tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78
79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
83 #define PCPU_EMPTY_POP_PAGES_LOW 2
84 #define PCPU_EMPTY_POP_PAGES_HIGH 4
85
86 #ifdef CONFIG_SMP
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr) \
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
93 #endif
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr) \
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
99 #endif
100 #else /* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104 #endif /* CONFIG_SMP */
105
106 struct pcpu_chunk {
107 struct list_head list; /* linked to pcpu_slot lists */
108 int free_size; /* free bytes in the chunk */
109 int contig_hint; /* max contiguous size hint */
110 void *base_addr; /* base address of this chunk */
111
112 int map_used; /* # of map entries used before the sentry */
113 int map_alloc; /* # of map entries allocated */
114 int *map; /* allocation map */
115 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
116
117 void *data; /* chunk data */
118 int first_free; /* no free below this */
119 bool immutable; /* no [de]population allowed */
120 int nr_populated; /* # of populated pages */
121 unsigned long populated[]; /* populated bitmap */
122 };
123
124 static int pcpu_unit_pages __read_mostly;
125 static int pcpu_unit_size __read_mostly;
126 static int pcpu_nr_units __read_mostly;
127 static int pcpu_atom_size __read_mostly;
128 static int pcpu_nr_slots __read_mostly;
129 static size_t pcpu_chunk_struct_size __read_mostly;
130
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly;
133 static unsigned int pcpu_high_unit_cpu __read_mostly;
134
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr);
138
139 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
141
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly;
144 static const unsigned long *pcpu_group_offsets __read_mostly;
145 static const size_t *pcpu_group_sizes __read_mostly;
146
147 /*
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
151 */
152 static struct pcpu_chunk *pcpu_first_chunk;
153
154 /*
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
159 * respectively.
160 */
161 static struct pcpu_chunk *pcpu_reserved_chunk;
162 static int pcpu_reserved_chunk_limit;
163
164 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
166
167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
168
169 /* chunks which need their map areas extended, protected by pcpu_lock */
170 static LIST_HEAD(pcpu_map_extend_chunks);
171
172 /*
173 * The number of empty populated pages, protected by pcpu_lock. The
174 * reserved chunk doesn't contribute to the count.
175 */
176 static int pcpu_nr_empty_pop_pages;
177
178 /*
179 * Balance work is used to populate or destroy chunks asynchronously. We
180 * try to keep the number of populated free pages between
181 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
182 * empty chunk.
183 */
184 static void pcpu_balance_workfn(struct work_struct *work);
185 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
186 static bool pcpu_async_enabled __read_mostly;
187 static bool pcpu_atomic_alloc_failed;
188
189 static void pcpu_schedule_balance_work(void)
190 {
191 if (pcpu_async_enabled)
192 schedule_work(&pcpu_balance_work);
193 }
194
195 static bool pcpu_addr_in_first_chunk(void *addr)
196 {
197 void *first_start = pcpu_first_chunk->base_addr;
198
199 return addr >= first_start && addr < first_start + pcpu_unit_size;
200 }
201
202 static bool pcpu_addr_in_reserved_chunk(void *addr)
203 {
204 void *first_start = pcpu_first_chunk->base_addr;
205
206 return addr >= first_start &&
207 addr < first_start + pcpu_reserved_chunk_limit;
208 }
209
210 static int __pcpu_size_to_slot(int size)
211 {
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215
216 static int pcpu_size_to_slot(int size)
217 {
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
221 }
222
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
226 return 0;
227
228 return pcpu_size_to_slot(chunk->free_size);
229 }
230
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 page->index = (unsigned long)pcpu;
235 }
236
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 return (struct pcpu_chunk *)page->index;
241 }
242
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247
248 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
249 unsigned int cpu, int page_idx)
250 {
251 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
252 (page_idx << PAGE_SHIFT);
253 }
254
255 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
256 int *rs, int *re, int end)
257 {
258 *rs = find_next_zero_bit(chunk->populated, end, *rs);
259 *re = find_next_bit(chunk->populated, end, *rs + 1);
260 }
261
262 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
263 int *rs, int *re, int end)
264 {
265 *rs = find_next_bit(chunk->populated, end, *rs);
266 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
267 }
268
269 /*
270 * (Un)populated page region iterators. Iterate over (un)populated
271 * page regions between @start and @end in @chunk. @rs and @re should
272 * be integer variables and will be set to start and end page index of
273 * the current region.
274 */
275 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
277 (rs) < (re); \
278 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
279
280 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
281 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
282 (rs) < (re); \
283 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
284
285 /**
286 * pcpu_mem_zalloc - allocate memory
287 * @size: bytes to allocate
288 *
289 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
290 * kzalloc() is used; otherwise, vzalloc() is used. The returned
291 * memory is always zeroed.
292 *
293 * CONTEXT:
294 * Does GFP_KERNEL allocation.
295 *
296 * RETURNS:
297 * Pointer to the allocated area on success, NULL on failure.
298 */
299 static void *pcpu_mem_zalloc(size_t size)
300 {
301 if (WARN_ON_ONCE(!slab_is_available()))
302 return NULL;
303
304 if (size <= PAGE_SIZE)
305 return kzalloc(size, GFP_KERNEL);
306 else
307 return vzalloc(size);
308 }
309
310 /**
311 * pcpu_mem_free - free memory
312 * @ptr: memory to free
313 *
314 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
315 */
316 static void pcpu_mem_free(void *ptr)
317 {
318 kvfree(ptr);
319 }
320
321 /**
322 * pcpu_count_occupied_pages - count the number of pages an area occupies
323 * @chunk: chunk of interest
324 * @i: index of the area in question
325 *
326 * Count the number of pages chunk's @i'th area occupies. When the area's
327 * start and/or end address isn't aligned to page boundary, the straddled
328 * page is included in the count iff the rest of the page is free.
329 */
330 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
331 {
332 int off = chunk->map[i] & ~1;
333 int end = chunk->map[i + 1] & ~1;
334
335 if (!PAGE_ALIGNED(off) && i > 0) {
336 int prev = chunk->map[i - 1];
337
338 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
339 off = round_down(off, PAGE_SIZE);
340 }
341
342 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
343 int next = chunk->map[i + 1];
344 int nend = chunk->map[i + 2] & ~1;
345
346 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
347 end = round_up(end, PAGE_SIZE);
348 }
349
350 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
351 }
352
353 /**
354 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
355 * @chunk: chunk of interest
356 * @oslot: the previous slot it was on
357 *
358 * This function is called after an allocation or free changed @chunk.
359 * New slot according to the changed state is determined and @chunk is
360 * moved to the slot. Note that the reserved chunk is never put on
361 * chunk slots.
362 *
363 * CONTEXT:
364 * pcpu_lock.
365 */
366 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
367 {
368 int nslot = pcpu_chunk_slot(chunk);
369
370 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
371 if (oslot < nslot)
372 list_move(&chunk->list, &pcpu_slot[nslot]);
373 else
374 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
375 }
376 }
377
378 /**
379 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
380 * @chunk: chunk of interest
381 * @is_atomic: the allocation context
382 *
383 * Determine whether area map of @chunk needs to be extended. If
384 * @is_atomic, only the amount necessary for a new allocation is
385 * considered; however, async extension is scheduled if the left amount is
386 * low. If !@is_atomic, it aims for more empty space. Combined, this
387 * ensures that the map is likely to have enough available space to
388 * accomodate atomic allocations which can't extend maps directly.
389 *
390 * CONTEXT:
391 * pcpu_lock.
392 *
393 * RETURNS:
394 * New target map allocation length if extension is necessary, 0
395 * otherwise.
396 */
397 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
398 {
399 int margin, new_alloc;
400
401 lockdep_assert_held(&pcpu_lock);
402
403 if (is_atomic) {
404 margin = 3;
405
406 if (chunk->map_alloc <
407 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
408 if (list_empty(&chunk->map_extend_list)) {
409 list_add_tail(&chunk->map_extend_list,
410 &pcpu_map_extend_chunks);
411 pcpu_schedule_balance_work();
412 }
413 }
414 } else {
415 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
416 }
417
418 if (chunk->map_alloc >= chunk->map_used + margin)
419 return 0;
420
421 new_alloc = PCPU_DFL_MAP_ALLOC;
422 while (new_alloc < chunk->map_used + margin)
423 new_alloc *= 2;
424
425 return new_alloc;
426 }
427
428 /**
429 * pcpu_extend_area_map - extend area map of a chunk
430 * @chunk: chunk of interest
431 * @new_alloc: new target allocation length of the area map
432 *
433 * Extend area map of @chunk to have @new_alloc entries.
