tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122 {
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 return sb->s_fs_info;
130 }
131
132 /*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152 {
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161 }
162
163 /*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 }
220
221 /**
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
246 }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
285
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 }
295
296 /*
297 * Replace item expected in radix tree by a new item, while holding tree lock.
298 */
299 static int shmem_radix_tree_replace(struct address_space *mapping,
300 pgoff_t index, void *expected, void *replacement)
301 {
302 void **pslot;
303 void *item;
304
305 VM_BUG_ON(!expected);
306 VM_BUG_ON(!replacement);
307 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
308 if (!pslot)
309 return -ENOENT;
310 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
311 if (item != expected)
312 return -ENOENT;
313 radix_tree_replace_slot(pslot, replacement);
314 return 0;
315 }
316
317 /*
318 * Sometimes, before we decide whether to proceed or to fail, we must check
319 * that an entry was not already brought back from swap by a racing thread.
320 *
321 * Checking page is not enough: by the time a SwapCache page is locked, it
322 * might be reused, and again be SwapCache, using the same swap as before.
323 */
324 static bool shmem_confirm_swap(struct address_space *mapping,
325 pgoff_t index, swp_entry_t swap)
326 {
327 void *item;
328
329 rcu_read_lock();
330 item = radix_tree_lookup(&mapping->page_tree, index);
331 rcu_read_unlock();
332 return item == swp_to_radix_entry(swap);
333 }
334
335 /*
336 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
337 *
338 * SHMEM_HUGE_NEVER:
339 * disables huge pages for the mount;
340 * SHMEM_HUGE_ALWAYS:
341 * enables huge pages for the mount;
342 * SHMEM_HUGE_WITHIN_SIZE:
343 * only allocate huge pages if the page will be fully within i_size,
344 * also respect fadvise()/madvise() hints;
345 * SHMEM_HUGE_ADVISE:
346 * only allocate huge pages if requested with fadvise()/madvise();
347 */
348
349 #define SHMEM_HUGE_NEVER 0
350 #define SHMEM_HUGE_ALWAYS 1
351 #define SHMEM_HUGE_WITHIN_SIZE 2
352 #define SHMEM_HUGE_ADVISE 3
353
354 /*
355 * Special values.
356 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
357 *
358 * SHMEM_HUGE_DENY:
359 * disables huge on shm_mnt and all mounts, for emergency use;
360 * SHMEM_HUGE_FORCE:
361 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
362 *
363 */
364 #define SHMEM_HUGE_DENY (-1)
365 #define SHMEM_HUGE_FORCE (-2)
366
367 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
368 /* ifdef here to avoid bloating shmem.o when not necessary */
369
370 int shmem_huge __read_mostly;
371
372 static int shmem_parse_huge(const char *str)
373 {
374 if (!strcmp(str, "never"))
375 return SHMEM_HUGE_NEVER;
376 if (!strcmp(str, "always"))
377 return SHMEM_HUGE_ALWAYS;
378 if (!strcmp(str, "within_size"))
379 return SHMEM_HUGE_WITHIN_SIZE;
380 if (!strcmp(str, "advise"))
381 return SHMEM_HUGE_ADVISE;
382 if (!strcmp(str, "deny"))
383 return SHMEM_HUGE_DENY;
384 if (!strcmp(str, "force"))
385 return SHMEM_HUGE_FORCE;
386 return -EINVAL;
387 }
388
389 static const char *shmem_format_huge(int huge)
390 {
391 switch (huge) {
392 case SHMEM_HUGE_NEVER:
393 return "never";
394 case SHMEM_HUGE_ALWAYS:
395 return "always";
396 case SHMEM_HUGE_WITHIN_SIZE:
397 return "within_size";
398 case SHMEM_HUGE_ADVISE:
399 return "advise";
400 case SHMEM_HUGE_DENY:
401 return "deny";
402 case SHMEM_HUGE_FORCE:
403 return "force";
404 default:
405 VM_BUG_ON(1);
406 return "bad_val";
407 }
408 }
409
410 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
411 struct shrink_control *sc, unsigned long nr_to_split)
412 {
413 LIST_HEAD(list), *pos, *next;
414 struct inode *inode;
415 struct shmem_inode_info *info;
416 struct page *page;
417 unsigned long batch = sc ? sc->nr_to_scan : 128;
418 int removed = 0, split = 0;
419
420 if (list_empty(&sbinfo->shrinklist))
421 return SHRINK_STOP;
422
423 spin_lock(&sbinfo->shrinklist_lock);
424 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
425 info = list_entry(pos, struct shmem_inode_info, shrinklist);
426
427 /* pin the inode */
428 inode = igrab(&info->vfs_inode);
429
430 /* inode is about to be evicted */
431 if (!inode) {
432 list_del_init(&info->shrinklist);
433 removed++;
434 goto next;
435 }
436
437 /* Check if there's anything to gain */
438 if (round_up(inode->i_size, PAGE_SIZE) ==
439 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
440 list_del_init(&info->shrinklist);
441 removed++;
442 iput(inode);
443 goto next;
444 }
445
446 list_move(&info->shrinklist, &list);
447 next:
448 if (!--batch)
449 break;
450 }
451 spin_unlock(&sbinfo->shrinklist_lock);
452
453 list_for_each_safe(pos, next, &list) {
454 int ret;
455
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 inode = &info->vfs_inode;
458
459 if (nr_to_split && split >= nr_to_split) {
460 iput(inode);
461 continue;
462 }
463
464 page = find_lock_page(inode->i_mapping,
465 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
466 if (!page)
467 goto drop;
468
469 if (!PageTransHuge(page)) {
470 unlock_page(page);
471 put_page(page);
472 goto drop;
473 }
474
475 ret = split_huge_page(page);
476 unlock_page(page);
477 put_page(page);
478
479 if (ret) {
480 /* split failed: leave it on the list */
481 iput(inode);
482 continue;
483 }
484
485 split++;
486 drop:
487 list_del_init(&info->shrinklist);
488 removed++;
489 iput(inode);
490 }
491
492 spin_lock(&sbinfo->shrinklist_lock);
493 list_splice_tail(&list, &sbinfo->shrinklist);
494 sbinfo->shrinklist_len -= removed;
495 spin_unlock(&sbinfo->shrinklist_lock);
496
497 return split;
498 }
499
500 static long shmem_unused_huge_scan(struct super_block *sb,
501 struct shrink_control *sc)
502 {
503 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
504
505 if (!READ_ONCE(sbinfo->shrinklist_len))
506 return SHRINK_STOP;
507
508 return shmem_unused_huge_shrink(sbinfo, sc, 0);
509 }
510
511 static long shmem_unused_huge_count(struct super_block *sb,
512 struct shrink_control *sc)
513 {
514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515 return READ_ONCE(sbinfo->shrinklist_len);
516 }
517 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
518
519 #define shmem_huge SHMEM_HUGE_DENY
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 return 0;
525 }
526 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527
528 /*
529 * Like add_to_page_cache_locked, but error if expected item has gone.
