2 = order by (-zonetype, [node] distance)
4426 *
4427 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4428 * the same zonelist. So only NUMA can configure this param.
4429 */
4430 #define ZONELIST_ORDER_DEFAULT 0
4431 #define ZONELIST_ORDER_NODE 1
4432 #define ZONELIST_ORDER_ZONE 2
4433
4434 /* zonelist order in the kernel.
4435 * set_zonelist_order() will set this to NODE or ZONE.
4436 */
4437 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4438 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4439
4440
4441 #ifdef CONFIG_NUMA
4442 /* The value user specified ....changed by config */
4443 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4444 /* string for sysctl */
4445 #define NUMA_ZONELIST_ORDER_LEN 16
4446 char numa_zonelist_order[16] = "default";
4447
4448 /*
4449 * interface for configure zonelist ordering.
4450 * command line option "numa_zonelist_order"
4451 * = "[dD]efault - default, automatic configuration.
4452 * = "[nN]ode - order by node locality, then by zone within node
4453 * = "[zZ]one - order by zone, then by locality within zone
4454 */
4455
4456 static int __parse_numa_zonelist_order(char *s)
4457 {
4458 if (*s == 'd' || *s == 'D') {
4459 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4460 } else if (*s == 'n' || *s == 'N') {
4461 user_zonelist_order = ZONELIST_ORDER_NODE;
4462 } else if (*s == 'z' || *s == 'Z') {
4463 user_zonelist_order = ZONELIST_ORDER_ZONE;
4464 } else {
4465 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4466 return -EINVAL;
4467 }
4468 return 0;
4469 }
4470
4471 static __init int setup_numa_zonelist_order(char *s)
4472 {
4473 int ret;
4474
4475 if (!s)
4476 return 0;
4477
4478 ret = __parse_numa_zonelist_order(s);
4479 if (ret == 0)
4480 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4481
4482 return ret;
4483 }
4484 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4485
4486 /*
4487 * sysctl handler for numa_zonelist_order
4488 */
4489 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4490 void __user *buffer, size_t *length,
4491 loff_t *ppos)
4492 {
4493 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4494 int ret;
4495 static DEFINE_MUTEX(zl_order_mutex);
4496
4497 mutex_lock(&zl_order_mutex);
4498 if (write) {
4499 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4500 ret = -EINVAL;
4501 goto out;
4502 }
4503 strcpy(saved_string, (char *)table->data);
4504 }
4505 ret = proc_dostring(table, write, buffer, length, ppos);
4506 if (ret)
4507 goto out;
4508 if (write) {
4509 int oldval = user_zonelist_order;
4510
4511 ret = __parse_numa_zonelist_order((char *)table->data);
4512 if (ret) {
4513 /*
4514 * bogus value. restore saved string
4515 */
4516 strncpy((char *)table->data, saved_string,
4517 NUMA_ZONELIST_ORDER_LEN);
4518 user_zonelist_order = oldval;
4519 } else if (oldval != user_zonelist_order) {
4520 mutex_lock(&zonelists_mutex);
4521 build_all_zonelists(NULL, NULL);
4522 mutex_unlock(&zonelists_mutex);
4523 }
4524 }
4525 out:
4526 mutex_unlock(&zl_order_mutex);
4527 return ret;
4528 }
4529
4530
4531 #define MAX_NODE_LOAD (nr_online_nodes)
4532 static int node_load[MAX_NUMNODES];
4533
4534 /**
4535 * find_next_best_node - find the next node that should appear in a given node's fallback list
4536 * @node: node whose fallback list we're appending
4537 * @used_node_mask: nodemask_t of already used nodes
4538 *
4539 * We use a number of factors to determine which is the next node that should
4540 * appear on a given node's fallback list. The node should not have appeared
4541 * already in @node's fallback list, and it should be the next closest node
4542 * according to the distance array (which contains arbitrary distance values
4543 * from each node to each node in the system), and should also prefer nodes
4544 * with no CPUs, since presumably they'll have very little allocation pressure
4545 * on them otherwise.
4546 * It returns -1 if no node is found.
4547 */
4548 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4549 {
4550 int n, val;
4551 int min_val = INT_MAX;
4552 int best_node = NUMA_NO_NODE;
4553 const struct cpumask *tmp = cpumask_of_node(0);
4554
4555 /* Use the local node if we haven't already */
4556 if (!node_isset(node, *used_node_mask)) {
4557 node_set(node, *used_node_mask);
4558 return node;
4559 }
4560
4561 for_each_node_state(n, N_MEMORY) {
4562
4563 /* Don't want a node to appear more than once */
4564 if (node_isset(n, *used_node_mask))
4565 continue;
4566
4567 /* Use the distance array to find the distance */
4568 val = node_distance(node, n);
4569
4570 /* Penalize nodes under us ("prefer the next node") */
4571 val += (n < node);
4572
4573 /* Give preference to headless and unused nodes */
4574 tmp = cpumask_of_node(n);
4575 if (!cpumask_empty(tmp))
4576 val += PENALTY_FOR_NODE_WITH_CPUS;
4577
4578 /* Slight preference for less loaded node */
4579 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4580 val += node_load[n];
4581
4582 if (val < min_val) {
4583 min_val = val;
4584 best_node = n;
4585 }
4586 }
4587
4588 if (best_node >= 0)
4589 node_set(best_node, *used_node_mask);
4590
4591 return best_node;
4592 }
4593
4594
4595 /*
4596 * Build zonelists ordered by node and zones within node.
4597 * This results in maximum locality--normal zone overflows into local
4598 * DMA zone, if any--but risks exhausting DMA zone.
4599 */
4600 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4601 {
4602 int j;
4603 struct zonelist *zonelist;
4604
4605 zonelist = &pgdat->node_zonelists[0];
4606 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4607 ;
4608 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4609 zonelist->_zonerefs[j].zone = NULL;
4610 zonelist->_zonerefs[j].zone_idx = 0;
4611 }
4612
4613 /*
4614 * Build gfp_thisnode zonelists
4615 */
4616 static void build_thisnode_zonelists(pg_data_t *pgdat)
4617 {
4618 int j;
4619 struct zonelist *zonelist;
4620
4621 zonelist = &pgdat->node_zonelists[1];
4622 j = build_zonelists_node(pgdat, zonelist, 0);
4623 zonelist->_zonerefs[j].zone = NULL;
4624 zonelist->_zonerefs[j].zone_idx = 0;
4625 }
4626
4627 /*
4628 * Build zonelists ordered by zone and nodes within zones.
4629 * This results in conserving DMA zone[s] until all Normal memory is
4630 * exhausted, but results in overflowing to remote node while memory
4631 * may still exist in local DMA zone.
4632 */
4633 static int node_order[MAX_NUMNODES];
4634
4635 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4636 {
4637 int pos, j, node;
4638 int zone_type; /* needs to be signed */
4639 struct zone *z;
4640 struct zonelist *zonelist;
4641
4642 zonelist = &pgdat->node_zonelists[0];
4643 pos = 0;
4644 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4645 for (j = 0; j < nr_nodes; j++) {
4646 node = node_order[j];
4647 z = &NODE_DATA(node)->node_zones[zone_type];
4648 if (populated_zone(z)) {
4649 zoneref_set_zone(z,
4650 &zonelist->_zonerefs[pos++]);
4651 check_highest_zone(zone_type);
4652 }
4653 }
4654 }
4655 zonelist->_zonerefs[pos].zone = NULL;
4656 zonelist->_zonerefs[pos].zone_idx = 0;
4657 }
4658
4659 #if defined(CONFIG_64BIT)
4660 /*
4661 * Devices that require DMA32/DMA are relatively rare and do not justify a
4662 * penalty to every machine in case the specialised case applies. Default
4663 * to Node-ordering on 64-bit NUMA machines
4664 */
4665 static int default_zonelist_order(void)
4666 {
4667 return ZONELIST_ORDER_NODE;
4668 }
4669 #else
4670 /*
4671 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4672 * by the kernel. If processes running on node 0 deplete the low memory zone
4673 * then reclaim will occur more frequency increasing stalls and potentially
4674 * be easier to OOM if a large percentage of the zone is under writeback or
4675 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4676 * Hence, default to zone ordering on 32-bit.
4677 */
4678 static int default_zonelist_order(void)
4679 {
4680 return ZONELIST_ORDER_ZONE;
4681 }
4682 #endif /* CONFIG_64BIT */
4683
4684 static void set_zonelist_order(void)
4685 {
4686 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4687 current_zonelist_order = default_zonelist_order();
4688 else
4689 current_zonelist_order = user_zonelist_order;
4690 }
4691
4692 static void build_zonelists(pg_data_t *pgdat)
4693 {
4694 int i, node, load;
4695 nodemask_t used_mask;
4696 int local_node, prev_node;
4697 struct zonelist *zonelist;
4698 unsigned int order = current_zonelist_order;
4699
4700 /* initialize zonelists */
4701 for (i = 0; i < MAX_ZONELISTS; i++) {
4702 zonelist = pgdat->node_zonelists + i;
4703 zonelist->_zonerefs[0].zone = NULL;
4704 zonelist->_zonerefs[0].zone_idx = 0;
4705 }
4706
4707 /* NUMA-aware ordering of nodes */
4708 local_node = pgdat->node_id;
4709 load = nr_online_nodes;
4710 prev_node = local_node;
4711 nodes_clear(used_mask);
4712
4713 memset(node_order, 0, sizeof(node_order));
4714 i = 0;
4715
4716 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4717 /*
4718 * We don't want to pressure a particular node.
4719 * So adding penalty to the first node in same
4720 * distance group to make it round-robin.
4721 */
4722 if (node_distance(local_node, node) !=
4723 node_distance(local_node, prev_node))
4724 node_load[node] = load;
4725
4726 prev_node = node;
4727 load--;
4728 if (order == ZONELIST_ORDER_NODE)
4729 build_zonelists_in_node_order(pgdat, node);
4730 else
4731 node_order[i++] = node; /* remember order */
4732 }
4733
4734 if (order == ZONELIST_ORDER_ZONE) {
4735 /* calculate node order -- i.e., DMA last! */
4736 build_zonelists_in_zone_order(pgdat, i);
4737 }
4738
4739 build_thisnode_zonelists(pgdat);
4740 }
4741
4742 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4743 /*
4744 * Return node id of node used for "local" allocations.
4745 * I.e., first node id of first zone in arg node's generic zonelist.
4746 * Used for initializing percpu 'numa_mem', which is used primarily
4747 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4748 */
4749 int local_memory_node(int node)
4750 {
4751 struct zoneref *z;
4752
4753 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4754 gfp_zone(GFP_KERNEL),
4755 NULL);
4756 return z->zone->node;
4757 }
4758 #endif
4759
4760 static void setup_min_unmapped_ratio(void);
4761 static void setup_min_slab_ratio(void);
4762 #else /* CONFIG_NUMA */
4763
4764 static void set_zonelist_order(void)
4765 {
4766 current_zonelist_order = ZONELIST_ORDER_ZONE;
4767 }
4768
4769 static void build_zonelists(pg_data_t *pgdat)
4770 {
4771 int node, local_node;
4772 enum zone_type j;
4773 struct zonelist *zonelist;
4774
4775 local_node = pgdat->node_id;
4776
4777 zonelist = &pgdat->node_zonelists[0];
4778 j = build_zonelists_node(pgdat, zonelist, 0);
4779
4780 /*
4781 * Now we build the zonelist so that it contains the zones
4782 * of all the other nodes.
4783 * We don't want to pressure a particular node, so when
4784 * building the zones for node N, we make sure that the
4785 * zones coming right after the local ones are those from
4786 * node N+1 (modulo N)
4787 */
4788 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4789 if (!node_online(node))
4790 continue;
4791 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4792 }
4793 for (node = 0; node < local_node; node++) {
4794 if (!node_online(node))
4795 continue;
4796 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4797 }
4798
4799 zonelist->_zonerefs[j].zone = NULL;
4800 zonelist->_zonerefs[j].zone_idx = 0;
4801 }
4802
4803 #endif /* CONFIG_NUMA */
4804
4805 /*
4806 * Boot pageset table. One per cpu which is going to be used for all
4807 * zones and all nodes. The parameters will be set in such a way
4808 * that an item put on a list will immediately be handed over to
4809 * the buddy list. This is safe since pageset manipulation is done
4810 * with interrupts disabled.