434 *
435 * CONTEXT:
436 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
437 *
438 * RETURNS:
439 * 0 on success, -errno on failure.
440 */
441 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
442 {
443 int *old = NULL, *new = NULL;
444 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
445 unsigned long flags;
446
447 lockdep_assert_held(&pcpu_alloc_mutex);
448
449 new = pcpu_mem_zalloc(new_size);
450 if (!new)
451 return -ENOMEM;
452
453 /* acquire pcpu_lock and switch to new area map */
454 spin_lock_irqsave(&pcpu_lock, flags);
455
456 if (new_alloc <= chunk->map_alloc)
457 goto out_unlock;
458
459 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
460 old = chunk->map;
461
462 memcpy(new, old, old_size);
463
464 chunk->map_alloc = new_alloc;
465 chunk->map = new;
466 new = NULL;
467
468 out_unlock:
469 spin_unlock_irqrestore(&pcpu_lock, flags);
470
471 /*
472 * pcpu_mem_free() might end up calling vfree() which uses
473 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
474 */
475 pcpu_mem_free(old);
476 pcpu_mem_free(new);
477
478 return 0;
479 }
480
481 /**
482 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
483 * @chunk: chunk the candidate area belongs to
484 * @off: the offset to the start of the candidate area
485 * @this_size: the size of the candidate area
486 * @size: the size of the target allocation
487 * @align: the alignment of the target allocation
488 * @pop_only: only allocate from already populated region
489 *
490 * We're trying to allocate @size bytes aligned at @align. @chunk's area
491 * at @off sized @this_size is a candidate. This function determines
492 * whether the target allocation fits in the candidate area and returns the
493 * number of bytes to pad after @off. If the target area doesn't fit, -1
494 * is returned.
495 *
496 * If @pop_only is %true, this function only considers the already
497 * populated part of the candidate area.
498 */
499 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
500 int size, int align, bool pop_only)
501 {
502 int cand_off = off;
503
504 while (true) {
505 int head = ALIGN(cand_off, align) - off;
506 int page_start, page_end, rs, re;
507
508 if (this_size < head + size)
509 return -1;
510
511 if (!pop_only)
512 return head;
513
514 /*
515 * If the first unpopulated page is beyond the end of the
516 * allocation, the whole allocation is populated;
517 * otherwise, retry from the end of the unpopulated area.
518 */
519 page_start = PFN_DOWN(head + off);
520 page_end = PFN_UP(head + off + size);
521
522 rs = page_start;
523 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
524 if (rs >= page_end)
525 return head;
526 cand_off = re * PAGE_SIZE;
527 }
528 }
529
530 /**
531 * pcpu_alloc_area - allocate area from a pcpu_chunk
532 * @chunk: chunk of interest
533 * @size: wanted size in bytes
534 * @align: wanted align
535 * @pop_only: allocate only from the populated area
536 * @occ_pages_p: out param for the number of pages the area occupies
537 *
538 * Try to allocate @size bytes area aligned at @align from @chunk.
539 * Note that this function only allocates the offset. It doesn't
540 * populate or map the area.
541 *
542 * @chunk->map must have at least two free slots.
543 *
544 * CONTEXT:
545 * pcpu_lock.
546 *
547 * RETURNS:
548 * Allocated offset in @chunk on success, -1 if no matching area is
549 * found.
550 */
551 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
552 bool pop_only, int *occ_pages_p)
553 {
554 int oslot = pcpu_chunk_slot(chunk);
555 int max_contig = 0;
556 int i, off;
557 bool seen_free = false;
558 int *p;
559
560 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
561 int head, tail;
562 int this_size;
563
564 off = *p;
565 if (off & 1)
566 continue;
567
568 this_size = (p[1] & ~1) - off;
569
570 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
571 pop_only);
572 if (head < 0) {
573 if (!seen_free) {
574 chunk->first_free = i;
575 seen_free = true;
576 }
577 max_contig = max(this_size, max_contig);
578 continue;
579 }
580
581 /*
582 * If head is small or the previous block is free,
583 * merge'em. Note that 'small' is defined as smaller
584 * than sizeof(int), which is very small but isn't too
585 * uncommon for percpu allocations.
586 */
587 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
588 *p = off += head;
589 if (p[-1] & 1)
590 chunk->free_size -= head;
591 else
592 max_contig = max(*p - p[-1], max_contig);
593 this_size -= head;
594 head = 0;
595 }
596
597 /* if tail is small, just keep it around */
598 tail = this_size - head - size;
599 if (tail < sizeof(int)) {
600 tail = 0;
601 size = this_size - head;
602 }
603
604 /* split if warranted */
605 if (head || tail) {
606 int nr_extra = !!head + !!tail;
607
608 /* insert new subblocks */
609 memmove(p + nr_extra + 1, p + 1,
610 sizeof(chunk->map[0]) * (chunk->map_used - i));
611 chunk->map_used += nr_extra;
612
613 if (head) {
614 if (!seen_free) {
615 chunk->first_free = i;
616 seen_free = true;
617 }
618 *++p = off += head;
619 ++i;
620 max_contig = max(head, max_contig);
621 }
622 if (tail) {
623 p[1] = off + size;
624 max_contig = max(tail, max_contig);
625 }
626 }
627
628 if (!seen_free)
629 chunk->first_free = i + 1;
630
631 /* update hint and mark allocated */
632 if (i + 1 == chunk->map_used)
633 chunk->contig_hint = max_contig; /* fully scanned */
634 else
635 chunk->contig_hint = max(chunk->contig_hint,
636 max_contig);
637
638 chunk->free_size -= size;
639 *p |= 1;
640
641 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
642 pcpu_chunk_relocate(chunk, oslot);
643 return off;
644 }
645
646 chunk->contig_hint = max_contig; /* fully scanned */
647 pcpu_chunk_relocate(chunk, oslot);
648
649 /* tell the upper layer that this chunk has no matching area */
650 return -1;
651 }
652
653 /**
654 * pcpu_free_area - free area to a pcpu_chunk
655 * @chunk: chunk of interest
656 * @freeme: offset of area to free
657 * @occ_pages_p: out param for the number of pages the area occupies
658 *
659 * Free area starting from @freeme to @chunk. Note that this function
660 * only modifies the allocation map. It doesn't depopulate or unmap
661 * the area.
662 *
663 * CONTEXT:
664 * pcpu_lock.
665 */
666 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
667 int *occ_pages_p)
668 {
669 int oslot = pcpu_chunk_slot(chunk);
670 int off = 0;
671 unsigned i, j;
672 int to_free = 0;
673 int *p;
674
675 freeme |= 1; /* we are searching for <given offset, in use> pair */
676
677 i = 0;
678 j = chunk->map_used;
679 while (i != j) {
680 unsigned k = (i + j) / 2;
681 off = chunk->map[k];
682 if (off < freeme)
683 i = k + 1;
684 else if (off > freeme)
685 j = k;
686 else
687 i = j = k;
688 }
689 BUG_ON(off != freeme);
690
691 if (i < chunk->first_free)
692 chunk->first_free = i;
693
694 p = chunk->map + i;
695 *p = off &= ~1;
696 chunk->free_size += (p[1] & ~1) - off;
697
698 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
699
700 /* merge with next? */
701 if (!(p[1] & 1))
702 to_free++;
703 /* merge with previous? */
704 if (i > 0 && !(p[-1] & 1)) {
705 to_free++;
706 i--;
707 p--;
708 }
709 if (to_free) {
710 chunk->map_used -= to_free;
711 memmove(p + 1, p + 1 + to_free,
712 (chunk->map_used - i) * sizeof(chunk->map[0]));
713 }
714
715 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
716 pcpu_chunk_relocate(chunk, oslot);
717 }
718
719 static struct pcpu_chunk *pcpu_alloc_chunk(void)
720 {
721 struct pcpu_chunk *chunk;
722
723 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
724 if (!chunk)
725 return NULL;
726
727 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
728 sizeof(chunk->map[0]));
729 if (!chunk->map) {
730 pcpu_mem_free(chunk);
731 return NULL;
732 }
733
734 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
735 chunk->map[0] = 0;
736 chunk->map[1] = pcpu_unit_size | 1;
737 chunk->map_used = 1;
738
739 INIT_LIST_HEAD(&chunk->list);
740 INIT_LIST_HEAD(&chunk->map_extend_list);
741 chunk->free_size = pcpu_unit_size;
742 chunk->contig_hint = pcpu_unit_size;
743
744 return chunk;
745 }
746
747 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
748 {
749 if (!chunk)
750 return;
751 pcpu_mem_free(chunk->map);
752 pcpu_mem_free(chunk);
753 }
754
755 /**
756 * pcpu_chunk_populated - post-population bookkeeping
757 * @chunk: pcpu_chunk which got populated
758 * @page_start: the start page
759 * @page_end: the end page
760 *
761 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
762 * the bookkeeping information accordingly. Must be called after each
763 * successful population.
