5b74de6702e06587e0d4f36060f810526ff8fbe3
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 zone->free_area[order].nr_free++;
599 }
600
601 static inline int free_pages_check(struct page *page)
602 {
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (atomic_read(&page->_count) != 0) |
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
608 bad_page(page);
609 return 1;
610 }
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
614 }
615
616 /*
617 * Frees a number of pages from the PCP lists
618 * Assumes all pages on list are in same zone, and of same order.
619 * count is the number of pages to free.
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
627 static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
629 {
630 int migratetype = 0;
631 int batch_free = 0;
632 int to_free = count;
633
634 spin_lock(&zone->lock);
635 zone->all_unreclaimable = 0;
636 zone->pages_scanned = 0;
637
638 while (to_free) {
639 struct page *page;
640 struct list_head *list;
641
642 /*
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
648 */
649 do {
650 batch_free++;
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
655
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
660 do {
661 int mt; /* migratetype of the to-be-freed page */
662
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
666 mt = get_freepage_migratetype(page);
667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 } while (--to_free && --batch_free && !list_empty(list));
673 }
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
676 }
677
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680 {
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
689 }
690
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715 }
716
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 unsigned long flags;
720 int migratetype;
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
731 }
732
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
737
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
746 }
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
750 }
751
752 #ifdef CONFIG_CMA
753 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754 void __init init_cma_reserved_pageblock(struct page *page)
755 {
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768 }
769 #endif
770
771 /*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
785 static inline void expand(struct zone *zone, struct page *page,
786 int low, int high, struct free_area *area,
787 int migratetype)
788 {
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
795 VM_BUG_ON(bad_range(zone, &page[size]));
796
797 #ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
811 continue;
812 }
813 #endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
818 }
819
820 /*
821 * This page is about to be returned from the page allocator
822 */
823 static inline int check_new_page(struct page *page)
824 {
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
832 }
833 return 0;
834 }
835
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837 {
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
845
846 set_page_private(page, 0);
847 set_page_refcounted(page);
848
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
858 return 0;
859 }
860
861 /*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
868 {
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889 }
890
891
892 /*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904 #endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
907 };
908
909 /*
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
913 */
914 int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
917 {
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
921
922 #ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
932
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 set_freepage_migratetype(page, migratetype);
951 page += 1 << order;
952 pages_moved += 1 << order;
953 }
954
955 return pages_moved;
956 }
957
958 int move_freepages_block(struct zone *zone, struct page *page,
959 int migratetype)
960 {
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
966 start_page = pfn_to_page(start_pfn);
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977 }
978
979 static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981 {
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988 }
989
990 /* Remove an element from the buddy allocator from the fallback list */
991 static inline struct page *
992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
993 {
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
1002 for (i = 0;; i++) {
1003 migratetype = fallbacks[start_migratetype][i];
1004
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
1007 break;
1008
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
1018 * If breaking a large block of pages, move all free
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
1021 * aggressive about taking ownership of free pages
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
1028 */
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
1043 migratetype = start_migratetype;
1044 }
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
1049
1050 /* Take ownership for orders >= pageblock_order */
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
1053 change_pageblock_range(page, current_order,
1054 start_migratetype);
1055
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
1063 return page;
1064 }
1065 }
1066
1067 return NULL;
1068 }
1069
1070 /*
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
1074 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1076 {
1077 struct page *page;
1078
1079 retry_reserve:
1080 page = __rmqueue_smallest(zone, order, migratetype);
1081
1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1083 page = __rmqueue_fallback(zone, order, migratetype);
1084
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1097 return page;
1098 }
1099
1100 /*
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
1105 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1106 unsigned long count, struct list_head *list,
1107 int migratetype, int cold)
1108 {
1109 int mt = migratetype, i;
1110
1111 spin_lock(&zone->lock);
1112 for (i = 0; i < count; ++i) {
1113 struct page *page = __rmqueue(zone, order, migratetype);
1114 if (unlikely(page == NULL))
1115 break;
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
1135 set_freepage_migratetype(page, mt);
1136 list = &page->lru;
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144 }
1145
1146 #ifdef CONFIG_NUMA
1147 /*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170 }
1171 #endif
1172
1173 /*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 }
1200
1201 /*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204 void drain_local_pages(void *arg)
1205 {
1206 drain_pages(smp_processor_id());
1207 }
1208
1209 /*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218 void drain_all_pages(void)
1219 {
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252
1253 #ifdef CONFIG_HIBERNATION
1254
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288
1289 /*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299
1300 if (!free_pages_prepare(page, 0))
1301 return;
1302
1303 migratetype = get_pageblock_migratetype(page);
1304 set_freepage_migratetype(page, migratetype);
1305 local_irq_save(flags);
1306 __count_vm_event(PGFREE);
1307
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1324 if (cold)
1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1326 else
1327 list_add(&page->lru, &pcp->lists[migratetype]);
1328 pcp->count++;
1329 if (pcp->count >= pcp->high) {
1330 free_pcppages_bulk(zone, pcp->batch, pcp);
1331 pcp->count -= pcp->batch;
1332 }
1333
1334 out:
1335 local_irq_restore(flags);
1336 }
1337
1338 /*
1339 * Free a list of 0-order pages
1340 */
1341 void free_hot_cold_page_list(struct list_head *list, int cold)
1342 {
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
1346 trace_mm_page_free_batched(page, cold);
1347 free_hot_cold_page(page, cold);
1348 }
1349 }
1350
1351 /*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359 void split_page(struct page *page, unsigned int order)
1360 {
1361 int i;
1362
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
1365
1366 #ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373 #endif
1374
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
1377 }
1378
1379 /*
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
1383 */
1384 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1385 {
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
1389 int mt;
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
1408 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1409
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
1413
1414 /* Set the pageblock if the captured page is at least a pageblock */
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
1423 }
1424
1425 return 1UL << order;
1426 }
1427
1428 /*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438 int split_free_page(struct page *page)
1439 {
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
1454 }
1455
1456 /*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
1461 static inline
1462 struct page *buffered_rmqueue(struct zone *preferred_zone,
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1465 {
1466 unsigned long flags;
1467 struct page *page;
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
1470 again:
1471 if (likely(order == 0)) {
1472 struct per_cpu_pages *pcp;
1473 struct list_head *list;
1474
1475 local_irq_save(flags);
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
1478 if (list_empty(list)) {
1479 pcp->count += rmqueue_bulk(zone, 0,
1480 pcp->batch, list,
1481 migratetype, cold);
1482 if (unlikely(list_empty(list)))
1483 goto failed;
1484 }
1485
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
1491 list_del(&page->lru);
1492 pcp->count--;
1493 } else {
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
1502 * allocate greater than order-1 page units with
1503 * __GFP_NOFAIL.
1504 */
1505 WARN_ON_ONCE(order > 1);
1506 }
1507 spin_lock_irqsave(&zone->lock, flags);
1508 page = __rmqueue(zone, order, migratetype);
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1514 }
1515
1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1517 zone_statistics(preferred_zone, zone, gfp_flags);
1518 local_irq_restore(flags);
1519
1520 VM_BUG_ON(bad_range(zone, page));
1521 if (prep_new_page(page, order, gfp_flags))
1522 goto again;
1523 return page;
1524
1525 failed:
1526 local_irq_restore(flags);
1527 return NULL;
1528 }
1529
1530 #ifdef CONFIG_FAIL_PAGE_ALLOC
1531
1532 static struct {
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
1537 u32 min_order;
1538 } fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
1542 .min_order = 1,
1543 };
1544
1545 static int __init setup_fail_page_alloc(char *str)
1546 {
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548 }
1549 __setup("fail_page_alloc=", setup_fail_page_alloc);
1550
1551 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1552 {
1553 if (order < fail_page_alloc.min_order)
1554 return false;
1555 if (gfp_mask & __GFP_NOFAIL)
1556 return false;
1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1558 return false;
1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1560 return false;
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563 }
1564
1565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567 static int __init fail_page_alloc_debugfs(void)
1568 {
1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1570 struct dentry *dir;
1571
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
1576
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588 fail:
1589 debugfs_remove_recursive(dir);
1590
1591 return -ENOMEM;
1592 }
1593
1594 late_initcall(fail_page_alloc_debugfs);
1595
1596 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598 #else /* CONFIG_FAIL_PAGE_ALLOC */
1599
1600 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1601 {
1602 return false;
1603 }
1604
1605 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1607 /*
1608 * Return true if free pages are above 'mark'. This takes into account the order
1609 * of the allocation.
1610 */
1611 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1613 {
1614 /* free_pages my go negative - that's OK */
1615 long min = mark;
1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1617 int o;
1618
1619 free_pages -= (1 << order) - 1;
1620 if (alloc_flags & ALLOC_HIGH)
1621 min -= min / 2;
1622 if (alloc_flags & ALLOC_HARDER)
1623 min -= min / 4;
1624 #ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628 #endif
1629 if (free_pages <= min + lowmem_reserve)
1630 return false;
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
1639 return false;
1640 }
1641 return true;
1642 }
1643
1644 #ifdef CONFIG_MEMORY_ISOLATION
1645 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646 {
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650 }
1651 #else
1652 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653 {
1654 return 0;
1655 }
1656 #endif
1657
1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660 {
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663 }
1664
1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667 {
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1683 }
1684
1685 #ifdef CONFIG_NUMA
1686 /*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1691 * that have to skip over a lot of full or unallowed zones.
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709 {
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
1724 &node_states[N_HIGH_MEMORY];
1725 return allowednodes;
1726 }
1727
1728 /*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
1750 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1751 nodemask_t *allowednodes)
1752 {
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
1761 i = z - zonelist->_zonerefs;
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766 }
1767
1768 /*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
1773 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1774 {
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 i = z - zonelist->_zonerefs;
1783
1784 set_bit(i, zlc->fullzones);
1785 }
1786
1787 /*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791 static void zlc_clear_zones_full(struct zonelist *zonelist)
1792 {
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800 }
1801
1802 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803 {
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805 }
1806
1807 static void __paginginit init_zone_allows_reclaim(int nid)
1808 {
1809 int i;
1810
1811 for_each_online_node(i)
1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1814 else
1815 zone_reclaim_mode = 1;
1816 }
1817
1818 #else /* CONFIG_NUMA */
1819
1820 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821 {
1822 return NULL;
1823 }
1824
1825 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1826 nodemask_t *allowednodes)
1827 {
1828 return 1;
1829 }
1830
1831 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1832 {
1833 }
1834
1835 static void zlc_clear_zones_full(struct zonelist *zonelist)
1836 {
1837 }
1838
1839 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840 {
1841 return true;
1842 }
1843
1844 static inline void init_zone_allows_reclaim(int nid)
1845 {
1846 }
1847 #endif /* CONFIG_NUMA */
1848
1849 /*
1850 * get_page_from_freelist goes through the zonelist trying to allocate
1851 * a page.
1852 */
1853 static struct page *
1854 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1856 struct zone *preferred_zone, int migratetype)
1857 {
1858 struct zoneref *z;
1859 struct page *page = NULL;
1860 int classzone_idx;
1861 struct zone *zone;
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1865
1866 classzone_idx = zone_idx(preferred_zone);
1867 zonelist_scan:
1868 /*
1869 * Scan zonelist, looking for a zone with enough free.
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
1874 if (NUMA_BUILD && zlc_active &&
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
1877 if ((alloc_flags & ALLOC_CPUSET) &&
1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1879 continue;
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
1909
1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1912 unsigned long mark;
1913 int ret;
1914
1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
1933 goto this_zone_full;
1934
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (NUMA_BUILD && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
1947 continue;
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
1950 continue;
1951 default:
1952 /* did we reclaim enough */
1953 if (!zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
1955 goto this_zone_full;
1956 }
1957 }
1958
1959 try_this_zone:
1960 page = buffered_rmqueue(preferred_zone, zone, order,
1961 gfp_mask, migratetype);
1962 if (page)
1963 break;
1964 this_zone_full:
1965 if (NUMA_BUILD)
1966 zlc_mark_zone_full(zonelist, z);
1967 }
1968
1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 /* Disable zlc cache for second zonelist scan */
1971 zlc_active = 0;
1972 goto zonelist_scan;
1973 }
1974
1975 if (page)
1976 /*
1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 * necessary to allocate the page. The expectation is
1979 * that the caller is taking steps that will free more
1980 * memory. The caller should avoid the page being used
1981 * for !PFMEMALLOC purposes.
1982 */
1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984
1985 return page;
1986 }
1987
1988 /*
1989 * Large machines with many possible nodes should not always dump per-node
1990 * meminfo in irq context.
1991 */
1992 static inline bool should_suppress_show_mem(void)
1993 {
1994 bool ret = false;
1995
1996 #if NODES_SHIFT > 8
1997 ret = in_interrupt();
1998 #endif
1999 return ret;
2000 }
2001
2002 static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 DEFAULT_RATELIMIT_INTERVAL,
2004 DEFAULT_RATELIMIT_BURST);
2005
2006 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007 {
2008 unsigned int filter = SHOW_MEM_FILTER_NODES;
2009
2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 debug_guardpage_minorder() > 0)
2012 return;
2013
2014 /*
2015 * This documents exceptions given to allocations in certain
2016 * contexts that are allowed to allocate outside current's set
2017 * of allowed nodes.
2018 */
2019 if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 if (test_thread_flag(TIF_MEMDIE) ||
2021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 filter &= ~SHOW_MEM_FILTER_NODES;
2025
2026 if (fmt) {
2027 struct va_format vaf;
2028 va_list args;
2029
2030 va_start(args, fmt);
2031
2032 vaf.fmt = fmt;
2033 vaf.va = &args;
2034
2035 pr_warn("%pV", &vaf);
2036
2037 va_end(args);
2038 }
2039
2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 current->comm, order, gfp_mask);
2042
2043 dump_stack();
2044 if (!should_suppress_show_mem())
2045 show_mem(filter);
2046 }
2047
2048 static inline int
2049 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2050 unsigned long did_some_progress,
2051 unsigned long pages_reclaimed)
2052 {
2053 /* Do not loop if specifically requested */
2054 if (gfp_mask & __GFP_NORETRY)
2055 return 0;
2056
2057 /* Always retry if specifically requested */
2058 if (gfp_mask & __GFP_NOFAIL)
2059 return 1;
2060
2061 /*
2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 * making forward progress without invoking OOM. Suspend also disables
2064 * storage devices so kswapd will not help. Bail if we are suspending.
2065 */
2066 if (!did_some_progress && pm_suspended_storage())
2067 return 0;
2068
2069 /*
2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 * means __GFP_NOFAIL, but that may not be true in other
2072 * implementations.
2073 */
2074 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 return 1;
2076
2077 /*
2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 * specified, then we retry until we no longer reclaim any pages
2080 * (above), or we've reclaimed an order of pages at least as
2081 * large as the allocation's order. In both cases, if the
2082 * allocation still fails, we stop retrying.
2083 */
2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 return 1;
2086
2087 return 0;
2088 }
2089
2090 static inline struct page *
2091 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 nodemask_t *nodemask, struct zone *preferred_zone,
2094 int migratetype)
2095 {
2096 struct page *page;
2097
2098 /* Acquire the OOM killer lock for the zones in zonelist */
2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2100 schedule_timeout_uninterruptible(1);
2101 return NULL;
2102 }
2103
2104 /*
2105 * Go through the zonelist yet one more time, keep very high watermark
2106 * here, this is only to catch a parallel oom killing, we must fail if
2107 * we're still under heavy pressure.
2108 */
2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 order, zonelist, high_zoneidx,
2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2112 preferred_zone, migratetype);
2113 if (page)
2114 goto out;
2115
2116 if (!(gfp_mask & __GFP_NOFAIL)) {
2117 /* The OOM killer will not help higher order allocs */
2118 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 goto out;
2120 /* The OOM killer does not needlessly kill tasks for lowmem */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto out;
2123 /*
2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 * The caller should handle page allocation failure by itself if
2127 * it specifies __GFP_THISNODE.
2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 */
2130 if (gfp_mask & __GFP_THISNODE)
2131 goto out;
2132 }
2133 /* Exhausted what can be done so it's blamo time */
2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2135
2136 out:
2137 clear_zonelist_oom(zonelist, gfp_mask);
2138 return page;
2139 }
2140
2141 #ifdef CONFIG_COMPACTION
2142 /* Try memory compaction for high-order allocations before reclaim */
2143 static struct page *
2144 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2147 int migratetype, bool sync_migration,
2148 bool *contended_compaction, bool *deferred_compaction,
2149 unsigned long *did_some_progress)
2150 {
2151 struct page *page = NULL;
2152
2153 if (!order)
2154 return NULL;
2155
2156 if (compaction_deferred(preferred_zone, order)) {
2157 *deferred_compaction = true;
2158 return NULL;
2159 }
2160
2161 current->flags |= PF_MEMALLOC;
2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2163 nodemask, sync_migration,
2164 contended_compaction, &page);
2165 current->flags &= ~PF_MEMALLOC;
2166
2167 /* If compaction captured a page, prep and use it */
2168 if (page) {
2169 prep_new_page(page, order, gfp_mask);
2170 goto got_page;
2171 }
2172
2173 if (*did_some_progress != COMPACT_SKIPPED) {
2174 /* Page migration frees to the PCP lists but we want merging */
2175 drain_pages(get_cpu());
2176 put_cpu();
2177
2178 page = get_page_from_freelist(gfp_mask, nodemask,
2179 order, zonelist, high_zoneidx,
2180 alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 preferred_zone, migratetype);
2182 if (page) {
2183 got_page:
2184 preferred_zone->compact_blockskip_flush = false;
2185 preferred_zone->compact_considered = 0;
2186 preferred_zone->compact_defer_shift = 0;
2187 if (order >= preferred_zone->compact_order_failed)
2188 preferred_zone->compact_order_failed = order + 1;
2189 count_vm_event(COMPACTSUCCESS);
2190 return page;
2191 }
2192
2193 /*
2194 * It's bad if compaction run occurs and fails.
