97b6966816e5dfaa78f7cd0e07be124d5b88ca6b
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
472 * (a) the buddy is not in a hole &&
473 * (b) the buddy is in the buddy system &&
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
476 *
477 * For recording whether a page is in the buddy system, we set ->_mapcount
478 * PAGE_BUDDY_MAPCOUNT_VALUE.
479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
480 * serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 unsigned int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
496 return 1;
497 }
498
499 if (PageBuddy(buddy) && page_order(buddy) == order) {
500 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
501
502 /*
503 * zone check is done late to avoid uselessly
504 * calculating zone/node ids for pages that could
505 * never merge.
506 */
507 if (page_zone_id(page) != page_zone_id(buddy))
508 return 0;
509
510 return 1;
511 }
512 return 0;
513 }
514
515 /*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
528 * free pages of length of (1 << order) and marked with _mapcount
529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
530 * field.
531 * So when we are allocating or freeing one, we can derive the state of the
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
534 * If a block is freed, and its buddy is also free, then this
535 * triggers coalescing into a block of larger size.
536 *
537 * -- nyc
538 */
539
540 static inline void __free_one_page(struct page *page,
541 unsigned long pfn,
542 struct zone *zone, unsigned int order,
543 int migratetype)
544 {
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
548 struct page *buddy;
549 int max_order = MAX_ORDER;
550
551 VM_BUG_ON(!zone_is_initialized(zone));
552
553 if (unlikely(PageCompound(page)))
554 if (unlikely(destroy_compound_page(page, order)))
555 return;
556
557 VM_BUG_ON(migratetype == -1);
558 if (is_migrate_isolate(migratetype)) {
559 /*
560 * We restrict max order of merging to prevent merge
561 * between freepages on isolate pageblock and normal
562 * pageblock. Without this, pageblock isolation
563 * could cause incorrect freepage accounting.
564 */
565 max_order = min(MAX_ORDER, pageblock_order + 1);
566 } else {
567 __mod_zone_freepage_state(zone, 1 << order, migratetype);
568 }
569
570 page_idx = pfn & ((1 << max_order) - 1);
571
572 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
573 VM_BUG_ON_PAGE(bad_range(zone, page), page);
574
575 while (order < max_order - 1) {
576 buddy_idx = __find_buddy_index(page_idx, order);
577 buddy = page + (buddy_idx - page_idx);
578 if (!page_is_buddy(page, buddy, order))
579 break;
580 /*
581 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
582 * merge with it and move up one order.
583 */
584 if (page_is_guard(buddy)) {
585 clear_page_guard_flag(buddy);
586 set_page_private(buddy, 0);
587 if (!is_migrate_isolate(migratetype)) {
588 __mod_zone_freepage_state(zone, 1 << order,
589 migratetype);
590 }
591 } else {
592 list_del(&buddy->lru);
593 zone->free_area[order].nr_free--;
594 rmv_page_order(buddy);
595 }
596 combined_idx = buddy_idx & page_idx;
597 page = page + (combined_idx - page_idx);
598 page_idx = combined_idx;
599 order++;
600 }
601 set_page_order(page, order);
602
603 /*
604 * If this is not the largest possible page, check if the buddy
605 * of the next-highest order is free. If it is, it's possible
606 * that pages are being freed that will coalesce soon. In case,
607 * that is happening, add the free page to the tail of the list
608 * so it's less likely to be used soon and more likely to be merged
609 * as a higher order page
610 */
611 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
612 struct page *higher_page, *higher_buddy;
613 combined_idx = buddy_idx & page_idx;
614 higher_page = page + (combined_idx - page_idx);
615 buddy_idx = __find_buddy_index(combined_idx, order + 1);
616 higher_buddy = higher_page + (buddy_idx - combined_idx);
617 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
618 list_add_tail(&page->lru,
619 &zone->free_area[order].free_list[migratetype]);
620 goto out;
621 }
622 }
623
624 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
625 out:
626 zone->free_area[order].nr_free++;
627 }
628
629 static inline int free_pages_check(struct page *page)
630 {
631 const char *bad_reason = NULL;
632 unsigned long bad_flags = 0;
633
634 if (unlikely(page_mapcount(page)))
635 bad_reason = "nonzero mapcount";
636 if (unlikely(page->mapping != NULL))
637 bad_reason = "non-NULL mapping";
638 if (unlikely(atomic_read(&page->_count) != 0))
639 bad_reason = "nonzero _count";
640 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
641 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
642 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
643 }
644 if (unlikely(mem_cgroup_bad_page_check(page)))
645 bad_reason = "cgroup check failed";
646 if (unlikely(bad_reason)) {
647 bad_page(page, bad_reason, bad_flags);
648 return 1;
649 }
650 page_cpupid_reset_last(page);
651 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
652 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
653 return 0;
654 }
655
656 /*
657 * Frees a number of pages from the PCP lists
658 * Assumes all pages on list are in same zone, and of same order.
659 * count is the number of pages to free.
660 *
661 * If the zone was previously in an "all pages pinned" state then look to
662 * see if this freeing clears that state.
663 *
664 * And clear the zone's pages_scanned counter, to hold off the "all pages are
665 * pinned" detection logic.
666 */
667 static void free_pcppages_bulk(struct zone *zone, int count,
668 struct per_cpu_pages *pcp)
669 {
670 int migratetype = 0;
671 int batch_free = 0;
672 int to_free = count;
673 unsigned long nr_scanned;
674
675 spin_lock(&zone->lock);
676 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
677 if (nr_scanned)
678 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
679
680 while (to_free) {
681 struct page *page;
682 struct list_head *list;
683
684 /*
685 * Remove pages from lists in a round-robin fashion. A
686 * batch_free count is maintained that is incremented when an
687 * empty list is encountered. This is so more pages are freed
688 * off fuller lists instead of spinning excessively around empty
689 * lists
690 */
691 do {
692 batch_free++;
693 if (++migratetype == MIGRATE_PCPTYPES)
694 migratetype = 0;
695 list = &pcp->lists[migratetype];
696 } while (list_empty(list));
697
698 /* This is the only non-empty list. Free them all. */
699 if (batch_free == MIGRATE_PCPTYPES)
700 batch_free = to_free;
701
702 do {
703 int mt; /* migratetype of the to-be-freed page */
704
705 page = list_entry(list->prev, struct page, lru);
706 /* must delete as __free_one_page list manipulates */
707 list_del(&page->lru);
708 mt = get_freepage_migratetype(page);
709 if (unlikely(has_isolate_pageblock(zone)))
710 mt = get_pageblock_migratetype(page);
711
712 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
713 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
714 trace_mm_page_pcpu_drain(page, 0, mt);
715 } while (--to_free && --batch_free && !list_empty(list));
716 }
717 spin_unlock(&zone->lock);
718 }
719
720 static void free_one_page(struct zone *zone,
721 struct page *page, unsigned long pfn,
722 unsigned int order,
723 int migratetype)
724 {
725 unsigned long nr_scanned;
726 spin_lock(&zone->lock);
727 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
728 if (nr_scanned)
729 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
730
731 if (unlikely(has_isolate_pageblock(zone) ||
732 is_migrate_isolate(migratetype))) {
733 migratetype = get_pfnblock_migratetype(page, pfn);
734 }
735 __free_one_page(page, pfn, zone, order, migratetype);
736 spin_unlock(&zone->lock);
737 }
738
739 static bool free_pages_prepare(struct page *page, unsigned int order)
740 {
741 int i;
742 int bad = 0;
743
744 VM_BUG_ON_PAGE(PageTail(page), page);
745 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
746
747 trace_mm_page_free(page, order);
748 kmemcheck_free_shadow(page, order);
749
750 if (PageAnon(page))
751 page->mapping = NULL;
752 for (i = 0; i < (1 << order); i++)
753 bad += free_pages_check(page + i);
754 if (bad)
755 return false;
756
757 if (!PageHighMem(page)) {
758 debug_check_no_locks_freed(page_address(page),
759 PAGE_SIZE << order);
760 debug_check_no_obj_freed(page_address(page),
761 PAGE_SIZE << order);
762 }
763 arch_free_page(page, order);
764 kernel_map_pages(page, 1 << order, 0);
765
766 return true;
767 }
768
769 static void __free_pages_ok(struct page *page, unsigned int order)
770 {
771 unsigned long flags;
772 int migratetype;
773 unsigned long pfn = page_to_pfn(page);
774
775 if (!free_pages_prepare(page, order))
776 return;
777
778 migratetype = get_pfnblock_migratetype(page, pfn);
779 local_irq_save(flags);
780 __count_vm_events(PGFREE, 1 << order);
781 set_freepage_migratetype(page, migratetype);
782 free_one_page(page_zone(page), page, pfn, order, migratetype);
783 local_irq_restore(flags);
784 }
785
786 void __init __free_pages_bootmem(struct page *page, unsigned int order)
787 {
788 unsigned int nr_pages = 1 << order;
789 struct page *p = page;
790 unsigned int loop;
791
792 prefetchw(p);
793 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
794 prefetchw(p + 1);
795 __ClearPageReserved(p);
796 set_page_count(p, 0);
797 }
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800
801 page_zone(page)->managed_pages += nr_pages;
802 set_page_refcounted(page);
803 __free_pages(page, order);
804 }
805
806 #ifdef CONFIG_CMA
807 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
808 void __init init_cma_reserved_pageblock(struct page *page)
809 {
810 unsigned i = pageblock_nr_pages;
811 struct page *p = page;
812
813 do {
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816 } while (++p, --i);
817
818 set_pageblock_migratetype(page, MIGRATE_CMA);
819
820 if (pageblock_order >= MAX_ORDER) {
821 i = pageblock_nr_pages;
822 p = page;
823 do {
824 set_page_refcounted(p);
825 __free_pages(p, MAX_ORDER - 1);
826 p += MAX_ORDER_NR_PAGES;
827 } while (i -= MAX_ORDER_NR_PAGES);
828 } else {
829 set_page_refcounted(page);
830 __free_pages(page, pageblock_order);
831 }
832
833 adjust_managed_page_count(page, pageblock_nr_pages);
834 }
835 #endif
836
837 /*
838 * The order of subdivision here is critical for the IO subsystem.
839 * Please do not alter this order without good reasons and regression
840 * testing. Specifically, as large blocks of memory are subdivided,
841 * the order in which smaller blocks are delivered depends on the order
842 * they're subdivided in this function. This is the primary factor
843 * influencing the order in which pages are delivered to the IO
844 * subsystem according to empirical testing, and this is also justified
845 * by considering the behavior of a buddy system containing a single
846 * large block of memory acted on by a series of small allocations.
847 * This behavior is a critical factor in sglist merging's success.
848 *
849 * -- nyc
850 */
851 static inline void expand(struct zone *zone, struct page *page,
852 int low, int high, struct free_area *area,
853 int migratetype)
854 {
855 unsigned long size = 1 << high;
856
857 while (high > low) {
858 area--;
859 high--;
860 size >>= 1;
861 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
862
863 #ifdef CONFIG_DEBUG_PAGEALLOC
864 if (high < debug_guardpage_minorder()) {
865 /*
866 * Mark as guard pages (or page), that will allow to
867 * merge back to allocator when buddy will be freed.
868 * Corresponding page table entries will not be touched,
869 * pages will stay not present in virtual address space
870 */
871 INIT_LIST_HEAD(&page[size].lru);
872 set_page_guard_flag(&page[size]);
873 set_page_private(&page[size], high);
874 /* Guard pages are not available for any usage */
875 __mod_zone_freepage_state(zone, -(1 << high),
876 migratetype);
877 continue;
878 }
879 #endif
880 list_add(&page[size].lru, &area->free_list[migratetype]);
881 area->nr_free++;
882 set_page_order(&page[size], high);
883 }
884 }
885
886 /*
887 * This page is about to be returned from the page allocator
888 */
889 static inline int check_new_page(struct page *page)
890 {
891 const char *bad_reason = NULL;
892 unsigned long bad_flags = 0;
893
894 if (unlikely(page_mapcount(page)))
895 bad_reason = "nonzero mapcount";
896 if (unlikely(page->mapping != NULL))
897 bad_reason = "non-NULL mapping";
898 if (unlikely(atomic_read(&page->_count) != 0))
899 bad_reason = "nonzero _count";
900 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
901 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
902 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
903 }
904 if (unlikely(mem_cgroup_bad_page_check(page)))
905 bad_reason = "cgroup check failed";
906 if (unlikely(bad_reason)) {
907 bad_page(page, bad_reason, bad_flags);
908 return 1;
909 }
910 return 0;
911 }
912
913 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
914 {
915 int i;
916
917 for (i = 0; i < (1 << order); i++) {
918 struct page *p = page + i;
919 if (unlikely(check_new_page(p)))
920 return 1;
921 }
922
923 set_page_private(page, 0);
924 set_page_refcounted(page);
925
926 arch_alloc_page(page, order);
927 kernel_map_pages(page, 1 << order, 1);
928
929 if (gfp_flags & __GFP_ZERO)
930 prep_zero_page(page, order, gfp_flags);
931
932 if (order && (gfp_flags & __GFP_COMP))
933 prep_compound_page(page, order);
934
935 return 0;
936 }
937
938 /*
939 * Go through the free lists for the given migratetype and remove
940 * the smallest available page from the freelists
941 */
942 static inline
943 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
944 int migratetype)
945 {
946 unsigned int current_order;
947 struct free_area *area;
948 struct page *page;
949
950 /* Find a page of the appropriate size in the preferred list */
951 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
952 area = &(zone->free_area[current_order]);
953 if (list_empty(&area->free_list[migratetype]))
954 continue;
955
956 page = list_entry(area->free_list[migratetype].next,
957 struct page, lru);
958 list_del(&page->lru);
959 rmv_page_order(page);
960 area->nr_free--;
961 expand(zone, page, order, current_order, area, migratetype);
962 set_freepage_migratetype(page, migratetype);
963 return page;
964 }
965
966 return NULL;
967 }
968
969
970 /*
971 * This array describes the order lists are fallen back to when
972 * the free lists for the desirable migrate type are depleted
973 */
974 static int fallbacks[MIGRATE_TYPES][4] = {
975 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
976 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
977 #ifdef CONFIG_CMA
978 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
979 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
980 #else
981 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
982 #endif
983 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
984 #ifdef CONFIG_MEMORY_ISOLATION
985 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
986 #endif
987 };
988
989 /*
990 * Move the free pages in a range to the free lists of the requested type.
991 * Note that start_page and end_pages are not aligned on a pageblock
992 * boundary. If alignment is required, use move_freepages_block()
993 */
994 int move_freepages(struct zone *zone,
995 struct page *start_page, struct page *end_page,
996 int migratetype)
997 {
998 struct page *page;
999 unsigned long order;
1000 int pages_moved = 0;
1001
1002 #ifndef CONFIG_HOLES_IN_ZONE
1003 /*
1004 * page_zone is not safe to call in this context when
1005 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1006 * anyway as we check zone boundaries in move_freepages_block().
1007 * Remove at a later date when no bug reports exist related to
1008 * grouping pages by mobility
1009 */
1010 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1011 #endif
1012
1013 for (page = start_page; page <= end_page;) {
1014 /* Make sure we are not inadvertently changing nodes */
1015 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1016
1017 if (!pfn_valid_within(page_to_pfn(page))) {
1018 page++;
1019 continue;
1020 }
1021
1022 if (!PageBuddy(page)) {
1023 page++;
1024 continue;
1025 }
1026
1027 order = page_order(page);
1028 list_move(&page->lru,
1029 &zone->free_area[order].free_list[migratetype]);
1030 set_freepage_migratetype(page, migratetype);
1031 page += 1 << order;
1032 pages_moved += 1 << order;
1033 }
1034
1035 return pages_moved;
1036 }
1037
1038 int move_freepages_block(struct zone *zone, struct page *page,
1039 int migratetype)
1040 {
1041 unsigned long start_pfn, end_pfn;
1042 struct page *start_page, *end_page;
1043
1044 start_pfn = page_to_pfn(page);
1045 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1046 start_page = pfn_to_page(start_pfn);
1047 end_page = start_page + pageblock_nr_pages - 1;
1048 end_pfn = start_pfn + pageblock_nr_pages - 1;
1049
1050 /* Do not cross zone boundaries */
1051 if (!zone_spans_pfn(zone, start_pfn))
1052 start_page = page;
1053 if (!zone_spans_pfn(zone, end_pfn))
1054 return 0;
1055
1056 return move_freepages(zone, start_page, end_page, migratetype);
1057 }
1058
1059 static void change_pageblock_range(struct page *pageblock_page,
1060 int start_order, int migratetype)
1061 {
1062 int nr_pageblocks = 1 << (start_order - pageblock_order);
1063
1064 while (nr_pageblocks--) {
1065 set_pageblock_migratetype(pageblock_page, migratetype);
1066 pageblock_page += pageblock_nr_pages;
1067 }
1068 }
1069
1070 /*
1071 * If breaking a large block of pages, move all free pages to the preferred
1072 * allocation list. If falling back for a reclaimable kernel allocation, be
1073 * more aggressive about taking ownership of free pages.
1074 *
1075 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1076 * nor move CMA pages to different free lists. We don't want unmovable pages
1077 * to be allocated from MIGRATE_CMA areas.
1078 *
1079 * Returns the new migratetype of the pageblock (or the same old migratetype
1080 * if it was unchanged).
1081 */
1082 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1083 int start_type, int fallback_type)
1084 {
1085 int current_order = page_order(page);
1086
1087 /*
1088 * When borrowing from MIGRATE_CMA, we need to release the excess
1089 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1090 * is set to CMA so it is returned to the correct freelist in case
1091 * the page ends up being not actually allocated from the pcp lists.
1092 */
1093 if (is_migrate_cma(fallback_type))
1094 return fallback_type;
1095
1096 /* Take ownership for orders >= pageblock_order */
1097 if (current_order >= pageblock_order) {
1098 change_pageblock_range(page, current_order, start_type);
1099 return start_type;
1100 }
1101
1102 if (current_order >= pageblock_order / 2 ||
1103 start_type == MIGRATE_RECLAIMABLE ||
1104 page_group_by_mobility_disabled) {
1105 int pages;
1106
1107 pages = move_freepages_block(zone, page, start_type);
1108
1109 /* Claim the whole block if over half of it is free */
1110 if (pages >= (1 << (pageblock_order-1)) ||
1111 page_group_by_mobility_disabled) {
1112
1113 set_pageblock_migratetype(page, start_type);
1114 return start_type;
1115 }
1116
1117 }
1118
1119 return fallback_type;
1120 }
1121
1122 /* Remove an element from the buddy allocator from the fallback list */
1123 static inline struct page *
1124 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1125 {
1126 struct free_area *area;
1127 unsigned int current_order;
1128 struct page *page;
1129 int migratetype, new_type, i;
1130
1131 /* Find the largest possible block of pages in the other list */
1132 for (current_order = MAX_ORDER-1;
1133 current_order >= order && current_order <= MAX_ORDER-1;
1134 --current_order) {
1135 for (i = 0;; i++) {
1136 migratetype = fallbacks[start_migratetype][i];
1137
1138 /* MIGRATE_RESERVE handled later if necessary */
1139 if (migratetype == MIGRATE_RESERVE)
1140 break;
1141
1142 area = &(zone->free_area[current_order]);
1143 if (list_empty(&area->free_list[migratetype]))
1144 continue;
1145
1146 page = list_entry(area->free_list[migratetype].next,
1147 struct page, lru);
1148 area->nr_free--;
1149
1150 new_type = try_to_steal_freepages(zone, page,
1151 start_migratetype,
1152 migratetype);
1153
1154 /* Remove the page from the freelists */
1155 list_del(&page->lru);
1156 rmv_page_order(page);
1157
1158 expand(zone, page, order, current_order, area,
1159 new_type);
1160 /* The freepage_migratetype may differ from pageblock's
1161 * migratetype depending on the decisions in
1162 * try_to_steal_freepages. This is OK as long as it does
1163 * not differ for MIGRATE_CMA type.
1164 */
1165 set_freepage_migratetype(page, new_type);
1166
1167 trace_mm_page_alloc_extfrag(page, order, current_order,
1168 start_migratetype, migratetype, new_type);
1169
1170 return page;
1171 }
1172 }
1173
1174 return NULL;
1175 }
1176
1177 /*
1178 * Do the hard work of removing an element from the buddy allocator.
1179 * Call me with the zone->lock already held.
1180 */
1181 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1182 int migratetype)
1183 {
1184 struct page *page;
1185
1186 retry_reserve:
1187 page = __rmqueue_smallest(zone, order, migratetype);
1188
1189 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1190 page = __rmqueue_fallback(zone, order, migratetype);
1191
1192 /*
1193 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1194 * is used because __rmqueue_smallest is an inline function
1195 * and we want just one call site
1196 */
1197 if (!page) {
1198 migratetype = MIGRATE_RESERVE;
1199 goto retry_reserve;
1200 }
1201 }
1202
1203 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1204 return page;
1205 }
1206
1207 /*
1208 * Obtain a specified number of elements from the buddy allocator, all under
1209 * a single hold of the lock, for efficiency. Add them to the supplied list.
1210 * Returns the number of new pages which were placed at *list.
1211 */
1212 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1213 unsigned long count, struct list_head *list,
1214 int migratetype, bool cold)
1215 {
1216 int i;
1217
1218 spin_lock(&zone->lock);
1219 for (i = 0; i < count; ++i) {
1220 struct page *page = __rmqueue(zone, order, migratetype);
1221 if (unlikely(page == NULL))
1222 break;
1223
1224 /*
1225 * Split buddy pages returned by expand() are received here
1226 * in physical page order. The page is added to the callers and
1227 * list and the list head then moves forward. From the callers
1228 * perspective, the linked list is ordered by page number in
1229 * some conditions. This is useful for IO devices that can
1230 * merge IO requests if the physical pages are ordered
1231 * properly.
1232 */
1233 if (likely(!cold))
1234 list_add(&page->lru, list);
1235 else
1236 list_add_tail(&page->lru, list);
1237 list = &page->lru;
1238 if (is_migrate_cma(get_freepage_migratetype(page)))
1239 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1240 -(1 << order));
1241 }
1242 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1243 spin_unlock(&zone->lock);
1244 return i;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 /*
1249 * Called from the vmstat counter updater to drain pagesets of this
1250 * currently executing processor on remote nodes after they have
1251 * expired.
1252 *
1253 * Note that this function must be called with the thread pinned to
1254 * a single processor.
1255 */
1256 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1257 {
1258 unsigned long flags;
1259 int to_drain, batch;
1260
1261 local_irq_save(flags);
1262 batch = ACCESS_ONCE(pcp->batch);
1263 to_drain = min(pcp->count, batch);
1264 if (to_drain > 0) {
1265 free_pcppages_bulk(zone, to_drain, pcp);
1266 pcp->count -= to_drain;
1267 }
1268 local_irq_restore(flags);
1269 }
1270 #endif
1271
1272 /*
1273 * Drain pcplists of the indicated processor and zone.
1274 *
1275 * The processor must either be the current processor and the
1276 * thread pinned to the current processor or a processor that
1277 * is not online.