764 */
765 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
766 int page_start, int page_end)
767 {
768 int nr = page_end - page_start;
769
770 lockdep_assert_held(&pcpu_lock);
771
772 bitmap_set(chunk->populated, page_start, nr);
773 chunk->nr_populated += nr;
774 pcpu_nr_empty_pop_pages += nr;
775 }
776
777 /**
778 * pcpu_chunk_depopulated - post-depopulation bookkeeping
779 * @chunk: pcpu_chunk which got depopulated
780 * @page_start: the start page
781 * @page_end: the end page
782 *
783 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
784 * Update the bookkeeping information accordingly. Must be called after
785 * each successful depopulation.
786 */
787 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
788 int page_start, int page_end)
789 {
790 int nr = page_end - page_start;
791
792 lockdep_assert_held(&pcpu_lock);
793
794 bitmap_clear(chunk->populated, page_start, nr);
795 chunk->nr_populated -= nr;
796 pcpu_nr_empty_pop_pages -= nr;
797 }
798
799 /*
800 * Chunk management implementation.
801 *
802 * To allow different implementations, chunk alloc/free and
803 * [de]population are implemented in a separate file which is pulled
804 * into this file and compiled together. The following functions
805 * should be implemented.
806 *
807 * pcpu_populate_chunk - populate the specified range of a chunk
808 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
809 * pcpu_create_chunk - create a new chunk
810 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
811 * pcpu_addr_to_page - translate address to physical address
812 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
813 */
814 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
815 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
816 static struct pcpu_chunk *pcpu_create_chunk(void);
817 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
818 static struct page *pcpu_addr_to_page(void *addr);
819 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
820
821 #ifdef CONFIG_NEED_PER_CPU_KM
822 #include "percpu-km.c"
823 #else
824 #include "percpu-vm.c"
825 #endif
826
827 /**
828 * pcpu_chunk_addr_search - determine chunk containing specified address
829 * @addr: address for which the chunk needs to be determined.
830 *
831 * RETURNS:
832 * The address of the found chunk.
833 */
834 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
835 {
836 /* is it in the first chunk? */
837 if (pcpu_addr_in_first_chunk(addr)) {
838 /* is it in the reserved area? */
839 if (pcpu_addr_in_reserved_chunk(addr))
840 return pcpu_reserved_chunk;
841 return pcpu_first_chunk;
842 }
843
844 /*
845 * The address is relative to unit0 which might be unused and
846 * thus unmapped. Offset the address to the unit space of the
847 * current processor before looking it up in the vmalloc
848 * space. Note that any possible cpu id can be used here, so
849 * there's no need to worry about preemption or cpu hotplug.
850 */
851 addr += pcpu_unit_offsets[raw_smp_processor_id()];
852 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
853 }
854
855 /**
856 * pcpu_alloc - the percpu allocator
857 * @size: size of area to allocate in bytes
858 * @align: alignment of area (max PAGE_SIZE)
859 * @reserved: allocate from the reserved chunk if available
860 * @gfp: allocation flags
861 *
862 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
863 * contain %GFP_KERNEL, the allocation is atomic.
864 *
865 * RETURNS:
866 * Percpu pointer to the allocated area on success, NULL on failure.
867 */
868 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
869 gfp_t gfp)
870 {
871 static int warn_limit = 10;
872 struct pcpu_chunk *chunk;
873 const char *err;
874 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
875 int occ_pages = 0;
876 int slot, off, new_alloc, cpu, ret;
877 unsigned long flags;
878 void __percpu *ptr;
879
880 /*
881 * We want the lowest bit of offset available for in-use/free
882 * indicator, so force >= 16bit alignment and make size even.
883 */
884 if (unlikely(align < 2))
885 align = 2;
886
887 size = ALIGN(size, 2);
888
889 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
890 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
891 size, align);
892 return NULL;
893 }
894
895 if (!is_atomic)
896 mutex_lock(&pcpu_alloc_mutex);
897
898 spin_lock_irqsave(&pcpu_lock, flags);
899
900 /* serve reserved allocations from the reserved chunk if available */
901 if (reserved && pcpu_reserved_chunk) {
902 chunk = pcpu_reserved_chunk;
903
904 if (size > chunk->contig_hint) {
905 err = "alloc from reserved chunk failed";
906 goto fail_unlock;
907 }
908
909 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
910 spin_unlock_irqrestore(&pcpu_lock, flags);
911 if (is_atomic ||
912 pcpu_extend_area_map(chunk, new_alloc) < 0) {
913 err = "failed to extend area map of reserved chunk";
914 goto fail;
915 }
916 spin_lock_irqsave(&pcpu_lock, flags);
917 }
918
919 off = pcpu_alloc_area(chunk, size, align, is_atomic,
920 &occ_pages);
921 if (off >= 0)
922 goto area_found;
923
924 err = "alloc from reserved chunk failed";
925 goto fail_unlock;
926 }
927
928 restart:
929 /* search through normal chunks */
930 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
931 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
932 if (size > chunk->contig_hint)
933 continue;
934
935 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
936 if (new_alloc) {
937 if (is_atomic)
938 continue;
939 spin_unlock_irqrestore(&pcpu_lock, flags);
940 if (pcpu_extend_area_map(chunk,
941 new_alloc) < 0) {
942 err = "failed to extend area map";
943 goto fail;
944 }
945 spin_lock_irqsave(&pcpu_lock, flags);
946 /*
947 * pcpu_lock has been dropped, need to
948 * restart cpu_slot list walking.
949 */
950 goto restart;
951 }
952
953 off = pcpu_alloc_area(chunk, size, align, is_atomic,
954 &occ_pages);
955 if (off >= 0)
956 goto area_found;
957 }
958 }
959
960 spin_unlock_irqrestore(&pcpu_lock, flags);
961
962 /*
963 * No space left. Create a new chunk. We don't want multiple
964 * tasks to create chunks simultaneously. Serialize and create iff
965 * there's still no empty chunk after grabbing the mutex.
966 */
967 if (is_atomic)
968 goto fail;
969
970 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
971 chunk = pcpu_create_chunk();
972 if (!chunk) {
973 err = "failed to allocate new chunk";
974 goto fail;
975 }
976
977 spin_lock_irqsave(&pcpu_lock, flags);
978 pcpu_chunk_relocate(chunk, -1);
979 } else {
980 spin_lock_irqsave(&pcpu_lock, flags);
981 }
982
983 goto restart;
984
985 area_found:
986 spin_unlock_irqrestore(&pcpu_lock, flags);
987
988 /* populate if not all pages are already there */
989 if (!is_atomic) {
990 int page_start, page_end, rs, re;
991
992 page_start = PFN_DOWN(off);
993 page_end = PFN_UP(off + size);
994
995 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
996 WARN_ON(chunk->immutable);
997
998 ret = pcpu_populate_chunk(chunk, rs, re);
999
1000 spin_lock_irqsave(&pcpu_lock, flags);
1001 if (ret) {
1002 pcpu_free_area(chunk, off, &occ_pages);
1003 err = "failed to populate";
1004 goto fail_unlock;
1005 }
1006 pcpu_chunk_populated(chunk, rs, re);
1007 spin_unlock_irqrestore(&pcpu_lock, flags);
1008 }
1009
1010 mutex_unlock(&pcpu_alloc_mutex);
1011 }
1012
1013 if (chunk != pcpu_reserved_chunk)
1014 pcpu_nr_empty_pop_pages -= occ_pages;
1015
1016 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1017 pcpu_schedule_balance_work();
1018
1019 /* clear the areas and return address relative to base address */
1020 for_each_possible_cpu(cpu)
1021 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1022
1023 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1024 kmemleak_alloc_percpu(ptr, size, gfp);
1025 return ptr;
1026
1027 fail_unlock:
1028 spin_unlock_irqrestore(&pcpu_lock, flags);
1029 fail:
1030 if (!is_atomic && warn_limit) {
1031 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1032 size, align, is_atomic, err);
1033 dump_stack();
1034 if (!--warn_limit)
1035 pr_info("limit reached, disable warning\n");
1036 }
1037 if (is_atomic) {
1038 /* see the flag handling in pcpu_blance_workfn() */
1039 pcpu_atomic_alloc_failed = true;
1040 pcpu_schedule_balance_work();
1041 } else {
1042 mutex_unlock(&pcpu_alloc_mutex);
1043 }
1044 return NULL;
1045 }
1046
1047 /**
1048 * __alloc_percpu_gfp - allocate dynamic percpu area
1049 * @size: size of area to allocate in bytes
1050 * @align: alignment of area (max PAGE_SIZE)
1051 * @gfp: allocation flags
1052 *
1053 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1054 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1055 * be called from any context but is a lot more likely to fail.
