mm/rmap: share the i_mmap_rwsem
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128 {
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134
135 /**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
171
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
175
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
183 }
184
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
193 }
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
196
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
201 }
202 return 0;
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
208 }
209
210 /*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
226 }
227 return root;
228 }
229
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 if (root)
233 up_write(&root->rwsem);
234 }
235
236 /*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
244
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
247
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
259 }
260 unlock_anon_vma_root(root);
261 return 0;
262
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
266 }
267
268 /*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277 int error;
278
279 /* Don't bother if the parent process has no anon_vma here. */
280 if (!pvma->anon_vma)
281 return 0;
282
283 /*
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
286 */
287 error = anon_vma_clone(vma, pvma);
288 if (error)
289 return error;
290
291 /* Then add our own anon_vma. */
292 anon_vma = anon_vma_alloc();
293 if (!anon_vma)
294 goto out_error;
295 avc = anon_vma_chain_alloc(GFP_KERNEL);
296 if (!avc)
297 goto out_error_free_anon_vma;
298
299 /*
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
302 */
303 anon_vma->root = pvma->anon_vma->root;
304 /*
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
308 */
309 get_anon_vma(anon_vma->root);
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma->anon_vma = anon_vma;
312 anon_vma_lock_write(anon_vma);
313 anon_vma_chain_link(vma, avc, anon_vma);
314 anon_vma_unlock_write(anon_vma);
315
316 return 0;
317
318 out_error_free_anon_vma:
319 put_anon_vma(anon_vma);
320 out_error:
321 unlink_anon_vmas(vma);
322 return -ENOMEM;
323 }
324
325 void unlink_anon_vmas(struct vm_area_struct *vma)
326 {
327 struct anon_vma_chain *avc, *next;
328 struct anon_vma *root = NULL;
329
330 /*
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
333 */
334 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
335 struct anon_vma *anon_vma = avc->anon_vma;
336
337 root = lock_anon_vma_root(root, anon_vma);
338 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
339
340 /*
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
343 */
344 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
345 continue;
346
347 list_del(&avc->same_vma);
348 anon_vma_chain_free(avc);
349 }
350 unlock_anon_vma_root(root);
351
352 /*
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 * needing to write-acquire the anon_vma->root->rwsem.
356 */
357 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358 struct anon_vma *anon_vma = avc->anon_vma;
359
360 put_anon_vma(anon_vma);
361
362 list_del(&avc->same_vma);
363 anon_vma_chain_free(avc);
364 }
365 }
366
367 static void anon_vma_ctor(void *data)
368 {
369 struct anon_vma *anon_vma = data;
370
371 init_rwsem(&anon_vma->rwsem);
372 atomic_set(&anon_vma->refcount, 0);
373 anon_vma->rb_root = RB_ROOT;
374 }
375
376 void __init anon_vma_init(void)
377 {
378 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
379 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
380 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381 }
382
383 /*
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
385 *
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
389 *
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
392 *
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
397 *
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
401 *
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
405 */
406 struct anon_vma *page_get_anon_vma(struct page *page)
407 {
408 struct anon_vma *anon_vma = NULL;
409 unsigned long anon_mapping;
410
411 rcu_read_lock();
412 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414 goto out;
415 if (!page_mapped(page))
416 goto out;
417
418 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420 anon_vma = NULL;
421 goto out;
422 }
423
424 /*
425 * If this page is still mapped, then its anon_vma cannot have been
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
430 */
431 if (!page_mapped(page)) {
432 rcu_read_unlock();
433 put_anon_vma(anon_vma);
434 return NULL;
435 }
436 out:
437 rcu_read_unlock();
438
439 return anon_vma;
440 }
441
442 /*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
449 struct anon_vma *page_lock_anon_vma_read(struct page *page)
450 {
451 struct anon_vma *anon_vma = NULL;
452 struct anon_vma *root_anon_vma;
453 unsigned long anon_mapping;
454
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
461
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 if (down_read_trylock(&root_anon_vma->rwsem)) {
465 /*
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
469 */
470 if (!page_mapped(page)) {
471 up_read(&root_anon_vma->rwsem);
472 anon_vma = NULL;
473 }
474 goto out;
475 }
476
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 if (!page_mapped(page)) {
484 rcu_read_unlock();
485 put_anon_vma(anon_vma);
486 return NULL;
487 }
488
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
491 anon_vma_lock_read(anon_vma);
492
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
494 /*
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock_write() recursion.
498 */
499 anon_vma_unlock_read(anon_vma);
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
502 }
503
504 return anon_vma;
505
506 out:
507 rcu_read_unlock();
508 return anon_vma;
509 }
510
511 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
512 {
513 anon_vma_unlock_read(anon_vma);
514 }
515
516 /*
517 * At what user virtual address is page expected in @vma?
518 */
519 static inline unsigned long
520 __vma_address(struct page *page, struct vm_area_struct *vma)
521 {
522 pgoff_t pgoff = page_to_pgoff(page);
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
533
534 return address;
535 }
536
537 /*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
563 }
564
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
570 pmd_t pmde;
571
572 pgd = pgd_offset(mm, address);
573 if (!pgd_present(*pgd))
574 goto out;
575
576 pud = pud_offset(pgd, address);
577 if (!pud_present(*pud))
578 goto out;
579
580 pmd = pmd_offset(pud, address);
581 /*
582 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583 * without holding anon_vma lock for write. So when looking for a
584 * genuine pmde (in which to find pte), test present and !THP together.