1278 */
1279 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1280 {
1281 unsigned long flags;
1282 struct per_cpu_pageset *pset;
1283 struct per_cpu_pages *pcp;
1284
1285 local_irq_save(flags);
1286 pset = per_cpu_ptr(zone->pageset, cpu);
1287
1288 pcp = &pset->pcp;
1289 if (pcp->count) {
1290 free_pcppages_bulk(zone, pcp->count, pcp);
1291 pcp->count = 0;
1292 }
1293 local_irq_restore(flags);
1294 }
1295
1296 /*
1297 * Drain pcplists of all zones on the indicated processor.
1298 *
1299 * The processor must either be the current processor and the
1300 * thread pinned to the current processor or a processor that
1301 * is not online.
1302 */
1303 static void drain_pages(unsigned int cpu)
1304 {
1305 struct zone *zone;
1306
1307 for_each_populated_zone(zone) {
1308 drain_pages_zone(cpu, zone);
1309 }
1310 }
1311
1312 /*
1313 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1314 *
1315 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1316 * the single zone's pages.
1317 */
1318 void drain_local_pages(struct zone *zone)
1319 {
1320 int cpu = smp_processor_id();
1321
1322 if (zone)
1323 drain_pages_zone(cpu, zone);
1324 else
1325 drain_pages(cpu);
1326 }
1327
1328 /*
1329 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1330 *
1331 * When zone parameter is non-NULL, spill just the single zone's pages.
1332 *
1333 * Note that this code is protected against sending an IPI to an offline
1334 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1335 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1336 * nothing keeps CPUs from showing up after we populated the cpumask and
1337 * before the call to on_each_cpu_mask().
1338 */
1339 void drain_all_pages(struct zone *zone)
1340 {
1341 int cpu;
1342
1343 /*
1344 * Allocate in the BSS so we wont require allocation in
1345 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1346 */
1347 static cpumask_t cpus_with_pcps;
1348
1349 /*
1350 * We don't care about racing with CPU hotplug event
1351 * as offline notification will cause the notified
1352 * cpu to drain that CPU pcps and on_each_cpu_mask
1353 * disables preemption as part of its processing
1354 */
1355 for_each_online_cpu(cpu) {
1356 struct per_cpu_pageset *pcp;
1357 struct zone *z;
1358 bool has_pcps = false;
1359
1360 if (zone) {
1361 pcp = per_cpu_ptr(zone->pageset, cpu);
1362 if (pcp->pcp.count)
1363 has_pcps = true;
1364 } else {
1365 for_each_populated_zone(z) {
1366 pcp = per_cpu_ptr(z->pageset, cpu);
1367 if (pcp->pcp.count) {
1368 has_pcps = true;
1369 break;
1370 }
1371 }
1372 }
1373
1374 if (has_pcps)
1375 cpumask_set_cpu(cpu, &cpus_with_pcps);
1376 else
1377 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1378 }
1379 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1380 zone, 1);
1381 }
1382
1383 #ifdef CONFIG_HIBERNATION
1384
1385 void mark_free_pages(struct zone *zone)
1386 {
1387 unsigned long pfn, max_zone_pfn;
1388 unsigned long flags;
1389 unsigned int order, t;
1390 struct list_head *curr;
1391
1392 if (zone_is_empty(zone))
1393 return;
1394
1395 spin_lock_irqsave(&zone->lock, flags);
1396
1397 max_zone_pfn = zone_end_pfn(zone);
1398 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1399 if (pfn_valid(pfn)) {
1400 struct page *page = pfn_to_page(pfn);
1401
1402 if (!swsusp_page_is_forbidden(page))
1403 swsusp_unset_page_free(page);
1404 }
1405
1406 for_each_migratetype_order(order, t) {
1407 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1408 unsigned long i;
1409
1410 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1411 for (i = 0; i < (1UL << order); i++)
1412 swsusp_set_page_free(pfn_to_page(pfn + i));
1413 }
1414 }
1415 spin_unlock_irqrestore(&zone->lock, flags);
1416 }
1417 #endif /* CONFIG_PM */
1418
1419 /*
1420 * Free a 0-order page
1421 * cold == true ? free a cold page : free a hot page
1422 */
1423 void free_hot_cold_page(struct page *page, bool cold)
1424 {
1425 struct zone *zone = page_zone(page);
1426 struct per_cpu_pages *pcp;
1427 unsigned long flags;
1428 unsigned long pfn = page_to_pfn(page);
1429 int migratetype;
1430
1431 if (!free_pages_prepare(page, 0))
1432 return;
1433
1434 migratetype = get_pfnblock_migratetype(page, pfn);
1435 set_freepage_migratetype(page, migratetype);
1436 local_irq_save(flags);
1437 __count_vm_event(PGFREE);
1438
1439 /*
1440 * We only track unmovable, reclaimable and movable on pcp lists.
1441 * Free ISOLATE pages back to the allocator because they are being
1442 * offlined but treat RESERVE as movable pages so we can get those
1443 * areas back if necessary. Otherwise, we may have to free
1444 * excessively into the page allocator
1445 */
1446 if (migratetype >= MIGRATE_PCPTYPES) {
1447 if (unlikely(is_migrate_isolate(migratetype))) {
1448 free_one_page(zone, page, pfn, 0, migratetype);
1449 goto out;
1450 }
1451 migratetype = MIGRATE_MOVABLE;
1452 }
1453
1454 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1455 if (!cold)
1456 list_add(&page->lru, &pcp->lists[migratetype]);
1457 else
1458 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1459 pcp->count++;
1460 if (pcp->count >= pcp->high) {
1461 unsigned long batch = ACCESS_ONCE(pcp->batch);
1462 free_pcppages_bulk(zone, batch, pcp);
1463 pcp->count -= batch;
1464 }
1465
1466 out:
1467 local_irq_restore(flags);
1468 }
1469
1470 /*
1471 * Free a list of 0-order pages
1472 */
1473 void free_hot_cold_page_list(struct list_head *list, bool cold)
1474 {
1475 struct page *page, *next;
1476
1477 list_for_each_entry_safe(page, next, list, lru) {
1478 trace_mm_page_free_batched(page, cold);
1479 free_hot_cold_page(page, cold);
1480 }
1481 }
1482
1483 /*
1484 * split_page takes a non-compound higher-order page, and splits it into
1485 * n (1<<order) sub-pages: page[0..n]
1486 * Each sub-page must be freed individually.
1487 *
1488 * Note: this is probably too low level an operation for use in drivers.
1489 * Please consult with lkml before using this in your driver.
1490 */
1491 void split_page(struct page *page, unsigned int order)
1492 {
1493 int i;
1494
1495 VM_BUG_ON_PAGE(PageCompound(page), page);
1496 VM_BUG_ON_PAGE(!page_count(page), page);
1497
1498 #ifdef CONFIG_KMEMCHECK
1499 /*
1500 * Split shadow pages too, because free(page[0]) would
1501 * otherwise free the whole shadow.
1502 */
1503 if (kmemcheck_page_is_tracked(page))
1504 split_page(virt_to_page(page[0].shadow), order);
1505 #endif
1506
1507 for (i = 1; i < (1 << order); i++)
1508 set_page_refcounted(page + i);
1509 }
1510 EXPORT_SYMBOL_GPL(split_page);
1511
1512 int __isolate_free_page(struct page *page, unsigned int order)
1513 {
1514 unsigned long watermark;
1515 struct zone *zone;
1516 int mt;
1517
1518 BUG_ON(!PageBuddy(page));
1519
1520 zone = page_zone(page);
1521 mt = get_pageblock_migratetype(page);
1522
1523 if (!is_migrate_isolate(mt)) {
1524 /* Obey watermarks as if the page was being allocated */
1525 watermark = low_wmark_pages(zone) + (1 << order);
1526 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1527 return 0;
1528
1529 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1530 }
1531
1532 /* Remove page from free list */
1533 list_del(&page->lru);
1534 zone->free_area[order].nr_free--;
1535 rmv_page_order(page);
1536
1537 /* Set the pageblock if the isolated page is at least a pageblock */
1538 if (order >= pageblock_order - 1) {
1539 struct page *endpage = page + (1 << order) - 1;
1540 for (; page < endpage; page += pageblock_nr_pages) {
1541 int mt = get_pageblock_migratetype(page);
1542 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1543 set_pageblock_migratetype(page,
1544 MIGRATE_MOVABLE);
1545 }
1546 }
1547
1548 return 1UL << order;
1549 }
1550
1551 /*
1552 * Similar to split_page except the page is already free. As this is only
1553 * being used for migration, the migratetype of the block also changes.
1554 * As this is called with interrupts disabled, the caller is responsible
1555 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1556 * are enabled.
1557 *
1558 * Note: this is probably too low level an operation for use in drivers.
1559 * Please consult with lkml before using this in your driver.
1560 */
1561 int split_free_page(struct page *page)
1562 {
1563 unsigned int order;
1564 int nr_pages;
1565
1566 order = page_order(page);
1567
1568 nr_pages = __isolate_free_page(page, order);
1569 if (!nr_pages)
1570 return 0;
1571
1572 /* Split into individual pages */
1573 set_page_refcounted(page);
1574 split_page(page, order);
1575 return nr_pages;
1576 }
1577
1578 /*
1579 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1580 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1581 * or two.
1582 */
1583 static inline
1584 struct page *buffered_rmqueue(struct zone *preferred_zone,
1585 struct zone *zone, unsigned int order,
1586 gfp_t gfp_flags, int migratetype)
1587 {
1588 unsigned long flags;
1589 struct page *page;
1590 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1591
1592 again:
1593 if (likely(order == 0)) {
1594 struct per_cpu_pages *pcp;
1595 struct list_head *list;
1596
1597 local_irq_save(flags);
1598 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1599 list = &pcp->lists[migratetype];
1600 if (list_empty(list)) {
1601 pcp->count += rmqueue_bulk(zone, 0,
1602 pcp->batch, list,
1603 migratetype, cold);
1604 if (unlikely(list_empty(list)))
1605 goto failed;
1606 }
1607
1608 if (cold)
1609 page = list_entry(list->prev, struct page, lru);
1610 else
1611 page = list_entry(list->next, struct page, lru);
1612
1613 list_del(&page->lru);
1614 pcp->count--;
1615 } else {
1616 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1617 /*
1618 * __GFP_NOFAIL is not to be used in new code.
1619 *
1620 * All __GFP_NOFAIL callers should be fixed so that they
1621 * properly detect and handle allocation failures.
1622 *
1623 * We most definitely don't want callers attempting to
1624 * allocate greater than order-1 page units with
1625 * __GFP_NOFAIL.
1626 */
1627 WARN_ON_ONCE(order > 1);
1628 }
1629 spin_lock_irqsave(&zone->lock, flags);
1630 page = __rmqueue(zone, order, migratetype);
1631 spin_unlock(&zone->lock);
1632 if (!page)
1633 goto failed;
1634 __mod_zone_freepage_state(zone, -(1 << order),
1635 get_freepage_migratetype(page));
1636 }
1637
1638 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1639 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1640 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1641 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1642
1643 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1644 zone_statistics(preferred_zone, zone, gfp_flags);
1645 local_irq_restore(flags);
1646
1647 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1648 if (prep_new_page(page, order, gfp_flags))
1649 goto again;
1650 return page;
1651
1652 failed:
1653 local_irq_restore(flags);
1654 return NULL;
1655 }
1656
1657 #ifdef CONFIG_FAIL_PAGE_ALLOC
1658
1659 static struct {
1660 struct fault_attr attr;
1661
1662 u32 ignore_gfp_highmem;
1663 u32 ignore_gfp_wait;
1664 u32 min_order;
1665 } fail_page_alloc = {
1666 .attr = FAULT_ATTR_INITIALIZER,
1667 .ignore_gfp_wait = 1,
1668 .ignore_gfp_highmem = 1,
1669 .min_order = 1,
1670 };
1671
1672 static int __init setup_fail_page_alloc(char *str)
1673 {
1674 return setup_fault_attr(&fail_page_alloc.attr, str);
1675 }
1676 __setup("fail_page_alloc=", setup_fail_page_alloc);
1677
1678 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1679 {
1680 if (order < fail_page_alloc.min_order)
1681 return false;
1682 if (gfp_mask & __GFP_NOFAIL)
1683 return false;
1684 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1685 return false;
1686 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1687 return false;
1688
1689 return should_fail(&fail_page_alloc.attr, 1 << order);
1690 }
1691
1692 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1693
1694 static int __init fail_page_alloc_debugfs(void)
1695 {
1696 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1697 struct dentry *dir;
1698
1699 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1700 &fail_page_alloc.attr);
1701 if (IS_ERR(dir))
1702 return PTR_ERR(dir);
1703
1704 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1705 &fail_page_alloc.ignore_gfp_wait))
1706 goto fail;
1707 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1708 &fail_page_alloc.ignore_gfp_highmem))
1709 goto fail;
1710 if (!debugfs_create_u32("min-order", mode, dir,
1711 &fail_page_alloc.min_order))
1712 goto fail;
1713
1714 return 0;
1715 fail:
1716 debugfs_remove_recursive(dir);
1717
1718 return -ENOMEM;
1719 }
1720
1721 late_initcall(fail_page_alloc_debugfs);
1722
1723 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1724
1725 #else /* CONFIG_FAIL_PAGE_ALLOC */
1726
1727 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1728 {
1729 return false;
1730 }
1731
1732 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1733
1734 /*
1735 * Return true if free pages are above 'mark'. This takes into account the order
1736 * of the allocation.
1737 */
1738 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1739 unsigned long mark, int classzone_idx, int alloc_flags,
1740 long free_pages)
1741 {
1742 /* free_pages may go negative - that's OK */
1743 long min = mark;
1744 int o;
1745 long free_cma = 0;
1746
1747 free_pages -= (1 << order) - 1;
1748 if (alloc_flags & ALLOC_HIGH)
1749 min -= min / 2;
1750 if (alloc_flags & ALLOC_HARDER)
1751 min -= min / 4;
1752 #ifdef CONFIG_CMA
1753 /* If allocation can't use CMA areas don't use free CMA pages */
1754 if (!(alloc_flags & ALLOC_CMA))
1755 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1756 #endif
1757
1758 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1759 return false;
1760 for (o = 0; o < order; o++) {
1761 /* At the next order, this order's pages become unavailable */
1762 free_pages -= z->free_area[o].nr_free << o;
1763
1764 /* Require fewer higher order pages to be free */
1765 min >>= 1;
1766
1767 if (free_pages <= min)
1768 return false;
1769 }
1770 return true;
1771 }
1772
1773 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1774 int classzone_idx, int alloc_flags)
1775 {
1776 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1777 zone_page_state(z, NR_FREE_PAGES));
1778 }
1779
1780 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1781 unsigned long mark, int classzone_idx, int alloc_flags)
1782 {
1783 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1784
1785 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1786 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1787
1788 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1789 free_pages);
1790 }
1791
1792 #ifdef CONFIG_NUMA
1793 /*
1794 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1795 * skip over zones that are not allowed by the cpuset, or that have
1796 * been recently (in last second) found to be nearly full. See further
1797 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1798 * that have to skip over a lot of full or unallowed zones.
1799 *
1800 * If the zonelist cache is present in the passed zonelist, then
1801 * returns a pointer to the allowed node mask (either the current
1802 * tasks mems_allowed, or node_states[N_MEMORY].)
1803 *
1804 * If the zonelist cache is not available for this zonelist, does
1805 * nothing and returns NULL.
1806 *
1807 * If the fullzones BITMAP in the zonelist cache is stale (more than
1808 * a second since last zap'd) then we zap it out (clear its bits.)
1809 *
1810 * We hold off even calling zlc_setup, until after we've checked the
1811 * first zone in the zonelist, on the theory that most allocations will
1812 * be satisfied from that first zone, so best to examine that zone as
1813 * quickly as we can.
1814 */
1815 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1816 {
1817 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1818 nodemask_t *allowednodes; /* zonelist_cache approximation */
1819
1820 zlc = zonelist->zlcache_ptr;
1821 if (!zlc)
1822 return NULL;
1823
1824 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1825 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1826 zlc->last_full_zap = jiffies;
1827 }
1828
1829 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1830 &cpuset_current_mems_allowed :
1831 &node_states[N_MEMORY];
1832 return allowednodes;
1833 }
1834
1835 /*
1836 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1837 * if it is worth looking at further for free memory:
1838 * 1) Check that the zone isn't thought to be full (doesn't have its
1839 * bit set in the zonelist_cache fullzones BITMAP).
1840 * 2) Check that the zones node (obtained from the zonelist_cache
1841 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1842 * Return true (non-zero) if zone is worth looking at further, or
1843 * else return false (zero) if it is not.
1844 *
1845 * This check -ignores- the distinction between various watermarks,
1846 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1847 * found to be full for any variation of these watermarks, it will
1848 * be considered full for up to one second by all requests, unless
1849 * we are so low on memory on all allowed nodes that we are forced
1850 * into the second scan of the zonelist.
1851 *
1852 * In the second scan we ignore this zonelist cache and exactly
1853 * apply the watermarks to all zones, even it is slower to do so.
1854 * We are low on memory in the second scan, and should leave no stone
1855 * unturned looking for a free page.
1856 */
1857 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1858 nodemask_t *allowednodes)
1859 {
1860 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1861 int i; /* index of *z in zonelist zones */
1862 int n; /* node that zone *z is on */
1863
1864 zlc = zonelist->zlcache_ptr;
1865 if (!zlc)
1866 return 1;
1867
1868 i = z - zonelist->_zonerefs;
1869 n = zlc->z_to_n[i];
1870
1871 /* This zone is worth trying if it is allowed but not full */
1872 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1873 }
1874
1875 /*
1876 * Given 'z' scanning a zonelist, set the corresponding bit in
1877 * zlc->fullzones, so that subsequent attempts to allocate a page
1878 * from that zone don't waste time re-examining it.
1879 */
1880 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1881 {
1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1883 int i; /* index of *z in zonelist zones */
1884
1885 zlc = zonelist->zlcache_ptr;
1886 if (!zlc)
1887 return;
1888
1889 i = z - zonelist->_zonerefs;
1890
1891 set_bit(i, zlc->fullzones);
1892 }
1893
1894 /*
1895 * clear all zones full, called after direct reclaim makes progress so that
1896 * a zone that was recently full is not skipped over for up to a second
1897 */
1898 static void zlc_clear_zones_full(struct zonelist *zonelist)
1899 {
1900 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1901
1902 zlc = zonelist->zlcache_ptr;
1903 if (!zlc)
1904 return;
1905
1906 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1907 }
1908
1909 static bool zone_local(struct zone *local_zone, struct zone *zone)
1910 {
1911 return local_zone->node == zone->node;
1912 }
1913
1914 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1915 {
1916 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1917 RECLAIM_DISTANCE;
1918 }
1919
1920 #else /* CONFIG_NUMA */
1921
1922 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1923 {
1924 return NULL;
1925 }
1926
1927 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1928 nodemask_t *allowednodes)
1929 {
1930 return 1;
1931 }
1932
1933 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1934 {
1935 }
1936
1937 static void zlc_clear_zones_full(struct zonelist *zonelist)
1938 {
1939 }
1940
1941 static bool zone_local(struct zone *local_zone, struct zone *zone)
1942 {
1943 return true;
1944 }
1945
1946 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1947 {
1948 return true;
1949 }
1950
1951 #endif /* CONFIG_NUMA */
1952
1953 static void reset_alloc_batches(struct zone *preferred_zone)
1954 {
1955 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1956
1957 do {
1958 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1959 high_wmark_pages(zone) - low_wmark_pages(zone) -
1960 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1961 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1962 } while (zone++ != preferred_zone);
1963 }
1964
1965 /*
1966 * get_page_from_freelist goes through the zonelist trying to allocate
1967 * a page.
1968 */
1969 static struct page *
1970 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1971 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1972 struct zone *preferred_zone, int classzone_idx, int migratetype)
1973 {
1974 struct zoneref *z;
1975 struct page *page = NULL;
1976 struct zone *zone;
1977 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1978 int zlc_active = 0; /* set if using zonelist_cache */
1979 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1980 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1981 (gfp_mask & __GFP_WRITE);
1982 int nr_fair_skipped = 0;
1983 bool zonelist_rescan;
1984
1985 zonelist_scan:
1986 zonelist_rescan = false;
1987
1988 /*
1989 * Scan zonelist, looking for a zone with enough free.
1990 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1991 */
1992 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1993 high_zoneidx, nodemask) {
1994 unsigned long mark;
1995
1996 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1997 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1998 continue;
1999 if (cpusets_enabled() &&
2000 (alloc_flags & ALLOC_CPUSET) &&
2001 !cpuset_zone_allowed_softwall(zone, gfp_mask))
2002 continue;
2003 /*
2004 * Distribute pages in proportion to the individual
2005 * zone size to ensure fair page aging. The zone a
2006 * page was allocated in should have no effect on the
2007 * time the page has in memory before being reclaimed.
2008 */
2009 if (alloc_flags & ALLOC_FAIR) {
2010 if (!zone_local(preferred_zone, zone))
2011 break;
2012 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2013 nr_fair_skipped++;
2014 continue;
2015 }
2016 }
2017 /*
2018 * When allocating a page cache page for writing, we
2019 * want to get it from a zone that is within its dirty
2020 * limit, such that no single zone holds more than its
2021 * proportional share of globally allowed dirty pages.
2022 * The dirty limits take into account the zone's
2023 * lowmem reserves and high watermark so that kswapd
2024 * should be able to balance it without having to
2025 * write pages from its LRU list.
2026 *
2027 * This may look like it could increase pressure on
2028 * lower zones by failing allocations in higher zones
2029 * before they are full. But the pages that do spill
2030 * over are limited as the lower zones are protected
2031 * by this very same mechanism. It should not become
2032 * a practical burden to them.
2033 *
2034 * XXX: For now, allow allocations to potentially
2035 * exceed the per-zone dirty limit in the slowpath
2036 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2037 * which is important when on a NUMA setup the allowed
2038 * zones are together not big enough to reach the
2039 * global limit. The proper fix for these situations
2040 * will require awareness of zones in the
2041 * dirty-throttling and the flusher threads.
2042 */
2043 if (consider_zone_dirty && !zone_dirty_ok(zone))
2044 continue;
2045
2046 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2047 if (!zone_watermark_ok(zone, order, mark,
2048 classzone_idx, alloc_flags)) {
2049 int ret;
2050
2051 /* Checked here to keep the fast path fast */
2052 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2053 if (alloc_flags & ALLOC_NO_WATERMARKS)
2054 goto try_this_zone;
2055
2056 if (IS_ENABLED(CONFIG_NUMA) &&
2057 !did_zlc_setup && nr_online_nodes > 1) {
2058 /*
2059 * we do zlc_setup if there are multiple nodes
2060 * and before considering the first zone allowed
2061 * by the cpuset.
2062 */
2063 allowednodes = zlc_setup(zonelist, alloc_flags);
2064 zlc_active = 1;
2065 did_zlc_setup = 1;
2066 }
2067
2068 if (zone_reclaim_mode == 0 ||
2069 !zone_allows_reclaim(preferred_zone, zone))
2070 goto this_zone_full;
2071
2072 /*
2073 * As we may have just activated ZLC, check if the first
2074 * eligible zone has failed zone_reclaim recently.