1056 *
1057 * RETURNS:
1058 * Percpu pointer to the allocated area on success, NULL on failure.
1059 */
1060 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1061 {
1062 return pcpu_alloc(size, align, false, gfp);
1063 }
1064 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1065
1066 /**
1067 * __alloc_percpu - allocate dynamic percpu area
1068 * @size: size of area to allocate in bytes
1069 * @align: alignment of area (max PAGE_SIZE)
1070 *
1071 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1072 */
1073 void __percpu *__alloc_percpu(size_t size, size_t align)
1074 {
1075 return pcpu_alloc(size, align, false, GFP_KERNEL);
1076 }
1077 EXPORT_SYMBOL_GPL(__alloc_percpu);
1078
1079 /**
1080 * __alloc_reserved_percpu - allocate reserved percpu area
1081 * @size: size of area to allocate in bytes
1082 * @align: alignment of area (max PAGE_SIZE)
1083 *
1084 * Allocate zero-filled percpu area of @size bytes aligned at @align
1085 * from reserved percpu area if arch has set it up; otherwise,
1086 * allocation is served from the same dynamic area. Might sleep.
1087 * Might trigger writeouts.
1088 *
1089 * CONTEXT:
1090 * Does GFP_KERNEL allocation.
1091 *
1092 * RETURNS:
1093 * Percpu pointer to the allocated area on success, NULL on failure.
1094 */
1095 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1096 {
1097 return pcpu_alloc(size, align, true, GFP_KERNEL);
1098 }
1099
1100 /**
1101 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1102 * @work: unused
1103 *
1104 * Reclaim all fully free chunks except for the first one.
1105 */
1106 static void pcpu_balance_workfn(struct work_struct *work)
1107 {
1108 LIST_HEAD(to_free);
1109 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1110 struct pcpu_chunk *chunk, *next;
1111 int slot, nr_to_pop, ret;
1112
1113 /*
1114 * There's no reason to keep around multiple unused chunks and VM
1115 * areas can be scarce. Destroy all free chunks except for one.
1116 */
1117 mutex_lock(&pcpu_alloc_mutex);
1118 spin_lock_irq(&pcpu_lock);
1119
1120 list_for_each_entry_safe(chunk, next, free_head, list) {
1121 WARN_ON(chunk->immutable);
1122
1123 /* spare the first one */
1124 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1125 continue;
1126
1127 list_del_init(&chunk->map_extend_list);
1128 list_move(&chunk->list, &to_free);
1129 }
1130
1131 spin_unlock_irq(&pcpu_lock);
1132
1133 list_for_each_entry_safe(chunk, next, &to_free, list) {
1134 int rs, re;
1135
1136 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1137 pcpu_depopulate_chunk(chunk, rs, re);
1138 spin_lock_irq(&pcpu_lock);
1139 pcpu_chunk_depopulated(chunk, rs, re);
1140 spin_unlock_irq(&pcpu_lock);
1141 }
1142 pcpu_destroy_chunk(chunk);
1143 }
1144
1145 /* service chunks which requested async area map extension */
1146 do {
1147 int new_alloc = 0;
1148
1149 spin_lock_irq(&pcpu_lock);
1150
1151 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1152 struct pcpu_chunk, map_extend_list);
1153 if (chunk) {
1154 list_del_init(&chunk->map_extend_list);
1155 new_alloc = pcpu_need_to_extend(chunk, false);
1156 }
1157
1158 spin_unlock_irq(&pcpu_lock);
1159
1160 if (new_alloc)
1161 pcpu_extend_area_map(chunk, new_alloc);
1162 } while (chunk);
1163
1164 /*
1165 * Ensure there are certain number of free populated pages for
1166 * atomic allocs. Fill up from the most packed so that atomic
1167 * allocs don't increase fragmentation. If atomic allocation
1168 * failed previously, always populate the maximum amount. This
1169 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1170 * failing indefinitely; however, large atomic allocs are not
1171 * something we support properly and can be highly unreliable and
1172 * inefficient.
1173 */
1174 retry_pop:
1175 if (pcpu_atomic_alloc_failed) {
1176 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1177 /* best effort anyway, don't worry about synchronization */
1178 pcpu_atomic_alloc_failed = false;
1179 } else {
1180 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1181 pcpu_nr_empty_pop_pages,
1182 0, PCPU_EMPTY_POP_PAGES_HIGH);
1183 }
1184
1185 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1186 int nr_unpop = 0, rs, re;
1187
1188 if (!nr_to_pop)
1189 break;
1190
1191 spin_lock_irq(&pcpu_lock);
1192 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1193 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1194 if (nr_unpop)
1195 break;
1196 }
1197 spin_unlock_irq(&pcpu_lock);
1198
1199 if (!nr_unpop)
1200 continue;
1201
1202 /* @chunk can't go away while pcpu_alloc_mutex is held */
1203 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1204 int nr = min(re - rs, nr_to_pop);
1205
1206 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1207 if (!ret) {
1208 nr_to_pop -= nr;
1209 spin_lock_irq(&pcpu_lock);
1210 pcpu_chunk_populated(chunk, rs, rs + nr);
1211 spin_unlock_irq(&pcpu_lock);
1212 } else {
1213 nr_to_pop = 0;
1214 }
1215
1216 if (!nr_to_pop)
1217 break;
1218 }
1219 }
1220
1221 if (nr_to_pop) {
1222 /* ran out of chunks to populate, create a new one and retry */
1223 chunk = pcpu_create_chunk();
1224 if (chunk) {
1225 spin_lock_irq(&pcpu_lock);
1226 pcpu_chunk_relocate(chunk, -1);
1227 spin_unlock_irq(&pcpu_lock);
1228 goto retry_pop;
1229 }
1230 }
1231
1232 mutex_unlock(&pcpu_alloc_mutex);
1233 }
1234
1235 /**
1236 * free_percpu - free percpu area
1237 * @ptr: pointer to area to free
1238 *
1239 * Free percpu area @ptr.
1240 *
1241 * CONTEXT:
1242 * Can be called from atomic context.
1243 */
1244 void free_percpu(void __percpu *ptr)
1245 {
1246 void *addr;
1247 struct pcpu_chunk *chunk;
1248 unsigned long flags;
1249 int off, occ_pages;
1250
1251 if (!ptr)
1252 return;
1253
1254 kmemleak_free_percpu(ptr);
1255
1256 addr = __pcpu_ptr_to_addr(ptr);
1257
1258 spin_lock_irqsave(&pcpu_lock, flags);
1259
1260 chunk = pcpu_chunk_addr_search(addr);
1261 off = addr - chunk->base_addr;
1262
1263 pcpu_free_area(chunk, off, &occ_pages);
1264
1265 if (chunk != pcpu_reserved_chunk)
1266 pcpu_nr_empty_pop_pages += occ_pages;
1267
1268 /* if there are more than one fully free chunks, wake up grim reaper */
1269 if (chunk->free_size == pcpu_unit_size) {
1270 struct pcpu_chunk *pos;
1271
1272 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1273 if (pos != chunk) {
1274 pcpu_schedule_balance_work();
1275 break;
1276 }
1277 }
1278
1279 spin_unlock_irqrestore(&pcpu_lock, flags);
1280 }
1281 EXPORT_SYMBOL_GPL(free_percpu);
1282
1283 /**
1284 * is_kernel_percpu_address - test whether address is from static percpu area
1285 * @addr: address to test
1286 *
1287 * Test whether @addr belongs to in-kernel static percpu area. Module
1288 * static percpu areas are not considered. For those, use
1289 * is_module_percpu_address().