585 */
586 pmde = ACCESS_ONCE(*pmd);
587 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
588 pmd = NULL;
589 out:
590 return pmd;
591 }
592
593 /*
594 * Check that @page is mapped at @address into @mm.
595 *
596 * If @sync is false, page_check_address may perform a racy check to avoid
597 * the page table lock when the pte is not present (helpful when reclaiming
598 * highly shared pages).
599 *
600 * On success returns with pte mapped and locked.
601 */
602 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
603 unsigned long address, spinlock_t **ptlp, int sync)
604 {
605 pmd_t *pmd;
606 pte_t *pte;
607 spinlock_t *ptl;
608
609 if (unlikely(PageHuge(page))) {
610 /* when pud is not present, pte will be NULL */
611 pte = huge_pte_offset(mm, address);
612 if (!pte)
613 return NULL;
614
615 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
616 goto check;
617 }
618
619 pmd = mm_find_pmd(mm, address);
620 if (!pmd)
621 return NULL;
622
623 pte = pte_offset_map(pmd, address);
624 /* Make a quick check before getting the lock */
625 if (!sync && !pte_present(*pte)) {
626 pte_unmap(pte);
627 return NULL;
628 }
629
630 ptl = pte_lockptr(mm, pmd);
631 check:
632 spin_lock(ptl);
633 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
634 *ptlp = ptl;
635 return pte;
636 }
637 pte_unmap_unlock(pte, ptl);
638 return NULL;
639 }
640
641 /**
642 * page_mapped_in_vma - check whether a page is really mapped in a VMA
643 * @page: the page to test
644 * @vma: the VMA to test
645 *
646 * Returns 1 if the page is mapped into the page tables of the VMA, 0
647 * if the page is not mapped into the page tables of this VMA. Only
648 * valid for normal file or anonymous VMAs.
649 */
650 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
651 {
652 unsigned long address;
653 pte_t *pte;
654 spinlock_t *ptl;
655
656 address = __vma_address(page, vma);
657 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
658 return 0;
659 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
660 if (!pte) /* the page is not in this mm */
661 return 0;
662 pte_unmap_unlock(pte, ptl);
663
664 return 1;
665 }
666
667 struct page_referenced_arg {
668 int mapcount;
669 int referenced;
670 unsigned long vm_flags;
671 struct mem_cgroup *memcg;
672 };
673 /*
674 * arg: page_referenced_arg will be passed
675 */
676 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
677 unsigned long address, void *arg)
678 {
679 struct mm_struct *mm = vma->vm_mm;
680 spinlock_t *ptl;
681 int referenced = 0;
682 struct page_referenced_arg *pra = arg;
683
684 if (unlikely(PageTransHuge(page))) {
685 pmd_t *pmd;
686
687 /*
688 * rmap might return false positives; we must filter
689 * these out using page_check_address_pmd().
690 */
691 pmd = page_check_address_pmd(page, mm, address,
692 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
693 if (!pmd)
694 return SWAP_AGAIN;
695
696 if (vma->vm_flags & VM_LOCKED) {
697 spin_unlock(ptl);
698 pra->vm_flags |= VM_LOCKED;
699 return SWAP_FAIL; /* To break the loop */
700 }
701
702 /* go ahead even if the pmd is pmd_trans_splitting() */
703 if (pmdp_clear_flush_young_notify(vma, address, pmd))
704 referenced++;
705 spin_unlock(ptl);
706 } else {
707 pte_t *pte;
708
709 /*
710 * rmap might return false positives; we must filter
711 * these out using page_check_address().
712 */
713 pte = page_check_address(page, mm, address, &ptl, 0);
714 if (!pte)
715 return SWAP_AGAIN;
716
717 if (vma->vm_flags & VM_LOCKED) {
718 pte_unmap_unlock(pte, ptl);
719 pra->vm_flags |= VM_LOCKED;
720 return SWAP_FAIL; /* To break the loop */
721 }
722
723 if (ptep_clear_flush_young_notify(vma, address, pte)) {
724 /*
725 * Don't treat a reference through a sequentially read
726 * mapping as such. If the page has been used in
727 * another mapping, we will catch it; if this other
728 * mapping is already gone, the unmap path will have
729 * set PG_referenced or activated the page.
730 */
731 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
732 referenced++;
733 }
734 pte_unmap_unlock(pte, ptl);
735 }
736
737 if (referenced) {
738 pra->referenced++;
739 pra->vm_flags |= vma->vm_flags;
740 }
741
742 pra->mapcount--;
743 if (!pra->mapcount)
744 return SWAP_SUCCESS; /* To break the loop */
745
746 return SWAP_AGAIN;
747 }
748
749 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
750 {
751 struct page_referenced_arg *pra = arg;
752 struct mem_cgroup *memcg = pra->memcg;
753
754 if (!mm_match_cgroup(vma->vm_mm, memcg))
755 return true;
756
757 return false;
758 }
759
760 /**
761 * page_referenced - test if the page was referenced
762 * @page: the page to test
763 * @is_locked: caller holds lock on the page
764 * @memcg: target memory cgroup
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
766 *
767 * Quick test_and_clear_referenced for all mappings to a page,
768 * returns the number of ptes which referenced the page.
