514fd80081149708dc6e2e0eb533ea9c726df216
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 bool oom_killer_disabled __read_mostly;
248
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
255 unsigned long sp, start_pfn;
256
257 do {
258 seq = zone_span_seqbegin(zone);
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
261 if (!zone_spans_pfn(zone, pfn))
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
265 if (ret)
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
269
270 return ret;
271 }
272
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 if (!pfn_valid_within(page_to_pfn(page)))
276 return 0;
277 if (zone != page_zone(page))
278 return 0;
279
280 return 1;
281 }
282 /*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 if (page_outside_zone_boundaries(zone, page))
288 return 1;
289 if (!page_is_consistent(zone, page))
290 return 1;
291
292 return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 return 0;
298 }
299 #endif
300
301 static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
303 {
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
310 page_mapcount_reset(page); /* remove PageBuddy */
311 return;
312 }
313
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
335 current->comm, page_to_pfn(page));
336 dump_page_badflags(page, reason, bad_flags);
337
338 print_modules();
339 dump_stack();
340 out:
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345
346 /*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
355 *
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
359 */
360
361 static void free_compound_page(struct page *page)
362 {
363 __free_pages_ok(page, compound_order(page));
364 }
365
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376 set_page_count(p, 0);
377 p->first_page = page;
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
381 }
382 }
383
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 int i;
388 int nr_pages = 1 << order;
389 int bad = 0;
390
391 if (unlikely(compound_order(page) != order)) {
392 bad_page(page, "wrong compound order", 0);
393 bad++;
394 }
395
396 __ClearPageHead(page);
397
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
400
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
406 bad++;
407 }
408 __ClearPageTail(p);
409 }
410
411 return bad;
412 }
413
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
416 {
417 int i;
418
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426 }
427
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430
431 static int __init debug_guardpage_minorder_setup(char *buf)
432 {
433 unsigned long res;
434
435 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
436 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
437 return 0;
438 }
439 _debug_guardpage_minorder = res;
440 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
441 return 0;
442 }
443 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
444
445 static inline void set_page_guard_flag(struct page *page)
446 {
447 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
448 }
449
450 static inline void clear_page_guard_flag(struct page *page)
451 {
452 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
453 }
454 #else
455 static inline void set_page_guard_flag(struct page *page) { }
456 static inline void clear_page_guard_flag(struct page *page) { }
457 #endif
458
459 static inline void set_page_order(struct page *page, unsigned int order)
460 {
461 set_page_private(page, order);
462 __SetPageBuddy(page);
463 }
464
465 static inline void rmv_page_order(struct page *page)
466 {
467 __ClearPageBuddy(page);
468 set_page_private(page, 0);
469 }
470
471 /*
472 * Locate the struct page for both the matching buddy in our
473 * pair (buddy1) and the combined O(n+1) page they form (page).
474 *
475 * 1) Any buddy B1 will have an order O twin B2 which satisfies
476 * the following equation:
477 * B2 = B1 ^ (1 << O)
478 * For example, if the starting buddy (buddy2) is #8 its order
479 * 1 buddy is #10:
480 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
481 *
482 * 2) Any buddy B will have an order O+1 parent P which
483 * satisfies the following equation:
484 * P = B & ~(1 << O)
485 *
486 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
487 */
488 static inline unsigned long
489 __find_buddy_index(unsigned long page_idx, unsigned int order)
490 {
491 return page_idx ^ (1 << order);
492 }
493
494 /*
495 * This function checks whether a page is free && is the buddy
496 * we can do coalesce a page and its buddy if
497 * (a) the buddy is not in a hole &&
498 * (b) the buddy is in the buddy system &&
499 * (c) a page and its buddy have the same order &&
500 * (d) a page and its buddy are in the same zone.
501 *
502 * For recording whether a page is in the buddy system, we set ->_mapcount
503 * PAGE_BUDDY_MAPCOUNT_VALUE.
504 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
505 * serialized by zone->lock.
506 *
507 * For recording page's order, we use page_private(page).
508 */
509 static inline int page_is_buddy(struct page *page, struct page *buddy,
510 unsigned int order)
511 {
512 if (!pfn_valid_within(page_to_pfn(buddy)))
513 return 0;
514
515 if (page_is_guard(buddy) && page_order(buddy) == order) {
516 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
517
518 if (page_zone_id(page) != page_zone_id(buddy))
519 return 0;
520
521 return 1;
522 }
523
524 if (PageBuddy(buddy) && page_order(buddy) == order) {
525 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
526
527 /*
528 * zone check is done late to avoid uselessly
529 * calculating zone/node ids for pages that could
530 * never merge.
531 */
532 if (page_zone_id(page) != page_zone_id(buddy))
533 return 0;
534
535 return 1;
536 }
537 return 0;
538 }
539
540 /*
541 * Freeing function for a buddy system allocator.
542 *
543 * The concept of a buddy system is to maintain direct-mapped table
544 * (containing bit values) for memory blocks of various "orders".
545 * The bottom level table contains the map for the smallest allocatable
546 * units of memory (here, pages), and each level above it describes
547 * pairs of units from the levels below, hence, "buddies".
548 * At a high level, all that happens here is marking the table entry
549 * at the bottom level available, and propagating the changes upward
550 * as necessary, plus some accounting needed to play nicely with other
551 * parts of the VM system.
552 * At each level, we keep a list of pages, which are heads of continuous
553 * free pages of length of (1 << order) and marked with _mapcount
554 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
555 * field.
556 * So when we are allocating or freeing one, we can derive the state of the
557 * other. That is, if we allocate a small block, and both were
558 * free, the remainder of the region must be split into blocks.
559 * If a block is freed, and its buddy is also free, then this
560 * triggers coalescing into a block of larger size.
561 *
562 * -- nyc
563 */
564
565 static inline void __free_one_page(struct page *page,
566 unsigned long pfn,
567 struct zone *zone, unsigned int order,
568 int migratetype)
569 {
570 unsigned long page_idx;
571 unsigned long combined_idx;
572 unsigned long uninitialized_var(buddy_idx);
573 struct page *buddy;
574
575 VM_BUG_ON(!zone_is_initialized(zone));
576
577 if (unlikely(PageCompound(page)))
578 if (unlikely(destroy_compound_page(page, order)))
579 return;
580
581 VM_BUG_ON(migratetype == -1);
582
583 page_idx = pfn & ((1 << MAX_ORDER) - 1);
584
585 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
586 VM_BUG_ON_PAGE(bad_range(zone, page), page);
587
588 while (order < MAX_ORDER-1) {
589 buddy_idx = __find_buddy_index(page_idx, order);
590 buddy = page + (buddy_idx - page_idx);
591 if (!page_is_buddy(page, buddy, order))
592 break;
593 /*
594 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
595 * merge with it and move up one order.
596 */
597 if (page_is_guard(buddy)) {
598 clear_page_guard_flag(buddy);
599 set_page_private(page, 0);
600 __mod_zone_freepage_state(zone, 1 << order,
601 migratetype);
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
607 combined_idx = buddy_idx & page_idx;
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
623 struct page *higher_page, *higher_buddy;
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
627 higher_buddy = higher_page + (buddy_idx - combined_idx);
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636 out:
637 zone->free_area[order].nr_free++;
638 }
639
640 static inline int free_pages_check(struct page *page)
641 {
642 const char *bad_reason = NULL;
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
655 if (unlikely(mem_cgroup_bad_page_check(page)))
656 bad_reason = "cgroup check failed";
657 if (unlikely(bad_reason)) {
658 bad_page(page, bad_reason, bad_flags);
659 return 1;
660 }
661 page_cpupid_reset_last(page);
662 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
663 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
664 return 0;
665 }
666
667 /*
668 * Frees a number of pages from the PCP lists
669 * Assumes all pages on list are in same zone, and of same order.
670 * count is the number of pages to free.
671 *
672 * If the zone was previously in an "all pages pinned" state then look to
673 * see if this freeing clears that state.
674 *
675 * And clear the zone's pages_scanned counter, to hold off the "all pages are
676 * pinned" detection logic.
677 */
678 static void free_pcppages_bulk(struct zone *zone, int count,
679 struct per_cpu_pages *pcp)
680 {
681 int migratetype = 0;
682 int batch_free = 0;
683 int to_free = count;
684 unsigned long nr_scanned;
685
686 spin_lock(&zone->lock);
687 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
688 if (nr_scanned)
689 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
690
691 while (to_free) {
692 struct page *page;
693 struct list_head *list;
694
695 /*
696 * Remove pages from lists in a round-robin fashion. A
697 * batch_free count is maintained that is incremented when an
698 * empty list is encountered. This is so more pages are freed
699 * off fuller lists instead of spinning excessively around empty
700 * lists
701 */
702 do {
703 batch_free++;
704 if (++migratetype == MIGRATE_PCPTYPES)
705 migratetype = 0;
706 list = &pcp->lists[migratetype];
707 } while (list_empty(list));
708
709 /* This is the only non-empty list. Free them all. */
710 if (batch_free == MIGRATE_PCPTYPES)
711 batch_free = to_free;
712
713 do {
714 int mt; /* migratetype of the to-be-freed page */
715
716 page = list_entry(list->prev, struct page, lru);
717 /* must delete as __free_one_page list manipulates */
718 list_del(&page->lru);
719 mt = get_freepage_migratetype(page);
720 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
721 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
722 trace_mm_page_pcpu_drain(page, 0, mt);
723 if (likely(!is_migrate_isolate_page(page))) {
724 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
725 if (is_migrate_cma(mt))
726 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
727 }
728 } while (--to_free && --batch_free && !list_empty(list));
729 }
730 spin_unlock(&zone->lock);
731 }
732
733 static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
735 unsigned int order,
736 int migratetype)
737 {
738 unsigned long nr_scanned;
739 spin_lock(&zone->lock);
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
743
744 __free_one_page(page, pfn, zone, order, migratetype);
745 if (unlikely(!is_migrate_isolate(migratetype)))
746 __mod_zone_freepage_state(zone, 1 << order, migratetype);
747 spin_unlock(&zone->lock);
748 }
749
750 static bool free_pages_prepare(struct page *page, unsigned int order)
751 {
752 int i;
753 int bad = 0;
754
755 trace_mm_page_free(page, order);
756 kmemcheck_free_shadow(page, order);
757
758 if (PageAnon(page))
759 page->mapping = NULL;
760 for (i = 0; i < (1 << order); i++)
761 bad += free_pages_check(page + i);
762 if (bad)
763 return false;
764
765 if (!PageHighMem(page)) {
766 debug_check_no_locks_freed(page_address(page),
767 PAGE_SIZE << order);
768 debug_check_no_obj_freed(page_address(page),
769 PAGE_SIZE << order);
770 }
771 arch_free_page(page, order);
772 kernel_map_pages(page, 1 << order, 0);
773
774 return true;
775 }
776
777 static void __free_pages_ok(struct page *page, unsigned int order)
778 {
779 unsigned long flags;
780 int migratetype;
781 unsigned long pfn = page_to_pfn(page);
782
783 if (!free_pages_prepare(page, order))
784 return;
785
786 migratetype = get_pfnblock_migratetype(page, pfn);
787 local_irq_save(flags);
788 __count_vm_events(PGFREE, 1 << order);
789 set_freepage_migratetype(page, migratetype);
790 free_one_page(page_zone(page), page, pfn, order, migratetype);
791 local_irq_restore(flags);
792 }
793
794 void __init __free_pages_bootmem(struct page *page, unsigned int order)
795 {
796 unsigned int nr_pages = 1 << order;
797 struct page *p = page;
798 unsigned int loop;
799
800 prefetchw(p);
801 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
802 prefetchw(p + 1);
803 __ClearPageReserved(p);
804 set_page_count(p, 0);
805 }
806 __ClearPageReserved(p);
807 set_page_count(p, 0);
808
809 page_zone(page)->managed_pages += nr_pages;
810 set_page_refcounted(page);
811 __free_pages(page, order);
812 }
813
814 #ifdef CONFIG_CMA
815 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
816 void __init init_cma_reserved_pageblock(struct page *page)
817 {
818 unsigned i = pageblock_nr_pages;
819 struct page *p = page;
820
821 do {
822 __ClearPageReserved(p);
823 set_page_count(p, 0);
824 } while (++p, --i);
825
826 set_pageblock_migratetype(page, MIGRATE_CMA);
827
828 if (pageblock_order >= MAX_ORDER) {
829 i = pageblock_nr_pages;
830 p = page;
831 do {
832 set_page_refcounted(p);
833 __free_pages(p, MAX_ORDER - 1);
834 p += MAX_ORDER_NR_PAGES;
835 } while (i -= MAX_ORDER_NR_PAGES);
836 } else {
837 set_page_refcounted(page);
838 __free_pages(page, pageblock_order);
839 }
840
841 adjust_managed_page_count(page, pageblock_nr_pages);
842 }
843 #endif
844
845 /*
846 * The order of subdivision here is critical for the IO subsystem.
847 * Please do not alter this order without good reasons and regression
848 * testing. Specifically, as large blocks of memory are subdivided,
849 * the order in which smaller blocks are delivered depends on the order
850 * they're subdivided in this function. This is the primary factor
851 * influencing the order in which pages are delivered to the IO
852 * subsystem according to empirical testing, and this is also justified
853 * by considering the behavior of a buddy system containing a single
854 * large block of memory acted on by a series of small allocations.
855 * This behavior is a critical factor in sglist merging's success.
856 *
857 * -- nyc
858 */
859 static inline void expand(struct zone *zone, struct page *page,
860 int low, int high, struct free_area *area,
861 int migratetype)
862 {
863 unsigned long size = 1 << high;
864
865 while (high > low) {
866 area--;
867 high--;
868 size >>= 1;
869 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
870
871 #ifdef CONFIG_DEBUG_PAGEALLOC
872 if (high < debug_guardpage_minorder()) {
873 /*
874 * Mark as guard pages (or page), that will allow to
875 * merge back to allocator when buddy will be freed.
876 * Corresponding page table entries will not be touched,
877 * pages will stay not present in virtual address space
878 */
879 INIT_LIST_HEAD(&page[size].lru);
880 set_page_guard_flag(&page[size]);
881 set_page_private(&page[size], high);
882 /* Guard pages are not available for any usage */
883 __mod_zone_freepage_state(zone, -(1 << high),
884 migratetype);
885 continue;
886 }
887 #endif
888 list_add(&page[size].lru, &area->free_list[migratetype]);
889 area->nr_free++;
890 set_page_order(&page[size], high);
891 }
892 }
893
894 /*
895 * This page is about to be returned from the page allocator
896 */
897 static inline int check_new_page(struct page *page)
898 {
899 const char *bad_reason = NULL;
900 unsigned long bad_flags = 0;
901
902 if (unlikely(page_mapcount(page)))
903 bad_reason = "nonzero mapcount";
904 if (unlikely(page->mapping != NULL))
905 bad_reason = "non-NULL mapping";
906 if (unlikely(atomic_read(&page->_count) != 0))
907 bad_reason = "nonzero _count";
908 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
909 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
910 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
911 }
912 if (unlikely(mem_cgroup_bad_page_check(page)))
913 bad_reason = "cgroup check failed";
914 if (unlikely(bad_reason)) {
915 bad_page(page, bad_reason, bad_flags);
916 return 1;
917 }
918 return 0;
919 }
920
921 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
922 {
923 int i;
924
925 for (i = 0; i < (1 << order); i++) {
926 struct page *p = page + i;
927 if (unlikely(check_new_page(p)))
928 return 1;
929 }
930
931 set_page_private(page, 0);
932 set_page_refcounted(page);
933
934 arch_alloc_page(page, order);
935 kernel_map_pages(page, 1 << order, 1);
936
937 if (gfp_flags & __GFP_ZERO)
938 prep_zero_page(page, order, gfp_flags);
939
940 if (order && (gfp_flags & __GFP_COMP))
941 prep_compound_page(page, order);
942
943 return 0;
944 }
945
946 /*
947 * Go through the free lists for the given migratetype and remove
948 * the smallest available page from the freelists
949 */
950 static inline
951 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
952 int migratetype)
953 {
954 unsigned int current_order;
955 struct free_area *area;
956 struct page *page;
957
958 /* Find a page of the appropriate size in the preferred list */
959 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
960 area = &(zone->free_area[current_order]);
961 if (list_empty(&area->free_list[migratetype]))
962 continue;
963
964 page = list_entry(area->free_list[migratetype].next,
965 struct page, lru);
966 list_del(&page->lru);
967 rmv_page_order(page);
968 area->nr_free--;
969 expand(zone, page, order, current_order, area, migratetype);
970 set_freepage_migratetype(page, migratetype);
971 return page;
972 }
973
974 return NULL;
975 }
976
977
978 /*
979 * This array describes the order lists are fallen back to when
980 * the free lists for the desirable migrate type are depleted
981 */
982 static int fallbacks[MIGRATE_TYPES][4] = {
983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
985 #ifdef CONFIG_CMA
986 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
987 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
988 #else
989 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
990 #endif
991 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
992 #ifdef CONFIG_MEMORY_ISOLATION
993 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
994 #endif
995 };
996
997 /*
998 * Move the free pages in a range to the free lists of the requested type.
999 * Note that start_page and end_pages are not aligned on a pageblock
1000 * boundary. If alignment is required, use move_freepages_block()
1001 */
1002 int move_freepages(struct zone *zone,
1003 struct page *start_page, struct page *end_page,
1004 int migratetype)
1005 {
1006 struct page *page;
1007 unsigned long order;
1008 int pages_moved = 0;
1009
1010 #ifndef CONFIG_HOLES_IN_ZONE
1011 /*
1012 * page_zone is not safe to call in this context when
1013 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1014 * anyway as we check zone boundaries in move_freepages_block().
1015 * Remove at a later date when no bug reports exist related to
1016 * grouping pages by mobility
1017 */
1018 BUG_ON(page_zone(start_page) != page_zone(end_page));
1019 #endif
1020
1021 for (page = start_page; page <= end_page;) {
1022 /* Make sure we are not inadvertently changing nodes */
1023 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1024
1025 if (!pfn_valid_within(page_to_pfn(page))) {
1026 page++;
1027 continue;
1028 }
1029
1030 if (!PageBuddy(page)) {
1031 page++;
1032 continue;
1033 }
1034
1035 order = page_order(page);
1036 list_move(&page->lru,
1037 &zone->free_area[order].free_list[migratetype]);
1038 set_freepage_migratetype(page, migratetype);
1039 page += 1 << order;
1040 pages_moved += 1 << order;
1041 }
1042
1043 return pages_moved;
1044 }
1045
1046 int move_freepages_block(struct zone *zone, struct page *page,
1047 int migratetype)
1048 {
1049 unsigned long start_pfn, end_pfn;
1050 struct page *start_page, *end_page;
1051
1052 start_pfn = page_to_pfn(page);
1053 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1054 start_page = pfn_to_page(start_pfn);
1055 end_page = start_page + pageblock_nr_pages - 1;
1056 end_pfn = start_pfn + pageblock_nr_pages - 1;
1057
1058 /* Do not cross zone boundaries */
1059 if (!zone_spans_pfn(zone, start_pfn))
1060 start_page = page;
1061 if (!zone_spans_pfn(zone, end_pfn))
1062 return 0;
1063
1064 return move_freepages(zone, start_page, end_page, migratetype);
1065 }
1066
1067 static void change_pageblock_range(struct page *pageblock_page,
1068 int start_order, int migratetype)
1069 {
1070 int nr_pageblocks = 1 << (start_order - pageblock_order);
1071
1072 while (nr_pageblocks--) {
1073 set_pageblock_migratetype(pageblock_page, migratetype);
1074 pageblock_page += pageblock_nr_pages;
1075 }
1076 }
1077
1078 /*
1079 * If breaking a large block of pages, move all free pages to the preferred
1080 * allocation list. If falling back for a reclaimable kernel allocation, be
1081 * more aggressive about taking ownership of free pages.
1082 *
1083 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1084 * nor move CMA pages to different free lists. We don't want unmovable pages
1085 * to be allocated from MIGRATE_CMA areas.
1086 *
1087 * Returns the new migratetype of the pageblock (or the same old migratetype
1088 * if it was unchanged).
1089 */
1090 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1091 int start_type, int fallback_type)
1092 {
1093 int current_order = page_order(page);
1094
1095 /*
1096 * When borrowing from MIGRATE_CMA, we need to release the excess
1097 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1098 * is set to CMA so it is returned to the correct freelist in case
1099 * the page ends up being not actually allocated from the pcp lists.
1100 */
1101 if (is_migrate_cma(fallback_type))
1102 return fallback_type;
1103
1104 /* Take ownership for orders >= pageblock_order */
1105 if (current_order >= pageblock_order) {
1106 change_pageblock_range(page, current_order, start_type);
1107 return start_type;
1108 }
1109
1110 if (current_order >= pageblock_order / 2 ||
1111 start_type == MIGRATE_RECLAIMABLE ||
1112 page_group_by_mobility_disabled) {
1113 int pages;
1114
1115 pages = move_freepages_block(zone, page, start_type);
1116
1117 /* Claim the whole block if over half of it is free */
1118 if (pages >= (1 << (pageblock_order-1)) ||
1119 page_group_by_mobility_disabled) {
1120
1121 set_pageblock_migratetype(page, start_type);
1122 return start_type;
1123 }
1124
1125 }
1126
1127 return fallback_type;
1128 }
1129
1130 /* Remove an element from the buddy allocator from the fallback list */
1131 static inline struct page *
1132 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1133 {
1134 struct free_area *area;
1135 unsigned int current_order;
1136 struct page *page;
1137 int migratetype, new_type, i;
1138
1139 /* Find the largest possible block of pages in the other list */
1140 for (current_order = MAX_ORDER-1;
1141 current_order >= order && current_order <= MAX_ORDER-1;
1142 --current_order) {
1143 for (i = 0;; i++) {
1144 migratetype = fallbacks[start_migratetype][i];
1145
1146 /* MIGRATE_RESERVE handled later if necessary */
1147 if (migratetype == MIGRATE_RESERVE)
1148 break;
1149
1150 area = &(zone->free_area[current_order]);
1151 if (list_empty(&area->free_list[migratetype]))
1152 continue;
1153
1154 page = list_entry(area->free_list[migratetype].next,
1155 struct page, lru);
1156 area->nr_free--;
1157
1158 new_type = try_to_steal_freepages(zone, page,
1159 start_migratetype,
1160 migratetype);
1161
1162 /* Remove the page from the freelists */
1163 list_del(&page->lru);
1164 rmv_page_order(page);
1165
1166 expand(zone, page, order, current_order, area,
1167 new_type);
1168 /* The freepage_migratetype may differ from pageblock's
1169 * migratetype depending on the decisions in
1170 * try_to_steal_freepages. This is OK as long as it does
1171 * not differ for MIGRATE_CMA type.
1172 */
1173 set_freepage_migratetype(page, new_type);
1174
1175 trace_mm_page_alloc_extfrag(page, order, current_order,
1176 start_migratetype, migratetype, new_type);
1177
1178 return page;
1179 }
1180 }
1181
1182 return NULL;
1183 }
1184
1185 /*
1186 * Do the hard work of removing an element from the buddy allocator.
1187 * Call me with the zone->lock already held.
1188 */
1189 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1190 int migratetype)
1191 {
1192 struct page *page;
1193
1194 retry_reserve:
1195 page = __rmqueue_smallest(zone, order, migratetype);
1196
1197 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1198 page = __rmqueue_fallback(zone, order, migratetype);
1199
1200 /*
1201 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1202 * is used because __rmqueue_smallest is an inline function
1203 * and we want just one call site
1204 */
1205 if (!page) {
1206 migratetype = MIGRATE_RESERVE;
1207 goto retry_reserve;
1208 }
1209 }
1210
1211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1212 return page;
1213 }
1214
1215 /*
1216 * Obtain a specified number of elements from the buddy allocator, all under
1217 * a single hold of the lock, for efficiency. Add them to the supplied list.