2195 * The most likely reason is that pages exist,
2196 * but not enough to satisfy watermarks.
2197 */
2198 count_vm_event(COMPACTFAIL);
2199
2200 /*
2201 * As async compaction considers a subset of pageblocks, only
2202 * defer if the failure was a sync compaction failure.
2203 */
2204 if (sync_migration)
2205 defer_compaction(preferred_zone, order);
2206
2207 cond_resched();
2208 }
2209
2210 return NULL;
2211 }
2212 #else
2213 static inline struct page *
2214 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2217 int migratetype, bool sync_migration,
2218 bool *contended_compaction, bool *deferred_compaction,
2219 unsigned long *did_some_progress)
2220 {
2221 return NULL;
2222 }
2223 #endif /* CONFIG_COMPACTION */
2224
2225 /* Perform direct synchronous page reclaim */
2226 static int
2227 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 nodemask_t *nodemask)
2229 {
2230 struct reclaim_state reclaim_state;
2231 int progress;
2232
2233 cond_resched();
2234
2235 /* We now go into synchronous reclaim */
2236 cpuset_memory_pressure_bump();
2237 current->flags |= PF_MEMALLOC;
2238 lockdep_set_current_reclaim_state(gfp_mask);
2239 reclaim_state.reclaimed_slab = 0;
2240 current->reclaim_state = &reclaim_state;
2241
2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2243
2244 current->reclaim_state = NULL;
2245 lockdep_clear_current_reclaim_state();
2246 current->flags &= ~PF_MEMALLOC;
2247
2248 cond_resched();
2249
2250 return progress;
2251 }
2252
2253 /* The really slow allocator path where we enter direct reclaim */
2254 static inline struct page *
2255 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 int migratetype, unsigned long *did_some_progress)
2259 {
2260 struct page *page = NULL;
2261 bool drained = false;
2262
2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 nodemask);
2265 if (unlikely(!(*did_some_progress)))
2266 return NULL;
2267
2268 /* After successful reclaim, reconsider all zones for allocation */
2269 if (NUMA_BUILD)
2270 zlc_clear_zones_full(zonelist);
2271
2272 retry:
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 zonelist, high_zoneidx,
2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
2277
2278 /*
2279 * If an allocation failed after direct reclaim, it could be because
2280 * pages are pinned on the per-cpu lists. Drain them and try again
2281 */
2282 if (!page && !drained) {
2283 drain_all_pages();
2284 drained = true;
2285 goto retry;
2286 }
2287
2288 return page;
2289 }
2290
2291 /*
2292 * This is called in the allocator slow-path if the allocation request is of
2293 * sufficient urgency to ignore watermarks and take other desperate measures
2294 */
2295 static inline struct page *
2296 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, struct zone *preferred_zone,
2299 int migratetype)
2300 {
2301 struct page *page;
2302
2303 do {
2304 page = get_page_from_freelist(gfp_mask, nodemask, order,
2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2306 preferred_zone, migratetype);
2307
2308 if (!page && gfp_mask & __GFP_NOFAIL)
2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2310 } while (!page && (gfp_mask & __GFP_NOFAIL));
2311
2312 return page;
2313 }
2314
2315 static inline
2316 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2317 enum zone_type high_zoneidx,
2318 enum zone_type classzone_idx)
2319 {
2320 struct zoneref *z;
2321 struct zone *zone;
2322
2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2324 wakeup_kswapd(zone, order, classzone_idx);
2325 }
2326
2327 static inline int
2328 gfp_to_alloc_flags(gfp_t gfp_mask)
2329 {
2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 const gfp_t wait = gfp_mask & __GFP_WAIT;
2332
2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2335
2336 /*
2337 * The caller may dip into page reserves a bit more if the caller
2338 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 */
2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2343
2344 if (!wait) {
2345 /*
2346 * Not worth trying to allocate harder for
2347 * __GFP_NOMEMALLOC even if it can't schedule.
2348 */
2349 if (!(gfp_mask & __GFP_NOMEMALLOC))
2350 alloc_flags |= ALLOC_HARDER;
2351 /*
2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2354 */
2355 alloc_flags &= ~ALLOC_CPUSET;
2356 } else if (unlikely(rt_task(current)) && !in_interrupt())
2357 alloc_flags |= ALLOC_HARDER;
2358
2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 if (gfp_mask & __GFP_MEMALLOC)
2361 alloc_flags |= ALLOC_NO_WATERMARKS;
2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 alloc_flags |= ALLOC_NO_WATERMARKS;
2364 else if (!in_interrupt() &&
2365 ((current->flags & PF_MEMALLOC) ||
2366 unlikely(test_thread_flag(TIF_MEMDIE))))
2367 alloc_flags |= ALLOC_NO_WATERMARKS;
2368 }
2369 #ifdef CONFIG_CMA
2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 alloc_flags |= ALLOC_CMA;
2372 #endif
2373 return alloc_flags;
2374 }
2375
2376 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377 {
2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2379 }
2380
2381 static inline struct page *
2382 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2383 struct zonelist *zonelist, enum zone_type high_zoneidx,
2384 nodemask_t *nodemask, struct zone *preferred_zone,
2385 int migratetype)
2386 {
2387 const gfp_t wait = gfp_mask & __GFP_WAIT;
2388 struct page *page = NULL;
2389 int alloc_flags;
2390 unsigned long pages_reclaimed = 0;
2391 unsigned long did_some_progress;
2392 bool sync_migration = false;
2393 bool deferred_compaction = false;
2394 bool contended_compaction = false;
2395
2396 /*
2397 * In the slowpath, we sanity check order to avoid ever trying to
2398 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2399 * be using allocators in order of preference for an area that is
2400 * too large.
2401 */
2402 if (order >= MAX_ORDER) {
2403 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2404 return NULL;
2405 }
2406
2407 /*
2408 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2409 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2410 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2411 * using a larger set of nodes after it has established that the
2412 * allowed per node queues are empty and that nodes are
2413 * over allocated.
2414 */
2415 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2416 goto nopage;
2417
2418 restart:
2419 wake_all_kswapd(order, zonelist, high_zoneidx,
2420 zone_idx(preferred_zone));
2421
2422 /*
2423 * OK, we're below the kswapd watermark and have kicked background
2424 * reclaim. Now things get more complex, so set up alloc_flags according
2425 * to how we want to proceed.
2426 */
2427 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2428
2429 /*
2430 * Find the true preferred zone if the allocation is unconstrained by
2431 * cpusets.
2432 */
2433 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2434 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2435 &preferred_zone);
2436
2437 rebalance:
2438 /* This is the last chance, in general, before the goto nopage. */
2439 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2440 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2441 preferred_zone, migratetype);
2442 if (page)
2443 goto got_pg;
2444
2445 /* Allocate without watermarks if the context allows */
2446 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2447 /*
2448 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2449 * the allocation is high priority and these type of
2450 * allocations are system rather than user orientated
2451 */
2452 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2453
2454 page = __alloc_pages_high_priority(gfp_mask, order,
2455 zonelist, high_zoneidx, nodemask,
2456 preferred_zone, migratetype);
2457 if (page) {
2458 goto got_pg;
2459 }
2460 }
2461
2462 /* Atomic allocations - we can't balance anything */
2463 if (!wait)
2464 goto nopage;
2465
2466 /* Avoid recursion of direct reclaim */
2467 if (current->flags & PF_MEMALLOC)
2468 goto nopage;
2469
2470 /* Avoid allocations with no watermarks from looping endlessly */
2471 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2472 goto nopage;
2473
2474 /*
2475 * Try direct compaction. The first pass is asynchronous. Subsequent
2476 * attempts after direct reclaim are synchronous
2477 */
2478 page = __alloc_pages_direct_compact(gfp_mask, order,
2479 zonelist, high_zoneidx,
2480 nodemask,
2481 alloc_flags, preferred_zone,
2482 migratetype, sync_migration,
2483 &contended_compaction,
2484 &deferred_compaction,
2485 &did_some_progress);
2486 if (page)
2487 goto got_pg;
2488 sync_migration = true;
2489
2490 /*
2491 * If compaction is deferred for high-order allocations, it is because
2492 * sync compaction recently failed. In this is the case and the caller
2493 * requested a movable allocation that does not heavily disrupt the
2494 * system then fail the allocation instead of entering direct reclaim.
2495 */
2496 if ((deferred_compaction || contended_compaction) &&
2497 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2498 goto nopage;
2499
2500 /* Try direct reclaim and then allocating */
2501 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2502 zonelist, high_zoneidx,
2503 nodemask,
2504 alloc_flags, preferred_zone,
2505 migratetype, &did_some_progress);
2506 if (page)
2507 goto got_pg;
2508
2509 /*
2510 * If we failed to make any progress reclaiming, then we are
2511 * running out of options and have to consider going OOM
2512 */
2513 if (!did_some_progress) {
2514 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2515 if (oom_killer_disabled)
2516 goto nopage;
2517 /* Coredumps can quickly deplete all memory reserves */
2518 if ((current->flags & PF_DUMPCORE) &&
2519 !(gfp_mask & __GFP_NOFAIL))
2520 goto nopage;
2521 page = __alloc_pages_may_oom(gfp_mask, order,
2522 zonelist, high_zoneidx,
2523 nodemask, preferred_zone,
2524 migratetype);
2525 if (page)
2526 goto got_pg;
2527
2528 if (!(gfp_mask & __GFP_NOFAIL)) {
2529 /*
2530 * The oom killer is not called for high-order
2531 * allocations that may fail, so if no progress
2532 * is being made, there are no other options and
2533 * retrying is unlikely to help.
2534 */
2535 if (order > PAGE_ALLOC_COSTLY_ORDER)
2536 goto nopage;
2537 /*
2538 * The oom killer is not called for lowmem
2539 * allocations to prevent needlessly killing
2540 * innocent tasks.
2541 */
2542 if (high_zoneidx < ZONE_NORMAL)
2543 goto nopage;
2544 }
2545
2546 goto restart;
2547 }
2548 }
2549
2550 /* Check if we should retry the allocation */
2551 pages_reclaimed += did_some_progress;
2552 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2553 pages_reclaimed)) {
2554 /* Wait for some write requests to complete then retry */
2555 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2556 goto rebalance;
2557 } else {
2558 /*
2559 * High-order allocations do not necessarily loop after
2560 * direct reclaim and reclaim/compaction depends on compaction
2561 * being called after reclaim so call directly if necessary
2562 */
2563 page = __alloc_pages_direct_compact(gfp_mask, order,
2564 zonelist, high_zoneidx,
2565 nodemask,
2566 alloc_flags, preferred_zone,
2567 migratetype, sync_migration,
2568 &contended_compaction,
2569 &deferred_compaction,
2570 &did_some_progress);
2571 if (page)
2572 goto got_pg;
2573 }
2574
2575 nopage:
2576 warn_alloc_failed(gfp_mask, order, NULL);
2577 return page;
2578 got_pg:
2579 if (kmemcheck_enabled)
2580 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2581
2582 return page;
2583 }
2584
2585 /*
2586 * This is the 'heart' of the zoned buddy allocator.
2587 */
2588 struct page *
2589 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2590 struct zonelist *zonelist, nodemask_t *nodemask)
2591 {
2592 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2593 struct zone *preferred_zone;
2594 struct page *page = NULL;
2595 int migratetype = allocflags_to_migratetype(gfp_mask);
2596 unsigned int cpuset_mems_cookie;
2597 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2598
2599 gfp_mask &= gfp_allowed_mask;
2600
2601 lockdep_trace_alloc(gfp_mask);
2602
2603 might_sleep_if(gfp_mask & __GFP_WAIT);
2604
2605 if (should_fail_alloc_page(gfp_mask, order))
2606 return NULL;
2607
2608 /*
2609 * Check the zones suitable for the gfp_mask contain at least one
2610 * valid zone. It's possible to have an empty zonelist as a result
2611 * of GFP_THISNODE and a memoryless node
2612 */
2613 if (unlikely(!zonelist->_zonerefs->zone))
2614 return NULL;
2615
2616 retry_cpuset:
2617 cpuset_mems_cookie = get_mems_allowed();
2618
2619 /* The preferred zone is used for statistics later */
2620 first_zones_zonelist(zonelist, high_zoneidx,
2621 nodemask ? : &cpuset_current_mems_allowed,
2622 &preferred_zone);
2623 if (!preferred_zone)
2624 goto out;
2625
2626 #ifdef CONFIG_CMA
2627 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 alloc_flags |= ALLOC_CMA;
2629 #endif
2630 /* First allocation attempt */
2631 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2632 zonelist, high_zoneidx, alloc_flags,
2633 preferred_zone, migratetype);
2634 if (unlikely(!page))
2635 page = __alloc_pages_slowpath(gfp_mask, order,
2636 zonelist, high_zoneidx, nodemask,
2637 preferred_zone, migratetype);
2638
2639 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2640
2641 out:
2642 /*
2643 * When updating a task's mems_allowed, it is possible to race with
2644 * parallel threads in such a way that an allocation can fail while
2645 * the mask is being updated. If a page allocation is about to fail,
2646 * check if the cpuset changed during allocation and if so, retry.
2647 */
2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2649 goto retry_cpuset;
2650
2651 return page;
2652 }
2653 EXPORT_SYMBOL(__alloc_pages_nodemask);
2654
2655 /*
2656 * Common helper functions.
2657 */
2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2659 {
2660 struct page *page;
2661
2662 /*
2663 * __get_free_pages() returns a 32-bit address, which cannot represent
2664 * a highmem page
2665 */
2666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2667
2668 page = alloc_pages(gfp_mask, order);
2669 if (!page)
2670 return 0;
2671 return (unsigned long) page_address(page);
2672 }
2673 EXPORT_SYMBOL(__get_free_pages);
2674
2675 unsigned long get_zeroed_page(gfp_t gfp_mask)
2676 {
2677 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2678 }
2679 EXPORT_SYMBOL(get_zeroed_page);
2680
2681 void __free_pages(struct page *page, unsigned int order)
2682 {
2683 if (put_page_testzero(page)) {
2684 if (order == 0)
2685 free_hot_cold_page(page, 0);
2686 else
2687 __free_pages_ok(page, order);
2688 }
2689 }
2690
2691 EXPORT_SYMBOL(__free_pages);
2692
2693 void free_pages(unsigned long addr, unsigned int order)
2694 {
2695 if (addr != 0) {
2696 VM_BUG_ON(!virt_addr_valid((void *)addr));
2697 __free_pages(virt_to_page((void *)addr), order);
2698 }
2699 }
2700
2701 EXPORT_SYMBOL(free_pages);
2702
2703 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2704 {
2705 if (addr) {
2706 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2707 unsigned long used = addr + PAGE_ALIGN(size);
2708
2709 split_page(virt_to_page((void *)addr), order);
2710 while (used < alloc_end) {
2711 free_page(used);
2712 used += PAGE_SIZE;
2713 }
2714 }
2715 return (void *)addr;
2716 }
2717
2718 /**
2719 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2720 * @size: the number of bytes to allocate
2721 * @gfp_mask: GFP flags for the allocation
2722 *
2723 * This function is similar to alloc_pages(), except that it allocates the
2724 * minimum number of pages to satisfy the request. alloc_pages() can only
2725 * allocate memory in power-of-two pages.
2726 *
2727 * This function is also limited by MAX_ORDER.
2728 *
2729 * Memory allocated by this function must be released by free_pages_exact().
2730 */
2731 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2732 {
2733 unsigned int order = get_order(size);
2734 unsigned long addr;
2735
2736 addr = __get_free_pages(gfp_mask, order);
2737 return make_alloc_exact(addr, order, size);
2738 }
2739 EXPORT_SYMBOL(alloc_pages_exact);
2740
2741 /**
2742 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2743 * pages on a node.
2744 * @nid: the preferred node ID where memory should be allocated
2745 * @size: the number of bytes to allocate
2746 * @gfp_mask: GFP flags for the allocation
2747 *
2748 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2749 * back.
2750 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2751 * but is not exact.
2752 */
2753 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2754 {
2755 unsigned order = get_order(size);
2756 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2757 if (!p)
2758 return NULL;
2759 return make_alloc_exact((unsigned long)page_address(p), order, size);
2760 }
2761 EXPORT_SYMBOL(alloc_pages_exact_nid);
2762
2763 /**
2764 * free_pages_exact - release memory allocated via alloc_pages_exact()
2765 * @virt: the value returned by alloc_pages_exact.
2766 * @size: size of allocation, same value as passed to alloc_pages_exact().
2767 *
2768 * Release the memory allocated by a previous call to alloc_pages_exact.