769 */
770 int page_referenced(struct page *page,
771 int is_locked,
772 struct mem_cgroup *memcg,
773 unsigned long *vm_flags)
774 {
775 int ret;
776 int we_locked = 0;
777 struct page_referenced_arg pra = {
778 .mapcount = page_mapcount(page),
779 .memcg = memcg,
780 };
781 struct rmap_walk_control rwc = {
782 .rmap_one = page_referenced_one,
783 .arg = (void *)&pra,
784 .anon_lock = page_lock_anon_vma_read,
785 };
786
787 *vm_flags = 0;
788 if (!page_mapped(page))
789 return 0;
790
791 if (!page_rmapping(page))
792 return 0;
793
794 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
795 we_locked = trylock_page(page);
796 if (!we_locked)
797 return 1;
798 }
799
800 /*
801 * If we are reclaiming on behalf of a cgroup, skip
802 * counting on behalf of references from different
803 * cgroups
804 */
805 if (memcg) {
806 rwc.invalid_vma = invalid_page_referenced_vma;
807 }
808
809 ret = rmap_walk(page, &rwc);
810 *vm_flags = pra.vm_flags;
811
812 if (we_locked)
813 unlock_page(page);
814
815 return pra.referenced;
816 }
817
818 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
819 unsigned long address, void *arg)
820 {
821 struct mm_struct *mm = vma->vm_mm;
822 pte_t *pte;
823 spinlock_t *ptl;
824 int ret = 0;
825 int *cleaned = arg;
826
827 pte = page_check_address(page, mm, address, &ptl, 1);
828 if (!pte)
829 goto out;
830
831 if (pte_dirty(*pte) || pte_write(*pte)) {
832 pte_t entry;
833
834 flush_cache_page(vma, address, pte_pfn(*pte));
835 entry = ptep_clear_flush(vma, address, pte);
836 entry = pte_wrprotect(entry);
837 entry = pte_mkclean(entry);
838 set_pte_at(mm, address, pte, entry);
839 ret = 1;
840 }
841
842 pte_unmap_unlock(pte, ptl);
843
844 if (ret) {
845 mmu_notifier_invalidate_page(mm, address);
846 (*cleaned)++;
847 }
848 out:
849 return SWAP_AGAIN;
850 }
851
852 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
853 {
854 if (vma->vm_flags & VM_SHARED)
855 return false;
856
857 return true;
858 }
859
860 int page_mkclean(struct page *page)
861 {
862 int cleaned = 0;
863 struct address_space *mapping;
864 struct rmap_walk_control rwc = {
865 .arg = (void *)&cleaned,
866 .rmap_one = page_mkclean_one,
867 .invalid_vma = invalid_mkclean_vma,
868 };
869
870 BUG_ON(!PageLocked(page));
871
872 if (!page_mapped(page))
873 return 0;
874
875 mapping = page_mapping(page);
876 if (!mapping)
877 return 0;
878
879 rmap_walk(page, &rwc);
880
881 return cleaned;
882 }
883 EXPORT_SYMBOL_GPL(page_mkclean);
884
885 /**
886 * page_move_anon_rmap - move a page to our anon_vma
887 * @page: the page to move to our anon_vma
888 * @vma: the vma the page belongs to
889 * @address: the user virtual address mapped
890 *
891 * When a page belongs exclusively to one process after a COW event,
892 * that page can be moved into the anon_vma that belongs to just that
893 * process, so the rmap code will not search the parent or sibling
894 * processes.
895 */
896 void page_move_anon_rmap(struct page *page,
897 struct vm_area_struct *vma, unsigned long address)
898 {
899 struct anon_vma *anon_vma = vma->anon_vma;
900
901 VM_BUG_ON_PAGE(!PageLocked(page), page);
902 VM_BUG_ON_VMA(!anon_vma, vma);
903 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
904
905 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
906 page->mapping = (struct address_space *) anon_vma;
907 }
908
909 /**
910 * __page_set_anon_rmap - set up new anonymous rmap
911 * @page: Page to add to rmap
912 * @vma: VM area to add page to.
913 * @address: User virtual address of the mapping
914 * @exclusive: the page is exclusively owned by the current process
915 */
916 static void __page_set_anon_rmap(struct page *page,
917 struct vm_area_struct *vma, unsigned long address, int exclusive)
918 {
919 struct anon_vma *anon_vma = vma->anon_vma;
920
921 BUG_ON(!anon_vma);
922
923 if (PageAnon(page))
924 return;
925
926 /*
927 * If the page isn't exclusively mapped into this vma,
928 * we must use the _oldest_ possible anon_vma for the
929 * page mapping!
930 */
931 if (!exclusive)
932 anon_vma = anon_vma->root;
933
934 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
935 page->mapping = (struct address_space *) anon_vma;
936 page->index = linear_page_index(vma, address);
937 }
938
939 /**
940 * __page_check_anon_rmap - sanity check anonymous rmap addition
941 * @page: the page to add the mapping to
942 * @vma: the vm area in which the mapping is added
943 * @address: the user virtual address mapped
944 */
945 static void __page_check_anon_rmap(struct page *page,
946 struct vm_area_struct *vma, unsigned long address)
947 {
948 #ifdef CONFIG_DEBUG_VM
949 /*
950 * The page's anon-rmap details (mapping and index) are guaranteed to
951 * be set up correctly at this point.