1218 * Returns the number of new pages which were placed at *list.
1219 */
1220 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1221 unsigned long count, struct list_head *list,
1222 int migratetype, bool cold)
1223 {
1224 int i;
1225
1226 spin_lock(&zone->lock);
1227 for (i = 0; i < count; ++i) {
1228 struct page *page = __rmqueue(zone, order, migratetype);
1229 if (unlikely(page == NULL))
1230 break;
1231
1232 /*
1233 * Split buddy pages returned by expand() are received here
1234 * in physical page order. The page is added to the callers and
1235 * list and the list head then moves forward. From the callers
1236 * perspective, the linked list is ordered by page number in
1237 * some conditions. This is useful for IO devices that can
1238 * merge IO requests if the physical pages are ordered
1239 * properly.
1240 */
1241 if (likely(!cold))
1242 list_add(&page->lru, list);
1243 else
1244 list_add_tail(&page->lru, list);
1245 list = &page->lru;
1246 if (is_migrate_cma(get_freepage_migratetype(page)))
1247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1248 -(1 << order));
1249 }
1250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1251 spin_unlock(&zone->lock);
1252 return i;
1253 }
1254
1255 #ifdef CONFIG_NUMA
1256 /*
1257 * Called from the vmstat counter updater to drain pagesets of this
1258 * currently executing processor on remote nodes after they have
1259 * expired.
1260 *
1261 * Note that this function must be called with the thread pinned to
1262 * a single processor.
1263 */
1264 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1265 {
1266 unsigned long flags;
1267 int to_drain, batch;
1268
1269 local_irq_save(flags);
1270 batch = ACCESS_ONCE(pcp->batch);
1271 to_drain = min(pcp->count, batch);
1272 if (to_drain > 0) {
1273 free_pcppages_bulk(zone, to_drain, pcp);
1274 pcp->count -= to_drain;
1275 }
1276 local_irq_restore(flags);
1277 }
1278 #endif
1279
1280 /*
1281 * Drain pages of the indicated processor.
1282 *
1283 * The processor must either be the current processor and the
1284 * thread pinned to the current processor or a processor that
1285 * is not online.
1286 */
1287 static void drain_pages(unsigned int cpu)
1288 {
1289 unsigned long flags;
1290 struct zone *zone;
1291
1292 for_each_populated_zone(zone) {
1293 struct per_cpu_pageset *pset;
1294 struct per_cpu_pages *pcp;
1295
1296 local_irq_save(flags);
1297 pset = per_cpu_ptr(zone->pageset, cpu);
1298
1299 pcp = &pset->pcp;
1300 if (pcp->count) {
1301 free_pcppages_bulk(zone, pcp->count, pcp);
1302 pcp->count = 0;
1303 }
1304 local_irq_restore(flags);
1305 }
1306 }
1307
1308 /*
1309 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1310 */
1311 void drain_local_pages(void *arg)
1312 {
1313 drain_pages(smp_processor_id());
1314 }
1315
1316 /*
1317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1318 *
1319 * Note that this code is protected against sending an IPI to an offline
1320 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1321 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1322 * nothing keeps CPUs from showing up after we populated the cpumask and
1323 * before the call to on_each_cpu_mask().
1324 */
1325 void drain_all_pages(void)
1326 {
1327 int cpu;
1328 struct per_cpu_pageset *pcp;
1329 struct zone *zone;
1330
1331 /*
1332 * Allocate in the BSS so we wont require allocation in
1333 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1334 */
1335 static cpumask_t cpus_with_pcps;
1336
1337 /*
1338 * We don't care about racing with CPU hotplug event
1339 * as offline notification will cause the notified
1340 * cpu to drain that CPU pcps and on_each_cpu_mask
1341 * disables preemption as part of its processing
1342 */
1343 for_each_online_cpu(cpu) {
1344 bool has_pcps = false;
1345 for_each_populated_zone(zone) {
1346 pcp = per_cpu_ptr(zone->pageset, cpu);
1347 if (pcp->pcp.count) {
1348 has_pcps = true;
1349 break;
1350 }
1351 }
1352 if (has_pcps)
1353 cpumask_set_cpu(cpu, &cpus_with_pcps);
1354 else
1355 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1356 }
1357 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1358 }
1359
1360 #ifdef CONFIG_HIBERNATION
1361
1362 void mark_free_pages(struct zone *zone)
1363 {
1364 unsigned long pfn, max_zone_pfn;
1365 unsigned long flags;
1366 unsigned int order, t;
1367 struct list_head *curr;
1368
1369 if (zone_is_empty(zone))
1370 return;
1371
1372 spin_lock_irqsave(&zone->lock, flags);
1373
1374 max_zone_pfn = zone_end_pfn(zone);
1375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1376 if (pfn_valid(pfn)) {
1377 struct page *page = pfn_to_page(pfn);
1378
1379 if (!swsusp_page_is_forbidden(page))
1380 swsusp_unset_page_free(page);
1381 }
1382
1383 for_each_migratetype_order(order, t) {
1384 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1385 unsigned long i;
1386
1387 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1388 for (i = 0; i < (1UL << order); i++)
1389 swsusp_set_page_free(pfn_to_page(pfn + i));
1390 }
1391 }
1392 spin_unlock_irqrestore(&zone->lock, flags);
1393 }
1394 #endif /* CONFIG_PM */
1395
1396 /*
1397 * Free a 0-order page
1398 * cold == true ? free a cold page : free a hot page
1399 */
1400 void free_hot_cold_page(struct page *page, bool cold)
1401 {
1402 struct zone *zone = page_zone(page);
1403 struct per_cpu_pages *pcp;
1404 unsigned long flags;
1405 unsigned long pfn = page_to_pfn(page);
1406 int migratetype;
1407
1408 if (!free_pages_prepare(page, 0))
1409 return;
1410
1411 migratetype = get_pfnblock_migratetype(page, pfn);
1412 set_freepage_migratetype(page, migratetype);
1413 local_irq_save(flags);
1414 __count_vm_event(PGFREE);
1415
1416 /*
1417 * We only track unmovable, reclaimable and movable on pcp lists.
1418 * Free ISOLATE pages back to the allocator because they are being
1419 * offlined but treat RESERVE as movable pages so we can get those
1420 * areas back if necessary. Otherwise, we may have to free
1421 * excessively into the page allocator
1422 */
1423 if (migratetype >= MIGRATE_PCPTYPES) {
1424 if (unlikely(is_migrate_isolate(migratetype))) {
1425 free_one_page(zone, page, pfn, 0, migratetype);
1426 goto out;
1427 }
1428 migratetype = MIGRATE_MOVABLE;
1429 }
1430
1431 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1432 if (!cold)
1433 list_add(&page->lru, &pcp->lists[migratetype]);
1434 else
1435 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1436 pcp->count++;
1437 if (pcp->count >= pcp->high) {
1438 unsigned long batch = ACCESS_ONCE(pcp->batch);
1439 free_pcppages_bulk(zone, batch, pcp);
1440 pcp->count -= batch;
1441 }
1442
1443 out:
1444 local_irq_restore(flags);
1445 }
1446
1447 /*
1448 * Free a list of 0-order pages
1449 */
1450 void free_hot_cold_page_list(struct list_head *list, bool cold)
1451 {
1452 struct page *page, *next;
1453
1454 list_for_each_entry_safe(page, next, list, lru) {
1455 trace_mm_page_free_batched(page, cold);
1456 free_hot_cold_page(page, cold);
1457 }
1458 }
1459
1460 /*
1461 * split_page takes a non-compound higher-order page, and splits it into
1462 * n (1<<order) sub-pages: page[0..n]
1463 * Each sub-page must be freed individually.
1464 *
1465 * Note: this is probably too low level an operation for use in drivers.
1466 * Please consult with lkml before using this in your driver.
1467 */
1468 void split_page(struct page *page, unsigned int order)
1469 {
1470 int i;
1471
1472 VM_BUG_ON_PAGE(PageCompound(page), page);
1473 VM_BUG_ON_PAGE(!page_count(page), page);
1474
1475 #ifdef CONFIG_KMEMCHECK
1476 /*
1477 * Split shadow pages too, because free(page[0]) would
1478 * otherwise free the whole shadow.
1479 */
1480 if (kmemcheck_page_is_tracked(page))
1481 split_page(virt_to_page(page[0].shadow), order);
1482 #endif
1483
1484 for (i = 1; i < (1 << order); i++)
1485 set_page_refcounted(page + i);
1486 }
1487 EXPORT_SYMBOL_GPL(split_page);
1488
1489 static int __isolate_free_page(struct page *page, unsigned int order)
1490 {
1491 unsigned long watermark;
1492 struct zone *zone;
1493 int mt;
1494
1495 BUG_ON(!PageBuddy(page));
1496
1497 zone = page_zone(page);
1498 mt = get_pageblock_migratetype(page);
1499
1500 if (!is_migrate_isolate(mt)) {
1501 /* Obey watermarks as if the page was being allocated */
1502 watermark = low_wmark_pages(zone) + (1 << order);
1503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1504 return 0;
1505
1506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1507 }
1508
1509 /* Remove page from free list */
1510 list_del(&page->lru);
1511 zone->free_area[order].nr_free--;
1512 rmv_page_order(page);
1513
1514 /* Set the pageblock if the isolated page is at least a pageblock */
1515 if (order >= pageblock_order - 1) {
1516 struct page *endpage = page + (1 << order) - 1;
1517 for (; page < endpage; page += pageblock_nr_pages) {
1518 int mt = get_pageblock_migratetype(page);
1519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1520 set_pageblock_migratetype(page,
1521 MIGRATE_MOVABLE);
1522 }
1523 }
1524
1525 return 1UL << order;
1526 }
1527
1528 /*
1529 * Similar to split_page except the page is already free. As this is only
1530 * being used for migration, the migratetype of the block also changes.
1531 * As this is called with interrupts disabled, the caller is responsible
1532 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1533 * are enabled.
1534 *
1535 * Note: this is probably too low level an operation for use in drivers.
1536 * Please consult with lkml before using this in your driver.
1537 */
1538 int split_free_page(struct page *page)
1539 {
1540 unsigned int order;
1541 int nr_pages;
1542
1543 order = page_order(page);
1544
1545 nr_pages = __isolate_free_page(page, order);
1546 if (!nr_pages)
1547 return 0;
1548
1549 /* Split into individual pages */
1550 set_page_refcounted(page);
1551 split_page(page, order);
1552 return nr_pages;
1553 }
1554
1555 /*
1556 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1557 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1558 * or two.
1559 */
1560 static inline
1561 struct page *buffered_rmqueue(struct zone *preferred_zone,
1562 struct zone *zone, unsigned int order,
1563 gfp_t gfp_flags, int migratetype)
1564 {
1565 unsigned long flags;
1566 struct page *page;
1567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1568
1569 again:
1570 if (likely(order == 0)) {
1571 struct per_cpu_pages *pcp;
1572 struct list_head *list;
1573
1574 local_irq_save(flags);
1575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1576 list = &pcp->lists[migratetype];
1577 if (list_empty(list)) {
1578 pcp->count += rmqueue_bulk(zone, 0,
1579 pcp->batch, list,
1580 migratetype, cold);
1581 if (unlikely(list_empty(list)))
1582 goto failed;
1583 }
1584
1585 if (cold)
1586 page = list_entry(list->prev, struct page, lru);
1587 else
1588 page = list_entry(list->next, struct page, lru);
1589
1590 list_del(&page->lru);
1591 pcp->count--;
1592 } else {
1593 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1594 /*
1595 * __GFP_NOFAIL is not to be used in new code.
1596 *
1597 * All __GFP_NOFAIL callers should be fixed so that they
1598 * properly detect and handle allocation failures.
1599 *
1600 * We most definitely don't want callers attempting to
1601 * allocate greater than order-1 page units with
1602 * __GFP_NOFAIL.
1603 */
1604 WARN_ON_ONCE(order > 1);
1605 }
1606 spin_lock_irqsave(&zone->lock, flags);
1607 page = __rmqueue(zone, order, migratetype);
1608 spin_unlock(&zone->lock);
1609 if (!page)
1610 goto failed;
1611 __mod_zone_freepage_state(zone, -(1 << order),
1612 get_freepage_migratetype(page));
1613 }
1614
1615 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1616 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1617 !zone_is_fair_depleted(zone))
1618 zone_set_flag(zone, ZONE_FAIR_DEPLETED);
1619
1620 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1621 zone_statistics(preferred_zone, zone, gfp_flags);
1622 local_irq_restore(flags);
1623
1624 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1625 if (prep_new_page(page, order, gfp_flags))
1626 goto again;
1627 return page;
1628
1629 failed:
1630 local_irq_restore(flags);
1631 return NULL;
1632 }
1633
1634 #ifdef CONFIG_FAIL_PAGE_ALLOC
1635
1636 static struct {
1637 struct fault_attr attr;
1638
1639 u32 ignore_gfp_highmem;
1640 u32 ignore_gfp_wait;
1641 u32 min_order;
1642 } fail_page_alloc = {
1643 .attr = FAULT_ATTR_INITIALIZER,
1644 .ignore_gfp_wait = 1,
1645 .ignore_gfp_highmem = 1,
1646 .min_order = 1,
1647 };
1648
1649 static int __init setup_fail_page_alloc(char *str)
1650 {
1651 return setup_fault_attr(&fail_page_alloc.attr, str);
1652 }
1653 __setup("fail_page_alloc=", setup_fail_page_alloc);
1654
1655 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1656 {
1657 if (order < fail_page_alloc.min_order)
1658 return false;
1659 if (gfp_mask & __GFP_NOFAIL)
1660 return false;
1661 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1662 return false;
1663 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1664 return false;
1665
1666 return should_fail(&fail_page_alloc.attr, 1 << order);
1667 }
1668
1669 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1670
1671 static int __init fail_page_alloc_debugfs(void)
1672 {
1673 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1674 struct dentry *dir;
1675
1676 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1677 &fail_page_alloc.attr);
1678 if (IS_ERR(dir))
1679 return PTR_ERR(dir);
1680
1681 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1682 &fail_page_alloc.ignore_gfp_wait))
1683 goto fail;
1684 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1685 &fail_page_alloc.ignore_gfp_highmem))
1686 goto fail;
1687 if (!debugfs_create_u32("min-order", mode, dir,
1688 &fail_page_alloc.min_order))
1689 goto fail;
1690
1691 return 0;
1692 fail:
1693 debugfs_remove_recursive(dir);
1694
1695 return -ENOMEM;
1696 }
1697
1698 late_initcall(fail_page_alloc_debugfs);
1699
1700 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1701
1702 #else /* CONFIG_FAIL_PAGE_ALLOC */
1703
1704 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1705 {
1706 return false;
1707 }
1708
1709 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1710
1711 /*
1712 * Return true if free pages are above 'mark'. This takes into account the order
1713 * of the allocation.
1714 */
1715 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1716 unsigned long mark, int classzone_idx, int alloc_flags,
1717 long free_pages)
1718 {
1719 /* free_pages my go negative - that's OK */
1720 long min = mark;
1721 int o;
1722 long free_cma = 0;
1723
1724 free_pages -= (1 << order) - 1;
1725 if (alloc_flags & ALLOC_HIGH)
1726 min -= min / 2;
1727 if (alloc_flags & ALLOC_HARDER)
1728 min -= min / 4;
1729 #ifdef CONFIG_CMA
1730 /* If allocation can't use CMA areas don't use free CMA pages */
1731 if (!(alloc_flags & ALLOC_CMA))
1732 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1733 #endif
1734
1735 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1736 return false;
1737 for (o = 0; o < order; o++) {
1738 /* At the next order, this order's pages become unavailable */
1739 free_pages -= z->free_area[o].nr_free << o;
1740
1741 /* Require fewer higher order pages to be free */
1742 min >>= 1;
1743
1744 if (free_pages <= min)
1745 return false;
1746 }
1747 return true;
1748 }
1749
1750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1751 int classzone_idx, int alloc_flags)
1752 {
1753 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1754 zone_page_state(z, NR_FREE_PAGES));
1755 }
1756
1757 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1758 unsigned long mark, int classzone_idx, int alloc_flags)
1759 {
1760 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1761
1762 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1763 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1764
1765 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1766 free_pages);
1767 }
1768
1769 #ifdef CONFIG_NUMA
1770 /*
1771 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1772 * skip over zones that are not allowed by the cpuset, or that have
1773 * been recently (in last second) found to be nearly full. See further
1774 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1775 * that have to skip over a lot of full or unallowed zones.
1776 *
1777 * If the zonelist cache is present in the passed zonelist, then
1778 * returns a pointer to the allowed node mask (either the current
1779 * tasks mems_allowed, or node_states[N_MEMORY].)
1780 *
1781 * If the zonelist cache is not available for this zonelist, does
1782 * nothing and returns NULL.
1783 *
1784 * If the fullzones BITMAP in the zonelist cache is stale (more than
1785 * a second since last zap'd) then we zap it out (clear its bits.)
1786 *
1787 * We hold off even calling zlc_setup, until after we've checked the
1788 * first zone in the zonelist, on the theory that most allocations will
1789 * be satisfied from that first zone, so best to examine that zone as
1790 * quickly as we can.
1791 */
1792 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1793 {
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 nodemask_t *allowednodes; /* zonelist_cache approximation */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return NULL;
1800
1801 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 zlc->last_full_zap = jiffies;
1804 }
1805
1806 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1807 &cpuset_current_mems_allowed :
1808 &node_states[N_MEMORY];
1809 return allowednodes;
1810 }
1811
1812 /*
1813 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1814 * if it is worth looking at further for free memory:
1815 * 1) Check that the zone isn't thought to be full (doesn't have its
1816 * bit set in the zonelist_cache fullzones BITMAP).
1817 * 2) Check that the zones node (obtained from the zonelist_cache
1818 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1819 * Return true (non-zero) if zone is worth looking at further, or
1820 * else return false (zero) if it is not.
1821 *
1822 * This check -ignores- the distinction between various watermarks,
1823 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1824 * found to be full for any variation of these watermarks, it will
1825 * be considered full for up to one second by all requests, unless
1826 * we are so low on memory on all allowed nodes that we are forced
1827 * into the second scan of the zonelist.
1828 *
1829 * In the second scan we ignore this zonelist cache and exactly
1830 * apply the watermarks to all zones, even it is slower to do so.
1831 * We are low on memory in the second scan, and should leave no stone
1832 * unturned looking for a free page.
1833 */
1834 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1835 nodemask_t *allowednodes)
1836 {
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838 int i; /* index of *z in zonelist zones */
1839 int n; /* node that zone *z is on */
1840
1841 zlc = zonelist->zlcache_ptr;
1842 if (!zlc)
1843 return 1;
1844
1845 i = z - zonelist->_zonerefs;
1846 n = zlc->z_to_n[i];
1847
1848 /* This zone is worth trying if it is allowed but not full */
1849 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1850 }
1851
1852 /*
1853 * Given 'z' scanning a zonelist, set the corresponding bit in
1854 * zlc->fullzones, so that subsequent attempts to allocate a page
1855 * from that zone don't waste time re-examining it.
1856 */
1857 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1858 {
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860 int i; /* index of *z in zonelist zones */
1861
1862 zlc = zonelist->zlcache_ptr;
1863 if (!zlc)
1864 return;
1865
1866 i = z - zonelist->_zonerefs;
1867
1868 set_bit(i, zlc->fullzones);
1869 }
1870
1871 /*
1872 * clear all zones full, called after direct reclaim makes progress so that
1873 * a zone that was recently full is not skipped over for up to a second
1874 */
1875 static void zlc_clear_zones_full(struct zonelist *zonelist)
1876 {
1877 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1878
1879 zlc = zonelist->zlcache_ptr;
1880 if (!zlc)
1881 return;
1882
1883 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1884 }
1885
1886 static bool zone_local(struct zone *local_zone, struct zone *zone)
1887 {
1888 return local_zone->node == zone->node;
1889 }
1890
1891 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892 {
1893 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1894 RECLAIM_DISTANCE;
1895 }
1896
1897 #else /* CONFIG_NUMA */
1898
1899 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1900 {
1901 return NULL;
1902 }
1903
1904 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1905 nodemask_t *allowednodes)
1906 {
1907 return 1;
1908 }
1909
1910 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1911 {
1912 }
1913
1914 static void zlc_clear_zones_full(struct zonelist *zonelist)
1915 {
1916 }
1917
1918 static bool zone_local(struct zone *local_zone, struct zone *zone)
1919 {
1920 return true;
1921 }
1922
1923 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1924 {
1925 return true;
1926 }
1927
1928 #endif /* CONFIG_NUMA */
1929
1930 static void reset_alloc_batches(struct zone *preferred_zone)
1931 {
1932 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1933
1934 do {
1935 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1936 high_wmark_pages(zone) - low_wmark_pages(zone) -
1937 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1938 zone_clear_flag(zone, ZONE_FAIR_DEPLETED);
1939 } while (zone++ != preferred_zone);
1940 }
1941
1942 /*
1943 * get_page_from_freelist goes through the zonelist trying to allocate
1944 * a page.
1945 */
1946 static struct page *
1947 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1948 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1949 struct zone *preferred_zone, int classzone_idx, int migratetype)
1950 {
1951 struct zoneref *z;
1952 struct page *page = NULL;
1953 struct zone *zone;
1954 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1955 int zlc_active = 0; /* set if using zonelist_cache */
1956 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1957 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1958 (gfp_mask & __GFP_WRITE);
1959 int nr_fair_skipped = 0;
1960 bool zonelist_rescan;
1961
1962 zonelist_scan:
1963 zonelist_rescan = false;
1964
1965 /*
1966 * Scan zonelist, looking for a zone with enough free.
1967 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1968 */
1969 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1970 high_zoneidx, nodemask) {
1971 unsigned long mark;
1972
1973 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1974 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1975 continue;
1976 if (cpusets_enabled() &&
1977 (alloc_flags & ALLOC_CPUSET) &&
1978 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1979 continue;
1980 /*
1981 * Distribute pages in proportion to the individual
1982 * zone size to ensure fair page aging. The zone a
1983 * page was allocated in should have no effect on the
1984 * time the page has in memory before being reclaimed.
1985 */
1986 if (alloc_flags & ALLOC_FAIR) {
1987 if (!zone_local(preferred_zone, zone))
1988 break;
1989 if (zone_is_fair_depleted(zone)) {
1990 nr_fair_skipped++;
1991 continue;
1992 }
1993 }
1994 /*
1995 * When allocating a page cache page for writing, we
1996 * want to get it from a zone that is within its dirty
1997 * limit, such that no single zone holds more than its
1998 * proportional share of globally allowed dirty pages.
1999 * The dirty limits take into account the zone's
2000 * lowmem reserves and high watermark so that kswapd
2001 * should be able to balance it without having to
2002 * write pages from its LRU list.
2003 *
2004 * This may look like it could increase pressure on
2005 * lower zones by failing allocations in higher zones
2006 * before they are full. But the pages that do spill
2007 * over are limited as the lower zones are protected
2008 * by this very same mechanism. It should not become
2009 * a practical burden to them.
2010 *
2011 * XXX: For now, allow allocations to potentially
2012 * exceed the per-zone dirty limit in the slowpath
2013 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2014 * which is important when on a NUMA setup the allowed
2015 * zones are together not big enough to reach the
2016 * global limit. The proper fix for these situations
2017 * will require awareness of zones in the
2018 * dirty-throttling and the flusher threads.
2019 */
2020 if (consider_zone_dirty && !zone_dirty_ok(zone))
2021 continue;
2022
2023 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2024 if (!zone_watermark_ok(zone, order, mark,
2025 classzone_idx, alloc_flags)) {
2026 int ret;
2027
2028 /* Checked here to keep the fast path fast */
2029 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2030 if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 goto try_this_zone;
2032
2033 if (IS_ENABLED(CONFIG_NUMA) &&
2034 !did_zlc_setup && nr_online_nodes > 1) {
2035 /*
2036 * we do zlc_setup if there are multiple nodes
2037 * and before considering the first zone allowed
2038 * by the cpuset.