4811 *
4812 * The boot_pagesets must be kept even after bootup is complete for
4813 * unused processors and/or zones. They do play a role for bootstrapping
4814 * hotplugged processors.
4815 *
4816 * zoneinfo_show() and maybe other functions do
4817 * not check if the processor is online before following the pageset pointer.
4818 * Other parts of the kernel may not check if the zone is available.
4819 */
4820 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4821 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4822 static void setup_zone_pageset(struct zone *zone);
4823
4824 /*
4825 * Global mutex to protect against size modification of zonelists
4826 * as well as to serialize pageset setup for the new populated zone.
4827 */
4828 DEFINE_MUTEX(zonelists_mutex);
4829
4830 /* return values int ....just for stop_machine() */
4831 static int __build_all_zonelists(void *data)
4832 {
4833 int nid;
4834 int cpu;
4835 pg_data_t *self = data;
4836
4837 #ifdef CONFIG_NUMA
4838 memset(node_load, 0, sizeof(node_load));
4839 #endif
4840
4841 if (self && !node_online(self->node_id)) {
4842 build_zonelists(self);
4843 }
4844
4845 for_each_online_node(nid) {
4846 pg_data_t *pgdat = NODE_DATA(nid);
4847
4848 build_zonelists(pgdat);
4849 }
4850
4851 /*
4852 * Initialize the boot_pagesets that are going to be used
4853 * for bootstrapping processors. The real pagesets for
4854 * each zone will be allocated later when the per cpu
4855 * allocator is available.
4856 *
4857 * boot_pagesets are used also for bootstrapping offline
4858 * cpus if the system is already booted because the pagesets
4859 * are needed to initialize allocators on a specific cpu too.
4860 * F.e. the percpu allocator needs the page allocator which
4861 * needs the percpu allocator in order to allocate its pagesets
4862 * (a chicken-egg dilemma).
4863 */
4864 for_each_possible_cpu(cpu) {
4865 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4866
4867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4868 /*
4869 * We now know the "local memory node" for each node--
4870 * i.e., the node of the first zone in the generic zonelist.
4871 * Set up numa_mem percpu variable for on-line cpus. During
4872 * boot, only the boot cpu should be on-line; we'll init the
4873 * secondary cpus' numa_mem as they come on-line. During
4874 * node/memory hotplug, we'll fixup all on-line cpus.
4875 */
4876 if (cpu_online(cpu))
4877 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4878 #endif
4879 }
4880
4881 return 0;
4882 }
4883
4884 static noinline void __init
4885 build_all_zonelists_init(void)
4886 {
4887 __build_all_zonelists(NULL);
4888 mminit_verify_zonelist();
4889 cpuset_init_current_mems_allowed();
4890 }
4891
4892 /*
4893 * Called with zonelists_mutex held always
4894 * unless system_state == SYSTEM_BOOTING.
4895 *
4896 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4897 * [we're only called with non-NULL zone through __meminit paths] and
4898 * (2) call of __init annotated helper build_all_zonelists_init
4899 * [protected by SYSTEM_BOOTING].
4900 */
4901 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4902 {
4903 set_zonelist_order();
4904
4905 if (system_state == SYSTEM_BOOTING) {
4906 build_all_zonelists_init();
4907 } else {
4908 #ifdef CONFIG_MEMORY_HOTPLUG
4909 if (zone)
4910 setup_zone_pageset(zone);
4911 #endif
4912 /* we have to stop all cpus to guarantee there is no user
4913 of zonelist */
4914 stop_machine(__build_all_zonelists, pgdat, NULL);
4915 /* cpuset refresh routine should be here */
4916 }
4917 vm_total_pages = nr_free_pagecache_pages();
4918 /*
4919 * Disable grouping by mobility if the number of pages in the
4920 * system is too low to allow the mechanism to work. It would be
4921 * more accurate, but expensive to check per-zone. This check is
4922 * made on memory-hotadd so a system can start with mobility
4923 * disabled and enable it later
4924 */
4925 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4926 page_group_by_mobility_disabled = 1;
4927 else
4928 page_group_by_mobility_disabled = 0;
4929
4930 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4931 nr_online_nodes,
4932 zonelist_order_name[current_zonelist_order],
4933 page_group_by_mobility_disabled ? "off" : "on",
4934 vm_total_pages);
4935 #ifdef CONFIG_NUMA
4936 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4937 #endif
4938 }
4939
4940 /*
4941 * Helper functions to size the waitqueue hash table.
4942 * Essentially these want to choose hash table sizes sufficiently
4943 * large so that collisions trying to wait on pages are rare.
4944 * But in fact, the number of active page waitqueues on typical
4945 * systems is ridiculously low, less than 200. So this is even
4946 * conservative, even though it seems large.
4947 *
4948 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4949 * waitqueues, i.e. the size of the waitq table given the number of pages.
4950 */
4951 #define PAGES_PER_WAITQUEUE 256
4952
4953 #ifndef CONFIG_MEMORY_HOTPLUG
4954 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4955 {
4956 unsigned long size = 1;
4957
4958 pages /= PAGES_PER_WAITQUEUE;
4959
4960 while (size < pages)
4961 size <<= 1;
4962
4963 /*
4964 * Once we have dozens or even hundreds of threads sleeping
4965 * on IO we've got bigger problems than wait queue collision.
4966 * Limit the size of the wait table to a reasonable size.
4967 */
4968 size = min(size, 4096UL);
4969
4970 return max(size, 4UL);
4971 }
4972 #else
4973 /*
4974 * A zone's size might be changed by hot-add, so it is not possible to determine
4975 * a suitable size for its wait_table. So we use the maximum size now.
4976 *
4977 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4978 *
4979 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4980 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4981 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4982 *
4983 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4984 * or more by the traditional way. (See above). It equals:
4985 *
4986 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4987 * ia64(16K page size) : = ( 8G + 4M)byte.
4988 * powerpc (64K page size) : = (32G +16M)byte.
4989 */
4990 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4991 {
4992 return 4096UL;
4993 }
4994 #endif
4995
4996 /*
4997 * This is an integer logarithm so that shifts can be used later
4998 * to extract the more random high bits from the multiplicative
4999 * hash function before the remainder is taken.
5000 */
5001 static inline unsigned long wait_table_bits(unsigned long size)
5002 {
5003 return ffz(~size);
5004 }
5005
5006 /*
5007 * Initially all pages are reserved - free ones are freed
5008 * up by free_all_bootmem() once the early boot process is
5009 * done. Non-atomic initialization, single-pass.
5010 */
5011 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5012 unsigned long start_pfn, enum memmap_context context)
5013 {
5014 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5015 unsigned long end_pfn = start_pfn + size;
5016 pg_data_t *pgdat = NODE_DATA(nid);
5017 unsigned long pfn;
5018 unsigned long nr_initialised = 0;
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020 struct memblock_region *r = NULL, *tmp;
5021 #endif
5022
5023 if (highest_memmap_pfn < end_pfn - 1)
5024 highest_memmap_pfn = end_pfn - 1;
5025
5026 /*
5027 * Honor reservation requested by the driver for this ZONE_DEVICE
5028 * memory
5029 */
5030 if (altmap && start_pfn == altmap->base_pfn)
5031 start_pfn += altmap->reserve;
5032
5033 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5034 /*
5035 * There can be holes in boot-time mem_map[]s handed to this
5036 * function. They do not exist on hotplugged memory.
5037 */
5038 if (context != MEMMAP_EARLY)
5039 goto not_early;
5040
5041 if (!early_pfn_valid(pfn))
5042 continue;
5043 if (!early_pfn_in_nid(pfn, nid))
5044 continue;
5045 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5046 break;
5047
5048 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5049 /*
5050 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5051 * from zone_movable_pfn[nid] to end of each node should be
5052 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5053 */
5054 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5055 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5056 continue;
5057
5058 /*
5059 * Check given memblock attribute by firmware which can affect
5060 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5061 * mirrored, it's an overlapped memmap init. skip it.
5062 */
5063 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5064 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5065 for_each_memblock(memory, tmp)
5066 if (pfn < memblock_region_memory_end_pfn(tmp))
5067 break;
5068 r = tmp;
5069 }
5070 if (pfn >= memblock_region_memory_base_pfn(r) &&
5071 memblock_is_mirror(r)) {
5072 /* already initialized as NORMAL */
5073 pfn = memblock_region_memory_end_pfn(r);
5074 continue;
5075 }
5076 }
5077 #endif
5078
5079 not_early:
5080 /*
5081 * Mark the block movable so that blocks are reserved for
5082 * movable at startup. This will force kernel allocations
5083 * to reserve their blocks rather than leaking throughout
5084 * the address space during boot when many long-lived
5085 * kernel allocations are made.
5086 *
5087 * bitmap is created for zone's valid pfn range. but memmap
5088 * can be created for invalid pages (for alignment)
5089 * check here not to call set_pageblock_migratetype() against
5090 * pfn out of zone.
5091 */
5092 if (!(pfn & (pageblock_nr_pages - 1))) {
5093 struct page *page = pfn_to_page(pfn);
5094
5095 __init_single_page(page, pfn, zone, nid);
5096 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5097 } else {
5098 __init_single_pfn(pfn, zone, nid);
5099 }
5100 }
5101 }
5102
5103 static void __meminit zone_init_free_lists(struct zone *zone)
5104 {
5105 unsigned int order, t;
5106 for_each_migratetype_order(order, t) {
5107 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5108 zone->free_area[order].nr_free = 0;
5109 }
5110 }
5111
5112 #ifndef __HAVE_ARCH_MEMMAP_INIT
5113 #define memmap_init(size, nid, zone, start_pfn) \
5114 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5115 #endif
5116
5117 static int zone_batchsize(struct zone *zone)
5118 {
5119 #ifdef CONFIG_MMU
5120 int batch;
5121
5122 /*
5123 * The per-cpu-pages pools are set to around 1000th of the
5124 * size of the zone. But no more than 1/2 of a meg.
5125 *
5126 * OK, so we don't know how big the cache is. So guess.
5127 */
5128 batch = zone->managed_pages / 1024;
5129 if (batch * PAGE_SIZE > 512 * 1024)
5130 batch = (512 * 1024) / PAGE_SIZE;
5131 batch /= 4; /* We effectively *= 4 below */
5132 if (batch < 1)
5133 batch = 1;
5134
5135 /*
5136 * Clamp the batch to a 2^n - 1 value. Having a power
5137 * of 2 value was found to be more likely to have
5138 * suboptimal cache aliasing properties in some cases.
5139 *
5140 * For example if 2 tasks are alternately allocating
5141 * batches of pages, one task can end up with a lot
5142 * of pages of one half of the possible page colors
5143 * and the other with pages of the other colors.
5144 */
5145 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5146
5147 return batch;
5148
5149 #else
5150 /* The deferral and batching of frees should be suppressed under NOMMU
5151 * conditions.
5152 *
5153 * The problem is that NOMMU needs to be able to allocate large chunks
5154 * of contiguous memory as there's no hardware page translation to
5155 * assemble apparent contiguous memory from discontiguous pages.
5156 *
5157 * Queueing large contiguous runs of pages for batching, however,
5158 * causes the pages to actually be freed in smaller chunks. As there
5159 * can be a significant delay between the individual batches being
5160 * recycled, this leads to the once large chunks of space being
5161 * fragmented and becoming unavailable for high-order allocations.
5162 */
5163 return 0;
5164 #endif
5165 }
5166
5167 /*
5168 * pcp->high and pcp->batch values are related and dependent on one another:
5169 * ->batch must never be higher then ->high.
5170 * The following function updates them in a safe manner without read side
5171 * locking.
5172 *
5173 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5174 * those fields changing asynchronously (acording the the above rule).
5175 *
5176 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5177 * outside of boot time (or some other assurance that no concurrent updaters
5178 * exist).