2769 */
2770 void free_pages_exact(void *virt, size_t size)
2771 {
2772 unsigned long addr = (unsigned long)virt;
2773 unsigned long end = addr + PAGE_ALIGN(size);
2774
2775 while (addr < end) {
2776 free_page(addr);
2777 addr += PAGE_SIZE;
2778 }
2779 }
2780 EXPORT_SYMBOL(free_pages_exact);
2781
2782 static unsigned int nr_free_zone_pages(int offset)
2783 {
2784 struct zoneref *z;
2785 struct zone *zone;
2786
2787 /* Just pick one node, since fallback list is circular */
2788 unsigned int sum = 0;
2789
2790 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2791
2792 for_each_zone_zonelist(zone, z, zonelist, offset) {
2793 unsigned long size = zone->present_pages;
2794 unsigned long high = high_wmark_pages(zone);
2795 if (size > high)
2796 sum += size - high;
2797 }
2798
2799 return sum;
2800 }
2801
2802 /*
2803 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2804 */
2805 unsigned int nr_free_buffer_pages(void)
2806 {
2807 return nr_free_zone_pages(gfp_zone(GFP_USER));
2808 }
2809 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2810
2811 /*
2812 * Amount of free RAM allocatable within all zones
2813 */
2814 unsigned int nr_free_pagecache_pages(void)
2815 {
2816 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2817 }
2818
2819 static inline void show_node(struct zone *zone)
2820 {
2821 if (NUMA_BUILD)
2822 printk("Node %d ", zone_to_nid(zone));
2823 }
2824
2825 void si_meminfo(struct sysinfo *val)
2826 {
2827 val->totalram = totalram_pages;
2828 val->sharedram = 0;
2829 val->freeram = global_page_state(NR_FREE_PAGES);
2830 val->bufferram = nr_blockdev_pages();
2831 val->totalhigh = totalhigh_pages;
2832 val->freehigh = nr_free_highpages();
2833 val->mem_unit = PAGE_SIZE;
2834 }
2835
2836 EXPORT_SYMBOL(si_meminfo);
2837
2838 #ifdef CONFIG_NUMA
2839 void si_meminfo_node(struct sysinfo *val, int nid)
2840 {
2841 pg_data_t *pgdat = NODE_DATA(nid);
2842
2843 val->totalram = pgdat->node_present_pages;
2844 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2845 #ifdef CONFIG_HIGHMEM
2846 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2847 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2848 NR_FREE_PAGES);
2849 #else
2850 val->totalhigh = 0;
2851 val->freehigh = 0;
2852 #endif
2853 val->mem_unit = PAGE_SIZE;
2854 }
2855 #endif
2856
2857 /*
2858 * Determine whether the node should be displayed or not, depending on whether
2859 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2860 */
2861 bool skip_free_areas_node(unsigned int flags, int nid)
2862 {
2863 bool ret = false;
2864 unsigned int cpuset_mems_cookie;
2865
2866 if (!(flags & SHOW_MEM_FILTER_NODES))
2867 goto out;
2868
2869 do {
2870 cpuset_mems_cookie = get_mems_allowed();
2871 ret = !node_isset(nid, cpuset_current_mems_allowed);
2872 } while (!put_mems_allowed(cpuset_mems_cookie));
2873 out:
2874 return ret;
2875 }
2876
2877 #define K(x) ((x) << (PAGE_SHIFT-10))
2878
2879 /*
2880 * Show free area list (used inside shift_scroll-lock stuff)
2881 * We also calculate the percentage fragmentation. We do this by counting the
2882 * memory on each free list with the exception of the first item on the list.
2883 * Suppresses nodes that are not allowed by current's cpuset if
2884 * SHOW_MEM_FILTER_NODES is passed.
2885 */
2886 void show_free_areas(unsigned int filter)
2887 {
2888 int cpu;
2889 struct zone *zone;
2890
2891 for_each_populated_zone(zone) {
2892 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2893 continue;
2894 show_node(zone);
2895 printk("%s per-cpu:\n", zone->name);
2896
2897 for_each_online_cpu(cpu) {
2898 struct per_cpu_pageset *pageset;
2899
2900 pageset = per_cpu_ptr(zone->pageset, cpu);
2901
2902 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2903 cpu, pageset->pcp.high,
2904 pageset->pcp.batch, pageset->pcp.count);
2905 }
2906 }
2907
2908 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2909 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2910 " unevictable:%lu"
2911 " dirty:%lu writeback:%lu unstable:%lu\n"
2912 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2913 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2914 " free_cma:%lu\n",
2915 global_page_state(NR_ACTIVE_ANON),
2916 global_page_state(NR_INACTIVE_ANON),
2917 global_page_state(NR_ISOLATED_ANON),
2918 global_page_state(NR_ACTIVE_FILE),
2919 global_page_state(NR_INACTIVE_FILE),
2920 global_page_state(NR_ISOLATED_FILE),
2921 global_page_state(NR_UNEVICTABLE),
2922 global_page_state(NR_FILE_DIRTY),
2923 global_page_state(NR_WRITEBACK),
2924 global_page_state(NR_UNSTABLE_NFS),
2925 global_page_state(NR_FREE_PAGES),
2926 global_page_state(NR_SLAB_RECLAIMABLE),
2927 global_page_state(NR_SLAB_UNRECLAIMABLE),
2928 global_page_state(NR_FILE_MAPPED),
2929 global_page_state(NR_SHMEM),
2930 global_page_state(NR_PAGETABLE),
2931 global_page_state(NR_BOUNCE),
2932 global_page_state(NR_FREE_CMA_PAGES));
2933
2934 for_each_populated_zone(zone) {
2935 int i;
2936
2937 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2938 continue;
2939 show_node(zone);
2940 printk("%s"
2941 " free:%lukB"
2942 " min:%lukB"
2943 " low:%lukB"
2944 " high:%lukB"
2945 " active_anon:%lukB"
2946 " inactive_anon:%lukB"
2947 " active_file:%lukB"
2948 " inactive_file:%lukB"
2949 " unevictable:%lukB"
2950 " isolated(anon):%lukB"
2951 " isolated(file):%lukB"
2952 " present:%lukB"
2953 " mlocked:%lukB"
2954 " dirty:%lukB"
2955 " writeback:%lukB"
2956 " mapped:%lukB"
2957 " shmem:%lukB"
2958 " slab_reclaimable:%lukB"
2959 " slab_unreclaimable:%lukB"
2960 " kernel_stack:%lukB"
2961 " pagetables:%lukB"
2962 " unstable:%lukB"
2963 " bounce:%lukB"
2964 " free_cma:%lukB"
2965 " writeback_tmp:%lukB"
2966 " pages_scanned:%lu"
2967 " all_unreclaimable? %s"
2968 "\n",
2969 zone->name,
2970 K(zone_page_state(zone, NR_FREE_PAGES)),
2971 K(min_wmark_pages(zone)),
2972 K(low_wmark_pages(zone)),
2973 K(high_wmark_pages(zone)),
2974 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2975 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2976 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2977 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2978 K(zone_page_state(zone, NR_UNEVICTABLE)),
2979 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2980 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2981 K(zone->present_pages),
2982 K(zone_page_state(zone, NR_MLOCK)),
2983 K(zone_page_state(zone, NR_FILE_DIRTY)),
2984 K(zone_page_state(zone, NR_WRITEBACK)),
2985 K(zone_page_state(zone, NR_FILE_MAPPED)),
2986 K(zone_page_state(zone, NR_SHMEM)),
2987 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2988 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2989 zone_page_state(zone, NR_KERNEL_STACK) *
2990 THREAD_SIZE / 1024,
2991 K(zone_page_state(zone, NR_PAGETABLE)),
2992 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2993 K(zone_page_state(zone, NR_BOUNCE)),
2994 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
2995 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2996 zone->pages_scanned,
2997 (zone->all_unreclaimable ? "yes" : "no")
2998 );
2999 printk("lowmem_reserve[]:");
3000 for (i = 0; i < MAX_NR_ZONES; i++)
3001 printk(" %lu", zone->lowmem_reserve[i]);
3002 printk("\n");
3003 }
3004
3005 for_each_populated_zone(zone) {
3006 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3007
3008 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3009 continue;
3010 show_node(zone);
3011 printk("%s: ", zone->name);
3012
3013 spin_lock_irqsave(&zone->lock, flags);
3014 for (order = 0; order < MAX_ORDER; order++) {
3015 nr[order] = zone->free_area[order].nr_free;
3016 total += nr[order] << order;
3017 }
3018 spin_unlock_irqrestore(&zone->lock, flags);
3019 for (order = 0; order < MAX_ORDER; order++)
3020 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3021 printk("= %lukB\n", K(total));
3022 }
3023
3024 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3025
3026 show_swap_cache_info();
3027 }
3028
3029 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3030 {
3031 zoneref->zone = zone;
3032 zoneref->zone_idx = zone_idx(zone);
3033 }
3034
3035 /*
3036 * Builds allocation fallback zone lists.
3037 *
3038 * Add all populated zones of a node to the zonelist.
3039 */
3040 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3041 int nr_zones, enum zone_type zone_type)
3042 {
3043 struct zone *zone;
3044
3045 BUG_ON(zone_type >= MAX_NR_ZONES);
3046 zone_type++;
3047
3048 do {
3049 zone_type--;
3050 zone = pgdat->node_zones + zone_type;
3051 if (populated_zone(zone)) {
3052 zoneref_set_zone(zone,
3053 &zonelist->_zonerefs[nr_zones++]);
3054 check_highest_zone(zone_type);
3055 }
3056
3057 } while (zone_type);
3058 return nr_zones;
3059 }
3060
3061
3062 /*
3063 * zonelist_order:
3064 * 0 = automatic detection of better ordering.
3065 * 1 = order by ([node] distance, -zonetype)
3066 * 2 = order by (-zonetype, [node] distance)
3067 *
3068 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3069 * the same zonelist. So only NUMA can configure this param.
3070 */
3071 #define ZONELIST_ORDER_DEFAULT 0
3072 #define ZONELIST_ORDER_NODE 1
3073 #define ZONELIST_ORDER_ZONE 2
3074
3075 /* zonelist order in the kernel.
3076 * set_zonelist_order() will set this to NODE or ZONE.
3077 */
3078 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3079 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3080
3081
3082 #ifdef CONFIG_NUMA
3083 /* The value user specified ....changed by config */
3084 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3085 /* string for sysctl */
3086 #define NUMA_ZONELIST_ORDER_LEN 16
3087 char numa_zonelist_order[16] = "default";
3088
3089 /*
3090 * interface for configure zonelist ordering.
3091 * command line option "numa_zonelist_order"
3092 * = "[dD]efault - default, automatic configuration.
3093 * = "[nN]ode - order by node locality, then by zone within node
3094 * = "[zZ]one - order by zone, then by locality within zone
3095 */
3096
3097 static int __parse_numa_zonelist_order(char *s)
3098 {
3099 if (*s == 'd' || *s == 'D') {
3100 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3101 } else if (*s == 'n' || *s == 'N') {
3102 user_zonelist_order = ZONELIST_ORDER_NODE;
3103 } else if (*s == 'z' || *s == 'Z') {
3104 user_zonelist_order = ZONELIST_ORDER_ZONE;
3105 } else {
3106 printk(KERN_WARNING
3107 "Ignoring invalid numa_zonelist_order value: "
3108 "%s\n", s);
3109 return -EINVAL;
3110 }
3111 return 0;
3112 }
3113
3114 static __init int setup_numa_zonelist_order(char *s)
3115 {
3116 int ret;
3117
3118 if (!s)
3119 return 0;
3120
3121 ret = __parse_numa_zonelist_order(s);
3122 if (ret == 0)
3123 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3124
3125 return ret;
3126 }
3127 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3128
3129 /*
3130 * sysctl handler for numa_zonelist_order
3131 */
3132 int numa_zonelist_order_handler(ctl_table *table, int write,
3133 void __user *buffer, size_t *length,
3134 loff_t *ppos)
3135 {
3136 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3137 int ret;
3138 static DEFINE_MUTEX(zl_order_mutex);
3139
3140 mutex_lock(&zl_order_mutex);
3141 if (write)
3142 strcpy(saved_string, (char*)table->data);
3143 ret = proc_dostring(table, write, buffer, length, ppos);
3144 if (ret)
3145 goto out;
3146 if (write) {
3147 int oldval = user_zonelist_order;
3148 if (__parse_numa_zonelist_order((char*)table->data)) {
3149 /*
3150 * bogus value. restore saved string
3151 */
3152 strncpy((char*)table->data, saved_string,
3153 NUMA_ZONELIST_ORDER_LEN);
3154 user_zonelist_order = oldval;
3155 } else if (oldval != user_zonelist_order) {
3156 mutex_lock(&zonelists_mutex);
3157 build_all_zonelists(NULL, NULL);
3158 mutex_unlock(&zonelists_mutex);
3159 }
3160 }
3161 out:
3162 mutex_unlock(&zl_order_mutex);
3163 return ret;
3164 }
3165
3166
3167 #define MAX_NODE_LOAD (nr_online_nodes)
3168 static int node_load[MAX_NUMNODES];
3169
3170 /**
3171 * find_next_best_node - find the next node that should appear in a given node's fallback list
3172 * @node: node whose fallback list we're appending
3173 * @used_node_mask: nodemask_t of already used nodes
3174 *
3175 * We use a number of factors to determine which is the next node that should
3176 * appear on a given node's fallback list. The node should not have appeared
3177 * already in @node's fallback list, and it should be the next closest node
3178 * according to the distance array (which contains arbitrary distance values
3179 * from each node to each node in the system), and should also prefer nodes
3180 * with no CPUs, since presumably they'll have very little allocation pressure
3181 * on them otherwise.
3182 * It returns -1 if no node is found.
3183 */
3184 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3185 {
3186 int n, val;
3187 int min_val = INT_MAX;
3188 int best_node = -1;
3189 const struct cpumask *tmp = cpumask_of_node(0);
3190
3191 /* Use the local node if we haven't already */
3192 if (!node_isset(node, *used_node_mask)) {
3193 node_set(node, *used_node_mask);
3194 return node;
3195 }
3196
3197 for_each_node_state(n, N_HIGH_MEMORY) {
3198
3199 /* Don't want a node to appear more than once */
3200 if (node_isset(n, *used_node_mask))
3201 continue;
3202
3203 /* Use the distance array to find the distance */
3204 val = node_distance(node, n);
3205
3206 /* Penalize nodes under us ("prefer the next node") */
3207 val += (n < node);
3208
3209 /* Give preference to headless and unused nodes */
3210 tmp = cpumask_of_node(n);
3211 if (!cpumask_empty(tmp))
3212 val += PENALTY_FOR_NODE_WITH_CPUS;
3213
3214 /* Slight preference for less loaded node */
3215 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3216 val += node_load[n];
3217
3218 if (val < min_val) {
3219 min_val = val;
3220 best_node = n;
3221 }
3222 }
3223
3224 if (best_node >= 0)
3225 node_set(best_node, *used_node_mask);
3226
3227 return best_node;
3228 }
3229
3230
3231 /*
3232 * Build zonelists ordered by node and zones within node.
3233 * This results in maximum locality--normal zone overflows into local
3234 * DMA zone, if any--but risks exhausting DMA zone.
3235 */
3236 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3237 {
3238 int j;
3239 struct zonelist *zonelist;
3240
3241 zonelist = &pgdat->node_zonelists[0];
3242 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3243 ;
3244 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3245 MAX_NR_ZONES - 1);
3246 zonelist->_zonerefs[j].zone = NULL;
3247 zonelist->_zonerefs[j].zone_idx = 0;
3248 }
3249
3250 /*
3251 * Build gfp_thisnode zonelists
3252 */
3253 static void build_thisnode_zonelists(pg_data_t *pgdat)
3254 {
3255 int j;
3256 struct zonelist *zonelist;
3257
3258 zonelist = &pgdat->node_zonelists[1];
3259 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3260 zonelist->_zonerefs[j].zone = NULL;
3261 zonelist->_zonerefs[j].zone_idx = 0;
3262 }
3263
3264 /*
3265 * Build zonelists ordered by zone and nodes within zones.
3266 * This results in conserving DMA zone[s] until all Normal memory is
3267 * exhausted, but results in overflowing to remote node while memory
3268 * may still exist in local DMA zone.
3269 */
3270 static int node_order[MAX_NUMNODES];
3271
3272 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3273 {
3274 int pos, j, node;
3275 int zone_type; /* needs to be signed */
3276 struct zone *z;
3277 struct zonelist *zonelist;
3278
3279 zonelist = &pgdat->node_zonelists[0];
3280 pos = 0;
3281 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3282 for (j = 0; j < nr_nodes; j++) {
3283 node = node_order[j];
3284 z = &NODE_DATA(node)->node_zones[zone_type];
3285 if (populated_zone(z)) {
3286 zoneref_set_zone(z,
3287 &zonelist->_zonerefs[pos++]);
3288 check_highest_zone(zone_type);
3289 }
3290 }
3291 }
3292 zonelist->_zonerefs[pos].zone = NULL;
3293 zonelist->_zonerefs[pos].zone_idx = 0;
3294 }
3295
3296 static int default_zonelist_order(void)
3297 {
3298 int nid, zone_type;
3299 unsigned long low_kmem_size,total_size;
3300 struct zone *z;
3301 int average_size;
3302 /*
3303 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3304 * If they are really small and used heavily, the system can fall
3305 * into OOM very easily.
3306 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3307 */
3308 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3309 low_kmem_size = 0;
3310 total_size = 0;
3311 for_each_online_node(nid) {
3312 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3313 z = &NODE_DATA(nid)->node_zones[zone_type];
3314 if (populated_zone(z)) {
3315 if (zone_type < ZONE_NORMAL)
3316 low_kmem_size += z->present_pages;
3317 total_size += z->present_pages;
3318 } else if (zone_type == ZONE_NORMAL) {
3319 /*
3320 * If any node has only lowmem, then node order
3321 * is preferred to allow kernel allocations
3322 * locally; otherwise, they can easily infringe
3323 * on other nodes when there is an abundance of
3324 * lowmem available to allocate from.