530 */
531 static int shmem_add_to_page_cache(struct page *page,
532 struct address_space *mapping,
533 pgoff_t index, void *expected)
534 {
535 int error, nr = hpage_nr_pages(page);
536
537 VM_BUG_ON_PAGE(PageTail(page), page);
538 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
539 VM_BUG_ON_PAGE(!PageLocked(page), page);
540 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
541 VM_BUG_ON(expected && PageTransHuge(page));
542
543 page_ref_add(page, nr);
544 page->mapping = mapping;
545 page->index = index;
546
547 spin_lock_irq(&mapping->tree_lock);
548 if (PageTransHuge(page)) {
549 void __rcu **results;
550 pgoff_t idx;
551 int i;
552
553 error = 0;
554 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
555 &results, &idx, index, 1) &&
556 idx < index + HPAGE_PMD_NR) {
557 error = -EEXIST;
558 }
559
560 if (!error) {
561 for (i = 0; i < HPAGE_PMD_NR; i++) {
562 error = radix_tree_insert(&mapping->page_tree,
563 index + i, page + i);
564 VM_BUG_ON(error);
565 }
566 count_vm_event(THP_FILE_ALLOC);
567 }
568 } else if (!expected) {
569 error = radix_tree_insert(&mapping->page_tree, index, page);
570 } else {
571 error = shmem_radix_tree_replace(mapping, index, expected,
572 page);
573 }
574
575 if (!error) {
576 mapping->nrpages += nr;
577 if (PageTransHuge(page))
578 __inc_node_page_state(page, NR_SHMEM_THPS);
579 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
580 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
581 spin_unlock_irq(&mapping->tree_lock);
582 } else {
583 page->mapping = NULL;
584 spin_unlock_irq(&mapping->tree_lock);
585 page_ref_sub(page, nr);
586 }
587 return error;
588 }
589
590 /*
591 * Like delete_from_page_cache, but substitutes swap for page.
592 */
593 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
594 {
595 struct address_space *mapping = page->mapping;
596 int error;
597
598 VM_BUG_ON_PAGE(PageCompound(page), page);
599
600 spin_lock_irq(&mapping->tree_lock);
601 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
602 page->mapping = NULL;
603 mapping->nrpages--;
604 __dec_node_page_state(page, NR_FILE_PAGES);
605 __dec_node_page_state(page, NR_SHMEM);
606 spin_unlock_irq(&mapping->tree_lock);
607 put_page(page);
608 BUG_ON(error);
609 }
610
611 /*
612 * Remove swap entry from radix tree, free the swap and its page cache.
613 */
614 static int shmem_free_swap(struct address_space *mapping,
615 pgoff_t index, void *radswap)
616 {
617 void *old;
618
619 spin_lock_irq(&mapping->tree_lock);
620 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
621 spin_unlock_irq(&mapping->tree_lock);
622 if (old != radswap)
623 return -ENOENT;
624 free_swap_and_cache(radix_to_swp_entry(radswap));
625 return 0;
626 }
627
628 /*
629 * Determine (in bytes) how many of the shmem object's pages mapped by the
630 * given offsets are swapped out.
631 *
632 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
633 * as long as the inode doesn't go away and racy results are not a problem.
634 */
635 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
636 pgoff_t start, pgoff_t end)
637 {
638 struct radix_tree_iter iter;
639 void **slot;
640 struct page *page;
641 unsigned long swapped = 0;
642
643 rcu_read_lock();
644
645 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
646 if (iter.index >= end)
647 break;
648
649 page = radix_tree_deref_slot(slot);
650
651 if (radix_tree_deref_retry(page)) {
652 slot = radix_tree_iter_retry(&iter);
653 continue;
654 }
655
656 if (radix_tree_exceptional_entry(page))
657 swapped++;
658
659 if (need_resched()) {
660 cond_resched_rcu();
661 slot = radix_tree_iter_next(&iter);
662 }
663 }
664
665 rcu_read_unlock();
666
667 return swapped << PAGE_SHIFT;
668 }
669
670 /*
671 * Determine (in bytes) how many of the shmem object's pages mapped by the
672 * given vma is swapped out.
673 *
674 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
675 * as long as the inode doesn't go away and racy results are not a problem.
676 */
677 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
678 {
679 struct inode *inode = file_inode(vma->vm_file);
680 struct shmem_inode_info *info = SHMEM_I(inode);
681 struct address_space *mapping = inode->i_mapping;
682 unsigned long swapped;
683
684 /* Be careful as we don't hold info->lock */
685 swapped = READ_ONCE(info->swapped);
686
687 /*
688 * The easier cases are when the shmem object has nothing in swap, or
689 * the vma maps it whole. Then we can simply use the stats that we
690 * already track.
691 */
692 if (!swapped)
693 return 0;
694
695 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
696 return swapped << PAGE_SHIFT;
697
698 /* Here comes the more involved part */
699 return shmem_partial_swap_usage(mapping,
700 linear_page_index(vma, vma->vm_start),
701 linear_page_index(vma, vma->vm_end));
702 }
703
704 /*
705 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
706 */
707 void shmem_unlock_mapping(struct address_space *mapping)
708 {
709 struct pagevec pvec;
710 pgoff_t indices[PAGEVEC_SIZE];
711 pgoff_t index = 0;
712
713 pagevec_init(&pvec, 0);
714 /*
715 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
716 */
717 while (!mapping_unevictable(mapping)) {
718 /*
719 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
720 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
721 */
722 pvec.nr = find_get_entries(mapping, index,
723 PAGEVEC_SIZE, pvec.pages, indices);
724 if (!pvec.nr)
725 break;
726 index = indices[pvec.nr - 1] + 1;
727 pagevec_remove_exceptionals(&pvec);
728 check_move_unevictable_pages(pvec.pages, pvec.nr);
729 pagevec_release(&pvec);
730 cond_resched();
731 }
732 }
733
734 /*
735 * Remove range of pages and swap entries from radix tree, and free them.
736 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
737 */
738 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
739 bool unfalloc)
740 {
741 struct address_space *mapping = inode->i_mapping;
742 struct shmem_inode_info *info = SHMEM_I(inode);
743 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
744 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
745 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
746 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
747 struct pagevec pvec;
748 pgoff_t indices[PAGEVEC_SIZE];
749 long nr_swaps_freed = 0;
750 pgoff_t index;
751 int i;
752
753 if (lend == -1)
754 end = -1; /* unsigned, so actually very big */
755
756 pagevec_init(&pvec, 0);
757 index = start;
758 while (index < end) {
759 pvec.nr = find_get_entries(mapping, index,
760 min(end - index, (pgoff_t)PAGEVEC_SIZE),
761 pvec.pages, indices);
762 if (!pvec.nr)
763 break;
764 for (i = 0; i < pagevec_count(&pvec); i++) {
765 struct page *page = pvec.pages[i];
766
767 index = indices[i];
768 if (index >= end)
769 break;
770
771 if (radix_tree_exceptional_entry(page)) {
772 if (unfalloc)
773 continue;
774 nr_swaps_freed += !shmem_free_swap(mapping,
775 index, page);
776 continue;
777 }
778
779 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
780
781 if (!trylock_page(page))
782 continue;
783
784 if (PageTransTail(page)) {
785 /* Middle of THP: zero out the page */
786 clear_highpage(page);
787 unlock_page(page);
788 continue;
789 } else if (PageTransHuge(page)) {
790 if (index == round_down(end, HPAGE_PMD_NR)) {
791 /*
792 * Range ends in the middle of THP:
793 * zero out the page
794 */
795 clear_highpage(page);
796 unlock_page(page);
797 continue;
798 }
799 index += HPAGE_PMD_NR - 1;
800 i += HPAGE_PMD_NR - 1;
801 }
802
803 if (!unfalloc || !PageUptodate(page)) {
804 VM_BUG_ON_PAGE(PageTail(page), page);
805 if (page_mapping(page) == mapping) {
806 VM_BUG_ON_PAGE(PageWriteback(page), page);
807 truncate_inode_page(mapping, page);
808 }
809 }
810 unlock_page(page);
811 }
812 pagevec_remove_exceptionals(&pvec);
813 pagevec_release(&pvec);
814 cond_resched();
815 index++;
816 }
817
818 if (partial_start) {
819 struct page *page = NULL;
820 shmem_getpage(inode, start - 1, &page, SGP_READ);
821 if (page) {
822 unsigned int top = PAGE_SIZE;
823 if (start > end) {
824 top = partial_end;
825 partial_end = 0;
826 }
827 zero_user_segment(page, partial_start, top);
828 set_page_dirty(page);
829 unlock_page(page);
830 put_page(page);
831 }
832 }
833 if (partial_end) {
834 struct page *page = NULL;
835 shmem_getpage(inode, end, &page, SGP_READ);
836 if (page) {
837 zero_user_segment(page, 0, partial_end);
838 set_page_dirty(page);
839 unlock_page(page);
840 put_page(page);
841 }
842 }
843 if (start >= end)
844 return;
845
846 index = start;
847 while (index < end) {
848 cond_resched();
849
850 pvec.nr = find_get_entries(mapping, index,
851 min(end - index, (pgoff_t)PAGEVEC_SIZE),
852 pvec.pages, indices);
853 if (!pvec.nr) {
854 /* If all gone or hole-punch or unfalloc, we're done */
855 if (index == start || end != -1)
856 break;
857 /* But if truncating, restart to make sure all gone */
858 index = start;
859 continue;
860 }
861 for (i = 0; i < pagevec_count(&pvec); i++) {
862 struct page *page = pvec.pages[i];
863
864 index = indices[i];
865 if (index >= end)
866 break;
867
868 if (radix_tree_exceptional_entry(page)) {
869 if (unfalloc)
870 continue;
871 if (shmem_free_swap(mapping, index, page)) {
872 /* Swap was replaced by page: retry */
873 index--;
874 break;
875 }
876 nr_swaps_freed++;
877 continue;
878 }
879
880 lock_page(page);
881
882 if (PageTransTail(page)) {
883 /* Middle of THP: zero out the page */
884 clear_highpage(page);
885 unlock_page(page);
886 /*
887 * Partial thp truncate due 'start' in middle
888 * of THP: don't need to look on these pages
889 * again on !pvec.nr restart.