2075 */
2076 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2077 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2078 continue;
2079
2080 ret = zone_reclaim(zone, gfp_mask, order);
2081 switch (ret) {
2082 case ZONE_RECLAIM_NOSCAN:
2083 /* did not scan */
2084 continue;
2085 case ZONE_RECLAIM_FULL:
2086 /* scanned but unreclaimable */
2087 continue;
2088 default:
2089 /* did we reclaim enough */
2090 if (zone_watermark_ok(zone, order, mark,
2091 classzone_idx, alloc_flags))
2092 goto try_this_zone;
2093
2094 /*
2095 * Failed to reclaim enough to meet watermark.
2096 * Only mark the zone full if checking the min
2097 * watermark or if we failed to reclaim just
2098 * 1<<order pages or else the page allocator
2099 * fastpath will prematurely mark zones full
2100 * when the watermark is between the low and
2101 * min watermarks.
2102 */
2103 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2104 ret == ZONE_RECLAIM_SOME)
2105 goto this_zone_full;
2106
2107 continue;
2108 }
2109 }
2110
2111 try_this_zone:
2112 page = buffered_rmqueue(preferred_zone, zone, order,
2113 gfp_mask, migratetype);
2114 if (page)
2115 break;
2116 this_zone_full:
2117 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2118 zlc_mark_zone_full(zonelist, z);
2119 }
2120
2121 if (page) {
2122 /*
2123 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2124 * necessary to allocate the page. The expectation is
2125 * that the caller is taking steps that will free more
2126 * memory. The caller should avoid the page being used
2127 * for !PFMEMALLOC purposes.
2128 */
2129 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2130 return page;
2131 }
2132
2133 /*
2134 * The first pass makes sure allocations are spread fairly within the
2135 * local node. However, the local node might have free pages left
2136 * after the fairness batches are exhausted, and remote zones haven't
2137 * even been considered yet. Try once more without fairness, and
2138 * include remote zones now, before entering the slowpath and waking
2139 * kswapd: prefer spilling to a remote zone over swapping locally.
2140 */
2141 if (alloc_flags & ALLOC_FAIR) {
2142 alloc_flags &= ~ALLOC_FAIR;
2143 if (nr_fair_skipped) {
2144 zonelist_rescan = true;
2145 reset_alloc_batches(preferred_zone);
2146 }
2147 if (nr_online_nodes > 1)
2148 zonelist_rescan = true;
2149 }
2150
2151 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2152 /* Disable zlc cache for second zonelist scan */
2153 zlc_active = 0;
2154 zonelist_rescan = true;
2155 }
2156
2157 if (zonelist_rescan)
2158 goto zonelist_scan;
2159
2160 return NULL;
2161 }
2162
2163 /*
2164 * Large machines with many possible nodes should not always dump per-node
2165 * meminfo in irq context.
2166 */
2167 static inline bool should_suppress_show_mem(void)
2168 {
2169 bool ret = false;
2170
2171 #if NODES_SHIFT > 8
2172 ret = in_interrupt();
2173 #endif
2174 return ret;
2175 }
2176
2177 static DEFINE_RATELIMIT_STATE(nopage_rs,
2178 DEFAULT_RATELIMIT_INTERVAL,
2179 DEFAULT_RATELIMIT_BURST);
2180
2181 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2182 {
2183 unsigned int filter = SHOW_MEM_FILTER_NODES;
2184
2185 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2186 debug_guardpage_minorder() > 0)
2187 return;
2188
2189 /*
2190 * This documents exceptions given to allocations in certain
2191 * contexts that are allowed to allocate outside current's set
2192 * of allowed nodes.
2193 */
2194 if (!(gfp_mask & __GFP_NOMEMALLOC))
2195 if (test_thread_flag(TIF_MEMDIE) ||
2196 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2197 filter &= ~SHOW_MEM_FILTER_NODES;
2198 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2199 filter &= ~SHOW_MEM_FILTER_NODES;
2200
2201 if (fmt) {
2202 struct va_format vaf;
2203 va_list args;
2204
2205 va_start(args, fmt);
2206
2207 vaf.fmt = fmt;
2208 vaf.va = &args;
2209
2210 pr_warn("%pV", &vaf);
2211
2212 va_end(args);
2213 }
2214
2215 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2216 current->comm, order, gfp_mask);
2217
2218 dump_stack();
2219 if (!should_suppress_show_mem())
2220 show_mem(filter);
2221 }
2222
2223 static inline int
2224 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2225 unsigned long did_some_progress,
2226 unsigned long pages_reclaimed)
2227 {
2228 /* Do not loop if specifically requested */
2229 if (gfp_mask & __GFP_NORETRY)
2230 return 0;
2231
2232 /* Always retry if specifically requested */
2233 if (gfp_mask & __GFP_NOFAIL)
2234 return 1;
2235
2236 /*
2237 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2238 * making forward progress without invoking OOM. Suspend also disables
2239 * storage devices so kswapd will not help. Bail if we are suspending.
2240 */
2241 if (!did_some_progress && pm_suspended_storage())
2242 return 0;
2243
2244 /*
2245 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2246 * means __GFP_NOFAIL, but that may not be true in other
2247 * implementations.
2248 */
2249 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2250 return 1;
2251
2252 /*
2253 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2254 * specified, then we retry until we no longer reclaim any pages
2255 * (above), or we've reclaimed an order of pages at least as
2256 * large as the allocation's order. In both cases, if the
2257 * allocation still fails, we stop retrying.
2258 */
2259 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 static inline struct page *
2266 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
2268 nodemask_t *nodemask, struct zone *preferred_zone,
2269 int classzone_idx, int migratetype)
2270 {
2271 struct page *page;
2272
2273 /* Acquire the per-zone oom lock for each zone */
2274 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2275 schedule_timeout_uninterruptible(1);
2276 return NULL;
2277 }
2278
2279 /*
2280 * PM-freezer should be notified that there might be an OOM killer on
2281 * its way to kill and wake somebody up. This is too early and we might
2282 * end up not killing anything but false positives are acceptable.
2283 * See freeze_processes.
2284 */
2285 note_oom_kill();
2286
2287 /*
2288 * Go through the zonelist yet one more time, keep very high watermark
2289 * here, this is only to catch a parallel oom killing, we must fail if
2290 * we're still under heavy pressure.
2291 */
2292 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2293 order, zonelist, high_zoneidx,
2294 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2295 preferred_zone, classzone_idx, migratetype);
2296 if (page)
2297 goto out;
2298
2299 if (!(gfp_mask & __GFP_NOFAIL)) {
2300 /* The OOM killer will not help higher order allocs */
2301 if (order > PAGE_ALLOC_COSTLY_ORDER)
2302 goto out;
2303 /* The OOM killer does not needlessly kill tasks for lowmem */
2304 if (high_zoneidx < ZONE_NORMAL)
2305 goto out;
2306 /*
2307 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2308 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2309 * The caller should handle page allocation failure by itself if
2310 * it specifies __GFP_THISNODE.
2311 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2312 */
2313 if (gfp_mask & __GFP_THISNODE)
2314 goto out;
2315 }
2316 /* Exhausted what can be done so it's blamo time */
2317 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2318
2319 out:
2320 oom_zonelist_unlock(zonelist, gfp_mask);
2321 return page;
2322 }
2323
2324 #ifdef CONFIG_COMPACTION
2325 /* Try memory compaction for high-order allocations before reclaim */
2326 static struct page *
2327 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2328 struct zonelist *zonelist, enum zone_type high_zoneidx,
2329 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2330 int classzone_idx, int migratetype, enum migrate_mode mode,
2331 int *contended_compaction, bool *deferred_compaction)
2332 {
2333 unsigned long compact_result;
2334 struct page *page;
2335
2336 if (!order)
2337 return NULL;
2338
2339 current->flags |= PF_MEMALLOC;
2340 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2341 nodemask, mode,
2342 contended_compaction,
2343 alloc_flags, classzone_idx);
2344 current->flags &= ~PF_MEMALLOC;
2345
2346 switch (compact_result) {
2347 case COMPACT_DEFERRED:
2348 *deferred_compaction = true;
2349 /* fall-through */
2350 case COMPACT_SKIPPED:
2351 return NULL;
2352 default:
2353 break;
2354 }
2355
2356 /*
2357 * At least in one zone compaction wasn't deferred or skipped, so let's
2358 * count a compaction stall
2359 */
2360 count_vm_event(COMPACTSTALL);
2361
2362 page = get_page_from_freelist(gfp_mask, nodemask,
2363 order, zonelist, high_zoneidx,
2364 alloc_flags & ~ALLOC_NO_WATERMARKS,
2365 preferred_zone, classzone_idx, migratetype);
2366
2367 if (page) {
2368 struct zone *zone = page_zone(page);
2369
2370 zone->compact_blockskip_flush = false;
2371 compaction_defer_reset(zone, order, true);
2372 count_vm_event(COMPACTSUCCESS);
2373 return page;
2374 }
2375
2376 /*
2377 * It's bad if compaction run occurs and fails. The most likely reason
2378 * is that pages exist, but not enough to satisfy watermarks.
2379 */
2380 count_vm_event(COMPACTFAIL);
2381
2382 cond_resched();
2383
2384 return NULL;
2385 }
2386 #else
2387 static inline struct page *
2388 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2389 struct zonelist *zonelist, enum zone_type high_zoneidx,
2390 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2391 int classzone_idx, int migratetype, enum migrate_mode mode,
2392 int *contended_compaction, bool *deferred_compaction)
2393 {
2394 return NULL;
2395 }
2396 #endif /* CONFIG_COMPACTION */
2397
2398 /* Perform direct synchronous page reclaim */
2399 static int
2400 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2401 nodemask_t *nodemask)
2402 {
2403 struct reclaim_state reclaim_state;
2404 int progress;
2405
2406 cond_resched();
2407
2408 /* We now go into synchronous reclaim */
2409 cpuset_memory_pressure_bump();
2410 current->flags |= PF_MEMALLOC;
2411 lockdep_set_current_reclaim_state(gfp_mask);
2412 reclaim_state.reclaimed_slab = 0;
2413 current->reclaim_state = &reclaim_state;
2414
2415 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2416
2417 current->reclaim_state = NULL;
2418 lockdep_clear_current_reclaim_state();
2419 current->flags &= ~PF_MEMALLOC;
2420
2421 cond_resched();
2422
2423 return progress;
2424 }
2425
2426 /* The really slow allocator path where we enter direct reclaim */
2427 static inline struct page *
2428 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2429 struct zonelist *zonelist, enum zone_type high_zoneidx,
2430 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2431 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2432 {
2433 struct page *page = NULL;
2434 bool drained = false;
2435
2436 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2437 nodemask);
2438 if (unlikely(!(*did_some_progress)))
2439 return NULL;
2440
2441 /* After successful reclaim, reconsider all zones for allocation */
2442 if (IS_ENABLED(CONFIG_NUMA))
2443 zlc_clear_zones_full(zonelist);
2444
2445 retry:
2446 page = get_page_from_freelist(gfp_mask, nodemask, order,
2447 zonelist, high_zoneidx,
2448 alloc_flags & ~ALLOC_NO_WATERMARKS,
2449 preferred_zone, classzone_idx,
2450 migratetype);
2451
2452 /*
2453 * If an allocation failed after direct reclaim, it could be because
2454 * pages are pinned on the per-cpu lists. Drain them and try again
2455 */
2456 if (!page && !drained) {
2457 drain_all_pages(NULL);
2458 drained = true;
2459 goto retry;
2460 }
2461
2462 return page;
2463 }
2464
2465 /*
2466 * This is called in the allocator slow-path if the allocation request is of
2467 * sufficient urgency to ignore watermarks and take other desperate measures
2468 */
2469 static inline struct page *
2470 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2471 struct zonelist *zonelist, enum zone_type high_zoneidx,
2472 nodemask_t *nodemask, struct zone *preferred_zone,
2473 int classzone_idx, int migratetype)
2474 {
2475 struct page *page;
2476
2477 do {
2478 page = get_page_from_freelist(gfp_mask, nodemask, order,
2479 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2480 preferred_zone, classzone_idx, migratetype);
2481
2482 if (!page && gfp_mask & __GFP_NOFAIL)
2483 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2484 } while (!page && (gfp_mask & __GFP_NOFAIL));
2485
2486 return page;
2487 }
2488
2489 static void wake_all_kswapds(unsigned int order,
2490 struct zonelist *zonelist,
2491 enum zone_type high_zoneidx,
2492 struct zone *preferred_zone,
2493 nodemask_t *nodemask)
2494 {
2495 struct zoneref *z;
2496 struct zone *zone;
2497
2498 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2499 high_zoneidx, nodemask)
2500 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2501 }
2502
2503 static inline int
2504 gfp_to_alloc_flags(gfp_t gfp_mask)
2505 {
2506 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2507 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2508
2509 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2510 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2511
2512 /*
2513 * The caller may dip into page reserves a bit more if the caller
2514 * cannot run direct reclaim, or if the caller has realtime scheduling
2515 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2516 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2517 */
2518 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2519
2520 if (atomic) {
2521 /*
2522 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2523 * if it can't schedule.
2524 */
2525 if (!(gfp_mask & __GFP_NOMEMALLOC))
2526 alloc_flags |= ALLOC_HARDER;
2527 /*
2528 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2529 * comment for __cpuset_node_allowed_softwall().
2530 */
2531 alloc_flags &= ~ALLOC_CPUSET;
2532 } else if (unlikely(rt_task(current)) && !in_interrupt())
2533 alloc_flags |= ALLOC_HARDER;
2534
2535 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2536 if (gfp_mask & __GFP_MEMALLOC)
2537 alloc_flags |= ALLOC_NO_WATERMARKS;
2538 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2539 alloc_flags |= ALLOC_NO_WATERMARKS;
2540 else if (!in_interrupt() &&
2541 ((current->flags & PF_MEMALLOC) ||
2542 unlikely(test_thread_flag(TIF_MEMDIE))))
2543 alloc_flags |= ALLOC_NO_WATERMARKS;
2544 }
2545 #ifdef CONFIG_CMA
2546 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2547 alloc_flags |= ALLOC_CMA;
2548 #endif
2549 return alloc_flags;
2550 }
2551
2552 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2553 {
2554 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2555 }
2556
2557 static inline struct page *
2558 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2559 struct zonelist *zonelist, enum zone_type high_zoneidx,
2560 nodemask_t *nodemask, struct zone *preferred_zone,
2561 int classzone_idx, int migratetype)
2562 {
2563 const gfp_t wait = gfp_mask & __GFP_WAIT;
2564 struct page *page = NULL;
2565 int alloc_flags;
2566 unsigned long pages_reclaimed = 0;
2567 unsigned long did_some_progress;
2568 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2569 bool deferred_compaction = false;
2570 int contended_compaction = COMPACT_CONTENDED_NONE;
2571
2572 /*
2573 * In the slowpath, we sanity check order to avoid ever trying to
2574 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2575 * be using allocators in order of preference for an area that is
2576 * too large.
2577 */
2578 if (order >= MAX_ORDER) {
2579 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2580 return NULL;
2581 }
2582
2583 /*
2584 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2585 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2586 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2587 * using a larger set of nodes after it has established that the
2588 * allowed per node queues are empty and that nodes are
2589 * over allocated.
2590 */
2591 if (IS_ENABLED(CONFIG_NUMA) &&
2592 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2593 goto nopage;
2594
2595 restart:
2596 if (!(gfp_mask & __GFP_NO_KSWAPD))
2597 wake_all_kswapds(order, zonelist, high_zoneidx,
2598 preferred_zone, nodemask);
2599
2600 /*
2601 * OK, we're below the kswapd watermark and have kicked background
2602 * reclaim. Now things get more complex, so set up alloc_flags according
2603 * to how we want to proceed.
2604 */
2605 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2606
2607 /*
2608 * Find the true preferred zone if the allocation is unconstrained by
2609 * cpusets.
2610 */
2611 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2612 struct zoneref *preferred_zoneref;
2613 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2614 NULL, &preferred_zone);
2615 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2616 }
2617
2618 rebalance:
2619 /* This is the last chance, in general, before the goto nopage. */
2620 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2621 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2622 preferred_zone, classzone_idx, migratetype);
2623 if (page)
2624 goto got_pg;
2625
2626 /* Allocate without watermarks if the context allows */
2627 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2628 /*
2629 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2630 * the allocation is high priority and these type of
2631 * allocations are system rather than user orientated
2632 */
2633 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2634
2635 page = __alloc_pages_high_priority(gfp_mask, order,
2636 zonelist, high_zoneidx, nodemask,
2637 preferred_zone, classzone_idx, migratetype);
2638 if (page) {
2639 goto got_pg;
2640 }
2641 }
2642
2643 /* Atomic allocations - we can't balance anything */
2644 if (!wait) {
2645 /*
2646 * All existing users of the deprecated __GFP_NOFAIL are
2647 * blockable, so warn of any new users that actually allow this
2648 * type of allocation to fail.
2649 */
2650 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2651 goto nopage;
2652 }
2653
2654 /* Avoid recursion of direct reclaim */
2655 if (current->flags & PF_MEMALLOC)
2656 goto nopage;
2657
2658 /* Avoid allocations with no watermarks from looping endlessly */
2659 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2660 goto nopage;
2661
2662 /*
2663 * Try direct compaction. The first pass is asynchronous. Subsequent
2664 * attempts after direct reclaim are synchronous
2665 */
2666 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2667 high_zoneidx, nodemask, alloc_flags,
2668 preferred_zone,
2669 classzone_idx, migratetype,
2670 migration_mode, &contended_compaction,
2671 &deferred_compaction);
2672 if (page)
2673 goto got_pg;
2674
2675 /* Checks for THP-specific high-order allocations */
2676 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2677 /*
2678 * If compaction is deferred for high-order allocations, it is
2679 * because sync compaction recently failed. If this is the case
2680 * and the caller requested a THP allocation, we do not want
2681 * to heavily disrupt the system, so we fail the allocation
2682 * instead of entering direct reclaim.
2683 */
2684 if (deferred_compaction)
2685 goto nopage;
2686
2687 /*
2688 * In all zones where compaction was attempted (and not
2689 * deferred or skipped), lock contention has been detected.
2690 * For THP allocation we do not want to disrupt the others
2691 * so we fallback to base pages instead.
2692 */
2693 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2694 goto nopage;
2695
2696 /*
2697 * If compaction was aborted due to need_resched(), we do not
2698 * want to further increase allocation latency, unless it is
2699 * khugepaged trying to collapse.
2700 */
2701 if (contended_compaction == COMPACT_CONTENDED_SCHED
2702 && !(current->flags & PF_KTHREAD))
2703 goto nopage;
2704 }
2705
2706 /*
2707 * It can become very expensive to allocate transparent hugepages at
2708 * fault, so use asynchronous memory compaction for THP unless it is
2709 * khugepaged trying to collapse.
2710 */
2711 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2712 (current->flags & PF_KTHREAD))
2713 migration_mode = MIGRATE_SYNC_LIGHT;
2714
2715 /* Try direct reclaim and then allocating */
2716 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2717 zonelist, high_zoneidx,
2718 nodemask,
2719 alloc_flags, preferred_zone,
2720 classzone_idx, migratetype,
2721 &did_some_progress);
2722 if (page)
2723 goto got_pg;
2724
2725 /*
2726 * If we failed to make any progress reclaiming, then we are
2727 * running out of options and have to consider going OOM
2728 */
2729 if (!did_some_progress) {
2730 if (oom_gfp_allowed(gfp_mask)) {
2731 if (oom_killer_disabled)
2732 goto nopage;
2733 /* Coredumps can quickly deplete all memory reserves */
2734 if ((current->flags & PF_DUMPCORE) &&
2735 !(gfp_mask & __GFP_NOFAIL))
2736 goto nopage;
2737 page = __alloc_pages_may_oom(gfp_mask, order,
2738 zonelist, high_zoneidx,
2739 nodemask, preferred_zone,
2740 classzone_idx, migratetype);
2741 if (page)
2742 goto got_pg;
2743
2744 if (!(gfp_mask & __GFP_NOFAIL)) {
2745 /*
2746 * The oom killer is not called for high-order
2747 * allocations that may fail, so if no progress
2748 * is being made, there are no other options and
2749 * retrying is unlikely to help.
2750 */
2751 if (order > PAGE_ALLOC_COSTLY_ORDER)
2752 goto nopage;
2753 /*
2754 * The oom killer is not called for lowmem
2755 * allocations to prevent needlessly killing
2756 * innocent tasks.
2757 */
2758 if (high_zoneidx < ZONE_NORMAL)
2759 goto nopage;
2760 }
2761
2762 goto restart;
2763 }
2764 }
2765
2766 /* Check if we should retry the allocation */
2767 pages_reclaimed += did_some_progress;
2768 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2769 pages_reclaimed)) {
2770 /* Wait for some write requests to complete then retry */
2771 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2772 goto rebalance;
2773 } else {
2774 /*
2775 * High-order allocations do not necessarily loop after
2776 * direct reclaim and reclaim/compaction depends on compaction
2777 * being called after reclaim so call directly if necessary
2778 */
2779 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2780 high_zoneidx, nodemask, alloc_flags,
2781 preferred_zone,
2782 classzone_idx, migratetype,
2783 migration_mode, &contended_compaction,
2784 &deferred_compaction);
2785 if (page)
2786 goto got_pg;
2787 }
2788
2789 nopage:
2790 warn_alloc_failed(gfp_mask, order, NULL);
2791 return page;
2792 got_pg:
2793 if (kmemcheck_enabled)
2794 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2795
2796 return page;
2797 }
2798
2799 /*
2800 * This is the 'heart' of the zoned buddy allocator.
2801 */
2802 struct page *
2803 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2804 struct zonelist *zonelist, nodemask_t *nodemask)
2805 {
2806 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2807 struct zone *preferred_zone;
2808 struct zoneref *preferred_zoneref;
2809 struct page *page = NULL;
2810 int migratetype = gfpflags_to_migratetype(gfp_mask);
2811 unsigned int cpuset_mems_cookie;
2812 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2813 int classzone_idx;
2814
2815 gfp_mask &= gfp_allowed_mask;
2816
2817 lockdep_trace_alloc(gfp_mask);
2818
2819 might_sleep_if(gfp_mask & __GFP_WAIT);
2820
2821 if (should_fail_alloc_page(gfp_mask, order))
2822 return NULL;
2823
2824 /*
2825 * Check the zones suitable for the gfp_mask contain at least one
2826 * valid zone. It's possible to have an empty zonelist as a result
2827 * of GFP_THISNODE and a memoryless node
2828 */
2829 if (unlikely(!zonelist->_zonerefs->zone))
2830 return NULL;
2831
2832 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2833 alloc_flags |= ALLOC_CMA;
2834
2835 retry_cpuset:
2836 cpuset_mems_cookie = read_mems_allowed_begin();
2837
2838 /* The preferred zone is used for statistics later */
2839 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2840 nodemask ? : &cpuset_current_mems_allowed,
2841 &preferred_zone);
2842 if (!preferred_zone)
2843 goto out;
2844 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2845
2846 /* First allocation attempt */
2847 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2848 zonelist, high_zoneidx, alloc_flags,
2849 preferred_zone, classzone_idx, migratetype);
2850 if (unlikely(!page)) {
2851 /*
2852 * Runtime PM, block IO and its error handling path
2853 * can deadlock because I/O on the device might not
2854 * complete.