2039 */
2040 allowednodes = zlc_setup(zonelist, alloc_flags);
2041 zlc_active = 1;
2042 did_zlc_setup = 1;
2043 }
2044
2045 if (zone_reclaim_mode == 0 ||
2046 !zone_allows_reclaim(preferred_zone, zone))
2047 goto this_zone_full;
2048
2049 /*
2050 * As we may have just activated ZLC, check if the first
2051 * eligible zone has failed zone_reclaim recently.
2052 */
2053 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2054 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2055 continue;
2056
2057 ret = zone_reclaim(zone, gfp_mask, order);
2058 switch (ret) {
2059 case ZONE_RECLAIM_NOSCAN:
2060 /* did not scan */
2061 continue;
2062 case ZONE_RECLAIM_FULL:
2063 /* scanned but unreclaimable */
2064 continue;
2065 default:
2066 /* did we reclaim enough */
2067 if (zone_watermark_ok(zone, order, mark,
2068 classzone_idx, alloc_flags))
2069 goto try_this_zone;
2070
2071 /*
2072 * Failed to reclaim enough to meet watermark.
2073 * Only mark the zone full if checking the min
2074 * watermark or if we failed to reclaim just
2075 * 1<<order pages or else the page allocator
2076 * fastpath will prematurely mark zones full
2077 * when the watermark is between the low and
2078 * min watermarks.
2079 */
2080 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2081 ret == ZONE_RECLAIM_SOME)
2082 goto this_zone_full;
2083
2084 continue;
2085 }
2086 }
2087
2088 try_this_zone:
2089 page = buffered_rmqueue(preferred_zone, zone, order,
2090 gfp_mask, migratetype);
2091 if (page)
2092 break;
2093 this_zone_full:
2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2095 zlc_mark_zone_full(zonelist, z);
2096 }
2097
2098 if (page) {
2099 /*
2100 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2101 * necessary to allocate the page. The expectation is
2102 * that the caller is taking steps that will free more
2103 * memory. The caller should avoid the page being used
2104 * for !PFMEMALLOC purposes.
2105 */
2106 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2107 return page;
2108 }
2109
2110 /*
2111 * The first pass makes sure allocations are spread fairly within the
2112 * local node. However, the local node might have free pages left
2113 * after the fairness batches are exhausted, and remote zones haven't
2114 * even been considered yet. Try once more without fairness, and
2115 * include remote zones now, before entering the slowpath and waking
2116 * kswapd: prefer spilling to a remote zone over swapping locally.
2117 */
2118 if (alloc_flags & ALLOC_FAIR) {
2119 alloc_flags &= ~ALLOC_FAIR;
2120 if (nr_fair_skipped) {
2121 zonelist_rescan = true;
2122 reset_alloc_batches(preferred_zone);
2123 }
2124 if (nr_online_nodes > 1)
2125 zonelist_rescan = true;
2126 }
2127
2128 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2129 /* Disable zlc cache for second zonelist scan */
2130 zlc_active = 0;
2131 zonelist_rescan = true;
2132 }
2133
2134 if (zonelist_rescan)
2135 goto zonelist_scan;
2136
2137 return NULL;
2138 }
2139
2140 /*
2141 * Large machines with many possible nodes should not always dump per-node
2142 * meminfo in irq context.
2143 */
2144 static inline bool should_suppress_show_mem(void)
2145 {
2146 bool ret = false;
2147
2148 #if NODES_SHIFT > 8
2149 ret = in_interrupt();
2150 #endif
2151 return ret;
2152 }
2153
2154 static DEFINE_RATELIMIT_STATE(nopage_rs,
2155 DEFAULT_RATELIMIT_INTERVAL,
2156 DEFAULT_RATELIMIT_BURST);
2157
2158 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2159 {
2160 unsigned int filter = SHOW_MEM_FILTER_NODES;
2161
2162 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2163 debug_guardpage_minorder() > 0)
2164 return;
2165
2166 /*
2167 * This documents exceptions given to allocations in certain
2168 * contexts that are allowed to allocate outside current's set
2169 * of allowed nodes.
2170 */
2171 if (!(gfp_mask & __GFP_NOMEMALLOC))
2172 if (test_thread_flag(TIF_MEMDIE) ||
2173 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2176 filter &= ~SHOW_MEM_FILTER_NODES;
2177
2178 if (fmt) {
2179 struct va_format vaf;
2180 va_list args;
2181
2182 va_start(args, fmt);
2183
2184 vaf.fmt = fmt;
2185 vaf.va = &args;
2186
2187 pr_warn("%pV", &vaf);
2188
2189 va_end(args);
2190 }
2191
2192 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2193 current->comm, order, gfp_mask);
2194
2195 dump_stack();
2196 if (!should_suppress_show_mem())
2197 show_mem(filter);
2198 }
2199
2200 static inline int
2201 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2202 unsigned long did_some_progress,
2203 unsigned long pages_reclaimed)
2204 {
2205 /* Do not loop if specifically requested */
2206 if (gfp_mask & __GFP_NORETRY)
2207 return 0;
2208
2209 /* Always retry if specifically requested */
2210 if (gfp_mask & __GFP_NOFAIL)
2211 return 1;
2212
2213 /*
2214 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2215 * making forward progress without invoking OOM. Suspend also disables
2216 * storage devices so kswapd will not help. Bail if we are suspending.
2217 */
2218 if (!did_some_progress && pm_suspended_storage())
2219 return 0;
2220
2221 /*
2222 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2223 * means __GFP_NOFAIL, but that may not be true in other
2224 * implementations.
2225 */
2226 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2227 return 1;
2228
2229 /*
2230 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2231 * specified, then we retry until we no longer reclaim any pages
2232 * (above), or we've reclaimed an order of pages at least as
2233 * large as the allocation's order. In both cases, if the
2234 * allocation still fails, we stop retrying.
2235 */
2236 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2237 return 1;
2238
2239 return 0;
2240 }
2241
2242 static inline struct page *
2243 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
2245 nodemask_t *nodemask, struct zone *preferred_zone,
2246 int classzone_idx, int migratetype)
2247 {
2248 struct page *page;
2249
2250 /* Acquire the per-zone oom lock for each zone */
2251 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2252 schedule_timeout_uninterruptible(1);
2253 return NULL;
2254 }
2255
2256 /*
2257 * Go through the zonelist yet one more time, keep very high watermark
2258 * here, this is only to catch a parallel oom killing, we must fail if
2259 * we're still under heavy pressure.
2260 */
2261 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2262 order, zonelist, high_zoneidx,
2263 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2264 preferred_zone, classzone_idx, migratetype);
2265 if (page)
2266 goto out;
2267
2268 if (!(gfp_mask & __GFP_NOFAIL)) {
2269 /* The OOM killer will not help higher order allocs */
2270 if (order > PAGE_ALLOC_COSTLY_ORDER)
2271 goto out;
2272 /* The OOM killer does not needlessly kill tasks for lowmem */
2273 if (high_zoneidx < ZONE_NORMAL)
2274 goto out;
2275 /*
2276 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2277 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2278 * The caller should handle page allocation failure by itself if
2279 * it specifies __GFP_THISNODE.
2280 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2281 */
2282 if (gfp_mask & __GFP_THISNODE)
2283 goto out;
2284 }
2285 /* Exhausted what can be done so it's blamo time */
2286 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2287
2288 out:
2289 oom_zonelist_unlock(zonelist, gfp_mask);
2290 return page;
2291 }
2292
2293 #ifdef CONFIG_COMPACTION
2294 /* Try memory compaction for high-order allocations before reclaim */
2295 static struct page *
2296 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2299 int classzone_idx, int migratetype, enum migrate_mode mode,
2300 bool *contended_compaction, bool *deferred_compaction)
2301 {
2302 struct zone *last_compact_zone = NULL;
2303 unsigned long compact_result;
2304
2305
2306 if (!order)
2307 return NULL;
2308
2309 current->flags |= PF_MEMALLOC;
2310 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2311 nodemask, mode,
2312 contended_compaction,
2313 &last_compact_zone);
2314 current->flags &= ~PF_MEMALLOC;
2315
2316 if (compact_result > COMPACT_DEFERRED)
2317 count_vm_event(COMPACTSTALL);
2318 else
2319 *deferred_compaction = true;
2320
2321 if (compact_result > COMPACT_SKIPPED) {
2322 struct page *page;
2323
2324 /* Page migration frees to the PCP lists but we want merging */
2325 drain_pages(get_cpu());
2326 put_cpu();
2327
2328 page = get_page_from_freelist(gfp_mask, nodemask,
2329 order, zonelist, high_zoneidx,
2330 alloc_flags & ~ALLOC_NO_WATERMARKS,
2331 preferred_zone, classzone_idx, migratetype);
2332
2333 if (page) {
2334 struct zone *zone = page_zone(page);
2335
2336 zone->compact_blockskip_flush = false;
2337 compaction_defer_reset(zone, order, true);
2338 count_vm_event(COMPACTSUCCESS);
2339 return page;
2340 }
2341
2342 /*
2343 * last_compact_zone is where try_to_compact_pages thought
2344 * allocation should succeed, so it did not defer compaction.
2345 * But now we know that it didn't succeed, so we do the defer.
2346 */
2347 if (last_compact_zone && mode != MIGRATE_ASYNC)
2348 defer_compaction(last_compact_zone, order);
2349
2350 /*
2351 * It's bad if compaction run occurs and fails.
2352 * The most likely reason is that pages exist,
2353 * but not enough to satisfy watermarks.
2354 */
2355 count_vm_event(COMPACTFAIL);
2356
2357 cond_resched();
2358 }
2359
2360 return NULL;
2361 }
2362 #else
2363 static inline struct page *
2364 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2365 struct zonelist *zonelist, enum zone_type high_zoneidx,
2366 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2367 int classzone_idx, int migratetype, enum migrate_mode mode,
2368 bool *contended_compaction, bool *deferred_compaction)
2369 {
2370 return NULL;
2371 }
2372 #endif /* CONFIG_COMPACTION */
2373
2374 /* Perform direct synchronous page reclaim */
2375 static int
2376 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2377 nodemask_t *nodemask)
2378 {
2379 struct reclaim_state reclaim_state;
2380 int progress;
2381
2382 cond_resched();
2383
2384 /* We now go into synchronous reclaim */
2385 cpuset_memory_pressure_bump();
2386 current->flags |= PF_MEMALLOC;
2387 lockdep_set_current_reclaim_state(gfp_mask);
2388 reclaim_state.reclaimed_slab = 0;
2389 current->reclaim_state = &reclaim_state;
2390
2391 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2392
2393 current->reclaim_state = NULL;
2394 lockdep_clear_current_reclaim_state();
2395 current->flags &= ~PF_MEMALLOC;
2396
2397 cond_resched();
2398
2399 return progress;
2400 }
2401
2402 /* The really slow allocator path where we enter direct reclaim */
2403 static inline struct page *
2404 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2405 struct zonelist *zonelist, enum zone_type high_zoneidx,
2406 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2407 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2408 {
2409 struct page *page = NULL;
2410 bool drained = false;
2411
2412 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2413 nodemask);
2414 if (unlikely(!(*did_some_progress)))
2415 return NULL;
2416
2417 /* After successful reclaim, reconsider all zones for allocation */
2418 if (IS_ENABLED(CONFIG_NUMA))
2419 zlc_clear_zones_full(zonelist);
2420
2421 retry:
2422 page = get_page_from_freelist(gfp_mask, nodemask, order,
2423 zonelist, high_zoneidx,
2424 alloc_flags & ~ALLOC_NO_WATERMARKS,
2425 preferred_zone, classzone_idx,
2426 migratetype);
2427
2428 /*
2429 * If an allocation failed after direct reclaim, it could be because
2430 * pages are pinned on the per-cpu lists. Drain them and try again
2431 */
2432 if (!page && !drained) {
2433 drain_all_pages();
2434 drained = true;
2435 goto retry;
2436 }
2437
2438 return page;
2439 }
2440
2441 /*
2442 * This is called in the allocator slow-path if the allocation request is of
2443 * sufficient urgency to ignore watermarks and take other desperate measures
2444 */
2445 static inline struct page *
2446 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2447 struct zonelist *zonelist, enum zone_type high_zoneidx,
2448 nodemask_t *nodemask, struct zone *preferred_zone,
2449 int classzone_idx, int migratetype)
2450 {
2451 struct page *page;
2452
2453 do {
2454 page = get_page_from_freelist(gfp_mask, nodemask, order,
2455 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2456 preferred_zone, classzone_idx, migratetype);
2457
2458 if (!page && gfp_mask & __GFP_NOFAIL)
2459 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2460 } while (!page && (gfp_mask & __GFP_NOFAIL));
2461
2462 return page;
2463 }
2464
2465 static void wake_all_kswapds(unsigned int order,
2466 struct zonelist *zonelist,
2467 enum zone_type high_zoneidx,
2468 struct zone *preferred_zone)
2469 {
2470 struct zoneref *z;
2471 struct zone *zone;
2472
2473 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2474 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2475 }
2476
2477 static inline int
2478 gfp_to_alloc_flags(gfp_t gfp_mask)
2479 {
2480 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2481 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2482
2483 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2484 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2485
2486 /*
2487 * The caller may dip into page reserves a bit more if the caller
2488 * cannot run direct reclaim, or if the caller has realtime scheduling
2489 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2490 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2491 */
2492 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2493
2494 if (atomic) {
2495 /*
2496 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2497 * if it can't schedule.
2498 */
2499 if (!(gfp_mask & __GFP_NOMEMALLOC))
2500 alloc_flags |= ALLOC_HARDER;
2501 /*
2502 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2503 * comment for __cpuset_node_allowed_softwall().
2504 */
2505 alloc_flags &= ~ALLOC_CPUSET;
2506 } else if (unlikely(rt_task(current)) && !in_interrupt())
2507 alloc_flags |= ALLOC_HARDER;
2508
2509 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2510 if (gfp_mask & __GFP_MEMALLOC)
2511 alloc_flags |= ALLOC_NO_WATERMARKS;
2512 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2513 alloc_flags |= ALLOC_NO_WATERMARKS;
2514 else if (!in_interrupt() &&
2515 ((current->flags & PF_MEMALLOC) ||
2516 unlikely(test_thread_flag(TIF_MEMDIE))))
2517 alloc_flags |= ALLOC_NO_WATERMARKS;
2518 }
2519 #ifdef CONFIG_CMA
2520 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2521 alloc_flags |= ALLOC_CMA;
2522 #endif
2523 return alloc_flags;
2524 }
2525
2526 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2527 {
2528 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2529 }
2530
2531 static inline struct page *
2532 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2533 struct zonelist *zonelist, enum zone_type high_zoneidx,
2534 nodemask_t *nodemask, struct zone *preferred_zone,
2535 int classzone_idx, int migratetype)
2536 {
2537 const gfp_t wait = gfp_mask & __GFP_WAIT;
2538 struct page *page = NULL;
2539 int alloc_flags;
2540 unsigned long pages_reclaimed = 0;
2541 unsigned long did_some_progress;
2542 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2543 bool deferred_compaction = false;
2544 bool contended_compaction = false;
2545
2546 /*
2547 * In the slowpath, we sanity check order to avoid ever trying to
2548 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2549 * be using allocators in order of preference for an area that is
2550 * too large.
2551 */
2552 if (order >= MAX_ORDER) {
2553 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2554 return NULL;
2555 }
2556
2557 /*
2558 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2559 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2560 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2561 * using a larger set of nodes after it has established that the
2562 * allowed per node queues are empty and that nodes are
2563 * over allocated.
2564 */
2565 if (IS_ENABLED(CONFIG_NUMA) &&
2566 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2567 goto nopage;
2568
2569 restart:
2570 if (!(gfp_mask & __GFP_NO_KSWAPD))
2571 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2572
2573 /*
2574 * OK, we're below the kswapd watermark and have kicked background
2575 * reclaim. Now things get more complex, so set up alloc_flags according
2576 * to how we want to proceed.
2577 */
2578 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2579
2580 /*
2581 * Find the true preferred zone if the allocation is unconstrained by
2582 * cpusets.
2583 */
2584 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2585 struct zoneref *preferred_zoneref;
2586 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2587 NULL, &preferred_zone);
2588 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2589 }
2590
2591 rebalance:
2592 /* This is the last chance, in general, before the goto nopage. */
2593 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2594 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2595 preferred_zone, classzone_idx, migratetype);
2596 if (page)
2597 goto got_pg;
2598
2599 /* Allocate without watermarks if the context allows */
2600 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2601 /*
2602 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2603 * the allocation is high priority and these type of
2604 * allocations are system rather than user orientated
2605 */
2606 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2607
2608 page = __alloc_pages_high_priority(gfp_mask, order,
2609 zonelist, high_zoneidx, nodemask,
2610 preferred_zone, classzone_idx, migratetype);
2611 if (page) {
2612 goto got_pg;
2613 }
2614 }
2615
2616 /* Atomic allocations - we can't balance anything */
2617 if (!wait) {
2618 /*
2619 * All existing users of the deprecated __GFP_NOFAIL are
2620 * blockable, so warn of any new users that actually allow this
2621 * type of allocation to fail.
2622 */
2623 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2624 goto nopage;
2625 }
2626
2627 /* Avoid recursion of direct reclaim */
2628 if (current->flags & PF_MEMALLOC)
2629 goto nopage;
2630
2631 /* Avoid allocations with no watermarks from looping endlessly */
2632 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2633 goto nopage;
2634
2635 /*
2636 * Try direct compaction. The first pass is asynchronous. Subsequent
2637 * attempts after direct reclaim are synchronous
2638 */
2639 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2640 high_zoneidx, nodemask, alloc_flags,
2641 preferred_zone,
2642 classzone_idx, migratetype,
2643 migration_mode, &contended_compaction,
2644 &deferred_compaction);
2645 if (page)
2646 goto got_pg;
2647
2648 /*
2649 * If compaction is deferred for high-order allocations, it is because
2650 * sync compaction recently failed. In this is the case and the caller
2651 * requested a movable allocation that does not heavily disrupt the
2652 * system then fail the allocation instead of entering direct reclaim.
2653 */
2654 if ((deferred_compaction || contended_compaction) &&
2655 (gfp_mask & __GFP_NO_KSWAPD))
2656 goto nopage;
2657
2658 /*
2659 * It can become very expensive to allocate transparent hugepages at
2660 * fault, so use asynchronous memory compaction for THP unless it is
2661 * khugepaged trying to collapse.
2662 */
2663 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2664 (current->flags & PF_KTHREAD))
2665 migration_mode = MIGRATE_SYNC_LIGHT;
2666
2667 /* Try direct reclaim and then allocating */
2668 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2669 zonelist, high_zoneidx,
2670 nodemask,
2671 alloc_flags, preferred_zone,
2672 classzone_idx, migratetype,
2673 &did_some_progress);
2674 if (page)
2675 goto got_pg;
2676
2677 /*
2678 * If we failed to make any progress reclaiming, then we are
2679 * running out of options and have to consider going OOM
2680 */
2681 if (!did_some_progress) {
2682 if (oom_gfp_allowed(gfp_mask)) {
2683 if (oom_killer_disabled)
2684 goto nopage;
2685 /* Coredumps can quickly deplete all memory reserves */
2686 if ((current->flags & PF_DUMPCORE) &&
2687 !(gfp_mask & __GFP_NOFAIL))
2688 goto nopage;
2689 page = __alloc_pages_may_oom(gfp_mask, order,
2690 zonelist, high_zoneidx,
2691 nodemask, preferred_zone,
2692 classzone_idx, migratetype);
2693 if (page)
2694 goto got_pg;
2695
2696 if (!(gfp_mask & __GFP_NOFAIL)) {
2697 /*
2698 * The oom killer is not called for high-order
2699 * allocations that may fail, so if no progress
2700 * is being made, there are no other options and
2701 * retrying is unlikely to help.
2702 */
2703 if (order > PAGE_ALLOC_COSTLY_ORDER)
2704 goto nopage;
2705 /*
2706 * The oom killer is not called for lowmem
2707 * allocations to prevent needlessly killing
2708 * innocent tasks.
2709 */
2710 if (high_zoneidx < ZONE_NORMAL)
2711 goto nopage;
2712 }
2713
2714 goto restart;
2715 }
2716 }
2717
2718 /* Check if we should retry the allocation */
2719 pages_reclaimed += did_some_progress;
2720 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2721 pages_reclaimed)) {
2722 /* Wait for some write requests to complete then retry */
2723 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2724 goto rebalance;
2725 } else {
2726 /*
2727 * High-order allocations do not necessarily loop after
2728 * direct reclaim and reclaim/compaction depends on compaction
2729 * being called after reclaim so call directly if necessary
2730 */
2731 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2732 high_zoneidx, nodemask, alloc_flags,
2733 preferred_zone,
2734 classzone_idx, migratetype,
2735 migration_mode, &contended_compaction,
2736 &deferred_compaction);
2737 if (page)
2738 goto got_pg;
2739 }
2740
2741 nopage:
2742 warn_alloc_failed(gfp_mask, order, NULL);
2743 return page;
2744 got_pg:
2745 if (kmemcheck_enabled)
2746 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2747
2748 return page;
2749 }
2750
2751 /*
2752 * This is the 'heart' of the zoned buddy allocator.
2753 */
2754 struct page *
2755 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2756 struct zonelist *zonelist, nodemask_t *nodemask)
2757 {
2758 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2759 struct zone *preferred_zone;
2760 struct zoneref *preferred_zoneref;
2761 struct page *page = NULL;
2762 int migratetype = allocflags_to_migratetype(gfp_mask);
2763 unsigned int cpuset_mems_cookie;
2764 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2765 int classzone_idx;
2766
2767 gfp_mask &= gfp_allowed_mask;
2768
2769 lockdep_trace_alloc(gfp_mask);
2770
2771 might_sleep_if(gfp_mask & __GFP_WAIT);
2772
2773 if (should_fail_alloc_page(gfp_mask, order))
2774 return NULL;
2775
2776 /*
2777 * Check the zones suitable for the gfp_mask contain at least one
2778 * valid zone. It's possible to have an empty zonelist as a result
2779 * of GFP_THISNODE and a memoryless node
2780 */
2781 if (unlikely(!zonelist->_zonerefs->zone))
2782 return NULL;
2783
2784 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2785 alloc_flags |= ALLOC_CMA;
2786
2787 retry_cpuset:
2788 cpuset_mems_cookie = read_mems_allowed_begin();
2789
2790 /* The preferred zone is used for statistics later */
2791 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2792 nodemask ? : &cpuset_current_mems_allowed,
2793 &preferred_zone);
2794 if (!preferred_zone)
2795 goto out;
2796 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2797
2798 /* First allocation attempt */
2799 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2800 zonelist, high_zoneidx, alloc_flags,
2801 preferred_zone, classzone_idx, migratetype);
2802 if (unlikely(!page)) {
2803 /*
2804 * Runtime PM, block IO and its error handling path
2805 * can deadlock because I/O on the device might not
2806 * complete.
2807 */
2808 gfp_mask = memalloc_noio_flags(gfp_mask);
2809 page = __alloc_pages_slowpath(gfp_mask, order,
2810 zonelist, high_zoneidx, nodemask,
2811 preferred_zone, classzone_idx, migratetype);
2812 }
2813
2814 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2815
2816 out:
2817 /*
2818 * When updating a task's mems_allowed, it is possible to race with
2819 * parallel threads in such a way that an allocation can fail while
2820 * the mask is being updated. If a page allocation is about to fail,
2821 * check if the cpuset changed during allocation and if so, retry.
2822 */
2823 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2824 goto retry_cpuset;
2825
2826 return page;
2827 }
2828 EXPORT_SYMBOL(__alloc_pages_nodemask);
2829
2830 /*
2831 * Common helper functions.