5179 */
5180 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5181 unsigned long batch)
5182 {
5183 /* start with a fail safe value for batch */
5184 pcp->batch = 1;
5185 smp_wmb();
5186
5187 /* Update high, then batch, in order */
5188 pcp->high = high;
5189 smp_wmb();
5190
5191 pcp->batch = batch;
5192 }
5193
5194 /* a companion to pageset_set_high() */
5195 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5196 {
5197 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5198 }
5199
5200 static void pageset_init(struct per_cpu_pageset *p)
5201 {
5202 struct per_cpu_pages *pcp;
5203 int migratetype;
5204
5205 memset(p, 0, sizeof(*p));
5206
5207 pcp = &p->pcp;
5208 pcp->count = 0;
5209 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5210 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5211 }
5212
5213 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5214 {
5215 pageset_init(p);
5216 pageset_set_batch(p, batch);
5217 }
5218
5219 /*
5220 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5221 * to the value high for the pageset p.
5222 */
5223 static void pageset_set_high(struct per_cpu_pageset *p,
5224 unsigned long high)
5225 {
5226 unsigned long batch = max(1UL, high / 4);
5227 if ((high / 4) > (PAGE_SHIFT * 8))
5228 batch = PAGE_SHIFT * 8;
5229
5230 pageset_update(&p->pcp, high, batch);
5231 }
5232
5233 static void pageset_set_high_and_batch(struct zone *zone,
5234 struct per_cpu_pageset *pcp)
5235 {
5236 if (percpu_pagelist_fraction)
5237 pageset_set_high(pcp,
5238 (zone->managed_pages /
5239 percpu_pagelist_fraction));
5240 else
5241 pageset_set_batch(pcp, zone_batchsize(zone));
5242 }
5243
5244 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5245 {
5246 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5247
5248 pageset_init(pcp);
5249 pageset_set_high_and_batch(zone, pcp);
5250 }
5251
5252 static void __meminit setup_zone_pageset(struct zone *zone)
5253 {
5254 int cpu;
5255 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5256 for_each_possible_cpu(cpu)
5257 zone_pageset_init(zone, cpu);
5258 }
5259
5260 /*
5261 * Allocate per cpu pagesets and initialize them.
5262 * Before this call only boot pagesets were available.
5263 */
5264 void __init setup_per_cpu_pageset(void)
5265 {
5266 struct pglist_data *pgdat;
5267 struct zone *zone;
5268
5269 for_each_populated_zone(zone)
5270 setup_zone_pageset(zone);
5271
5272 for_each_online_pgdat(pgdat)
5273 pgdat->per_cpu_nodestats =
5274 alloc_percpu(struct per_cpu_nodestat);
5275 }
5276
5277 static noinline __ref
5278 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5279 {
5280 int i;
5281 size_t alloc_size;
5282
5283 /*
5284 * The per-page waitqueue mechanism uses hashed waitqueues
5285 * per zone.
5286 */
5287 zone->wait_table_hash_nr_entries =
5288 wait_table_hash_nr_entries(zone_size_pages);
5289 zone->wait_table_bits =
5290 wait_table_bits(zone->wait_table_hash_nr_entries);
5291 alloc_size = zone->wait_table_hash_nr_entries
5292 * sizeof(wait_queue_head_t);
5293
5294 if (!slab_is_available()) {
5295 zone->wait_table = (wait_queue_head_t *)
5296 memblock_virt_alloc_node_nopanic(
5297 alloc_size, zone->zone_pgdat->node_id);
5298 } else {
5299 /*
5300 * This case means that a zone whose size was 0 gets new memory
5301 * via memory hot-add.
5302 * But it may be the case that a new node was hot-added. In
5303 * this case vmalloc() will not be able to use this new node's
5304 * memory - this wait_table must be initialized to use this new
5305 * node itself as well.
5306 * To use this new node's memory, further consideration will be
5307 * necessary.
5308 */
5309 zone->wait_table = vmalloc(alloc_size);
5310 }
5311 if (!zone->wait_table)
5312 return -ENOMEM;
5313
5314 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5315 init_waitqueue_head(zone->wait_table + i);
5316
5317 return 0;
5318 }
5319
5320 static __meminit void zone_pcp_init(struct zone *zone)
5321 {
5322 /*
5323 * per cpu subsystem is not up at this point. The following code
5324 * relies on the ability of the linker to provide the
5325 * offset of a (static) per cpu variable into the per cpu area.
5326 */
5327 zone->pageset = &boot_pageset;
5328
5329 if (populated_zone(zone))
5330 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5331 zone->name, zone->present_pages,
5332 zone_batchsize(zone));
5333 }
5334
5335 int __meminit init_currently_empty_zone(struct zone *zone,
5336 unsigned long zone_start_pfn,
5337 unsigned long size)
5338 {
5339 struct pglist_data *pgdat = zone->zone_pgdat;
5340 int ret;
5341 ret = zone_wait_table_init(zone, size);
5342 if (ret)
5343 return ret;
5344 pgdat->nr_zones = zone_idx(zone) + 1;
5345
5346 zone->zone_start_pfn = zone_start_pfn;
5347
5348 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5349 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5350 pgdat->node_id,
5351 (unsigned long)zone_idx(zone),
5352 zone_start_pfn, (zone_start_pfn + size));
5353
5354 zone_init_free_lists(zone);
5355
5356 return 0;
5357 }
5358
5359 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5360 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5361
5362 /*
5363 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5364 */
5365 int __meminit __early_pfn_to_nid(unsigned long pfn,
5366 struct mminit_pfnnid_cache *state)
5367 {
5368 unsigned long start_pfn, end_pfn;
5369 int nid;
5370
5371 if (state->last_start <= pfn && pfn < state->last_end)
5372 return state->last_nid;
5373
5374 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5375 if (nid != -1) {
5376 state->last_start = start_pfn;
5377 state->last_end = end_pfn;
5378 state->last_nid = nid;
5379 }
5380
5381 return nid;
5382 }
5383 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5384
5385 /**
5386 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5387 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5388 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5389 *
5390 * If an architecture guarantees that all ranges registered contain no holes
5391 * and may be freed, this this function may be used instead of calling
5392 * memblock_free_early_nid() manually.
5393 */
5394 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5395 {
5396 unsigned long start_pfn, end_pfn;
5397 int i, this_nid;
5398
5399 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5400 start_pfn = min(start_pfn, max_low_pfn);
5401 end_pfn = min(end_pfn, max_low_pfn);
5402
5403 if (start_pfn < end_pfn)
5404 memblock_free_early_nid(PFN_PHYS(start_pfn),
5405 (end_pfn - start_pfn) << PAGE_SHIFT,
5406 this_nid);
5407 }
5408 }
5409
5410 /**
5411 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5412 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5413 *
5414 * If an architecture guarantees that all ranges registered contain no holes and may
5415 * be freed, this function may be used instead of calling memory_present() manually.
5416 */
5417 void __init sparse_memory_present_with_active_regions(int nid)
5418 {
5419 unsigned long start_pfn, end_pfn;
5420 int i, this_nid;
5421
5422 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5423 memory_present(this_nid, start_pfn, end_pfn);
5424 }
5425
5426 /**
5427 * get_pfn_range_for_nid - Return the start and end page frames for a node
5428 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5429 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5430 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5431 *
5432 * It returns the start and end page frame of a node based on information
5433 * provided by memblock_set_node(). If called for a node
5434 * with no available memory, a warning is printed and the start and end
5435 * PFNs will be 0.
5436 */
5437 void __meminit get_pfn_range_for_nid(unsigned int nid,
5438 unsigned long *start_pfn, unsigned long *end_pfn)
5439 {
5440 unsigned long this_start_pfn, this_end_pfn;
5441 int i;
5442
5443 *start_pfn = -1UL;
5444 *end_pfn = 0;
5445
5446 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5447 *start_pfn = min(*start_pfn, this_start_pfn);
5448 *end_pfn = max(*end_pfn, this_end_pfn);
5449 }
5450
5451 if (*start_pfn == -1UL)
5452 *start_pfn = 0;
5453 }
5454
5455 /*
5456 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5457 * assumption is made that zones within a node are ordered in monotonic
5458 * increasing memory addresses so that the "highest" populated zone is used
5459 */
5460 static void __init find_usable_zone_for_movable(void)
5461 {
5462 int zone_index;
5463 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5464 if (zone_index == ZONE_MOVABLE)
5465 continue;
5466
5467 if (arch_zone_highest_possible_pfn[zone_index] >
5468 arch_zone_lowest_possible_pfn[zone_index])
5469 break;
5470 }
5471
5472 VM_BUG_ON(zone_index == -1);
5473 movable_zone = zone_index;
5474 }
5475
5476 /*
5477 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5478 * because it is sized independent of architecture. Unlike the other zones,
5479 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5480 * in each node depending on the size of each node and how evenly kernelcore
5481 * is distributed. This helper function adjusts the zone ranges
5482 * provided by the architecture for a given node by using the end of the
5483 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5484 * zones within a node are in order of monotonic increases memory addresses
5485 */
5486 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5487 unsigned long zone_type,
5488 unsigned long node_start_pfn,
5489 unsigned long node_end_pfn,
5490 unsigned long *zone_start_pfn,
5491 unsigned long *zone_end_pfn)
5492 {
5493 /* Only adjust if ZONE_MOVABLE is on this node */
5494 if (zone_movable_pfn[nid]) {
5495 /* Size ZONE_MOVABLE */
5496 if (zone_type == ZONE_MOVABLE) {
5497 *zone_start_pfn = zone_movable_pfn[nid];
5498 *zone_end_pfn = min(node_end_pfn,
5499 arch_zone_highest_possible_pfn[movable_zone]);
5500
5501 /* Check if this whole range is within ZONE_MOVABLE */
5502 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5503 *zone_start_pfn = *zone_end_pfn;
5504 }
5505 }
5506
5507 /*
5508 * Return the number of pages a zone spans in a node, including holes
5509 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5510 */
5511 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5512 unsigned long zone_type,
5513 unsigned long node_start_pfn,
5514 unsigned long node_end_pfn,
5515 unsigned long *zone_start_pfn,
5516 unsigned long *zone_end_pfn,
5517 unsigned long *ignored)
5518 {
5519 /* When hotadd a new node from cpu_up(), the node should be empty */
5520 if (!node_start_pfn && !node_end_pfn)
5521 return 0;
5522
5523 /* Get the start and end of the zone */
5524 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5525 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5526 adjust_zone_range_for_zone_movable(nid, zone_type,
5527 node_start_pfn, node_end_pfn,
5528 zone_start_pfn, zone_end_pfn);
5529
5530 /* Check that this node has pages within the zone's required range */
5531 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5532 return 0;
5533
5534 /* Move the zone boundaries inside the node if necessary */
5535 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5536 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5537
5538 /* Return the spanned pages */
5539 return *zone_end_pfn - *zone_start_pfn;
5540 }
5541
5542 /*
5543 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5544 * then all holes in the requested range will be accounted for.
5545 */
5546 unsigned long __meminit __absent_pages_in_range(int nid,
5547 unsigned long range_start_pfn,
5548 unsigned long range_end_pfn)
5549 {
5550 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5551 unsigned long start_pfn, end_pfn;
5552 int i;
5553
5554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5555 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5556 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5557 nr_absent -= end_pfn - start_pfn;
5558 }
5559 return nr_absent;
5560 }
5561
5562 /**
5563 * absent_pages_in_range - Return number of page frames in holes within a range
5564 * @start_pfn: The start PFN to start searching for holes
5565 * @end_pfn: The end PFN to stop searching for holes
5566 *
5567 * It returns the number of pages frames in memory holes within a range.
5568 */
5569 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5570 unsigned long end_pfn)
5571 {
5572 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5573 }
5574
5575 /* Return the number of page frames in holes in a zone on a node */
5576 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5577 unsigned long zone_type,
5578 unsigned long node_start_pfn,
5579 unsigned long node_end_pfn,
5580 unsigned long *ignored)
5581 {
5582 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5583 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5584 unsigned long zone_start_pfn, zone_end_pfn;
5585 unsigned long nr_absent;
5586
5587 /* When hotadd a new node from cpu_up(), the node should be empty */
5588 if (!node_start_pfn && !node_end_pfn)
5589 return 0;
5590
5591 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5592 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5593
5594 adjust_zone_range_for_zone_movable(nid, zone_type,
5595 node_start_pfn, node_end_pfn,
5596 &zone_start_pfn, &zone_end_pfn);
5597 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5598
5599 /*
5600 * ZONE_MOVABLE handling.