2855 */
2856 gfp_mask = memalloc_noio_flags(gfp_mask);
2857 page = __alloc_pages_slowpath(gfp_mask, order,
2858 zonelist, high_zoneidx, nodemask,
2859 preferred_zone, classzone_idx, migratetype);
2860 }
2861
2862 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2863
2864 out:
2865 /*
2866 * When updating a task's mems_allowed, it is possible to race with
2867 * parallel threads in such a way that an allocation can fail while
2868 * the mask is being updated. If a page allocation is about to fail,
2869 * check if the cpuset changed during allocation and if so, retry.
2870 */
2871 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2872 goto retry_cpuset;
2873
2874 return page;
2875 }
2876 EXPORT_SYMBOL(__alloc_pages_nodemask);
2877
2878 /*
2879 * Common helper functions.
2880 */
2881 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2882 {
2883 struct page *page;
2884
2885 /*
2886 * __get_free_pages() returns a 32-bit address, which cannot represent
2887 * a highmem page
2888 */
2889 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2890
2891 page = alloc_pages(gfp_mask, order);
2892 if (!page)
2893 return 0;
2894 return (unsigned long) page_address(page);
2895 }
2896 EXPORT_SYMBOL(__get_free_pages);
2897
2898 unsigned long get_zeroed_page(gfp_t gfp_mask)
2899 {
2900 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2901 }
2902 EXPORT_SYMBOL(get_zeroed_page);
2903
2904 void __free_pages(struct page *page, unsigned int order)
2905 {
2906 if (put_page_testzero(page)) {
2907 if (order == 0)
2908 free_hot_cold_page(page, false);
2909 else
2910 __free_pages_ok(page, order);
2911 }
2912 }
2913
2914 EXPORT_SYMBOL(__free_pages);
2915
2916 void free_pages(unsigned long addr, unsigned int order)
2917 {
2918 if (addr != 0) {
2919 VM_BUG_ON(!virt_addr_valid((void *)addr));
2920 __free_pages(virt_to_page((void *)addr), order);
2921 }
2922 }
2923
2924 EXPORT_SYMBOL(free_pages);
2925
2926 /*
2927 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2928 * of the current memory cgroup.
2929 *
2930 * It should be used when the caller would like to use kmalloc, but since the
2931 * allocation is large, it has to fall back to the page allocator.
2932 */
2933 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2934 {
2935 struct page *page;
2936 struct mem_cgroup *memcg = NULL;
2937
2938 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2939 return NULL;
2940 page = alloc_pages(gfp_mask, order);
2941 memcg_kmem_commit_charge(page, memcg, order);
2942 return page;
2943 }
2944
2945 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2946 {
2947 struct page *page;
2948 struct mem_cgroup *memcg = NULL;
2949
2950 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2951 return NULL;
2952 page = alloc_pages_node(nid, gfp_mask, order);
2953 memcg_kmem_commit_charge(page, memcg, order);
2954 return page;
2955 }
2956
2957 /*
2958 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2959 * alloc_kmem_pages.
2960 */
2961 void __free_kmem_pages(struct page *page, unsigned int order)
2962 {
2963 memcg_kmem_uncharge_pages(page, order);
2964 __free_pages(page, order);
2965 }
2966
2967 void free_kmem_pages(unsigned long addr, unsigned int order)
2968 {
2969 if (addr != 0) {
2970 VM_BUG_ON(!virt_addr_valid((void *)addr));
2971 __free_kmem_pages(virt_to_page((void *)addr), order);
2972 }
2973 }
2974
2975 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2976 {
2977 if (addr) {
2978 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2979 unsigned long used = addr + PAGE_ALIGN(size);
2980
2981 split_page(virt_to_page((void *)addr), order);
2982 while (used < alloc_end) {
2983 free_page(used);
2984 used += PAGE_SIZE;
2985 }
2986 }
2987 return (void *)addr;
2988 }
2989
2990 /**
2991 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2992 * @size: the number of bytes to allocate
2993 * @gfp_mask: GFP flags for the allocation
2994 *
2995 * This function is similar to alloc_pages(), except that it allocates the
2996 * minimum number of pages to satisfy the request. alloc_pages() can only
2997 * allocate memory in power-of-two pages.
2998 *
2999 * This function is also limited by MAX_ORDER.
3000 *
3001 * Memory allocated by this function must be released by free_pages_exact().
3002 */
3003 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3004 {
3005 unsigned int order = get_order(size);
3006 unsigned long addr;
3007
3008 addr = __get_free_pages(gfp_mask, order);
3009 return make_alloc_exact(addr, order, size);
3010 }
3011 EXPORT_SYMBOL(alloc_pages_exact);
3012
3013 /**
3014 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3015 * pages on a node.
3016 * @nid: the preferred node ID where memory should be allocated
3017 * @size: the number of bytes to allocate
3018 * @gfp_mask: GFP flags for the allocation
3019 *
3020 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3021 * back.
3022 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3023 * but is not exact.
3024 */
3025 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3026 {
3027 unsigned order = get_order(size);
3028 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3029 if (!p)
3030 return NULL;
3031 return make_alloc_exact((unsigned long)page_address(p), order, size);
3032 }
3033
3034 /**
3035 * free_pages_exact - release memory allocated via alloc_pages_exact()
3036 * @virt: the value returned by alloc_pages_exact.
3037 * @size: size of allocation, same value as passed to alloc_pages_exact().
3038 *
3039 * Release the memory allocated by a previous call to alloc_pages_exact.
3040 */
3041 void free_pages_exact(void *virt, size_t size)
3042 {
3043 unsigned long addr = (unsigned long)virt;
3044 unsigned long end = addr + PAGE_ALIGN(size);
3045
3046 while (addr < end) {
3047 free_page(addr);
3048 addr += PAGE_SIZE;
3049 }
3050 }
3051 EXPORT_SYMBOL(free_pages_exact);
3052
3053 /**
3054 * nr_free_zone_pages - count number of pages beyond high watermark
3055 * @offset: The zone index of the highest zone
3056 *
3057 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3058 * high watermark within all zones at or below a given zone index. For each
3059 * zone, the number of pages is calculated as:
3060 * managed_pages - high_pages
3061 */
3062 static unsigned long nr_free_zone_pages(int offset)
3063 {
3064 struct zoneref *z;
3065 struct zone *zone;
3066
3067 /* Just pick one node, since fallback list is circular */
3068 unsigned long sum = 0;
3069
3070 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3071
3072 for_each_zone_zonelist(zone, z, zonelist, offset) {
3073 unsigned long size = zone->managed_pages;
3074 unsigned long high = high_wmark_pages(zone);
3075 if (size > high)
3076 sum += size - high;
3077 }
3078
3079 return sum;
3080 }
3081
3082 /**
3083 * nr_free_buffer_pages - count number of pages beyond high watermark
3084 *
3085 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3086 * watermark within ZONE_DMA and ZONE_NORMAL.
3087 */
3088 unsigned long nr_free_buffer_pages(void)
3089 {
3090 return nr_free_zone_pages(gfp_zone(GFP_USER));
3091 }
3092 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3093
3094 /**
3095 * nr_free_pagecache_pages - count number of pages beyond high watermark
3096 *
3097 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3098 * high watermark within all zones.
3099 */
3100 unsigned long nr_free_pagecache_pages(void)
3101 {
3102 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3103 }
3104
3105 static inline void show_node(struct zone *zone)
3106 {
3107 if (IS_ENABLED(CONFIG_NUMA))
3108 printk("Node %d ", zone_to_nid(zone));
3109 }
3110
3111 void si_meminfo(struct sysinfo *val)
3112 {
3113 val->totalram = totalram_pages;
3114 val->sharedram = global_page_state(NR_SHMEM);
3115 val->freeram = global_page_state(NR_FREE_PAGES);
3116 val->bufferram = nr_blockdev_pages();
3117 val->totalhigh = totalhigh_pages;
3118 val->freehigh = nr_free_highpages();
3119 val->mem_unit = PAGE_SIZE;
3120 }
3121
3122 EXPORT_SYMBOL(si_meminfo);
3123
3124 #ifdef CONFIG_NUMA
3125 void si_meminfo_node(struct sysinfo *val, int nid)
3126 {
3127 int zone_type; /* needs to be signed */
3128 unsigned long managed_pages = 0;
3129 pg_data_t *pgdat = NODE_DATA(nid);
3130
3131 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3132 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3133 val->totalram = managed_pages;
3134 val->sharedram = node_page_state(nid, NR_SHMEM);
3135 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3136 #ifdef CONFIG_HIGHMEM
3137 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3138 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3139 NR_FREE_PAGES);
3140 #else
3141 val->totalhigh = 0;
3142 val->freehigh = 0;
3143 #endif
3144 val->mem_unit = PAGE_SIZE;
3145 }
3146 #endif
3147
3148 /*
3149 * Determine whether the node should be displayed or not, depending on whether
3150 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3151 */
3152 bool skip_free_areas_node(unsigned int flags, int nid)
3153 {
3154 bool ret = false;
3155 unsigned int cpuset_mems_cookie;
3156
3157 if (!(flags & SHOW_MEM_FILTER_NODES))
3158 goto out;
3159
3160 do {
3161 cpuset_mems_cookie = read_mems_allowed_begin();
3162 ret = !node_isset(nid, cpuset_current_mems_allowed);
3163 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3164 out:
3165 return ret;
3166 }
3167
3168 #define K(x) ((x) << (PAGE_SHIFT-10))
3169
3170 static void show_migration_types(unsigned char type)
3171 {
3172 static const char types[MIGRATE_TYPES] = {
3173 [MIGRATE_UNMOVABLE] = 'U',
3174 [MIGRATE_RECLAIMABLE] = 'E',
3175 [MIGRATE_MOVABLE] = 'M',
3176 [MIGRATE_RESERVE] = 'R',
3177 #ifdef CONFIG_CMA
3178 [MIGRATE_CMA] = 'C',
3179 #endif
3180 #ifdef CONFIG_MEMORY_ISOLATION
3181 [MIGRATE_ISOLATE] = 'I',
3182 #endif
3183 };
3184 char tmp[MIGRATE_TYPES + 1];
3185 char *p = tmp;
3186 int i;
3187
3188 for (i = 0; i < MIGRATE_TYPES; i++) {
3189 if (type & (1 << i))
3190 *p++ = types[i];
3191 }
3192
3193 *p = '\0';
3194 printk("(%s) ", tmp);
3195 }
3196
3197 /*
3198 * Show free area list (used inside shift_scroll-lock stuff)
3199 * We also calculate the percentage fragmentation. We do this by counting the
3200 * memory on each free list with the exception of the first item on the list.
3201 * Suppresses nodes that are not allowed by current's cpuset if
3202 * SHOW_MEM_FILTER_NODES is passed.
3203 */
3204 void show_free_areas(unsigned int filter)
3205 {
3206 int cpu;
3207 struct zone *zone;
3208
3209 for_each_populated_zone(zone) {
3210 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3211 continue;
3212 show_node(zone);
3213 printk("%s per-cpu:\n", zone->name);
3214
3215 for_each_online_cpu(cpu) {
3216 struct per_cpu_pageset *pageset;
3217
3218 pageset = per_cpu_ptr(zone->pageset, cpu);
3219
3220 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3221 cpu, pageset->pcp.high,
3222 pageset->pcp.batch, pageset->pcp.count);
3223 }
3224 }
3225
3226 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3227 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3228 " unevictable:%lu"
3229 " dirty:%lu writeback:%lu unstable:%lu\n"
3230 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3231 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3232 " free_cma:%lu\n",
3233 global_page_state(NR_ACTIVE_ANON),
3234 global_page_state(NR_INACTIVE_ANON),
3235 global_page_state(NR_ISOLATED_ANON),
3236 global_page_state(NR_ACTIVE_FILE),
3237 global_page_state(NR_INACTIVE_FILE),
3238 global_page_state(NR_ISOLATED_FILE),
3239 global_page_state(NR_UNEVICTABLE),
3240 global_page_state(NR_FILE_DIRTY),
3241 global_page_state(NR_WRITEBACK),
3242 global_page_state(NR_UNSTABLE_NFS),
3243 global_page_state(NR_FREE_PAGES),
3244 global_page_state(NR_SLAB_RECLAIMABLE),
3245 global_page_state(NR_SLAB_UNRECLAIMABLE),
3246 global_page_state(NR_FILE_MAPPED),
3247 global_page_state(NR_SHMEM),
3248 global_page_state(NR_PAGETABLE),
3249 global_page_state(NR_BOUNCE),
3250 global_page_state(NR_FREE_CMA_PAGES));
3251
3252 for_each_populated_zone(zone) {
3253 int i;
3254
3255 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3256 continue;
3257 show_node(zone);
3258 printk("%s"
3259 " free:%lukB"
3260 " min:%lukB"
3261 " low:%lukB"
3262 " high:%lukB"
3263 " active_anon:%lukB"
3264 " inactive_anon:%lukB"
3265 " active_file:%lukB"
3266 " inactive_file:%lukB"
3267 " unevictable:%lukB"
3268 " isolated(anon):%lukB"
3269 " isolated(file):%lukB"
3270 " present:%lukB"
3271 " managed:%lukB"
3272 " mlocked:%lukB"
3273 " dirty:%lukB"
3274 " writeback:%lukB"
3275 " mapped:%lukB"
3276 " shmem:%lukB"
3277 " slab_reclaimable:%lukB"
3278 " slab_unreclaimable:%lukB"
3279 " kernel_stack:%lukB"
3280 " pagetables:%lukB"
3281 " unstable:%lukB"
3282 " bounce:%lukB"
3283 " free_cma:%lukB"
3284 " writeback_tmp:%lukB"
3285 " pages_scanned:%lu"
3286 " all_unreclaimable? %s"
3287 "\n",
3288 zone->name,
3289 K(zone_page_state(zone, NR_FREE_PAGES)),
3290 K(min_wmark_pages(zone)),
3291 K(low_wmark_pages(zone)),
3292 K(high_wmark_pages(zone)),
3293 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3294 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3295 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3296 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3297 K(zone_page_state(zone, NR_UNEVICTABLE)),
3298 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3299 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3300 K(zone->present_pages),
3301 K(zone->managed_pages),
3302 K(zone_page_state(zone, NR_MLOCK)),
3303 K(zone_page_state(zone, NR_FILE_DIRTY)),
3304 K(zone_page_state(zone, NR_WRITEBACK)),
3305 K(zone_page_state(zone, NR_FILE_MAPPED)),
3306 K(zone_page_state(zone, NR_SHMEM)),
3307 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3308 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3309 zone_page_state(zone, NR_KERNEL_STACK) *
3310 THREAD_SIZE / 1024,
3311 K(zone_page_state(zone, NR_PAGETABLE)),
3312 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3313 K(zone_page_state(zone, NR_BOUNCE)),
3314 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3315 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3316 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3317 (!zone_reclaimable(zone) ? "yes" : "no")
3318 );
3319 printk("lowmem_reserve[]:");
3320 for (i = 0; i < MAX_NR_ZONES; i++)
3321 printk(" %ld", zone->lowmem_reserve[i]);
3322 printk("\n");
3323 }
3324
3325 for_each_populated_zone(zone) {
3326 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3327 unsigned char types[MAX_ORDER];
3328
3329 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3330 continue;
3331 show_node(zone);
3332 printk("%s: ", zone->name);
3333
3334 spin_lock_irqsave(&zone->lock, flags);
3335 for (order = 0; order < MAX_ORDER; order++) {
3336 struct free_area *area = &zone->free_area[order];
3337 int type;
3338
3339 nr[order] = area->nr_free;
3340 total += nr[order] << order;
3341
3342 types[order] = 0;
3343 for (type = 0; type < MIGRATE_TYPES; type++) {
3344 if (!list_empty(&area->free_list[type]))
3345 types[order] |= 1 << type;
3346 }
3347 }
3348 spin_unlock_irqrestore(&zone->lock, flags);
3349 for (order = 0; order < MAX_ORDER; order++) {
3350 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3351 if (nr[order])
3352 show_migration_types(types[order]);
3353 }
3354 printk("= %lukB\n", K(total));
3355 }
3356
3357 hugetlb_show_meminfo();
3358
3359 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3360
3361 show_swap_cache_info();
3362 }
3363
3364 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3365 {
3366 zoneref->zone = zone;
3367 zoneref->zone_idx = zone_idx(zone);
3368 }
3369
3370 /*
3371 * Builds allocation fallback zone lists.
3372 *
3373 * Add all populated zones of a node to the zonelist.
3374 */
3375 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3376 int nr_zones)
3377 {
3378 struct zone *zone;
3379 enum zone_type zone_type = MAX_NR_ZONES;
3380
3381 do {
3382 zone_type--;
3383 zone = pgdat->node_zones + zone_type;
3384 if (populated_zone(zone)) {
3385 zoneref_set_zone(zone,
3386 &zonelist->_zonerefs[nr_zones++]);
3387 check_highest_zone(zone_type);
3388 }
3389 } while (zone_type);
3390
3391 return nr_zones;
3392 }
3393
3394
3395 /*
3396 * zonelist_order:
3397 * 0 = automatic detection of better ordering.
3398 * 1 = order by ([node] distance, -zonetype)
3399 * 2 = order by (-zonetype, [node] distance)
3400 *
3401 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3402 * the same zonelist. So only NUMA can configure this param.
3403 */
3404 #define ZONELIST_ORDER_DEFAULT 0
3405 #define ZONELIST_ORDER_NODE 1
3406 #define ZONELIST_ORDER_ZONE 2
3407
3408 /* zonelist order in the kernel.
3409 * set_zonelist_order() will set this to NODE or ZONE.
3410 */
3411 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3412 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3413
3414
3415 #ifdef CONFIG_NUMA
3416 /* The value user specified ....changed by config */
3417 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3418 /* string for sysctl */
3419 #define NUMA_ZONELIST_ORDER_LEN 16
3420 char numa_zonelist_order[16] = "default";
3421
3422 /*
3423 * interface for configure zonelist ordering.
3424 * command line option "numa_zonelist_order"
3425 * = "[dD]efault - default, automatic configuration.
3426 * = "[nN]ode - order by node locality, then by zone within node
3427 * = "[zZ]one - order by zone, then by locality within zone
3428 */
3429
3430 static int __parse_numa_zonelist_order(char *s)
3431 {
3432 if (*s == 'd' || *s == 'D') {
3433 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3434 } else if (*s == 'n' || *s == 'N') {
3435 user_zonelist_order = ZONELIST_ORDER_NODE;
3436 } else if (*s == 'z' || *s == 'Z') {
3437 user_zonelist_order = ZONELIST_ORDER_ZONE;
3438 } else {
3439 printk(KERN_WARNING
3440 "Ignoring invalid numa_zonelist_order value: "
3441 "%s\n", s);
3442 return -EINVAL;
3443 }
3444 return 0;
3445 }
3446
3447 static __init int setup_numa_zonelist_order(char *s)
3448 {
3449 int ret;
3450
3451 if (!s)
3452 return 0;
3453
3454 ret = __parse_numa_zonelist_order(s);
3455 if (ret == 0)
3456 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3457
3458 return ret;
3459 }
3460 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3461
3462 /*
3463 * sysctl handler for numa_zonelist_order
3464 */
3465 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3466 void __user *buffer, size_t *length,
3467 loff_t *ppos)
3468 {
3469 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3470 int ret;
3471 static DEFINE_MUTEX(zl_order_mutex);
3472
3473 mutex_lock(&zl_order_mutex);
3474 if (write) {
3475 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3476 ret = -EINVAL;
3477 goto out;
3478 }
3479 strcpy(saved_string, (char *)table->data);
3480 }
3481 ret = proc_dostring(table, write, buffer, length, ppos);
3482 if (ret)
3483 goto out;
3484 if (write) {
3485 int oldval = user_zonelist_order;
3486
3487 ret = __parse_numa_zonelist_order((char *)table->data);
3488 if (ret) {
3489 /*
3490 * bogus value. restore saved string
3491 */
3492 strncpy((char *)table->data, saved_string,
3493 NUMA_ZONELIST_ORDER_LEN);
3494 user_zonelist_order = oldval;
3495 } else if (oldval != user_zonelist_order) {
3496 mutex_lock(&zonelists_mutex);
3497 build_all_zonelists(NULL, NULL);
3498 mutex_unlock(&zonelists_mutex);
3499 }
3500 }
3501 out:
3502 mutex_unlock(&zl_order_mutex);
3503 return ret;
3504 }
3505
3506
3507 #define MAX_NODE_LOAD (nr_online_nodes)
3508 static int node_load[MAX_NUMNODES];
3509
3510 /**
3511 * find_next_best_node - find the next node that should appear in a given node's fallback list
3512 * @node: node whose fallback list we're appending
3513 * @used_node_mask: nodemask_t of already used nodes
3514 *
3515 * We use a number of factors to determine which is the next node that should
3516 * appear on a given node's fallback list. The node should not have appeared
3517 * already in @node's fallback list, and it should be the next closest node
3518 * according to the distance array (which contains arbitrary distance values
3519 * from each node to each node in the system), and should also prefer nodes
3520 * with no CPUs, since presumably they'll have very little allocation pressure
3521 * on them otherwise.
3522 * It returns -1 if no node is found.
3523 */
3524 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3525 {
3526 int n, val;
3527 int min_val = INT_MAX;
3528 int best_node = NUMA_NO_NODE;
3529 const struct cpumask *tmp = cpumask_of_node(0);
3530
3531 /* Use the local node if we haven't already */
3532 if (!node_isset(node, *used_node_mask)) {
3533 node_set(node, *used_node_mask);
3534 return node;
3535 }
3536
3537 for_each_node_state(n, N_MEMORY) {
3538
3539 /* Don't want a node to appear more than once */
3540 if (node_isset(n, *used_node_mask))
3541 continue;
3542
3543 /* Use the distance array to find the distance */
3544 val = node_distance(node, n);
3545
3546 /* Penalize nodes under us ("prefer the next node") */
3547 val += (n < node);
3548
3549 /* Give preference to headless and unused nodes */
3550 tmp = cpumask_of_node(n);
3551 if (!cpumask_empty(tmp))
3552 val += PENALTY_FOR_NODE_WITH_CPUS;
3553
3554 /* Slight preference for less loaded node */
3555 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3556 val += node_load[n];
3557
3558 if (val < min_val) {
3559 min_val = val;
3560 best_node = n;
3561 }
3562 }
3563
3564 if (best_node >= 0)
3565 node_set(best_node, *used_node_mask);
3566
3567 return best_node;
3568 }
3569
3570
3571 /*
3572 * Build zonelists ordered by node and zones within node.
3573 * This results in maximum locality--normal zone overflows into local
3574 * DMA zone, if any--but risks exhausting DMA zone.