952 *
953 * We have exclusion against page_add_anon_rmap because the caller
954 * always holds the page locked, except if called from page_dup_rmap,
955 * in which case the page is already known to be setup.
956 *
957 * We have exclusion against page_add_new_anon_rmap because those pages
958 * are initially only visible via the pagetables, and the pte is locked
959 * over the call to page_add_new_anon_rmap.
960 */
961 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
962 BUG_ON(page->index != linear_page_index(vma, address));
963 #endif
964 }
965
966 /**
967 * page_add_anon_rmap - add pte mapping to an anonymous page
968 * @page: the page to add the mapping to
969 * @vma: the vm area in which the mapping is added
970 * @address: the user virtual address mapped
971 *
972 * The caller needs to hold the pte lock, and the page must be locked in
973 * the anon_vma case: to serialize mapping,index checking after setting,
974 * and to ensure that PageAnon is not being upgraded racily to PageKsm
975 * (but PageKsm is never downgraded to PageAnon).
976 */
977 void page_add_anon_rmap(struct page *page,
978 struct vm_area_struct *vma, unsigned long address)
979 {
980 do_page_add_anon_rmap(page, vma, address, 0);
981 }
982
983 /*
984 * Special version of the above for do_swap_page, which often runs
985 * into pages that are exclusively owned by the current process.
986 * Everybody else should continue to use page_add_anon_rmap above.
987 */
988 void do_page_add_anon_rmap(struct page *page,
989 struct vm_area_struct *vma, unsigned long address, int exclusive)
990 {
991 int first = atomic_inc_and_test(&page->_mapcount);
992 if (first) {
993 /*
994 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
995 * these counters are not modified in interrupt context, and
996 * pte lock(a spinlock) is held, which implies preemption
997 * disabled.
998 */
999 if (PageTransHuge(page))
1000 __inc_zone_page_state(page,
1001 NR_ANON_TRANSPARENT_HUGEPAGES);
1002 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1003 hpage_nr_pages(page));
1004 }
1005 if (unlikely(PageKsm(page)))
1006 return;
1007
1008 VM_BUG_ON_PAGE(!PageLocked(page), page);
1009 /* address might be in next vma when migration races vma_adjust */
1010 if (first)
1011 __page_set_anon_rmap(page, vma, address, exclusive);
1012 else
1013 __page_check_anon_rmap(page, vma, address);
1014 }
1015
1016 /**
1017 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1018 * @page: the page to add the mapping to
1019 * @vma: the vm area in which the mapping is added
1020 * @address: the user virtual address mapped
1021 *
1022 * Same as page_add_anon_rmap but must only be called on *new* pages.
1023 * This means the inc-and-test can be bypassed.
1024 * Page does not have to be locked.
1025 */
1026 void page_add_new_anon_rmap(struct page *page,
1027 struct vm_area_struct *vma, unsigned long address)
1028 {
1029 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1030 SetPageSwapBacked(page);
1031 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1032 if (PageTransHuge(page))
1033 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1034 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1035 hpage_nr_pages(page));
1036 __page_set_anon_rmap(page, vma, address, 1);
1037 }
1038
1039 /**
1040 * page_add_file_rmap - add pte mapping to a file page
1041 * @page: the page to add the mapping to
1042 *
1043 * The caller needs to hold the pte lock.
1044 */
1045 void page_add_file_rmap(struct page *page)
1046 {
1047 struct mem_cgroup *memcg;
1048 unsigned long flags;
1049 bool locked;
1050
1051 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1052 if (atomic_inc_and_test(&page->_mapcount)) {
1053 __inc_zone_page_state(page, NR_FILE_MAPPED);
1054 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1055 }
1056 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1057 }
1058
1059 static void page_remove_file_rmap(struct page *page)
1060 {
1061 struct mem_cgroup *memcg;
1062 unsigned long flags;
1063 bool locked;
1064
1065 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1066
1067 /* page still mapped by someone else? */
1068 if (!atomic_add_negative(-1, &page->_mapcount))
1069 goto out;
1070
1071 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1072 if (unlikely(PageHuge(page)))
1073 goto out;
1074
1075 /*
1076 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1077 * these counters are not modified in interrupt context, and
1078 * pte lock(a spinlock) is held, which implies preemption disabled.
1079 */
1080 __dec_zone_page_state(page, NR_FILE_MAPPED);
1081 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1082
1083 if (unlikely(PageMlocked(page)))
1084 clear_page_mlock(page);
1085 out:
1086 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1087 }
1088
1089 /**
1090 * page_remove_rmap - take down pte mapping from a page
1091 * @page: page to remove mapping from
1092 *
1093 * The caller needs to hold the pte lock.
1094 */
1095 void page_remove_rmap(struct page *page)
1096 {
1097 if (!PageAnon(page)) {
1098 page_remove_file_rmap(page);
1099 return;
1100 }
1101
1102 /* page still mapped by someone else? */
1103 if (!atomic_add_negative(-1, &page->_mapcount))
1104 return;
1105
1106 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1107 if (unlikely(PageHuge(page)))
1108 return;
1109
1110 /*
1111 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1112 * these counters are not modified in interrupt context, and
1113 * pte lock(a spinlock) is held, which implies preemption disabled.