5601 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5602 * and vice versa.
5603 */
5604 if (zone_movable_pfn[nid]) {
5605 if (mirrored_kernelcore) {
5606 unsigned long start_pfn, end_pfn;
5607 struct memblock_region *r;
5608
5609 for_each_memblock(memory, r) {
5610 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5611 zone_start_pfn, zone_end_pfn);
5612 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5613 zone_start_pfn, zone_end_pfn);
5614
5615 if (zone_type == ZONE_MOVABLE &&
5616 memblock_is_mirror(r))
5617 nr_absent += end_pfn - start_pfn;
5618
5619 if (zone_type == ZONE_NORMAL &&
5620 !memblock_is_mirror(r))
5621 nr_absent += end_pfn - start_pfn;
5622 }
5623 } else {
5624 if (zone_type == ZONE_NORMAL)
5625 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5626 }
5627 }
5628
5629 return nr_absent;
5630 }
5631
5632 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5633 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5634 unsigned long zone_type,
5635 unsigned long node_start_pfn,
5636 unsigned long node_end_pfn,
5637 unsigned long *zone_start_pfn,
5638 unsigned long *zone_end_pfn,
5639 unsigned long *zones_size)
5640 {
5641 unsigned int zone;
5642
5643 *zone_start_pfn = node_start_pfn;
5644 for (zone = 0; zone < zone_type; zone++)
5645 *zone_start_pfn += zones_size[zone];
5646
5647 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5648
5649 return zones_size[zone_type];
5650 }
5651
5652 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5653 unsigned long zone_type,
5654 unsigned long node_start_pfn,
5655 unsigned long node_end_pfn,
5656 unsigned long *zholes_size)
5657 {
5658 if (!zholes_size)
5659 return 0;
5660
5661 return zholes_size[zone_type];
5662 }
5663
5664 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5665
5666 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5667 unsigned long node_start_pfn,
5668 unsigned long node_end_pfn,
5669 unsigned long *zones_size,
5670 unsigned long *zholes_size)
5671 {
5672 unsigned long realtotalpages = 0, totalpages = 0;
5673 enum zone_type i;
5674
5675 for (i = 0; i < MAX_NR_ZONES; i++) {
5676 struct zone *zone = pgdat->node_zones + i;
5677 unsigned long zone_start_pfn, zone_end_pfn;
5678 unsigned long size, real_size;
5679
5680 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5681 node_start_pfn,
5682 node_end_pfn,
5683 &zone_start_pfn,
5684 &zone_end_pfn,
5685 zones_size);
5686 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5687 node_start_pfn, node_end_pfn,
5688 zholes_size);
5689 if (size)
5690 zone->zone_start_pfn = zone_start_pfn;
5691 else
5692 zone->zone_start_pfn = 0;
5693 zone->spanned_pages = size;
5694 zone->present_pages = real_size;
5695
5696 totalpages += size;
5697 realtotalpages += real_size;
5698 }
5699
5700 pgdat->node_spanned_pages = totalpages;
5701 pgdat->node_present_pages = realtotalpages;
5702 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5703 realtotalpages);
5704 }
5705
5706 #ifndef CONFIG_SPARSEMEM
5707 /*
5708 * Calculate the size of the zone->blockflags rounded to an unsigned long
5709 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5710 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5711 * round what is now in bits to nearest long in bits, then return it in
5712 * bytes.
5713 */
5714 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5715 {
5716 unsigned long usemapsize;
5717
5718 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5719 usemapsize = roundup(zonesize, pageblock_nr_pages);
5720 usemapsize = usemapsize >> pageblock_order;
5721 usemapsize *= NR_PAGEBLOCK_BITS;
5722 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5723
5724 return usemapsize / 8;
5725 }
5726
5727 static void __init setup_usemap(struct pglist_data *pgdat,
5728 struct zone *zone,
5729 unsigned long zone_start_pfn,
5730 unsigned long zonesize)
5731 {
5732 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5733 zone->pageblock_flags = NULL;
5734 if (usemapsize)
5735 zone->pageblock_flags =
5736 memblock_virt_alloc_node_nopanic(usemapsize,
5737 pgdat->node_id);
5738 }
5739 #else
5740 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5741 unsigned long zone_start_pfn, unsigned long zonesize) {}
5742 #endif /* CONFIG_SPARSEMEM */
5743
5744 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5745
5746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5747 void __paginginit set_pageblock_order(void)
5748 {
5749 unsigned int order;
5750
5751 /* Check that pageblock_nr_pages has not already been setup */
5752 if (pageblock_order)
5753 return;
5754
5755 if (HPAGE_SHIFT > PAGE_SHIFT)
5756 order = HUGETLB_PAGE_ORDER;
5757 else
5758 order = MAX_ORDER - 1;
5759
5760 /*
5761 * Assume the largest contiguous order of interest is a huge page.
5762 * This value may be variable depending on boot parameters on IA64 and
5763 * powerpc.
5764 */
5765 pageblock_order = order;
5766 }
5767 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5768
5769 /*
5770 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5771 * is unused as pageblock_order is set at compile-time. See
5772 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5773 * the kernel config
5774 */
5775 void __paginginit set_pageblock_order(void)
5776 {
5777 }
5778
5779 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5780
5781 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5782 unsigned long present_pages)
5783 {
5784 unsigned long pages = spanned_pages;
5785
5786 /*
5787 * Provide a more accurate estimation if there are holes within
5788 * the zone and SPARSEMEM is in use. If there are holes within the
5789 * zone, each populated memory region may cost us one or two extra
5790 * memmap pages due to alignment because memmap pages for each
5791 * populated regions may not naturally algined on page boundary.
5792 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5793 */
5794 if (spanned_pages > present_pages + (present_pages >> 4) &&
5795 IS_ENABLED(CONFIG_SPARSEMEM))
5796 pages = present_pages;
5797
5798 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5799 }
5800
5801 /*
5802 * Set up the zone data structures:
5803 * - mark all pages reserved
5804 * - mark all memory queues empty
5805 * - clear the memory bitmaps
5806 *
5807 * NOTE: pgdat should get zeroed by caller.
5808 */
5809 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5810 {
5811 enum zone_type j;
5812 int nid = pgdat->node_id;
5813 int ret;
5814
5815 pgdat_resize_init(pgdat);
5816 #ifdef CONFIG_NUMA_BALANCING
5817 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5818 pgdat->numabalancing_migrate_nr_pages = 0;
5819 pgdat->numabalancing_migrate_next_window = jiffies;
5820 #endif
5821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5822 spin_lock_init(&pgdat->split_queue_lock);
5823 INIT_LIST_HEAD(&pgdat->split_queue);
5824 pgdat->split_queue_len = 0;
5825 #endif
5826 init_waitqueue_head(&pgdat->kswapd_wait);
5827 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5828 #ifdef CONFIG_COMPACTION
5829 init_waitqueue_head(&pgdat->kcompactd_wait);
5830 #endif
5831 pgdat_page_ext_init(pgdat);
5832 spin_lock_init(&pgdat->lru_lock);
5833 lruvec_init(node_lruvec(pgdat));
5834
5835 for (j = 0; j < MAX_NR_ZONES; j++) {
5836 struct zone *zone = pgdat->node_zones + j;
5837 unsigned long size, realsize, freesize, memmap_pages;
5838 unsigned long zone_start_pfn = zone->zone_start_pfn;
5839
5840 size = zone->spanned_pages;
5841 realsize = freesize = zone->present_pages;
5842
5843 /*
5844 * Adjust freesize so that it accounts for how much memory
5845 * is used by this zone for memmap. This affects the watermark
5846 * and per-cpu initialisations
5847 */
5848 memmap_pages = calc_memmap_size(size, realsize);
5849 if (!is_highmem_idx(j)) {
5850 if (freesize >= memmap_pages) {
5851 freesize -= memmap_pages;
5852 if (memmap_pages)
5853 printk(KERN_DEBUG
5854 " %s zone: %lu pages used for memmap\n",
5855 zone_names[j], memmap_pages);
5856 } else
5857 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5858 zone_names[j], memmap_pages, freesize);
5859 }
5860
5861 /* Account for reserved pages */
5862 if (j == 0 && freesize > dma_reserve) {
5863 freesize -= dma_reserve;
5864 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5865 zone_names[0], dma_reserve);
5866 }
5867
5868 if (!is_highmem_idx(j))
5869 nr_kernel_pages += freesize;
5870 /* Charge for highmem memmap if there are enough kernel pages */
5871 else if (nr_kernel_pages > memmap_pages * 2)
5872 nr_kernel_pages -= memmap_pages;
5873 nr_all_pages += freesize;
5874
5875 /*
5876 * Set an approximate value for lowmem here, it will be adjusted
5877 * when the bootmem allocator frees pages into the buddy system.
5878 * And all highmem pages will be managed by the buddy system.
5879 */
5880 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5881 #ifdef CONFIG_NUMA
5882 zone->node = nid;
5883 #endif
5884 zone->name = zone_names[j];
5885 zone->zone_pgdat = pgdat;
5886 spin_lock_init(&zone->lock);
5887 zone_seqlock_init(zone);
5888 zone_pcp_init(zone);
5889
5890 if (!size)
5891 continue;
5892
5893 set_pageblock_order();
5894 setup_usemap(pgdat, zone, zone_start_pfn, size);
5895 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5896 BUG_ON(ret);
5897 memmap_init(size, nid, j, zone_start_pfn);
5898 }
5899 }
5900
5901 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5902 {
5903 unsigned long __maybe_unused start = 0;
5904 unsigned long __maybe_unused offset = 0;
5905
5906 /* Skip empty nodes */
5907 if (!pgdat->node_spanned_pages)
5908 return;
5909
5910 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5911 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5912 offset = pgdat->node_start_pfn - start;
5913 /* ia64 gets its own node_mem_map, before this, without bootmem */
5914 if (!pgdat->node_mem_map) {
5915 unsigned long size, end;
5916 struct page *map;
5917
5918 /*
5919 * The zone's endpoints aren't required to be MAX_ORDER
5920 * aligned but the node_mem_map endpoints must be in order
5921 * for the buddy allocator to function correctly.
5922 */
5923 end = pgdat_end_pfn(pgdat);
5924 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5925 size = (end - start) * sizeof(struct page);
5926 map = alloc_remap(pgdat->node_id, size);
5927 if (!map)
5928 map = memblock_virt_alloc_node_nopanic(size,
5929 pgdat->node_id);
5930 pgdat->node_mem_map = map + offset;
5931 }
5932 #ifndef CONFIG_NEED_MULTIPLE_NODES
5933 /*
5934 * With no DISCONTIG, the global mem_map is just set as node 0's
5935 */
5936 if (pgdat == NODE_DATA(0)) {
5937 mem_map = NODE_DATA(0)->node_mem_map;
5938 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5939 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5940 mem_map -= offset;
5941 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5942 }
5943 #endif
5944 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5945 }
5946
5947 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5948 unsigned long node_start_pfn, unsigned long *zholes_size)
5949 {
5950 pg_data_t *pgdat = NODE_DATA(nid);
5951 unsigned long start_pfn = 0;
5952 unsigned long end_pfn = 0;
5953
5954 /* pg_data_t should be reset to zero when it's allocated */
5955 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5956
5957 reset_deferred_meminit(pgdat);
5958 pgdat->node_id = nid;
5959 pgdat->node_start_pfn = node_start_pfn;
5960 pgdat->per_cpu_nodestats = NULL;
5961 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5962 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5963 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5964 (u64)start_pfn << PAGE_SHIFT,
5965 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5966 #else
5967 start_pfn = node_start_pfn;
5968 #endif
5969 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5970 zones_size, zholes_size);
5971
5972 alloc_node_mem_map(pgdat);
5973 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5974 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5975 nid, (unsigned long)pgdat,
5976 (unsigned long)pgdat->node_mem_map);
5977 #endif
5978
5979 free_area_init_core(pgdat);
5980 }
5981
5982 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5983
5984 #if MAX_NUMNODES > 1
5985 /*
5986 * Figure out the number of possible node ids.