3325 */
3326 return ZONELIST_ORDER_NODE;
3327 }
3328 }
3329 }
3330 if (!low_kmem_size || /* there are no DMA area. */
3331 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3332 return ZONELIST_ORDER_NODE;
3333 /*
3334 * look into each node's config.
3335 * If there is a node whose DMA/DMA32 memory is very big area on
3336 * local memory, NODE_ORDER may be suitable.
3337 */
3338 average_size = total_size /
3339 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3340 for_each_online_node(nid) {
3341 low_kmem_size = 0;
3342 total_size = 0;
3343 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3344 z = &NODE_DATA(nid)->node_zones[zone_type];
3345 if (populated_zone(z)) {
3346 if (zone_type < ZONE_NORMAL)
3347 low_kmem_size += z->present_pages;
3348 total_size += z->present_pages;
3349 }
3350 }
3351 if (low_kmem_size &&
3352 total_size > average_size && /* ignore small node */
3353 low_kmem_size > total_size * 70/100)
3354 return ZONELIST_ORDER_NODE;
3355 }
3356 return ZONELIST_ORDER_ZONE;
3357 }
3358
3359 static void set_zonelist_order(void)
3360 {
3361 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3362 current_zonelist_order = default_zonelist_order();
3363 else
3364 current_zonelist_order = user_zonelist_order;
3365 }
3366
3367 static void build_zonelists(pg_data_t *pgdat)
3368 {
3369 int j, node, load;
3370 enum zone_type i;
3371 nodemask_t used_mask;
3372 int local_node, prev_node;
3373 struct zonelist *zonelist;
3374 int order = current_zonelist_order;
3375
3376 /* initialize zonelists */
3377 for (i = 0; i < MAX_ZONELISTS; i++) {
3378 zonelist = pgdat->node_zonelists + i;
3379 zonelist->_zonerefs[0].zone = NULL;
3380 zonelist->_zonerefs[0].zone_idx = 0;
3381 }
3382
3383 /* NUMA-aware ordering of nodes */
3384 local_node = pgdat->node_id;
3385 load = nr_online_nodes;
3386 prev_node = local_node;
3387 nodes_clear(used_mask);
3388
3389 memset(node_order, 0, sizeof(node_order));
3390 j = 0;
3391
3392 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3393 /*
3394 * We don't want to pressure a particular node.
3395 * So adding penalty to the first node in same
3396 * distance group to make it round-robin.
3397 */
3398 if (node_distance(local_node, node) !=
3399 node_distance(local_node, prev_node))
3400 node_load[node] = load;
3401
3402 prev_node = node;
3403 load--;
3404 if (order == ZONELIST_ORDER_NODE)
3405 build_zonelists_in_node_order(pgdat, node);
3406 else
3407 node_order[j++] = node; /* remember order */
3408 }
3409
3410 if (order == ZONELIST_ORDER_ZONE) {
3411 /* calculate node order -- i.e., DMA last! */
3412 build_zonelists_in_zone_order(pgdat, j);
3413 }
3414
3415 build_thisnode_zonelists(pgdat);
3416 }
3417
3418 /* Construct the zonelist performance cache - see further mmzone.h */
3419 static void build_zonelist_cache(pg_data_t *pgdat)
3420 {
3421 struct zonelist *zonelist;
3422 struct zonelist_cache *zlc;
3423 struct zoneref *z;
3424
3425 zonelist = &pgdat->node_zonelists[0];
3426 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3427 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3428 for (z = zonelist->_zonerefs; z->zone; z++)
3429 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3430 }
3431
3432 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3433 /*
3434 * Return node id of node used for "local" allocations.
3435 * I.e., first node id of first zone in arg node's generic zonelist.
3436 * Used for initializing percpu 'numa_mem', which is used primarily
3437 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3438 */
3439 int local_memory_node(int node)
3440 {
3441 struct zone *zone;
3442
3443 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3444 gfp_zone(GFP_KERNEL),
3445 NULL,
3446 &zone);
3447 return zone->node;
3448 }
3449 #endif
3450
3451 #else /* CONFIG_NUMA */
3452
3453 static void set_zonelist_order(void)
3454 {
3455 current_zonelist_order = ZONELIST_ORDER_ZONE;
3456 }
3457
3458 static void build_zonelists(pg_data_t *pgdat)
3459 {
3460 int node, local_node;
3461 enum zone_type j;
3462 struct zonelist *zonelist;
3463
3464 local_node = pgdat->node_id;
3465
3466 zonelist = &pgdat->node_zonelists[0];
3467 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3468
3469 /*
3470 * Now we build the zonelist so that it contains the zones
3471 * of all the other nodes.
3472 * We don't want to pressure a particular node, so when
3473 * building the zones for node N, we make sure that the
3474 * zones coming right after the local ones are those from
3475 * node N+1 (modulo N)
3476 */
3477 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3478 if (!node_online(node))
3479 continue;
3480 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3481 MAX_NR_ZONES - 1);
3482 }
3483 for (node = 0; node < local_node; node++) {
3484 if (!node_online(node))
3485 continue;
3486 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3487 MAX_NR_ZONES - 1);
3488 }
3489
3490 zonelist->_zonerefs[j].zone = NULL;
3491 zonelist->_zonerefs[j].zone_idx = 0;
3492 }
3493
3494 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3495 static void build_zonelist_cache(pg_data_t *pgdat)
3496 {
3497 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3498 }
3499
3500 #endif /* CONFIG_NUMA */
3501
3502 /*
3503 * Boot pageset table. One per cpu which is going to be used for all
3504 * zones and all nodes. The parameters will be set in such a way
3505 * that an item put on a list will immediately be handed over to
3506 * the buddy list. This is safe since pageset manipulation is done
3507 * with interrupts disabled.
3508 *
3509 * The boot_pagesets must be kept even after bootup is complete for
3510 * unused processors and/or zones. They do play a role for bootstrapping
3511 * hotplugged processors.
3512 *
3513 * zoneinfo_show() and maybe other functions do
3514 * not check if the processor is online before following the pageset pointer.
3515 * Other parts of the kernel may not check if the zone is available.
3516 */
3517 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3518 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3519 static void setup_zone_pageset(struct zone *zone);
3520
3521 /*
3522 * Global mutex to protect against size modification of zonelists
3523 * as well as to serialize pageset setup for the new populated zone.
3524 */
3525 DEFINE_MUTEX(zonelists_mutex);
3526
3527 /* return values int ....just for stop_machine() */
3528 static int __build_all_zonelists(void *data)
3529 {
3530 int nid;
3531 int cpu;
3532 pg_data_t *self = data;
3533
3534 #ifdef CONFIG_NUMA
3535 memset(node_load, 0, sizeof(node_load));
3536 #endif
3537
3538 if (self && !node_online(self->node_id)) {
3539 build_zonelists(self);
3540 build_zonelist_cache(self);
3541 }
3542
3543 for_each_online_node(nid) {
3544 pg_data_t *pgdat = NODE_DATA(nid);
3545
3546 build_zonelists(pgdat);
3547 build_zonelist_cache(pgdat);
3548 }
3549
3550 /*
3551 * Initialize the boot_pagesets that are going to be used
3552 * for bootstrapping processors. The real pagesets for
3553 * each zone will be allocated later when the per cpu
3554 * allocator is available.
3555 *
3556 * boot_pagesets are used also for bootstrapping offline
3557 * cpus if the system is already booted because the pagesets
3558 * are needed to initialize allocators on a specific cpu too.
3559 * F.e. the percpu allocator needs the page allocator which
3560 * needs the percpu allocator in order to allocate its pagesets
3561 * (a chicken-egg dilemma).
3562 */
3563 for_each_possible_cpu(cpu) {
3564 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3565
3566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3567 /*
3568 * We now know the "local memory node" for each node--
3569 * i.e., the node of the first zone in the generic zonelist.
3570 * Set up numa_mem percpu variable for on-line cpus. During
3571 * boot, only the boot cpu should be on-line; we'll init the
3572 * secondary cpus' numa_mem as they come on-line. During
3573 * node/memory hotplug, we'll fixup all on-line cpus.
3574 */
3575 if (cpu_online(cpu))
3576 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3577 #endif
3578 }
3579
3580 return 0;
3581 }
3582
3583 /*
3584 * Called with zonelists_mutex held always
3585 * unless system_state == SYSTEM_BOOTING.
3586 */
3587 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3588 {
3589 set_zonelist_order();
3590
3591 if (system_state == SYSTEM_BOOTING) {
3592 __build_all_zonelists(NULL);
3593 mminit_verify_zonelist();
3594 cpuset_init_current_mems_allowed();
3595 } else {
3596 /* we have to stop all cpus to guarantee there is no user
3597 of zonelist */
3598 #ifdef CONFIG_MEMORY_HOTPLUG
3599 if (zone)
3600 setup_zone_pageset(zone);
3601 #endif
3602 stop_machine(__build_all_zonelists, pgdat, NULL);
3603 /* cpuset refresh routine should be here */
3604 }
3605 vm_total_pages = nr_free_pagecache_pages();
3606 /*
3607 * Disable grouping by mobility if the number of pages in the
3608 * system is too low to allow the mechanism to work. It would be
3609 * more accurate, but expensive to check per-zone. This check is
3610 * made on memory-hotadd so a system can start with mobility
3611 * disabled and enable it later
3612 */
3613 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3614 page_group_by_mobility_disabled = 1;
3615 else
3616 page_group_by_mobility_disabled = 0;
3617
3618 printk("Built %i zonelists in %s order, mobility grouping %s. "
3619 "Total pages: %ld\n",
3620 nr_online_nodes,
3621 zonelist_order_name[current_zonelist_order],
3622 page_group_by_mobility_disabled ? "off" : "on",
3623 vm_total_pages);
3624 #ifdef CONFIG_NUMA
3625 printk("Policy zone: %s\n", zone_names[policy_zone]);
3626 #endif
3627 }
3628
3629 /*
3630 * Helper functions to size the waitqueue hash table.
3631 * Essentially these want to choose hash table sizes sufficiently
3632 * large so that collisions trying to wait on pages are rare.
3633 * But in fact, the number of active page waitqueues on typical
3634 * systems is ridiculously low, less than 200. So this is even
3635 * conservative, even though it seems large.
3636 *
3637 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3638 * waitqueues, i.e. the size of the waitq table given the number of pages.
3639 */
3640 #define PAGES_PER_WAITQUEUE 256
3641
3642 #ifndef CONFIG_MEMORY_HOTPLUG
3643 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3644 {
3645 unsigned long size = 1;
3646
3647 pages /= PAGES_PER_WAITQUEUE;
3648
3649 while (size < pages)
3650 size <<= 1;
3651
3652 /*
3653 * Once we have dozens or even hundreds of threads sleeping
3654 * on IO we've got bigger problems than wait queue collision.
3655 * Limit the size of the wait table to a reasonable size.
3656 */
3657 size = min(size, 4096UL);
3658
3659 return max(size, 4UL);
3660 }
3661 #else
3662 /*
3663 * A zone's size might be changed by hot-add, so it is not possible to determine
3664 * a suitable size for its wait_table. So we use the maximum size now.
3665 *
3666 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3667 *
3668 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3669 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3670 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3671 *
3672 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3673 * or more by the traditional way. (See above). It equals:
3674 *
3675 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3676 * ia64(16K page size) : = ( 8G + 4M)byte.
3677 * powerpc (64K page size) : = (32G +16M)byte.
3678 */
3679 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3680 {
3681 return 4096UL;
3682 }
3683 #endif
3684
3685 /*
3686 * This is an integer logarithm so that shifts can be used later
3687 * to extract the more random high bits from the multiplicative
3688 * hash function before the remainder is taken.
3689 */
3690 static inline unsigned long wait_table_bits(unsigned long size)
3691 {
3692 return ffz(~size);
3693 }
3694
3695 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3696
3697 /*
3698 * Check if a pageblock contains reserved pages
3699 */
3700 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3701 {
3702 unsigned long pfn;
3703
3704 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3705 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3706 return 1;
3707 }
3708 return 0;
3709 }
3710
3711 /*
3712 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3713 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3714 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3715 * higher will lead to a bigger reserve which will get freed as contiguous
3716 * blocks as reclaim kicks in
3717 */
3718 static void setup_zone_migrate_reserve(struct zone *zone)
3719 {
3720 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3721 struct page *page;
3722 unsigned long block_migratetype;
3723 int reserve;
3724
3725 /*
3726 * Get the start pfn, end pfn and the number of blocks to reserve
3727 * We have to be careful to be aligned to pageblock_nr_pages to
3728 * make sure that we always check pfn_valid for the first page in
3729 * the block.
3730 */
3731 start_pfn = zone->zone_start_pfn;
3732 end_pfn = start_pfn + zone->spanned_pages;
3733 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3734 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3735 pageblock_order;
3736
3737 /*
3738 * Reserve blocks are generally in place to help high-order atomic
3739 * allocations that are short-lived. A min_free_kbytes value that
3740 * would result in more than 2 reserve blocks for atomic allocations
3741 * is assumed to be in place to help anti-fragmentation for the
3742 * future allocation of hugepages at runtime.
3743 */
3744 reserve = min(2, reserve);
3745
3746 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3747 if (!pfn_valid(pfn))
3748 continue;
3749 page = pfn_to_page(pfn);
3750
3751 /* Watch out for overlapping nodes */
3752 if (page_to_nid(page) != zone_to_nid(zone))
3753 continue;
3754
3755 block_migratetype = get_pageblock_migratetype(page);
3756
3757 /* Only test what is necessary when the reserves are not met */
3758 if (reserve > 0) {
3759 /*
3760 * Blocks with reserved pages will never free, skip
3761 * them.
3762 */
3763 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3764 if (pageblock_is_reserved(pfn, block_end_pfn))
3765 continue;
3766
3767 /* If this block is reserved, account for it */
3768 if (block_migratetype == MIGRATE_RESERVE) {
3769 reserve--;
3770 continue;
3771 }
3772
3773 /* Suitable for reserving if this block is movable */
3774 if (block_migratetype == MIGRATE_MOVABLE) {
3775 set_pageblock_migratetype(page,
3776 MIGRATE_RESERVE);
3777 move_freepages_block(zone, page,
3778 MIGRATE_RESERVE);
3779 reserve--;
3780 continue;
3781 }
3782 }
3783
3784 /*
3785 * If the reserve is met and this is a previous reserved block,
3786 * take it back
3787 */
3788 if (block_migratetype == MIGRATE_RESERVE) {
3789 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3790 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3791 }
3792 }
3793 }
3794
3795 /*
3796 * Initially all pages are reserved - free ones are freed
3797 * up by free_all_bootmem() once the early boot process is
3798 * done. Non-atomic initialization, single-pass.
3799 */
3800 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3801 unsigned long start_pfn, enum memmap_context context)
3802 {
3803 struct page *page;
3804 unsigned long end_pfn = start_pfn + size;
3805 unsigned long pfn;
3806 struct zone *z;
3807
3808 if (highest_memmap_pfn < end_pfn - 1)
3809 highest_memmap_pfn = end_pfn - 1;
3810
3811 z = &NODE_DATA(nid)->node_zones[zone];
3812 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3813 /*
3814 * There can be holes in boot-time mem_map[]s
3815 * handed to this function. They do not
3816 * exist on hotplugged memory.
3817 */
3818 if (context == MEMMAP_EARLY) {
3819 if (!early_pfn_valid(pfn))
3820 continue;
3821 if (!early_pfn_in_nid(pfn, nid))
3822 continue;
3823 }
3824 page = pfn_to_page(pfn);
3825 set_page_links(page, zone, nid, pfn);
3826 mminit_verify_page_links(page, zone, nid, pfn);
3827 init_page_count(page);
3828 reset_page_mapcount(page);
3829 SetPageReserved(page);
3830 /*
3831 * Mark the block movable so that blocks are reserved for
3832 * movable at startup. This will force kernel allocations
3833 * to reserve their blocks rather than leaking throughout
3834 * the address space during boot when many long-lived
3835 * kernel allocations are made. Later some blocks near
3836 * the start are marked MIGRATE_RESERVE by
3837 * setup_zone_migrate_reserve()
3838 *
3839 * bitmap is created for zone's valid pfn range. but memmap
3840 * can be created for invalid pages (for alignment)
3841 * check here not to call set_pageblock_migratetype() against
3842 * pfn out of zone.
3843 */
3844 if ((z->zone_start_pfn <= pfn)
3845 && (pfn < z->zone_start_pfn + z->spanned_pages)
3846 && !(pfn & (pageblock_nr_pages - 1)))
3847 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3848
3849 INIT_LIST_HEAD(&page->lru);
3850 #ifdef WANT_PAGE_VIRTUAL
3851 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3852 if (!is_highmem_idx(zone))
3853 set_page_address(page, __va(pfn << PAGE_SHIFT));
3854 #endif
3855 }
3856 }
3857
3858 static void __meminit zone_init_free_lists(struct zone *zone)
3859 {
3860 int order, t;
3861 for_each_migratetype_order(order, t) {
3862 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3863 zone->free_area[order].nr_free = 0;
3864 }
3865 }
3866
3867 #ifndef __HAVE_ARCH_MEMMAP_INIT
3868 #define memmap_init(size, nid, zone, start_pfn) \
3869 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3870 #endif
3871
3872 static int __meminit zone_batchsize(struct zone *zone)
3873 {
3874 #ifdef CONFIG_MMU
3875 int batch;
3876
3877 /*
3878 * The per-cpu-pages pools are set to around 1000th of the
3879 * size of the zone. But no more than 1/2 of a meg.
3880 *
3881 * OK, so we don't know how big the cache is. So guess.