890 */
891 if (index != round_down(end, HPAGE_PMD_NR))
892 start++;
893 continue;
894 } else if (PageTransHuge(page)) {
895 if (index == round_down(end, HPAGE_PMD_NR)) {
896 /*
897 * Range ends in the middle of THP:
898 * zero out the page
899 */
900 clear_highpage(page);
901 unlock_page(page);
902 continue;
903 }
904 index += HPAGE_PMD_NR - 1;
905 i += HPAGE_PMD_NR - 1;
906 }
907
908 if (!unfalloc || !PageUptodate(page)) {
909 VM_BUG_ON_PAGE(PageTail(page), page);
910 if (page_mapping(page) == mapping) {
911 VM_BUG_ON_PAGE(PageWriteback(page), page);
912 truncate_inode_page(mapping, page);
913 } else {
914 /* Page was replaced by swap: retry */
915 unlock_page(page);
916 index--;
917 break;
918 }
919 }
920 unlock_page(page);
921 }
922 pagevec_remove_exceptionals(&pvec);
923 pagevec_release(&pvec);
924 index++;
925 }
926
927 spin_lock_irq(&info->lock);
928 info->swapped -= nr_swaps_freed;
929 shmem_recalc_inode(inode);
930 spin_unlock_irq(&info->lock);
931 }
932
933 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
934 {
935 shmem_undo_range(inode, lstart, lend, false);
936 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
937 }
938 EXPORT_SYMBOL_GPL(shmem_truncate_range);
939
940 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
941 struct kstat *stat)
942 {
943 struct inode *inode = dentry->d_inode;
944 struct shmem_inode_info *info = SHMEM_I(inode);
945
946 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
947 spin_lock_irq(&info->lock);
948 shmem_recalc_inode(inode);
949 spin_unlock_irq(&info->lock);
950 }
951 generic_fillattr(inode, stat);
952 return 0;
953 }
954
955 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
956 {
957 struct inode *inode = d_inode(dentry);
958 struct shmem_inode_info *info = SHMEM_I(inode);
959 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
960 int error;
961
962 error = inode_change_ok(inode, attr);
963 if (error)
964 return error;
965
966 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
967 loff_t oldsize = inode->i_size;
968 loff_t newsize = attr->ia_size;
969
970 /* protected by i_mutex */
971 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
972 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
973 return -EPERM;
974
975 if (newsize != oldsize) {
976 error = shmem_reacct_size(SHMEM_I(inode)->flags,
977 oldsize, newsize);
978 if (error)
979 return error;
980 i_size_write(inode, newsize);
981 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
982 }
983 if (newsize <= oldsize) {
984 loff_t holebegin = round_up(newsize, PAGE_SIZE);
985 if (oldsize > holebegin)
986 unmap_mapping_range(inode->i_mapping,
987 holebegin, 0, 1);
988 if (info->alloced)
989 shmem_truncate_range(inode,
990 newsize, (loff_t)-1);
991 /* unmap again to remove racily COWed private pages */
992 if (oldsize > holebegin)
993 unmap_mapping_range(inode->i_mapping,
994 holebegin, 0, 1);
995
996 /*
997 * Part of the huge page can be beyond i_size: subject
998 * to shrink under memory pressure.
999 */
1000 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1001 spin_lock(&sbinfo->shrinklist_lock);
1002 if (list_empty(&info->shrinklist)) {
1003 list_add_tail(&info->shrinklist,
1004 &sbinfo->shrinklist);
1005 sbinfo->shrinklist_len++;
1006 }
1007 spin_unlock(&sbinfo->shrinklist_lock);
1008 }
1009 }
1010 }
1011
1012 setattr_copy(inode, attr);
1013 if (attr->ia_valid & ATTR_MODE)
1014 error = posix_acl_chmod(inode, inode->i_mode);
1015 return error;
1016 }
1017
1018 static void shmem_evict_inode(struct inode *inode)
1019 {
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022
1023 if (inode->i_mapping->a_ops == &shmem_aops) {
1024 shmem_unacct_size(info->flags, inode->i_size);
1025 inode->i_size = 0;
1026 shmem_truncate_range(inode, 0, (loff_t)-1);
1027 if (!list_empty(&info->shrinklist)) {
1028 spin_lock(&sbinfo->shrinklist_lock);
1029 if (!list_empty(&info->shrinklist)) {
1030 list_del_init(&info->shrinklist);
1031 sbinfo->shrinklist_len--;
1032 }
1033 spin_unlock(&sbinfo->shrinklist_lock);
1034 }
1035 if (!list_empty(&info->swaplist)) {
1036 mutex_lock(&shmem_swaplist_mutex);
1037 list_del_init(&info->swaplist);
1038 mutex_unlock(&shmem_swaplist_mutex);
1039 }
1040 }
1041
1042 simple_xattrs_free(&info->xattrs);
1043 WARN_ON(inode->i_blocks);
1044 shmem_free_inode(inode->i_sb);
1045 clear_inode(inode);
1046 }
1047
1048 /*
1049 * If swap found in inode, free it and move page from swapcache to filecache.
1050 */
1051 static int shmem_unuse_inode(struct shmem_inode_info *info,
1052 swp_entry_t swap, struct page **pagep)
1053 {
1054 struct address_space *mapping = info->vfs_inode.i_mapping;
1055 void *radswap;
1056 pgoff_t index;
1057 gfp_t gfp;
1058 int error = 0;
1059
1060 radswap = swp_to_radix_entry(swap);
1061 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1062 if (index == -1)
1063 return -EAGAIN; /* tell shmem_unuse we found nothing */
1064
1065 /*
1066 * Move _head_ to start search for next from here.
1067 * But be careful: shmem_evict_inode checks list_empty without taking
1068 * mutex, and there's an instant in list_move_tail when info->swaplist
1069 * would appear empty, if it were the only one on shmem_swaplist.