2832 */
2833 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2834 {
2835 struct page *page;
2836
2837 /*
2838 * __get_free_pages() returns a 32-bit address, which cannot represent
2839 * a highmem page
2840 */
2841 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2842
2843 page = alloc_pages(gfp_mask, order);
2844 if (!page)
2845 return 0;
2846 return (unsigned long) page_address(page);
2847 }
2848 EXPORT_SYMBOL(__get_free_pages);
2849
2850 unsigned long get_zeroed_page(gfp_t gfp_mask)
2851 {
2852 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2853 }
2854 EXPORT_SYMBOL(get_zeroed_page);
2855
2856 void __free_pages(struct page *page, unsigned int order)
2857 {
2858 if (put_page_testzero(page)) {
2859 if (order == 0)
2860 free_hot_cold_page(page, false);
2861 else
2862 __free_pages_ok(page, order);
2863 }
2864 }
2865
2866 EXPORT_SYMBOL(__free_pages);
2867
2868 void free_pages(unsigned long addr, unsigned int order)
2869 {
2870 if (addr != 0) {
2871 VM_BUG_ON(!virt_addr_valid((void *)addr));
2872 __free_pages(virt_to_page((void *)addr), order);
2873 }
2874 }
2875
2876 EXPORT_SYMBOL(free_pages);
2877
2878 /*
2879 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2880 * of the current memory cgroup.
2881 *
2882 * It should be used when the caller would like to use kmalloc, but since the
2883 * allocation is large, it has to fall back to the page allocator.
2884 */
2885 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2886 {
2887 struct page *page;
2888 struct mem_cgroup *memcg = NULL;
2889
2890 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2891 return NULL;
2892 page = alloc_pages(gfp_mask, order);
2893 memcg_kmem_commit_charge(page, memcg, order);
2894 return page;
2895 }
2896
2897 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2898 {
2899 struct page *page;
2900 struct mem_cgroup *memcg = NULL;
2901
2902 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2903 return NULL;
2904 page = alloc_pages_node(nid, gfp_mask, order);
2905 memcg_kmem_commit_charge(page, memcg, order);
2906 return page;
2907 }
2908
2909 /*
2910 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2911 * alloc_kmem_pages.
2912 */
2913 void __free_kmem_pages(struct page *page, unsigned int order)
2914 {
2915 memcg_kmem_uncharge_pages(page, order);
2916 __free_pages(page, order);
2917 }
2918
2919 void free_kmem_pages(unsigned long addr, unsigned int order)
2920 {
2921 if (addr != 0) {
2922 VM_BUG_ON(!virt_addr_valid((void *)addr));
2923 __free_kmem_pages(virt_to_page((void *)addr), order);
2924 }
2925 }
2926
2927 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2928 {
2929 if (addr) {
2930 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2931 unsigned long used = addr + PAGE_ALIGN(size);
2932
2933 split_page(virt_to_page((void *)addr), order);
2934 while (used < alloc_end) {
2935 free_page(used);
2936 used += PAGE_SIZE;
2937 }
2938 }
2939 return (void *)addr;
2940 }
2941
2942 /**
2943 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2944 * @size: the number of bytes to allocate
2945 * @gfp_mask: GFP flags for the allocation
2946 *
2947 * This function is similar to alloc_pages(), except that it allocates the
2948 * minimum number of pages to satisfy the request. alloc_pages() can only
2949 * allocate memory in power-of-two pages.
2950 *
2951 * This function is also limited by MAX_ORDER.
2952 *
2953 * Memory allocated by this function must be released by free_pages_exact().
2954 */
2955 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2956 {
2957 unsigned int order = get_order(size);
2958 unsigned long addr;
2959
2960 addr = __get_free_pages(gfp_mask, order);
2961 return make_alloc_exact(addr, order, size);
2962 }
2963 EXPORT_SYMBOL(alloc_pages_exact);
2964
2965 /**
2966 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2967 * pages on a node.
2968 * @nid: the preferred node ID where memory should be allocated
2969 * @size: the number of bytes to allocate
2970 * @gfp_mask: GFP flags for the allocation
2971 *
2972 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2973 * back.
2974 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2975 * but is not exact.
2976 */
2977 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2978 {
2979 unsigned order = get_order(size);
2980 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2981 if (!p)
2982 return NULL;
2983 return make_alloc_exact((unsigned long)page_address(p), order, size);
2984 }
2985
2986 /**
2987 * free_pages_exact - release memory allocated via alloc_pages_exact()
2988 * @virt: the value returned by alloc_pages_exact.
2989 * @size: size of allocation, same value as passed to alloc_pages_exact().
2990 *
2991 * Release the memory allocated by a previous call to alloc_pages_exact.
2992 */
2993 void free_pages_exact(void *virt, size_t size)
2994 {
2995 unsigned long addr = (unsigned long)virt;
2996 unsigned long end = addr + PAGE_ALIGN(size);
2997
2998 while (addr < end) {
2999 free_page(addr);
3000 addr += PAGE_SIZE;
3001 }
3002 }
3003 EXPORT_SYMBOL(free_pages_exact);
3004
3005 /**
3006 * nr_free_zone_pages - count number of pages beyond high watermark
3007 * @offset: The zone index of the highest zone
3008 *
3009 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3010 * high watermark within all zones at or below a given zone index. For each
3011 * zone, the number of pages is calculated as:
3012 * managed_pages - high_pages
3013 */
3014 static unsigned long nr_free_zone_pages(int offset)
3015 {
3016 struct zoneref *z;
3017 struct zone *zone;
3018
3019 /* Just pick one node, since fallback list is circular */
3020 unsigned long sum = 0;
3021
3022 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3023
3024 for_each_zone_zonelist(zone, z, zonelist, offset) {
3025 unsigned long size = zone->managed_pages;
3026 unsigned long high = high_wmark_pages(zone);
3027 if (size > high)
3028 sum += size - high;
3029 }
3030
3031 return sum;
3032 }
3033
3034 /**
3035 * nr_free_buffer_pages - count number of pages beyond high watermark
3036 *
3037 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3038 * watermark within ZONE_DMA and ZONE_NORMAL.
3039 */
3040 unsigned long nr_free_buffer_pages(void)
3041 {
3042 return nr_free_zone_pages(gfp_zone(GFP_USER));
3043 }
3044 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3045
3046 /**
3047 * nr_free_pagecache_pages - count number of pages beyond high watermark
3048 *
3049 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3050 * high watermark within all zones.
3051 */
3052 unsigned long nr_free_pagecache_pages(void)
3053 {
3054 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3055 }
3056
3057 static inline void show_node(struct zone *zone)
3058 {
3059 if (IS_ENABLED(CONFIG_NUMA))
3060 printk("Node %d ", zone_to_nid(zone));
3061 }
3062
3063 void si_meminfo(struct sysinfo *val)
3064 {
3065 val->totalram = totalram_pages;
3066 val->sharedram = global_page_state(NR_SHMEM);
3067 val->freeram = global_page_state(NR_FREE_PAGES);
3068 val->bufferram = nr_blockdev_pages();
3069 val->totalhigh = totalhigh_pages;
3070 val->freehigh = nr_free_highpages();
3071 val->mem_unit = PAGE_SIZE;
3072 }
3073
3074 EXPORT_SYMBOL(si_meminfo);
3075
3076 #ifdef CONFIG_NUMA
3077 void si_meminfo_node(struct sysinfo *val, int nid)
3078 {
3079 int zone_type; /* needs to be signed */
3080 unsigned long managed_pages = 0;
3081 pg_data_t *pgdat = NODE_DATA(nid);
3082
3083 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3084 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3085 val->totalram = managed_pages;
3086 val->sharedram = node_page_state(nid, NR_SHMEM);
3087 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3088 #ifdef CONFIG_HIGHMEM
3089 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3090 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3091 NR_FREE_PAGES);
3092 #else
3093 val->totalhigh = 0;
3094 val->freehigh = 0;
3095 #endif
3096 val->mem_unit = PAGE_SIZE;
3097 }
3098 #endif
3099
3100 /*
3101 * Determine whether the node should be displayed or not, depending on whether
3102 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3103 */
3104 bool skip_free_areas_node(unsigned int flags, int nid)
3105 {
3106 bool ret = false;
3107 unsigned int cpuset_mems_cookie;
3108
3109 if (!(flags & SHOW_MEM_FILTER_NODES))
3110 goto out;
3111
3112 do {
3113 cpuset_mems_cookie = read_mems_allowed_begin();
3114 ret = !node_isset(nid, cpuset_current_mems_allowed);
3115 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3116 out:
3117 return ret;
3118 }
3119
3120 #define K(x) ((x) << (PAGE_SHIFT-10))
3121
3122 static void show_migration_types(unsigned char type)
3123 {
3124 static const char types[MIGRATE_TYPES] = {
3125 [MIGRATE_UNMOVABLE] = 'U',
3126 [MIGRATE_RECLAIMABLE] = 'E',
3127 [MIGRATE_MOVABLE] = 'M',
3128 [MIGRATE_RESERVE] = 'R',
3129 #ifdef CONFIG_CMA
3130 [MIGRATE_CMA] = 'C',
3131 #endif
3132 #ifdef CONFIG_MEMORY_ISOLATION
3133 [MIGRATE_ISOLATE] = 'I',
3134 #endif
3135 };
3136 char tmp[MIGRATE_TYPES + 1];
3137 char *p = tmp;
3138 int i;
3139
3140 for (i = 0; i < MIGRATE_TYPES; i++) {
3141 if (type & (1 << i))
3142 *p++ = types[i];
3143 }
3144
3145 *p = '\0';
3146 printk("(%s) ", tmp);
3147 }
3148
3149 /*
3150 * Show free area list (used inside shift_scroll-lock stuff)
3151 * We also calculate the percentage fragmentation. We do this by counting the
3152 * memory on each free list with the exception of the first item on the list.
3153 * Suppresses nodes that are not allowed by current's cpuset if
3154 * SHOW_MEM_FILTER_NODES is passed.
3155 */
3156 void show_free_areas(unsigned int filter)
3157 {
3158 int cpu;
3159 struct zone *zone;
3160
3161 for_each_populated_zone(zone) {
3162 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3163 continue;
3164 show_node(zone);
3165 printk("%s per-cpu:\n", zone->name);
3166
3167 for_each_online_cpu(cpu) {
3168 struct per_cpu_pageset *pageset;
3169
3170 pageset = per_cpu_ptr(zone->pageset, cpu);
3171
3172 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3173 cpu, pageset->pcp.high,
3174 pageset->pcp.batch, pageset->pcp.count);
3175 }
3176 }
3177
3178 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3179 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3180 " unevictable:%lu"
3181 " dirty:%lu writeback:%lu unstable:%lu\n"
3182 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3183 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3184 " free_cma:%lu\n",
3185 global_page_state(NR_ACTIVE_ANON),
3186 global_page_state(NR_INACTIVE_ANON),
3187 global_page_state(NR_ISOLATED_ANON),
3188 global_page_state(NR_ACTIVE_FILE),
3189 global_page_state(NR_INACTIVE_FILE),
3190 global_page_state(NR_ISOLATED_FILE),
3191 global_page_state(NR_UNEVICTABLE),
3192 global_page_state(NR_FILE_DIRTY),
3193 global_page_state(NR_WRITEBACK),
3194 global_page_state(NR_UNSTABLE_NFS),
3195 global_page_state(NR_FREE_PAGES),
3196 global_page_state(NR_SLAB_RECLAIMABLE),
3197 global_page_state(NR_SLAB_UNRECLAIMABLE),
3198 global_page_state(NR_FILE_MAPPED),
3199 global_page_state(NR_SHMEM),
3200 global_page_state(NR_PAGETABLE),
3201 global_page_state(NR_BOUNCE),
3202 global_page_state(NR_FREE_CMA_PAGES));
3203
3204 for_each_populated_zone(zone) {
3205 int i;
3206
3207 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3208 continue;
3209 show_node(zone);
3210 printk("%s"
3211 " free:%lukB"
3212 " min:%lukB"
3213 " low:%lukB"
3214 " high:%lukB"
3215 " active_anon:%lukB"
3216 " inactive_anon:%lukB"
3217 " active_file:%lukB"
3218 " inactive_file:%lukB"
3219 " unevictable:%lukB"
3220 " isolated(anon):%lukB"
3221 " isolated(file):%lukB"
3222 " present:%lukB"
3223 " managed:%lukB"
3224 " mlocked:%lukB"
3225 " dirty:%lukB"
3226 " writeback:%lukB"
3227 " mapped:%lukB"
3228 " shmem:%lukB"
3229 " slab_reclaimable:%lukB"
3230 " slab_unreclaimable:%lukB"
3231 " kernel_stack:%lukB"
3232 " pagetables:%lukB"
3233 " unstable:%lukB"
3234 " bounce:%lukB"
3235 " free_cma:%lukB"
3236 " writeback_tmp:%lukB"
3237 " pages_scanned:%lu"
3238 " all_unreclaimable? %s"
3239 "\n",
3240 zone->name,
3241 K(zone_page_state(zone, NR_FREE_PAGES)),
3242 K(min_wmark_pages(zone)),
3243 K(low_wmark_pages(zone)),
3244 K(high_wmark_pages(zone)),
3245 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3246 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3247 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3248 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3249 K(zone_page_state(zone, NR_UNEVICTABLE)),
3250 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3251 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3252 K(zone->present_pages),
3253 K(zone->managed_pages),
3254 K(zone_page_state(zone, NR_MLOCK)),
3255 K(zone_page_state(zone, NR_FILE_DIRTY)),
3256 K(zone_page_state(zone, NR_WRITEBACK)),
3257 K(zone_page_state(zone, NR_FILE_MAPPED)),
3258 K(zone_page_state(zone, NR_SHMEM)),
3259 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3260 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3261 zone_page_state(zone, NR_KERNEL_STACK) *
3262 THREAD_SIZE / 1024,
3263 K(zone_page_state(zone, NR_PAGETABLE)),
3264 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3265 K(zone_page_state(zone, NR_BOUNCE)),
3266 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3267 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3268 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3269 (!zone_reclaimable(zone) ? "yes" : "no")
3270 );
3271 printk("lowmem_reserve[]:");
3272 for (i = 0; i < MAX_NR_ZONES; i++)
3273 printk(" %ld", zone->lowmem_reserve[i]);
3274 printk("\n");
3275 }
3276
3277 for_each_populated_zone(zone) {
3278 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3279 unsigned char types[MAX_ORDER];
3280
3281 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3282 continue;
3283 show_node(zone);
3284 printk("%s: ", zone->name);
3285
3286 spin_lock_irqsave(&zone->lock, flags);
3287 for (order = 0; order < MAX_ORDER; order++) {
3288 struct free_area *area = &zone->free_area[order];
3289 int type;
3290
3291 nr[order] = area->nr_free;
3292 total += nr[order] << order;
3293
3294 types[order] = 0;
3295 for (type = 0; type < MIGRATE_TYPES; type++) {
3296 if (!list_empty(&area->free_list[type]))
3297 types[order] |= 1 << type;
3298 }
3299 }
3300 spin_unlock_irqrestore(&zone->lock, flags);
3301 for (order = 0; order < MAX_ORDER; order++) {
3302 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3303 if (nr[order])
3304 show_migration_types(types[order]);
3305 }
3306 printk("= %lukB\n", K(total));
3307 }
3308
3309 hugetlb_show_meminfo();
3310
3311 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3312
3313 show_swap_cache_info();
3314 }
3315
3316 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3317 {
3318 zoneref->zone = zone;
3319 zoneref->zone_idx = zone_idx(zone);
3320 }
3321
3322 /*
3323 * Builds allocation fallback zone lists.
3324 *
3325 * Add all populated zones of a node to the zonelist.
3326 */
3327 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3328 int nr_zones)
3329 {
3330 struct zone *zone;
3331 enum zone_type zone_type = MAX_NR_ZONES;
3332
3333 do {
3334 zone_type--;
3335 zone = pgdat->node_zones + zone_type;
3336 if (populated_zone(zone)) {
3337 zoneref_set_zone(zone,
3338 &zonelist->_zonerefs[nr_zones++]);
3339 check_highest_zone(zone_type);
3340 }
3341 } while (zone_type);
3342
3343 return nr_zones;
3344 }
3345
3346
3347 /*
3348 * zonelist_order:
3349 * 0 = automatic detection of better ordering.
3350 * 1 = order by ([node] distance, -zonetype)
3351 * 2 = order by (-zonetype, [node] distance)
3352 *
3353 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3354 * the same zonelist. So only NUMA can configure this param.
3355 */
3356 #define ZONELIST_ORDER_DEFAULT 0
3357 #define ZONELIST_ORDER_NODE 1
3358 #define ZONELIST_ORDER_ZONE 2
3359
3360 /* zonelist order in the kernel.
3361 * set_zonelist_order() will set this to NODE or ZONE.
3362 */
3363 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3364 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3365
3366
3367 #ifdef CONFIG_NUMA
3368 /* The value user specified ....changed by config */
3369 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3370 /* string for sysctl */
3371 #define NUMA_ZONELIST_ORDER_LEN 16
3372 char numa_zonelist_order[16] = "default";
3373
3374 /*
3375 * interface for configure zonelist ordering.
3376 * command line option "numa_zonelist_order"
3377 * = "[dD]efault - default, automatic configuration.
3378 * = "[nN]ode - order by node locality, then by zone within node
3379 * = "[zZ]one - order by zone, then by locality within zone
3380 */
3381
3382 static int __parse_numa_zonelist_order(char *s)
3383 {
3384 if (*s == 'd' || *s == 'D') {
3385 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3386 } else if (*s == 'n' || *s == 'N') {
3387 user_zonelist_order = ZONELIST_ORDER_NODE;
3388 } else if (*s == 'z' || *s == 'Z') {
3389 user_zonelist_order = ZONELIST_ORDER_ZONE;
3390 } else {
3391 printk(KERN_WARNING
3392 "Ignoring invalid numa_zonelist_order value: "
3393 "%s\n", s);
3394 return -EINVAL;
3395 }
3396 return 0;
3397 }
3398
3399 static __init int setup_numa_zonelist_order(char *s)
3400 {
3401 int ret;
3402
3403 if (!s)
3404 return 0;
3405
3406 ret = __parse_numa_zonelist_order(s);
3407 if (ret == 0)
3408 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3409
3410 return ret;
3411 }
3412 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3413
3414 /*
3415 * sysctl handler for numa_zonelist_order
3416 */
3417 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3418 void __user *buffer, size_t *length,
3419 loff_t *ppos)
3420 {
3421 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3422 int ret;
3423 static DEFINE_MUTEX(zl_order_mutex);
3424
3425 mutex_lock(&zl_order_mutex);
3426 if (write) {
3427 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3428 ret = -EINVAL;
3429 goto out;
3430 }
3431 strcpy(saved_string, (char *)table->data);
3432 }
3433 ret = proc_dostring(table, write, buffer, length, ppos);
3434 if (ret)
3435 goto out;
3436 if (write) {
3437 int oldval = user_zonelist_order;
3438
3439 ret = __parse_numa_zonelist_order((char *)table->data);
3440 if (ret) {
3441 /*
3442 * bogus value. restore saved string
3443 */
3444 strncpy((char *)table->data, saved_string,
3445 NUMA_ZONELIST_ORDER_LEN);
3446 user_zonelist_order = oldval;
3447 } else if (oldval != user_zonelist_order) {
3448 mutex_lock(&zonelists_mutex);
3449 build_all_zonelists(NULL, NULL);
3450 mutex_unlock(&zonelists_mutex);
3451 }
3452 }
3453 out:
3454 mutex_unlock(&zl_order_mutex);
3455 return ret;
3456 }
3457
3458
3459 #define MAX_NODE_LOAD (nr_online_nodes)
3460 static int node_load[MAX_NUMNODES];
3461
3462 /**
3463 * find_next_best_node - find the next node that should appear in a given node's fallback list
3464 * @node: node whose fallback list we're appending
3465 * @used_node_mask: nodemask_t of already used nodes
3466 *
3467 * We use a number of factors to determine which is the next node that should
3468 * appear on a given node's fallback list. The node should not have appeared
3469 * already in @node's fallback list, and it should be the next closest node
3470 * according to the distance array (which contains arbitrary distance values
3471 * from each node to each node in the system), and should also prefer nodes
3472 * with no CPUs, since presumably they'll have very little allocation pressure
3473 * on them otherwise.
3474 * It returns -1 if no node is found.
3475 */
3476 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3477 {
3478 int n, val;
3479 int min_val = INT_MAX;
3480 int best_node = NUMA_NO_NODE;
3481 const struct cpumask *tmp = cpumask_of_node(0);
3482
3483 /* Use the local node if we haven't already */
3484 if (!node_isset(node, *used_node_mask)) {
3485 node_set(node, *used_node_mask);
3486 return node;
3487 }
3488
3489 for_each_node_state(n, N_MEMORY) {
3490
3491 /* Don't want a node to appear more than once */
3492 if (node_isset(n, *used_node_mask))
3493 continue;
3494
3495 /* Use the distance array to find the distance */
3496 val = node_distance(node, n);
3497
3498 /* Penalize nodes under us ("prefer the next node") */
3499 val += (n < node);
3500
3501 /* Give preference to headless and unused nodes */
3502 tmp = cpumask_of_node(n);
3503 if (!cpumask_empty(tmp))
3504 val += PENALTY_FOR_NODE_WITH_CPUS;
3505
3506 /* Slight preference for less loaded node */
3507 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3508 val += node_load[n];
3509
3510 if (val < min_val) {
3511 min_val = val;
3512 best_node = n;
3513 }
3514 }
3515
3516 if (best_node >= 0)
3517 node_set(best_node, *used_node_mask);
3518
3519 return best_node;
3520 }
3521
3522
3523 /*
3524 * Build zonelists ordered by node and zones within node.
3525 * This results in maximum locality--normal zone overflows into local
3526 * DMA zone, if any--but risks exhausting DMA zone.
3527 */
3528 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3529 {
3530 int j;
3531 struct zonelist *zonelist;
3532
3533 zonelist = &pgdat->node_zonelists[0];
3534 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3535 ;
3536 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3537 zonelist->_zonerefs[j].zone = NULL;
3538 zonelist->_zonerefs[j].zone_idx = 0;
3539 }
3540
3541 /*
3542 * Build gfp_thisnode zonelists
3543 */
3544 static void build_thisnode_zonelists(pg_data_t *pgdat)
3545 {
3546 int j;
3547 struct zonelist *zonelist;
3548
3549 zonelist = &pgdat->node_zonelists[1];
3550 j = build_zonelists_node(pgdat, zonelist, 0);
3551 zonelist->_zonerefs[j].zone = NULL;
3552 zonelist->_zonerefs[j].zone_idx = 0;
3553 }
3554
3555 /*
3556 * Build zonelists ordered by zone and nodes within zones.
3557 * This results in conserving DMA zone[s] until all Normal memory is
3558 * exhausted, but results in overflowing to remote node while memory
3559 * may still exist in local DMA zone.
3560 */
3561 static int node_order[MAX_NUMNODES];
3562
3563 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3564 {
3565 int pos, j, node;
3566 int zone_type; /* needs to be signed */
3567 struct zone *z;
3568 struct zonelist *zonelist;
3569
3570 zonelist = &pgdat->node_zonelists[0];
3571 pos = 0;
3572 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3573 for (j = 0; j < nr_nodes; j++) {
3574 node = node_order[j];
3575 z = &NODE_DATA(node)->node_zones[zone_type];
3576 if (populated_zone(z)) {
3577 zoneref_set_zone(z,
3578 &zonelist->_zonerefs[pos++]);
3579 check_highest_zone(zone_type);
3580 }
3581 }
3582 }
3583 zonelist->_zonerefs[pos].zone = NULL;
3584 zonelist->_zonerefs[pos].zone_idx = 0;
3585 }
3586
3587 static int default_zonelist_order(void)
3588 {
3589 int nid, zone_type;
3590 unsigned long low_kmem_size, total_size;
3591 struct zone *z;
3592 int average_size;
3593 /*
3594 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3595 * If they are really small and used heavily, the system can fall
3596 * into OOM very easily.