3575 */
3576 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3577 {
3578 int j;
3579 struct zonelist *zonelist;
3580
3581 zonelist = &pgdat->node_zonelists[0];
3582 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3583 ;
3584 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3585 zonelist->_zonerefs[j].zone = NULL;
3586 zonelist->_zonerefs[j].zone_idx = 0;
3587 }
3588
3589 /*
3590 * Build gfp_thisnode zonelists
3591 */
3592 static void build_thisnode_zonelists(pg_data_t *pgdat)
3593 {
3594 int j;
3595 struct zonelist *zonelist;
3596
3597 zonelist = &pgdat->node_zonelists[1];
3598 j = build_zonelists_node(pgdat, zonelist, 0);
3599 zonelist->_zonerefs[j].zone = NULL;
3600 zonelist->_zonerefs[j].zone_idx = 0;
3601 }
3602
3603 /*
3604 * Build zonelists ordered by zone and nodes within zones.
3605 * This results in conserving DMA zone[s] until all Normal memory is
3606 * exhausted, but results in overflowing to remote node while memory
3607 * may still exist in local DMA zone.
3608 */
3609 static int node_order[MAX_NUMNODES];
3610
3611 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3612 {
3613 int pos, j, node;
3614 int zone_type; /* needs to be signed */
3615 struct zone *z;
3616 struct zonelist *zonelist;
3617
3618 zonelist = &pgdat->node_zonelists[0];
3619 pos = 0;
3620 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3621 for (j = 0; j < nr_nodes; j++) {
3622 node = node_order[j];
3623 z = &NODE_DATA(node)->node_zones[zone_type];
3624 if (populated_zone(z)) {
3625 zoneref_set_zone(z,
3626 &zonelist->_zonerefs[pos++]);
3627 check_highest_zone(zone_type);
3628 }
3629 }
3630 }
3631 zonelist->_zonerefs[pos].zone = NULL;
3632 zonelist->_zonerefs[pos].zone_idx = 0;
3633 }
3634
3635 #if defined(CONFIG_64BIT)
3636 /*
3637 * Devices that require DMA32/DMA are relatively rare and do not justify a
3638 * penalty to every machine in case the specialised case applies. Default
3639 * to Node-ordering on 64-bit NUMA machines
3640 */
3641 static int default_zonelist_order(void)
3642 {
3643 return ZONELIST_ORDER_NODE;
3644 }
3645 #else
3646 /*
3647 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3648 * by the kernel. If processes running on node 0 deplete the low memory zone
3649 * then reclaim will occur more frequency increasing stalls and potentially
3650 * be easier to OOM if a large percentage of the zone is under writeback or
3651 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3652 * Hence, default to zone ordering on 32-bit.
3653 */
3654 static int default_zonelist_order(void)
3655 {
3656 return ZONELIST_ORDER_ZONE;
3657 }
3658 #endif /* CONFIG_64BIT */
3659
3660 static void set_zonelist_order(void)
3661 {
3662 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3663 current_zonelist_order = default_zonelist_order();
3664 else
3665 current_zonelist_order = user_zonelist_order;
3666 }
3667
3668 static void build_zonelists(pg_data_t *pgdat)
3669 {
3670 int j, node, load;
3671 enum zone_type i;
3672 nodemask_t used_mask;
3673 int local_node, prev_node;
3674 struct zonelist *zonelist;
3675 int order = current_zonelist_order;
3676
3677 /* initialize zonelists */
3678 for (i = 0; i < MAX_ZONELISTS; i++) {
3679 zonelist = pgdat->node_zonelists + i;
3680 zonelist->_zonerefs[0].zone = NULL;
3681 zonelist->_zonerefs[0].zone_idx = 0;
3682 }
3683
3684 /* NUMA-aware ordering of nodes */
3685 local_node = pgdat->node_id;
3686 load = nr_online_nodes;
3687 prev_node = local_node;
3688 nodes_clear(used_mask);
3689
3690 memset(node_order, 0, sizeof(node_order));
3691 j = 0;
3692
3693 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3694 /*
3695 * We don't want to pressure a particular node.
3696 * So adding penalty to the first node in same
3697 * distance group to make it round-robin.
3698 */
3699 if (node_distance(local_node, node) !=
3700 node_distance(local_node, prev_node))
3701 node_load[node] = load;
3702
3703 prev_node = node;
3704 load--;
3705 if (order == ZONELIST_ORDER_NODE)
3706 build_zonelists_in_node_order(pgdat, node);
3707 else
3708 node_order[j++] = node; /* remember order */
3709 }
3710
3711 if (order == ZONELIST_ORDER_ZONE) {
3712 /* calculate node order -- i.e., DMA last! */
3713 build_zonelists_in_zone_order(pgdat, j);
3714 }
3715
3716 build_thisnode_zonelists(pgdat);
3717 }
3718
3719 /* Construct the zonelist performance cache - see further mmzone.h */
3720 static void build_zonelist_cache(pg_data_t *pgdat)
3721 {
3722 struct zonelist *zonelist;
3723 struct zonelist_cache *zlc;
3724 struct zoneref *z;
3725
3726 zonelist = &pgdat->node_zonelists[0];
3727 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3728 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3729 for (z = zonelist->_zonerefs; z->zone; z++)
3730 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3731 }
3732
3733 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3734 /*
3735 * Return node id of node used for "local" allocations.
3736 * I.e., first node id of first zone in arg node's generic zonelist.
3737 * Used for initializing percpu 'numa_mem', which is used primarily
3738 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3739 */
3740 int local_memory_node(int node)
3741 {
3742 struct zone *zone;
3743
3744 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3745 gfp_zone(GFP_KERNEL),
3746 NULL,
3747 &zone);
3748 return zone->node;
3749 }
3750 #endif
3751
3752 #else /* CONFIG_NUMA */
3753
3754 static void set_zonelist_order(void)
3755 {
3756 current_zonelist_order = ZONELIST_ORDER_ZONE;
3757 }
3758
3759 static void build_zonelists(pg_data_t *pgdat)
3760 {
3761 int node, local_node;
3762 enum zone_type j;
3763 struct zonelist *zonelist;
3764
3765 local_node = pgdat->node_id;
3766
3767 zonelist = &pgdat->node_zonelists[0];
3768 j = build_zonelists_node(pgdat, zonelist, 0);
3769
3770 /*
3771 * Now we build the zonelist so that it contains the zones
3772 * of all the other nodes.
3773 * We don't want to pressure a particular node, so when
3774 * building the zones for node N, we make sure that the
3775 * zones coming right after the local ones are those from
3776 * node N+1 (modulo N)
3777 */
3778 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3779 if (!node_online(node))
3780 continue;
3781 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3782 }
3783 for (node = 0; node < local_node; node++) {
3784 if (!node_online(node))
3785 continue;
3786 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3787 }
3788
3789 zonelist->_zonerefs[j].zone = NULL;
3790 zonelist->_zonerefs[j].zone_idx = 0;
3791 }
3792
3793 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3794 static void build_zonelist_cache(pg_data_t *pgdat)
3795 {
3796 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3797 }
3798
3799 #endif /* CONFIG_NUMA */
3800
3801 /*
3802 * Boot pageset table. One per cpu which is going to be used for all
3803 * zones and all nodes. The parameters will be set in such a way
3804 * that an item put on a list will immediately be handed over to
3805 * the buddy list. This is safe since pageset manipulation is done
3806 * with interrupts disabled.
3807 *
3808 * The boot_pagesets must be kept even after bootup is complete for
3809 * unused processors and/or zones. They do play a role for bootstrapping
3810 * hotplugged processors.
3811 *
3812 * zoneinfo_show() and maybe other functions do
3813 * not check if the processor is online before following the pageset pointer.
3814 * Other parts of the kernel may not check if the zone is available.
3815 */
3816 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3817 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3818 static void setup_zone_pageset(struct zone *zone);
3819
3820 /*
3821 * Global mutex to protect against size modification of zonelists
3822 * as well as to serialize pageset setup for the new populated zone.
3823 */
3824 DEFINE_MUTEX(zonelists_mutex);
3825
3826 /* return values int ....just for stop_machine() */
3827 static int __build_all_zonelists(void *data)
3828 {
3829 int nid;
3830 int cpu;
3831 pg_data_t *self = data;
3832
3833 #ifdef CONFIG_NUMA
3834 memset(node_load, 0, sizeof(node_load));
3835 #endif
3836
3837 if (self && !node_online(self->node_id)) {
3838 build_zonelists(self);
3839 build_zonelist_cache(self);
3840 }
3841
3842 for_each_online_node(nid) {
3843 pg_data_t *pgdat = NODE_DATA(nid);
3844
3845 build_zonelists(pgdat);
3846 build_zonelist_cache(pgdat);
3847 }
3848
3849 /*
3850 * Initialize the boot_pagesets that are going to be used
3851 * for bootstrapping processors. The real pagesets for
3852 * each zone will be allocated later when the per cpu
3853 * allocator is available.
3854 *
3855 * boot_pagesets are used also for bootstrapping offline
3856 * cpus if the system is already booted because the pagesets
3857 * are needed to initialize allocators on a specific cpu too.
3858 * F.e. the percpu allocator needs the page allocator which
3859 * needs the percpu allocator in order to allocate its pagesets
3860 * (a chicken-egg dilemma).
3861 */
3862 for_each_possible_cpu(cpu) {
3863 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3864
3865 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3866 /*
3867 * We now know the "local memory node" for each node--
3868 * i.e., the node of the first zone in the generic zonelist.
3869 * Set up numa_mem percpu variable for on-line cpus. During
3870 * boot, only the boot cpu should be on-line; we'll init the
3871 * secondary cpus' numa_mem as they come on-line. During
3872 * node/memory hotplug, we'll fixup all on-line cpus.
3873 */
3874 if (cpu_online(cpu))
3875 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3876 #endif
3877 }
3878
3879 return 0;
3880 }
3881
3882 /*
3883 * Called with zonelists_mutex held always
3884 * unless system_state == SYSTEM_BOOTING.
3885 */
3886 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3887 {
3888 set_zonelist_order();
3889
3890 if (system_state == SYSTEM_BOOTING) {
3891 __build_all_zonelists(NULL);
3892 mminit_verify_zonelist();
3893 cpuset_init_current_mems_allowed();
3894 } else {
3895 #ifdef CONFIG_MEMORY_HOTPLUG
3896 if (zone)
3897 setup_zone_pageset(zone);
3898 #endif
3899 /* we have to stop all cpus to guarantee there is no user
3900 of zonelist */
3901 stop_machine(__build_all_zonelists, pgdat, NULL);
3902 /* cpuset refresh routine should be here */
3903 }
3904 vm_total_pages = nr_free_pagecache_pages();
3905 /*
3906 * Disable grouping by mobility if the number of pages in the
3907 * system is too low to allow the mechanism to work. It would be
3908 * more accurate, but expensive to check per-zone. This check is
3909 * made on memory-hotadd so a system can start with mobility
3910 * disabled and enable it later
3911 */
3912 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3913 page_group_by_mobility_disabled = 1;
3914 else
3915 page_group_by_mobility_disabled = 0;
3916
3917 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3918 "Total pages: %ld\n",
3919 nr_online_nodes,
3920 zonelist_order_name[current_zonelist_order],
3921 page_group_by_mobility_disabled ? "off" : "on",
3922 vm_total_pages);
3923 #ifdef CONFIG_NUMA
3924 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3925 #endif
3926 }
3927
3928 /*
3929 * Helper functions to size the waitqueue hash table.
3930 * Essentially these want to choose hash table sizes sufficiently
3931 * large so that collisions trying to wait on pages are rare.
3932 * But in fact, the number of active page waitqueues on typical
3933 * systems is ridiculously low, less than 200. So this is even
3934 * conservative, even though it seems large.
3935 *
3936 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3937 * waitqueues, i.e. the size of the waitq table given the number of pages.
3938 */
3939 #define PAGES_PER_WAITQUEUE 256
3940
3941 #ifndef CONFIG_MEMORY_HOTPLUG
3942 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3943 {
3944 unsigned long size = 1;
3945
3946 pages /= PAGES_PER_WAITQUEUE;
3947
3948 while (size < pages)
3949 size <<= 1;
3950
3951 /*
3952 * Once we have dozens or even hundreds of threads sleeping
3953 * on IO we've got bigger problems than wait queue collision.
3954 * Limit the size of the wait table to a reasonable size.
3955 */
3956 size = min(size, 4096UL);
3957
3958 return max(size, 4UL);
3959 }
3960 #else
3961 /*
3962 * A zone's size might be changed by hot-add, so it is not possible to determine
3963 * a suitable size for its wait_table. So we use the maximum size now.
3964 *
3965 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3966 *
3967 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3968 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3969 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3970 *
3971 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3972 * or more by the traditional way. (See above). It equals:
3973 *
3974 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3975 * ia64(16K page size) : = ( 8G + 4M)byte.
3976 * powerpc (64K page size) : = (32G +16M)byte.
3977 */
3978 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3979 {
3980 return 4096UL;
3981 }
3982 #endif
3983
3984 /*
3985 * This is an integer logarithm so that shifts can be used later
3986 * to extract the more random high bits from the multiplicative
3987 * hash function before the remainder is taken.
3988 */
3989 static inline unsigned long wait_table_bits(unsigned long size)
3990 {
3991 return ffz(~size);
3992 }
3993
3994 /*
3995 * Check if a pageblock contains reserved pages
3996 */
3997 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3998 {
3999 unsigned long pfn;
4000
4001 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4002 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4003 return 1;
4004 }
4005 return 0;
4006 }
4007
4008 /*
4009 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4010 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4011 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4012 * higher will lead to a bigger reserve which will get freed as contiguous
4013 * blocks as reclaim kicks in
4014 */
4015 static void setup_zone_migrate_reserve(struct zone *zone)
4016 {
4017 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4018 struct page *page;
4019 unsigned long block_migratetype;
4020 int reserve;
4021 int old_reserve;
4022
4023 /*
4024 * Get the start pfn, end pfn and the number of blocks to reserve
4025 * We have to be careful to be aligned to pageblock_nr_pages to
4026 * make sure that we always check pfn_valid for the first page in
4027 * the block.
4028 */
4029 start_pfn = zone->zone_start_pfn;
4030 end_pfn = zone_end_pfn(zone);
4031 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4032 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4033 pageblock_order;
4034
4035 /*
4036 * Reserve blocks are generally in place to help high-order atomic
4037 * allocations that are short-lived. A min_free_kbytes value that
4038 * would result in more than 2 reserve blocks for atomic allocations
4039 * is assumed to be in place to help anti-fragmentation for the
4040 * future allocation of hugepages at runtime.
4041 */
4042 reserve = min(2, reserve);
4043 old_reserve = zone->nr_migrate_reserve_block;
4044
4045 /* When memory hot-add, we almost always need to do nothing */
4046 if (reserve == old_reserve)
4047 return;
4048 zone->nr_migrate_reserve_block = reserve;
4049
4050 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4051 if (!pfn_valid(pfn))
4052 continue;
4053 page = pfn_to_page(pfn);
4054
4055 /* Watch out for overlapping nodes */
4056 if (page_to_nid(page) != zone_to_nid(zone))
4057 continue;
4058
4059 block_migratetype = get_pageblock_migratetype(page);
4060
4061 /* Only test what is necessary when the reserves are not met */
4062 if (reserve > 0) {
4063 /*
4064 * Blocks with reserved pages will never free, skip
4065 * them.
4066 */
4067 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4068 if (pageblock_is_reserved(pfn, block_end_pfn))
4069 continue;
4070
4071 /* If this block is reserved, account for it */
4072 if (block_migratetype == MIGRATE_RESERVE) {
4073 reserve--;
4074 continue;
4075 }
4076
4077 /* Suitable for reserving if this block is movable */
4078 if (block_migratetype == MIGRATE_MOVABLE) {
4079 set_pageblock_migratetype(page,
4080 MIGRATE_RESERVE);
4081 move_freepages_block(zone, page,
4082 MIGRATE_RESERVE);
4083 reserve--;
4084 continue;
4085 }
4086 } else if (!old_reserve) {
4087 /*
4088 * At boot time we don't need to scan the whole zone
4089 * for turning off MIGRATE_RESERVE.
4090 */
4091 break;
4092 }
4093
4094 /*
4095 * If the reserve is met and this is a previous reserved block,
4096 * take it back
4097 */
4098 if (block_migratetype == MIGRATE_RESERVE) {
4099 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4100 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4101 }
4102 }
4103 }
4104
4105 /*
4106 * Initially all pages are reserved - free ones are freed
4107 * up by free_all_bootmem() once the early boot process is
4108 * done. Non-atomic initialization, single-pass.
4109 */
4110 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4111 unsigned long start_pfn, enum memmap_context context)
4112 {
4113 struct page *page;
4114 unsigned long end_pfn = start_pfn + size;
4115 unsigned long pfn;
4116 struct zone *z;
4117
4118 if (highest_memmap_pfn < end_pfn - 1)
4119 highest_memmap_pfn = end_pfn - 1;
4120
4121 z = &NODE_DATA(nid)->node_zones[zone];
4122 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4123 /*
4124 * There can be holes in boot-time mem_map[]s
4125 * handed to this function. They do not
4126 * exist on hotplugged memory.
4127 */
4128 if (context == MEMMAP_EARLY) {
4129 if (!early_pfn_valid(pfn))
4130 continue;
4131 if (!early_pfn_in_nid(pfn, nid))
4132 continue;
4133 }
4134 page = pfn_to_page(pfn);
4135 set_page_links(page, zone, nid, pfn);
4136 mminit_verify_page_links(page, zone, nid, pfn);
4137 init_page_count(page);
4138 page_mapcount_reset(page);
4139 page_cpupid_reset_last(page);
4140 SetPageReserved(page);
4141 /*
4142 * Mark the block movable so that blocks are reserved for
4143 * movable at startup. This will force kernel allocations
4144 * to reserve their blocks rather than leaking throughout
4145 * the address space during boot when many long-lived
4146 * kernel allocations are made. Later some blocks near
4147 * the start are marked MIGRATE_RESERVE by
4148 * setup_zone_migrate_reserve()
4149 *
4150 * bitmap is created for zone's valid pfn range. but memmap
4151 * can be created for invalid pages (for alignment)
4152 * check here not to call set_pageblock_migratetype() against
4153 * pfn out of zone.
4154 */
4155 if ((z->zone_start_pfn <= pfn)
4156 && (pfn < zone_end_pfn(z))
4157 && !(pfn & (pageblock_nr_pages - 1)))
4158 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4159
4160 INIT_LIST_HEAD(&page->lru);
4161 #ifdef WANT_PAGE_VIRTUAL
4162 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4163 if (!is_highmem_idx(zone))
4164 set_page_address(page, __va(pfn << PAGE_SHIFT));
4165 #endif
4166 }
4167 }
4168
4169 static void __meminit zone_init_free_lists(struct zone *zone)
4170 {
4171 unsigned int order, t;
4172 for_each_migratetype_order(order, t) {
4173 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4174 zone->free_area[order].nr_free = 0;
4175 }
4176 }
4177
4178 #ifndef __HAVE_ARCH_MEMMAP_INIT
4179 #define memmap_init(size, nid, zone, start_pfn) \
4180 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4181 #endif
4182
4183 static int zone_batchsize(struct zone *zone)
4184 {
4185 #ifdef CONFIG_MMU
4186 int batch;
4187
4188 /*
4189 * The per-cpu-pages pools are set to around 1000th of the
4190 * size of the zone. But no more than 1/2 of a meg.
4191 *
4192 * OK, so we don't know how big the cache is. So guess.
4193 */
4194 batch = zone->managed_pages / 1024;
4195 if (batch * PAGE_SIZE > 512 * 1024)
4196 batch = (512 * 1024) / PAGE_SIZE;
4197 batch /= 4; /* We effectively *= 4 below */
4198 if (batch < 1)
4199 batch = 1;
4200
4201 /*
4202 * Clamp the batch to a 2^n - 1 value. Having a power
4203 * of 2 value was found to be more likely to have
4204 * suboptimal cache aliasing properties in some cases.
4205 *
4206 * For example if 2 tasks are alternately allocating
4207 * batches of pages, one task can end up with a lot
4208 * of pages of one half of the possible page colors
4209 * and the other with pages of the other colors.
4210 */
4211 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4212
4213 return batch;
4214
4215 #else
4216 /* The deferral and batching of frees should be suppressed under NOMMU
4217 * conditions.
4218 *
4219 * The problem is that NOMMU needs to be able to allocate large chunks
4220 * of contiguous memory as there's no hardware page translation to
4221 * assemble apparent contiguous memory from discontiguous pages.
4222 *
4223 * Queueing large contiguous runs of pages for batching, however,
4224 * causes the pages to actually be freed in smaller chunks. As there
4225 * can be a significant delay between the individual batches being
4226 * recycled, this leads to the once large chunks of space being
4227 * fragmented and becoming unavailable for high-order allocations.
4228 */
4229 return 0;
4230 #endif
4231 }
4232
4233 /*
4234 * pcp->high and pcp->batch values are related and dependent on one another:
4235 * ->batch must never be higher then ->high.
4236 * The following function updates them in a safe manner without read side
4237 * locking.
4238 *
4239 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4240 * those fields changing asynchronously (acording the the above rule).
4241 *
4242 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4243 * outside of boot time (or some other assurance that no concurrent updaters
4244 * exist).
4245 */
4246 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4247 unsigned long batch)
4248 {
4249 /* start with a fail safe value for batch */
4250 pcp->batch = 1;
4251 smp_wmb();
4252
4253 /* Update high, then batch, in order */
4254 pcp->high = high;
4255 smp_wmb();
4256
4257 pcp->batch = batch;
4258 }
4259
4260 /* a companion to pageset_set_high() */
4261 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4262 {
4263 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4264 }
4265
4266 static void pageset_init(struct per_cpu_pageset *p)
4267 {
4268 struct per_cpu_pages *pcp;
4269 int migratetype;
4270
4271 memset(p, 0, sizeof(*p));
4272
4273 pcp = &p->pcp;
4274 pcp->count = 0;
4275 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4276 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4277 }
4278
4279 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4280 {
4281 pageset_init(p);
4282 pageset_set_batch(p, batch);
4283 }
4284
4285 /*
4286 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4287 * to the value high for the pageset p.
4288 */
4289 static void pageset_set_high(struct per_cpu_pageset *p,
4290 unsigned long high)
4291 {
4292 unsigned long batch = max(1UL, high / 4);
4293 if ((high / 4) > (PAGE_SHIFT * 8))
4294 batch = PAGE_SHIFT * 8;
4295
4296 pageset_update(&p->pcp, high, batch);
4297 }
4298
4299 static void pageset_set_high_and_batch(struct zone *zone,
4300 struct per_cpu_pageset *pcp)
4301 {
4302 if (percpu_pagelist_fraction)
4303 pageset_set_high(pcp,
4304 (zone->managed_pages /
4305 percpu_pagelist_fraction));
4306 else
4307 pageset_set_batch(pcp, zone_batchsize(zone));
4308 }
4309
4310 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4311 {
4312 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4313
4314 pageset_init(pcp);
4315 pageset_set_high_and_batch(zone, pcp);
4316 }
4317
4318 static void __meminit setup_zone_pageset(struct zone *zone)
4319 {
4320 int cpu;
4321 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4322 for_each_possible_cpu(cpu)
4323 zone_pageset_init(zone, cpu);
4324 }
4325
4326 /*
4327 * Allocate per cpu pagesets and initialize them.