1070 */
1071 if (shmem_swaplist.next != &info->swaplist)
1072 list_move_tail(&shmem_swaplist, &info->swaplist);
1073
1074 gfp = mapping_gfp_mask(mapping);
1075 if (shmem_should_replace_page(*pagep, gfp)) {
1076 mutex_unlock(&shmem_swaplist_mutex);
1077 error = shmem_replace_page(pagep, gfp, info, index);
1078 mutex_lock(&shmem_swaplist_mutex);
1079 /*
1080 * We needed to drop mutex to make that restrictive page
1081 * allocation, but the inode might have been freed while we
1082 * dropped it: although a racing shmem_evict_inode() cannot
1083 * complete without emptying the radix_tree, our page lock
1084 * on this swapcache page is not enough to prevent that -
1085 * free_swap_and_cache() of our swap entry will only
1086 * trylock_page(), removing swap from radix_tree whatever.
1087 *
1088 * We must not proceed to shmem_add_to_page_cache() if the
1089 * inode has been freed, but of course we cannot rely on
1090 * inode or mapping or info to check that. However, we can
1091 * safely check if our swap entry is still in use (and here
1092 * it can't have got reused for another page): if it's still
1093 * in use, then the inode cannot have been freed yet, and we
1094 * can safely proceed (if it's no longer in use, that tells
1095 * nothing about the inode, but we don't need to unuse swap).
1096 */
1097 if (!page_swapcount(*pagep))
1098 error = -ENOENT;
1099 }
1100
1101 /*
1102 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1103 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1104 * beneath us (pagelock doesn't help until the page is in pagecache).
1105 */
1106 if (!error)
1107 error = shmem_add_to_page_cache(*pagep, mapping, index,
1108 radswap);
1109 if (error != -ENOMEM) {
1110 /*
1111 * Truncation and eviction use free_swap_and_cache(), which
1112 * only does trylock page: if we raced, best clean up here.
1113 */
1114 delete_from_swap_cache(*pagep);
1115 set_page_dirty(*pagep);
1116 if (!error) {
1117 spin_lock_irq(&info->lock);
1118 info->swapped--;
1119 spin_unlock_irq(&info->lock);
1120 swap_free(swap);
1121 }
1122 }
1123 return error;
1124 }
1125
1126 /*
1127 * Search through swapped inodes to find and replace swap by page.
1128 */
1129 int shmem_unuse(swp_entry_t swap, struct page *page)
1130 {
1131 struct list_head *this, *next;
1132 struct shmem_inode_info *info;
1133 struct mem_cgroup *memcg;
1134 int error = 0;
1135
1136 /*
1137 * There's a faint possibility that swap page was replaced before
1138 * caller locked it: caller will come back later with the right page.
1139 */
1140 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1141 goto out;
1142
1143 /*
1144 * Charge page using GFP_KERNEL while we can wait, before taking
1145 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1146 * Charged back to the user (not to caller) when swap account is used.
1147 */
1148 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1149 false);
1150 if (error)
1151 goto out;
1152 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1153 error = -EAGAIN;
1154
1155 mutex_lock(&shmem_swaplist_mutex);
1156 list_for_each_safe(this, next, &shmem_swaplist) {
1157 info = list_entry(this, struct shmem_inode_info, swaplist);
1158 if (info->swapped)
1159 error = shmem_unuse_inode(info, swap, &page);
1160 else
1161 list_del_init(&info->swaplist);
1162 cond_resched();
1163 if (error != -EAGAIN)
1164 break;
1165 /* found nothing in this: move on to search the next */
1166 }
1167 mutex_unlock(&shmem_swaplist_mutex);
1168
1169 if (error) {
1170 if (error != -ENOMEM)
1171 error = 0;
1172 mem_cgroup_cancel_charge(page, memcg, false);
1173 } else
1174 mem_cgroup_commit_charge(page, memcg, true, false);
1175 out:
1176 unlock_page(page);
1177 put_page(page);
1178 return error;
1179 }
1180
1181 /*
1182 * Move the page from the page cache to the swap cache.
1183 */
1184 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1185 {
1186 struct shmem_inode_info *info;
1187 struct address_space *mapping;
1188 struct inode *inode;
1189 swp_entry_t swap;
1190 pgoff_t index;
1191
1192 VM_BUG_ON_PAGE(PageCompound(page), page);
1193 BUG_ON(!PageLocked(page));
1194 mapping = page->mapping;
1195 index = page->index;
1196 inode = mapping->host;
1197 info = SHMEM_I(inode);
1198 if (info->flags & VM_LOCKED)
1199 goto redirty;
1200 if (!total_swap_pages)
1201 goto redirty;
1202
1203 /*
1204 * Our capabilities prevent regular writeback or sync from ever calling
1205 * shmem_writepage; but a stacking filesystem might use ->writepage of
1206 * its underlying filesystem, in which case tmpfs should write out to
1207 * swap only in response to memory pressure, and not for the writeback
1208 * threads or sync.
1209 */
1210 if (!wbc->for_reclaim) {
1211 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1212 goto redirty;
1213 }
1214
1215 /*
1216 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1217 * value into swapfile.c, the only way we can correctly account for a
1218 * fallocated page arriving here is now to initialize it and write it.
1219 *
1220 * That's okay for a page already fallocated earlier, but if we have
1221 * not yet completed the fallocation, then (a) we want to keep track
1222 * of this page in case we have to undo it, and (b) it may not be a
1223 * good idea to continue anyway, once we're pushing into swap. So
1224 * reactivate the page, and let shmem_fallocate() quit when too many.
1225 */
1226 if (!PageUptodate(page)) {
1227 if (inode->i_private) {
1228 struct shmem_falloc *shmem_falloc;
1229 spin_lock(&inode->i_lock);
1230 shmem_falloc = inode->i_private;
1231 if (shmem_falloc &&
1232 !shmem_falloc->waitq &&
1233 index >= shmem_falloc->start &&
1234 index < shmem_falloc->next)
1235 shmem_falloc->nr_unswapped++;
1236 else
1237 shmem_falloc = NULL;
1238 spin_unlock(&inode->i_lock);
1239 if (shmem_falloc)
1240 goto redirty;
1241 }
1242 clear_highpage(page);
1243 flush_dcache_page(page);
1244 SetPageUptodate(page);
1245 }
1246
1247 swap = get_swap_page();
1248 if (!swap.val)
1249 goto redirty;
1250
1251 if (mem_cgroup_try_charge_swap(page, swap))
1252 goto free_swap;
1253
1254 /*
1255 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1256 * if it's not already there. Do it now before the page is
1257 * moved to swap cache, when its pagelock no longer protects
1258 * the inode from eviction. But don't unlock the mutex until
1259 * we've incremented swapped, because shmem_unuse_inode() will
1260 * prune a !swapped inode from the swaplist under this mutex.