1290 *
1291 * RETURNS:
1292 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1293 */
1294 bool is_kernel_percpu_address(unsigned long addr)
1295 {
1296 #ifdef CONFIG_SMP
1297 const size_t static_size = __per_cpu_end - __per_cpu_start;
1298 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1299 unsigned int cpu;
1300
1301 for_each_possible_cpu(cpu) {
1302 void *start = per_cpu_ptr(base, cpu);
1303
1304 if ((void *)addr >= start && (void *)addr < start + static_size)
1305 return true;
1306 }
1307 #endif
1308 /* on UP, can't distinguish from other static vars, always false */
1309 return false;
1310 }
1311
1312 /**
1313 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1314 * @addr: the address to be converted to physical address
1315 *
1316 * Given @addr which is dereferenceable address obtained via one of
1317 * percpu access macros, this function translates it into its physical
1318 * address. The caller is responsible for ensuring @addr stays valid
1319 * until this function finishes.
1320 *
1321 * percpu allocator has special setup for the first chunk, which currently
1322 * supports either embedding in linear address space or vmalloc mapping,
1323 * and, from the second one, the backing allocator (currently either vm or
1324 * km) provides translation.
1325 *
1326 * The addr can be translated simply without checking if it falls into the
1327 * first chunk. But the current code reflects better how percpu allocator
1328 * actually works, and the verification can discover both bugs in percpu
1329 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1330 * code.
1331 *
1332 * RETURNS:
1333 * The physical address for @addr.
1334 */
1335 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1336 {
1337 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1338 bool in_first_chunk = false;
1339 unsigned long first_low, first_high;
1340 unsigned int cpu;
1341
1342 /*
1343 * The following test on unit_low/high isn't strictly
1344 * necessary but will speed up lookups of addresses which
1345 * aren't in the first chunk.
1346 */
1347 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1348 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1349 pcpu_unit_pages);
1350 if ((unsigned long)addr >= first_low &&
1351 (unsigned long)addr < first_high) {
1352 for_each_possible_cpu(cpu) {
1353 void *start = per_cpu_ptr(base, cpu);
1354
1355 if (addr >= start && addr < start + pcpu_unit_size) {
1356 in_first_chunk = true;
1357 break;
1358 }
1359 }
1360 }
1361
1362 if (in_first_chunk) {
1363 if (!is_vmalloc_addr(addr))
1364 return __pa(addr);
1365 else
1366 return page_to_phys(vmalloc_to_page(addr)) +
1367 offset_in_page(addr);
1368 } else
1369 return page_to_phys(pcpu_addr_to_page(addr)) +
1370 offset_in_page(addr);
1371 }
1372
1373 /**
1374 * pcpu_alloc_alloc_info - allocate percpu allocation info
1375 * @nr_groups: the number of groups
1376 * @nr_units: the number of units
1377 *
1378 * Allocate ai which is large enough for @nr_groups groups containing
1379 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1380 * cpu_map array which is long enough for @nr_units and filled with
1381 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1382 * pointer of other groups.
1383 *
1384 * RETURNS:
1385 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1386 * failure.
1387 */
1388 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1389 int nr_units)
1390 {
1391 struct pcpu_alloc_info *ai;
1392 size_t base_size, ai_size;
1393 void *ptr;
1394 int unit;
1395
1396 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1397 __alignof__(ai->groups[0].cpu_map[0]));
1398 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1399
1400 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1401 if (!ptr)
1402 return NULL;
1403 ai = ptr;
1404 ptr += base_size;
1405
1406 ai->groups[0].cpu_map = ptr;
1407
1408 for (unit = 0; unit < nr_units; unit++)
1409 ai->groups[0].cpu_map[unit] = NR_CPUS;
1410
1411 ai->nr_groups = nr_groups;
1412 ai->__ai_size = PFN_ALIGN(ai_size);
1413
1414 return ai;
1415 }
1416
1417 /**
1418 * pcpu_free_alloc_info - free percpu allocation info
1419 * @ai: pcpu_alloc_info to free
1420 *
1421 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1422 */
1423 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1424 {
1425 memblock_free_early(__pa(ai), ai->__ai_size);
1426 }
1427
1428 /**
1429 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1430 * @lvl: loglevel
1431 * @ai: allocation info to dump
1432 *
1433 * Print out information about @ai using loglevel @lvl.
1434 */
1435 static void pcpu_dump_alloc_info(const char *lvl,
1436 const struct pcpu_alloc_info *ai)
1437 {
1438 int group_width = 1, cpu_width = 1, width;
1439 char empty_str[] = "--------";
1440 int alloc = 0, alloc_end = 0;
1441 int group, v;
1442 int upa, apl; /* units per alloc, allocs per line */
1443
1444 v = ai->nr_groups;
1445 while (v /= 10)
1446 group_width++;
1447
1448 v = num_possible_cpus();
1449 while (v /= 10)
1450 cpu_width++;
1451 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1452
1453 upa = ai->alloc_size / ai->unit_size;
1454 width = upa * (cpu_width + 1) + group_width + 3;
1455 apl = rounddown_pow_of_two(max(60 / width, 1));
1456
1457 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1458 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1459 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1460
1461 for (group = 0; group < ai->nr_groups; group++) {
1462 const struct pcpu_group_info *gi = &ai->groups[group];
1463 int unit = 0, unit_end = 0;
1464
1465 BUG_ON(gi->nr_units % upa);
1466 for (alloc_end += gi->nr_units / upa;
1467 alloc < alloc_end; alloc++) {
1468 if (!(alloc % apl)) {
1469 pr_cont("\n");
1470 printk("%spcpu-alloc: ", lvl);
1471 }
1472 pr_cont("[%0*d] ", group_width, group);
1473
1474 for (unit_end += upa; unit < unit_end; unit++)
1475 if (gi->cpu_map[unit] != NR_CPUS)
1476 pr_cont("%0*d ",
1477 cpu_width, gi->cpu_map[unit]);
1478 else
1479 pr_cont("%s ", empty_str);
1480 }
1481 }
1482 pr_cont("\n");
1483 }
1484
1485 /**
1486 * pcpu_setup_first_chunk - initialize the first percpu chunk
1487 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1488 * @base_addr: mapped address
1489 *
1490 * Initialize the first percpu chunk which contains the kernel static
1491 * perpcu area. This function is to be called from arch percpu area
1492 * setup path.
1493 *
1494 * @ai contains all information necessary to initialize the first
1495 * chunk and prime the dynamic percpu allocator.
1496 *
1497 * @ai->static_size is the size of static percpu area.
1498 *
1499 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1500 * reserve after the static area in the first chunk. This reserves
1501 * the first chunk such that it's available only through reserved
1502 * percpu allocation. This is primarily used to serve module percpu
1503 * static areas on architectures where the addressing model has
1504 * limited offset range for symbol relocations to guarantee module
1505 * percpu symbols fall inside the relocatable range.
1506 *
1507 * @ai->dyn_size determines the number of bytes available for dynamic
1508 * allocation in the first chunk. The area between @ai->static_size +
1509 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1510 *
1511 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1512 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1513 * @ai->dyn_size.
1514 *
1515 * @ai->atom_size is the allocation atom size and used as alignment
1516 * for vm areas.
1517 *
1518 * @ai->alloc_size is the allocation size and always multiple of
1519 * @ai->atom_size. This is larger than @ai->atom_size if
1520 * @ai->unit_size is larger than @ai->atom_size.
1521 *
1522 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1523 * percpu areas. Units which should be colocated are put into the
1524 * same group. Dynamic VM areas will be allocated according to these
1525 * groupings. If @ai->nr_groups is zero, a single group containing
1526 * all units is assumed.
1527 *
1528 * The caller should have mapped the first chunk at @base_addr and
1529 * copied static data to each unit.
1530 *
1531 * If the first chunk ends up with both reserved and dynamic areas, it
1532 * is served by two chunks - one to serve the core static and reserved
1533 * areas and the other for the dynamic area. They share the same vm
1534 * and page map but uses different area allocation map to stay away
1535 * from each other. The latter chunk is circulated in the chunk slots
1536 * and available for dynamic allocation like any other chunks.
1537 *
1538 * RETURNS:
1539 * 0 on success, -errno on failure.