3597 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3598 */
3599 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3600 low_kmem_size = 0;
3601 total_size = 0;
3602 for_each_online_node(nid) {
3603 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3604 z = &NODE_DATA(nid)->node_zones[zone_type];
3605 if (populated_zone(z)) {
3606 if (zone_type < ZONE_NORMAL)
3607 low_kmem_size += z->managed_pages;
3608 total_size += z->managed_pages;
3609 } else if (zone_type == ZONE_NORMAL) {
3610 /*
3611 * If any node has only lowmem, then node order
3612 * is preferred to allow kernel allocations
3613 * locally; otherwise, they can easily infringe
3614 * on other nodes when there is an abundance of
3615 * lowmem available to allocate from.
3616 */
3617 return ZONELIST_ORDER_NODE;
3618 }
3619 }
3620 }
3621 if (!low_kmem_size || /* there are no DMA area. */
3622 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3623 return ZONELIST_ORDER_NODE;
3624 /*
3625 * look into each node's config.
3626 * If there is a node whose DMA/DMA32 memory is very big area on
3627 * local memory, NODE_ORDER may be suitable.
3628 */
3629 average_size = total_size /
3630 (nodes_weight(node_states[N_MEMORY]) + 1);
3631 for_each_online_node(nid) {
3632 low_kmem_size = 0;
3633 total_size = 0;
3634 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3635 z = &NODE_DATA(nid)->node_zones[zone_type];
3636 if (populated_zone(z)) {
3637 if (zone_type < ZONE_NORMAL)
3638 low_kmem_size += z->present_pages;
3639 total_size += z->present_pages;
3640 }
3641 }
3642 if (low_kmem_size &&
3643 total_size > average_size && /* ignore small node */
3644 low_kmem_size > total_size * 70/100)
3645 return ZONELIST_ORDER_NODE;
3646 }
3647 return ZONELIST_ORDER_ZONE;
3648 }
3649
3650 static void set_zonelist_order(void)
3651 {
3652 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3653 current_zonelist_order = default_zonelist_order();
3654 else
3655 current_zonelist_order = user_zonelist_order;
3656 }
3657
3658 static void build_zonelists(pg_data_t *pgdat)
3659 {
3660 int j, node, load;
3661 enum zone_type i;
3662 nodemask_t used_mask;
3663 int local_node, prev_node;
3664 struct zonelist *zonelist;
3665 int order = current_zonelist_order;
3666
3667 /* initialize zonelists */
3668 for (i = 0; i < MAX_ZONELISTS; i++) {
3669 zonelist = pgdat->node_zonelists + i;
3670 zonelist->_zonerefs[0].zone = NULL;
3671 zonelist->_zonerefs[0].zone_idx = 0;
3672 }
3673
3674 /* NUMA-aware ordering of nodes */
3675 local_node = pgdat->node_id;
3676 load = nr_online_nodes;
3677 prev_node = local_node;
3678 nodes_clear(used_mask);
3679
3680 memset(node_order, 0, sizeof(node_order));
3681 j = 0;
3682
3683 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3684 /*
3685 * We don't want to pressure a particular node.
3686 * So adding penalty to the first node in same
3687 * distance group to make it round-robin.
3688 */
3689 if (node_distance(local_node, node) !=
3690 node_distance(local_node, prev_node))
3691 node_load[node] = load;
3692
3693 prev_node = node;
3694 load--;
3695 if (order == ZONELIST_ORDER_NODE)
3696 build_zonelists_in_node_order(pgdat, node);
3697 else
3698 node_order[j++] = node; /* remember order */
3699 }
3700
3701 if (order == ZONELIST_ORDER_ZONE) {
3702 /* calculate node order -- i.e., DMA last! */
3703 build_zonelists_in_zone_order(pgdat, j);
3704 }
3705
3706 build_thisnode_zonelists(pgdat);
3707 }
3708
3709 /* Construct the zonelist performance cache - see further mmzone.h */
3710 static void build_zonelist_cache(pg_data_t *pgdat)
3711 {
3712 struct zonelist *zonelist;
3713 struct zonelist_cache *zlc;
3714 struct zoneref *z;
3715
3716 zonelist = &pgdat->node_zonelists[0];
3717 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3719 for (z = zonelist->_zonerefs; z->zone; z++)
3720 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3721 }
3722
3723 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3724 /*
3725 * Return node id of node used for "local" allocations.
3726 * I.e., first node id of first zone in arg node's generic zonelist.
3727 * Used for initializing percpu 'numa_mem', which is used primarily
3728 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3729 */
3730 int local_memory_node(int node)
3731 {
3732 struct zone *zone;
3733
3734 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3735 gfp_zone(GFP_KERNEL),
3736 NULL,
3737 &zone);
3738 return zone->node;
3739 }
3740 #endif
3741
3742 #else /* CONFIG_NUMA */
3743
3744 static void set_zonelist_order(void)
3745 {
3746 current_zonelist_order = ZONELIST_ORDER_ZONE;
3747 }
3748
3749 static void build_zonelists(pg_data_t *pgdat)
3750 {
3751 int node, local_node;
3752 enum zone_type j;
3753 struct zonelist *zonelist;
3754
3755 local_node = pgdat->node_id;
3756
3757 zonelist = &pgdat->node_zonelists[0];
3758 j = build_zonelists_node(pgdat, zonelist, 0);
3759
3760 /*
3761 * Now we build the zonelist so that it contains the zones
3762 * of all the other nodes.
3763 * We don't want to pressure a particular node, so when
3764 * building the zones for node N, we make sure that the
3765 * zones coming right after the local ones are those from
3766 * node N+1 (modulo N)
3767 */
3768 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3769 if (!node_online(node))
3770 continue;
3771 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3772 }
3773 for (node = 0; node < local_node; node++) {
3774 if (!node_online(node))
3775 continue;
3776 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3777 }
3778
3779 zonelist->_zonerefs[j].zone = NULL;
3780 zonelist->_zonerefs[j].zone_idx = 0;
3781 }
3782
3783 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3784 static void build_zonelist_cache(pg_data_t *pgdat)
3785 {
3786 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3787 }
3788
3789 #endif /* CONFIG_NUMA */
3790
3791 /*
3792 * Boot pageset table. One per cpu which is going to be used for all
3793 * zones and all nodes. The parameters will be set in such a way
3794 * that an item put on a list will immediately be handed over to
3795 * the buddy list. This is safe since pageset manipulation is done
3796 * with interrupts disabled.
3797 *
3798 * The boot_pagesets must be kept even after bootup is complete for
3799 * unused processors and/or zones. They do play a role for bootstrapping
3800 * hotplugged processors.
3801 *
3802 * zoneinfo_show() and maybe other functions do
3803 * not check if the processor is online before following the pageset pointer.
3804 * Other parts of the kernel may not check if the zone is available.
3805 */
3806 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3807 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3808 static void setup_zone_pageset(struct zone *zone);
3809
3810 /*
3811 * Global mutex to protect against size modification of zonelists
3812 * as well as to serialize pageset setup for the new populated zone.
3813 */
3814 DEFINE_MUTEX(zonelists_mutex);
3815
3816 /* return values int ....just for stop_machine() */
3817 static int __build_all_zonelists(void *data)
3818 {
3819 int nid;
3820 int cpu;
3821 pg_data_t *self = data;
3822
3823 #ifdef CONFIG_NUMA
3824 memset(node_load, 0, sizeof(node_load));
3825 #endif
3826
3827 if (self && !node_online(self->node_id)) {
3828 build_zonelists(self);
3829 build_zonelist_cache(self);
3830 }
3831
3832 for_each_online_node(nid) {
3833 pg_data_t *pgdat = NODE_DATA(nid);
3834
3835 build_zonelists(pgdat);
3836 build_zonelist_cache(pgdat);
3837 }
3838
3839 /*
3840 * Initialize the boot_pagesets that are going to be used
3841 * for bootstrapping processors. The real pagesets for
3842 * each zone will be allocated later when the per cpu
3843 * allocator is available.
3844 *
3845 * boot_pagesets are used also for bootstrapping offline
3846 * cpus if the system is already booted because the pagesets
3847 * are needed to initialize allocators on a specific cpu too.
3848 * F.e. the percpu allocator needs the page allocator which
3849 * needs the percpu allocator in order to allocate its pagesets
3850 * (a chicken-egg dilemma).
3851 */
3852 for_each_possible_cpu(cpu) {
3853 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3854
3855 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3856 /*
3857 * We now know the "local memory node" for each node--
3858 * i.e., the node of the first zone in the generic zonelist.
3859 * Set up numa_mem percpu variable for on-line cpus. During
3860 * boot, only the boot cpu should be on-line; we'll init the
3861 * secondary cpus' numa_mem as they come on-line. During
3862 * node/memory hotplug, we'll fixup all on-line cpus.
3863 */
3864 if (cpu_online(cpu))
3865 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3866 #endif
3867 }
3868
3869 return 0;
3870 }
3871
3872 /*
3873 * Called with zonelists_mutex held always
3874 * unless system_state == SYSTEM_BOOTING.
3875 */
3876 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3877 {
3878 set_zonelist_order();
3879
3880 if (system_state == SYSTEM_BOOTING) {
3881 __build_all_zonelists(NULL);
3882 mminit_verify_zonelist();
3883 cpuset_init_current_mems_allowed();
3884 } else {
3885 #ifdef CONFIG_MEMORY_HOTPLUG
3886 if (zone)
3887 setup_zone_pageset(zone);
3888 #endif
3889 /* we have to stop all cpus to guarantee there is no user
3890 of zonelist */
3891 stop_machine(__build_all_zonelists, pgdat, NULL);
3892 /* cpuset refresh routine should be here */
3893 }
3894 vm_total_pages = nr_free_pagecache_pages();
3895 /*
3896 * Disable grouping by mobility if the number of pages in the
3897 * system is too low to allow the mechanism to work. It would be
3898 * more accurate, but expensive to check per-zone. This check is
3899 * made on memory-hotadd so a system can start with mobility
3900 * disabled and enable it later
3901 */
3902 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3903 page_group_by_mobility_disabled = 1;
3904 else
3905 page_group_by_mobility_disabled = 0;
3906
3907 printk("Built %i zonelists in %s order, mobility grouping %s. "
3908 "Total pages: %ld\n",
3909 nr_online_nodes,
3910 zonelist_order_name[current_zonelist_order],
3911 page_group_by_mobility_disabled ? "off" : "on",
3912 vm_total_pages);
3913 #ifdef CONFIG_NUMA
3914 printk("Policy zone: %s\n", zone_names[policy_zone]);
3915 #endif
3916 }
3917
3918 /*
3919 * Helper functions to size the waitqueue hash table.
3920 * Essentially these want to choose hash table sizes sufficiently
3921 * large so that collisions trying to wait on pages are rare.
3922 * But in fact, the number of active page waitqueues on typical
3923 * systems is ridiculously low, less than 200. So this is even
3924 * conservative, even though it seems large.
3925 *
3926 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3927 * waitqueues, i.e. the size of the waitq table given the number of pages.
3928 */
3929 #define PAGES_PER_WAITQUEUE 256
3930
3931 #ifndef CONFIG_MEMORY_HOTPLUG
3932 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3933 {
3934 unsigned long size = 1;
3935
3936 pages /= PAGES_PER_WAITQUEUE;
3937
3938 while (size < pages)
3939 size <<= 1;
3940
3941 /*
3942 * Once we have dozens or even hundreds of threads sleeping
3943 * on IO we've got bigger problems than wait queue collision.
3944 * Limit the size of the wait table to a reasonable size.
3945 */
3946 size = min(size, 4096UL);
3947
3948 return max(size, 4UL);
3949 }
3950 #else
3951 /*
3952 * A zone's size might be changed by hot-add, so it is not possible to determine
3953 * a suitable size for its wait_table. So we use the maximum size now.
3954 *
3955 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3956 *
3957 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3958 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3959 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3960 *
3961 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3962 * or more by the traditional way. (See above). It equals:
3963 *
3964 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3965 * ia64(16K page size) : = ( 8G + 4M)byte.
3966 * powerpc (64K page size) : = (32G +16M)byte.
3967 */
3968 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3969 {
3970 return 4096UL;
3971 }
3972 #endif
3973
3974 /*
3975 * This is an integer logarithm so that shifts can be used later
3976 * to extract the more random high bits from the multiplicative
3977 * hash function before the remainder is taken.
3978 */
3979 static inline unsigned long wait_table_bits(unsigned long size)
3980 {
3981 return ffz(~size);
3982 }
3983
3984 /*
3985 * Check if a pageblock contains reserved pages
3986 */
3987 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3988 {
3989 unsigned long pfn;
3990
3991 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3992 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3993 return 1;
3994 }
3995 return 0;
3996 }
3997
3998 /*
3999 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4000 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4001 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4002 * higher will lead to a bigger reserve which will get freed as contiguous
4003 * blocks as reclaim kicks in
4004 */
4005 static void setup_zone_migrate_reserve(struct zone *zone)
4006 {
4007 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4008 struct page *page;
4009 unsigned long block_migratetype;
4010 int reserve;
4011 int old_reserve;
4012
4013 /*
4014 * Get the start pfn, end pfn and the number of blocks to reserve
4015 * We have to be careful to be aligned to pageblock_nr_pages to
4016 * make sure that we always check pfn_valid for the first page in
4017 * the block.
4018 */
4019 start_pfn = zone->zone_start_pfn;
4020 end_pfn = zone_end_pfn(zone);
4021 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4022 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4023 pageblock_order;
4024
4025 /*
4026 * Reserve blocks are generally in place to help high-order atomic
4027 * allocations that are short-lived. A min_free_kbytes value that
4028 * would result in more than 2 reserve blocks for atomic allocations
4029 * is assumed to be in place to help anti-fragmentation for the
4030 * future allocation of hugepages at runtime.
4031 */
4032 reserve = min(2, reserve);
4033 old_reserve = zone->nr_migrate_reserve_block;
4034
4035 /* When memory hot-add, we almost always need to do nothing */
4036 if (reserve == old_reserve)
4037 return;
4038 zone->nr_migrate_reserve_block = reserve;
4039
4040 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4041 if (!pfn_valid(pfn))
4042 continue;
4043 page = pfn_to_page(pfn);
4044
4045 /* Watch out for overlapping nodes */
4046 if (page_to_nid(page) != zone_to_nid(zone))
4047 continue;
4048
4049 block_migratetype = get_pageblock_migratetype(page);
4050
4051 /* Only test what is necessary when the reserves are not met */
4052 if (reserve > 0) {
4053 /*
4054 * Blocks with reserved pages will never free, skip
4055 * them.
4056 */
4057 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4058 if (pageblock_is_reserved(pfn, block_end_pfn))
4059 continue;
4060
4061 /* If this block is reserved, account for it */
4062 if (block_migratetype == MIGRATE_RESERVE) {
4063 reserve--;
4064 continue;
4065 }
4066
4067 /* Suitable for reserving if this block is movable */
4068 if (block_migratetype == MIGRATE_MOVABLE) {
4069 set_pageblock_migratetype(page,
4070 MIGRATE_RESERVE);
4071 move_freepages_block(zone, page,
4072 MIGRATE_RESERVE);
4073 reserve--;
4074 continue;
4075 }
4076 } else if (!old_reserve) {
4077 /*
4078 * At boot time we don't need to scan the whole zone
4079 * for turning off MIGRATE_RESERVE.
4080 */
4081 break;
4082 }
4083
4084 /*
4085 * If the reserve is met and this is a previous reserved block,
4086 * take it back
4087 */
4088 if (block_migratetype == MIGRATE_RESERVE) {
4089 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4090 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4091 }
4092 }
4093 }
4094
4095 /*
4096 * Initially all pages are reserved - free ones are freed
4097 * up by free_all_bootmem() once the early boot process is
4098 * done. Non-atomic initialization, single-pass.
4099 */
4100 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4101 unsigned long start_pfn, enum memmap_context context)
4102 {
4103 struct page *page;
4104 unsigned long end_pfn = start_pfn + size;
4105 unsigned long pfn;
4106 struct zone *z;
4107
4108 if (highest_memmap_pfn < end_pfn - 1)
4109 highest_memmap_pfn = end_pfn - 1;
4110
4111 z = &NODE_DATA(nid)->node_zones[zone];
4112 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4113 /*
4114 * There can be holes in boot-time mem_map[]s
4115 * handed to this function. They do not
4116 * exist on hotplugged memory.
4117 */
4118 if (context == MEMMAP_EARLY) {
4119 if (!early_pfn_valid(pfn))
4120 continue;
4121 if (!early_pfn_in_nid(pfn, nid))
4122 continue;
4123 }
4124 page = pfn_to_page(pfn);
4125 set_page_links(page, zone, nid, pfn);
4126 mminit_verify_page_links(page, zone, nid, pfn);
4127 init_page_count(page);
4128 page_mapcount_reset(page);
4129 page_cpupid_reset_last(page);
4130 SetPageReserved(page);
4131 /*
4132 * Mark the block movable so that blocks are reserved for
4133 * movable at startup. This will force kernel allocations
4134 * to reserve their blocks rather than leaking throughout
4135 * the address space during boot when many long-lived
4136 * kernel allocations are made. Later some blocks near
4137 * the start are marked MIGRATE_RESERVE by
4138 * setup_zone_migrate_reserve()
4139 *
4140 * bitmap is created for zone's valid pfn range. but memmap
4141 * can be created for invalid pages (for alignment)
4142 * check here not to call set_pageblock_migratetype() against
4143 * pfn out of zone.
4144 */
4145 if ((z->zone_start_pfn <= pfn)
4146 && (pfn < zone_end_pfn(z))
4147 && !(pfn & (pageblock_nr_pages - 1)))
4148 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4149
4150 INIT_LIST_HEAD(&page->lru);
4151 #ifdef WANT_PAGE_VIRTUAL
4152 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4153 if (!is_highmem_idx(zone))
4154 set_page_address(page, __va(pfn << PAGE_SHIFT));
4155 #endif
4156 }
4157 }
4158
4159 static void __meminit zone_init_free_lists(struct zone *zone)
4160 {
4161 unsigned int order, t;
4162 for_each_migratetype_order(order, t) {
4163 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4164 zone->free_area[order].nr_free = 0;
4165 }
4166 }
4167
4168 #ifndef __HAVE_ARCH_MEMMAP_INIT
4169 #define memmap_init(size, nid, zone, start_pfn) \
4170 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4171 #endif
4172
4173 static int zone_batchsize(struct zone *zone)
4174 {
4175 #ifdef CONFIG_MMU
4176 int batch;
4177
4178 /*
4179 * The per-cpu-pages pools are set to around 1000th of the
4180 * size of the zone. But no more than 1/2 of a meg.
4181 *
4182 * OK, so we don't know how big the cache is. So guess.
4183 */
4184 batch = zone->managed_pages / 1024;
4185 if (batch * PAGE_SIZE > 512 * 1024)
4186 batch = (512 * 1024) / PAGE_SIZE;
4187 batch /= 4; /* We effectively *= 4 below */
4188 if (batch < 1)
4189 batch = 1;
4190
4191 /*
4192 * Clamp the batch to a 2^n - 1 value. Having a power
4193 * of 2 value was found to be more likely to have
4194 * suboptimal cache aliasing properties in some cases.
4195 *
4196 * For example if 2 tasks are alternately allocating
4197 * batches of pages, one task can end up with a lot
4198 * of pages of one half of the possible page colors
4199 * and the other with pages of the other colors.
4200 */
4201 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4202
4203 return batch;
4204
4205 #else
4206 /* The deferral and batching of frees should be suppressed under NOMMU
4207 * conditions.
4208 *
4209 * The problem is that NOMMU needs to be able to allocate large chunks
4210 * of contiguous memory as there's no hardware page translation to
4211 * assemble apparent contiguous memory from discontiguous pages.
4212 *
4213 * Queueing large contiguous runs of pages for batching, however,
4214 * causes the pages to actually be freed in smaller chunks. As there
4215 * can be a significant delay between the individual batches being
4216 * recycled, this leads to the once large chunks of space being
4217 * fragmented and becoming unavailable for high-order allocations.
4218 */
4219 return 0;
4220 #endif
4221 }
4222
4223 /*
4224 * pcp->high and pcp->batch values are related and dependent on one another:
4225 * ->batch must never be higher then ->high.
4226 * The following function updates them in a safe manner without read side
4227 * locking.
4228 *
4229 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4230 * those fields changing asynchronously (acording the the above rule).
4231 *
4232 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4233 * outside of boot time (or some other assurance that no concurrent updaters
4234 * exist).
4235 */
4236 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4237 unsigned long batch)
4238 {
4239 /* start with a fail safe value for batch */
4240 pcp->batch = 1;
4241 smp_wmb();
4242
4243 /* Update high, then batch, in order */
4244 pcp->high = high;
4245 smp_wmb();
4246
4247 pcp->batch = batch;
4248 }
4249
4250 /* a companion to pageset_set_high() */
4251 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4252 {
4253 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4254 }
4255
4256 static void pageset_init(struct per_cpu_pageset *p)
4257 {
4258 struct per_cpu_pages *pcp;
4259 int migratetype;
4260
4261 memset(p, 0, sizeof(*p));
4262
4263 pcp = &p->pcp;
4264 pcp->count = 0;
4265 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4266 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4267 }
4268
4269 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4270 {
4271 pageset_init(p);
4272 pageset_set_batch(p, batch);
4273 }
4274
4275 /*
4276 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4277 * to the value high for the pageset p.
4278 */
4279 static void pageset_set_high(struct per_cpu_pageset *p,
4280 unsigned long high)
4281 {
4282 unsigned long batch = max(1UL, high / 4);
4283 if ((high / 4) > (PAGE_SHIFT * 8))
4284 batch = PAGE_SHIFT * 8;
4285
4286 pageset_update(&p->pcp, high, batch);
4287 }
4288
4289 static void pageset_set_high_and_batch(struct zone *zone,
4290 struct per_cpu_pageset *pcp)
4291 {
4292 if (percpu_pagelist_fraction)
4293 pageset_set_high(pcp,
4294 (zone->managed_pages /
4295 percpu_pagelist_fraction));
4296 else
4297 pageset_set_batch(pcp, zone_batchsize(zone));
4298 }
4299
4300 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4301 {
4302 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4303
4304 pageset_init(pcp);
4305 pageset_set_high_and_batch(zone, pcp);
4306 }
4307
4308 static void __meminit setup_zone_pageset(struct zone *zone)
4309 {
4310 int cpu;
4311 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4312 for_each_possible_cpu(cpu)
4313 zone_pageset_init(zone, cpu);
4314 }
4315
4316 /*
4317 * Allocate per cpu pagesets and initialize them.
4318 * Before this call only boot pagesets were available.
4319 */
4320 void __init setup_per_cpu_pageset(void)
4321 {
4322 struct zone *zone;
4323
4324 for_each_populated_zone(zone)
4325 setup_zone_pageset(zone);
4326 }
4327
4328 static noinline __init_refok
4329 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4330 {
4331 int i;
4332 size_t alloc_size;
4333
4334 /*
4335 * The per-page waitqueue mechanism uses hashed waitqueues
4336 * per zone.
4337 */
4338 zone->wait_table_hash_nr_entries =
4339 wait_table_hash_nr_entries(zone_size_pages);
4340 zone->wait_table_bits =
4341 wait_table_bits(zone->wait_table_hash_nr_entries);
4342 alloc_size = zone->wait_table_hash_nr_entries
4343 * sizeof(wait_queue_head_t);
4344
4345 if (!slab_is_available()) {
4346 zone->wait_table = (wait_queue_head_t *)
4347 memblock_virt_alloc_node_nopanic(
4348 alloc_size, zone->zone_pgdat->node_id);
4349 } else {
4350 /*
4351 * This case means that a zone whose size was 0 gets new memory
4352 * via memory hot-add.