1261 */
1262 mutex_lock(&shmem_swaplist_mutex);
1263 if (list_empty(&info->swaplist))
1264 list_add_tail(&info->swaplist, &shmem_swaplist);
1265
1266 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1267 spin_lock_irq(&info->lock);
1268 shmem_recalc_inode(inode);
1269 info->swapped++;
1270 spin_unlock_irq(&info->lock);
1271
1272 swap_shmem_alloc(swap);
1273 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1274
1275 mutex_unlock(&shmem_swaplist_mutex);
1276 BUG_ON(page_mapped(page));
1277 swap_writepage(page, wbc);
1278 return 0;
1279 }
1280
1281 mutex_unlock(&shmem_swaplist_mutex);
1282 free_swap:
1283 swapcache_free(swap);
1284 redirty:
1285 set_page_dirty(page);
1286 if (wbc->for_reclaim)
1287 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1288 unlock_page(page);
1289 return 0;
1290 }
1291
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1293 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1294 {
1295 char buffer[64];
1296
1297 if (!mpol || mpol->mode == MPOL_DEFAULT)
1298 return; /* show nothing */
1299
1300 mpol_to_str(buffer, sizeof(buffer), mpol);
1301
1302 seq_printf(seq, ",mpol=%s", buffer);
1303 }
1304
1305 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1306 {
1307 struct mempolicy *mpol = NULL;
1308 if (sbinfo->mpol) {
1309 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1310 mpol = sbinfo->mpol;
1311 mpol_get(mpol);
1312 spin_unlock(&sbinfo->stat_lock);
1313 }
1314 return mpol;
1315 }
1316 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1317 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318 {
1319 }
1320 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1321 {
1322 return NULL;
1323 }
1324 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1325 #ifndef CONFIG_NUMA
1326 #define vm_policy vm_private_data
1327 #endif
1328
1329 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1330 struct shmem_inode_info *info, pgoff_t index)
1331 {
1332 /* Create a pseudo vma that just contains the policy */
1333 vma->vm_start = 0;
1334 /* Bias interleave by inode number to distribute better across nodes */
1335 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1336 vma->vm_ops = NULL;
1337 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1338 }
1339
1340 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1341 {
1342 /* Drop reference taken by mpol_shared_policy_lookup() */
1343 mpol_cond_put(vma->vm_policy);
1344 }
1345
1346 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1347 struct shmem_inode_info *info, pgoff_t index)
1348 {
1349 struct vm_area_struct pvma;
1350 struct page *page;
1351
1352 shmem_pseudo_vma_init(&pvma, info, index);
1353 page = swapin_readahead(swap, gfp, &pvma, 0);
1354 shmem_pseudo_vma_destroy(&pvma);
1355
1356 return page;
1357 }
1358
1359 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1360 struct shmem_inode_info *info, pgoff_t index)
1361 {
1362 struct vm_area_struct pvma;
1363 struct inode *inode = &info->vfs_inode;
1364 struct address_space *mapping = inode->i_mapping;
1365 pgoff_t idx, hindex;
1366 void __rcu **results;
1367 struct page *page;
1368
1369 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1370 return NULL;
1371
1372 hindex = round_down(index, HPAGE_PMD_NR);
1373 rcu_read_lock();
1374 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1375 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1376 rcu_read_unlock();
1377 return NULL;
1378 }
1379 rcu_read_unlock();
1380
1381 shmem_pseudo_vma_init(&pvma, info, hindex);
1382 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1383 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1384 shmem_pseudo_vma_destroy(&pvma);
1385 if (page)
1386 prep_transhuge_page(page);
1387 return page;
1388 }
1389
1390 static struct page *shmem_alloc_page(gfp_t gfp,
1391 struct shmem_inode_info *info, pgoff_t index)
1392 {
1393 struct vm_area_struct pvma;
1394 struct page *page;
1395
1396 shmem_pseudo_vma_init(&pvma, info, index);
1397 page = alloc_page_vma(gfp, &pvma, 0);
1398 shmem_pseudo_vma_destroy(&pvma);
1399
1400 return page;
1401 }
1402
1403 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1404 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1405 pgoff_t index, bool huge)
1406 {
1407 struct page *page;
1408 int nr;
1409 int err = -ENOSPC;
1410
1411 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1412 huge = false;
1413 nr = huge ? HPAGE_PMD_NR : 1;
1414
1415 if (shmem_acct_block(info->flags, nr))
1416 goto failed;
1417 if (sbinfo->max_blocks) {
1418 if (percpu_counter_compare(&sbinfo->used_blocks,
1419 sbinfo->max_blocks - nr) > 0)
1420 goto unacct;
1421 percpu_counter_add(&sbinfo->used_blocks, nr);
1422 }
1423
1424 if (huge)
1425 page = shmem_alloc_hugepage(gfp, info, index);
1426 else
1427 page = shmem_alloc_page(gfp, info, index);
1428 if (page) {
1429 __SetPageLocked(page);
1430 __SetPageSwapBacked(page);
1431 return page;
1432 }
1433
1434 err = -ENOMEM;
1435 if (sbinfo->max_blocks)
1436 percpu_counter_add(&sbinfo->used_blocks, -nr);
1437 unacct:
1438 shmem_unacct_blocks(info->flags, nr);
1439 failed:
1440 return ERR_PTR(err);
1441 }
1442
1443 /*
1444 * When a page is moved from swapcache to shmem filecache (either by the
1445 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1446 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1447 * ignorance of the mapping it belongs to. If that mapping has special
1448 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1449 * we may need to copy to a suitable page before moving to filecache.
1450 *
1451 * In a future release, this may well be extended to respect cpuset and
1452 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1453 * but for now it is a simple matter of zone.
1454 */
1455 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1456 {
1457 return page_zonenum(page) > gfp_zone(gfp);
1458 }
1459
1460 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1461 struct shmem_inode_info *info, pgoff_t index)
1462 {
1463 struct page *oldpage, *newpage;
1464 struct address_space *swap_mapping;
1465 pgoff_t swap_index;
1466 int error;
1467
1468 oldpage = *pagep;
1469 swap_index = page_private(oldpage);
1470 swap_mapping = page_mapping(oldpage);
1471
1472 /*
1473 * We have arrived here because our zones are constrained, so don't
1474 * limit chance of success by further cpuset and node constraints.
1475 */
1476 gfp &= ~GFP_CONSTRAINT_MASK;
1477 newpage = shmem_alloc_page(gfp, info, index);
1478 if (!newpage)
1479 return -ENOMEM;
1480
1481 get_page(newpage);
1482 copy_highpage(newpage, oldpage);
1483 flush_dcache_page(newpage);
1484
1485 SetPageUptodate(newpage);
1486 set_page_private(newpage, swap_index);
1487 SetPageSwapCache(newpage);
1488
1489 /*
1490 * Our caller will very soon move newpage out of swapcache, but it's
1491 * a nice clean interface for us to replace oldpage by newpage there.
1492 */
1493 spin_lock_irq(&swap_mapping->tree_lock);
1494 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1495 newpage);
1496 if (!error) {
1497 __inc_node_page_state(newpage, NR_FILE_PAGES);
1498 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1499 }
1500 spin_unlock_irq(&swap_mapping->tree_lock);
1501
1502 if (unlikely(error)) {
1503 /*
1504 * Is this possible? I think not, now that our callers check
1505 * both PageSwapCache and page_private after getting page lock;
1506 * but be defensive. Reverse old to newpage for clear and free.
1507 */
1508 oldpage = newpage;
1509 } else {
1510 mem_cgroup_migrate(oldpage, newpage);
1511 lru_cache_add_anon(newpage);
1512 *pagep = newpage;
1513 }
1514
1515 ClearPageSwapCache(oldpage);
1516 set_page_private(oldpage, 0);
1517
1518 unlock_page(oldpage);
1519 put_page(oldpage);
1520 put_page(oldpage);
1521 return error;
1522 }
1523
1524 /*
1525 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1526 *
1527 * If we allocate a new one we do not mark it dirty. That's up to the
1528 * vm. If we swap it in we mark it dirty since we also free the swap
1529 * entry since a page cannot live in both the swap and page cache.
1530 *
1531 * fault_mm and fault_type are only supplied by shmem_fault:
1532 * otherwise they are NULL.