4328 * Before this call only boot pagesets were available.
4329 */
4330 void __init setup_per_cpu_pageset(void)
4331 {
4332 struct zone *zone;
4333
4334 for_each_populated_zone(zone)
4335 setup_zone_pageset(zone);
4336 }
4337
4338 static noinline __init_refok
4339 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4340 {
4341 int i;
4342 size_t alloc_size;
4343
4344 /*
4345 * The per-page waitqueue mechanism uses hashed waitqueues
4346 * per zone.
4347 */
4348 zone->wait_table_hash_nr_entries =
4349 wait_table_hash_nr_entries(zone_size_pages);
4350 zone->wait_table_bits =
4351 wait_table_bits(zone->wait_table_hash_nr_entries);
4352 alloc_size = zone->wait_table_hash_nr_entries
4353 * sizeof(wait_queue_head_t);
4354
4355 if (!slab_is_available()) {
4356 zone->wait_table = (wait_queue_head_t *)
4357 memblock_virt_alloc_node_nopanic(
4358 alloc_size, zone->zone_pgdat->node_id);
4359 } else {
4360 /*
4361 * This case means that a zone whose size was 0 gets new memory
4362 * via memory hot-add.
4363 * But it may be the case that a new node was hot-added. In
4364 * this case vmalloc() will not be able to use this new node's
4365 * memory - this wait_table must be initialized to use this new
4366 * node itself as well.
4367 * To use this new node's memory, further consideration will be
4368 * necessary.
4369 */
4370 zone->wait_table = vmalloc(alloc_size);
4371 }
4372 if (!zone->wait_table)
4373 return -ENOMEM;
4374
4375 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4376 init_waitqueue_head(zone->wait_table + i);
4377
4378 return 0;
4379 }
4380
4381 static __meminit void zone_pcp_init(struct zone *zone)
4382 {
4383 /*
4384 * per cpu subsystem is not up at this point. The following code
4385 * relies on the ability of the linker to provide the
4386 * offset of a (static) per cpu variable into the per cpu area.
4387 */
4388 zone->pageset = &boot_pageset;
4389
4390 if (populated_zone(zone))
4391 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4392 zone->name, zone->present_pages,
4393 zone_batchsize(zone));
4394 }
4395
4396 int __meminit init_currently_empty_zone(struct zone *zone,
4397 unsigned long zone_start_pfn,
4398 unsigned long size,
4399 enum memmap_context context)
4400 {
4401 struct pglist_data *pgdat = zone->zone_pgdat;
4402 int ret;
4403 ret = zone_wait_table_init(zone, size);
4404 if (ret)
4405 return ret;
4406 pgdat->nr_zones = zone_idx(zone) + 1;
4407
4408 zone->zone_start_pfn = zone_start_pfn;
4409
4410 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4411 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4412 pgdat->node_id,
4413 (unsigned long)zone_idx(zone),
4414 zone_start_pfn, (zone_start_pfn + size));
4415
4416 zone_init_free_lists(zone);
4417
4418 return 0;
4419 }
4420
4421 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4422 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4423 /*
4424 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4425 */
4426 int __meminit __early_pfn_to_nid(unsigned long pfn)
4427 {
4428 unsigned long start_pfn, end_pfn;
4429 int nid;
4430 /*
4431 * NOTE: The following SMP-unsafe globals are only used early in boot
4432 * when the kernel is running single-threaded.
4433 */
4434 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4435 static int __meminitdata last_nid;
4436
4437 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4438 return last_nid;
4439
4440 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4441 if (nid != -1) {
4442 last_start_pfn = start_pfn;
4443 last_end_pfn = end_pfn;
4444 last_nid = nid;
4445 }
4446
4447 return nid;
4448 }
4449 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4450
4451 int __meminit early_pfn_to_nid(unsigned long pfn)
4452 {
4453 int nid;
4454
4455 nid = __early_pfn_to_nid(pfn);
4456 if (nid >= 0)
4457 return nid;
4458 /* just returns 0 */
4459 return 0;
4460 }
4461
4462 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4463 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4464 {
4465 int nid;
4466
4467 nid = __early_pfn_to_nid(pfn);
4468 if (nid >= 0 && nid != node)
4469 return false;
4470 return true;
4471 }
4472 #endif
4473
4474 /**
4475 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4476 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4477 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4478 *
4479 * If an architecture guarantees that all ranges registered contain no holes
4480 * and may be freed, this this function may be used instead of calling
4481 * memblock_free_early_nid() manually.
4482 */
4483 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4484 {
4485 unsigned long start_pfn, end_pfn;
4486 int i, this_nid;
4487
4488 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4489 start_pfn = min(start_pfn, max_low_pfn);
4490 end_pfn = min(end_pfn, max_low_pfn);
4491
4492 if (start_pfn < end_pfn)
4493 memblock_free_early_nid(PFN_PHYS(start_pfn),
4494 (end_pfn - start_pfn) << PAGE_SHIFT,
4495 this_nid);
4496 }
4497 }
4498
4499 /**
4500 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4501 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4502 *
4503 * If an architecture guarantees that all ranges registered contain no holes and may
4504 * be freed, this function may be used instead of calling memory_present() manually.
4505 */
4506 void __init sparse_memory_present_with_active_regions(int nid)
4507 {
4508 unsigned long start_pfn, end_pfn;
4509 int i, this_nid;
4510
4511 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4512 memory_present(this_nid, start_pfn, end_pfn);
4513 }
4514
4515 /**
4516 * get_pfn_range_for_nid - Return the start and end page frames for a node
4517 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4518 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4519 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4520 *
4521 * It returns the start and end page frame of a node based on information
4522 * provided by memblock_set_node(). If called for a node
4523 * with no available memory, a warning is printed and the start and end
4524 * PFNs will be 0.
4525 */
4526 void __meminit get_pfn_range_for_nid(unsigned int nid,
4527 unsigned long *start_pfn, unsigned long *end_pfn)
4528 {
4529 unsigned long this_start_pfn, this_end_pfn;
4530 int i;
4531
4532 *start_pfn = -1UL;
4533 *end_pfn = 0;
4534
4535 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4536 *start_pfn = min(*start_pfn, this_start_pfn);
4537 *end_pfn = max(*end_pfn, this_end_pfn);
4538 }
4539
4540 if (*start_pfn == -1UL)
4541 *start_pfn = 0;
4542 }
4543
4544 /*
4545 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4546 * assumption is made that zones within a node are ordered in monotonic
4547 * increasing memory addresses so that the "highest" populated zone is used
4548 */
4549 static void __init find_usable_zone_for_movable(void)
4550 {
4551 int zone_index;
4552 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4553 if (zone_index == ZONE_MOVABLE)
4554 continue;
4555
4556 if (arch_zone_highest_possible_pfn[zone_index] >
4557 arch_zone_lowest_possible_pfn[zone_index])
4558 break;
4559 }
4560
4561 VM_BUG_ON(zone_index == -1);
4562 movable_zone = zone_index;
4563 }
4564
4565 /*
4566 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4567 * because it is sized independent of architecture. Unlike the other zones,
4568 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4569 * in each node depending on the size of each node and how evenly kernelcore
4570 * is distributed. This helper function adjusts the zone ranges
4571 * provided by the architecture for a given node by using the end of the
4572 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4573 * zones within a node are in order of monotonic increases memory addresses
4574 */
4575 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4576 unsigned long zone_type,
4577 unsigned long node_start_pfn,
4578 unsigned long node_end_pfn,
4579 unsigned long *zone_start_pfn,
4580 unsigned long *zone_end_pfn)
4581 {
4582 /* Only adjust if ZONE_MOVABLE is on this node */
4583 if (zone_movable_pfn[nid]) {
4584 /* Size ZONE_MOVABLE */
4585 if (zone_type == ZONE_MOVABLE) {
4586 *zone_start_pfn = zone_movable_pfn[nid];
4587 *zone_end_pfn = min(node_end_pfn,
4588 arch_zone_highest_possible_pfn[movable_zone]);
4589
4590 /* Adjust for ZONE_MOVABLE starting within this range */
4591 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4592 *zone_end_pfn > zone_movable_pfn[nid]) {
4593 *zone_end_pfn = zone_movable_pfn[nid];
4594
4595 /* Check if this whole range is within ZONE_MOVABLE */
4596 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4597 *zone_start_pfn = *zone_end_pfn;
4598 }
4599 }
4600
4601 /*
4602 * Return the number of pages a zone spans in a node, including holes
4603 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4604 */
4605 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4606 unsigned long zone_type,
4607 unsigned long node_start_pfn,
4608 unsigned long node_end_pfn,
4609 unsigned long *ignored)
4610 {
4611 unsigned long zone_start_pfn, zone_end_pfn;
4612
4613 /* Get the start and end of the zone */
4614 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4615 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4616 adjust_zone_range_for_zone_movable(nid, zone_type,
4617 node_start_pfn, node_end_pfn,
4618 &zone_start_pfn, &zone_end_pfn);
4619
4620 /* Check that this node has pages within the zone's required range */
4621 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4622 return 0;
4623
4624 /* Move the zone boundaries inside the node if necessary */
4625 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4626 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4627
4628 /* Return the spanned pages */
4629 return zone_end_pfn - zone_start_pfn;
4630 }
4631
4632 /*
4633 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4634 * then all holes in the requested range will be accounted for.
4635 */
4636 unsigned long __meminit __absent_pages_in_range(int nid,
4637 unsigned long range_start_pfn,
4638 unsigned long range_end_pfn)
4639 {
4640 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4641 unsigned long start_pfn, end_pfn;
4642 int i;
4643
4644 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4645 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4646 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4647 nr_absent -= end_pfn - start_pfn;
4648 }
4649 return nr_absent;
4650 }
4651
4652 /**
4653 * absent_pages_in_range - Return number of page frames in holes within a range
4654 * @start_pfn: The start PFN to start searching for holes
4655 * @end_pfn: The end PFN to stop searching for holes
4656 *
4657 * It returns the number of pages frames in memory holes within a range.
4658 */
4659 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4660 unsigned long end_pfn)
4661 {
4662 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4663 }
4664
4665 /* Return the number of page frames in holes in a zone on a node */
4666 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4667 unsigned long zone_type,
4668 unsigned long node_start_pfn,
4669 unsigned long node_end_pfn,
4670 unsigned long *ignored)
4671 {
4672 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4673 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4674 unsigned long zone_start_pfn, zone_end_pfn;
4675
4676 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4677 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4678
4679 adjust_zone_range_for_zone_movable(nid, zone_type,
4680 node_start_pfn, node_end_pfn,
4681 &zone_start_pfn, &zone_end_pfn);
4682 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4683 }
4684
4685 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4686 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4687 unsigned long zone_type,
4688 unsigned long node_start_pfn,
4689 unsigned long node_end_pfn,
4690 unsigned long *zones_size)
4691 {
4692 return zones_size[zone_type];
4693 }
4694
4695 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4696 unsigned long zone_type,
4697 unsigned long node_start_pfn,
4698 unsigned long node_end_pfn,
4699 unsigned long *zholes_size)
4700 {
4701 if (!zholes_size)
4702 return 0;
4703
4704 return zholes_size[zone_type];
4705 }
4706
4707 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4708
4709 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4710 unsigned long node_start_pfn,
4711 unsigned long node_end_pfn,
4712 unsigned long *zones_size,
4713 unsigned long *zholes_size)
4714 {
4715 unsigned long realtotalpages, totalpages = 0;
4716 enum zone_type i;
4717
4718 for (i = 0; i < MAX_NR_ZONES; i++)
4719 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4720 node_start_pfn,
4721 node_end_pfn,
4722 zones_size);
4723 pgdat->node_spanned_pages = totalpages;
4724
4725 realtotalpages = totalpages;
4726 for (i = 0; i < MAX_NR_ZONES; i++)
4727 realtotalpages -=
4728 zone_absent_pages_in_node(pgdat->node_id, i,
4729 node_start_pfn, node_end_pfn,
4730 zholes_size);
4731 pgdat->node_present_pages = realtotalpages;
4732 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4733 realtotalpages);
4734 }
4735
4736 #ifndef CONFIG_SPARSEMEM
4737 /*
4738 * Calculate the size of the zone->blockflags rounded to an unsigned long
4739 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4740 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4741 * round what is now in bits to nearest long in bits, then return it in
4742 * bytes.
4743 */
4744 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4745 {
4746 unsigned long usemapsize;
4747
4748 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4749 usemapsize = roundup(zonesize, pageblock_nr_pages);
4750 usemapsize = usemapsize >> pageblock_order;
4751 usemapsize *= NR_PAGEBLOCK_BITS;
4752 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4753
4754 return usemapsize / 8;
4755 }
4756
4757 static void __init setup_usemap(struct pglist_data *pgdat,
4758 struct zone *zone,
4759 unsigned long zone_start_pfn,
4760 unsigned long zonesize)
4761 {
4762 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4763 zone->pageblock_flags = NULL;
4764 if (usemapsize)
4765 zone->pageblock_flags =
4766 memblock_virt_alloc_node_nopanic(usemapsize,
4767 pgdat->node_id);
4768 }
4769 #else
4770 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4771 unsigned long zone_start_pfn, unsigned long zonesize) {}
4772 #endif /* CONFIG_SPARSEMEM */
4773
4774 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4775
4776 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4777 void __paginginit set_pageblock_order(void)
4778 {
4779 unsigned int order;
4780
4781 /* Check that pageblock_nr_pages has not already been setup */
4782 if (pageblock_order)
4783 return;
4784
4785 if (HPAGE_SHIFT > PAGE_SHIFT)
4786 order = HUGETLB_PAGE_ORDER;
4787 else
4788 order = MAX_ORDER - 1;
4789
4790 /*
4791 * Assume the largest contiguous order of interest is a huge page.
4792 * This value may be variable depending on boot parameters on IA64 and
4793 * powerpc.
4794 */
4795 pageblock_order = order;
4796 }
4797 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4798
4799 /*
4800 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4801 * is unused as pageblock_order is set at compile-time. See
4802 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4803 * the kernel config
4804 */
4805 void __paginginit set_pageblock_order(void)
4806 {
4807 }
4808
4809 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4810
4811 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4812 unsigned long present_pages)
4813 {
4814 unsigned long pages = spanned_pages;
4815
4816 /*
4817 * Provide a more accurate estimation if there are holes within
4818 * the zone and SPARSEMEM is in use. If there are holes within the
4819 * zone, each populated memory region may cost us one or two extra
4820 * memmap pages due to alignment because memmap pages for each
4821 * populated regions may not naturally algined on page boundary.
4822 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4823 */
4824 if (spanned_pages > present_pages + (present_pages >> 4) &&
4825 IS_ENABLED(CONFIG_SPARSEMEM))
4826 pages = present_pages;
4827
4828 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4829 }
4830
4831 /*
4832 * Set up the zone data structures:
4833 * - mark all pages reserved
4834 * - mark all memory queues empty
4835 * - clear the memory bitmaps
4836 *
4837 * NOTE: pgdat should get zeroed by caller.
4838 */
4839 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4840 unsigned long node_start_pfn, unsigned long node_end_pfn,
4841 unsigned long *zones_size, unsigned long *zholes_size)
4842 {
4843 enum zone_type j;
4844 int nid = pgdat->node_id;
4845 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4846 int ret;
4847
4848 pgdat_resize_init(pgdat);
4849 #ifdef CONFIG_NUMA_BALANCING
4850 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4851 pgdat->numabalancing_migrate_nr_pages = 0;
4852 pgdat->numabalancing_migrate_next_window = jiffies;
4853 #endif
4854 init_waitqueue_head(&pgdat->kswapd_wait);
4855 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4856 pgdat_page_cgroup_init(pgdat);
4857
4858 for (j = 0; j < MAX_NR_ZONES; j++) {
4859 struct zone *zone = pgdat->node_zones + j;
4860 unsigned long size, realsize, freesize, memmap_pages;
4861
4862 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4863 node_end_pfn, zones_size);
4864 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4865 node_start_pfn,
4866 node_end_pfn,
4867 zholes_size);
4868
4869 /*
4870 * Adjust freesize so that it accounts for how much memory
4871 * is used by this zone for memmap. This affects the watermark
4872 * and per-cpu initialisations
4873 */
4874 memmap_pages = calc_memmap_size(size, realsize);
4875 if (freesize >= memmap_pages) {
4876 freesize -= memmap_pages;
4877 if (memmap_pages)
4878 printk(KERN_DEBUG
4879 " %s zone: %lu pages used for memmap\n",
4880 zone_names[j], memmap_pages);
4881 } else
4882 printk(KERN_WARNING
4883 " %s zone: %lu pages exceeds freesize %lu\n",
4884 zone_names[j], memmap_pages, freesize);
4885
4886 /* Account for reserved pages */
4887 if (j == 0 && freesize > dma_reserve) {
4888 freesize -= dma_reserve;
4889 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4890 zone_names[0], dma_reserve);
4891 }
4892
4893 if (!is_highmem_idx(j))
4894 nr_kernel_pages += freesize;
4895 /* Charge for highmem memmap if there are enough kernel pages */
4896 else if (nr_kernel_pages > memmap_pages * 2)
4897 nr_kernel_pages -= memmap_pages;
4898 nr_all_pages += freesize;
4899
4900 zone->spanned_pages = size;
4901 zone->present_pages = realsize;
4902 /*
4903 * Set an approximate value for lowmem here, it will be adjusted
4904 * when the bootmem allocator frees pages into the buddy system.
4905 * And all highmem pages will be managed by the buddy system.
4906 */
4907 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4908 #ifdef CONFIG_NUMA
4909 zone->node = nid;
4910 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4911 / 100;
4912 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4913 #endif
4914 zone->name = zone_names[j];
4915 spin_lock_init(&zone->lock);
4916 spin_lock_init(&zone->lru_lock);
4917 zone_seqlock_init(zone);
4918 zone->zone_pgdat = pgdat;
4919 zone_pcp_init(zone);
4920
4921 /* For bootup, initialized properly in watermark setup */
4922 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4923
4924 lruvec_init(&zone->lruvec);
4925 if (!size)
4926 continue;
4927
4928 set_pageblock_order();
4929 setup_usemap(pgdat, zone, zone_start_pfn, size);
4930 ret = init_currently_empty_zone(zone, zone_start_pfn,
4931 size, MEMMAP_EARLY);
4932 BUG_ON(ret);
4933 memmap_init(size, nid, j, zone_start_pfn);
4934 zone_start_pfn += size;
4935 }
4936 }
4937
4938 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4939 {
4940 /* Skip empty nodes */
4941 if (!pgdat->node_spanned_pages)
4942 return;
4943
4944 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4945 /* ia64 gets its own node_mem_map, before this, without bootmem */
4946 if (!pgdat->node_mem_map) {
4947 unsigned long size, start, end;
4948 struct page *map;
4949
4950 /*
4951 * The zone's endpoints aren't required to be MAX_ORDER
4952 * aligned but the node_mem_map endpoints must be in order
4953 * for the buddy allocator to function correctly.
4954 */
4955 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4956 end = pgdat_end_pfn(pgdat);
4957 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4958 size = (end - start) * sizeof(struct page);
4959 map = alloc_remap(pgdat->node_id, size);
4960 if (!map)
4961 map = memblock_virt_alloc_node_nopanic(size,
4962 pgdat->node_id);
4963 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4964 }
4965 #ifndef CONFIG_NEED_MULTIPLE_NODES
4966 /*
4967 * With no DISCONTIG, the global mem_map is just set as node 0's
4968 */
4969 if (pgdat == NODE_DATA(0)) {
4970 mem_map = NODE_DATA(0)->node_mem_map;
4971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4972 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4973 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4974 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4975 }
4976 #endif
4977 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4978 }
4979
4980 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4981 unsigned long node_start_pfn, unsigned long *zholes_size)
4982 {
4983 pg_data_t *pgdat = NODE_DATA(nid);
4984 unsigned long start_pfn = 0;
4985 unsigned long end_pfn = 0;
4986
4987 /* pg_data_t should be reset to zero when it's allocated */
4988 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4989
4990 pgdat->node_id = nid;
4991 pgdat->node_start_pfn = node_start_pfn;
4992 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4994 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4995 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4996 #endif
4997 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4998 zones_size, zholes_size);
4999
5000 alloc_node_mem_map(pgdat);
5001 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5002 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5003 nid, (unsigned long)pgdat,
5004 (unsigned long)pgdat->node_mem_map);
5005 #endif
5006
5007 free_area_init_core(pgdat, start_pfn, end_pfn,
5008 zones_size, zholes_size);
5009 }
5010
5011 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5012
5013 #if MAX_NUMNODES > 1
5014 /*
5015 * Figure out the number of possible node ids.
5016 */
5017 void __init setup_nr_node_ids(void)
5018 {
5019 unsigned int node;
5020 unsigned int highest = 0;
5021
5022 for_each_node_mask(node, node_possible_map)
5023 highest = node;
5024 nr_node_ids = highest + 1;
5025 }
5026 #endif
5027
5028 /**
5029 * node_map_pfn_alignment - determine the maximum internode alignment
5030 *
5031 * This function should be called after node map is populated and sorted.
5032 * It calculates the maximum power of two alignment which can distinguish
5033 * all the nodes.
5034 *
5035 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5036 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5037 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5038 * shifted, 1GiB is enough and this function will indicate so.
5039 *
5040 * This is used to test whether pfn -> nid mapping of the chosen memory
5041 * model has fine enough granularity to avoid incorrect mapping for the
5042 * populated node map.
5043 *
5044 * Returns the determined alignment in pfn's. 0 if there is no alignment
5045 * requirement (single node).
5046 */
5047 unsigned long __init node_map_pfn_alignment(void)
5048 {
5049 unsigned long accl_mask = 0, last_end = 0;
5050 unsigned long start, end, mask;
5051 int last_nid = -1;
5052 int i, nid;
5053
5054 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5055 if (!start || last_nid < 0 || last_nid == nid) {
5056 last_nid = nid;
5057 last_end = end;
5058 continue;
5059 }
5060
5061 /*
5062 * Start with a mask granular enough to pin-point to the
5063 * start pfn and tick off bits one-by-one until it becomes
5064 * too coarse to separate the current node from the last.
5065 */
5066 mask = ~((1 << __ffs(start)) - 1);
5067 while (mask && last_end <= (start & (mask << 1)))
5068 mask <<= 1;
5069
5070 /* accumulate all internode masks */
5071 accl_mask |= mask;
5072 }
5073
5074 /* convert mask to number of pages */
5075 return ~accl_mask + 1;
5076 }
5077
5078 /* Find the lowest pfn for a node */
5079 static unsigned long __init find_min_pfn_for_node(int nid)
5080 {
5081 unsigned long min_pfn = ULONG_MAX;
5082 unsigned long start_pfn;
5083 int i;
5084
5085 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5086 min_pfn = min(min_pfn, start_pfn);
5087
5088 if (min_pfn == ULONG_MAX) {
5089 printk(KERN_WARNING
5090 "Could not find start_pfn for node %d\n", nid);
5091 return 0;
5092 }
5093
5094 return min_pfn;
5095 }
5096
5097 /**
5098 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5099 *
5100 * It returns the minimum PFN based on information provided via
5101 * memblock_set_node().