1114 */
1115 if (PageTransHuge(page))
1116 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1117
1118 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1119 -hpage_nr_pages(page));
1120
1121 if (unlikely(PageMlocked(page)))
1122 clear_page_mlock(page);
1123
1124 /*
1125 * It would be tidy to reset the PageAnon mapping here,
1126 * but that might overwrite a racing page_add_anon_rmap
1127 * which increments mapcount after us but sets mapping
1128 * before us: so leave the reset to free_hot_cold_page,
1129 * and remember that it's only reliable while mapped.
1130 * Leaving it set also helps swapoff to reinstate ptes
1131 * faster for those pages still in swapcache.
1132 */
1133 }
1134
1135 /*
1136 * @arg: enum ttu_flags will be passed to this argument
1137 */
1138 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1139 unsigned long address, void *arg)
1140 {
1141 struct mm_struct *mm = vma->vm_mm;
1142 pte_t *pte;
1143 pte_t pteval;
1144 spinlock_t *ptl;
1145 int ret = SWAP_AGAIN;
1146 enum ttu_flags flags = (enum ttu_flags)arg;
1147
1148 pte = page_check_address(page, mm, address, &ptl, 0);
1149 if (!pte)
1150 goto out;
1151
1152 /*
1153 * If the page is mlock()d, we cannot swap it out.
1154 * If it's recently referenced (perhaps page_referenced
1155 * skipped over this mm) then we should reactivate it.
1156 */
1157 if (!(flags & TTU_IGNORE_MLOCK)) {
1158 if (vma->vm_flags & VM_LOCKED)
1159 goto out_mlock;
1160
1161 if (flags & TTU_MUNLOCK)
1162 goto out_unmap;
1163 }
1164 if (!(flags & TTU_IGNORE_ACCESS)) {
1165 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1166 ret = SWAP_FAIL;
1167 goto out_unmap;
1168 }
1169 }
1170
1171 /* Nuke the page table entry. */
1172 flush_cache_page(vma, address, page_to_pfn(page));
1173 pteval = ptep_clear_flush(vma, address, pte);
1174
1175 /* Move the dirty bit to the physical page now the pte is gone. */
1176 if (pte_dirty(pteval))
1177 set_page_dirty(page);
1178
1179 /* Update high watermark before we lower rss */
1180 update_hiwater_rss(mm);
1181
1182 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1183 if (!PageHuge(page)) {
1184 if (PageAnon(page))
1185 dec_mm_counter(mm, MM_ANONPAGES);
1186 else
1187 dec_mm_counter(mm, MM_FILEPAGES);
1188 }
1189 set_pte_at(mm, address, pte,
1190 swp_entry_to_pte(make_hwpoison_entry(page)));
1191 } else if (pte_unused(pteval)) {
1192 /*
1193 * The guest indicated that the page content is of no
1194 * interest anymore. Simply discard the pte, vmscan
1195 * will take care of the rest.
1196 */
1197 if (PageAnon(page))
1198 dec_mm_counter(mm, MM_ANONPAGES);
1199 else
1200 dec_mm_counter(mm, MM_FILEPAGES);
1201 } else if (PageAnon(page)) {
1202 swp_entry_t entry = { .val = page_private(page) };
1203 pte_t swp_pte;
1204
1205 if (PageSwapCache(page)) {
1206 /*
1207 * Store the swap location in the pte.
1208 * See handle_pte_fault() ...
1209 */
1210 if (swap_duplicate(entry) < 0) {
1211 set_pte_at(mm, address, pte, pteval);
1212 ret = SWAP_FAIL;
1213 goto out_unmap;
1214 }
1215 if (list_empty(&mm->mmlist)) {
1216 spin_lock(&mmlist_lock);
1217 if (list_empty(&mm->mmlist))
1218 list_add(&mm->mmlist, &init_mm.mmlist);
1219 spin_unlock(&mmlist_lock);
1220 }
1221 dec_mm_counter(mm, MM_ANONPAGES);
1222 inc_mm_counter(mm, MM_SWAPENTS);
1223 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1224 /*
1225 * Store the pfn of the page in a special migration
1226 * pte. do_swap_page() will wait until the migration
1227 * pte is removed and then restart fault handling.
1228 */
1229 BUG_ON(!(flags & TTU_MIGRATION));
1230 entry = make_migration_entry(page, pte_write(pteval));
1231 }
1232 swp_pte = swp_entry_to_pte(entry);
1233 if (pte_soft_dirty(pteval))
1234 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1235 set_pte_at(mm, address, pte, swp_pte);
1236 BUG_ON(pte_file(*pte));
1237 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1238 (flags & TTU_MIGRATION)) {
1239 /* Establish migration entry for a file page */
1240 swp_entry_t entry;
1241 entry = make_migration_entry(page, pte_write(pteval));
1242 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1243 } else
1244 dec_mm_counter(mm, MM_FILEPAGES);
1245
1246 page_remove_rmap(page);
1247 page_cache_release(page);
1248
1249 out_unmap:
1250 pte_unmap_unlock(pte, ptl);
1251 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1252 mmu_notifier_invalidate_page(mm, address);
1253 out:
1254 return ret;
1255
1256 out_mlock:
1257 pte_unmap_unlock(pte, ptl);
1258
1259
1260 /*
1261 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1262 * unstable result and race. Plus, We can't wait here because
1263 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1264 * if trylock failed, the page remain in evictable lru and later
1265 * vmscan could retry to move the page to unevictable lru if the
1266 * page is actually mlocked.