1533 */
1534 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1535 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1536 struct mm_struct *fault_mm, int *fault_type)
1537 {
1538 struct address_space *mapping = inode->i_mapping;
1539 struct shmem_inode_info *info;
1540 struct shmem_sb_info *sbinfo;
1541 struct mm_struct *charge_mm;
1542 struct mem_cgroup *memcg;
1543 struct page *page;
1544 swp_entry_t swap;
1545 enum sgp_type sgp_huge = sgp;
1546 pgoff_t hindex = index;
1547 int error;
1548 int once = 0;
1549 int alloced = 0;
1550
1551 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1552 return -EFBIG;
1553 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1554 sgp = SGP_CACHE;
1555 repeat:
1556 swap.val = 0;
1557 page = find_lock_entry(mapping, index);
1558 if (radix_tree_exceptional_entry(page)) {
1559 swap = radix_to_swp_entry(page);
1560 page = NULL;
1561 }
1562
1563 if (sgp <= SGP_CACHE &&
1564 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1565 error = -EINVAL;
1566 goto unlock;
1567 }
1568
1569 if (page && sgp == SGP_WRITE)
1570 mark_page_accessed(page);
1571
1572 /* fallocated page? */
1573 if (page && !PageUptodate(page)) {
1574 if (sgp != SGP_READ)
1575 goto clear;
1576 unlock_page(page);
1577 put_page(page);
1578 page = NULL;
1579 }
1580 if (page || (sgp == SGP_READ && !swap.val)) {
1581 *pagep = page;
1582 return 0;
1583 }
1584
1585 /*
1586 * Fast cache lookup did not find it:
1587 * bring it back from swap or allocate.
1588 */
1589 info = SHMEM_I(inode);
1590 sbinfo = SHMEM_SB(inode->i_sb);
1591 charge_mm = fault_mm ? : current->mm;
1592
1593 if (swap.val) {
1594 /* Look it up and read it in.. */
1595 page = lookup_swap_cache(swap);
1596 if (!page) {
1597 /* Or update major stats only when swapin succeeds?? */
1598 if (fault_type) {
1599 *fault_type |= VM_FAULT_MAJOR;
1600 count_vm_event(PGMAJFAULT);
1601 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1602 }
1603 /* Here we actually start the io */
1604 page = shmem_swapin(swap, gfp, info, index);
1605 if (!page) {
1606 error = -ENOMEM;
1607 goto failed;
1608 }
1609 }
1610
1611 /* We have to do this with page locked to prevent races */
1612 lock_page(page);
1613 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1614 !shmem_confirm_swap(mapping, index, swap)) {
1615 error = -EEXIST; /* try again */
1616 goto unlock;
1617 }
1618 if (!PageUptodate(page)) {
1619 error = -EIO;
1620 goto failed;
1621 }
1622 wait_on_page_writeback(page);
1623
1624 if (shmem_should_replace_page(page, gfp)) {
1625 error = shmem_replace_page(&page, gfp, info, index);
1626 if (error)
1627 goto failed;
1628 }
1629
1630 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1631 false);
1632 if (!error) {
1633 error = shmem_add_to_page_cache(page, mapping, index,
1634 swp_to_radix_entry(swap));
1635 /*
1636 * We already confirmed swap under page lock, and make
1637 * no memory allocation here, so usually no possibility
1638 * of error; but free_swap_and_cache() only trylocks a
1639 * page, so it is just possible that the entry has been
1640 * truncated or holepunched since swap was confirmed.
1641 * shmem_undo_range() will have done some of the
1642 * unaccounting, now delete_from_swap_cache() will do
1643 * the rest.
1644 * Reset swap.val? No, leave it so "failed" goes back to
1645 * "repeat": reading a hole and writing should succeed.
1646 */
1647 if (error) {
1648 mem_cgroup_cancel_charge(page, memcg, false);
1649 delete_from_swap_cache(page);
1650 }
1651 }
1652 if (error)
1653 goto failed;
1654
1655 mem_cgroup_commit_charge(page, memcg, true, false);
1656
1657 spin_lock_irq(&info->lock);
1658 info->swapped--;
1659 shmem_recalc_inode(inode);
1660 spin_unlock_irq(&info->lock);
1661
1662 if (sgp == SGP_WRITE)
1663 mark_page_accessed(page);
1664
1665 delete_from_swap_cache(page);
1666 set_page_dirty(page);
1667 swap_free(swap);
1668
1669 } else {
1670 /* shmem_symlink() */
1671 if (mapping->a_ops != &shmem_aops)
1672 goto alloc_nohuge;
1673 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1674 goto alloc_nohuge;
1675 if (shmem_huge == SHMEM_HUGE_FORCE)
1676 goto alloc_huge;
1677 switch (sbinfo->huge) {
1678 loff_t i_size;
1679 pgoff_t off;
1680 case SHMEM_HUGE_NEVER:
1681 goto alloc_nohuge;
1682 case SHMEM_HUGE_WITHIN_SIZE:
1683 off = round_up(index, HPAGE_PMD_NR);
1684 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1685 if (i_size >= HPAGE_PMD_SIZE &&
1686 i_size >> PAGE_SHIFT >= off)
1687 goto alloc_huge;
1688 /* fallthrough */
1689 case SHMEM_HUGE_ADVISE:
1690 if (sgp_huge == SGP_HUGE)
1691 goto alloc_huge;
1692 /* TODO: implement fadvise() hints */
1693 goto alloc_nohuge;
1694 }
1695
1696 alloc_huge:
1697 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1698 index, true);
1699 if (IS_ERR(page)) {
1700 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1701 index, false);
1702 }
1703 if (IS_ERR(page)) {
1704 int retry = 5;
1705 error = PTR_ERR(page);
1706 page = NULL;
1707 if (error != -ENOSPC)
1708 goto failed;
1709 /*
1710 * Try to reclaim some spece by splitting a huge page
1711 * beyond i_size on the filesystem.
1712 */
1713 while (retry--) {
1714 int ret;
1715 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1716 if (ret == SHRINK_STOP)
1717 break;
1718 if (ret)
1719 goto alloc_nohuge;
1720 }
1721 goto failed;
1722 }
1723
1724 if (PageTransHuge(page))
1725 hindex = round_down(index, HPAGE_PMD_NR);
1726 else
1727 hindex = index;
1728
1729 if (sgp == SGP_WRITE)
1730 __SetPageReferenced(page);
1731
1732 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1733 PageTransHuge(page));
1734 if (error)
1735 goto unacct;
1736 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1737 compound_order(page));
1738 if (!error) {
1739 error = shmem_add_to_page_cache(page, mapping, hindex,
1740 NULL);
1741 radix_tree_preload_end();
1742 }
1743 if (error) {
1744 mem_cgroup_cancel_charge(page, memcg,
1745 PageTransHuge(page));
1746 goto unacct;
1747 }
1748 mem_cgroup_commit_charge(page, memcg, false,
1749 PageTransHuge(page));
1750 lru_cache_add_anon(page);
1751
1752 spin_lock_irq(&info->lock);
1753 info->alloced += 1 << compound_order(page);
1754 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1755 shmem_recalc_inode(inode);
1756 spin_unlock_irq(&info->lock);
1757 alloced = true;
1758
1759 if (PageTransHuge(page) &&
1760 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1761 hindex + HPAGE_PMD_NR - 1) {
1762 /*
1763 * Part of the huge page is beyond i_size: subject
1764 * to shrink under memory pressure.
1765 */
1766 spin_lock(&sbinfo->shrinklist_lock);
1767 if (list_empty(&info->shrinklist)) {
1768 list_add_tail(&info->shrinklist,
1769 &sbinfo->shrinklist);
1770 sbinfo->shrinklist_len++;
1771 }
1772 spin_unlock(&sbinfo->shrinklist_lock);
1773 }
1774
1775 /*
1776 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1777 */
1778 if (sgp == SGP_FALLOC)
1779 sgp = SGP_WRITE;
1780 clear:
1781 /*
1782 * Let SGP_WRITE caller clear ends if write does not fill page;
1783 * but SGP_FALLOC on a page fallocated earlier must initialize
1784 * it now, lest undo on failure cancel our earlier guarantee.