3882 */
3883 batch = zone->present_pages / 1024;
3884 if (batch * PAGE_SIZE > 512 * 1024)
3885 batch = (512 * 1024) / PAGE_SIZE;
3886 batch /= 4; /* We effectively *= 4 below */
3887 if (batch < 1)
3888 batch = 1;
3889
3890 /*
3891 * Clamp the batch to a 2^n - 1 value. Having a power
3892 * of 2 value was found to be more likely to have
3893 * suboptimal cache aliasing properties in some cases.
3894 *
3895 * For example if 2 tasks are alternately allocating
3896 * batches of pages, one task can end up with a lot
3897 * of pages of one half of the possible page colors
3898 * and the other with pages of the other colors.
3899 */
3900 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3901
3902 return batch;
3903
3904 #else
3905 /* The deferral and batching of frees should be suppressed under NOMMU
3906 * conditions.
3907 *
3908 * The problem is that NOMMU needs to be able to allocate large chunks
3909 * of contiguous memory as there's no hardware page translation to
3910 * assemble apparent contiguous memory from discontiguous pages.
3911 *
3912 * Queueing large contiguous runs of pages for batching, however,
3913 * causes the pages to actually be freed in smaller chunks. As there
3914 * can be a significant delay between the individual batches being
3915 * recycled, this leads to the once large chunks of space being
3916 * fragmented and becoming unavailable for high-order allocations.
3917 */
3918 return 0;
3919 #endif
3920 }
3921
3922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3923 {
3924 struct per_cpu_pages *pcp;
3925 int migratetype;
3926
3927 memset(p, 0, sizeof(*p));
3928
3929 pcp = &p->pcp;
3930 pcp->count = 0;
3931 pcp->high = 6 * batch;
3932 pcp->batch = max(1UL, 1 * batch);
3933 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3934 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3935 }
3936
3937 /*
3938 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3939 * to the value high for the pageset p.
3940 */
3941
3942 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3943 unsigned long high)
3944 {
3945 struct per_cpu_pages *pcp;
3946
3947 pcp = &p->pcp;
3948 pcp->high = high;
3949 pcp->batch = max(1UL, high/4);
3950 if ((high/4) > (PAGE_SHIFT * 8))
3951 pcp->batch = PAGE_SHIFT * 8;
3952 }
3953
3954 static void __meminit setup_zone_pageset(struct zone *zone)
3955 {
3956 int cpu;
3957
3958 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3959
3960 for_each_possible_cpu(cpu) {
3961 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3962
3963 setup_pageset(pcp, zone_batchsize(zone));
3964
3965 if (percpu_pagelist_fraction)
3966 setup_pagelist_highmark(pcp,
3967 (zone->present_pages /
3968 percpu_pagelist_fraction));
3969 }
3970 }
3971
3972 /*
3973 * Allocate per cpu pagesets and initialize them.
3974 * Before this call only boot pagesets were available.
3975 */
3976 void __init setup_per_cpu_pageset(void)
3977 {
3978 struct zone *zone;
3979
3980 for_each_populated_zone(zone)
3981 setup_zone_pageset(zone);
3982 }
3983
3984 static noinline __init_refok
3985 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3986 {
3987 int i;
3988 struct pglist_data *pgdat = zone->zone_pgdat;
3989 size_t alloc_size;
3990
3991 /*
3992 * The per-page waitqueue mechanism uses hashed waitqueues
3993 * per zone.
3994 */
3995 zone->wait_table_hash_nr_entries =
3996 wait_table_hash_nr_entries(zone_size_pages);
3997 zone->wait_table_bits =
3998 wait_table_bits(zone->wait_table_hash_nr_entries);
3999 alloc_size = zone->wait_table_hash_nr_entries
4000 * sizeof(wait_queue_head_t);
4001
4002 if (!slab_is_available()) {
4003 zone->wait_table = (wait_queue_head_t *)
4004 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4005 } else {
4006 /*
4007 * This case means that a zone whose size was 0 gets new memory
4008 * via memory hot-add.
4009 * But it may be the case that a new node was hot-added. In
4010 * this case vmalloc() will not be able to use this new node's
4011 * memory - this wait_table must be initialized to use this new
4012 * node itself as well.
4013 * To use this new node's memory, further consideration will be
4014 * necessary.
4015 */
4016 zone->wait_table = vmalloc(alloc_size);
4017 }
4018 if (!zone->wait_table)
4019 return -ENOMEM;
4020
4021 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4022 init_waitqueue_head(zone->wait_table + i);
4023
4024 return 0;
4025 }
4026
4027 static __meminit void zone_pcp_init(struct zone *zone)
4028 {
4029 /*
4030 * per cpu subsystem is not up at this point. The following code
4031 * relies on the ability of the linker to provide the
4032 * offset of a (static) per cpu variable into the per cpu area.
4033 */
4034 zone->pageset = &boot_pageset;
4035
4036 if (zone->present_pages)
4037 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4038 zone->name, zone->present_pages,
4039 zone_batchsize(zone));
4040 }
4041
4042 int __meminit init_currently_empty_zone(struct zone *zone,
4043 unsigned long zone_start_pfn,
4044 unsigned long size,
4045 enum memmap_context context)
4046 {
4047 struct pglist_data *pgdat = zone->zone_pgdat;
4048 int ret;
4049 ret = zone_wait_table_init(zone, size);
4050 if (ret)
4051 return ret;
4052 pgdat->nr_zones = zone_idx(zone) + 1;
4053
4054 zone->zone_start_pfn = zone_start_pfn;
4055
4056 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4057 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4058 pgdat->node_id,
4059 (unsigned long)zone_idx(zone),
4060 zone_start_pfn, (zone_start_pfn + size));
4061
4062 zone_init_free_lists(zone);
4063
4064 return 0;
4065 }
4066
4067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4068 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4069 /*
4070 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4071 * Architectures may implement their own version but if add_active_range()
4072 * was used and there are no special requirements, this is a convenient
4073 * alternative
4074 */
4075 int __meminit __early_pfn_to_nid(unsigned long pfn)
4076 {
4077 unsigned long start_pfn, end_pfn;
4078 int i, nid;
4079
4080 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4081 if (start_pfn <= pfn && pfn < end_pfn)
4082 return nid;
4083 /* This is a memory hole */
4084 return -1;
4085 }
4086 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4087
4088 int __meminit early_pfn_to_nid(unsigned long pfn)
4089 {
4090 int nid;
4091
4092 nid = __early_pfn_to_nid(pfn);
4093 if (nid >= 0)
4094 return nid;
4095 /* just returns 0 */
4096 return 0;
4097 }
4098
4099 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4100 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4101 {
4102 int nid;
4103
4104 nid = __early_pfn_to_nid(pfn);
4105 if (nid >= 0 && nid != node)
4106 return false;
4107 return true;
4108 }
4109 #endif
4110
4111 /**
4112 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4113 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4114 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4115 *
4116 * If an architecture guarantees that all ranges registered with
4117 * add_active_ranges() contain no holes and may be freed, this
4118 * this function may be used instead of calling free_bootmem() manually.
4119 */
4120 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4121 {
4122 unsigned long start_pfn, end_pfn;
4123 int i, this_nid;
4124
4125 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4126 start_pfn = min(start_pfn, max_low_pfn);
4127 end_pfn = min(end_pfn, max_low_pfn);
4128
4129 if (start_pfn < end_pfn)
4130 free_bootmem_node(NODE_DATA(this_nid),
4131 PFN_PHYS(start_pfn),
4132 (end_pfn - start_pfn) << PAGE_SHIFT);
4133 }
4134 }
4135
4136 /**
4137 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4138 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4139 *
4140 * If an architecture guarantees that all ranges registered with
4141 * add_active_ranges() contain no holes and may be freed, this
4142 * function may be used instead of calling memory_present() manually.
4143 */
4144 void __init sparse_memory_present_with_active_regions(int nid)
4145 {
4146 unsigned long start_pfn, end_pfn;
4147 int i, this_nid;
4148
4149 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4150 memory_present(this_nid, start_pfn, end_pfn);
4151 }
4152
4153 /**
4154 * get_pfn_range_for_nid - Return the start and end page frames for a node
4155 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4156 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4157 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4158 *
4159 * It returns the start and end page frame of a node based on information
4160 * provided by an arch calling add_active_range(). If called for a node
4161 * with no available memory, a warning is printed and the start and end
4162 * PFNs will be 0.
4163 */
4164 void __meminit get_pfn_range_for_nid(unsigned int nid,
4165 unsigned long *start_pfn, unsigned long *end_pfn)
4166 {
4167 unsigned long this_start_pfn, this_end_pfn;
4168 int i;
4169
4170 *start_pfn = -1UL;
4171 *end_pfn = 0;
4172
4173 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4174 *start_pfn = min(*start_pfn, this_start_pfn);
4175 *end_pfn = max(*end_pfn, this_end_pfn);
4176 }
4177
4178 if (*start_pfn == -1UL)
4179 *start_pfn = 0;
4180 }
4181
4182 /*
4183 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4184 * assumption is made that zones within a node are ordered in monotonic
4185 * increasing memory addresses so that the "highest" populated zone is used
4186 */
4187 static void __init find_usable_zone_for_movable(void)
4188 {
4189 int zone_index;
4190 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4191 if (zone_index == ZONE_MOVABLE)
4192 continue;
4193
4194 if (arch_zone_highest_possible_pfn[zone_index] >
4195 arch_zone_lowest_possible_pfn[zone_index])
4196 break;
4197 }
4198
4199 VM_BUG_ON(zone_index == -1);
4200 movable_zone = zone_index;
4201 }
4202
4203 /*
4204 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4205 * because it is sized independent of architecture. Unlike the other zones,
4206 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4207 * in each node depending on the size of each node and how evenly kernelcore
4208 * is distributed. This helper function adjusts the zone ranges
4209 * provided by the architecture for a given node by using the end of the
4210 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4211 * zones within a node are in order of monotonic increases memory addresses
4212 */
4213 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4214 unsigned long zone_type,
4215 unsigned long node_start_pfn,
4216 unsigned long node_end_pfn,
4217 unsigned long *zone_start_pfn,
4218 unsigned long *zone_end_pfn)
4219 {
4220 /* Only adjust if ZONE_MOVABLE is on this node */
4221 if (zone_movable_pfn[nid]) {
4222 /* Size ZONE_MOVABLE */
4223 if (zone_type == ZONE_MOVABLE) {
4224 *zone_start_pfn = zone_movable_pfn[nid];
4225 *zone_end_pfn = min(node_end_pfn,
4226 arch_zone_highest_possible_pfn[movable_zone]);
4227
4228 /* Adjust for ZONE_MOVABLE starting within this range */
4229 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4230 *zone_end_pfn > zone_movable_pfn[nid]) {
4231 *zone_end_pfn = zone_movable_pfn[nid];
4232
4233 /* Check if this whole range is within ZONE_MOVABLE */
4234 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4235 *zone_start_pfn = *zone_end_pfn;
4236 }
4237 }
4238
4239 /*
4240 * Return the number of pages a zone spans in a node, including holes
4241 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4242 */
4243 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4244 unsigned long zone_type,
4245 unsigned long *ignored)
4246 {
4247 unsigned long node_start_pfn, node_end_pfn;
4248 unsigned long zone_start_pfn, zone_end_pfn;
4249
4250 /* Get the start and end of the node and zone */
4251 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4252 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4253 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4254 adjust_zone_range_for_zone_movable(nid, zone_type,
4255 node_start_pfn, node_end_pfn,
4256 &zone_start_pfn, &zone_end_pfn);
4257
4258 /* Check that this node has pages within the zone's required range */
4259 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4260 return 0;
4261
4262 /* Move the zone boundaries inside the node if necessary */
4263 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4264 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4265
4266 /* Return the spanned pages */
4267 return zone_end_pfn - zone_start_pfn;
4268 }
4269
4270 /*
4271 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4272 * then all holes in the requested range will be accounted for.
4273 */
4274 unsigned long __meminit __absent_pages_in_range(int nid,
4275 unsigned long range_start_pfn,
4276 unsigned long range_end_pfn)
4277 {
4278 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4279 unsigned long start_pfn, end_pfn;
4280 int i;
4281
4282 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4283 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4284 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4285 nr_absent -= end_pfn - start_pfn;
4286 }
4287 return nr_absent;
4288 }
4289
4290 /**
4291 * absent_pages_in_range - Return number of page frames in holes within a range
4292 * @start_pfn: The start PFN to start searching for holes
4293 * @end_pfn: The end PFN to stop searching for holes
4294 *
4295 * It returns the number of pages frames in memory holes within a range.
4296 */
4297 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4298 unsigned long end_pfn)
4299 {
4300 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4301 }
4302
4303 /* Return the number of page frames in holes in a zone on a node */
4304 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4305 unsigned long zone_type,
4306 unsigned long *ignored)
4307 {
4308 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4309 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4310 unsigned long node_start_pfn, node_end_pfn;
4311 unsigned long zone_start_pfn, zone_end_pfn;
4312
4313 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4314 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4315 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4316
4317 adjust_zone_range_for_zone_movable(nid, zone_type,
4318 node_start_pfn, node_end_pfn,
4319 &zone_start_pfn, &zone_end_pfn);
4320 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4321 }
4322
4323 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4324 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4325 unsigned long zone_type,
4326 unsigned long *zones_size)
4327 {
4328 return zones_size[zone_type];
4329 }
4330
4331 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4332 unsigned long zone_type,
4333 unsigned long *zholes_size)
4334 {
4335 if (!zholes_size)
4336 return 0;
4337
4338 return zholes_size[zone_type];
4339 }
4340
4341 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4342
4343 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4344 unsigned long *zones_size, unsigned long *zholes_size)
4345 {
4346 unsigned long realtotalpages, totalpages = 0;
4347 enum zone_type i;
4348
4349 for (i = 0; i < MAX_NR_ZONES; i++)
4350 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4351 zones_size);
4352 pgdat->node_spanned_pages = totalpages;
4353
4354 realtotalpages = totalpages;
4355 for (i = 0; i < MAX_NR_ZONES; i++)
4356 realtotalpages -=
4357 zone_absent_pages_in_node(pgdat->node_id, i,
4358 zholes_size);
4359 pgdat->node_present_pages = realtotalpages;
4360 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4361 realtotalpages);
4362 }
4363
4364 #ifndef CONFIG_SPARSEMEM
4365 /*
4366 * Calculate the size of the zone->blockflags rounded to an unsigned long
4367 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4368 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4369 * round what is now in bits to nearest long in bits, then return it in
4370 * bytes.
4371 */
4372 static unsigned long __init usemap_size(unsigned long zonesize)
4373 {
4374 unsigned long usemapsize;
4375
4376 usemapsize = roundup(zonesize, pageblock_nr_pages);
4377 usemapsize = usemapsize >> pageblock_order;
4378 usemapsize *= NR_PAGEBLOCK_BITS;
4379 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4380
4381 return usemapsize / 8;
4382 }
4383
4384 static void __init setup_usemap(struct pglist_data *pgdat,
4385 struct zone *zone, unsigned long zonesize)
4386 {
4387 unsigned long usemapsize = usemap_size(zonesize);
4388 zone->pageblock_flags = NULL;
4389 if (usemapsize)
4390 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4391 usemapsize);
4392 }
4393 #else
4394 static inline void setup_usemap(struct pglist_data *pgdat,
4395 struct zone *zone, unsigned long zonesize) {}
4396 #endif /* CONFIG_SPARSEMEM */
4397
4398 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4399
4400 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4401 void __init set_pageblock_order(void)
4402 {
4403 unsigned int order;
4404
4405 /* Check that pageblock_nr_pages has not already been setup */
4406 if (pageblock_order)
4407 return;
4408
4409 if (HPAGE_SHIFT > PAGE_SHIFT)
4410 order = HUGETLB_PAGE_ORDER;
4411 else
4412 order = MAX_ORDER - 1;
4413
4414 /*
4415 * Assume the largest contiguous order of interest is a huge page.
4416 * This value may be variable depending on boot parameters on IA64 and
4417 * powerpc.
4418 */
4419 pageblock_order = order;
4420 }
4421 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4422
4423 /*
4424 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4425 * is unused as pageblock_order is set at compile-time. See
4426 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4427 * the kernel config
4428 */
4429 void __init set_pageblock_order(void)
4430 {
4431 }
4432
4433 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4434
4435 /*
4436 * Set up the zone data structures:
4437 * - mark all pages reserved
4438 * - mark all memory queues empty
4439 * - clear the memory bitmaps
4440 *
4441 * NOTE: pgdat should get zeroed by caller.