5987 */
5988 void __init setup_nr_node_ids(void)
5989 {
5990 unsigned int highest;
5991
5992 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5993 nr_node_ids = highest + 1;
5994 }
5995 #endif
5996
5997 /**
5998 * node_map_pfn_alignment - determine the maximum internode alignment
5999 *
6000 * This function should be called after node map is populated and sorted.
6001 * It calculates the maximum power of two alignment which can distinguish
6002 * all the nodes.
6003 *
6004 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6005 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6006 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6007 * shifted, 1GiB is enough and this function will indicate so.
6008 *
6009 * This is used to test whether pfn -> nid mapping of the chosen memory
6010 * model has fine enough granularity to avoid incorrect mapping for the
6011 * populated node map.
6012 *
6013 * Returns the determined alignment in pfn's. 0 if there is no alignment
6014 * requirement (single node).
6015 */
6016 unsigned long __init node_map_pfn_alignment(void)
6017 {
6018 unsigned long accl_mask = 0, last_end = 0;
6019 unsigned long start, end, mask;
6020 int last_nid = -1;
6021 int i, nid;
6022
6023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6024 if (!start || last_nid < 0 || last_nid == nid) {
6025 last_nid = nid;
6026 last_end = end;
6027 continue;
6028 }
6029
6030 /*
6031 * Start with a mask granular enough to pin-point to the
6032 * start pfn and tick off bits one-by-one until it becomes
6033 * too coarse to separate the current node from the last.
6034 */
6035 mask = ~((1 << __ffs(start)) - 1);
6036 while (mask && last_end <= (start & (mask << 1)))
6037 mask <<= 1;
6038
6039 /* accumulate all internode masks */
6040 accl_mask |= mask;
6041 }
6042
6043 /* convert mask to number of pages */
6044 return ~accl_mask + 1;
6045 }
6046
6047 /* Find the lowest pfn for a node */
6048 static unsigned long __init find_min_pfn_for_node(int nid)
6049 {
6050 unsigned long min_pfn = ULONG_MAX;
6051 unsigned long start_pfn;
6052 int i;
6053
6054 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6055 min_pfn = min(min_pfn, start_pfn);
6056
6057 if (min_pfn == ULONG_MAX) {
6058 pr_warn("Could not find start_pfn for node %d\n", nid);
6059 return 0;
6060 }
6061
6062 return min_pfn;
6063 }
6064
6065 /**
6066 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6067 *
6068 * It returns the minimum PFN based on information provided via
6069 * memblock_set_node().
6070 */
6071 unsigned long __init find_min_pfn_with_active_regions(void)
6072 {
6073 return find_min_pfn_for_node(MAX_NUMNODES);
6074 }
6075
6076 /*
6077 * early_calculate_totalpages()
6078 * Sum pages in active regions for movable zone.
6079 * Populate N_MEMORY for calculating usable_nodes.
6080 */
6081 static unsigned long __init early_calculate_totalpages(void)
6082 {
6083 unsigned long totalpages = 0;
6084 unsigned long start_pfn, end_pfn;
6085 int i, nid;
6086
6087 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6088 unsigned long pages = end_pfn - start_pfn;
6089
6090 totalpages += pages;
6091 if (pages)
6092 node_set_state(nid, N_MEMORY);
6093 }
6094 return totalpages;
6095 }
6096
6097 /*
6098 * Find the PFN the Movable zone begins in each node. Kernel memory
6099 * is spread evenly between nodes as long as the nodes have enough
6100 * memory. When they don't, some nodes will have more kernelcore than
6101 * others
6102 */
6103 static void __init find_zone_movable_pfns_for_nodes(void)
6104 {
6105 int i, nid;
6106 unsigned long usable_startpfn;
6107 unsigned long kernelcore_node, kernelcore_remaining;
6108 /* save the state before borrow the nodemask */
6109 nodemask_t saved_node_state = node_states[N_MEMORY];
6110 unsigned long totalpages = early_calculate_totalpages();
6111 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6112 struct memblock_region *r;
6113
6114 /* Need to find movable_zone earlier when movable_node is specified. */
6115 find_usable_zone_for_movable();
6116
6117 /*
6118 * If movable_node is specified, ignore kernelcore and movablecore
6119 * options.
6120 */
6121 if (movable_node_is_enabled()) {
6122 for_each_memblock(memory, r) {
6123 if (!memblock_is_hotpluggable(r))
6124 continue;
6125
6126 nid = r->nid;
6127
6128 usable_startpfn = PFN_DOWN(r->base);
6129 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6130 min(usable_startpfn, zone_movable_pfn[nid]) :
6131 usable_startpfn;
6132 }
6133
6134 goto out2;
6135 }
6136
6137 /*
6138 * If kernelcore=mirror is specified, ignore movablecore option
6139 */
6140 if (mirrored_kernelcore) {
6141 bool mem_below_4gb_not_mirrored = false;
6142
6143 for_each_memblock(memory, r) {
6144 if (memblock_is_mirror(r))
6145 continue;
6146
6147 nid = r->nid;
6148
6149 usable_startpfn = memblock_region_memory_base_pfn(r);
6150
6151 if (usable_startpfn < 0x100000) {
6152 mem_below_4gb_not_mirrored = true;
6153 continue;
6154 }
6155
6156 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6157 min(usable_startpfn, zone_movable_pfn[nid]) :
6158 usable_startpfn;
6159 }
6160
6161 if (mem_below_4gb_not_mirrored)
6162 pr_warn("This configuration results in unmirrored kernel memory.");
6163
6164 goto out2;
6165 }
6166
6167 /*
6168 * If movablecore=nn[KMG] was specified, calculate what size of
6169 * kernelcore that corresponds so that memory usable for
6170 * any allocation type is evenly spread. If both kernelcore
6171 * and movablecore are specified, then the value of kernelcore
6172 * will be used for required_kernelcore if it's greater than
6173 * what movablecore would have allowed.
6174 */
6175 if (required_movablecore) {
6176 unsigned long corepages;
6177
6178 /*
6179 * Round-up so that ZONE_MOVABLE is at least as large as what
6180 * was requested by the user
6181 */
6182 required_movablecore =
6183 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6184 required_movablecore = min(totalpages, required_movablecore);
6185 corepages = totalpages - required_movablecore;
6186
6187 required_kernelcore = max(required_kernelcore, corepages);
6188 }
6189
6190 /*
6191 * If kernelcore was not specified or kernelcore size is larger
6192 * than totalpages, there is no ZONE_MOVABLE.
6193 */
6194 if (!required_kernelcore || required_kernelcore >= totalpages)
6195 goto out;
6196
6197 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6198 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6199
6200 restart:
6201 /* Spread kernelcore memory as evenly as possible throughout nodes */
6202 kernelcore_node = required_kernelcore / usable_nodes;
6203 for_each_node_state(nid, N_MEMORY) {
6204 unsigned long start_pfn, end_pfn;
6205
6206 /*
6207 * Recalculate kernelcore_node if the division per node
6208 * now exceeds what is necessary to satisfy the requested
6209 * amount of memory for the kernel
6210 */
6211 if (required_kernelcore < kernelcore_node)
6212 kernelcore_node = required_kernelcore / usable_nodes;
6213
6214 /*
6215 * As the map is walked, we track how much memory is usable
6216 * by the kernel using kernelcore_remaining. When it is
6217 * 0, the rest of the node is usable by ZONE_MOVABLE
6218 */
6219 kernelcore_remaining = kernelcore_node;
6220
6221 /* Go through each range of PFNs within this node */
6222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6223 unsigned long size_pages;
6224
6225 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6226 if (start_pfn >= end_pfn)
6227 continue;
6228
6229 /* Account for what is only usable for kernelcore */
6230 if (start_pfn < usable_startpfn) {
6231 unsigned long kernel_pages;
6232 kernel_pages = min(end_pfn, usable_startpfn)
6233 - start_pfn;
6234
6235 kernelcore_remaining -= min(kernel_pages,
6236 kernelcore_remaining);
6237 required_kernelcore -= min(kernel_pages,
6238 required_kernelcore);
6239
6240 /* Continue if range is now fully accounted */
6241 if (end_pfn <= usable_startpfn) {
6242
6243 /*
6244 * Push zone_movable_pfn to the end so
6245 * that if we have to rebalance
6246 * kernelcore across nodes, we will
6247 * not double account here
6248 */
6249 zone_movable_pfn[nid] = end_pfn;
6250 continue;
6251 }
6252 start_pfn = usable_startpfn;
6253 }
6254
6255 /*
6256 * The usable PFN range for ZONE_MOVABLE is from
6257 * start_pfn->end_pfn. Calculate size_pages as the
6258 * number of pages used as kernelcore
6259 */
6260 size_pages = end_pfn - start_pfn;
6261 if (size_pages > kernelcore_remaining)
6262 size_pages = kernelcore_remaining;
6263 zone_movable_pfn[nid] = start_pfn + size_pages;
6264
6265 /*
6266 * Some kernelcore has been met, update counts and
6267 * break if the kernelcore for this node has been
6268 * satisfied
6269 */
6270 required_kernelcore -= min(required_kernelcore,
6271 size_pages);
6272 kernelcore_remaining -= size_pages;
6273 if (!kernelcore_remaining)
6274 break;
6275 }
6276 }
6277
6278 /*
6279 * If there is still required_kernelcore, we do another pass with one
6280 * less node in the count. This will push zone_movable_pfn[nid] further
6281 * along on the nodes that still have memory until kernelcore is
6282 * satisfied
6283 */
6284 usable_nodes--;
6285 if (usable_nodes && required_kernelcore > usable_nodes)
6286 goto restart;
6287
6288 out2:
6289 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6290 for (nid = 0; nid < MAX_NUMNODES; nid++)
6291 zone_movable_pfn[nid] =
6292 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6293
6294 out:
6295 /* restore the node_state */
6296 node_states[N_MEMORY] = saved_node_state;
6297 }
6298
6299 /* Any regular or high memory on that node ? */
6300 static void check_for_memory(pg_data_t *pgdat, int nid)
6301 {
6302 enum zone_type zone_type;
6303
6304 if (N_MEMORY == N_NORMAL_MEMORY)
6305 return;
6306
6307 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6308 struct zone *zone = &pgdat->node_zones[zone_type];
6309 if (populated_zone(zone)) {
6310 node_set_state(nid, N_HIGH_MEMORY);
6311 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6312 zone_type <= ZONE_NORMAL)
6313 node_set_state(nid, N_NORMAL_MEMORY);
6314 break;
6315 }
6316 }
6317 }
6318
6319 /**
6320 * free_area_init_nodes - Initialise all pg_data_t and zone data
6321 * @max_zone_pfn: an array of max PFNs for each zone
6322 *
6323 * This will call free_area_init_node() for each active node in the system.
6324 * Using the page ranges provided by memblock_set_node(), the size of each
6325 * zone in each node and their holes is calculated. If the maximum PFN
6326 * between two adjacent zones match, it is assumed that the zone is empty.
6327 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6328 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6329 * starts where the previous one ended. For example, ZONE_DMA32 starts
6330 * at arch_max_dma_pfn.