1785 */
1786 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1787 struct page *head = compound_head(page);
1788 int i;
1789
1790 for (i = 0; i < (1 << compound_order(head)); i++) {
1791 clear_highpage(head + i);
1792 flush_dcache_page(head + i);
1793 }
1794 SetPageUptodate(head);
1795 }
1796 }
1797
1798 /* Perhaps the file has been truncated since we checked */
1799 if (sgp <= SGP_CACHE &&
1800 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1801 if (alloced) {
1802 ClearPageDirty(page);
1803 delete_from_page_cache(page);
1804 spin_lock_irq(&info->lock);
1805 shmem_recalc_inode(inode);
1806 spin_unlock_irq(&info->lock);
1807 }
1808 error = -EINVAL;
1809 goto unlock;
1810 }
1811 *pagep = page + index - hindex;
1812 return 0;
1813
1814 /*
1815 * Error recovery.
1816 */
1817 unacct:
1818 if (sbinfo->max_blocks)
1819 percpu_counter_sub(&sbinfo->used_blocks,
1820 1 << compound_order(page));
1821 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1822
1823 if (PageTransHuge(page)) {
1824 unlock_page(page);
1825 put_page(page);
1826 goto alloc_nohuge;
1827 }
1828 failed:
1829 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1830 error = -EEXIST;
1831 unlock:
1832 if (page) {
1833 unlock_page(page);
1834 put_page(page);
1835 }
1836 if (error == -ENOSPC && !once++) {
1837 info = SHMEM_I(inode);
1838 spin_lock_irq(&info->lock);
1839 shmem_recalc_inode(inode);
1840 spin_unlock_irq(&info->lock);
1841 goto repeat;
1842 }
1843 if (error == -EEXIST) /* from above or from radix_tree_insert */
1844 goto repeat;
1845 return error;
1846 }
1847
1848 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1849 {
1850 struct inode *inode = file_inode(vma->vm_file);
1851 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1852 enum sgp_type sgp;
1853 int error;
1854 int ret = VM_FAULT_LOCKED;
1855
1856 /*
1857 * Trinity finds that probing a hole which tmpfs is punching can
1858 * prevent the hole-punch from ever completing: which in turn
1859 * locks writers out with its hold on i_mutex. So refrain from
1860 * faulting pages into the hole while it's being punched. Although
1861 * shmem_undo_range() does remove the additions, it may be unable to
1862 * keep up, as each new page needs its own unmap_mapping_range() call,
1863 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1864 *
1865 * It does not matter if we sometimes reach this check just before the
1866 * hole-punch begins, so that one fault then races with the punch:
1867 * we just need to make racing faults a rare case.
1868 *
1869 * The implementation below would be much simpler if we just used a
1870 * standard mutex or completion: but we cannot take i_mutex in fault,
1871 * and bloating every shmem inode for this unlikely case would be sad.
1872 */
1873 if (unlikely(inode->i_private)) {
1874 struct shmem_falloc *shmem_falloc;
1875
1876 spin_lock(&inode->i_lock);
1877 shmem_falloc = inode->i_private;
1878 if (shmem_falloc &&
1879 shmem_falloc->waitq &&
1880 vmf->pgoff >= shmem_falloc->start &&
1881 vmf->pgoff < shmem_falloc->next) {
1882 wait_queue_head_t *shmem_falloc_waitq;
1883 DEFINE_WAIT(shmem_fault_wait);
1884
1885 ret = VM_FAULT_NOPAGE;
1886 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1887 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1888 /* It's polite to up mmap_sem if we can */
1889 up_read(&vma->vm_mm->mmap_sem);
1890 ret = VM_FAULT_RETRY;
1891 }
1892
1893 shmem_falloc_waitq = shmem_falloc->waitq;
1894 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1895 TASK_UNINTERRUPTIBLE);
1896 spin_unlock(&inode->i_lock);
1897 schedule();
1898
1899 /*
1900 * shmem_falloc_waitq points into the shmem_fallocate()
1901 * stack of the hole-punching task: shmem_falloc_waitq
1902 * is usually invalid by the time we reach here, but
1903 * finish_wait() does not dereference it in that case;
1904 * though i_lock needed lest racing with wake_up_all().
1905 */
1906 spin_lock(&inode->i_lock);
1907 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1908 spin_unlock(&inode->i_lock);
1909 return ret;
1910 }
1911 spin_unlock(&inode->i_lock);
1912 }
1913
1914 sgp = SGP_CACHE;
1915 if (vma->vm_flags & VM_HUGEPAGE)
1916 sgp = SGP_HUGE;
1917 else if (vma->vm_flags & VM_NOHUGEPAGE)
1918 sgp = SGP_NOHUGE;
1919
1920 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1921 gfp, vma->vm_mm, &ret);
1922 if (error)
1923 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1924 return ret;
1925 }
1926
1927 unsigned long shmem_get_unmapped_area(struct file *file,
1928 unsigned long uaddr, unsigned long len,
1929 unsigned long pgoff, unsigned long flags)
1930 {
1931 unsigned long (*get_area)(struct file *,
1932 unsigned long, unsigned long, unsigned long, unsigned long);
1933 unsigned long addr;
1934 unsigned long offset;
1935 unsigned long inflated_len;
1936 unsigned long inflated_addr;
1937 unsigned long inflated_offset;
1938
1939 if (len > TASK_SIZE)
1940 return -ENOMEM;
1941
1942 get_area = current->mm->get_unmapped_area;
1943 addr = get_area(file, uaddr, len, pgoff, flags);
1944
1945 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1946 return addr;
1947 if (IS_ERR_VALUE(addr))
1948 return addr;
1949 if (addr & ~PAGE_MASK)
1950 return addr;
1951 if (addr > TASK_SIZE - len)
1952 return addr;
1953
1954 if (shmem_huge == SHMEM_HUGE_DENY)
1955 return addr;
1956 if (len < HPAGE_PMD_SIZE)
1957 return addr;
1958 if (flags & MAP_FIXED)
1959 return addr;
1960 /*
1961 * Our priority is to support MAP_SHARED mapped hugely;
1962 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1963 * But if caller specified an address hint, respect that as before.
1964 */
1965 if (uaddr)
1966 return addr;
1967
1968 if (shmem_huge != SHMEM_HUGE_FORCE) {
1969 struct super_block *sb;
1970
1971 if (file) {
1972 VM_BUG_ON(file->f_op != &shmem_file_operations);
1973 sb = file_inode(file)->i_sb;
1974 } else {
1975 /*
1976 * Called directly from mm/mmap.c, or drivers/char/mem.c
1977 * for "/dev/zero", to create a shared anonymous object.