1540 */
1541 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1542 void *base_addr)
1543 {
1544 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1545 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1546 size_t dyn_size = ai->dyn_size;
1547 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1548 struct pcpu_chunk *schunk, *dchunk = NULL;
1549 unsigned long *group_offsets;
1550 size_t *group_sizes;
1551 unsigned long *unit_off;
1552 unsigned int cpu;
1553 int *unit_map;
1554 int group, unit, i;
1555
1556 #define PCPU_SETUP_BUG_ON(cond) do { \
1557 if (unlikely(cond)) { \
1558 pr_emerg("failed to initialize, %s\n", #cond); \
1559 pr_emerg("cpu_possible_mask=%*pb\n", \
1560 cpumask_pr_args(cpu_possible_mask)); \
1561 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1562 BUG(); \
1563 } \
1564 } while (0)
1565
1566 /* sanity checks */
1567 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1568 #ifdef CONFIG_SMP
1569 PCPU_SETUP_BUG_ON(!ai->static_size);
1570 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1571 #endif
1572 PCPU_SETUP_BUG_ON(!base_addr);
1573 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1574 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1575 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1576 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1577 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1578 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1579
1580 /* process group information and build config tables accordingly */
1581 group_offsets = memblock_virt_alloc(ai->nr_groups *
1582 sizeof(group_offsets[0]), 0);
1583 group_sizes = memblock_virt_alloc(ai->nr_groups *
1584 sizeof(group_sizes[0]), 0);
1585 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1586 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1587
1588 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1589 unit_map[cpu] = UINT_MAX;
1590
1591 pcpu_low_unit_cpu = NR_CPUS;
1592 pcpu_high_unit_cpu = NR_CPUS;
1593
1594 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1595 const struct pcpu_group_info *gi = &ai->groups[group];
1596
1597 group_offsets[group] = gi->base_offset;
1598 group_sizes[group] = gi->nr_units * ai->unit_size;
1599
1600 for (i = 0; i < gi->nr_units; i++) {
1601 cpu = gi->cpu_map[i];
1602 if (cpu == NR_CPUS)
1603 continue;
1604
1605 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1606 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1607 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1608
1609 unit_map[cpu] = unit + i;
1610 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1611
1612 /* determine low/high unit_cpu */
1613 if (pcpu_low_unit_cpu == NR_CPUS ||
1614 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1615 pcpu_low_unit_cpu = cpu;
1616 if (pcpu_high_unit_cpu == NR_CPUS ||
1617 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1618 pcpu_high_unit_cpu = cpu;
1619 }
1620 }
1621 pcpu_nr_units = unit;
1622
1623 for_each_possible_cpu(cpu)
1624 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1625
1626 /* we're done parsing the input, undefine BUG macro and dump config */
1627 #undef PCPU_SETUP_BUG_ON
1628 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1629
1630 pcpu_nr_groups = ai->nr_groups;
1631 pcpu_group_offsets = group_offsets;
1632 pcpu_group_sizes = group_sizes;
1633 pcpu_unit_map = unit_map;
1634 pcpu_unit_offsets = unit_off;
1635
1636 /* determine basic parameters */
1637 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1638 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1639 pcpu_atom_size = ai->atom_size;
1640 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1641 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1642
1643 /*
1644 * Allocate chunk slots. The additional last slot is for
1645 * empty chunks.
1646 */
1647 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1648 pcpu_slot = memblock_virt_alloc(
1649 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1650 for (i = 0; i < pcpu_nr_slots; i++)
1651 INIT_LIST_HEAD(&pcpu_slot[i]);
1652
1653 /*
1654 * Initialize static chunk. If reserved_size is zero, the
1655 * static chunk covers static area + dynamic allocation area
1656 * in the first chunk. If reserved_size is not zero, it
1657 * covers static area + reserved area (mostly used for module
1658 * static percpu allocation).
1659 */
1660 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1661 INIT_LIST_HEAD(&schunk->list);
1662 INIT_LIST_HEAD(&schunk->map_extend_list);
1663 schunk->base_addr = base_addr;
1664 schunk->map = smap;
1665 schunk->map_alloc = ARRAY_SIZE(smap);
1666 schunk->immutable = true;
1667 bitmap_fill(schunk->populated, pcpu_unit_pages);
1668 schunk->nr_populated = pcpu_unit_pages;
1669
1670 if (ai->reserved_size) {
1671 schunk->free_size = ai->reserved_size;
1672 pcpu_reserved_chunk = schunk;
1673 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1674 } else {
1675 schunk->free_size = dyn_size;
1676 dyn_size = 0; /* dynamic area covered */
1677 }
1678 schunk->contig_hint = schunk->free_size;
1679
1680 schunk->map[0] = 1;
1681 schunk->map[1] = ai->static_size;
1682 schunk->map_used = 1;
1683 if (schunk->free_size)
1684 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1685 schunk->map[schunk->map_used] |= 1;
1686
1687 /* init dynamic chunk if necessary */
1688 if (dyn_size) {
1689 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1690 INIT_LIST_HEAD(&dchunk->list);
1691 INIT_LIST_HEAD(&dchunk->map_extend_list);
1692 dchunk->base_addr = base_addr;
1693 dchunk->map = dmap;
1694 dchunk->map_alloc = ARRAY_SIZE(dmap);
1695 dchunk->immutable = true;
1696 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1697 dchunk->nr_populated = pcpu_unit_pages;
1698
1699 dchunk->contig_hint = dchunk->free_size = dyn_size;
1700 dchunk->map[0] = 1;
1701 dchunk->map[1] = pcpu_reserved_chunk_limit;
1702 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1703 dchunk->map_used = 2;
1704 }
1705
1706 /* link the first chunk in */
1707 pcpu_first_chunk = dchunk ?: schunk;
1708 pcpu_nr_empty_pop_pages +=
1709 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1710 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1711
1712 /* we're done */
1713 pcpu_base_addr = base_addr;
1714 return 0;
1715 }
1716
1717 #ifdef CONFIG_SMP
1718
1719 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1720 [PCPU_FC_AUTO] = "auto",
1721 [PCPU_FC_EMBED] = "embed",
1722 [PCPU_FC_PAGE] = "page",
1723 };
1724
1725 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1726
1727 static int __init percpu_alloc_setup(char *str)
1728 {
1729 if (!str)
1730 return -EINVAL;
1731
1732 if (0)
1733 /* nada */;
1734 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1735 else if (!strcmp(str, "embed"))
1736 pcpu_chosen_fc = PCPU_FC_EMBED;
1737 #endif
1738 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1739 else if (!strcmp(str, "page"))
1740 pcpu_chosen_fc = PCPU_FC_PAGE;
1741 #endif
1742 else
1743 pr_warn("unknown allocator %s specified\n", str);
1744
1745 return 0;
1746 }
1747 early_param("percpu_alloc", percpu_alloc_setup);
1748
1749 /*
1750 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1751 * Build it if needed by the arch config or the generic setup is going
1752 * to be used.
1753 */
1754 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1755 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1756 #define BUILD_EMBED_FIRST_CHUNK
1757 #endif
1758
1759 /* build pcpu_page_first_chunk() iff needed by the arch config */
1760 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1761 #define BUILD_PAGE_FIRST_CHUNK
1762 #endif
1763
1764 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1765 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1766 /**
1767 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1768 * @reserved_size: the size of reserved percpu area in bytes
1769 * @dyn_size: minimum free size for dynamic allocation in bytes
1770 * @atom_size: allocation atom size
1771 * @cpu_distance_fn: callback to determine distance between cpus, optional
1772 *
1773 * This function determines grouping of units, their mappings to cpus
1774 * and other parameters considering needed percpu size, allocation
1775 * atom size and distances between CPUs.
1776 *
1777 * Groups are always multiples of atom size and CPUs which are of
1778 * LOCAL_DISTANCE both ways are grouped together and share space for
1779 * units in the same group. The returned configuration is guaranteed
1780 * to have CPUs on different nodes on different groups and >=75% usage
1781 * of allocated virtual address space.
1782 *
1783 * RETURNS:
1784 * On success, pointer to the new allocation_info is returned. On
1785 * failure, ERR_PTR value is returned.