1267 */
1268 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1269 if (vma->vm_flags & VM_LOCKED) {
1270 mlock_vma_page(page);
1271 ret = SWAP_MLOCK;
1272 }
1273 up_read(&vma->vm_mm->mmap_sem);
1274 }
1275 return ret;
1276 }
1277
1278 /*
1279 * objrmap doesn't work for nonlinear VMAs because the assumption that
1280 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1281 * Consequently, given a particular page and its ->index, we cannot locate the
1282 * ptes which are mapping that page without an exhaustive linear search.
1283 *
1284 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1285 * maps the file to which the target page belongs. The ->vm_private_data field
1286 * holds the current cursor into that scan. Successive searches will circulate
1287 * around the vma's virtual address space.
1288 *
1289 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1290 * more scanning pressure is placed against them as well. Eventually pages
1291 * will become fully unmapped and are eligible for eviction.
1292 *
1293 * For very sparsely populated VMAs this is a little inefficient - chances are
1294 * there there won't be many ptes located within the scan cluster. In this case
1295 * maybe we could scan further - to the end of the pte page, perhaps.
1296 *
1297 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1298 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1299 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1300 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1301 */
1302 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1303 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1304
1305 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1306 struct vm_area_struct *vma, struct page *check_page)
1307 {
1308 struct mm_struct *mm = vma->vm_mm;
1309 pmd_t *pmd;
1310 pte_t *pte;
1311 pte_t pteval;
1312 spinlock_t *ptl;
1313 struct page *page;
1314 unsigned long address;
1315 unsigned long mmun_start; /* For mmu_notifiers */
1316 unsigned long mmun_end; /* For mmu_notifiers */
1317 unsigned long end;
1318 int ret = SWAP_AGAIN;
1319 int locked_vma = 0;
1320
1321 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1322 end = address + CLUSTER_SIZE;
1323 if (address < vma->vm_start)
1324 address = vma->vm_start;
1325 if (end > vma->vm_end)
1326 end = vma->vm_end;
1327
1328 pmd = mm_find_pmd(mm, address);
1329 if (!pmd)
1330 return ret;
1331
1332 mmun_start = address;
1333 mmun_end = end;
1334 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1335
1336 /*
1337 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1338 * keep the sem while scanning the cluster for mlocking pages.
1339 */
1340 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1341 locked_vma = (vma->vm_flags & VM_LOCKED);
1342 if (!locked_vma)
1343 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1344 }
1345
1346 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1347
1348 /* Update high watermark before we lower rss */
1349 update_hiwater_rss(mm);
1350
1351 for (; address < end; pte++, address += PAGE_SIZE) {
1352 if (!pte_present(*pte))
1353 continue;
1354 page = vm_normal_page(vma, address, *pte);
1355 BUG_ON(!page || PageAnon(page));
1356
1357 if (locked_vma) {
1358 if (page == check_page) {
1359 /* we know we have check_page locked */
1360 mlock_vma_page(page);
1361 ret = SWAP_MLOCK;
1362 } else if (trylock_page(page)) {
1363 /*
1364 * If we can lock the page, perform mlock.
1365 * Otherwise leave the page alone, it will be
1366 * eventually encountered again later.
1367 */
1368 mlock_vma_page(page);
1369 unlock_page(page);
1370 }
1371 continue; /* don't unmap */
1372 }
1373
1374 /*
1375 * No need for _notify because we're within an
1376 * mmu_notifier_invalidate_range_ {start|end} scope.
1377 */
1378 if (ptep_clear_flush_young(vma, address, pte))
1379 continue;
1380
1381 /* Nuke the page table entry. */
1382 flush_cache_page(vma, address, pte_pfn(*pte));
1383 pteval = ptep_clear_flush(vma, address, pte);
1384
1385 /* If nonlinear, store the file page offset in the pte. */
1386 if (page->index != linear_page_index(vma, address)) {
1387 pte_t ptfile = pgoff_to_pte(page->index);
1388 if (pte_soft_dirty(pteval))
1389 ptfile = pte_file_mksoft_dirty(ptfile);
1390 set_pte_at(mm, address, pte, ptfile);
1391 }
1392
1393 /* Move the dirty bit to the physical page now the pte is gone. */
1394 if (pte_dirty(pteval))
1395 set_page_dirty(page);
1396
1397 page_remove_rmap(page);
1398 page_cache_release(page);
1399 dec_mm_counter(mm, MM_FILEPAGES);
1400 (*mapcount)--;
1401 }
1402 pte_unmap_unlock(pte - 1, ptl);
1403 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1404 if (locked_vma)
1405 up_read(&vma->vm_mm->mmap_sem);
1406 return ret;
1407 }
1408
1409 static int try_to_unmap_nonlinear(struct page *page,
1410 struct address_space *mapping, void *arg)
1411 {
1412 struct vm_area_struct *vma;
1413 int ret = SWAP_AGAIN;
1414 unsigned long cursor;
1415 unsigned long max_nl_cursor = 0;
1416 unsigned long max_nl_size = 0;
1417 unsigned int mapcount;
1418
1419 list_for_each_entry(vma,
1420 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1421
1422 cursor = (unsigned long) vma->vm_private_data;
1423 if (cursor > max_nl_cursor)
1424 max_nl_cursor = cursor;
1425 cursor = vma->vm_end - vma->vm_start;
1426 if (cursor > max_nl_size)
1427 max_nl_size = cursor;
1428 }
1429
1430 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1431 return SWAP_FAIL;
1432 }
1433
1434 /*
1435 * We don't try to search for this page in the nonlinear vmas,
1436 * and page_referenced wouldn't have found it anyway. Instead
1437 * just walk the nonlinear vmas trying to age and unmap some.