4442 */
4443 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4444 unsigned long *zones_size, unsigned long *zholes_size)
4445 {
4446 enum zone_type j;
4447 int nid = pgdat->node_id;
4448 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4449 int ret;
4450
4451 pgdat_resize_init(pgdat);
4452 init_waitqueue_head(&pgdat->kswapd_wait);
4453 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4454 pgdat_page_cgroup_init(pgdat);
4455
4456 for (j = 0; j < MAX_NR_ZONES; j++) {
4457 struct zone *zone = pgdat->node_zones + j;
4458 unsigned long size, realsize, memmap_pages;
4459
4460 size = zone_spanned_pages_in_node(nid, j, zones_size);
4461 realsize = size - zone_absent_pages_in_node(nid, j,
4462 zholes_size);
4463
4464 /*
4465 * Adjust realsize so that it accounts for how much memory
4466 * is used by this zone for memmap. This affects the watermark
4467 * and per-cpu initialisations
4468 */
4469 memmap_pages =
4470 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4471 if (realsize >= memmap_pages) {
4472 realsize -= memmap_pages;
4473 if (memmap_pages)
4474 printk(KERN_DEBUG
4475 " %s zone: %lu pages used for memmap\n",
4476 zone_names[j], memmap_pages);
4477 } else
4478 printk(KERN_WARNING
4479 " %s zone: %lu pages exceeds realsize %lu\n",
4480 zone_names[j], memmap_pages, realsize);
4481
4482 /* Account for reserved pages */
4483 if (j == 0 && realsize > dma_reserve) {
4484 realsize -= dma_reserve;
4485 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4486 zone_names[0], dma_reserve);
4487 }
4488
4489 if (!is_highmem_idx(j))
4490 nr_kernel_pages += realsize;
4491 nr_all_pages += realsize;
4492
4493 zone->spanned_pages = size;
4494 zone->present_pages = realsize;
4495 #ifdef CONFIG_NUMA
4496 zone->node = nid;
4497 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4498 / 100;
4499 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4500 #endif
4501 zone->name = zone_names[j];
4502 spin_lock_init(&zone->lock);
4503 spin_lock_init(&zone->lru_lock);
4504 zone_seqlock_init(zone);
4505 zone->zone_pgdat = pgdat;
4506
4507 zone_pcp_init(zone);
4508 lruvec_init(&zone->lruvec, zone);
4509 if (!size)
4510 continue;
4511
4512 set_pageblock_order();
4513 setup_usemap(pgdat, zone, size);
4514 ret = init_currently_empty_zone(zone, zone_start_pfn,
4515 size, MEMMAP_EARLY);
4516 BUG_ON(ret);
4517 memmap_init(size, nid, j, zone_start_pfn);
4518 zone_start_pfn += size;
4519 }
4520 }
4521
4522 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4523 {
4524 /* Skip empty nodes */
4525 if (!pgdat->node_spanned_pages)
4526 return;
4527
4528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4529 /* ia64 gets its own node_mem_map, before this, without bootmem */
4530 if (!pgdat->node_mem_map) {
4531 unsigned long size, start, end;
4532 struct page *map;
4533
4534 /*
4535 * The zone's endpoints aren't required to be MAX_ORDER
4536 * aligned but the node_mem_map endpoints must be in order
4537 * for the buddy allocator to function correctly.
4538 */
4539 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4540 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4541 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4542 size = (end - start) * sizeof(struct page);
4543 map = alloc_remap(pgdat->node_id, size);
4544 if (!map)
4545 map = alloc_bootmem_node_nopanic(pgdat, size);
4546 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4547 }
4548 #ifndef CONFIG_NEED_MULTIPLE_NODES
4549 /*
4550 * With no DISCONTIG, the global mem_map is just set as node 0's
4551 */
4552 if (pgdat == NODE_DATA(0)) {
4553 mem_map = NODE_DATA(0)->node_mem_map;
4554 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4555 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4556 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4557 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4558 }
4559 #endif
4560 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4561 }
4562
4563 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4564 unsigned long node_start_pfn, unsigned long *zholes_size)
4565 {
4566 pg_data_t *pgdat = NODE_DATA(nid);
4567
4568 /* pg_data_t should be reset to zero when it's allocated */
4569 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4570
4571 pgdat->node_id = nid;
4572 pgdat->node_start_pfn = node_start_pfn;
4573 init_zone_allows_reclaim(nid);
4574 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4575
4576 alloc_node_mem_map(pgdat);
4577 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4578 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4579 nid, (unsigned long)pgdat,
4580 (unsigned long)pgdat->node_mem_map);
4581 #endif
4582
4583 free_area_init_core(pgdat, zones_size, zholes_size);
4584 }
4585
4586 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4587
4588 #if MAX_NUMNODES > 1
4589 /*
4590 * Figure out the number of possible node ids.
4591 */
4592 static void __init setup_nr_node_ids(void)
4593 {
4594 unsigned int node;
4595 unsigned int highest = 0;
4596
4597 for_each_node_mask(node, node_possible_map)
4598 highest = node;
4599 nr_node_ids = highest + 1;
4600 }
4601 #else
4602 static inline void setup_nr_node_ids(void)
4603 {
4604 }
4605 #endif
4606
4607 /**
4608 * node_map_pfn_alignment - determine the maximum internode alignment
4609 *
4610 * This function should be called after node map is populated and sorted.
4611 * It calculates the maximum power of two alignment which can distinguish
4612 * all the nodes.
4613 *
4614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4617 * shifted, 1GiB is enough and this function will indicate so.
4618 *
4619 * This is used to test whether pfn -> nid mapping of the chosen memory
4620 * model has fine enough granularity to avoid incorrect mapping for the
4621 * populated node map.
4622 *
4623 * Returns the determined alignment in pfn's. 0 if there is no alignment
4624 * requirement (single node).
4625 */
4626 unsigned long __init node_map_pfn_alignment(void)
4627 {
4628 unsigned long accl_mask = 0, last_end = 0;
4629 unsigned long start, end, mask;
4630 int last_nid = -1;
4631 int i, nid;
4632
4633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4634 if (!start || last_nid < 0 || last_nid == nid) {
4635 last_nid = nid;
4636 last_end = end;
4637 continue;
4638 }
4639
4640 /*
4641 * Start with a mask granular enough to pin-point to the
4642 * start pfn and tick off bits one-by-one until it becomes
4643 * too coarse to separate the current node from the last.
4644 */
4645 mask = ~((1 << __ffs(start)) - 1);
4646 while (mask && last_end <= (start & (mask << 1)))
4647 mask <<= 1;
4648
4649 /* accumulate all internode masks */
4650 accl_mask |= mask;
4651 }
4652
4653 /* convert mask to number of pages */
4654 return ~accl_mask + 1;
4655 }
4656
4657 /* Find the lowest pfn for a node */
4658 static unsigned long __init find_min_pfn_for_node(int nid)
4659 {
4660 unsigned long min_pfn = ULONG_MAX;
4661 unsigned long start_pfn;
4662 int i;
4663
4664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4665 min_pfn = min(min_pfn, start_pfn);
4666
4667 if (min_pfn == ULONG_MAX) {
4668 printk(KERN_WARNING
4669 "Could not find start_pfn for node %d\n", nid);
4670 return 0;
4671 }
4672
4673 return min_pfn;
4674 }
4675
4676 /**
4677 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4678 *
4679 * It returns the minimum PFN based on information provided via
4680 * add_active_range().
4681 */
4682 unsigned long __init find_min_pfn_with_active_regions(void)
4683 {
4684 return find_min_pfn_for_node(MAX_NUMNODES);
4685 }
4686
4687 /*
4688 * early_calculate_totalpages()
4689 * Sum pages in active regions for movable zone.
4690 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4691 */
4692 static unsigned long __init early_calculate_totalpages(void)
4693 {
4694 unsigned long totalpages = 0;
4695 unsigned long start_pfn, end_pfn;
4696 int i, nid;
4697
4698 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4699 unsigned long pages = end_pfn - start_pfn;
4700
4701 totalpages += pages;
4702 if (pages)
4703 node_set_state(nid, N_HIGH_MEMORY);
4704 }
4705 return totalpages;
4706 }
4707
4708 /*
4709 * Find the PFN the Movable zone begins in each node. Kernel memory
4710 * is spread evenly between nodes as long as the nodes have enough
4711 * memory. When they don't, some nodes will have more kernelcore than
4712 * others
4713 */
4714 static void __init find_zone_movable_pfns_for_nodes(void)
4715 {
4716 int i, nid;
4717 unsigned long usable_startpfn;
4718 unsigned long kernelcore_node, kernelcore_remaining;
4719 /* save the state before borrow the nodemask */
4720 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4721 unsigned long totalpages = early_calculate_totalpages();
4722 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4723
4724 /*
4725 * If movablecore was specified, calculate what size of
4726 * kernelcore that corresponds so that memory usable for
4727 * any allocation type is evenly spread. If both kernelcore
4728 * and movablecore are specified, then the value of kernelcore
4729 * will be used for required_kernelcore if it's greater than
4730 * what movablecore would have allowed.
4731 */
4732 if (required_movablecore) {
4733 unsigned long corepages;
4734
4735 /*
4736 * Round-up so that ZONE_MOVABLE is at least as large as what
4737 * was requested by the user
4738 */
4739 required_movablecore =
4740 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4741 corepages = totalpages - required_movablecore;
4742
4743 required_kernelcore = max(required_kernelcore, corepages);
4744 }
4745
4746 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4747 if (!required_kernelcore)
4748 goto out;
4749
4750 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4751 find_usable_zone_for_movable();
4752 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4753
4754 restart:
4755 /* Spread kernelcore memory as evenly as possible throughout nodes */
4756 kernelcore_node = required_kernelcore / usable_nodes;
4757 for_each_node_state(nid, N_HIGH_MEMORY) {
4758 unsigned long start_pfn, end_pfn;
4759
4760 /*
4761 * Recalculate kernelcore_node if the division per node
4762 * now exceeds what is necessary to satisfy the requested
4763 * amount of memory for the kernel
4764 */
4765 if (required_kernelcore < kernelcore_node)
4766 kernelcore_node = required_kernelcore / usable_nodes;
4767
4768 /*
4769 * As the map is walked, we track how much memory is usable
4770 * by the kernel using kernelcore_remaining. When it is
4771 * 0, the rest of the node is usable by ZONE_MOVABLE
4772 */
4773 kernelcore_remaining = kernelcore_node;
4774
4775 /* Go through each range of PFNs within this node */
4776 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4777 unsigned long size_pages;
4778
4779 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4780 if (start_pfn >= end_pfn)
4781 continue;
4782
4783 /* Account for what is only usable for kernelcore */
4784 if (start_pfn < usable_startpfn) {
4785 unsigned long kernel_pages;
4786 kernel_pages = min(end_pfn, usable_startpfn)
4787 - start_pfn;
4788
4789 kernelcore_remaining -= min(kernel_pages,
4790 kernelcore_remaining);
4791 required_kernelcore -= min(kernel_pages,
4792 required_kernelcore);
4793
4794 /* Continue if range is now fully accounted */
4795 if (end_pfn <= usable_startpfn) {
4796
4797 /*
4798 * Push zone_movable_pfn to the end so
4799 * that if we have to rebalance
4800 * kernelcore across nodes, we will
4801 * not double account here
4802 */
4803 zone_movable_pfn[nid] = end_pfn;
4804 continue;
4805 }
4806 start_pfn = usable_startpfn;
4807 }
4808
4809 /*
4810 * The usable PFN range for ZONE_MOVABLE is from
4811 * start_pfn->end_pfn. Calculate size_pages as the
4812 * number of pages used as kernelcore
4813 */
4814 size_pages = end_pfn - start_pfn;
4815 if (size_pages > kernelcore_remaining)
4816 size_pages = kernelcore_remaining;
4817 zone_movable_pfn[nid] = start_pfn + size_pages;
4818
4819 /*
4820 * Some kernelcore has been met, update counts and
4821 * break if the kernelcore for this node has been
4822 * satisified
4823 */
4824 required_kernelcore -= min(required_kernelcore,
4825 size_pages);
4826 kernelcore_remaining -= size_pages;
4827 if (!kernelcore_remaining)
4828 break;
4829 }
4830 }
4831
4832 /*
4833 * If there is still required_kernelcore, we do another pass with one
4834 * less node in the count. This will push zone_movable_pfn[nid] further
4835 * along on the nodes that still have memory until kernelcore is
4836 * satisified
4837 */
4838 usable_nodes--;
4839 if (usable_nodes && required_kernelcore > usable_nodes)
4840 goto restart;
4841
4842 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4843 for (nid = 0; nid < MAX_NUMNODES; nid++)
4844 zone_movable_pfn[nid] =
4845 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4846
4847 out:
4848 /* restore the node_state */
4849 node_states[N_HIGH_MEMORY] = saved_node_state;
4850 }
4851
4852 /* Any regular memory on that node ? */
4853 static void __init check_for_regular_memory(pg_data_t *pgdat)
4854 {
4855 #ifdef CONFIG_HIGHMEM
4856 enum zone_type zone_type;
4857
4858 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4859 struct zone *zone = &pgdat->node_zones[zone_type];
4860 if (zone->present_pages) {
4861 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4862 break;
4863 }
4864 }
4865 #endif
4866 }
4867
4868 /**
4869 * free_area_init_nodes - Initialise all pg_data_t and zone data
4870 * @max_zone_pfn: an array of max PFNs for each zone
4871 *
4872 * This will call free_area_init_node() for each active node in the system.
4873 * Using the page ranges provided by add_active_range(), the size of each
4874 * zone in each node and their holes is calculated. If the maximum PFN
4875 * between two adjacent zones match, it is assumed that the zone is empty.
4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878 * starts where the previous one ended. For example, ZONE_DMA32 starts
4879 * at arch_max_dma_pfn.
4880 */
4881 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4882 {
4883 unsigned long start_pfn, end_pfn;
4884 int i, nid;
4885
4886 /* Record where the zone boundaries are */
4887 memset(arch_zone_lowest_possible_pfn, 0,
4888 sizeof(arch_zone_lowest_possible_pfn));
4889 memset(arch_zone_highest_possible_pfn, 0,
4890 sizeof(arch_zone_highest_possible_pfn));
4891 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4892 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4893 for (i = 1; i < MAX_NR_ZONES; i++) {
4894 if (i == ZONE_MOVABLE)
4895 continue;
4896 arch_zone_lowest_possible_pfn[i] =
4897 arch_zone_highest_possible_pfn[i-1];
4898 arch_zone_highest_possible_pfn[i] =
4899 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4900 }
4901 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4902 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4903
4904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4906 find_zone_movable_pfns_for_nodes();
4907
4908 /* Print out the zone ranges */
4909 printk("Zone ranges:\n");
4910 for (i = 0; i < MAX_NR_ZONES; i++) {
4911 if (i == ZONE_MOVABLE)
4912 continue;
4913 printk(KERN_CONT " %-8s ", zone_names[i]);
4914 if (arch_zone_lowest_possible_pfn[i] ==
4915 arch_zone_highest_possible_pfn[i])
4916 printk(KERN_CONT "empty\n");
4917 else
4918 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4919 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4920 (arch_zone_highest_possible_pfn[i]
4921 << PAGE_SHIFT) - 1);
4922 }
4923
4924 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4925 printk("Movable zone start for each node\n");
4926 for (i = 0; i < MAX_NUMNODES; i++) {
4927 if (zone_movable_pfn[i])
4928 printk(" Node %d: %#010lx\n", i,
4929 zone_movable_pfn[i] << PAGE_SHIFT);
4930 }
4931
4932 /* Print out the early node map */
4933 printk("Early memory node ranges\n");
4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4935 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4936 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4937
4938 /* Initialise every node */
4939 mminit_verify_pageflags_layout();
4940 setup_nr_node_ids();
4941 for_each_online_node(nid) {
4942 pg_data_t *pgdat = NODE_DATA(nid);
4943 free_area_init_node(nid, NULL,
4944 find_min_pfn_for_node(nid), NULL);
4945
4946 /* Any memory on that node */
4947 if (pgdat->node_present_pages)
4948 node_set_state(nid, N_HIGH_MEMORY);
4949 check_for_regular_memory(pgdat);
4950 }
4951 }
4952
4953 static int __init cmdline_parse_core(char *p, unsigned long *core)
4954 {
4955 unsigned long long coremem;
4956 if (!p)
4957 return -EINVAL;
4958
4959 coremem = memparse(p, &p);
4960 *core = coremem >> PAGE_SHIFT;
4961
4962 /* Paranoid check that UL is enough for the coremem value */
4963 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4964
4965 return 0;
4966 }
4967
4968 /*
4969 * kernelcore=size sets the amount of memory for use for allocations that
4970 * cannot be reclaimed or migrated.
4971 */
4972 static int __init cmdline_parse_kernelcore(char *p)
4973 {
4974 return cmdline_parse_core(p, &required_kernelcore);
4975 }
4976
4977 /*
4978 * movablecore=size sets the amount of memory for use for allocations that
4979 * can be reclaimed or migrated.
4980 */
4981 static int __init cmdline_parse_movablecore(char *p)
4982 {
4983 return cmdline_parse_core(p, &required_movablecore);
4984 }
4985
4986 early_param("kernelcore", cmdline_parse_kernelcore);
4987 early_param("movablecore", cmdline_parse_movablecore);
4988
4989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4990
4991 /**
4992 * set_dma_reserve - set the specified number of pages reserved in the first zone
4993 * @new_dma_reserve: The number of pages to mark reserved
4994 *
4995 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4996 * In the DMA zone, a significant percentage may be consumed by kernel image
4997 * and other unfreeable allocations which can skew the watermarks badly. This
4998 * function may optionally be used to account for unfreeable pages in the
4999 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5000 * smaller per-cpu batchsize.
5001 */
5002 void __init set_dma_reserve(unsigned long new_dma_reserve)
5003 {
5004 dma_reserve = new_dma_reserve;
5005 }
5006
5007 void __init free_area_init(unsigned long *zones_size)
5008 {
5009 free_area_init_node(0, zones_size,
5010 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5011 }
5012
5013 static int page_alloc_cpu_notify(struct notifier_block *self,
5014 unsigned long action, void *hcpu)
5015 {
5016 int cpu = (unsigned long)hcpu;
5017
5018 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5019 lru_add_drain_cpu(cpu);
5020 drain_pages(cpu);
5021
5022 /*
5023 * Spill the event counters of the dead processor
5024 * into the current processors event counters.
5025 * This artificially elevates the count of the current
5026 * processor.