6331 */
6332 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6333 {
6334 unsigned long start_pfn, end_pfn;
6335 int i, nid;
6336
6337 /* Record where the zone boundaries are */
6338 memset(arch_zone_lowest_possible_pfn, 0,
6339 sizeof(arch_zone_lowest_possible_pfn));
6340 memset(arch_zone_highest_possible_pfn, 0,
6341 sizeof(arch_zone_highest_possible_pfn));
6342
6343 start_pfn = find_min_pfn_with_active_regions();
6344
6345 for (i = 0; i < MAX_NR_ZONES; i++) {
6346 if (i == ZONE_MOVABLE)
6347 continue;
6348
6349 end_pfn = max(max_zone_pfn[i], start_pfn);
6350 arch_zone_lowest_possible_pfn[i] = start_pfn;
6351 arch_zone_highest_possible_pfn[i] = end_pfn;
6352
6353 start_pfn = end_pfn;
6354 }
6355 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6356 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6357
6358 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6359 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6360 find_zone_movable_pfns_for_nodes();
6361
6362 /* Print out the zone ranges */
6363 pr_info("Zone ranges:\n");
6364 for (i = 0; i < MAX_NR_ZONES; i++) {
6365 if (i == ZONE_MOVABLE)
6366 continue;
6367 pr_info(" %-8s ", zone_names[i]);
6368 if (arch_zone_lowest_possible_pfn[i] ==
6369 arch_zone_highest_possible_pfn[i])
6370 pr_cont("empty\n");
6371 else
6372 pr_cont("[mem %#018Lx-%#018Lx]\n",
6373 (u64)arch_zone_lowest_possible_pfn[i]
6374 << PAGE_SHIFT,
6375 ((u64)arch_zone_highest_possible_pfn[i]
6376 << PAGE_SHIFT) - 1);
6377 }
6378
6379 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6380 pr_info("Movable zone start for each node\n");
6381 for (i = 0; i < MAX_NUMNODES; i++) {
6382 if (zone_movable_pfn[i])
6383 pr_info(" Node %d: %#018Lx\n", i,
6384 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6385 }
6386
6387 /* Print out the early node map */
6388 pr_info("Early memory node ranges\n");
6389 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6390 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6391 (u64)start_pfn << PAGE_SHIFT,
6392 ((u64)end_pfn << PAGE_SHIFT) - 1);
6393
6394 /* Initialise every node */
6395 mminit_verify_pageflags_layout();
6396 setup_nr_node_ids();
6397 for_each_online_node(nid) {
6398 pg_data_t *pgdat = NODE_DATA(nid);
6399 free_area_init_node(nid, NULL,
6400 find_min_pfn_for_node(nid), NULL);
6401
6402 /* Any memory on that node */
6403 if (pgdat->node_present_pages)
6404 node_set_state(nid, N_MEMORY);
6405 check_for_memory(pgdat, nid);
6406 }
6407 }
6408
6409 static int __init cmdline_parse_core(char *p, unsigned long *core)
6410 {
6411 unsigned long long coremem;
6412 if (!p)
6413 return -EINVAL;
6414
6415 coremem = memparse(p, &p);
6416 *core = coremem >> PAGE_SHIFT;
6417
6418 /* Paranoid check that UL is enough for the coremem value */
6419 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6420
6421 return 0;
6422 }
6423
6424 /*
6425 * kernelcore=size sets the amount of memory for use for allocations that
6426 * cannot be reclaimed or migrated.
6427 */
6428 static int __init cmdline_parse_kernelcore(char *p)
6429 {
6430 /* parse kernelcore=mirror */
6431 if (parse_option_str(p, "mirror")) {
6432 mirrored_kernelcore = true;
6433 return 0;
6434 }
6435
6436 return cmdline_parse_core(p, &required_kernelcore);
6437 }
6438
6439 /*
6440 * movablecore=size sets the amount of memory for use for allocations that
6441 * can be reclaimed or migrated.
6442 */
6443 static int __init cmdline_parse_movablecore(char *p)
6444 {
6445 return cmdline_parse_core(p, &required_movablecore);
6446 }
6447
6448 early_param("kernelcore", cmdline_parse_kernelcore);
6449 early_param("movablecore", cmdline_parse_movablecore);
6450
6451 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6452
6453 void adjust_managed_page_count(struct page *page, long count)
6454 {
6455 spin_lock(&managed_page_count_lock);
6456 page_zone(page)->managed_pages += count;
6457 totalram_pages += count;
6458 #ifdef CONFIG_HIGHMEM
6459 if (PageHighMem(page))
6460 totalhigh_pages += count;
6461 #endif
6462 spin_unlock(&managed_page_count_lock);
6463 }
6464 EXPORT_SYMBOL(adjust_managed_page_count);
6465
6466 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6467 {
6468 void *pos;
6469 unsigned long pages = 0;
6470
6471 start = (void *)PAGE_ALIGN((unsigned long)start);
6472 end = (void *)((unsigned long)end & PAGE_MASK);
6473 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6474 if ((unsigned int)poison <= 0xFF)
6475 memset(pos, poison, PAGE_SIZE);
6476 free_reserved_page(virt_to_page(pos));
6477 }
6478
6479 if (pages && s)
6480 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6481 s, pages << (PAGE_SHIFT - 10), start, end);
6482
6483 return pages;
6484 }
6485 EXPORT_SYMBOL(free_reserved_area);
6486
6487 #ifdef CONFIG_HIGHMEM
6488 void free_highmem_page(struct page *page)
6489 {
6490 __free_reserved_page(page);
6491 totalram_pages++;
6492 page_zone(page)->managed_pages++;
6493 totalhigh_pages++;
6494 }
6495 #endif
6496
6497
6498 void __init mem_init_print_info(const char *str)
6499 {
6500 unsigned long physpages, codesize, datasize, rosize, bss_size;
6501 unsigned long init_code_size, init_data_size;
6502
6503 physpages = get_num_physpages();
6504 codesize = _etext - _stext;
6505 datasize = _edata - _sdata;
6506 rosize = __end_rodata - __start_rodata;
6507 bss_size = __bss_stop - __bss_start;
6508 init_data_size = __init_end - __init_begin;
6509 init_code_size = _einittext - _sinittext;
6510
6511 /*
6512 * Detect special cases and adjust section sizes accordingly:
6513 * 1) .init.* may be embedded into .data sections
6514 * 2) .init.text.* may be out of [__init_begin, __init_end],
6515 * please refer to arch/tile/kernel/vmlinux.lds.S.
6516 * 3) .rodata.* may be embedded into .text or .data sections.
6517 */
6518 #define adj_init_size(start, end, size, pos, adj) \
6519 do { \
6520 if (start <= pos && pos < end && size > adj) \
6521 size -= adj; \
6522 } while (0)
6523
6524 adj_init_size(__init_begin, __init_end, init_data_size,
6525 _sinittext, init_code_size);
6526 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6527 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6528 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6529 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6530
6531 #undef adj_init_size
6532
6533 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6534 #ifdef CONFIG_HIGHMEM
6535 ", %luK highmem"
6536 #endif
6537 "%s%s)\n",
6538 nr_free_pages() << (PAGE_SHIFT - 10),
6539 physpages << (PAGE_SHIFT - 10),
6540 codesize >> 10, datasize >> 10, rosize >> 10,
6541 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6542 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6543 totalcma_pages << (PAGE_SHIFT - 10),
6544 #ifdef CONFIG_HIGHMEM
6545 totalhigh_pages << (PAGE_SHIFT - 10),
6546 #endif
6547 str ? ", " : "", str ? str : "");
6548 }
6549
6550 /**
6551 * set_dma_reserve - set the specified number of pages reserved in the first zone
6552 * @new_dma_reserve: The number of pages to mark reserved
6553 *
6554 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6555 * In the DMA zone, a significant percentage may be consumed by kernel image
6556 * and other unfreeable allocations which can skew the watermarks badly. This
6557 * function may optionally be used to account for unfreeable pages in the
6558 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6559 * smaller per-cpu batchsize.
6560 */
6561 void __init set_dma_reserve(unsigned long new_dma_reserve)
6562 {
6563 dma_reserve = new_dma_reserve;
6564 }
6565
6566 void __init free_area_init(unsigned long *zones_size)
6567 {
6568 free_area_init_node(0, zones_size,
6569 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6570 }
6571
6572 static int page_alloc_cpu_notify(struct notifier_block *self,
6573 unsigned long action, void *hcpu)
6574 {
6575 int cpu = (unsigned long)hcpu;
6576
6577 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6578 lru_add_drain_cpu(cpu);
6579 drain_pages(cpu);
6580
6581 /*
6582 * Spill the event counters of the dead processor
6583 * into the current processors event counters.
6584 * This artificially elevates the count of the current
6585 * processor.
6586 */
6587 vm_events_fold_cpu(cpu);
6588
6589 /*
6590 * Zero the differential counters of the dead processor
6591 * so that the vm statistics are consistent.
6592 *
6593 * This is only okay since the processor is dead and cannot
6594 * race with what we are doing.
6595 */
6596 cpu_vm_stats_fold(cpu);
6597 }
6598 return NOTIFY_OK;
6599 }
6600
6601 void __init page_alloc_init(void)
6602 {
6603 hotcpu_notifier(page_alloc_cpu_notify, 0);
6604 }
6605
6606 /*
6607 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6608 * or min_free_kbytes changes.
6609 */
6610 static void calculate_totalreserve_pages(void)
6611 {
6612 struct pglist_data *pgdat;
6613 unsigned long reserve_pages = 0;
6614 enum zone_type i, j;
6615
6616 for_each_online_pgdat(pgdat) {
6617
6618 pgdat->totalreserve_pages = 0;
6619
6620 for (i = 0; i < MAX_NR_ZONES; i++) {
6621 struct zone *zone = pgdat->node_zones + i;
6622 long max = 0;
6623
6624 /* Find valid and maximum lowmem_reserve in the zone */
6625 for (j = i; j < MAX_NR_ZONES; j++) {
6626 if (zone->lowmem_reserve[j] > max)
6627 max = zone->lowmem_reserve[j];
6628 }
6629
6630 /* we treat the high watermark as reserved pages. */
6631 max += high_wmark_pages(zone);
6632
6633 if (max > zone->managed_pages)
6634 max = zone->managed_pages;
6635
6636 pgdat->totalreserve_pages += max;
6637
6638 reserve_pages += max;
6639 }
6640 }
6641 totalreserve_pages = reserve_pages;
6642 }
6643
6644 /*
6645 * setup_per_zone_lowmem_reserve - called whenever
6646 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6647 * has a correct pages reserved value, so an adequate number of
6648 * pages are left in the zone after a successful __alloc_pages().
6649 */
6650 static void setup_per_zone_lowmem_reserve(void)
6651 {
6652 struct pglist_data *pgdat;
6653 enum zone_type j, idx;
6654
6655 for_each_online_pgdat(pgdat) {
6656 for (j = 0; j < MAX_NR_ZONES; j++) {
6657 struct zone *zone = pgdat->node_zones + j;
6658 unsigned long managed_pages = zone->managed_pages;
6659
6660 zone->lowmem_reserve[j] = 0;
6661
6662 idx = j;
6663 while (idx) {
6664 struct zone *lower_zone;
6665
6666 idx--;
6667
6668 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6669 sysctl_lowmem_reserve_ratio[idx] = 1;
6670
6671 lower_zone = pgdat->node_zones + idx;
6672 lower_zone->lowmem_reserve[j] = managed_pages /
6673 sysctl_lowmem_reserve_ratio[idx];
6674 managed_pages += lower_zone->managed_pages;
6675 }
6676 }
6677 }
6678
6679 /* update totalreserve_pages */
6680 calculate_totalreserve_pages();
6681 }
6682
6683 static void __setup_per_zone_wmarks(void)
6684 {
6685 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6686 unsigned long lowmem_pages = 0;
6687 struct zone *zone;
6688 unsigned long flags;
6689
6690 /* Calculate total number of !ZONE_HIGHMEM pages */
6691 for_each_zone(zone) {
6692 if (!is_highmem(zone))
6693 lowmem_pages += zone->managed_pages;
6694 }
6695
6696 for_each_zone(zone) {
6697 u64 tmp;
6698
6699 spin_lock_irqsave(&zone->lock, flags);
6700 tmp = (u64)pages_min * zone->managed_pages;
6701 do_div(tmp, lowmem_pages);
6702 if (is_highmem(zone)) {
6703 /*
6704 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6705 * need highmem pages, so cap pages_min to a small
6706 * value here.
6707 *
6708 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6709 * deltas control asynch page reclaim, and so should
6710 * not be capped for highmem.
6711 */
6712 unsigned long min_pages;
6713
6714 min_pages = zone->managed_pages / 1024;
6715 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6716 zone->watermark[WMARK_MIN] = min_pages;
6717 } else {
6718 /*
6719 * If it's a lowmem zone, reserve a number of pages
6720 * proportionate to the zone's size.