4353 * But it may be the case that a new node was hot-added. In
4354 * this case vmalloc() will not be able to use this new node's
4355 * memory - this wait_table must be initialized to use this new
4356 * node itself as well.
4357 * To use this new node's memory, further consideration will be
4358 * necessary.
4359 */
4360 zone->wait_table = vmalloc(alloc_size);
4361 }
4362 if (!zone->wait_table)
4363 return -ENOMEM;
4364
4365 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4366 init_waitqueue_head(zone->wait_table + i);
4367
4368 return 0;
4369 }
4370
4371 static __meminit void zone_pcp_init(struct zone *zone)
4372 {
4373 /*
4374 * per cpu subsystem is not up at this point. The following code
4375 * relies on the ability of the linker to provide the
4376 * offset of a (static) per cpu variable into the per cpu area.
4377 */
4378 zone->pageset = &boot_pageset;
4379
4380 if (populated_zone(zone))
4381 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4382 zone->name, zone->present_pages,
4383 zone_batchsize(zone));
4384 }
4385
4386 int __meminit init_currently_empty_zone(struct zone *zone,
4387 unsigned long zone_start_pfn,
4388 unsigned long size,
4389 enum memmap_context context)
4390 {
4391 struct pglist_data *pgdat = zone->zone_pgdat;
4392 int ret;
4393 ret = zone_wait_table_init(zone, size);
4394 if (ret)
4395 return ret;
4396 pgdat->nr_zones = zone_idx(zone) + 1;
4397
4398 zone->zone_start_pfn = zone_start_pfn;
4399
4400 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4401 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4402 pgdat->node_id,
4403 (unsigned long)zone_idx(zone),
4404 zone_start_pfn, (zone_start_pfn + size));
4405
4406 zone_init_free_lists(zone);
4407
4408 return 0;
4409 }
4410
4411 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4412 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4413 /*
4414 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4415 */
4416 int __meminit __early_pfn_to_nid(unsigned long pfn)
4417 {
4418 unsigned long start_pfn, end_pfn;
4419 int nid;
4420 /*
4421 * NOTE: The following SMP-unsafe globals are only used early in boot
4422 * when the kernel is running single-threaded.
4423 */
4424 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4425 static int __meminitdata last_nid;
4426
4427 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4428 return last_nid;
4429
4430 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4431 if (nid != -1) {
4432 last_start_pfn = start_pfn;
4433 last_end_pfn = end_pfn;
4434 last_nid = nid;
4435 }
4436
4437 return nid;
4438 }
4439 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4440
4441 int __meminit early_pfn_to_nid(unsigned long pfn)
4442 {
4443 int nid;
4444
4445 nid = __early_pfn_to_nid(pfn);
4446 if (nid >= 0)
4447 return nid;
4448 /* just returns 0 */
4449 return 0;
4450 }
4451
4452 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4453 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4454 {
4455 int nid;
4456
4457 nid = __early_pfn_to_nid(pfn);
4458 if (nid >= 0 && nid != node)
4459 return false;
4460 return true;
4461 }
4462 #endif
4463
4464 /**
4465 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4466 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4467 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4468 *
4469 * If an architecture guarantees that all ranges registered contain no holes
4470 * and may be freed, this this function may be used instead of calling
4471 * memblock_free_early_nid() manually.
4472 */
4473 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4474 {
4475 unsigned long start_pfn, end_pfn;
4476 int i, this_nid;
4477
4478 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4479 start_pfn = min(start_pfn, max_low_pfn);
4480 end_pfn = min(end_pfn, max_low_pfn);
4481
4482 if (start_pfn < end_pfn)
4483 memblock_free_early_nid(PFN_PHYS(start_pfn),
4484 (end_pfn - start_pfn) << PAGE_SHIFT,
4485 this_nid);
4486 }
4487 }
4488
4489 /**
4490 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4491 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4492 *
4493 * If an architecture guarantees that all ranges registered contain no holes and may
4494 * be freed, this function may be used instead of calling memory_present() manually.
4495 */
4496 void __init sparse_memory_present_with_active_regions(int nid)
4497 {
4498 unsigned long start_pfn, end_pfn;
4499 int i, this_nid;
4500
4501 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4502 memory_present(this_nid, start_pfn, end_pfn);
4503 }
4504
4505 /**
4506 * get_pfn_range_for_nid - Return the start and end page frames for a node
4507 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4508 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4509 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4510 *
4511 * It returns the start and end page frame of a node based on information
4512 * provided by memblock_set_node(). If called for a node
4513 * with no available memory, a warning is printed and the start and end
4514 * PFNs will be 0.
4515 */
4516 void __meminit get_pfn_range_for_nid(unsigned int nid,
4517 unsigned long *start_pfn, unsigned long *end_pfn)
4518 {
4519 unsigned long this_start_pfn, this_end_pfn;
4520 int i;
4521
4522 *start_pfn = -1UL;
4523 *end_pfn = 0;
4524
4525 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4526 *start_pfn = min(*start_pfn, this_start_pfn);
4527 *end_pfn = max(*end_pfn, this_end_pfn);
4528 }
4529
4530 if (*start_pfn == -1UL)
4531 *start_pfn = 0;
4532 }
4533
4534 /*
4535 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4536 * assumption is made that zones within a node are ordered in monotonic
4537 * increasing memory addresses so that the "highest" populated zone is used
4538 */
4539 static void __init find_usable_zone_for_movable(void)
4540 {
4541 int zone_index;
4542 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4543 if (zone_index == ZONE_MOVABLE)
4544 continue;
4545
4546 if (arch_zone_highest_possible_pfn[zone_index] >
4547 arch_zone_lowest_possible_pfn[zone_index])
4548 break;
4549 }
4550
4551 VM_BUG_ON(zone_index == -1);
4552 movable_zone = zone_index;
4553 }
4554
4555 /*
4556 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4557 * because it is sized independent of architecture. Unlike the other zones,
4558 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4559 * in each node depending on the size of each node and how evenly kernelcore
4560 * is distributed. This helper function adjusts the zone ranges
4561 * provided by the architecture for a given node by using the end of the
4562 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4563 * zones within a node are in order of monotonic increases memory addresses
4564 */
4565 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4566 unsigned long zone_type,
4567 unsigned long node_start_pfn,
4568 unsigned long node_end_pfn,
4569 unsigned long *zone_start_pfn,
4570 unsigned long *zone_end_pfn)
4571 {
4572 /* Only adjust if ZONE_MOVABLE is on this node */
4573 if (zone_movable_pfn[nid]) {
4574 /* Size ZONE_MOVABLE */
4575 if (zone_type == ZONE_MOVABLE) {
4576 *zone_start_pfn = zone_movable_pfn[nid];
4577 *zone_end_pfn = min(node_end_pfn,
4578 arch_zone_highest_possible_pfn[movable_zone]);
4579
4580 /* Adjust for ZONE_MOVABLE starting within this range */
4581 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4582 *zone_end_pfn > zone_movable_pfn[nid]) {
4583 *zone_end_pfn = zone_movable_pfn[nid];
4584
4585 /* Check if this whole range is within ZONE_MOVABLE */
4586 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4587 *zone_start_pfn = *zone_end_pfn;
4588 }
4589 }
4590
4591 /*
4592 * Return the number of pages a zone spans in a node, including holes
4593 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4594 */
4595 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4596 unsigned long zone_type,
4597 unsigned long node_start_pfn,
4598 unsigned long node_end_pfn,
4599 unsigned long *ignored)
4600 {
4601 unsigned long zone_start_pfn, zone_end_pfn;
4602
4603 /* Get the start and end of the zone */
4604 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4605 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4606 adjust_zone_range_for_zone_movable(nid, zone_type,
4607 node_start_pfn, node_end_pfn,
4608 &zone_start_pfn, &zone_end_pfn);
4609
4610 /* Check that this node has pages within the zone's required range */
4611 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4612 return 0;
4613
4614 /* Move the zone boundaries inside the node if necessary */
4615 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4616 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4617
4618 /* Return the spanned pages */
4619 return zone_end_pfn - zone_start_pfn;
4620 }
4621
4622 /*
4623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4624 * then all holes in the requested range will be accounted for.
4625 */
4626 unsigned long __meminit __absent_pages_in_range(int nid,
4627 unsigned long range_start_pfn,
4628 unsigned long range_end_pfn)
4629 {
4630 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4631 unsigned long start_pfn, end_pfn;
4632 int i;
4633
4634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4637 nr_absent -= end_pfn - start_pfn;
4638 }
4639 return nr_absent;
4640 }
4641
4642 /**
4643 * absent_pages_in_range - Return number of page frames in holes within a range
4644 * @start_pfn: The start PFN to start searching for holes
4645 * @end_pfn: The end PFN to stop searching for holes
4646 *
4647 * It returns the number of pages frames in memory holes within a range.
4648 */
4649 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4650 unsigned long end_pfn)
4651 {
4652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4653 }
4654
4655 /* Return the number of page frames in holes in a zone on a node */
4656 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4657 unsigned long zone_type,
4658 unsigned long node_start_pfn,
4659 unsigned long node_end_pfn,
4660 unsigned long *ignored)
4661 {
4662 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4663 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4664 unsigned long zone_start_pfn, zone_end_pfn;
4665
4666 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4667 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4668
4669 adjust_zone_range_for_zone_movable(nid, zone_type,
4670 node_start_pfn, node_end_pfn,
4671 &zone_start_pfn, &zone_end_pfn);
4672 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4673 }
4674
4675 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4676 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4677 unsigned long zone_type,
4678 unsigned long node_start_pfn,
4679 unsigned long node_end_pfn,
4680 unsigned long *zones_size)
4681 {
4682 return zones_size[zone_type];
4683 }
4684
4685 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4686 unsigned long zone_type,
4687 unsigned long node_start_pfn,
4688 unsigned long node_end_pfn,
4689 unsigned long *zholes_size)
4690 {
4691 if (!zholes_size)
4692 return 0;
4693
4694 return zholes_size[zone_type];
4695 }
4696
4697 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4698
4699 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4700 unsigned long node_start_pfn,
4701 unsigned long node_end_pfn,
4702 unsigned long *zones_size,
4703 unsigned long *zholes_size)
4704 {
4705 unsigned long realtotalpages, totalpages = 0;
4706 enum zone_type i;
4707
4708 for (i = 0; i < MAX_NR_ZONES; i++)
4709 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4710 node_start_pfn,
4711 node_end_pfn,
4712 zones_size);
4713 pgdat->node_spanned_pages = totalpages;
4714
4715 realtotalpages = totalpages;
4716 for (i = 0; i < MAX_NR_ZONES; i++)
4717 realtotalpages -=
4718 zone_absent_pages_in_node(pgdat->node_id, i,
4719 node_start_pfn, node_end_pfn,
4720 zholes_size);
4721 pgdat->node_present_pages = realtotalpages;
4722 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4723 realtotalpages);
4724 }
4725
4726 #ifndef CONFIG_SPARSEMEM
4727 /*
4728 * Calculate the size of the zone->blockflags rounded to an unsigned long
4729 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4730 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4731 * round what is now in bits to nearest long in bits, then return it in
4732 * bytes.
4733 */
4734 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4735 {
4736 unsigned long usemapsize;
4737
4738 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4739 usemapsize = roundup(zonesize, pageblock_nr_pages);
4740 usemapsize = usemapsize >> pageblock_order;
4741 usemapsize *= NR_PAGEBLOCK_BITS;
4742 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4743
4744 return usemapsize / 8;
4745 }
4746
4747 static void __init setup_usemap(struct pglist_data *pgdat,
4748 struct zone *zone,
4749 unsigned long zone_start_pfn,
4750 unsigned long zonesize)
4751 {
4752 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4753 zone->pageblock_flags = NULL;
4754 if (usemapsize)
4755 zone->pageblock_flags =
4756 memblock_virt_alloc_node_nopanic(usemapsize,
4757 pgdat->node_id);
4758 }
4759 #else
4760 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4761 unsigned long zone_start_pfn, unsigned long zonesize) {}
4762 #endif /* CONFIG_SPARSEMEM */
4763
4764 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4765
4766 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4767 void __paginginit set_pageblock_order(void)
4768 {
4769 unsigned int order;
4770
4771 /* Check that pageblock_nr_pages has not already been setup */
4772 if (pageblock_order)
4773 return;
4774
4775 if (HPAGE_SHIFT > PAGE_SHIFT)
4776 order = HUGETLB_PAGE_ORDER;
4777 else
4778 order = MAX_ORDER - 1;
4779
4780 /*
4781 * Assume the largest contiguous order of interest is a huge page.
4782 * This value may be variable depending on boot parameters on IA64 and
4783 * powerpc.
4784 */
4785 pageblock_order = order;
4786 }
4787 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4788
4789 /*
4790 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4791 * is unused as pageblock_order is set at compile-time. See
4792 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4793 * the kernel config
4794 */
4795 void __paginginit set_pageblock_order(void)
4796 {
4797 }
4798
4799 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4800
4801 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4802 unsigned long present_pages)
4803 {
4804 unsigned long pages = spanned_pages;
4805
4806 /*
4807 * Provide a more accurate estimation if there are holes within
4808 * the zone and SPARSEMEM is in use. If there are holes within the
4809 * zone, each populated memory region may cost us one or two extra
4810 * memmap pages due to alignment because memmap pages for each
4811 * populated regions may not naturally algined on page boundary.
4812 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4813 */
4814 if (spanned_pages > present_pages + (present_pages >> 4) &&
4815 IS_ENABLED(CONFIG_SPARSEMEM))
4816 pages = present_pages;
4817
4818 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4819 }
4820
4821 /*
4822 * Set up the zone data structures:
4823 * - mark all pages reserved
4824 * - mark all memory queues empty
4825 * - clear the memory bitmaps
4826 *
4827 * NOTE: pgdat should get zeroed by caller.
4828 */
4829 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4830 unsigned long node_start_pfn, unsigned long node_end_pfn,
4831 unsigned long *zones_size, unsigned long *zholes_size)
4832 {
4833 enum zone_type j;
4834 int nid = pgdat->node_id;
4835 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4836 int ret;
4837
4838 pgdat_resize_init(pgdat);
4839 #ifdef CONFIG_NUMA_BALANCING
4840 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4841 pgdat->numabalancing_migrate_nr_pages = 0;
4842 pgdat->numabalancing_migrate_next_window = jiffies;
4843 #endif
4844 init_waitqueue_head(&pgdat->kswapd_wait);
4845 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4846 pgdat_page_cgroup_init(pgdat);
4847
4848 for (j = 0; j < MAX_NR_ZONES; j++) {
4849 struct zone *zone = pgdat->node_zones + j;
4850 unsigned long size, realsize, freesize, memmap_pages;
4851
4852 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4853 node_end_pfn, zones_size);
4854 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4855 node_start_pfn,
4856 node_end_pfn,
4857 zholes_size);
4858
4859 /*
4860 * Adjust freesize so that it accounts for how much memory
4861 * is used by this zone for memmap. This affects the watermark
4862 * and per-cpu initialisations
4863 */
4864 memmap_pages = calc_memmap_size(size, realsize);
4865 if (freesize >= memmap_pages) {
4866 freesize -= memmap_pages;
4867 if (memmap_pages)
4868 printk(KERN_DEBUG
4869 " %s zone: %lu pages used for memmap\n",
4870 zone_names[j], memmap_pages);
4871 } else
4872 printk(KERN_WARNING
4873 " %s zone: %lu pages exceeds freesize %lu\n",
4874 zone_names[j], memmap_pages, freesize);
4875
4876 /* Account for reserved pages */
4877 if (j == 0 && freesize > dma_reserve) {
4878 freesize -= dma_reserve;
4879 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4880 zone_names[0], dma_reserve);
4881 }
4882
4883 if (!is_highmem_idx(j))
4884 nr_kernel_pages += freesize;
4885 /* Charge for highmem memmap if there are enough kernel pages */
4886 else if (nr_kernel_pages > memmap_pages * 2)
4887 nr_kernel_pages -= memmap_pages;
4888 nr_all_pages += freesize;
4889
4890 zone->spanned_pages = size;
4891 zone->present_pages = realsize;
4892 /*
4893 * Set an approximate value for lowmem here, it will be adjusted
4894 * when the bootmem allocator frees pages into the buddy system.
4895 * And all highmem pages will be managed by the buddy system.
4896 */
4897 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4898 #ifdef CONFIG_NUMA
4899 zone->node = nid;
4900 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4901 / 100;
4902 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4903 #endif
4904 zone->name = zone_names[j];
4905 spin_lock_init(&zone->lock);
4906 spin_lock_init(&zone->lru_lock);
4907 zone_seqlock_init(zone);
4908 zone->zone_pgdat = pgdat;
4909 zone_pcp_init(zone);
4910
4911 /* For bootup, initialized properly in watermark setup */
4912 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4913
4914 lruvec_init(&zone->lruvec);
4915 if (!size)
4916 continue;
4917
4918 set_pageblock_order();
4919 setup_usemap(pgdat, zone, zone_start_pfn, size);
4920 ret = init_currently_empty_zone(zone, zone_start_pfn,
4921 size, MEMMAP_EARLY);
4922 BUG_ON(ret);
4923 memmap_init(size, nid, j, zone_start_pfn);
4924 zone_start_pfn += size;
4925 }
4926 }
4927
4928 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4929 {
4930 /* Skip empty nodes */
4931 if (!pgdat->node_spanned_pages)
4932 return;
4933
4934 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4935 /* ia64 gets its own node_mem_map, before this, without bootmem */
4936 if (!pgdat->node_mem_map) {
4937 unsigned long size, start, end;
4938 struct page *map;
4939
4940 /*
4941 * The zone's endpoints aren't required to be MAX_ORDER
4942 * aligned but the node_mem_map endpoints must be in order
4943 * for the buddy allocator to function correctly.
4944 */
4945 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4946 end = pgdat_end_pfn(pgdat);
4947 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4948 size = (end - start) * sizeof(struct page);
4949 map = alloc_remap(pgdat->node_id, size);
4950 if (!map)
4951 map = memblock_virt_alloc_node_nopanic(size,
4952 pgdat->node_id);
4953 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4954 }
4955 #ifndef CONFIG_NEED_MULTIPLE_NODES
4956 /*
4957 * With no DISCONTIG, the global mem_map is just set as node 0's
4958 */
4959 if (pgdat == NODE_DATA(0)) {
4960 mem_map = NODE_DATA(0)->node_mem_map;
4961 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4962 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4963 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4964 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4965 }
4966 #endif
4967 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4968 }
4969
4970 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4971 unsigned long node_start_pfn, unsigned long *zholes_size)
4972 {
4973 pg_data_t *pgdat = NODE_DATA(nid);
4974 unsigned long start_pfn = 0;
4975 unsigned long end_pfn = 0;
4976
4977 /* pg_data_t should be reset to zero when it's allocated */
4978 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4979
4980 pgdat->node_id = nid;
4981 pgdat->node_start_pfn = node_start_pfn;
4982 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4983 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4984 #endif
4985 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4986 zones_size, zholes_size);
4987
4988 alloc_node_mem_map(pgdat);
4989 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4990 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4991 nid, (unsigned long)pgdat,
4992 (unsigned long)pgdat->node_mem_map);
4993 #endif
4994
4995 free_area_init_core(pgdat, start_pfn, end_pfn,
4996 zones_size, zholes_size);
4997 }
4998
4999 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5000
5001 #if MAX_NUMNODES > 1
5002 /*
5003 * Figure out the number of possible node ids.
5004 */
5005 void __init setup_nr_node_ids(void)
5006 {
5007 unsigned int node;
5008 unsigned int highest = 0;
5009
5010 for_each_node_mask(node, node_possible_map)
5011 highest = node;
5012 nr_node_ids = highest + 1;
5013 }
5014 #endif
5015
5016 /**
5017 * node_map_pfn_alignment - determine the maximum internode alignment
5018 *
5019 * This function should be called after node map is populated and sorted.
5020 * It calculates the maximum power of two alignment which can distinguish
5021 * all the nodes.
5022 *
5023 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5024 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5025 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5026 * shifted, 1GiB is enough and this function will indicate so.
5027 *
5028 * This is used to test whether pfn -> nid mapping of the chosen memory
5029 * model has fine enough granularity to avoid incorrect mapping for the
5030 * populated node map.
5031 *
5032 * Returns the determined alignment in pfn's. 0 if there is no alignment
5033 * requirement (single node).
5034 */
5035 unsigned long __init node_map_pfn_alignment(void)
5036 {
5037 unsigned long accl_mask = 0, last_end = 0;
5038 unsigned long start, end, mask;
5039 int last_nid = -1;
5040 int i, nid;
5041
5042 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5043 if (!start || last_nid < 0 || last_nid == nid) {
5044 last_nid = nid;
5045 last_end = end;
5046 continue;
5047 }
5048
5049 /*
5050 * Start with a mask granular enough to pin-point to the
5051 * start pfn and tick off bits one-by-one until it becomes
5052 * too coarse to separate the current node from the last.
5053 */
5054 mask = ~((1 << __ffs(start)) - 1);
5055 while (mask && last_end <= (start & (mask << 1)))
5056 mask <<= 1;
5057
5058 /* accumulate all internode masks */
5059 accl_mask |= mask;
5060 }
5061
5062 /* convert mask to number of pages */
5063 return ~accl_mask + 1;
5064 }
5065
5066 /* Find the lowest pfn for a node */
5067 static unsigned long __init find_min_pfn_for_node(int nid)
5068 {
5069 unsigned long min_pfn = ULONG_MAX;
5070 unsigned long start_pfn;
5071 int i;
5072
5073 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5074 min_pfn = min(min_pfn, start_pfn);
5075
5076 if (min_pfn == ULONG_MAX) {
5077 printk(KERN_WARNING
5078 "Could not find start_pfn for node %d\n", nid);
5079 return 0;
5080 }
5081
5082 return min_pfn;
5083 }
5084
5085 /**
5086 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5087 *
5088 * It returns the minimum PFN based on information provided via
5089 * memblock_set_node().
5090 */
5091 unsigned long __init find_min_pfn_with_active_regions(void)
5092 {
5093 return find_min_pfn_for_node(MAX_NUMNODES);
5094 }
5095
5096 /*
5097 * early_calculate_totalpages()
5098 * Sum pages in active regions for movable zone.
5099 * Populate N_MEMORY for calculating usable_nodes.
5100 */
5101 static unsigned long __init early_calculate_totalpages(void)
5102 {
5103 unsigned long totalpages = 0;
5104 unsigned long start_pfn, end_pfn;
5105 int i, nid;
5106
5107 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5108 unsigned long pages = end_pfn - start_pfn;
5109
5110 totalpages += pages;
5111 if (pages)
5112 node_set_state(nid, N_MEMORY);
5113 }
5114 return totalpages;
5115 }
5116
5117 /*
5118 * Find the PFN the Movable zone begins in each node. Kernel memory
5119 * is spread evenly between nodes as long as the nodes have enough
5120 * memory. When they don't, some nodes will have more kernelcore than
5121 * others
5122 */
5123 static void __init find_zone_movable_pfns_for_nodes(void)
5124 {
5125 int i, nid;
5126 unsigned long usable_startpfn;
5127 unsigned long kernelcore_node, kernelcore_remaining;
5128 /* save the state before borrow the nodemask */
5129 nodemask_t saved_node_state = node_states[N_MEMORY];
5130 unsigned long totalpages = early_calculate_totalpages();
5131 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5132 struct memblock_region *r;
5133
5134 /* Need to find movable_zone earlier when movable_node is specified. */
5135 find_usable_zone_for_movable();
5136
5137 /*
5138 * If movable_node is specified, ignore kernelcore and movablecore
5139 * options.