5102 */
5103 unsigned long __init find_min_pfn_with_active_regions(void)
5104 {
5105 return find_min_pfn_for_node(MAX_NUMNODES);
5106 }
5107
5108 /*
5109 * early_calculate_totalpages()
5110 * Sum pages in active regions for movable zone.
5111 * Populate N_MEMORY for calculating usable_nodes.
5112 */
5113 static unsigned long __init early_calculate_totalpages(void)
5114 {
5115 unsigned long totalpages = 0;
5116 unsigned long start_pfn, end_pfn;
5117 int i, nid;
5118
5119 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5120 unsigned long pages = end_pfn - start_pfn;
5121
5122 totalpages += pages;
5123 if (pages)
5124 node_set_state(nid, N_MEMORY);
5125 }
5126 return totalpages;
5127 }
5128
5129 /*
5130 * Find the PFN the Movable zone begins in each node. Kernel memory
5131 * is spread evenly between nodes as long as the nodes have enough
5132 * memory. When they don't, some nodes will have more kernelcore than
5133 * others
5134 */
5135 static void __init find_zone_movable_pfns_for_nodes(void)
5136 {
5137 int i, nid;
5138 unsigned long usable_startpfn;
5139 unsigned long kernelcore_node, kernelcore_remaining;
5140 /* save the state before borrow the nodemask */
5141 nodemask_t saved_node_state = node_states[N_MEMORY];
5142 unsigned long totalpages = early_calculate_totalpages();
5143 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5144 struct memblock_region *r;
5145
5146 /* Need to find movable_zone earlier when movable_node is specified. */
5147 find_usable_zone_for_movable();
5148
5149 /*
5150 * If movable_node is specified, ignore kernelcore and movablecore
5151 * options.
5152 */
5153 if (movable_node_is_enabled()) {
5154 for_each_memblock(memory, r) {
5155 if (!memblock_is_hotpluggable(r))
5156 continue;
5157
5158 nid = r->nid;
5159
5160 usable_startpfn = PFN_DOWN(r->base);
5161 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5162 min(usable_startpfn, zone_movable_pfn[nid]) :
5163 usable_startpfn;
5164 }
5165
5166 goto out2;
5167 }
5168
5169 /*
5170 * If movablecore=nn[KMG] was specified, calculate what size of
5171 * kernelcore that corresponds so that memory usable for
5172 * any allocation type is evenly spread. If both kernelcore
5173 * and movablecore are specified, then the value of kernelcore
5174 * will be used for required_kernelcore if it's greater than
5175 * what movablecore would have allowed.
5176 */
5177 if (required_movablecore) {
5178 unsigned long corepages;
5179
5180 /*
5181 * Round-up so that ZONE_MOVABLE is at least as large as what
5182 * was requested by the user
5183 */
5184 required_movablecore =
5185 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5186 corepages = totalpages - required_movablecore;
5187
5188 required_kernelcore = max(required_kernelcore, corepages);
5189 }
5190
5191 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5192 if (!required_kernelcore)
5193 goto out;
5194
5195 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5196 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5197
5198 restart:
5199 /* Spread kernelcore memory as evenly as possible throughout nodes */
5200 kernelcore_node = required_kernelcore / usable_nodes;
5201 for_each_node_state(nid, N_MEMORY) {
5202 unsigned long start_pfn, end_pfn;
5203
5204 /*
5205 * Recalculate kernelcore_node if the division per node
5206 * now exceeds what is necessary to satisfy the requested
5207 * amount of memory for the kernel
5208 */
5209 if (required_kernelcore < kernelcore_node)
5210 kernelcore_node = required_kernelcore / usable_nodes;
5211
5212 /*
5213 * As the map is walked, we track how much memory is usable
5214 * by the kernel using kernelcore_remaining. When it is
5215 * 0, the rest of the node is usable by ZONE_MOVABLE
5216 */
5217 kernelcore_remaining = kernelcore_node;
5218
5219 /* Go through each range of PFNs within this node */
5220 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5221 unsigned long size_pages;
5222
5223 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5224 if (start_pfn >= end_pfn)
5225 continue;
5226
5227 /* Account for what is only usable for kernelcore */
5228 if (start_pfn < usable_startpfn) {
5229 unsigned long kernel_pages;
5230 kernel_pages = min(end_pfn, usable_startpfn)
5231 - start_pfn;
5232
5233 kernelcore_remaining -= min(kernel_pages,
5234 kernelcore_remaining);
5235 required_kernelcore -= min(kernel_pages,
5236 required_kernelcore);
5237
5238 /* Continue if range is now fully accounted */
5239 if (end_pfn <= usable_startpfn) {
5240
5241 /*
5242 * Push zone_movable_pfn to the end so
5243 * that if we have to rebalance
5244 * kernelcore across nodes, we will
5245 * not double account here
5246 */
5247 zone_movable_pfn[nid] = end_pfn;
5248 continue;
5249 }
5250 start_pfn = usable_startpfn;
5251 }
5252
5253 /*
5254 * The usable PFN range for ZONE_MOVABLE is from
5255 * start_pfn->end_pfn. Calculate size_pages as the
5256 * number of pages used as kernelcore
5257 */
5258 size_pages = end_pfn - start_pfn;
5259 if (size_pages > kernelcore_remaining)
5260 size_pages = kernelcore_remaining;
5261 zone_movable_pfn[nid] = start_pfn + size_pages;
5262
5263 /*
5264 * Some kernelcore has been met, update counts and
5265 * break if the kernelcore for this node has been
5266 * satisfied
5267 */
5268 required_kernelcore -= min(required_kernelcore,
5269 size_pages);
5270 kernelcore_remaining -= size_pages;
5271 if (!kernelcore_remaining)
5272 break;
5273 }
5274 }
5275
5276 /*
5277 * If there is still required_kernelcore, we do another pass with one
5278 * less node in the count. This will push zone_movable_pfn[nid] further
5279 * along on the nodes that still have memory until kernelcore is
5280 * satisfied
5281 */
5282 usable_nodes--;
5283 if (usable_nodes && required_kernelcore > usable_nodes)
5284 goto restart;
5285
5286 out2:
5287 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5288 for (nid = 0; nid < MAX_NUMNODES; nid++)
5289 zone_movable_pfn[nid] =
5290 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5291
5292 out:
5293 /* restore the node_state */
5294 node_states[N_MEMORY] = saved_node_state;
5295 }
5296
5297 /* Any regular or high memory on that node ? */
5298 static void check_for_memory(pg_data_t *pgdat, int nid)
5299 {
5300 enum zone_type zone_type;
5301
5302 if (N_MEMORY == N_NORMAL_MEMORY)
5303 return;
5304
5305 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5306 struct zone *zone = &pgdat->node_zones[zone_type];
5307 if (populated_zone(zone)) {
5308 node_set_state(nid, N_HIGH_MEMORY);
5309 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5310 zone_type <= ZONE_NORMAL)
5311 node_set_state(nid, N_NORMAL_MEMORY);
5312 break;
5313 }
5314 }
5315 }
5316
5317 /**
5318 * free_area_init_nodes - Initialise all pg_data_t and zone data
5319 * @max_zone_pfn: an array of max PFNs for each zone
5320 *
5321 * This will call free_area_init_node() for each active node in the system.
5322 * Using the page ranges provided by memblock_set_node(), the size of each
5323 * zone in each node and their holes is calculated. If the maximum PFN
5324 * between two adjacent zones match, it is assumed that the zone is empty.
5325 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5326 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5327 * starts where the previous one ended. For example, ZONE_DMA32 starts
5328 * at arch_max_dma_pfn.
5329 */
5330 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5331 {
5332 unsigned long start_pfn, end_pfn;
5333 int i, nid;
5334
5335 /* Record where the zone boundaries are */
5336 memset(arch_zone_lowest_possible_pfn, 0,
5337 sizeof(arch_zone_lowest_possible_pfn));
5338 memset(arch_zone_highest_possible_pfn, 0,
5339 sizeof(arch_zone_highest_possible_pfn));
5340 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5341 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5342 for (i = 1; i < MAX_NR_ZONES; i++) {
5343 if (i == ZONE_MOVABLE)
5344 continue;
5345 arch_zone_lowest_possible_pfn[i] =
5346 arch_zone_highest_possible_pfn[i-1];
5347 arch_zone_highest_possible_pfn[i] =
5348 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5349 }
5350 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5351 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5352
5353 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5354 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5355 find_zone_movable_pfns_for_nodes();
5356
5357 /* Print out the zone ranges */
5358 pr_info("Zone ranges:\n");
5359 for (i = 0; i < MAX_NR_ZONES; i++) {
5360 if (i == ZONE_MOVABLE)
5361 continue;
5362 pr_info(" %-8s ", zone_names[i]);
5363 if (arch_zone_lowest_possible_pfn[i] ==
5364 arch_zone_highest_possible_pfn[i])
5365 pr_cont("empty\n");
5366 else
5367 pr_cont("[mem %0#10lx-%0#10lx]\n",
5368 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5369 (arch_zone_highest_possible_pfn[i]
5370 << PAGE_SHIFT) - 1);
5371 }
5372
5373 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5374 pr_info("Movable zone start for each node\n");
5375 for (i = 0; i < MAX_NUMNODES; i++) {
5376 if (zone_movable_pfn[i])
5377 pr_info(" Node %d: %#010lx\n", i,
5378 zone_movable_pfn[i] << PAGE_SHIFT);
5379 }
5380
5381 /* Print out the early node map */
5382 pr_info("Early memory node ranges\n");
5383 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5384 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5385 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5386
5387 /* Initialise every node */
5388 mminit_verify_pageflags_layout();
5389 setup_nr_node_ids();
5390 for_each_online_node(nid) {
5391 pg_data_t *pgdat = NODE_DATA(nid);
5392 free_area_init_node(nid, NULL,
5393 find_min_pfn_for_node(nid), NULL);
5394
5395 /* Any memory on that node */
5396 if (pgdat->node_present_pages)
5397 node_set_state(nid, N_MEMORY);
5398 check_for_memory(pgdat, nid);
5399 }
5400 }
5401
5402 static int __init cmdline_parse_core(char *p, unsigned long *core)
5403 {
5404 unsigned long long coremem;
5405 if (!p)
5406 return -EINVAL;
5407
5408 coremem = memparse(p, &p);
5409 *core = coremem >> PAGE_SHIFT;
5410
5411 /* Paranoid check that UL is enough for the coremem value */
5412 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5413
5414 return 0;
5415 }
5416
5417 /*
5418 * kernelcore=size sets the amount of memory for use for allocations that
5419 * cannot be reclaimed or migrated.
5420 */
5421 static int __init cmdline_parse_kernelcore(char *p)
5422 {
5423 return cmdline_parse_core(p, &required_kernelcore);
5424 }
5425
5426 /*
5427 * movablecore=size sets the amount of memory for use for allocations that
5428 * can be reclaimed or migrated.
5429 */
5430 static int __init cmdline_parse_movablecore(char *p)
5431 {
5432 return cmdline_parse_core(p, &required_movablecore);
5433 }
5434
5435 early_param("kernelcore", cmdline_parse_kernelcore);
5436 early_param("movablecore", cmdline_parse_movablecore);
5437
5438 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5439
5440 void adjust_managed_page_count(struct page *page, long count)
5441 {
5442 spin_lock(&managed_page_count_lock);
5443 page_zone(page)->managed_pages += count;
5444 totalram_pages += count;
5445 #ifdef CONFIG_HIGHMEM
5446 if (PageHighMem(page))
5447 totalhigh_pages += count;
5448 #endif
5449 spin_unlock(&managed_page_count_lock);
5450 }
5451 EXPORT_SYMBOL(adjust_managed_page_count);
5452
5453 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5454 {
5455 void *pos;
5456 unsigned long pages = 0;
5457
5458 start = (void *)PAGE_ALIGN((unsigned long)start);
5459 end = (void *)((unsigned long)end & PAGE_MASK);
5460 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5461 if ((unsigned int)poison <= 0xFF)
5462 memset(pos, poison, PAGE_SIZE);
5463 free_reserved_page(virt_to_page(pos));
5464 }
5465
5466 if (pages && s)
5467 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5468 s, pages << (PAGE_SHIFT - 10), start, end);
5469
5470 return pages;
5471 }
5472 EXPORT_SYMBOL(free_reserved_area);
5473
5474 #ifdef CONFIG_HIGHMEM
5475 void free_highmem_page(struct page *page)
5476 {
5477 __free_reserved_page(page);
5478 totalram_pages++;
5479 page_zone(page)->managed_pages++;
5480 totalhigh_pages++;
5481 }
5482 #endif
5483
5484
5485 void __init mem_init_print_info(const char *str)
5486 {
5487 unsigned long physpages, codesize, datasize, rosize, bss_size;
5488 unsigned long init_code_size, init_data_size;
5489
5490 physpages = get_num_physpages();
5491 codesize = _etext - _stext;
5492 datasize = _edata - _sdata;
5493 rosize = __end_rodata - __start_rodata;
5494 bss_size = __bss_stop - __bss_start;
5495 init_data_size = __init_end - __init_begin;
5496 init_code_size = _einittext - _sinittext;
5497
5498 /*
5499 * Detect special cases and adjust section sizes accordingly:
5500 * 1) .init.* may be embedded into .data sections
5501 * 2) .init.text.* may be out of [__init_begin, __init_end],
5502 * please refer to arch/tile/kernel/vmlinux.lds.S.
5503 * 3) .rodata.* may be embedded into .text or .data sections.
5504 */
5505 #define adj_init_size(start, end, size, pos, adj) \
5506 do { \
5507 if (start <= pos && pos < end && size > adj) \
5508 size -= adj; \
5509 } while (0)
5510
5511 adj_init_size(__init_begin, __init_end, init_data_size,
5512 _sinittext, init_code_size);
5513 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5514 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5515 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5516 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5517
5518 #undef adj_init_size
5519
5520 pr_info("Memory: %luK/%luK available "
5521 "(%luK kernel code, %luK rwdata, %luK rodata, "
5522 "%luK init, %luK bss, %luK reserved"
5523 #ifdef CONFIG_HIGHMEM
5524 ", %luK highmem"
5525 #endif
5526 "%s%s)\n",
5527 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5528 codesize >> 10, datasize >> 10, rosize >> 10,
5529 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5530 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5531 #ifdef CONFIG_HIGHMEM
5532 totalhigh_pages << (PAGE_SHIFT-10),
5533 #endif
5534 str ? ", " : "", str ? str : "");
5535 }
5536
5537 /**
5538 * set_dma_reserve - set the specified number of pages reserved in the first zone
5539 * @new_dma_reserve: The number of pages to mark reserved
5540 *
5541 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5542 * In the DMA zone, a significant percentage may be consumed by kernel image
5543 * and other unfreeable allocations which can skew the watermarks badly. This
5544 * function may optionally be used to account for unfreeable pages in the
5545 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5546 * smaller per-cpu batchsize.
5547 */
5548 void __init set_dma_reserve(unsigned long new_dma_reserve)
5549 {
5550 dma_reserve = new_dma_reserve;
5551 }
5552
5553 void __init free_area_init(unsigned long *zones_size)
5554 {
5555 free_area_init_node(0, zones_size,
5556 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5557 }
5558
5559 static int page_alloc_cpu_notify(struct notifier_block *self,
5560 unsigned long action, void *hcpu)
5561 {
5562 int cpu = (unsigned long)hcpu;
5563
5564 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5565 lru_add_drain_cpu(cpu);
5566 drain_pages(cpu);
5567
5568 /*
5569 * Spill the event counters of the dead processor
5570 * into the current processors event counters.
5571 * This artificially elevates the count of the current
5572 * processor.
5573 */
5574 vm_events_fold_cpu(cpu);
5575
5576 /*
5577 * Zero the differential counters of the dead processor
5578 * so that the vm statistics are consistent.
5579 *
5580 * This is only okay since the processor is dead and cannot
5581 * race with what we are doing.
5582 */
5583 cpu_vm_stats_fold(cpu);
5584 }
5585 return NOTIFY_OK;
5586 }
5587
5588 void __init page_alloc_init(void)
5589 {
5590 hotcpu_notifier(page_alloc_cpu_notify, 0);
5591 }
5592
5593 /*
5594 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5595 * or min_free_kbytes changes.
5596 */
5597 static void calculate_totalreserve_pages(void)
5598 {
5599 struct pglist_data *pgdat;
5600 unsigned long reserve_pages = 0;
5601 enum zone_type i, j;
5602
5603 for_each_online_pgdat(pgdat) {
5604 for (i = 0; i < MAX_NR_ZONES; i++) {
5605 struct zone *zone = pgdat->node_zones + i;
5606 long max = 0;
5607
5608 /* Find valid and maximum lowmem_reserve in the zone */
5609 for (j = i; j < MAX_NR_ZONES; j++) {
5610 if (zone->lowmem_reserve[j] > max)
5611 max = zone->lowmem_reserve[j];
5612 }
5613
5614 /* we treat the high watermark as reserved pages. */
5615 max += high_wmark_pages(zone);
5616
5617 if (max > zone->managed_pages)
5618 max = zone->managed_pages;
5619 reserve_pages += max;
5620 /*
5621 * Lowmem reserves are not available to
5622 * GFP_HIGHUSER page cache allocations and
5623 * kswapd tries to balance zones to their high
5624 * watermark. As a result, neither should be
5625 * regarded as dirtyable memory, to prevent a
5626 * situation where reclaim has to clean pages
5627 * in order to balance the zones.
5628 */
5629 zone->dirty_balance_reserve = max;
5630 }
5631 }
5632 dirty_balance_reserve = reserve_pages;
5633 totalreserve_pages = reserve_pages;
5634 }
5635
5636 /*
5637 * setup_per_zone_lowmem_reserve - called whenever
5638 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5639 * has a correct pages reserved value, so an adequate number of
5640 * pages are left in the zone after a successful __alloc_pages().
5641 */
5642 static void setup_per_zone_lowmem_reserve(void)
5643 {
5644 struct pglist_data *pgdat;
5645 enum zone_type j, idx;
5646
5647 for_each_online_pgdat(pgdat) {
5648 for (j = 0; j < MAX_NR_ZONES; j++) {
5649 struct zone *zone = pgdat->node_zones + j;
5650 unsigned long managed_pages = zone->managed_pages;
5651
5652 zone->lowmem_reserve[j] = 0;
5653
5654 idx = j;
5655 while (idx) {
5656 struct zone *lower_zone;
5657
5658 idx--;
5659
5660 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5661 sysctl_lowmem_reserve_ratio[idx] = 1;
5662
5663 lower_zone = pgdat->node_zones + idx;
5664 lower_zone->lowmem_reserve[j] = managed_pages /
5665 sysctl_lowmem_reserve_ratio[idx];
5666 managed_pages += lower_zone->managed_pages;
5667 }
5668 }
5669 }
5670
5671 /* update totalreserve_pages */
5672 calculate_totalreserve_pages();
5673 }
5674
5675 static void __setup_per_zone_wmarks(void)
5676 {
5677 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5678 unsigned long lowmem_pages = 0;
5679 struct zone *zone;
5680 unsigned long flags;
5681
5682 /* Calculate total number of !ZONE_HIGHMEM pages */
5683 for_each_zone(zone) {
5684 if (!is_highmem(zone))
5685 lowmem_pages += zone->managed_pages;
5686 }
5687
5688 for_each_zone(zone) {
5689 u64 tmp;
5690
5691 spin_lock_irqsave(&zone->lock, flags);
5692 tmp = (u64)pages_min * zone->managed_pages;
5693 do_div(tmp, lowmem_pages);
5694 if (is_highmem(zone)) {
5695 /*
5696 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5697 * need highmem pages, so cap pages_min to a small
5698 * value here.
5699 *
5700 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5701 * deltas controls asynch page reclaim, and so should
5702 * not be capped for highmem.
5703 */
5704 unsigned long min_pages;
5705
5706 min_pages = zone->managed_pages / 1024;
5707 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5708 zone->watermark[WMARK_MIN] = min_pages;
5709 } else {
5710 /*
5711 * If it's a lowmem zone, reserve a number of pages
5712 * proportionate to the zone's size.
5713 */
5714 zone->watermark[WMARK_MIN] = tmp;
5715 }
5716
5717 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5718 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5719
5720 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5721 high_wmark_pages(zone) - low_wmark_pages(zone) -
5722 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5723
5724 setup_zone_migrate_reserve(zone);
5725 spin_unlock_irqrestore(&zone->lock, flags);
5726 }
5727
5728 /* update totalreserve_pages */
5729 calculate_totalreserve_pages();
5730 }
5731
5732 /**
5733 * setup_per_zone_wmarks - called when min_free_kbytes changes
5734 * or when memory is hot-{added|removed}
5735 *
5736 * Ensures that the watermark[min,low,high] values for each zone are set
5737 * correctly with respect to min_free_kbytes.
5738 */
5739 void setup_per_zone_wmarks(void)
5740 {
5741 mutex_lock(&zonelists_mutex);
5742 __setup_per_zone_wmarks();
5743 mutex_unlock(&zonelists_mutex);
5744 }
5745
5746 /*
5747 * The inactive anon list should be small enough that the VM never has to
5748 * do too much work, but large enough that each inactive page has a chance
5749 * to be referenced again before it is swapped out.
5750 *
5751 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5752 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5753 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5754 * the anonymous pages are kept on the inactive list.
5755 *
5756 * total target max
5757 * memory ratio inactive anon
5758 * -------------------------------------
5759 * 10MB 1 5MB
5760 * 100MB 1 50MB
5761 * 1GB 3 250MB
5762 * 10GB 10 0.9GB
5763 * 100GB 31 3GB
5764 * 1TB 101 10GB
5765 * 10TB 320 32GB
5766 */
5767 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5768 {
5769 unsigned int gb, ratio;
5770
5771 /* Zone size in gigabytes */
5772 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5773 if (gb)
5774 ratio = int_sqrt(10 * gb);
5775 else
5776 ratio = 1;
5777
5778 zone->inactive_ratio = ratio;
5779 }
5780
5781 static void __meminit setup_per_zone_inactive_ratio(void)
5782 {
5783 struct zone *zone;
5784
5785 for_each_zone(zone)
5786 calculate_zone_inactive_ratio(zone);
5787 }
5788
5789 /*
5790 * Initialise min_free_kbytes.
5791 *
5792 * For small machines we want it small (128k min). For large machines
5793 * we want it large (64MB max). But it is not linear, because network
5794 * bandwidth does not increase linearly with machine size. We use
5795 *
5796 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5797 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5798 *
5799 * which yields
5800 *
5801 * 16MB: 512k
5802 * 32MB: 724k
5803 * 64MB: 1024k
5804 * 128MB: 1448k
5805 * 256MB: 2048k
5806 * 512MB: 2896k
5807 * 1024MB: 4096k
5808 * 2048MB: 5792k
5809 * 4096MB: 8192k
5810 * 8192MB: 11584k
5811 * 16384MB: 16384k
5812 */
5813 int __meminit init_per_zone_wmark_min(void)
5814 {
5815 unsigned long lowmem_kbytes;
5816 int new_min_free_kbytes;
5817
5818 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5819 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5820
5821 if (new_min_free_kbytes > user_min_free_kbytes) {
5822 min_free_kbytes = new_min_free_kbytes;
5823 if (min_free_kbytes < 128)
5824 min_free_kbytes = 128;
5825 if (min_free_kbytes > 65536)
5826 min_free_kbytes = 65536;
5827 } else {
5828 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5829 new_min_free_kbytes, user_min_free_kbytes);
5830 }
5831 setup_per_zone_wmarks();
5832 refresh_zone_stat_thresholds();
5833 setup_per_zone_lowmem_reserve();
5834 setup_per_zone_inactive_ratio();
5835 return 0;
5836 }
5837 module_init(init_per_zone_wmark_min)
5838
5839 /*
5840 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5841 * that we can call two helper functions whenever min_free_kbytes
5842 * changes.