6721 */
6722 zone->watermark[WMARK_MIN] = tmp;
6723 }
6724
6725 /*
6726 * Set the kswapd watermarks distance according to the
6727 * scale factor in proportion to available memory, but
6728 * ensure a minimum size on small systems.
6729 */
6730 tmp = max_t(u64, tmp >> 2,
6731 mult_frac(zone->managed_pages,
6732 watermark_scale_factor, 10000));
6733
6734 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6735 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6736
6737 spin_unlock_irqrestore(&zone->lock, flags);
6738 }
6739
6740 /* update totalreserve_pages */
6741 calculate_totalreserve_pages();
6742 }
6743
6744 /**
6745 * setup_per_zone_wmarks - called when min_free_kbytes changes
6746 * or when memory is hot-{added|removed}
6747 *
6748 * Ensures that the watermark[min,low,high] values for each zone are set
6749 * correctly with respect to min_free_kbytes.
6750 */
6751 void setup_per_zone_wmarks(void)
6752 {
6753 mutex_lock(&zonelists_mutex);
6754 __setup_per_zone_wmarks();
6755 mutex_unlock(&zonelists_mutex);
6756 }
6757
6758 /*
6759 * Initialise min_free_kbytes.
6760 *
6761 * For small machines we want it small (128k min). For large machines
6762 * we want it large (64MB max). But it is not linear, because network
6763 * bandwidth does not increase linearly with machine size. We use
6764 *
6765 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6766 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6767 *
6768 * which yields
6769 *
6770 * 16MB: 512k
6771 * 32MB: 724k
6772 * 64MB: 1024k
6773 * 128MB: 1448k
6774 * 256MB: 2048k
6775 * 512MB: 2896k
6776 * 1024MB: 4096k
6777 * 2048MB: 5792k
6778 * 4096MB: 8192k
6779 * 8192MB: 11584k
6780 * 16384MB: 16384k
6781 */
6782 int __meminit init_per_zone_wmark_min(void)
6783 {
6784 unsigned long lowmem_kbytes;
6785 int new_min_free_kbytes;
6786
6787 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6788 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6789
6790 if (new_min_free_kbytes > user_min_free_kbytes) {
6791 min_free_kbytes = new_min_free_kbytes;
6792 if (min_free_kbytes < 128)
6793 min_free_kbytes = 128;
6794 if (min_free_kbytes > 65536)
6795 min_free_kbytes = 65536;
6796 } else {
6797 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6798 new_min_free_kbytes, user_min_free_kbytes);
6799 }
6800 setup_per_zone_wmarks();
6801 refresh_zone_stat_thresholds();
6802 setup_per_zone_lowmem_reserve();
6803
6804 #ifdef CONFIG_NUMA
6805 setup_min_unmapped_ratio();
6806 setup_min_slab_ratio();
6807 #endif
6808
6809 return 0;
6810 }
6811 core_initcall(init_per_zone_wmark_min)
6812
6813 /*
6814 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6815 * that we can call two helper functions whenever min_free_kbytes
6816 * changes.
6817 */
6818 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6819 void __user *buffer, size_t *length, loff_t *ppos)
6820 {
6821 int rc;
6822
6823 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6824 if (rc)
6825 return rc;
6826
6827 if (write) {
6828 user_min_free_kbytes = min_free_kbytes;
6829 setup_per_zone_wmarks();
6830 }
6831 return 0;
6832 }
6833
6834 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6835 void __user *buffer, size_t *length, loff_t *ppos)
6836 {
6837 int rc;
6838
6839 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6840 if (rc)
6841 return rc;
6842
6843 if (write)
6844 setup_per_zone_wmarks();
6845
6846 return 0;
6847 }
6848
6849 #ifdef CONFIG_NUMA
6850 static void setup_min_unmapped_ratio(void)
6851 {
6852 pg_data_t *pgdat;
6853 struct zone *zone;
6854
6855 for_each_online_pgdat(pgdat)
6856 pgdat->min_unmapped_pages = 0;
6857
6858 for_each_zone(zone)
6859 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6860 sysctl_min_unmapped_ratio) / 100;
6861 }
6862
6863
6864 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6865 void __user *buffer, size_t *length, loff_t *ppos)
6866 {
6867 int rc;
6868
6869 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6870 if (rc)
6871 return rc;
6872
6873 setup_min_unmapped_ratio();
6874
6875 return 0;
6876 }
6877
6878 static void setup_min_slab_ratio(void)
6879 {
6880 pg_data_t *pgdat;
6881 struct zone *zone;
6882
6883 for_each_online_pgdat(pgdat)
6884 pgdat->min_slab_pages = 0;
6885
6886 for_each_zone(zone)
6887 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6888 sysctl_min_slab_ratio) / 100;
6889 }
6890
6891 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6892 void __user *buffer, size_t *length, loff_t *ppos)
6893 {
6894 int rc;
6895
6896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6897 if (rc)
6898 return rc;
6899
6900 setup_min_slab_ratio();
6901
6902 return 0;
6903 }
6904 #endif
6905
6906 /*
6907 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6908 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6909 * whenever sysctl_lowmem_reserve_ratio changes.
6910 *
6911 * The reserve ratio obviously has absolutely no relation with the
6912 * minimum watermarks. The lowmem reserve ratio can only make sense
6913 * if in function of the boot time zone sizes.
6914 */
6915 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6916 void __user *buffer, size_t *length, loff_t *ppos)
6917 {
6918 proc_dointvec_minmax(table, write, buffer, length, ppos);
6919 setup_per_zone_lowmem_reserve();
6920 return 0;
6921 }
6922
6923 /*
6924 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6925 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6926 * pagelist can have before it gets flushed back to buddy allocator.
6927 */
6928 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6929 void __user *buffer, size_t *length, loff_t *ppos)
6930 {
6931 struct zone *zone;
6932 int old_percpu_pagelist_fraction;
6933 int ret;
6934
6935 mutex_lock(&pcp_batch_high_lock);
6936 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6937
6938 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6939 if (!write || ret < 0)
6940 goto out;
6941
6942 /* Sanity checking to avoid pcp imbalance */
6943 if (percpu_pagelist_fraction &&
6944 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6945 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6946 ret = -EINVAL;
6947 goto out;
6948 }
6949
6950 /* No change? */
6951 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6952 goto out;
6953
6954 for_each_populated_zone(zone) {
6955 unsigned int cpu;
6956
6957 for_each_possible_cpu(cpu)
6958 pageset_set_high_and_batch(zone,
6959 per_cpu_ptr(zone->pageset, cpu));
6960 }
6961 out:
6962 mutex_unlock(&pcp_batch_high_lock);
6963 return ret;
6964 }
6965
6966 #ifdef CONFIG_NUMA
6967 int hashdist = HASHDIST_DEFAULT;
6968
6969 static int __init set_hashdist(char *str)
6970 {
6971 if (!str)
6972 return 0;
6973 hashdist = simple_strtoul(str, &str, 0);
6974 return 1;
6975 }
6976 __setup("hashdist=", set_hashdist);
6977 #endif
6978
6979 /*
6980 * allocate a large system hash table from bootmem
6981 * - it is assumed that the hash table must contain an exact power-of-2
6982 * quantity of entries
6983 * - limit is the number of hash buckets, not the total allocation size
6984 */
6985 void *__init alloc_large_system_hash(const char *tablename,
6986 unsigned long bucketsize,
6987 unsigned long numentries,
6988 int scale,
6989 int flags,
6990 unsigned int *_hash_shift,
6991 unsigned int *_hash_mask,
6992 unsigned long low_limit,
6993 unsigned long high_limit)
6994 {
6995 unsigned long long max = high_limit;
6996 unsigned long log2qty, size;
6997 void *table = NULL;
6998
6999 /* allow the kernel cmdline to have a say */
7000 if (!numentries) {
7001 /* round applicable memory size up to nearest megabyte */
7002 numentries = nr_kernel_pages;
7003
7004 /* It isn't necessary when PAGE_SIZE >= 1MB */
7005 if (PAGE_SHIFT < 20)
7006 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7007
7008 /* limit to 1 bucket per 2^scale bytes of low memory */
7009 if (scale > PAGE_SHIFT)
7010 numentries >>= (scale - PAGE_SHIFT);
7011 else
7012 numentries <<= (PAGE_SHIFT - scale);
7013
7014 /* Make sure we've got at least a 0-order allocation.. */
7015 if (unlikely(flags & HASH_SMALL)) {
7016 /* Makes no sense without HASH_EARLY */
7017 WARN_ON(!(flags & HASH_EARLY));
7018 if (!(numentries >> *_hash_shift)) {
7019 numentries = 1UL << *_hash_shift;
7020 BUG_ON(!numentries);
7021 }
7022 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7023 numentries = PAGE_SIZE / bucketsize;
7024 }
7025 numentries = roundup_pow_of_two(numentries);
7026
7027 /* limit allocation size to 1/16 total memory by default */
7028 if (max == 0) {
7029 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7030 do_div(max, bucketsize);
7031 }
7032 max = min(max, 0x80000000ULL);
7033
7034 if (numentries < low_limit)
7035 numentries = low_limit;
7036 if (numentries > max)
7037 numentries = max;
7038
7039 log2qty = ilog2(numentries);
7040
7041 do {
7042 size = bucketsize << log2qty;
7043 if (flags & HASH_EARLY)
7044 table = memblock_virt_alloc_nopanic(size, 0);
7045 else if (hashdist)
7046 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7047 else {
7048 /*
7049 * If bucketsize is not a power-of-two, we may free
7050 * some pages at the end of hash table which
7051 * alloc_pages_exact() automatically does
7052 */
7053 if (get_order(size) < MAX_ORDER) {
7054 table = alloc_pages_exact(size, GFP_ATOMIC);
7055 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7056 }
7057 }
7058 } while (!table && size > PAGE_SIZE && --log2qty);
7059
7060 if (!table)
7061 panic("Failed to allocate %s hash table\n", tablename);
7062
7063 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7064 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7065
7066 if (_hash_shift)
7067 *_hash_shift = log2qty;
7068 if (_hash_mask)
7069 *_hash_mask = (1 << log2qty) - 1;
7070
7071 return table;
7072 }
7073
7074 /*
7075 * This function checks whether pageblock includes unmovable pages or not.
7076 * If @count is not zero, it is okay to include less @count unmovable pages
7077 *
7078 * PageLRU check without isolation or lru_lock could race so that
7079 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7080 * expect this function should be exact.
7081 */
7082 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7083 bool skip_hwpoisoned_pages)
7084 {
7085 unsigned long pfn, iter, found;
7086 int mt;
7087
7088 /*
7089 * For avoiding noise data, lru_add_drain_all() should be called
7090 * If ZONE_MOVABLE, the zone never contains unmovable pages
7091 */
7092 if (zone_idx(zone) == ZONE_MOVABLE)
7093 return false;
7094 mt = get_pageblock_migratetype(page);
7095 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7096 return false;
7097
7098 pfn = page_to_pfn(page);
7099 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7100 unsigned long check = pfn + iter;
7101
7102 if (!pfn_valid_within(check))
7103 continue;
7104
7105 page = pfn_to_page(check);
7106
7107 /*
7108 * Hugepages are not in LRU lists, but they're movable.
7109 * We need not scan over tail pages bacause we don't
7110 * handle each tail page individually in migration.
7111 */
7112 if (PageHuge(page)) {
7113 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7114 continue;
7115 }
7116
7117 /*
7118 * We can't use page_count without pin a page
7119 * because another CPU can free compound page.
7120 * This check already skips compound tails of THP
7121 * because their page->_refcount is zero at all time.
7122 */
7123 if (!page_ref_count(page)) {
7124 if (PageBuddy(page))
7125 iter += (1 << page_order(page)) - 1;
7126 continue;
7127 }
7128
7129 /*
7130 * The HWPoisoned page may be not in buddy system, and
7131 * page_count() is not 0.