1786 */
1787 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1788 size_t reserved_size, size_t dyn_size,
1789 size_t atom_size,
1790 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1791 {
1792 static int group_map[NR_CPUS] __initdata;
1793 static int group_cnt[NR_CPUS] __initdata;
1794 const size_t static_size = __per_cpu_end - __per_cpu_start;
1795 int nr_groups = 1, nr_units = 0;
1796 size_t size_sum, min_unit_size, alloc_size;
1797 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1798 int last_allocs, group, unit;
1799 unsigned int cpu, tcpu;
1800 struct pcpu_alloc_info *ai;
1801 unsigned int *cpu_map;
1802
1803 /* this function may be called multiple times */
1804 memset(group_map, 0, sizeof(group_map));
1805 memset(group_cnt, 0, sizeof(group_cnt));
1806
1807 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1808 size_sum = PFN_ALIGN(static_size + reserved_size +
1809 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1810 dyn_size = size_sum - static_size - reserved_size;
1811
1812 /*
1813 * Determine min_unit_size, alloc_size and max_upa such that
1814 * alloc_size is multiple of atom_size and is the smallest
1815 * which can accommodate 4k aligned segments which are equal to
1816 * or larger than min_unit_size.
1817 */
1818 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1819
1820 alloc_size = roundup(min_unit_size, atom_size);
1821 upa = alloc_size / min_unit_size;
1822 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1823 upa--;
1824 max_upa = upa;
1825
1826 /* group cpus according to their proximity */
1827 for_each_possible_cpu(cpu) {
1828 group = 0;
1829 next_group:
1830 for_each_possible_cpu(tcpu) {
1831 if (cpu == tcpu)
1832 break;
1833 if (group_map[tcpu] == group && cpu_distance_fn &&
1834 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1835 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1836 group++;
1837 nr_groups = max(nr_groups, group + 1);
1838 goto next_group;
1839 }
1840 }
1841 group_map[cpu] = group;
1842 group_cnt[group]++;
1843 }
1844
1845 /*
1846 * Expand unit size until address space usage goes over 75%
1847 * and then as much as possible without using more address
1848 * space.
1849 */
1850 last_allocs = INT_MAX;
1851 for (upa = max_upa; upa; upa--) {
1852 int allocs = 0, wasted = 0;
1853
1854 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1855 continue;
1856
1857 for (group = 0; group < nr_groups; group++) {
1858 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1859 allocs += this_allocs;
1860 wasted += this_allocs * upa - group_cnt[group];
1861 }
1862
1863 /*
1864 * Don't accept if wastage is over 1/3. The
1865 * greater-than comparison ensures upa==1 always
1866 * passes the following check.
1867 */
1868 if (wasted > num_possible_cpus() / 3)
1869 continue;
1870
1871 /* and then don't consume more memory */
1872 if (allocs > last_allocs)
1873 break;
1874 last_allocs = allocs;
1875 best_upa = upa;
1876 }
1877 upa = best_upa;
1878
1879 /* allocate and fill alloc_info */
1880 for (group = 0; group < nr_groups; group++)
1881 nr_units += roundup(group_cnt[group], upa);
1882
1883 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1884 if (!ai)
1885 return ERR_PTR(-ENOMEM);
1886 cpu_map = ai->groups[0].cpu_map;
1887
1888 for (group = 0; group < nr_groups; group++) {
1889 ai->groups[group].cpu_map = cpu_map;
1890 cpu_map += roundup(group_cnt[group], upa);
1891 }
1892
1893 ai->static_size = static_size;
1894 ai->reserved_size = reserved_size;
1895 ai->dyn_size = dyn_size;
1896 ai->unit_size = alloc_size / upa;
1897 ai->atom_size = atom_size;
1898 ai->alloc_size = alloc_size;
1899
1900 for (group = 0, unit = 0; group_cnt[group]; group++) {
1901 struct pcpu_group_info *gi = &ai->groups[group];
1902
1903 /*
1904 * Initialize base_offset as if all groups are located
1905 * back-to-back. The caller should update this to
1906 * reflect actual allocation.
1907 */
1908 gi->base_offset = unit * ai->unit_size;
1909
1910 for_each_possible_cpu(cpu)
1911 if (group_map[cpu] == group)
1912 gi->cpu_map[gi->nr_units++] = cpu;
1913 gi->nr_units = roundup(gi->nr_units, upa);
1914 unit += gi->nr_units;
1915 }
1916 BUG_ON(unit != nr_units);
1917
1918 return ai;
1919 }
1920 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1921
1922 #if defined(BUILD_EMBED_FIRST_CHUNK)
1923 /**
1924 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1925 * @reserved_size: the size of reserved percpu area in bytes
1926 * @dyn_size: minimum free size for dynamic allocation in bytes
1927 * @atom_size: allocation atom size
1928 * @cpu_distance_fn: callback to determine distance between cpus, optional
1929 * @alloc_fn: function to allocate percpu page
1930 * @free_fn: function to free percpu page
1931 *
1932 * This is a helper to ease setting up embedded first percpu chunk and
1933 * can be called where pcpu_setup_first_chunk() is expected.
1934 *
1935 * If this function is used to setup the first chunk, it is allocated
1936 * by calling @alloc_fn and used as-is without being mapped into
1937 * vmalloc area. Allocations are always whole multiples of @atom_size
1938 * aligned to @atom_size.
1939 *
1940 * This enables the first chunk to piggy back on the linear physical
1941 * mapping which often uses larger page size. Please note that this
1942 * can result in very sparse cpu->unit mapping on NUMA machines thus
1943 * requiring large vmalloc address space. Don't use this allocator if
1944 * vmalloc space is not orders of magnitude larger than distances
1945 * between node memory addresses (ie. 32bit NUMA machines).
1946 *
1947 * @dyn_size specifies the minimum dynamic area size.
1948 *
1949 * If the needed size is smaller than the minimum or specified unit
1950 * size, the leftover is returned using @free_fn.
1951 *
1952 * RETURNS:
1953 * 0 on success, -errno on failure.
1954 */
1955 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1956 size_t atom_size,
1957 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1958 pcpu_fc_alloc_fn_t alloc_fn,
1959 pcpu_fc_free_fn_t free_fn)
1960 {
1961 void *base = (void *)ULONG_MAX;
1962 void **areas = NULL;
1963 struct pcpu_alloc_info *ai;
1964 size_t size_sum, areas_size, max_distance;
1965 int group, i, rc;
1966
1967 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1968 cpu_distance_fn);
1969 if (IS_ERR(ai))
1970 return PTR_ERR(ai);
1971
1972 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1973 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1974
1975 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1976 if (!areas) {
1977 rc = -ENOMEM;
1978 goto out_free;
1979 }
1980
1981 /* allocate, copy and determine base address */
1982 for (group = 0; group < ai->nr_groups; group++) {
1983 struct pcpu_group_info *gi = &ai->groups[group];
1984 unsigned int cpu = NR_CPUS;
1985 void *ptr;
1986
1987 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1988 cpu = gi->cpu_map[i];
1989 BUG_ON(cpu == NR_CPUS);
1990
1991 /* allocate space for the whole group */
1992 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1993 if (!ptr) {
1994 rc = -ENOMEM;
1995 goto out_free_areas;
1996 }
1997 /* kmemleak tracks the percpu allocations separately */
1998 kmemleak_free(ptr);
1999 areas[group] = ptr;
2000
2001 base = min(ptr, base);
2002 }
2003
2004 /*
2005 * Copy data and free unused parts. This should happen after all
2006 * allocations are complete; otherwise, we may end up with
2007 * overlapping groups.
2008 */
2009 for (group = 0; group < ai->nr_groups; group++) {
2010 struct pcpu_group_info *gi = &ai->groups[group];
2011 void *ptr = areas[group];
2012
2013 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2014 if (gi->cpu_map[i] == NR_CPUS) {
2015 /* unused unit, free whole */
2016 free_fn(ptr, ai->unit_size);
2017 continue;
2018 }
2019 /* copy and return the unused part */
2020 memcpy(ptr, __per_cpu_load, ai->static_size);
2021 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2022 }
2023 }
2024
2025 /* base address is now known, determine group base offsets */
2026 max_distance = 0;
2027 for (group = 0; group < ai->nr_groups; group++) {
2028 ai->groups[group].base_offset = areas[group] - base;
2029 max_distance = max_t(size_t, max_distance,
2030 ai->groups[group].base_offset);
2031 }
2032 max_distance += ai->unit_size;
2033
2034 /* warn if maximum distance is further than 75% of vmalloc space */
2035 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2036 pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2037 max_distance, VMALLOC_TOTAL);
2038 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2039 /* and fail if we have fallback */
2040 rc = -EINVAL;
2041 goto out_free;
2042 #endif
2043 }
2044
2045 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2046 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2047 ai->dyn_size, ai->unit_size);
2048
2049 rc = pcpu_setup_first_chunk(ai, base);
2050 goto out_free;
2051
2052 out_free_areas:
2053 for (group = 0; group < ai->nr_groups; group++)
2054 if (areas[group])
2055 free_fn(areas[group],
2056 ai->groups[group].nr_units * ai->unit_size);
2057 out_free:
2058 pcpu_free_alloc_info(ai);
2059 if (areas)
2060 memblock_free_early(__pa(areas), areas_size);
2061 return rc;
2062 }
2063 #endif /* BUILD_EMBED_FIRST_CHUNK */
2064
2065 #ifdef BUILD_PAGE_FIRST_CHUNK
2066 /**
2067 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2068 * @reserved_size: the size of reserved percpu area in bytes
2069 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2070 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2071 * @populate_pte_fn: function to populate pte
2072 *
2073 * This is a helper to ease setting up page-remapped first percpu
2074 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2075 *
2076 * This is the basic allocator. Static percpu area is allocated
2077 * page-by-page into vmalloc area.