5027 */
5028 vm_events_fold_cpu(cpu);
5029
5030 /*
5031 * Zero the differential counters of the dead processor
5032 * so that the vm statistics are consistent.
5033 *
5034 * This is only okay since the processor is dead and cannot
5035 * race with what we are doing.
5036 */
5037 refresh_cpu_vm_stats(cpu);
5038 }
5039 return NOTIFY_OK;
5040 }
5041
5042 void __init page_alloc_init(void)
5043 {
5044 hotcpu_notifier(page_alloc_cpu_notify, 0);
5045 }
5046
5047 /*
5048 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5049 * or min_free_kbytes changes.
5050 */
5051 static void calculate_totalreserve_pages(void)
5052 {
5053 struct pglist_data *pgdat;
5054 unsigned long reserve_pages = 0;
5055 enum zone_type i, j;
5056
5057 for_each_online_pgdat(pgdat) {
5058 for (i = 0; i < MAX_NR_ZONES; i++) {
5059 struct zone *zone = pgdat->node_zones + i;
5060 unsigned long max = 0;
5061
5062 /* Find valid and maximum lowmem_reserve in the zone */
5063 for (j = i; j < MAX_NR_ZONES; j++) {
5064 if (zone->lowmem_reserve[j] > max)
5065 max = zone->lowmem_reserve[j];
5066 }
5067
5068 /* we treat the high watermark as reserved pages. */
5069 max += high_wmark_pages(zone);
5070
5071 if (max > zone->present_pages)
5072 max = zone->present_pages;
5073 reserve_pages += max;
5074 /*
5075 * Lowmem reserves are not available to
5076 * GFP_HIGHUSER page cache allocations and
5077 * kswapd tries to balance zones to their high
5078 * watermark. As a result, neither should be
5079 * regarded as dirtyable memory, to prevent a
5080 * situation where reclaim has to clean pages
5081 * in order to balance the zones.
5082 */
5083 zone->dirty_balance_reserve = max;
5084 }
5085 }
5086 dirty_balance_reserve = reserve_pages;
5087 totalreserve_pages = reserve_pages;
5088 }
5089
5090 /*
5091 * setup_per_zone_lowmem_reserve - called whenever
5092 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5093 * has a correct pages reserved value, so an adequate number of
5094 * pages are left in the zone after a successful __alloc_pages().
5095 */
5096 static void setup_per_zone_lowmem_reserve(void)
5097 {
5098 struct pglist_data *pgdat;
5099 enum zone_type j, idx;
5100
5101 for_each_online_pgdat(pgdat) {
5102 for (j = 0; j < MAX_NR_ZONES; j++) {
5103 struct zone *zone = pgdat->node_zones + j;
5104 unsigned long present_pages = zone->present_pages;
5105
5106 zone->lowmem_reserve[j] = 0;
5107
5108 idx = j;
5109 while (idx) {
5110 struct zone *lower_zone;
5111
5112 idx--;
5113
5114 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5115 sysctl_lowmem_reserve_ratio[idx] = 1;
5116
5117 lower_zone = pgdat->node_zones + idx;
5118 lower_zone->lowmem_reserve[j] = present_pages /
5119 sysctl_lowmem_reserve_ratio[idx];
5120 present_pages += lower_zone->present_pages;
5121 }
5122 }
5123 }
5124
5125 /* update totalreserve_pages */
5126 calculate_totalreserve_pages();
5127 }
5128
5129 static void __setup_per_zone_wmarks(void)
5130 {
5131 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5132 unsigned long lowmem_pages = 0;
5133 struct zone *zone;
5134 unsigned long flags;
5135
5136 /* Calculate total number of !ZONE_HIGHMEM pages */
5137 for_each_zone(zone) {
5138 if (!is_highmem(zone))
5139 lowmem_pages += zone->present_pages;
5140 }
5141
5142 for_each_zone(zone) {
5143 u64 tmp;
5144
5145 spin_lock_irqsave(&zone->lock, flags);
5146 tmp = (u64)pages_min * zone->present_pages;
5147 do_div(tmp, lowmem_pages);
5148 if (is_highmem(zone)) {
5149 /*
5150 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5151 * need highmem pages, so cap pages_min to a small
5152 * value here.
5153 *
5154 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5155 * deltas controls asynch page reclaim, and so should
5156 * not be capped for highmem.
5157 */
5158 int min_pages;
5159
5160 min_pages = zone->present_pages / 1024;
5161 if (min_pages < SWAP_CLUSTER_MAX)
5162 min_pages = SWAP_CLUSTER_MAX;
5163 if (min_pages > 128)
5164 min_pages = 128;
5165 zone->watermark[WMARK_MIN] = min_pages;
5166 } else {
5167 /*
5168 * If it's a lowmem zone, reserve a number of pages
5169 * proportionate to the zone's size.
5170 */
5171 zone->watermark[WMARK_MIN] = tmp;
5172 }
5173
5174 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5175 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5176
5177 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5178 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5179 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5180
5181 setup_zone_migrate_reserve(zone);
5182 spin_unlock_irqrestore(&zone->lock, flags);
5183 }
5184
5185 /* update totalreserve_pages */
5186 calculate_totalreserve_pages();
5187 }
5188
5189 /**
5190 * setup_per_zone_wmarks - called when min_free_kbytes changes
5191 * or when memory is hot-{added|removed}
5192 *
5193 * Ensures that the watermark[min,low,high] values for each zone are set
5194 * correctly with respect to min_free_kbytes.
5195 */
5196 void setup_per_zone_wmarks(void)
5197 {
5198 mutex_lock(&zonelists_mutex);
5199 __setup_per_zone_wmarks();
5200 mutex_unlock(&zonelists_mutex);
5201 }
5202
5203 /*
5204 * The inactive anon list should be small enough that the VM never has to
5205 * do too much work, but large enough that each inactive page has a chance
5206 * to be referenced again before it is swapped out.
5207 *
5208 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5209 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5210 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5211 * the anonymous pages are kept on the inactive list.
5212 *
5213 * total target max
5214 * memory ratio inactive anon
5215 * -------------------------------------
5216 * 10MB 1 5MB
5217 * 100MB 1 50MB
5218 * 1GB 3 250MB
5219 * 10GB 10 0.9GB
5220 * 100GB 31 3GB
5221 * 1TB 101 10GB
5222 * 10TB 320 32GB
5223 */
5224 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5225 {
5226 unsigned int gb, ratio;
5227
5228 /* Zone size in gigabytes */
5229 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5230 if (gb)
5231 ratio = int_sqrt(10 * gb);
5232 else
5233 ratio = 1;
5234
5235 zone->inactive_ratio = ratio;
5236 }
5237
5238 static void __meminit setup_per_zone_inactive_ratio(void)
5239 {
5240 struct zone *zone;
5241
5242 for_each_zone(zone)
5243 calculate_zone_inactive_ratio(zone);
5244 }
5245
5246 /*
5247 * Initialise min_free_kbytes.
5248 *
5249 * For small machines we want it small (128k min). For large machines
5250 * we want it large (64MB max). But it is not linear, because network
5251 * bandwidth does not increase linearly with machine size. We use
5252 *
5253 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5254 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5255 *
5256 * which yields
5257 *
5258 * 16MB: 512k
5259 * 32MB: 724k
5260 * 64MB: 1024k
5261 * 128MB: 1448k
5262 * 256MB: 2048k
5263 * 512MB: 2896k
5264 * 1024MB: 4096k
5265 * 2048MB: 5792k
5266 * 4096MB: 8192k
5267 * 8192MB: 11584k
5268 * 16384MB: 16384k
5269 */
5270 int __meminit init_per_zone_wmark_min(void)
5271 {
5272 unsigned long lowmem_kbytes;
5273
5274 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5275
5276 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5277 if (min_free_kbytes < 128)
5278 min_free_kbytes = 128;
5279 if (min_free_kbytes > 65536)
5280 min_free_kbytes = 65536;
5281 setup_per_zone_wmarks();
5282 refresh_zone_stat_thresholds();
5283 setup_per_zone_lowmem_reserve();
5284 setup_per_zone_inactive_ratio();
5285 return 0;
5286 }
5287 module_init(init_per_zone_wmark_min)
5288
5289 /*
5290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5291 * that we can call two helper functions whenever min_free_kbytes
5292 * changes.
5293 */
5294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5295 void __user *buffer, size_t *length, loff_t *ppos)
5296 {
5297 proc_dointvec(table, write, buffer, length, ppos);
5298 if (write)
5299 setup_per_zone_wmarks();
5300 return 0;
5301 }
5302
5303 #ifdef CONFIG_NUMA
5304 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5305 void __user *buffer, size_t *length, loff_t *ppos)
5306 {
5307 struct zone *zone;
5308 int rc;
5309
5310 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5311 if (rc)
5312 return rc;
5313
5314 for_each_zone(zone)
5315 zone->min_unmapped_pages = (zone->present_pages *
5316 sysctl_min_unmapped_ratio) / 100;
5317 return 0;
5318 }
5319
5320 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5321 void __user *buffer, size_t *length, loff_t *ppos)
5322 {
5323 struct zone *zone;
5324 int rc;
5325
5326 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5327 if (rc)
5328 return rc;
5329
5330 for_each_zone(zone)
5331 zone->min_slab_pages = (zone->present_pages *
5332 sysctl_min_slab_ratio) / 100;
5333 return 0;
5334 }
5335 #endif
5336
5337 /*
5338 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5339 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5340 * whenever sysctl_lowmem_reserve_ratio changes.
5341 *
5342 * The reserve ratio obviously has absolutely no relation with the
5343 * minimum watermarks. The lowmem reserve ratio can only make sense
5344 * if in function of the boot time zone sizes.
5345 */
5346 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5347 void __user *buffer, size_t *length, loff_t *ppos)
5348 {
5349 proc_dointvec_minmax(table, write, buffer, length, ppos);
5350 setup_per_zone_lowmem_reserve();
5351 return 0;
5352 }
5353
5354 /*
5355 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5356 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5357 * can have before it gets flushed back to buddy allocator.
5358 */
5359
5360 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5361 void __user *buffer, size_t *length, loff_t *ppos)
5362 {
5363 struct zone *zone;
5364 unsigned int cpu;
5365 int ret;
5366
5367 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5368 if (!write || (ret < 0))
5369 return ret;
5370 for_each_populated_zone(zone) {
5371 for_each_possible_cpu(cpu) {
5372 unsigned long high;
5373 high = zone->present_pages / percpu_pagelist_fraction;
5374 setup_pagelist_highmark(
5375 per_cpu_ptr(zone->pageset, cpu), high);
5376 }
5377 }
5378 return 0;
5379 }
5380
5381 int hashdist = HASHDIST_DEFAULT;
5382
5383 #ifdef CONFIG_NUMA
5384 static int __init set_hashdist(char *str)
5385 {
5386 if (!str)
5387 return 0;
5388 hashdist = simple_strtoul(str, &str, 0);
5389 return 1;
5390 }
5391 __setup("hashdist=", set_hashdist);
5392 #endif
5393
5394 /*
5395 * allocate a large system hash table from bootmem
5396 * - it is assumed that the hash table must contain an exact power-of-2
5397 * quantity of entries
5398 * - limit is the number of hash buckets, not the total allocation size
5399 */
5400 void *__init alloc_large_system_hash(const char *tablename,
5401 unsigned long bucketsize,
5402 unsigned long numentries,
5403 int scale,
5404 int flags,
5405 unsigned int *_hash_shift,
5406 unsigned int *_hash_mask,
5407 unsigned long low_limit,
5408 unsigned long high_limit)
5409 {
5410 unsigned long long max = high_limit;
5411 unsigned long log2qty, size;
5412 void *table = NULL;
5413
5414 /* allow the kernel cmdline to have a say */
5415 if (!numentries) {
5416 /* round applicable memory size up to nearest megabyte */
5417 numentries = nr_kernel_pages;
5418 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5419 numentries >>= 20 - PAGE_SHIFT;
5420 numentries <<= 20 - PAGE_SHIFT;
5421
5422 /* limit to 1 bucket per 2^scale bytes of low memory */
5423 if (scale > PAGE_SHIFT)
5424 numentries >>= (scale - PAGE_SHIFT);
5425 else
5426 numentries <<= (PAGE_SHIFT - scale);
5427
5428 /* Make sure we've got at least a 0-order allocation.. */
5429 if (unlikely(flags & HASH_SMALL)) {
5430 /* Makes no sense without HASH_EARLY */
5431 WARN_ON(!(flags & HASH_EARLY));
5432 if (!(numentries >> *_hash_shift)) {
5433 numentries = 1UL << *_hash_shift;
5434 BUG_ON(!numentries);
5435 }
5436 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5437 numentries = PAGE_SIZE / bucketsize;
5438 }
5439 numentries = roundup_pow_of_two(numentries);
5440
5441 /* limit allocation size to 1/16 total memory by default */
5442 if (max == 0) {
5443 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5444 do_div(max, bucketsize);
5445 }
5446 max = min(max, 0x80000000ULL);
5447
5448 if (numentries < low_limit)
5449 numentries = low_limit;
5450 if (numentries > max)
5451 numentries = max;
5452
5453 log2qty = ilog2(numentries);
5454
5455 do {
5456 size = bucketsize << log2qty;
5457 if (flags & HASH_EARLY)
5458 table = alloc_bootmem_nopanic(size);
5459 else if (hashdist)
5460 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5461 else {
5462 /*
5463 * If bucketsize is not a power-of-two, we may free
5464 * some pages at the end of hash table which
5465 * alloc_pages_exact() automatically does
5466 */
5467 if (get_order(size) < MAX_ORDER) {
5468 table = alloc_pages_exact(size, GFP_ATOMIC);
5469 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5470 }
5471 }
5472 } while (!table && size > PAGE_SIZE && --log2qty);
5473
5474 if (!table)
5475 panic("Failed to allocate %s hash table\n", tablename);
5476
5477 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5478 tablename,
5479 (1UL << log2qty),
5480 ilog2(size) - PAGE_SHIFT,
5481 size);
5482
5483 if (_hash_shift)
5484 *_hash_shift = log2qty;
5485 if (_hash_mask)
5486 *_hash_mask = (1 << log2qty) - 1;
5487
5488 return table;
5489 }
5490
5491 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5492 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5493 unsigned long pfn)
5494 {
5495 #ifdef CONFIG_SPARSEMEM
5496 return __pfn_to_section(pfn)->pageblock_flags;
5497 #else
5498 return zone->pageblock_flags;
5499 #endif /* CONFIG_SPARSEMEM */
5500 }
5501
5502 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5503 {
5504 #ifdef CONFIG_SPARSEMEM
5505 pfn &= (PAGES_PER_SECTION-1);
5506 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5507 #else
5508 pfn = pfn - zone->zone_start_pfn;
5509 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5510 #endif /* CONFIG_SPARSEMEM */
5511 }
5512
5513 /**
5514 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5515 * @page: The page within the block of interest
5516 * @start_bitidx: The first bit of interest to retrieve
5517 * @end_bitidx: The last bit of interest
5518 * returns pageblock_bits flags
5519 */
5520 unsigned long get_pageblock_flags_group(struct page *page,
5521 int start_bitidx, int end_bitidx)
5522 {
5523 struct zone *zone;
5524 unsigned long *bitmap;
5525 unsigned long pfn, bitidx;
5526 unsigned long flags = 0;
5527 unsigned long value = 1;
5528
5529 zone = page_zone(page);
5530 pfn = page_to_pfn(page);
5531 bitmap = get_pageblock_bitmap(zone, pfn);
5532 bitidx = pfn_to_bitidx(zone, pfn);
5533
5534 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5535 if (test_bit(bitidx + start_bitidx, bitmap))
5536 flags |= value;
5537
5538 return flags;
5539 }
5540
5541 /**
5542 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5543 * @page: The page within the block of interest
5544 * @start_bitidx: The first bit of interest
5545 * @end_bitidx: The last bit of interest
5546 * @flags: The flags to set
5547 */
5548 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5549 int start_bitidx, int end_bitidx)
5550 {
5551 struct zone *zone;
5552 unsigned long *bitmap;
5553 unsigned long pfn, bitidx;
5554 unsigned long value = 1;
5555
5556 zone = page_zone(page);
5557 pfn = page_to_pfn(page);
5558 bitmap = get_pageblock_bitmap(zone, pfn);
5559 bitidx = pfn_to_bitidx(zone, pfn);
5560 VM_BUG_ON(pfn < zone->zone_start_pfn);
5561 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5562
5563 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5564 if (flags & value)
5565 __set_bit(bitidx + start_bitidx, bitmap);
5566 else
5567 __clear_bit(bitidx + start_bitidx, bitmap);
5568 }
5569
5570 /*
5571 * This function checks whether pageblock includes unmovable pages or not.
5572 * If @count is not zero, it is okay to include less @count unmovable pages
5573 *
5574 * PageLRU check wihtout isolation or lru_lock could race so that
5575 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5576 * expect this function should be exact.
5577 */
5578 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5579 {
5580 unsigned long pfn, iter, found;
5581 int mt;
5582
5583 /*
5584 * For avoiding noise data, lru_add_drain_all() should be called
5585 * If ZONE_MOVABLE, the zone never contains unmovable pages
5586 */
5587 if (zone_idx(zone) == ZONE_MOVABLE)
5588 return false;
5589 mt = get_pageblock_migratetype(page);
5590 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5591 return false;
5592
5593 pfn = page_to_pfn(page);
5594 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5595 unsigned long check = pfn + iter;
5596
5597 if (!pfn_valid_within(check))
5598 continue;
5599
5600 page = pfn_to_page(check);
5601 /*
5602 * We can't use page_count without pin a page
5603 * because another CPU can free compound page.