1438 * The mapcount of the page we came in with is irrelevant,
1439 * but even so use it as a guide to how hard we should try?
1440 */
1441 mapcount = page_mapcount(page);
1442 if (!mapcount)
1443 return ret;
1444
1445 cond_resched();
1446
1447 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1448 if (max_nl_cursor == 0)
1449 max_nl_cursor = CLUSTER_SIZE;
1450
1451 do {
1452 list_for_each_entry(vma,
1453 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1454
1455 cursor = (unsigned long) vma->vm_private_data;
1456 while (cursor < max_nl_cursor &&
1457 cursor < vma->vm_end - vma->vm_start) {
1458 if (try_to_unmap_cluster(cursor, &mapcount,
1459 vma, page) == SWAP_MLOCK)
1460 ret = SWAP_MLOCK;
1461 cursor += CLUSTER_SIZE;
1462 vma->vm_private_data = (void *) cursor;
1463 if ((int)mapcount <= 0)
1464 return ret;
1465 }
1466 vma->vm_private_data = (void *) max_nl_cursor;
1467 }
1468 cond_resched();
1469 max_nl_cursor += CLUSTER_SIZE;
1470 } while (max_nl_cursor <= max_nl_size);
1471
1472 /*
1473 * Don't loop forever (perhaps all the remaining pages are
1474 * in locked vmas). Reset cursor on all unreserved nonlinear
1475 * vmas, now forgetting on which ones it had fallen behind.
1476 */
1477 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1478 vma->vm_private_data = NULL;
1479
1480 return ret;
1481 }
1482
1483 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1484 {
1485 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1486
1487 if (!maybe_stack)
1488 return false;
1489
1490 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1491 VM_STACK_INCOMPLETE_SETUP)
1492 return true;
1493
1494 return false;
1495 }
1496
1497 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1498 {
1499 return is_vma_temporary_stack(vma);
1500 }
1501
1502 static int page_not_mapped(struct page *page)
1503 {
1504 return !page_mapped(page);
1505 };
1506
1507 /**
1508 * try_to_unmap - try to remove all page table mappings to a page
1509 * @page: the page to get unmapped
1510 * @flags: action and flags
1511 *
1512 * Tries to remove all the page table entries which are mapping this
1513 * page, used in the pageout path. Caller must hold the page lock.
1514 * Return values are:
1515 *
1516 * SWAP_SUCCESS - we succeeded in removing all mappings
1517 * SWAP_AGAIN - we missed a mapping, try again later
1518 * SWAP_FAIL - the page is unswappable
1519 * SWAP_MLOCK - page is mlocked.
1520 */
1521 int try_to_unmap(struct page *page, enum ttu_flags flags)
1522 {
1523 int ret;
1524 struct rmap_walk_control rwc = {
1525 .rmap_one = try_to_unmap_one,
1526 .arg = (void *)flags,
1527 .done = page_not_mapped,
1528 .file_nonlinear = try_to_unmap_nonlinear,
1529 .anon_lock = page_lock_anon_vma_read,
1530 };
1531
1532 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1533
1534 /*
1535 * During exec, a temporary VMA is setup and later moved.
1536 * The VMA is moved under the anon_vma lock but not the
1537 * page tables leading to a race where migration cannot
1538 * find the migration ptes. Rather than increasing the
1539 * locking requirements of exec(), migration skips
1540 * temporary VMAs until after exec() completes.
1541 */
1542 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1543 rwc.invalid_vma = invalid_migration_vma;
1544
1545 ret = rmap_walk(page, &rwc);
1546
1547 if (ret != SWAP_MLOCK && !page_mapped(page))
1548 ret = SWAP_SUCCESS;
1549 return ret;
1550 }
1551
1552 /**
1553 * try_to_munlock - try to munlock a page
1554 * @page: the page to be munlocked
1555 *
1556 * Called from munlock code. Checks all of the VMAs mapping the page
1557 * to make sure nobody else has this page mlocked. The page will be
1558 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1559 *
1560 * Return values are:
1561 *
1562 * SWAP_AGAIN - no vma is holding page mlocked, or,
1563 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1564 * SWAP_FAIL - page cannot be located at present
1565 * SWAP_MLOCK - page is now mlocked.
1566 */
1567 int try_to_munlock(struct page *page)
1568 {
1569 int ret;
1570 struct rmap_walk_control rwc = {
1571 .rmap_one = try_to_unmap_one,
1572 .arg = (void *)TTU_MUNLOCK,
1573 .done = page_not_mapped,
1574 /*
1575 * We don't bother to try to find the munlocked page in
1576 * nonlinears. It's costly. Instead, later, page reclaim logic
1577 * may call try_to_unmap() and recover PG_mlocked lazily.