5843 */
5844 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5845 void __user *buffer, size_t *length, loff_t *ppos)
5846 {
5847 int rc;
5848
5849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5850 if (rc)
5851 return rc;
5852
5853 if (write) {
5854 user_min_free_kbytes = min_free_kbytes;
5855 setup_per_zone_wmarks();
5856 }
5857 return 0;
5858 }
5859
5860 #ifdef CONFIG_NUMA
5861 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5862 void __user *buffer, size_t *length, loff_t *ppos)
5863 {
5864 struct zone *zone;
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5871 for_each_zone(zone)
5872 zone->min_unmapped_pages = (zone->managed_pages *
5873 sysctl_min_unmapped_ratio) / 100;
5874 return 0;
5875 }
5876
5877 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5878 void __user *buffer, size_t *length, loff_t *ppos)
5879 {
5880 struct zone *zone;
5881 int rc;
5882
5883 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5884 if (rc)
5885 return rc;
5886
5887 for_each_zone(zone)
5888 zone->min_slab_pages = (zone->managed_pages *
5889 sysctl_min_slab_ratio) / 100;
5890 return 0;
5891 }
5892 #endif
5893
5894 /*
5895 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5896 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5897 * whenever sysctl_lowmem_reserve_ratio changes.
5898 *
5899 * The reserve ratio obviously has absolutely no relation with the
5900 * minimum watermarks. The lowmem reserve ratio can only make sense
5901 * if in function of the boot time zone sizes.
5902 */
5903 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5904 void __user *buffer, size_t *length, loff_t *ppos)
5905 {
5906 proc_dointvec_minmax(table, write, buffer, length, ppos);
5907 setup_per_zone_lowmem_reserve();
5908 return 0;
5909 }
5910
5911 /*
5912 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5913 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5914 * pagelist can have before it gets flushed back to buddy allocator.
5915 */
5916 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5917 void __user *buffer, size_t *length, loff_t *ppos)
5918 {
5919 struct zone *zone;
5920 int old_percpu_pagelist_fraction;
5921 int ret;
5922
5923 mutex_lock(&pcp_batch_high_lock);
5924 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5925
5926 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5927 if (!write || ret < 0)
5928 goto out;
5929
5930 /* Sanity checking to avoid pcp imbalance */
5931 if (percpu_pagelist_fraction &&
5932 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5933 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5934 ret = -EINVAL;
5935 goto out;
5936 }
5937
5938 /* No change? */
5939 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5940 goto out;
5941
5942 for_each_populated_zone(zone) {
5943 unsigned int cpu;
5944
5945 for_each_possible_cpu(cpu)
5946 pageset_set_high_and_batch(zone,
5947 per_cpu_ptr(zone->pageset, cpu));
5948 }
5949 out:
5950 mutex_unlock(&pcp_batch_high_lock);
5951 return ret;
5952 }
5953
5954 int hashdist = HASHDIST_DEFAULT;
5955
5956 #ifdef CONFIG_NUMA
5957 static int __init set_hashdist(char *str)
5958 {
5959 if (!str)
5960 return 0;
5961 hashdist = simple_strtoul(str, &str, 0);
5962 return 1;
5963 }
5964 __setup("hashdist=", set_hashdist);
5965 #endif
5966
5967 /*
5968 * allocate a large system hash table from bootmem
5969 * - it is assumed that the hash table must contain an exact power-of-2
5970 * quantity of entries
5971 * - limit is the number of hash buckets, not the total allocation size
5972 */
5973 void *__init alloc_large_system_hash(const char *tablename,
5974 unsigned long bucketsize,
5975 unsigned long numentries,
5976 int scale,
5977 int flags,
5978 unsigned int *_hash_shift,
5979 unsigned int *_hash_mask,
5980 unsigned long low_limit,
5981 unsigned long high_limit)
5982 {
5983 unsigned long long max = high_limit;
5984 unsigned long log2qty, size;
5985 void *table = NULL;
5986
5987 /* allow the kernel cmdline to have a say */
5988 if (!numentries) {
5989 /* round applicable memory size up to nearest megabyte */
5990 numentries = nr_kernel_pages;
5991
5992 /* It isn't necessary when PAGE_SIZE >= 1MB */
5993 if (PAGE_SHIFT < 20)
5994 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5995
5996 /* limit to 1 bucket per 2^scale bytes of low memory */
5997 if (scale > PAGE_SHIFT)
5998 numentries >>= (scale - PAGE_SHIFT);
5999 else
6000 numentries <<= (PAGE_SHIFT - scale);
6001
6002 /* Make sure we've got at least a 0-order allocation.. */
6003 if (unlikely(flags & HASH_SMALL)) {
6004 /* Makes no sense without HASH_EARLY */
6005 WARN_ON(!(flags & HASH_EARLY));
6006 if (!(numentries >> *_hash_shift)) {
6007 numentries = 1UL << *_hash_shift;
6008 BUG_ON(!numentries);
6009 }
6010 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6011 numentries = PAGE_SIZE / bucketsize;
6012 }
6013 numentries = roundup_pow_of_two(numentries);
6014
6015 /* limit allocation size to 1/16 total memory by default */
6016 if (max == 0) {
6017 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6018 do_div(max, bucketsize);
6019 }
6020 max = min(max, 0x80000000ULL);
6021
6022 if (numentries < low_limit)
6023 numentries = low_limit;
6024 if (numentries > max)
6025 numentries = max;
6026
6027 log2qty = ilog2(numentries);
6028
6029 do {
6030 size = bucketsize << log2qty;
6031 if (flags & HASH_EARLY)
6032 table = memblock_virt_alloc_nopanic(size, 0);
6033 else if (hashdist)
6034 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6035 else {
6036 /*
6037 * If bucketsize is not a power-of-two, we may free
6038 * some pages at the end of hash table which
6039 * alloc_pages_exact() automatically does
6040 */
6041 if (get_order(size) < MAX_ORDER) {
6042 table = alloc_pages_exact(size, GFP_ATOMIC);
6043 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6044 }
6045 }
6046 } while (!table && size > PAGE_SIZE && --log2qty);
6047
6048 if (!table)
6049 panic("Failed to allocate %s hash table\n", tablename);
6050
6051 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6052 tablename,
6053 (1UL << log2qty),
6054 ilog2(size) - PAGE_SHIFT,
6055 size);
6056
6057 if (_hash_shift)
6058 *_hash_shift = log2qty;
6059 if (_hash_mask)
6060 *_hash_mask = (1 << log2qty) - 1;
6061
6062 return table;
6063 }
6064
6065 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6066 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6067 unsigned long pfn)
6068 {
6069 #ifdef CONFIG_SPARSEMEM
6070 return __pfn_to_section(pfn)->pageblock_flags;
6071 #else
6072 return zone->pageblock_flags;
6073 #endif /* CONFIG_SPARSEMEM */
6074 }
6075
6076 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6077 {
6078 #ifdef CONFIG_SPARSEMEM
6079 pfn &= (PAGES_PER_SECTION-1);
6080 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6081 #else
6082 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6083 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6084 #endif /* CONFIG_SPARSEMEM */
6085 }
6086
6087 /**
6088 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6089 * @page: The page within the block of interest
6090 * @pfn: The target page frame number
6091 * @end_bitidx: The last bit of interest to retrieve
6092 * @mask: mask of bits that the caller is interested in
6093 *
6094 * Return: pageblock_bits flags
6095 */
6096 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6097 unsigned long end_bitidx,
6098 unsigned long mask)
6099 {
6100 struct zone *zone;
6101 unsigned long *bitmap;
6102 unsigned long bitidx, word_bitidx;
6103 unsigned long word;
6104
6105 zone = page_zone(page);
6106 bitmap = get_pageblock_bitmap(zone, pfn);
6107 bitidx = pfn_to_bitidx(zone, pfn);
6108 word_bitidx = bitidx / BITS_PER_LONG;
6109 bitidx &= (BITS_PER_LONG-1);
6110
6111 word = bitmap[word_bitidx];
6112 bitidx += end_bitidx;
6113 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6114 }
6115
6116 /**
6117 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6118 * @page: The page within the block of interest
6119 * @flags: The flags to set
6120 * @pfn: The target page frame number
6121 * @end_bitidx: The last bit of interest
6122 * @mask: mask of bits that the caller is interested in
6123 */
6124 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6125 unsigned long pfn,
6126 unsigned long end_bitidx,
6127 unsigned long mask)
6128 {
6129 struct zone *zone;
6130 unsigned long *bitmap;
6131 unsigned long bitidx, word_bitidx;
6132 unsigned long old_word, word;
6133
6134 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6135
6136 zone = page_zone(page);
6137 bitmap = get_pageblock_bitmap(zone, pfn);
6138 bitidx = pfn_to_bitidx(zone, pfn);
6139 word_bitidx = bitidx / BITS_PER_LONG;
6140 bitidx &= (BITS_PER_LONG-1);
6141
6142 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6143
6144 bitidx += end_bitidx;
6145 mask <<= (BITS_PER_LONG - bitidx - 1);
6146 flags <<= (BITS_PER_LONG - bitidx - 1);
6147
6148 word = ACCESS_ONCE(bitmap[word_bitidx]);
6149 for (;;) {
6150 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6151 if (word == old_word)
6152 break;
6153 word = old_word;
6154 }
6155 }
6156
6157 /*
6158 * This function checks whether pageblock includes unmovable pages or not.
6159 * If @count is not zero, it is okay to include less @count unmovable pages
6160 *
6161 * PageLRU check without isolation or lru_lock could race so that
6162 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6163 * expect this function should be exact.
6164 */
6165 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6166 bool skip_hwpoisoned_pages)
6167 {
6168 unsigned long pfn, iter, found;
6169 int mt;
6170
6171 /*
6172 * For avoiding noise data, lru_add_drain_all() should be called
6173 * If ZONE_MOVABLE, the zone never contains unmovable pages
6174 */
6175 if (zone_idx(zone) == ZONE_MOVABLE)
6176 return false;
6177 mt = get_pageblock_migratetype(page);
6178 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6179 return false;
6180
6181 pfn = page_to_pfn(page);
6182 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6183 unsigned long check = pfn + iter;
6184
6185 if (!pfn_valid_within(check))
6186 continue;
6187
6188 page = pfn_to_page(check);
6189
6190 /*
6191 * Hugepages are not in LRU lists, but they're movable.
6192 * We need not scan over tail pages bacause we don't
6193 * handle each tail page individually in migration.
6194 */
6195 if (PageHuge(page)) {
6196 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6197 continue;
6198 }
6199
6200 /*
6201 * We can't use page_count without pin a page
6202 * because another CPU can free compound page.
6203 * This check already skips compound tails of THP
6204 * because their page->_count is zero at all time.
6205 */
6206 if (!atomic_read(&page->_count)) {
6207 if (PageBuddy(page))
6208 iter += (1 << page_order(page)) - 1;
6209 continue;
6210 }
6211
6212 /*
6213 * The HWPoisoned page may be not in buddy system, and
6214 * page_count() is not 0.
6215 */
6216 if (skip_hwpoisoned_pages && PageHWPoison(page))
6217 continue;
6218
6219 if (!PageLRU(page))
6220 found++;
6221 /*
6222 * If there are RECLAIMABLE pages, we need to check it.
6223 * But now, memory offline itself doesn't call shrink_slab()
6224 * and it still to be fixed.
6225 */
6226 /*
6227 * If the page is not RAM, page_count()should be 0.
6228 * we don't need more check. This is an _used_ not-movable page.
6229 *
6230 * The problematic thing here is PG_reserved pages. PG_reserved
6231 * is set to both of a memory hole page and a _used_ kernel
6232 * page at boot.
6233 */
6234 if (found > count)
6235 return true;
6236 }
6237 return false;
6238 }
6239
6240 bool is_pageblock_removable_nolock(struct page *page)
6241 {
6242 struct zone *zone;
6243 unsigned long pfn;
6244
6245 /*
6246 * We have to be careful here because we are iterating over memory
6247 * sections which are not zone aware so we might end up outside of
6248 * the zone but still within the section.
6249 * We have to take care about the node as well. If the node is offline
6250 * its NODE_DATA will be NULL - see page_zone.
6251 */
6252 if (!node_online(page_to_nid(page)))
6253 return false;
6254
6255 zone = page_zone(page);
6256 pfn = page_to_pfn(page);
6257 if (!zone_spans_pfn(zone, pfn))
6258 return false;
6259
6260 return !has_unmovable_pages(zone, page, 0, true);
6261 }
6262
6263 #ifdef CONFIG_CMA
6264
6265 static unsigned long pfn_max_align_down(unsigned long pfn)
6266 {
6267 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6268 pageblock_nr_pages) - 1);
6269 }
6270
6271 static unsigned long pfn_max_align_up(unsigned long pfn)
6272 {
6273 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6274 pageblock_nr_pages));
6275 }
6276
6277 /* [start, end) must belong to a single zone. */
6278 static int __alloc_contig_migrate_range(struct compact_control *cc,
6279 unsigned long start, unsigned long end)
6280 {
6281 /* This function is based on compact_zone() from compaction.c. */
6282 unsigned long nr_reclaimed;
6283 unsigned long pfn = start;
6284 unsigned int tries = 0;
6285 int ret = 0;
6286
6287 migrate_prep();
6288
6289 while (pfn < end || !list_empty(&cc->migratepages)) {
6290 if (fatal_signal_pending(current)) {
6291 ret = -EINTR;
6292 break;
6293 }
6294
6295 if (list_empty(&cc->migratepages)) {
6296 cc->nr_migratepages = 0;
6297 pfn = isolate_migratepages_range(cc, pfn, end);
6298 if (!pfn) {
6299 ret = -EINTR;
6300 break;
6301 }
6302 tries = 0;
6303 } else if (++tries == 5) {
6304 ret = ret < 0 ? ret : -EBUSY;
6305 break;
6306 }
6307
6308 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6309 &cc->migratepages);
6310 cc->nr_migratepages -= nr_reclaimed;
6311
6312 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6313 NULL, 0, cc->mode, MR_CMA);
6314 }
6315 if (ret < 0) {
6316 putback_movable_pages(&cc->migratepages);
6317 return ret;
6318 }
6319 return 0;
6320 }
6321
6322 /**
6323 * alloc_contig_range() -- tries to allocate given range of pages
6324 * @start: start PFN to allocate
6325 * @end: one-past-the-last PFN to allocate
6326 * @migratetype: migratetype of the underlaying pageblocks (either
6327 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6328 * in range must have the same migratetype and it must
6329 * be either of the two.
6330 *
6331 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6332 * aligned, however it's the caller's responsibility to guarantee that
6333 * we are the only thread that changes migrate type of pageblocks the
6334 * pages fall in.
6335 *
6336 * The PFN range must belong to a single zone.
6337 *
6338 * Returns zero on success or negative error code. On success all
6339 * pages which PFN is in [start, end) are allocated for the caller and
6340 * need to be freed with free_contig_range().
6341 */
6342 int alloc_contig_range(unsigned long start, unsigned long end,
6343 unsigned migratetype)
6344 {
6345 unsigned long outer_start, outer_end;
6346 int ret = 0, order;
6347
6348 struct compact_control cc = {
6349 .nr_migratepages = 0,
6350 .order = -1,
6351 .zone = page_zone(pfn_to_page(start)),
6352 .mode = MIGRATE_SYNC,
6353 .ignore_skip_hint = true,
6354 };
6355 INIT_LIST_HEAD(&cc.migratepages);
6356
6357 /*
6358 * What we do here is we mark all pageblocks in range as
6359 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6360 * have different sizes, and due to the way page allocator
6361 * work, we align the range to biggest of the two pages so
6362 * that page allocator won't try to merge buddies from
6363 * different pageblocks and change MIGRATE_ISOLATE to some
6364 * other migration type.
6365 *
6366 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6367 * migrate the pages from an unaligned range (ie. pages that
6368 * we are interested in). This will put all the pages in
6369 * range back to page allocator as MIGRATE_ISOLATE.
6370 *
6371 * When this is done, we take the pages in range from page
6372 * allocator removing them from the buddy system. This way
6373 * page allocator will never consider using them.
6374 *
6375 * This lets us mark the pageblocks back as
6376 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6377 * aligned range but not in the unaligned, original range are
6378 * put back to page allocator so that buddy can use them.
6379 */
6380
6381 ret = start_isolate_page_range(pfn_max_align_down(start),
6382 pfn_max_align_up(end), migratetype,
6383 false);
6384 if (ret)
6385 return ret;
6386
6387 ret = __alloc_contig_migrate_range(&cc, start, end);
6388 if (ret)
6389 goto done;
6390
6391 /*
6392 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6393 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6394 * more, all pages in [start, end) are free in page allocator.
6395 * What we are going to do is to allocate all pages from
6396 * [start, end) (that is remove them from page allocator).
6397 *
6398 * The only problem is that pages at the beginning and at the
6399 * end of interesting range may be not aligned with pages that
6400 * page allocator holds, ie. they can be part of higher order
6401 * pages. Because of this, we reserve the bigger range and
6402 * once this is done free the pages we are not interested in.
6403 *
6404 * We don't have to hold zone->lock here because the pages are
6405 * isolated thus they won't get removed from buddy.
6406 */
6407
6408 lru_add_drain_all();
6409 drain_all_pages(cc.zone);
6410
6411 order = 0;
6412 outer_start = start;
6413 while (!PageBuddy(pfn_to_page(outer_start))) {
6414 if (++order >= MAX_ORDER) {
6415 ret = -EBUSY;
6416 goto done;
6417 }
6418 outer_start &= ~0UL << order;
6419 }
6420
6421 /* Make sure the range is really isolated. */
6422 if (test_pages_isolated(outer_start, end, false)) {
6423 pr_info("%s: [%lx, %lx) PFNs busy\n",
6424 __func__, outer_start, end);
6425 ret = -EBUSY;
6426 goto done;
6427 }
6428
6429 /* Grab isolated pages from freelists. */
6430 outer_end = isolate_freepages_range(&cc, outer_start, end);
6431 if (!outer_end) {
6432 ret = -EBUSY;
6433 goto done;
6434 }
6435
6436 /* Free head and tail (if any) */
6437 if (start != outer_start)
6438 free_contig_range(outer_start, start - outer_start);
6439 if (end != outer_end)
6440 free_contig_range(end, outer_end - end);
6441
6442 done:
6443 undo_isolate_page_range(pfn_max_align_down(start),
6444 pfn_max_align_up(end), migratetype);
6445 return ret;
6446 }
6447
6448 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6449 {
6450 unsigned int count = 0;
6451
6452 for (; nr_pages--; pfn++) {
6453 struct page *page = pfn_to_page(pfn);
6454
6455 count += page_count(page) != 1;
6456 __free_page(page);
6457 }
6458 WARN(count != 0, "%d pages are still in use!\n", count);
6459 }
6460 #endif
6461
6462 #ifdef CONFIG_MEMORY_HOTPLUG
6463 /*
6464 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6465 * page high values need to be recalulated.
6466 */
6467 void __meminit zone_pcp_update(struct zone *zone)
6468 {
6469 unsigned cpu;
6470 mutex_lock(&pcp_batch_high_lock);
6471 for_each_possible_cpu(cpu)
6472 pageset_set_high_and_batch(zone,
6473 per_cpu_ptr(zone->pageset, cpu));
6474 mutex_unlock(&pcp_batch_high_lock);
6475 }
6476 #endif
6477
6478 void zone_pcp_reset(struct zone *zone)
6479 {
6480 unsigned long flags;
6481 int cpu;
6482 struct per_cpu_pageset *pset;
6483
6484 /* avoid races with drain_pages() */
6485 local_irq_save(flags);
6486 if (zone->pageset != &boot_pageset) {
6487 for_each_online_cpu(cpu) {
6488 pset = per_cpu_ptr(zone->pageset, cpu);
6489 drain_zonestat(zone, pset);
6490 }
6491 free_percpu(zone->pageset);
6492 zone->pageset = &boot_pageset;
6493 }
6494 local_irq_restore(flags);
6495 }
6496
6497 #ifdef CONFIG_MEMORY_HOTREMOVE
6498 /*
6499 * All pages in the range must be isolated before calling this.
6500 */
6501 void
6502 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6503 {
6504 struct page *page;
6505 struct zone *zone;
6506 unsigned int order, i;
6507 unsigned long pfn;
6508 unsigned long flags;
6509 /* find the first valid pfn */
6510 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6511 if (pfn_valid(pfn))
6512 break;
6513 if (pfn == end_pfn)
6514 return;
6515 zone = page_zone(pfn_to_page(pfn));
6516 spin_lock_irqsave(&zone->lock, flags);
6517 pfn = start_pfn;
6518 while (pfn < end_pfn) {
6519 if (!pfn_valid(pfn)) {
6520 pfn++;
6521 continue;
6522 }
6523 page = pfn_to_page(pfn);
6524 /*
6525 * The HWPoisoned page may be not in buddy system, and
6526 * page_count() is not 0.
6527 */
6528 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6529 pfn++;
6530 SetPageReserved(page);
6531 continue;
6532 }
6533
6534 BUG_ON(page_count(page));
6535 BUG_ON(!PageBuddy(page));
6536 order = page_order(page);
6537 #ifdef CONFIG_DEBUG_VM
6538 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6539 pfn, 1 << order, end_pfn);
6540 #endif
6541 list_del(&page->lru);
6542 rmv_page_order(page);
6543 zone->free_area[order].nr_free--;
6544 for (i = 0; i < (1 << order); i++)
6545 SetPageReserved((page+i));
6546 pfn += (1 << order);
6547 }
6548 spin_unlock_irqrestore(&zone->lock, flags);
6549 }
6550 #endif
6551
6552 #ifdef CONFIG_MEMORY_FAILURE
6553 bool is_free_buddy_page(struct page *page)
6554 {
6555 struct zone *zone = page_zone(page);
6556 unsigned long pfn = page_to_pfn(page);
6557 unsigned long flags;
6558 unsigned int order;
6559
6560 spin_lock_irqsave(&zone->lock, flags);
6561 for (order = 0; order < MAX_ORDER; order++) {
6562 struct page *page_head = page - (pfn & ((1 << order) - 1));
6563
6564 if (PageBuddy(page_head) && page_order(page_head) >= order)
6565 break;
6566 }
6567 spin_unlock_irqrestore(&zone->lock, flags);
6568
6569 return order < MAX_ORDER;
6570 }
6571 #endif
This page took 0.153013 seconds and 4 git commands to generate.