5140 */
5141 if (movable_node_is_enabled()) {
5142 for_each_memblock(memory, r) {
5143 if (!memblock_is_hotpluggable(r))
5144 continue;
5145
5146 nid = r->nid;
5147
5148 usable_startpfn = PFN_DOWN(r->base);
5149 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5150 min(usable_startpfn, zone_movable_pfn[nid]) :
5151 usable_startpfn;
5152 }
5153
5154 goto out2;
5155 }
5156
5157 /*
5158 * If movablecore=nn[KMG] was specified, calculate what size of
5159 * kernelcore that corresponds so that memory usable for
5160 * any allocation type is evenly spread. If both kernelcore
5161 * and movablecore are specified, then the value of kernelcore
5162 * will be used for required_kernelcore if it's greater than
5163 * what movablecore would have allowed.
5164 */
5165 if (required_movablecore) {
5166 unsigned long corepages;
5167
5168 /*
5169 * Round-up so that ZONE_MOVABLE is at least as large as what
5170 * was requested by the user
5171 */
5172 required_movablecore =
5173 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5174 corepages = totalpages - required_movablecore;
5175
5176 required_kernelcore = max(required_kernelcore, corepages);
5177 }
5178
5179 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5180 if (!required_kernelcore)
5181 goto out;
5182
5183 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5184 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5185
5186 restart:
5187 /* Spread kernelcore memory as evenly as possible throughout nodes */
5188 kernelcore_node = required_kernelcore / usable_nodes;
5189 for_each_node_state(nid, N_MEMORY) {
5190 unsigned long start_pfn, end_pfn;
5191
5192 /*
5193 * Recalculate kernelcore_node if the division per node
5194 * now exceeds what is necessary to satisfy the requested
5195 * amount of memory for the kernel
5196 */
5197 if (required_kernelcore < kernelcore_node)
5198 kernelcore_node = required_kernelcore / usable_nodes;
5199
5200 /*
5201 * As the map is walked, we track how much memory is usable
5202 * by the kernel using kernelcore_remaining. When it is
5203 * 0, the rest of the node is usable by ZONE_MOVABLE
5204 */
5205 kernelcore_remaining = kernelcore_node;
5206
5207 /* Go through each range of PFNs within this node */
5208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5209 unsigned long size_pages;
5210
5211 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5212 if (start_pfn >= end_pfn)
5213 continue;
5214
5215 /* Account for what is only usable for kernelcore */
5216 if (start_pfn < usable_startpfn) {
5217 unsigned long kernel_pages;
5218 kernel_pages = min(end_pfn, usable_startpfn)
5219 - start_pfn;
5220
5221 kernelcore_remaining -= min(kernel_pages,
5222 kernelcore_remaining);
5223 required_kernelcore -= min(kernel_pages,
5224 required_kernelcore);
5225
5226 /* Continue if range is now fully accounted */
5227 if (end_pfn <= usable_startpfn) {
5228
5229 /*
5230 * Push zone_movable_pfn to the end so
5231 * that if we have to rebalance
5232 * kernelcore across nodes, we will
5233 * not double account here
5234 */
5235 zone_movable_pfn[nid] = end_pfn;
5236 continue;
5237 }
5238 start_pfn = usable_startpfn;
5239 }
5240
5241 /*
5242 * The usable PFN range for ZONE_MOVABLE is from
5243 * start_pfn->end_pfn. Calculate size_pages as the
5244 * number of pages used as kernelcore
5245 */
5246 size_pages = end_pfn - start_pfn;
5247 if (size_pages > kernelcore_remaining)
5248 size_pages = kernelcore_remaining;
5249 zone_movable_pfn[nid] = start_pfn + size_pages;
5250
5251 /*
5252 * Some kernelcore has been met, update counts and
5253 * break if the kernelcore for this node has been
5254 * satisfied
5255 */
5256 required_kernelcore -= min(required_kernelcore,
5257 size_pages);
5258 kernelcore_remaining -= size_pages;
5259 if (!kernelcore_remaining)
5260 break;
5261 }
5262 }
5263
5264 /*
5265 * If there is still required_kernelcore, we do another pass with one
5266 * less node in the count. This will push zone_movable_pfn[nid] further
5267 * along on the nodes that still have memory until kernelcore is
5268 * satisfied
5269 */
5270 usable_nodes--;
5271 if (usable_nodes && required_kernelcore > usable_nodes)
5272 goto restart;
5273
5274 out2:
5275 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5276 for (nid = 0; nid < MAX_NUMNODES; nid++)
5277 zone_movable_pfn[nid] =
5278 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5279
5280 out:
5281 /* restore the node_state */
5282 node_states[N_MEMORY] = saved_node_state;
5283 }
5284
5285 /* Any regular or high memory on that node ? */
5286 static void check_for_memory(pg_data_t *pgdat, int nid)
5287 {
5288 enum zone_type zone_type;
5289
5290 if (N_MEMORY == N_NORMAL_MEMORY)
5291 return;
5292
5293 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5294 struct zone *zone = &pgdat->node_zones[zone_type];
5295 if (populated_zone(zone)) {
5296 node_set_state(nid, N_HIGH_MEMORY);
5297 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5298 zone_type <= ZONE_NORMAL)
5299 node_set_state(nid, N_NORMAL_MEMORY);
5300 break;
5301 }
5302 }
5303 }
5304
5305 /**
5306 * free_area_init_nodes - Initialise all pg_data_t and zone data
5307 * @max_zone_pfn: an array of max PFNs for each zone
5308 *
5309 * This will call free_area_init_node() for each active node in the system.
5310 * Using the page ranges provided by memblock_set_node(), the size of each
5311 * zone in each node and their holes is calculated. If the maximum PFN
5312 * between two adjacent zones match, it is assumed that the zone is empty.
5313 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5314 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5315 * starts where the previous one ended. For example, ZONE_DMA32 starts
5316 * at arch_max_dma_pfn.
5317 */
5318 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5319 {
5320 unsigned long start_pfn, end_pfn;
5321 int i, nid;
5322
5323 /* Record where the zone boundaries are */
5324 memset(arch_zone_lowest_possible_pfn, 0,
5325 sizeof(arch_zone_lowest_possible_pfn));
5326 memset(arch_zone_highest_possible_pfn, 0,
5327 sizeof(arch_zone_highest_possible_pfn));
5328 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5329 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5330 for (i = 1; i < MAX_NR_ZONES; i++) {
5331 if (i == ZONE_MOVABLE)
5332 continue;
5333 arch_zone_lowest_possible_pfn[i] =
5334 arch_zone_highest_possible_pfn[i-1];
5335 arch_zone_highest_possible_pfn[i] =
5336 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5337 }
5338 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5339 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5340
5341 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5342 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5343 find_zone_movable_pfns_for_nodes();
5344
5345 /* Print out the zone ranges */
5346 printk("Zone ranges:\n");
5347 for (i = 0; i < MAX_NR_ZONES; i++) {
5348 if (i == ZONE_MOVABLE)
5349 continue;
5350 printk(KERN_CONT " %-8s ", zone_names[i]);
5351 if (arch_zone_lowest_possible_pfn[i] ==
5352 arch_zone_highest_possible_pfn[i])
5353 printk(KERN_CONT "empty\n");
5354 else
5355 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5356 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5357 (arch_zone_highest_possible_pfn[i]
5358 << PAGE_SHIFT) - 1);
5359 }
5360
5361 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5362 printk("Movable zone start for each node\n");
5363 for (i = 0; i < MAX_NUMNODES; i++) {
5364 if (zone_movable_pfn[i])
5365 printk(" Node %d: %#010lx\n", i,
5366 zone_movable_pfn[i] << PAGE_SHIFT);
5367 }
5368
5369 /* Print out the early node map */
5370 printk("Early memory node ranges\n");
5371 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5372 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5373 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5374
5375 /* Initialise every node */
5376 mminit_verify_pageflags_layout();
5377 setup_nr_node_ids();
5378 for_each_online_node(nid) {
5379 pg_data_t *pgdat = NODE_DATA(nid);
5380 free_area_init_node(nid, NULL,
5381 find_min_pfn_for_node(nid), NULL);
5382
5383 /* Any memory on that node */
5384 if (pgdat->node_present_pages)
5385 node_set_state(nid, N_MEMORY);
5386 check_for_memory(pgdat, nid);
5387 }
5388 }
5389
5390 static int __init cmdline_parse_core(char *p, unsigned long *core)
5391 {
5392 unsigned long long coremem;
5393 if (!p)
5394 return -EINVAL;
5395
5396 coremem = memparse(p, &p);
5397 *core = coremem >> PAGE_SHIFT;
5398
5399 /* Paranoid check that UL is enough for the coremem value */
5400 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5401
5402 return 0;
5403 }
5404
5405 /*
5406 * kernelcore=size sets the amount of memory for use for allocations that
5407 * cannot be reclaimed or migrated.
5408 */
5409 static int __init cmdline_parse_kernelcore(char *p)
5410 {
5411 return cmdline_parse_core(p, &required_kernelcore);
5412 }
5413
5414 /*
5415 * movablecore=size sets the amount of memory for use for allocations that
5416 * can be reclaimed or migrated.
5417 */
5418 static int __init cmdline_parse_movablecore(char *p)
5419 {
5420 return cmdline_parse_core(p, &required_movablecore);
5421 }
5422
5423 early_param("kernelcore", cmdline_parse_kernelcore);
5424 early_param("movablecore", cmdline_parse_movablecore);
5425
5426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5427
5428 void adjust_managed_page_count(struct page *page, long count)
5429 {
5430 spin_lock(&managed_page_count_lock);
5431 page_zone(page)->managed_pages += count;
5432 totalram_pages += count;
5433 #ifdef CONFIG_HIGHMEM
5434 if (PageHighMem(page))
5435 totalhigh_pages += count;
5436 #endif
5437 spin_unlock(&managed_page_count_lock);
5438 }
5439 EXPORT_SYMBOL(adjust_managed_page_count);
5440
5441 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5442 {
5443 void *pos;
5444 unsigned long pages = 0;
5445
5446 start = (void *)PAGE_ALIGN((unsigned long)start);
5447 end = (void *)((unsigned long)end & PAGE_MASK);
5448 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5449 if ((unsigned int)poison <= 0xFF)
5450 memset(pos, poison, PAGE_SIZE);
5451 free_reserved_page(virt_to_page(pos));
5452 }
5453
5454 if (pages && s)
5455 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5456 s, pages << (PAGE_SHIFT - 10), start, end);
5457
5458 return pages;
5459 }
5460 EXPORT_SYMBOL(free_reserved_area);
5461
5462 #ifdef CONFIG_HIGHMEM
5463 void free_highmem_page(struct page *page)
5464 {
5465 __free_reserved_page(page);
5466 totalram_pages++;
5467 page_zone(page)->managed_pages++;
5468 totalhigh_pages++;
5469 }
5470 #endif
5471
5472
5473 void __init mem_init_print_info(const char *str)
5474 {
5475 unsigned long physpages, codesize, datasize, rosize, bss_size;
5476 unsigned long init_code_size, init_data_size;
5477
5478 physpages = get_num_physpages();
5479 codesize = _etext - _stext;
5480 datasize = _edata - _sdata;
5481 rosize = __end_rodata - __start_rodata;
5482 bss_size = __bss_stop - __bss_start;
5483 init_data_size = __init_end - __init_begin;
5484 init_code_size = _einittext - _sinittext;
5485
5486 /*
5487 * Detect special cases and adjust section sizes accordingly:
5488 * 1) .init.* may be embedded into .data sections
5489 * 2) .init.text.* may be out of [__init_begin, __init_end],
5490 * please refer to arch/tile/kernel/vmlinux.lds.S.
5491 * 3) .rodata.* may be embedded into .text or .data sections.
5492 */
5493 #define adj_init_size(start, end, size, pos, adj) \
5494 do { \
5495 if (start <= pos && pos < end && size > adj) \
5496 size -= adj; \
5497 } while (0)
5498
5499 adj_init_size(__init_begin, __init_end, init_data_size,
5500 _sinittext, init_code_size);
5501 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5502 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5503 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5504 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5505
5506 #undef adj_init_size
5507
5508 printk("Memory: %luK/%luK available "
5509 "(%luK kernel code, %luK rwdata, %luK rodata, "
5510 "%luK init, %luK bss, %luK reserved"
5511 #ifdef CONFIG_HIGHMEM
5512 ", %luK highmem"
5513 #endif
5514 "%s%s)\n",
5515 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5516 codesize >> 10, datasize >> 10, rosize >> 10,
5517 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5518 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5519 #ifdef CONFIG_HIGHMEM
5520 totalhigh_pages << (PAGE_SHIFT-10),
5521 #endif
5522 str ? ", " : "", str ? str : "");
5523 }
5524
5525 /**
5526 * set_dma_reserve - set the specified number of pages reserved in the first zone
5527 * @new_dma_reserve: The number of pages to mark reserved
5528 *
5529 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5530 * In the DMA zone, a significant percentage may be consumed by kernel image
5531 * and other unfreeable allocations which can skew the watermarks badly. This
5532 * function may optionally be used to account for unfreeable pages in the
5533 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5534 * smaller per-cpu batchsize.
5535 */
5536 void __init set_dma_reserve(unsigned long new_dma_reserve)
5537 {
5538 dma_reserve = new_dma_reserve;
5539 }
5540
5541 void __init free_area_init(unsigned long *zones_size)
5542 {
5543 free_area_init_node(0, zones_size,
5544 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5545 }
5546
5547 static int page_alloc_cpu_notify(struct notifier_block *self,
5548 unsigned long action, void *hcpu)
5549 {
5550 int cpu = (unsigned long)hcpu;
5551
5552 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5553 lru_add_drain_cpu(cpu);
5554 drain_pages(cpu);
5555
5556 /*
5557 * Spill the event counters of the dead processor
5558 * into the current processors event counters.
5559 * This artificially elevates the count of the current
5560 * processor.
5561 */
5562 vm_events_fold_cpu(cpu);
5563
5564 /*
5565 * Zero the differential counters of the dead processor
5566 * so that the vm statistics are consistent.
5567 *
5568 * This is only okay since the processor is dead and cannot
5569 * race with what we are doing.
5570 */
5571 cpu_vm_stats_fold(cpu);
5572 }
5573 return NOTIFY_OK;
5574 }
5575
5576 void __init page_alloc_init(void)
5577 {
5578 hotcpu_notifier(page_alloc_cpu_notify, 0);
5579 }
5580
5581 /*
5582 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5583 * or min_free_kbytes changes.
5584 */
5585 static void calculate_totalreserve_pages(void)
5586 {
5587 struct pglist_data *pgdat;
5588 unsigned long reserve_pages = 0;
5589 enum zone_type i, j;
5590
5591 for_each_online_pgdat(pgdat) {
5592 for (i = 0; i < MAX_NR_ZONES; i++) {
5593 struct zone *zone = pgdat->node_zones + i;
5594 long max = 0;
5595
5596 /* Find valid and maximum lowmem_reserve in the zone */
5597 for (j = i; j < MAX_NR_ZONES; j++) {
5598 if (zone->lowmem_reserve[j] > max)
5599 max = zone->lowmem_reserve[j];
5600 }
5601
5602 /* we treat the high watermark as reserved pages. */
5603 max += high_wmark_pages(zone);
5604
5605 if (max > zone->managed_pages)
5606 max = zone->managed_pages;
5607 reserve_pages += max;
5608 /*
5609 * Lowmem reserves are not available to
5610 * GFP_HIGHUSER page cache allocations and
5611 * kswapd tries to balance zones to their high
5612 * watermark. As a result, neither should be
5613 * regarded as dirtyable memory, to prevent a
5614 * situation where reclaim has to clean pages
5615 * in order to balance the zones.
5616 */
5617 zone->dirty_balance_reserve = max;
5618 }
5619 }
5620 dirty_balance_reserve = reserve_pages;
5621 totalreserve_pages = reserve_pages;
5622 }
5623
5624 /*
5625 * setup_per_zone_lowmem_reserve - called whenever
5626 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5627 * has a correct pages reserved value, so an adequate number of
5628 * pages are left in the zone after a successful __alloc_pages().
5629 */
5630 static void setup_per_zone_lowmem_reserve(void)
5631 {
5632 struct pglist_data *pgdat;
5633 enum zone_type j, idx;
5634
5635 for_each_online_pgdat(pgdat) {
5636 for (j = 0; j < MAX_NR_ZONES; j++) {
5637 struct zone *zone = pgdat->node_zones + j;
5638 unsigned long managed_pages = zone->managed_pages;
5639
5640 zone->lowmem_reserve[j] = 0;
5641
5642 idx = j;
5643 while (idx) {
5644 struct zone *lower_zone;
5645
5646 idx--;
5647
5648 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5649 sysctl_lowmem_reserve_ratio[idx] = 1;
5650
5651 lower_zone = pgdat->node_zones + idx;
5652 lower_zone->lowmem_reserve[j] = managed_pages /
5653 sysctl_lowmem_reserve_ratio[idx];
5654 managed_pages += lower_zone->managed_pages;
5655 }
5656 }
5657 }
5658
5659 /* update totalreserve_pages */
5660 calculate_totalreserve_pages();
5661 }
5662
5663 static void __setup_per_zone_wmarks(void)
5664 {
5665 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5666 unsigned long lowmem_pages = 0;
5667 struct zone *zone;
5668 unsigned long flags;
5669
5670 /* Calculate total number of !ZONE_HIGHMEM pages */
5671 for_each_zone(zone) {
5672 if (!is_highmem(zone))
5673 lowmem_pages += zone->managed_pages;
5674 }
5675
5676 for_each_zone(zone) {
5677 u64 tmp;
5678
5679 spin_lock_irqsave(&zone->lock, flags);
5680 tmp = (u64)pages_min * zone->managed_pages;
5681 do_div(tmp, lowmem_pages);
5682 if (is_highmem(zone)) {
5683 /*
5684 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5685 * need highmem pages, so cap pages_min to a small
5686 * value here.
5687 *
5688 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5689 * deltas controls asynch page reclaim, and so should
5690 * not be capped for highmem.
5691 */
5692 unsigned long min_pages;
5693
5694 min_pages = zone->managed_pages / 1024;
5695 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5696 zone->watermark[WMARK_MIN] = min_pages;
5697 } else {
5698 /*
5699 * If it's a lowmem zone, reserve a number of pages
5700 * proportionate to the zone's size.
5701 */
5702 zone->watermark[WMARK_MIN] = tmp;
5703 }
5704
5705 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5706 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5707
5708 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5709 high_wmark_pages(zone) - low_wmark_pages(zone) -
5710 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5711
5712 setup_zone_migrate_reserve(zone);
5713 spin_unlock_irqrestore(&zone->lock, flags);
5714 }
5715
5716 /* update totalreserve_pages */
5717 calculate_totalreserve_pages();
5718 }
5719
5720 /**
5721 * setup_per_zone_wmarks - called when min_free_kbytes changes
5722 * or when memory is hot-{added|removed}
5723 *
5724 * Ensures that the watermark[min,low,high] values for each zone are set
5725 * correctly with respect to min_free_kbytes.
5726 */
5727 void setup_per_zone_wmarks(void)
5728 {
5729 mutex_lock(&zonelists_mutex);
5730 __setup_per_zone_wmarks();
5731 mutex_unlock(&zonelists_mutex);
5732 }
5733
5734 /*
5735 * The inactive anon list should be small enough that the VM never has to
5736 * do too much work, but large enough that each inactive page has a chance
5737 * to be referenced again before it is swapped out.
5738 *
5739 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5740 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5741 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5742 * the anonymous pages are kept on the inactive list.
5743 *
5744 * total target max
5745 * memory ratio inactive anon
5746 * -------------------------------------
5747 * 10MB 1 5MB
5748 * 100MB 1 50MB
5749 * 1GB 3 250MB
5750 * 10GB 10 0.9GB
5751 * 100GB 31 3GB
5752 * 1TB 101 10GB
5753 * 10TB 320 32GB
5754 */
5755 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5756 {
5757 unsigned int gb, ratio;
5758
5759 /* Zone size in gigabytes */
5760 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5761 if (gb)
5762 ratio = int_sqrt(10 * gb);
5763 else
5764 ratio = 1;
5765
5766 zone->inactive_ratio = ratio;
5767 }
5768
5769 static void __meminit setup_per_zone_inactive_ratio(void)
5770 {
5771 struct zone *zone;
5772
5773 for_each_zone(zone)
5774 calculate_zone_inactive_ratio(zone);
5775 }
5776
5777 /*
5778 * Initialise min_free_kbytes.
5779 *
5780 * For small machines we want it small (128k min). For large machines
5781 * we want it large (64MB max). But it is not linear, because network
5782 * bandwidth does not increase linearly with machine size. We use
5783 *
5784 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5785 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5786 *
5787 * which yields
5788 *
5789 * 16MB: 512k
5790 * 32MB: 724k
5791 * 64MB: 1024k
5792 * 128MB: 1448k
5793 * 256MB: 2048k
5794 * 512MB: 2896k
5795 * 1024MB: 4096k
5796 * 2048MB: 5792k
5797 * 4096MB: 8192k
5798 * 8192MB: 11584k
5799 * 16384MB: 16384k
5800 */
5801 int __meminit init_per_zone_wmark_min(void)
5802 {
5803 unsigned long lowmem_kbytes;
5804 int new_min_free_kbytes;
5805
5806 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5807 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5808
5809 if (new_min_free_kbytes > user_min_free_kbytes) {
5810 min_free_kbytes = new_min_free_kbytes;
5811 if (min_free_kbytes < 128)
5812 min_free_kbytes = 128;
5813 if (min_free_kbytes > 65536)
5814 min_free_kbytes = 65536;
5815 } else {
5816 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5817 new_min_free_kbytes, user_min_free_kbytes);
5818 }
5819 setup_per_zone_wmarks();
5820 refresh_zone_stat_thresholds();
5821 setup_per_zone_lowmem_reserve();
5822 setup_per_zone_inactive_ratio();
5823 return 0;
5824 }
5825 module_init(init_per_zone_wmark_min)
5826
5827 /*
5828 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5829 * that we can call two helper functions whenever min_free_kbytes
5830 * changes.
5831 */
5832 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5833 void __user *buffer, size_t *length, loff_t *ppos)
5834 {
5835 int rc;
5836
5837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5838 if (rc)
5839 return rc;
5840
5841 if (write) {
5842 user_min_free_kbytes = min_free_kbytes;
5843 setup_per_zone_wmarks();
5844 }
5845 return 0;
5846 }
5847
5848 #ifdef CONFIG_NUMA
5849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5850 void __user *buffer, size_t *length, loff_t *ppos)
5851 {
5852 struct zone *zone;
5853 int rc;
5854
5855 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5856 if (rc)
5857 return rc;
5858
5859 for_each_zone(zone)
5860 zone->min_unmapped_pages = (zone->managed_pages *
5861 sysctl_min_unmapped_ratio) / 100;
5862 return 0;
5863 }
5864
5865 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5866 void __user *buffer, size_t *length, loff_t *ppos)
5867 {
5868 struct zone *zone;
5869 int rc;
5870
5871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5872 if (rc)
5873 return rc;
5874
5875 for_each_zone(zone)
5876 zone->min_slab_pages = (zone->managed_pages *
5877 sysctl_min_slab_ratio) / 100;
5878 return 0;
5879 }
5880 #endif
5881
5882 /*
5883 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5884 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5885 * whenever sysctl_lowmem_reserve_ratio changes.
5886 *
5887 * The reserve ratio obviously has absolutely no relation with the
5888 * minimum watermarks. The lowmem reserve ratio can only make sense
5889 * if in function of the boot time zone sizes.
5890 */
5891 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5892 void __user *buffer, size_t *length, loff_t *ppos)
5893 {
5894 proc_dointvec_minmax(table, write, buffer, length, ppos);
5895 setup_per_zone_lowmem_reserve();
5896 return 0;
5897 }
5898
5899 /*
5900 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5901 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5902 * pagelist can have before it gets flushed back to buddy allocator.