1578 */
1579 .file_nonlinear = NULL,
1580 .anon_lock = page_lock_anon_vma_read,
1581
1582 };
1583
1584 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1585
1586 ret = rmap_walk(page, &rwc);
1587 return ret;
1588 }
1589
1590 void __put_anon_vma(struct anon_vma *anon_vma)
1591 {
1592 struct anon_vma *root = anon_vma->root;
1593
1594 anon_vma_free(anon_vma);
1595 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1596 anon_vma_free(root);
1597 }
1598
1599 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1600 struct rmap_walk_control *rwc)
1601 {
1602 struct anon_vma *anon_vma;
1603
1604 if (rwc->anon_lock)
1605 return rwc->anon_lock(page);
1606
1607 /*
1608 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1609 * because that depends on page_mapped(); but not all its usages
1610 * are holding mmap_sem. Users without mmap_sem are required to
1611 * take a reference count to prevent the anon_vma disappearing
1612 */
1613 anon_vma = page_anon_vma(page);
1614 if (!anon_vma)
1615 return NULL;
1616
1617 anon_vma_lock_read(anon_vma);
1618 return anon_vma;
1619 }
1620
1621 /*
1622 * rmap_walk_anon - do something to anonymous page using the object-based
1623 * rmap method
1624 * @page: the page to be handled
1625 * @rwc: control variable according to each walk type
1626 *
1627 * Find all the mappings of a page using the mapping pointer and the vma chains
1628 * contained in the anon_vma struct it points to.
1629 *
1630 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1631 * where the page was found will be held for write. So, we won't recheck
1632 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1633 * LOCKED.
1634 */
1635 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1636 {
1637 struct anon_vma *anon_vma;
1638 pgoff_t pgoff = page_to_pgoff(page);
1639 struct anon_vma_chain *avc;
1640 int ret = SWAP_AGAIN;
1641
1642 anon_vma = rmap_walk_anon_lock(page, rwc);
1643 if (!anon_vma)
1644 return ret;
1645
1646 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1647 struct vm_area_struct *vma = avc->vma;
1648 unsigned long address = vma_address(page, vma);
1649
1650 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1651 continue;
1652
1653 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1654 if (ret != SWAP_AGAIN)
1655 break;
1656 if (rwc->done && rwc->done(page))
1657 break;
1658 }
1659 anon_vma_unlock_read(anon_vma);
1660 return ret;
1661 }
1662
1663 /*
1664 * rmap_walk_file - do something to file page using the object-based rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the address_space struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
1676 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1677 {
1678 struct address_space *mapping = page->mapping;
1679 pgoff_t pgoff = page_to_pgoff(page);
1680 struct vm_area_struct *vma;
1681 int ret = SWAP_AGAIN;
1682
1683 /*
1684 * The page lock not only makes sure that page->mapping cannot
1685 * suddenly be NULLified by truncation, it makes sure that the
1686 * structure at mapping cannot be freed and reused yet,
1687 * so we can safely take mapping->i_mmap_rwsem.
1688 */
1689 VM_BUG_ON_PAGE(!PageLocked(page), page);
1690
1691 if (!mapping)
1692 return ret;
1693
1694 i_mmap_lock_read(mapping);
1695 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1696 unsigned long address = vma_address(page, vma);
1697
1698 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1699 continue;
1700
1701 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1702 if (ret != SWAP_AGAIN)
1703 goto done;
1704 if (rwc->done && rwc->done(page))
1705 goto done;
1706 }
1707
1708 if (!rwc->file_nonlinear)
1709 goto done;
1710
1711 if (list_empty(&mapping->i_mmap_nonlinear))
1712 goto done;
1713
1714 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1715 done:
1716 i_mmap_unlock_read(mapping);
1717 return ret;
1718 }
1719
1720 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1721 {
1722 if (unlikely(PageKsm(page)))
1723 return rmap_walk_ksm(page, rwc);
1724 else if (PageAnon(page))
1725 return rmap_walk_anon(page, rwc);
1726 else
1727 return rmap_walk_file(page, rwc);
1728 }
1729
1730 #ifdef CONFIG_HUGETLB_PAGE
1731 /*
1732 * The following three functions are for anonymous (private mapped) hugepages.
1733 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1734 * and no lru code, because we handle hugepages differently from common pages.
1735 */
1736 static void __hugepage_set_anon_rmap(struct page *page,
1737 struct vm_area_struct *vma, unsigned long address, int exclusive)
1738 {
1739 struct anon_vma *anon_vma = vma->anon_vma;
1740
1741 BUG_ON(!anon_vma);
1742
1743 if (PageAnon(page))
1744 return;
1745 if (!exclusive)
1746 anon_vma = anon_vma->root;
1747
1748 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1749 page->mapping = (struct address_space *) anon_vma;
1750 page->index = linear_page_index(vma, address);
1751 }
1752
1753 void hugepage_add_anon_rmap(struct page *page,
1754 struct vm_area_struct *vma, unsigned long address)
1755 {
1756 struct anon_vma *anon_vma = vma->anon_vma;
1757 int first;
1758
1759 BUG_ON(!PageLocked(page));
1760 BUG_ON(!anon_vma);
1761 /* address might be in next vma when migration races vma_adjust */
1762 first = atomic_inc_and_test(&page->_mapcount);
1763 if (first)
1764 __hugepage_set_anon_rmap(page, vma, address, 0);
1765 }
1766
1767 void hugepage_add_new_anon_rmap(struct page *page,
1768 struct vm_area_struct *vma, unsigned long address)
1769 {
1770 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1771 atomic_set(&page->_mapcount, 0);
1772 __hugepage_set_anon_rmap(page, vma, address, 1);
1773 }
1774 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.07032 seconds and 5 git commands to generate.