7132 */
7133 if (skip_hwpoisoned_pages && PageHWPoison(page))
7134 continue;
7135
7136 if (!PageLRU(page))
7137 found++;
7138 /*
7139 * If there are RECLAIMABLE pages, we need to check
7140 * it. But now, memory offline itself doesn't call
7141 * shrink_node_slabs() and it still to be fixed.
7142 */
7143 /*
7144 * If the page is not RAM, page_count()should be 0.
7145 * we don't need more check. This is an _used_ not-movable page.
7146 *
7147 * The problematic thing here is PG_reserved pages. PG_reserved
7148 * is set to both of a memory hole page and a _used_ kernel
7149 * page at boot.
7150 */
7151 if (found > count)
7152 return true;
7153 }
7154 return false;
7155 }
7156
7157 bool is_pageblock_removable_nolock(struct page *page)
7158 {
7159 struct zone *zone;
7160 unsigned long pfn;
7161
7162 /*
7163 * We have to be careful here because we are iterating over memory
7164 * sections which are not zone aware so we might end up outside of
7165 * the zone but still within the section.
7166 * We have to take care about the node as well. If the node is offline
7167 * its NODE_DATA will be NULL - see page_zone.
7168 */
7169 if (!node_online(page_to_nid(page)))
7170 return false;
7171
7172 zone = page_zone(page);
7173 pfn = page_to_pfn(page);
7174 if (!zone_spans_pfn(zone, pfn))
7175 return false;
7176
7177 return !has_unmovable_pages(zone, page, 0, true);
7178 }
7179
7180 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7181
7182 static unsigned long pfn_max_align_down(unsigned long pfn)
7183 {
7184 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7185 pageblock_nr_pages) - 1);
7186 }
7187
7188 static unsigned long pfn_max_align_up(unsigned long pfn)
7189 {
7190 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7191 pageblock_nr_pages));
7192 }
7193
7194 /* [start, end) must belong to a single zone. */
7195 static int __alloc_contig_migrate_range(struct compact_control *cc,
7196 unsigned long start, unsigned long end)
7197 {
7198 /* This function is based on compact_zone() from compaction.c. */
7199 unsigned long nr_reclaimed;
7200 unsigned long pfn = start;
7201 unsigned int tries = 0;
7202 int ret = 0;
7203
7204 migrate_prep();
7205
7206 while (pfn < end || !list_empty(&cc->migratepages)) {
7207 if (fatal_signal_pending(current)) {
7208 ret = -EINTR;
7209 break;
7210 }
7211
7212 if (list_empty(&cc->migratepages)) {
7213 cc->nr_migratepages = 0;
7214 pfn = isolate_migratepages_range(cc, pfn, end);
7215 if (!pfn) {
7216 ret = -EINTR;
7217 break;
7218 }
7219 tries = 0;
7220 } else if (++tries == 5) {
7221 ret = ret < 0 ? ret : -EBUSY;
7222 break;
7223 }
7224
7225 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7226 &cc->migratepages);
7227 cc->nr_migratepages -= nr_reclaimed;
7228
7229 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7230 NULL, 0, cc->mode, MR_CMA);
7231 }
7232 if (ret < 0) {
7233 putback_movable_pages(&cc->migratepages);
7234 return ret;
7235 }
7236 return 0;
7237 }
7238
7239 /**
7240 * alloc_contig_range() -- tries to allocate given range of pages
7241 * @start: start PFN to allocate
7242 * @end: one-past-the-last PFN to allocate
7243 * @migratetype: migratetype of the underlaying pageblocks (either
7244 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7245 * in range must have the same migratetype and it must
7246 * be either of the two.
7247 *
7248 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7249 * aligned, however it's the caller's responsibility to guarantee that
7250 * we are the only thread that changes migrate type of pageblocks the
7251 * pages fall in.
7252 *
7253 * The PFN range must belong to a single zone.
7254 *
7255 * Returns zero on success or negative error code. On success all
7256 * pages which PFN is in [start, end) are allocated for the caller and
7257 * need to be freed with free_contig_range().
7258 */
7259 int alloc_contig_range(unsigned long start, unsigned long end,
7260 unsigned migratetype)
7261 {
7262 unsigned long outer_start, outer_end;
7263 unsigned int order;
7264 int ret = 0;
7265
7266 struct compact_control cc = {
7267 .nr_migratepages = 0,
7268 .order = -1,
7269 .zone = page_zone(pfn_to_page(start)),
7270 .mode = MIGRATE_SYNC,
7271 .ignore_skip_hint = true,
7272 };
7273 INIT_LIST_HEAD(&cc.migratepages);
7274
7275 /*
7276 * What we do here is we mark all pageblocks in range as
7277 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7278 * have different sizes, and due to the way page allocator
7279 * work, we align the range to biggest of the two pages so
7280 * that page allocator won't try to merge buddies from
7281 * different pageblocks and change MIGRATE_ISOLATE to some
7282 * other migration type.
7283 *
7284 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7285 * migrate the pages from an unaligned range (ie. pages that
7286 * we are interested in). This will put all the pages in
7287 * range back to page allocator as MIGRATE_ISOLATE.
7288 *
7289 * When this is done, we take the pages in range from page
7290 * allocator removing them from the buddy system. This way
7291 * page allocator will never consider using them.
7292 *
7293 * This lets us mark the pageblocks back as
7294 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7295 * aligned range but not in the unaligned, original range are
7296 * put back to page allocator so that buddy can use them.
7297 */
7298
7299 ret = start_isolate_page_range(pfn_max_align_down(start),
7300 pfn_max_align_up(end), migratetype,
7301 false);
7302 if (ret)
7303 return ret;
7304
7305 /*
7306 * In case of -EBUSY, we'd like to know which page causes problem.
7307 * So, just fall through. We will check it in test_pages_isolated().
7308 */
7309 ret = __alloc_contig_migrate_range(&cc, start, end);
7310 if (ret && ret != -EBUSY)
7311 goto done;
7312
7313 /*
7314 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7315 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7316 * more, all pages in [start, end) are free in page allocator.
7317 * What we are going to do is to allocate all pages from
7318 * [start, end) (that is remove them from page allocator).
7319 *
7320 * The only problem is that pages at the beginning and at the
7321 * end of interesting range may be not aligned with pages that
7322 * page allocator holds, ie. they can be part of higher order
7323 * pages. Because of this, we reserve the bigger range and
7324 * once this is done free the pages we are not interested in.
7325 *
7326 * We don't have to hold zone->lock here because the pages are
7327 * isolated thus they won't get removed from buddy.
7328 */
7329
7330 lru_add_drain_all();
7331 drain_all_pages(cc.zone);
7332
7333 order = 0;
7334 outer_start = start;
7335 while (!PageBuddy(pfn_to_page(outer_start))) {
7336 if (++order >= MAX_ORDER) {
7337 outer_start = start;
7338 break;
7339 }
7340 outer_start &= ~0UL << order;
7341 }
7342
7343 if (outer_start != start) {
7344 order = page_order(pfn_to_page(outer_start));
7345
7346 /*
7347 * outer_start page could be small order buddy page and
7348 * it doesn't include start page. Adjust outer_start
7349 * in this case to report failed page properly
7350 * on tracepoint in test_pages_isolated()
7351 */
7352 if (outer_start + (1UL << order) <= start)
7353 outer_start = start;
7354 }
7355
7356 /* Make sure the range is really isolated. */
7357 if (test_pages_isolated(outer_start, end, false)) {
7358 pr_info("%s: [%lx, %lx) PFNs busy\n",
7359 __func__, outer_start, end);
7360 ret = -EBUSY;
7361 goto done;
7362 }
7363
7364 /* Grab isolated pages from freelists. */
7365 outer_end = isolate_freepages_range(&cc, outer_start, end);
7366 if (!outer_end) {
7367 ret = -EBUSY;
7368 goto done;
7369 }
7370
7371 /* Free head and tail (if any) */
7372 if (start != outer_start)
7373 free_contig_range(outer_start, start - outer_start);
7374 if (end != outer_end)
7375 free_contig_range(end, outer_end - end);
7376
7377 done:
7378 undo_isolate_page_range(pfn_max_align_down(start),
7379 pfn_max_align_up(end), migratetype);
7380 return ret;
7381 }
7382
7383 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7384 {
7385 unsigned int count = 0;
7386
7387 for (; nr_pages--; pfn++) {
7388 struct page *page = pfn_to_page(pfn);
7389
7390 count += page_count(page) != 1;
7391 __free_page(page);
7392 }
7393 WARN(count != 0, "%d pages are still in use!\n", count);
7394 }
7395 #endif
7396
7397 #ifdef CONFIG_MEMORY_HOTPLUG
7398 /*
7399 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7400 * page high values need to be recalulated.
7401 */
7402 void __meminit zone_pcp_update(struct zone *zone)
7403 {
7404 unsigned cpu;
7405 mutex_lock(&pcp_batch_high_lock);
7406 for_each_possible_cpu(cpu)
7407 pageset_set_high_and_batch(zone,
7408 per_cpu_ptr(zone->pageset, cpu));
7409 mutex_unlock(&pcp_batch_high_lock);
7410 }
7411 #endif
7412
7413 void zone_pcp_reset(struct zone *zone)
7414 {
7415 unsigned long flags;
7416 int cpu;
7417 struct per_cpu_pageset *pset;
7418
7419 /* avoid races with drain_pages() */
7420 local_irq_save(flags);
7421 if (zone->pageset != &boot_pageset) {
7422 for_each_online_cpu(cpu) {
7423 pset = per_cpu_ptr(zone->pageset, cpu);
7424 drain_zonestat(zone, pset);
7425 }
7426 free_percpu(zone->pageset);
7427 zone->pageset = &boot_pageset;
7428 }
7429 local_irq_restore(flags);
7430 }
7431
7432 #ifdef CONFIG_MEMORY_HOTREMOVE
7433 /*
7434 * All pages in the range must be in a single zone and isolated
7435 * before calling this.
7436 */
7437 void
7438 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7439 {
7440 struct page *page;
7441 struct zone *zone;
7442 unsigned int order, i;
7443 unsigned long pfn;
7444 unsigned long flags;
7445 /* find the first valid pfn */
7446 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7447 if (pfn_valid(pfn))
7448 break;
7449 if (pfn == end_pfn)
7450 return;
7451 zone = page_zone(pfn_to_page(pfn));
7452 spin_lock_irqsave(&zone->lock, flags);
7453 pfn = start_pfn;
7454 while (pfn < end_pfn) {
7455 if (!pfn_valid(pfn)) {
7456 pfn++;
7457 continue;
7458 }
7459 page = pfn_to_page(pfn);
7460 /*
7461 * The HWPoisoned page may be not in buddy system, and
7462 * page_count() is not 0.
7463 */
7464 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7465 pfn++;
7466 SetPageReserved(page);
7467 continue;
7468 }
7469
7470 BUG_ON(page_count(page));
7471 BUG_ON(!PageBuddy(page));
7472 order = page_order(page);
7473 #ifdef CONFIG_DEBUG_VM
7474 pr_info("remove from free list %lx %d %lx\n",
7475 pfn, 1 << order, end_pfn);
7476 #endif
7477 list_del(&page->lru);
7478 rmv_page_order(page);
7479 zone->free_area[order].nr_free--;
7480 for (i = 0; i < (1 << order); i++)
7481 SetPageReserved((page+i));
7482 pfn += (1 << order);
7483 }
7484 spin_unlock_irqrestore(&zone->lock, flags);
7485 }
7486 #endif
7487
7488 bool is_free_buddy_page(struct page *page)
7489 {
7490 struct zone *zone = page_zone(page);
7491 unsigned long pfn = page_to_pfn(page);
7492 unsigned long flags;
7493 unsigned int order;
7494
7495 spin_lock_irqsave(&zone->lock, flags);
7496 for (order = 0; order < MAX_ORDER; order++) {
7497 struct page *page_head = page - (pfn & ((1 << order) - 1));
7498
7499 if (PageBuddy(page_head) && page_order(page_head) >= order)
7500 break;
7501 }
7502 spin_unlock_irqrestore(&zone->lock, flags);
7503
7504 return order < MAX_ORDER;
7505 }
This page took 0.195224 seconds and 5 git commands to generate.