5903 */
5904 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5905 void __user *buffer, size_t *length, loff_t *ppos)
5906 {
5907 struct zone *zone;
5908 int old_percpu_pagelist_fraction;
5909 int ret;
5910
5911 mutex_lock(&pcp_batch_high_lock);
5912 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5913
5914 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5915 if (!write || ret < 0)
5916 goto out;
5917
5918 /* Sanity checking to avoid pcp imbalance */
5919 if (percpu_pagelist_fraction &&
5920 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5921 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5922 ret = -EINVAL;
5923 goto out;
5924 }
5925
5926 /* No change? */
5927 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5928 goto out;
5929
5930 for_each_populated_zone(zone) {
5931 unsigned int cpu;
5932
5933 for_each_possible_cpu(cpu)
5934 pageset_set_high_and_batch(zone,
5935 per_cpu_ptr(zone->pageset, cpu));
5936 }
5937 out:
5938 mutex_unlock(&pcp_batch_high_lock);
5939 return ret;
5940 }
5941
5942 int hashdist = HASHDIST_DEFAULT;
5943
5944 #ifdef CONFIG_NUMA
5945 static int __init set_hashdist(char *str)
5946 {
5947 if (!str)
5948 return 0;
5949 hashdist = simple_strtoul(str, &str, 0);
5950 return 1;
5951 }
5952 __setup("hashdist=", set_hashdist);
5953 #endif
5954
5955 /*
5956 * allocate a large system hash table from bootmem
5957 * - it is assumed that the hash table must contain an exact power-of-2
5958 * quantity of entries
5959 * - limit is the number of hash buckets, not the total allocation size
5960 */
5961 void *__init alloc_large_system_hash(const char *tablename,
5962 unsigned long bucketsize,
5963 unsigned long numentries,
5964 int scale,
5965 int flags,
5966 unsigned int *_hash_shift,
5967 unsigned int *_hash_mask,
5968 unsigned long low_limit,
5969 unsigned long high_limit)
5970 {
5971 unsigned long long max = high_limit;
5972 unsigned long log2qty, size;
5973 void *table = NULL;
5974
5975 /* allow the kernel cmdline to have a say */
5976 if (!numentries) {
5977 /* round applicable memory size up to nearest megabyte */
5978 numentries = nr_kernel_pages;
5979
5980 /* It isn't necessary when PAGE_SIZE >= 1MB */
5981 if (PAGE_SHIFT < 20)
5982 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5983
5984 /* limit to 1 bucket per 2^scale bytes of low memory */
5985 if (scale > PAGE_SHIFT)
5986 numentries >>= (scale - PAGE_SHIFT);
5987 else
5988 numentries <<= (PAGE_SHIFT - scale);
5989
5990 /* Make sure we've got at least a 0-order allocation.. */
5991 if (unlikely(flags & HASH_SMALL)) {
5992 /* Makes no sense without HASH_EARLY */
5993 WARN_ON(!(flags & HASH_EARLY));
5994 if (!(numentries >> *_hash_shift)) {
5995 numentries = 1UL << *_hash_shift;
5996 BUG_ON(!numentries);
5997 }
5998 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5999 numentries = PAGE_SIZE / bucketsize;
6000 }
6001 numentries = roundup_pow_of_two(numentries);
6002
6003 /* limit allocation size to 1/16 total memory by default */
6004 if (max == 0) {
6005 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6006 do_div(max, bucketsize);
6007 }
6008 max = min(max, 0x80000000ULL);
6009
6010 if (numentries < low_limit)
6011 numentries = low_limit;
6012 if (numentries > max)
6013 numentries = max;
6014
6015 log2qty = ilog2(numentries);
6016
6017 do {
6018 size = bucketsize << log2qty;
6019 if (flags & HASH_EARLY)
6020 table = memblock_virt_alloc_nopanic(size, 0);
6021 else if (hashdist)
6022 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6023 else {
6024 /*
6025 * If bucketsize is not a power-of-two, we may free
6026 * some pages at the end of hash table which
6027 * alloc_pages_exact() automatically does
6028 */
6029 if (get_order(size) < MAX_ORDER) {
6030 table = alloc_pages_exact(size, GFP_ATOMIC);
6031 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6032 }
6033 }
6034 } while (!table && size > PAGE_SIZE && --log2qty);
6035
6036 if (!table)
6037 panic("Failed to allocate %s hash table\n", tablename);
6038
6039 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6040 tablename,
6041 (1UL << log2qty),
6042 ilog2(size) - PAGE_SHIFT,
6043 size);
6044
6045 if (_hash_shift)
6046 *_hash_shift = log2qty;
6047 if (_hash_mask)
6048 *_hash_mask = (1 << log2qty) - 1;
6049
6050 return table;
6051 }
6052
6053 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6054 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6055 unsigned long pfn)
6056 {
6057 #ifdef CONFIG_SPARSEMEM
6058 return __pfn_to_section(pfn)->pageblock_flags;
6059 #else
6060 return zone->pageblock_flags;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063
6064 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6065 {
6066 #ifdef CONFIG_SPARSEMEM
6067 pfn &= (PAGES_PER_SECTION-1);
6068 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6069 #else
6070 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6071 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6072 #endif /* CONFIG_SPARSEMEM */
6073 }
6074
6075 /**
6076 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6077 * @page: The page within the block of interest
6078 * @pfn: The target page frame number
6079 * @end_bitidx: The last bit of interest to retrieve
6080 * @mask: mask of bits that the caller is interested in
6081 *
6082 * Return: pageblock_bits flags
6083 */
6084 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6085 unsigned long end_bitidx,
6086 unsigned long mask)
6087 {
6088 struct zone *zone;
6089 unsigned long *bitmap;
6090 unsigned long bitidx, word_bitidx;
6091 unsigned long word;
6092
6093 zone = page_zone(page);
6094 bitmap = get_pageblock_bitmap(zone, pfn);
6095 bitidx = pfn_to_bitidx(zone, pfn);
6096 word_bitidx = bitidx / BITS_PER_LONG;
6097 bitidx &= (BITS_PER_LONG-1);
6098
6099 word = bitmap[word_bitidx];
6100 bitidx += end_bitidx;
6101 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6102 }
6103
6104 /**
6105 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6106 * @page: The page within the block of interest
6107 * @flags: The flags to set
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest
6110 * @mask: mask of bits that the caller is interested in
6111 */
6112 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6113 unsigned long pfn,
6114 unsigned long end_bitidx,
6115 unsigned long mask)
6116 {
6117 struct zone *zone;
6118 unsigned long *bitmap;
6119 unsigned long bitidx, word_bitidx;
6120 unsigned long old_word, word;
6121
6122 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6123
6124 zone = page_zone(page);
6125 bitmap = get_pageblock_bitmap(zone, pfn);
6126 bitidx = pfn_to_bitidx(zone, pfn);
6127 word_bitidx = bitidx / BITS_PER_LONG;
6128 bitidx &= (BITS_PER_LONG-1);
6129
6130 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6131
6132 bitidx += end_bitidx;
6133 mask <<= (BITS_PER_LONG - bitidx - 1);
6134 flags <<= (BITS_PER_LONG - bitidx - 1);
6135
6136 word = ACCESS_ONCE(bitmap[word_bitidx]);
6137 for (;;) {
6138 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6139 if (word == old_word)
6140 break;
6141 word = old_word;
6142 }
6143 }
6144
6145 /*
6146 * This function checks whether pageblock includes unmovable pages or not.
6147 * If @count is not zero, it is okay to include less @count unmovable pages
6148 *
6149 * PageLRU check without isolation or lru_lock could race so that
6150 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6151 * expect this function should be exact.
6152 */
6153 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6154 bool skip_hwpoisoned_pages)
6155 {
6156 unsigned long pfn, iter, found;
6157 int mt;
6158
6159 /*
6160 * For avoiding noise data, lru_add_drain_all() should be called
6161 * If ZONE_MOVABLE, the zone never contains unmovable pages
6162 */
6163 if (zone_idx(zone) == ZONE_MOVABLE)
6164 return false;
6165 mt = get_pageblock_migratetype(page);
6166 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6167 return false;
6168
6169 pfn = page_to_pfn(page);
6170 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6171 unsigned long check = pfn + iter;
6172
6173 if (!pfn_valid_within(check))
6174 continue;
6175
6176 page = pfn_to_page(check);
6177
6178 /*
6179 * Hugepages are not in LRU lists, but they're movable.
6180 * We need not scan over tail pages bacause we don't
6181 * handle each tail page individually in migration.
6182 */
6183 if (PageHuge(page)) {
6184 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6185 continue;
6186 }
6187
6188 /*
6189 * We can't use page_count without pin a page
6190 * because another CPU can free compound page.
6191 * This check already skips compound tails of THP
6192 * because their page->_count is zero at all time.
6193 */
6194 if (!atomic_read(&page->_count)) {
6195 if (PageBuddy(page))
6196 iter += (1 << page_order(page)) - 1;
6197 continue;
6198 }
6199
6200 /*
6201 * The HWPoisoned page may be not in buddy system, and
6202 * page_count() is not 0.
6203 */
6204 if (skip_hwpoisoned_pages && PageHWPoison(page))
6205 continue;
6206
6207 if (!PageLRU(page))
6208 found++;
6209 /*
6210 * If there are RECLAIMABLE pages, we need to check it.
6211 * But now, memory offline itself doesn't call shrink_slab()
6212 * and it still to be fixed.
6213 */
6214 /*
6215 * If the page is not RAM, page_count()should be 0.
6216 * we don't need more check. This is an _used_ not-movable page.
6217 *
6218 * The problematic thing here is PG_reserved pages. PG_reserved
6219 * is set to both of a memory hole page and a _used_ kernel
6220 * page at boot.
6221 */
6222 if (found > count)
6223 return true;
6224 }
6225 return false;
6226 }
6227
6228 bool is_pageblock_removable_nolock(struct page *page)
6229 {
6230 struct zone *zone;
6231 unsigned long pfn;
6232
6233 /*
6234 * We have to be careful here because we are iterating over memory
6235 * sections which are not zone aware so we might end up outside of
6236 * the zone but still within the section.
6237 * We have to take care about the node as well. If the node is offline
6238 * its NODE_DATA will be NULL - see page_zone.
6239 */
6240 if (!node_online(page_to_nid(page)))
6241 return false;
6242
6243 zone = page_zone(page);
6244 pfn = page_to_pfn(page);
6245 if (!zone_spans_pfn(zone, pfn))
6246 return false;
6247
6248 return !has_unmovable_pages(zone, page, 0, true);
6249 }
6250
6251 #ifdef CONFIG_CMA
6252
6253 static unsigned long pfn_max_align_down(unsigned long pfn)
6254 {
6255 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6256 pageblock_nr_pages) - 1);
6257 }
6258
6259 static unsigned long pfn_max_align_up(unsigned long pfn)
6260 {
6261 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6262 pageblock_nr_pages));
6263 }
6264
6265 /* [start, end) must belong to a single zone. */
6266 static int __alloc_contig_migrate_range(struct compact_control *cc,
6267 unsigned long start, unsigned long end)
6268 {
6269 /* This function is based on compact_zone() from compaction.c. */
6270 unsigned long nr_reclaimed;
6271 unsigned long pfn = start;
6272 unsigned int tries = 0;
6273 int ret = 0;
6274
6275 migrate_prep();
6276
6277 while (pfn < end || !list_empty(&cc->migratepages)) {
6278 if (fatal_signal_pending(current)) {
6279 ret = -EINTR;
6280 break;
6281 }
6282
6283 if (list_empty(&cc->migratepages)) {
6284 cc->nr_migratepages = 0;
6285 pfn = isolate_migratepages_range(cc->zone, cc,
6286 pfn, end, true);
6287 if (!pfn) {
6288 ret = -EINTR;
6289 break;
6290 }
6291 tries = 0;
6292 } else if (++tries == 5) {
6293 ret = ret < 0 ? ret : -EBUSY;
6294 break;
6295 }
6296
6297 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6298 &cc->migratepages);
6299 cc->nr_migratepages -= nr_reclaimed;
6300
6301 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6302 NULL, 0, cc->mode, MR_CMA);
6303 }
6304 if (ret < 0) {
6305 putback_movable_pages(&cc->migratepages);
6306 return ret;
6307 }
6308 return 0;
6309 }
6310
6311 /**
6312 * alloc_contig_range() -- tries to allocate given range of pages
6313 * @start: start PFN to allocate
6314 * @end: one-past-the-last PFN to allocate
6315 * @migratetype: migratetype of the underlaying pageblocks (either
6316 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6317 * in range must have the same migratetype and it must
6318 * be either of the two.
6319 *
6320 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6321 * aligned, however it's the caller's responsibility to guarantee that
6322 * we are the only thread that changes migrate type of pageblocks the
6323 * pages fall in.
6324 *
6325 * The PFN range must belong to a single zone.
6326 *
6327 * Returns zero on success or negative error code. On success all
6328 * pages which PFN is in [start, end) are allocated for the caller and
6329 * need to be freed with free_contig_range().
6330 */
6331 int alloc_contig_range(unsigned long start, unsigned long end,
6332 unsigned migratetype)
6333 {
6334 unsigned long outer_start, outer_end;
6335 int ret = 0, order;
6336
6337 struct compact_control cc = {
6338 .nr_migratepages = 0,
6339 .order = -1,
6340 .zone = page_zone(pfn_to_page(start)),
6341 .mode = MIGRATE_SYNC,
6342 .ignore_skip_hint = true,
6343 };
6344 INIT_LIST_HEAD(&cc.migratepages);
6345
6346 /*
6347 * What we do here is we mark all pageblocks in range as
6348 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6349 * have different sizes, and due to the way page allocator
6350 * work, we align the range to biggest of the two pages so
6351 * that page allocator won't try to merge buddies from
6352 * different pageblocks and change MIGRATE_ISOLATE to some
6353 * other migration type.
6354 *
6355 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6356 * migrate the pages from an unaligned range (ie. pages that
6357 * we are interested in). This will put all the pages in
6358 * range back to page allocator as MIGRATE_ISOLATE.
6359 *
6360 * When this is done, we take the pages in range from page
6361 * allocator removing them from the buddy system. This way
6362 * page allocator will never consider using them.
6363 *
6364 * This lets us mark the pageblocks back as
6365 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6366 * aligned range but not in the unaligned, original range are
6367 * put back to page allocator so that buddy can use them.
6368 */
6369
6370 ret = start_isolate_page_range(pfn_max_align_down(start),
6371 pfn_max_align_up(end), migratetype,
6372 false);
6373 if (ret)
6374 return ret;
6375
6376 ret = __alloc_contig_migrate_range(&cc, start, end);
6377 if (ret)
6378 goto done;
6379
6380 /*
6381 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6382 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6383 * more, all pages in [start, end) are free in page allocator.
6384 * What we are going to do is to allocate all pages from
6385 * [start, end) (that is remove them from page allocator).
6386 *
6387 * The only problem is that pages at the beginning and at the
6388 * end of interesting range may be not aligned with pages that
6389 * page allocator holds, ie. they can be part of higher order
6390 * pages. Because of this, we reserve the bigger range and
6391 * once this is done free the pages we are not interested in.
6392 *
6393 * We don't have to hold zone->lock here because the pages are
6394 * isolated thus they won't get removed from buddy.
6395 */
6396
6397 lru_add_drain_all();
6398 drain_all_pages();
6399
6400 order = 0;
6401 outer_start = start;
6402 while (!PageBuddy(pfn_to_page(outer_start))) {
6403 if (++order >= MAX_ORDER) {
6404 ret = -EBUSY;
6405 goto done;
6406 }
6407 outer_start &= ~0UL << order;
6408 }
6409
6410 /* Make sure the range is really isolated. */
6411 if (test_pages_isolated(outer_start, end, false)) {
6412 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6413 outer_start, end);
6414 ret = -EBUSY;
6415 goto done;
6416 }
6417
6418
6419 /* Grab isolated pages from freelists. */
6420 outer_end = isolate_freepages_range(&cc, outer_start, end);
6421 if (!outer_end) {
6422 ret = -EBUSY;
6423 goto done;
6424 }
6425
6426 /* Free head and tail (if any) */
6427 if (start != outer_start)
6428 free_contig_range(outer_start, start - outer_start);
6429 if (end != outer_end)
6430 free_contig_range(end, outer_end - end);
6431
6432 done:
6433 undo_isolate_page_range(pfn_max_align_down(start),
6434 pfn_max_align_up(end), migratetype);
6435 return ret;
6436 }
6437
6438 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6439 {
6440 unsigned int count = 0;
6441
6442 for (; nr_pages--; pfn++) {
6443 struct page *page = pfn_to_page(pfn);
6444
6445 count += page_count(page) != 1;
6446 __free_page(page);
6447 }
6448 WARN(count != 0, "%d pages are still in use!\n", count);
6449 }
6450 #endif
6451
6452 #ifdef CONFIG_MEMORY_HOTPLUG
6453 /*
6454 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6455 * page high values need to be recalulated.
6456 */
6457 void __meminit zone_pcp_update(struct zone *zone)
6458 {
6459 unsigned cpu;
6460 mutex_lock(&pcp_batch_high_lock);
6461 for_each_possible_cpu(cpu)
6462 pageset_set_high_and_batch(zone,
6463 per_cpu_ptr(zone->pageset, cpu));
6464 mutex_unlock(&pcp_batch_high_lock);
6465 }
6466 #endif
6467
6468 void zone_pcp_reset(struct zone *zone)
6469 {
6470 unsigned long flags;
6471 int cpu;
6472 struct per_cpu_pageset *pset;
6473
6474 /* avoid races with drain_pages() */
6475 local_irq_save(flags);
6476 if (zone->pageset != &boot_pageset) {
6477 for_each_online_cpu(cpu) {
6478 pset = per_cpu_ptr(zone->pageset, cpu);
6479 drain_zonestat(zone, pset);
6480 }
6481 free_percpu(zone->pageset);
6482 zone->pageset = &boot_pageset;
6483 }
6484 local_irq_restore(flags);
6485 }
6486
6487 #ifdef CONFIG_MEMORY_HOTREMOVE
6488 /*
6489 * All pages in the range must be isolated before calling this.
6490 */
6491 void
6492 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6493 {
6494 struct page *page;
6495 struct zone *zone;
6496 unsigned int order, i;
6497 unsigned long pfn;
6498 unsigned long flags;
6499 /* find the first valid pfn */
6500 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6501 if (pfn_valid(pfn))
6502 break;
6503 if (pfn == end_pfn)
6504 return;
6505 zone = page_zone(pfn_to_page(pfn));
6506 spin_lock_irqsave(&zone->lock, flags);
6507 pfn = start_pfn;
6508 while (pfn < end_pfn) {
6509 if (!pfn_valid(pfn)) {
6510 pfn++;
6511 continue;
6512 }
6513 page = pfn_to_page(pfn);
6514 /*
6515 * The HWPoisoned page may be not in buddy system, and
6516 * page_count() is not 0.
6517 */
6518 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6519 pfn++;
6520 SetPageReserved(page);
6521 continue;
6522 }
6523
6524 BUG_ON(page_count(page));
6525 BUG_ON(!PageBuddy(page));
6526 order = page_order(page);
6527 #ifdef CONFIG_DEBUG_VM
6528 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6529 pfn, 1 << order, end_pfn);
6530 #endif
6531 list_del(&page->lru);
6532 rmv_page_order(page);
6533 zone->free_area[order].nr_free--;
6534 for (i = 0; i < (1 << order); i++)
6535 SetPageReserved((page+i));
6536 pfn += (1 << order);
6537 }
6538 spin_unlock_irqrestore(&zone->lock, flags);
6539 }
6540 #endif
6541
6542 #ifdef CONFIG_MEMORY_FAILURE
6543 bool is_free_buddy_page(struct page *page)
6544 {
6545 struct zone *zone = page_zone(page);
6546 unsigned long pfn = page_to_pfn(page);
6547 unsigned long flags;
6548 unsigned int order;
6549
6550 spin_lock_irqsave(&zone->lock, flags);
6551 for (order = 0; order < MAX_ORDER; order++) {
6552 struct page *page_head = page - (pfn & ((1 << order) - 1));
6553
6554 if (PageBuddy(page_head) && page_order(page_head) >= order)
6555 break;
6556 }
6557 spin_unlock_irqrestore(&zone->lock, flags);
6558
6559 return order < MAX_ORDER;
6560 }
6561 #endif
6562
6563 static const struct trace_print_flags pageflag_names[] = {
6564 {1UL << PG_locked, "locked" },
6565 {1UL << PG_error, "error" },
6566 {1UL << PG_referenced, "referenced" },
6567 {1UL << PG_uptodate, "uptodate" },
6568 {1UL << PG_dirty, "dirty" },
6569 {1UL << PG_lru, "lru" },
6570 {1UL << PG_active, "active" },
6571 {1UL << PG_slab, "slab" },
6572 {1UL << PG_owner_priv_1, "owner_priv_1" },
6573 {1UL << PG_arch_1, "arch_1" },
6574 {1UL << PG_reserved, "reserved" },
6575 {1UL << PG_private, "private" },
6576 {1UL << PG_private_2, "private_2" },
6577 {1UL << PG_writeback, "writeback" },
6578 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6579 {1UL << PG_head, "head" },
6580 {1UL << PG_tail, "tail" },
6581 #else
6582 {1UL << PG_compound, "compound" },
6583 #endif
6584 {1UL << PG_swapcache, "swapcache" },
6585 {1UL << PG_mappedtodisk, "mappedtodisk" },
6586 {1UL << PG_reclaim, "reclaim" },
6587 {1UL << PG_swapbacked, "swapbacked" },
6588 {1UL << PG_unevictable, "unevictable" },
6589 #ifdef CONFIG_MMU
6590 {1UL << PG_mlocked, "mlocked" },
6591 #endif
6592 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6593 {1UL << PG_uncached, "uncached" },
6594 #endif
6595 #ifdef CONFIG_MEMORY_FAILURE
6596 {1UL << PG_hwpoison, "hwpoison" },
6597 #endif
6598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6599 {1UL << PG_compound_lock, "compound_lock" },
6600 #endif
6601 };
6602
6603 static void dump_page_flags(unsigned long flags)
6604 {
6605 const char *delim = "";
6606 unsigned long mask;
6607 int i;
6608
6609 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6610
6611 printk(KERN_ALERT "page flags: %#lx(", flags);
6612
6613 /* remove zone id */
6614 flags &= (1UL << NR_PAGEFLAGS) - 1;
6615
6616 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6617
6618 mask = pageflag_names[i].mask;
6619 if ((flags & mask) != mask)
6620 continue;
6621
6622 flags &= ~mask;
6623 printk("%s%s", delim, pageflag_names[i].name);
6624 delim = "|";
6625 }
6626
6627 /* check for left over flags */
6628 if (flags)
6629 printk("%s%#lx", delim, flags);
6630
6631 printk(")\n");
6632 }
6633
6634 void dump_page_badflags(struct page *page, const char *reason,
6635 unsigned long badflags)
6636 {
6637 printk(KERN_ALERT
6638 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6639 page, atomic_read(&page->_count), page_mapcount(page),
6640 page->mapping, page->index);
6641 dump_page_flags(page->flags);
6642 if (reason)
6643 pr_alert("page dumped because: %s\n", reason);
6644 if (page->flags & badflags) {
6645 pr_alert("bad because of flags:\n");
6646 dump_page_flags(page->flags & badflags);
6647 }
6648 mem_cgroup_print_bad_page(page);
6649 }
6650
6651 void dump_page(struct page *page, const char *reason)
6652 {
6653 dump_page_badflags(page, reason, 0);
6654 }
6655 EXPORT_SYMBOL(dump_page);
This page took 0.190711 seconds and 4 git commands to generate.