2078 *
2079 * RETURNS:
2080 * 0 on success, -errno on failure.
2081 */
2082 int __init pcpu_page_first_chunk(size_t reserved_size,
2083 pcpu_fc_alloc_fn_t alloc_fn,
2084 pcpu_fc_free_fn_t free_fn,
2085 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2086 {
2087 static struct vm_struct vm;
2088 struct pcpu_alloc_info *ai;
2089 char psize_str[16];
2090 int unit_pages;
2091 size_t pages_size;
2092 struct page **pages;
2093 int unit, i, j, rc;
2094
2095 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2096
2097 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2098 if (IS_ERR(ai))
2099 return PTR_ERR(ai);
2100 BUG_ON(ai->nr_groups != 1);
2101 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2102
2103 unit_pages = ai->unit_size >> PAGE_SHIFT;
2104
2105 /* unaligned allocations can't be freed, round up to page size */
2106 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2107 sizeof(pages[0]));
2108 pages = memblock_virt_alloc(pages_size, 0);
2109
2110 /* allocate pages */
2111 j = 0;
2112 for (unit = 0; unit < num_possible_cpus(); unit++)
2113 for (i = 0; i < unit_pages; i++) {
2114 unsigned int cpu = ai->groups[0].cpu_map[unit];
2115 void *ptr;
2116
2117 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2118 if (!ptr) {
2119 pr_warn("failed to allocate %s page for cpu%u\n",
2120 psize_str, cpu);
2121 goto enomem;
2122 }
2123 /* kmemleak tracks the percpu allocations separately */
2124 kmemleak_free(ptr);
2125 pages[j++] = virt_to_page(ptr);
2126 }
2127
2128 /* allocate vm area, map the pages and copy static data */
2129 vm.flags = VM_ALLOC;
2130 vm.size = num_possible_cpus() * ai->unit_size;
2131 vm_area_register_early(&vm, PAGE_SIZE);
2132
2133 for (unit = 0; unit < num_possible_cpus(); unit++) {
2134 unsigned long unit_addr =
2135 (unsigned long)vm.addr + unit * ai->unit_size;
2136
2137 for (i = 0; i < unit_pages; i++)
2138 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2139
2140 /* pte already populated, the following shouldn't fail */
2141 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2142 unit_pages);
2143 if (rc < 0)
2144 panic("failed to map percpu area, err=%d\n", rc);
2145
2146 /*
2147 * FIXME: Archs with virtual cache should flush local
2148 * cache for the linear mapping here - something
2149 * equivalent to flush_cache_vmap() on the local cpu.
2150 * flush_cache_vmap() can't be used as most supporting
2151 * data structures are not set up yet.
2152 */
2153
2154 /* copy static data */
2155 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2156 }
2157
2158 /* we're ready, commit */
2159 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2160 unit_pages, psize_str, vm.addr, ai->static_size,
2161 ai->reserved_size, ai->dyn_size);
2162
2163 rc = pcpu_setup_first_chunk(ai, vm.addr);
2164 goto out_free_ar;
2165
2166 enomem:
2167 while (--j >= 0)
2168 free_fn(page_address(pages[j]), PAGE_SIZE);
2169 rc = -ENOMEM;
2170 out_free_ar:
2171 memblock_free_early(__pa(pages), pages_size);
2172 pcpu_free_alloc_info(ai);
2173 return rc;
2174 }
2175 #endif /* BUILD_PAGE_FIRST_CHUNK */
2176
2177 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2178 /*
2179 * Generic SMP percpu area setup.
2180 *
2181 * The embedding helper is used because its behavior closely resembles
2182 * the original non-dynamic generic percpu area setup. This is
2183 * important because many archs have addressing restrictions and might
2184 * fail if the percpu area is located far away from the previous
2185 * location. As an added bonus, in non-NUMA cases, embedding is
2186 * generally a good idea TLB-wise because percpu area can piggy back
2187 * on the physical linear memory mapping which uses large page
2188 * mappings on applicable archs.
2189 */
2190 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2191 EXPORT_SYMBOL(__per_cpu_offset);
2192
2193 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2194 size_t align)
2195 {
2196 return memblock_virt_alloc_from_nopanic(
2197 size, align, __pa(MAX_DMA_ADDRESS));
2198 }
2199
2200 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2201 {
2202 memblock_free_early(__pa(ptr), size);
2203 }
2204
2205 void __init setup_per_cpu_areas(void)
2206 {
2207 unsigned long delta;
2208 unsigned int cpu;
2209 int rc;
2210
2211 /*
2212 * Always reserve area for module percpu variables. That's
2213 * what the legacy allocator did.
2214 */
2215 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2216 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2217 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2218 if (rc < 0)
2219 panic("Failed to initialize percpu areas.");
2220
2221 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2222 for_each_possible_cpu(cpu)
2223 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2224 }
2225 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2226
2227 #else /* CONFIG_SMP */
2228
2229 /*
2230 * UP percpu area setup.
2231 *
2232 * UP always uses km-based percpu allocator with identity mapping.
2233 * Static percpu variables are indistinguishable from the usual static
2234 * variables and don't require any special preparation.
2235 */
2236 void __init setup_per_cpu_areas(void)
2237 {
2238 const size_t unit_size =
2239 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2240 PERCPU_DYNAMIC_RESERVE));
2241 struct pcpu_alloc_info *ai;
2242 void *fc;
2243
2244 ai = pcpu_alloc_alloc_info(1, 1);
2245 fc = memblock_virt_alloc_from_nopanic(unit_size,
2246 PAGE_SIZE,
2247 __pa(MAX_DMA_ADDRESS));
2248 if (!ai || !fc)
2249 panic("Failed to allocate memory for percpu areas.");
2250 /* kmemleak tracks the percpu allocations separately */
2251 kmemleak_free(fc);
2252
2253 ai->dyn_size = unit_size;
2254 ai->unit_size = unit_size;
2255 ai->atom_size = unit_size;
2256 ai->alloc_size = unit_size;
2257 ai->groups[0].nr_units = 1;
2258 ai->groups[0].cpu_map[0] = 0;
2259
2260 if (pcpu_setup_first_chunk(ai, fc) < 0)
2261 panic("Failed to initialize percpu areas.");
2262 }
2263
2264 #endif /* CONFIG_SMP */
2265
2266 /*
2267 * First and reserved chunks are initialized with temporary allocation
2268 * map in initdata so that they can be used before slab is online.
2269 * This function is called after slab is brought up and replaces those
2270 * with properly allocated maps.
2271 */
2272 void __init percpu_init_late(void)
2273 {
2274 struct pcpu_chunk *target_chunks[] =
2275 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2276 struct pcpu_chunk *chunk;
2277 unsigned long flags;
2278 int i;
2279
2280 for (i = 0; (chunk = target_chunks[i]); i++) {
2281 int *map;
2282 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2283
2284 BUILD_BUG_ON(size > PAGE_SIZE);
2285
2286 map = pcpu_mem_zalloc(size);
2287 BUG_ON(!map);
2288
2289 spin_lock_irqsave(&pcpu_lock, flags);
2290 memcpy(map, chunk->map, size);
2291 chunk->map = map;
2292 spin_unlock_irqrestore(&pcpu_lock, flags);
2293 }
2294 }
2295
2296 /*
2297 * Percpu allocator is initialized early during boot when neither slab or
2298 * workqueue is available. Plug async management until everything is up
2299 * and running.
2300 */
2301 static int __init percpu_enable_async(void)
2302 {
2303 pcpu_async_enabled = true;
2304 return 0;
2305 }
2306 subsys_initcall(percpu_enable_async);
This page took 0.078822 seconds and 5 git commands to generate.