5604 * This check already skips compound tails of THP
5605 * because their page->_count is zero at all time.
5606 */
5607 if (!atomic_read(&page->_count)) {
5608 if (PageBuddy(page))
5609 iter += (1 << page_order(page)) - 1;
5610 continue;
5611 }
5612
5613 if (!PageLRU(page))
5614 found++;
5615 /*
5616 * If there are RECLAIMABLE pages, we need to check it.
5617 * But now, memory offline itself doesn't call shrink_slab()
5618 * and it still to be fixed.
5619 */
5620 /*
5621 * If the page is not RAM, page_count()should be 0.
5622 * we don't need more check. This is an _used_ not-movable page.
5623 *
5624 * The problematic thing here is PG_reserved pages. PG_reserved
5625 * is set to both of a memory hole page and a _used_ kernel
5626 * page at boot.
5627 */
5628 if (found > count)
5629 return true;
5630 }
5631 return false;
5632 }
5633
5634 bool is_pageblock_removable_nolock(struct page *page)
5635 {
5636 struct zone *zone;
5637 unsigned long pfn;
5638
5639 /*
5640 * We have to be careful here because we are iterating over memory
5641 * sections which are not zone aware so we might end up outside of
5642 * the zone but still within the section.
5643 * We have to take care about the node as well. If the node is offline
5644 * its NODE_DATA will be NULL - see page_zone.
5645 */
5646 if (!node_online(page_to_nid(page)))
5647 return false;
5648
5649 zone = page_zone(page);
5650 pfn = page_to_pfn(page);
5651 if (zone->zone_start_pfn > pfn ||
5652 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5653 return false;
5654
5655 return !has_unmovable_pages(zone, page, 0);
5656 }
5657
5658 #ifdef CONFIG_CMA
5659
5660 static unsigned long pfn_max_align_down(unsigned long pfn)
5661 {
5662 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5663 pageblock_nr_pages) - 1);
5664 }
5665
5666 static unsigned long pfn_max_align_up(unsigned long pfn)
5667 {
5668 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5669 pageblock_nr_pages));
5670 }
5671
5672 /* [start, end) must belong to a single zone. */
5673 static int __alloc_contig_migrate_range(struct compact_control *cc,
5674 unsigned long start, unsigned long end)
5675 {
5676 /* This function is based on compact_zone() from compaction.c. */
5677 unsigned long nr_reclaimed;
5678 unsigned long pfn = start;
5679 unsigned int tries = 0;
5680 int ret = 0;
5681
5682 migrate_prep_local();
5683
5684 while (pfn < end || !list_empty(&cc->migratepages)) {
5685 if (fatal_signal_pending(current)) {
5686 ret = -EINTR;
5687 break;
5688 }
5689
5690 if (list_empty(&cc->migratepages)) {
5691 cc->nr_migratepages = 0;
5692 pfn = isolate_migratepages_range(cc->zone, cc,
5693 pfn, end, true);
5694 if (!pfn) {
5695 ret = -EINTR;
5696 break;
5697 }
5698 tries = 0;
5699 } else if (++tries == 5) {
5700 ret = ret < 0 ? ret : -EBUSY;
5701 break;
5702 }
5703
5704 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5705 &cc->migratepages);
5706 cc->nr_migratepages -= nr_reclaimed;
5707
5708 ret = migrate_pages(&cc->migratepages,
5709 alloc_migrate_target,
5710 0, false, MIGRATE_SYNC);
5711 }
5712
5713 putback_lru_pages(&cc->migratepages);
5714 return ret > 0 ? 0 : ret;
5715 }
5716
5717 /*
5718 * Update zone's cma pages counter used for watermark level calculation.
5719 */
5720 static inline void __update_cma_watermarks(struct zone *zone, int count)
5721 {
5722 unsigned long flags;
5723 spin_lock_irqsave(&zone->lock, flags);
5724 zone->min_cma_pages += count;
5725 spin_unlock_irqrestore(&zone->lock, flags);
5726 setup_per_zone_wmarks();
5727 }
5728
5729 /*
5730 * Trigger memory pressure bump to reclaim some pages in order to be able to
5731 * allocate 'count' pages in single page units. Does similar work as
5732 *__alloc_pages_slowpath() function.
5733 */
5734 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5735 {
5736 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5737 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5738 int did_some_progress = 0;
5739 int order = 1;
5740
5741 /*
5742 * Increase level of watermarks to force kswapd do his job
5743 * to stabilise at new watermark level.
5744 */
5745 __update_cma_watermarks(zone, count);
5746
5747 /* Obey watermarks as if the page was being allocated */
5748 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5749 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5750
5751 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5752 NULL);
5753 if (!did_some_progress) {
5754 /* Exhausted what can be done so it's blamo time */
5755 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5756 }
5757 }
5758
5759 /* Restore original watermark levels. */
5760 __update_cma_watermarks(zone, -count);
5761
5762 return count;
5763 }
5764
5765 /**
5766 * alloc_contig_range() -- tries to allocate given range of pages
5767 * @start: start PFN to allocate
5768 * @end: one-past-the-last PFN to allocate
5769 * @migratetype: migratetype of the underlaying pageblocks (either
5770 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5771 * in range must have the same migratetype and it must
5772 * be either of the two.
5773 *
5774 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5775 * aligned, however it's the caller's responsibility to guarantee that
5776 * we are the only thread that changes migrate type of pageblocks the
5777 * pages fall in.
5778 *
5779 * The PFN range must belong to a single zone.
5780 *
5781 * Returns zero on success or negative error code. On success all
5782 * pages which PFN is in [start, end) are allocated for the caller and
5783 * need to be freed with free_contig_range().
5784 */
5785 int alloc_contig_range(unsigned long start, unsigned long end,
5786 unsigned migratetype)
5787 {
5788 struct zone *zone = page_zone(pfn_to_page(start));
5789 unsigned long outer_start, outer_end;
5790 int ret = 0, order;
5791
5792 struct compact_control cc = {
5793 .nr_migratepages = 0,
5794 .order = -1,
5795 .zone = page_zone(pfn_to_page(start)),
5796 .sync = true,
5797 .ignore_skip_hint = true,
5798 };
5799 INIT_LIST_HEAD(&cc.migratepages);
5800
5801 /*
5802 * What we do here is we mark all pageblocks in range as
5803 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5804 * have different sizes, and due to the way page allocator
5805 * work, we align the range to biggest of the two pages so
5806 * that page allocator won't try to merge buddies from
5807 * different pageblocks and change MIGRATE_ISOLATE to some
5808 * other migration type.
5809 *
5810 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5811 * migrate the pages from an unaligned range (ie. pages that
5812 * we are interested in). This will put all the pages in
5813 * range back to page allocator as MIGRATE_ISOLATE.
5814 *
5815 * When this is done, we take the pages in range from page
5816 * allocator removing them from the buddy system. This way
5817 * page allocator will never consider using them.
5818 *
5819 * This lets us mark the pageblocks back as
5820 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5821 * aligned range but not in the unaligned, original range are
5822 * put back to page allocator so that buddy can use them.
5823 */
5824
5825 ret = start_isolate_page_range(pfn_max_align_down(start),
5826 pfn_max_align_up(end), migratetype);
5827 if (ret)
5828 return ret;
5829
5830 ret = __alloc_contig_migrate_range(&cc, start, end);
5831 if (ret)
5832 goto done;
5833
5834 /*
5835 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5836 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5837 * more, all pages in [start, end) are free in page allocator.
5838 * What we are going to do is to allocate all pages from
5839 * [start, end) (that is remove them from page allocator).
5840 *
5841 * The only problem is that pages at the beginning and at the
5842 * end of interesting range may be not aligned with pages that
5843 * page allocator holds, ie. they can be part of higher order
5844 * pages. Because of this, we reserve the bigger range and
5845 * once this is done free the pages we are not interested in.
5846 *
5847 * We don't have to hold zone->lock here because the pages are
5848 * isolated thus they won't get removed from buddy.
5849 */
5850
5851 lru_add_drain_all();
5852 drain_all_pages();
5853
5854 order = 0;
5855 outer_start = start;
5856 while (!PageBuddy(pfn_to_page(outer_start))) {
5857 if (++order >= MAX_ORDER) {
5858 ret = -EBUSY;
5859 goto done;
5860 }
5861 outer_start &= ~0UL << order;
5862 }
5863
5864 /* Make sure the range is really isolated. */
5865 if (test_pages_isolated(outer_start, end)) {
5866 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5867 outer_start, end);
5868 ret = -EBUSY;
5869 goto done;
5870 }
5871
5872 /*
5873 * Reclaim enough pages to make sure that contiguous allocation
5874 * will not starve the system.
5875 */
5876 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5877
5878 /* Grab isolated pages from freelists. */
5879 outer_end = isolate_freepages_range(&cc, outer_start, end);
5880 if (!outer_end) {
5881 ret = -EBUSY;
5882 goto done;
5883 }
5884
5885 /* Free head and tail (if any) */
5886 if (start != outer_start)
5887 free_contig_range(outer_start, start - outer_start);
5888 if (end != outer_end)
5889 free_contig_range(end, outer_end - end);
5890
5891 done:
5892 undo_isolate_page_range(pfn_max_align_down(start),
5893 pfn_max_align_up(end), migratetype);
5894 return ret;
5895 }
5896
5897 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5898 {
5899 for (; nr_pages--; ++pfn)
5900 __free_page(pfn_to_page(pfn));
5901 }
5902 #endif
5903
5904 #ifdef CONFIG_MEMORY_HOTPLUG
5905 static int __meminit __zone_pcp_update(void *data)
5906 {
5907 struct zone *zone = data;
5908 int cpu;
5909 unsigned long batch = zone_batchsize(zone), flags;
5910
5911 for_each_possible_cpu(cpu) {
5912 struct per_cpu_pageset *pset;
5913 struct per_cpu_pages *pcp;
5914
5915 pset = per_cpu_ptr(zone->pageset, cpu);
5916 pcp = &pset->pcp;
5917
5918 local_irq_save(flags);
5919 if (pcp->count > 0)
5920 free_pcppages_bulk(zone, pcp->count, pcp);
5921 drain_zonestat(zone, pset);
5922 setup_pageset(pset, batch);
5923 local_irq_restore(flags);
5924 }
5925 return 0;
5926 }
5927
5928 void __meminit zone_pcp_update(struct zone *zone)
5929 {
5930 stop_machine(__zone_pcp_update, zone, NULL);
5931 }
5932 #endif
5933
5934 #ifdef CONFIG_MEMORY_HOTREMOVE
5935 void zone_pcp_reset(struct zone *zone)
5936 {
5937 unsigned long flags;
5938 int cpu;
5939 struct per_cpu_pageset *pset;
5940
5941 /* avoid races with drain_pages() */
5942 local_irq_save(flags);
5943 if (zone->pageset != &boot_pageset) {
5944 for_each_online_cpu(cpu) {
5945 pset = per_cpu_ptr(zone->pageset, cpu);
5946 drain_zonestat(zone, pset);
5947 }
5948 free_percpu(zone->pageset);
5949 zone->pageset = &boot_pageset;
5950 }
5951 local_irq_restore(flags);
5952 }
5953
5954 /*
5955 * All pages in the range must be isolated before calling this.
5956 */
5957 void
5958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5959 {
5960 struct page *page;
5961 struct zone *zone;
5962 int order, i;
5963 unsigned long pfn;
5964 unsigned long flags;
5965 /* find the first valid pfn */
5966 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5967 if (pfn_valid(pfn))
5968 break;
5969 if (pfn == end_pfn)
5970 return;
5971 zone = page_zone(pfn_to_page(pfn));
5972 spin_lock_irqsave(&zone->lock, flags);
5973 pfn = start_pfn;
5974 while (pfn < end_pfn) {
5975 if (!pfn_valid(pfn)) {
5976 pfn++;
5977 continue;
5978 }
5979 page = pfn_to_page(pfn);
5980 BUG_ON(page_count(page));
5981 BUG_ON(!PageBuddy(page));
5982 order = page_order(page);
5983 #ifdef CONFIG_DEBUG_VM
5984 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5985 pfn, 1 << order, end_pfn);
5986 #endif
5987 list_del(&page->lru);
5988 rmv_page_order(page);
5989 zone->free_area[order].nr_free--;
5990 __mod_zone_page_state(zone, NR_FREE_PAGES,
5991 - (1UL << order));
5992 for (i = 0; i < (1 << order); i++)
5993 SetPageReserved((page+i));
5994 pfn += (1 << order);
5995 }
5996 spin_unlock_irqrestore(&zone->lock, flags);
5997 }
5998 #endif
5999
6000 #ifdef CONFIG_MEMORY_FAILURE
6001 bool is_free_buddy_page(struct page *page)
6002 {
6003 struct zone *zone = page_zone(page);
6004 unsigned long pfn = page_to_pfn(page);
6005 unsigned long flags;
6006 int order;
6007
6008 spin_lock_irqsave(&zone->lock, flags);
6009 for (order = 0; order < MAX_ORDER; order++) {
6010 struct page *page_head = page - (pfn & ((1 << order) - 1));
6011
6012 if (PageBuddy(page_head) && page_order(page_head) >= order)
6013 break;
6014 }
6015 spin_unlock_irqrestore(&zone->lock, flags);
6016
6017 return order < MAX_ORDER;
6018 }
6019 #endif
6020
6021 static const struct trace_print_flags pageflag_names[] = {
6022 {1UL << PG_locked, "locked" },
6023 {1UL << PG_error, "error" },
6024 {1UL << PG_referenced, "referenced" },
6025 {1UL << PG_uptodate, "uptodate" },
6026 {1UL << PG_dirty, "dirty" },
6027 {1UL << PG_lru, "lru" },
6028 {1UL << PG_active, "active" },
6029 {1UL << PG_slab, "slab" },
6030 {1UL << PG_owner_priv_1, "owner_priv_1" },
6031 {1UL << PG_arch_1, "arch_1" },
6032 {1UL << PG_reserved, "reserved" },
6033 {1UL << PG_private, "private" },
6034 {1UL << PG_private_2, "private_2" },
6035 {1UL << PG_writeback, "writeback" },
6036 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6037 {1UL << PG_head, "head" },
6038 {1UL << PG_tail, "tail" },
6039 #else
6040 {1UL << PG_compound, "compound" },
6041 #endif
6042 {1UL << PG_swapcache, "swapcache" },
6043 {1UL << PG_mappedtodisk, "mappedtodisk" },
6044 {1UL << PG_reclaim, "reclaim" },
6045 {1UL << PG_swapbacked, "swapbacked" },
6046 {1UL << PG_unevictable, "unevictable" },
6047 #ifdef CONFIG_MMU
6048 {1UL << PG_mlocked, "mlocked" },
6049 #endif
6050 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6051 {1UL << PG_uncached, "uncached" },
6052 #endif
6053 #ifdef CONFIG_MEMORY_FAILURE
6054 {1UL << PG_hwpoison, "hwpoison" },
6055 #endif
6056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6057 {1UL << PG_compound_lock, "compound_lock" },
6058 #endif
6059 };
6060
6061 static void dump_page_flags(unsigned long flags)
6062 {
6063 const char *delim = "";
6064 unsigned long mask;
6065 int i;
6066
6067 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6068
6069 printk(KERN_ALERT "page flags: %#lx(", flags);
6070
6071 /* remove zone id */
6072 flags &= (1UL << NR_PAGEFLAGS) - 1;
6073
6074 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6075
6076 mask = pageflag_names[i].mask;
6077 if ((flags & mask) != mask)
6078 continue;
6079
6080 flags &= ~mask;
6081 printk("%s%s", delim, pageflag_names[i].name);
6082 delim = "|";
6083 }
6084
6085 /* check for left over flags */
6086 if (flags)
6087 printk("%s%#lx", delim, flags);
6088
6089 printk(")\n");
6090 }
6091
6092 void dump_page(struct page *page)
6093 {
6094 printk(KERN_ALERT
6095 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6096 page, atomic_read(&page->_count), page_mapcount(page),
6097 page->mapping, page->index);
6098 dump_page_flags(page->flags);
6099 mem_cgroup_print_bad_page(page);
6100 }
6101
6102 /* reset zone->present_pages */
6103 void reset_zone_present_pages(void)
6104 {
6105 struct zone *z;
6106 int i, nid;
6107
6108 for_each_node_state(nid, N_HIGH_MEMORY) {
6109 for (i = 0; i < MAX_NR_ZONES; i++) {
6110 z = NODE_DATA(nid)->node_zones + i;
6111 z->present_pages = 0;
6112 }
6113 }
6114 }
6115
6116 /* calculate zone's present pages in buddy system */
6117 void fixup_zone_present_pages(int nid, unsigned long start_pfn,
6118 unsigned long end_pfn)
6119 {
6120 struct zone *z;
6121 unsigned long zone_start_pfn, zone_end_pfn;
6122 int i;
6123
6124 for (i = 0; i < MAX_NR_ZONES; i++) {
6125 z = NODE_DATA(nid)->node_zones + i;
6126 zone_start_pfn = z->zone_start_pfn;
6127 zone_end_pfn = zone_start_pfn + z->spanned_pages;
6128
6129 /* if the two regions intersect */
6130 if (!(zone_start_pfn >= end_pfn || zone_end_pfn <= start_pfn))
6131 z->present_pages += min(end_pfn, zone_end_pfn) -
6132 max(start_pfn, zone_start_pfn);
6133 }
6134 }
This page took 0.147156 seconds and 4 git commands to generate.