1978 */
1979 if (IS_ERR(shm_mnt))
1980 return addr;
1981 sb = shm_mnt->mnt_sb;
1982 }
1983 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1984 return addr;
1985 }
1986
1987 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1988 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1989 return addr;
1990 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1991 return addr;
1992
1993 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1994 if (inflated_len > TASK_SIZE)
1995 return addr;
1996 if (inflated_len < len)
1997 return addr;
1998
1999 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2000 if (IS_ERR_VALUE(inflated_addr))
2001 return addr;
2002 if (inflated_addr & ~PAGE_MASK)
2003 return addr;
2004
2005 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2006 inflated_addr += offset - inflated_offset;
2007 if (inflated_offset > offset)
2008 inflated_addr += HPAGE_PMD_SIZE;
2009
2010 if (inflated_addr > TASK_SIZE - len)
2011 return addr;
2012 return inflated_addr;
2013 }
2014
2015 #ifdef CONFIG_NUMA
2016 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2017 {
2018 struct inode *inode = file_inode(vma->vm_file);
2019 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2020 }
2021
2022 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2023 unsigned long addr)
2024 {
2025 struct inode *inode = file_inode(vma->vm_file);
2026 pgoff_t index;
2027
2028 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2029 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2030 }
2031 #endif
2032
2033 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2034 {
2035 struct inode *inode = file_inode(file);
2036 struct shmem_inode_info *info = SHMEM_I(inode);
2037 int retval = -ENOMEM;
2038
2039 spin_lock_irq(&info->lock);
2040 if (lock && !(info->flags & VM_LOCKED)) {
2041 if (!user_shm_lock(inode->i_size, user))
2042 goto out_nomem;
2043 info->flags |= VM_LOCKED;
2044 mapping_set_unevictable(file->f_mapping);
2045 }
2046 if (!lock && (info->flags & VM_LOCKED) && user) {
2047 user_shm_unlock(inode->i_size, user);
2048 info->flags &= ~VM_LOCKED;
2049 mapping_clear_unevictable(file->f_mapping);
2050 }
2051 retval = 0;
2052
2053 out_nomem:
2054 spin_unlock_irq(&info->lock);
2055 return retval;
2056 }
2057
2058 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2059 {
2060 file_accessed(file);
2061 vma->vm_ops = &shmem_vm_ops;
2062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2063 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2064 (vma->vm_end & HPAGE_PMD_MASK)) {
2065 khugepaged_enter(vma, vma->vm_flags);
2066 }
2067 return 0;
2068 }
2069
2070 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2071 umode_t mode, dev_t dev, unsigned long flags)
2072 {
2073 struct inode *inode;
2074 struct shmem_inode_info *info;
2075 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2076
2077 if (shmem_reserve_inode(sb))
2078 return NULL;
2079
2080 inode = new_inode(sb);
2081 if (inode) {
2082 inode->i_ino = get_next_ino();
2083 inode_init_owner(inode, dir, mode);
2084 inode->i_blocks = 0;
2085 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2086 inode->i_generation = get_seconds();
2087 info = SHMEM_I(inode);
2088 memset(info, 0, (char *)inode - (char *)info);
2089 spin_lock_init(&info->lock);
2090 info->seals = F_SEAL_SEAL;
2091 info->flags = flags & VM_NORESERVE;
2092 INIT_LIST_HEAD(&info->shrinklist);
2093 INIT_LIST_HEAD(&info->swaplist);
2094 simple_xattrs_init(&info->xattrs);
2095 cache_no_acl(inode);
2096
2097 switch (mode & S_IFMT) {
2098 default:
2099 inode->i_op = &shmem_special_inode_operations;
2100 init_special_inode(inode, mode, dev);
2101 break;
2102 case S_IFREG:
2103 inode->i_mapping->a_ops = &shmem_aops;
2104 inode->i_op = &shmem_inode_operations;
2105 inode->i_fop = &shmem_file_operations;
2106 mpol_shared_policy_init(&info->policy,
2107 shmem_get_sbmpol(sbinfo));
2108 break;
2109 case S_IFDIR:
2110 inc_nlink(inode);
2111 /* Some things misbehave if size == 0 on a directory */
2112 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2113 inode->i_op = &shmem_dir_inode_operations;
2114 inode->i_fop = &simple_dir_operations;
2115 break;
2116 case S_IFLNK:
2117 /*
2118 * Must not load anything in the rbtree,
2119 * mpol_free_shared_policy will not be called.
2120 */
2121 mpol_shared_policy_init(&info->policy, NULL);
2122 break;
2123 }
2124 } else
2125 shmem_free_inode(sb);
2126 return inode;
2127 }
2128
2129 bool shmem_mapping(struct address_space *mapping)
2130 {
2131 if (!mapping->host)
2132 return false;
2133
2134 return mapping->host->i_sb->s_op == &shmem_ops;
2135 }
2136
2137 #ifdef CONFIG_TMPFS
2138 static const struct inode_operations shmem_symlink_inode_operations;
2139 static const struct inode_operations shmem_short_symlink_operations;
2140
2141 #ifdef CONFIG_TMPFS_XATTR
2142 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2143 #else
2144 #define shmem_initxattrs NULL
2145 #endif
2146
2147 static int
2148 shmem_write_begin(struct file *file, struct address_space *mapping,
2149 loff_t pos, unsigned len, unsigned flags,
2150 struct page **pagep, void **fsdata)
2151 {
2152 struct inode *inode = mapping->host;
2153 struct shmem_inode_info *info = SHMEM_I(inode);
2154 pgoff_t index = pos >> PAGE_SHIFT;
2155
2156 /* i_mutex is held by caller */
2157 if (unlikely(info->seals)) {
2158 if (info->seals & F_SEAL_WRITE)
2159 return -EPERM;
2160 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2161 return -EPERM;
2162 }
2163
2164 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2165 }
2166
2167 static int
2168 shmem_write_end(struct file *file, struct address_space *mapping,
2169 loff_t pos, unsigned len, unsigned copied,
2170 struct page *page, void *fsdata)
2171 {
2172 struct inode *inode = mapping->host;
2173
2174 if (pos + copied > inode->i_size)
2175 i_size_write(inode, pos + copied);
2176
2177 if (!PageUptodate(page)) {
2178 struct page *head = compound_head(page);
2179 if (PageTransCompound(page)) {
2180 int i;
2181
2182 for (i = 0; i < HPAGE_PMD_NR; i++) {
2183 if (head + i == page)
2184 continue;
2185 clear_highpage(head + i);
2186 flush_dcache_page(head + i);
2187 }
2188 }
2189 if (copied < PAGE_SIZE) {
2190 unsigned from = pos & (PAGE_SIZE - 1);
2191 zero_user_segments(page, 0, from,
2192 from + copied, PAGE_SIZE);
2193 }
2194 SetPageUptodate(head);
2195 }
2196 set_page_dirty(page);
2197 unlock_page(page);
2198 put_page(page);
2199
2200 return copied;
2201 }
2202
2203 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2204 {
2205 struct file *file = iocb->ki_filp;
2206 struct inode *inode = file_inode(file);
2207 struct address_space *mapping = inode->i_mapping;
2208 pgoff_t index;
2209 unsigned long offset;
2210 enum sgp_type sgp = SGP_READ;
2211 int error = 0;
2212 ssize_t retval = 0;
2213 loff_t *ppos = &iocb->ki_pos;
2214
2215 /*
2216 * Might this read be for a stacking filesystem? Then when reading
2217 * holes of a sparse file, we actually need to allocate those pages,
2218 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2219 */
2220 if (!iter_is_iovec(to))
2221 sgp = SGP_CACHE;
2222
2223 index = *ppos >> PAGE_SHIFT;
2224 offset = *ppos & ~PAGE_MASK;
2225
2226 for (;;) {
2227 struct page *page = NULL;
2228 pgoff_t end_index;
2229 unsigned long nr, ret;
2230 loff_t i_size = i_size_read(inode);
2231
2232 end_index = i_size >> PAGE_SHIFT;
2233 if (index > end_index)
2234 break;
2235 if (index == end_index) {
2236 nr = i_size & ~PAGE_MASK;
2237 if (nr <= offset)
2238 break;
2239 }
2240
2241 error = shmem_getpage(inode, index, &page, sgp);
2242 if (error) {
2243 if (error == -EINVAL)
2244 error = 0;
2245 break;
2246 }
2247 if (page) {
2248 if (sgp == SGP_CACHE)
2249 set_page_dirty(page);
2250 unlock_page(page);
2251 }
2252
2253 /*
2254 * We must evaluate after, since reads (unlike writes)
2255 * are called without i_mutex protection against truncate
2256 */
2257 nr = PAGE_SIZE;
2258 i_size = i_size_read(inode);
2259 end_index = i_size >> PAGE_SHIFT;
2260 if (index == end_index) {
2261 nr = i_size & ~PAGE_MASK;
2262 if (nr <= offset) {
2263 if (page)
2264 put_page(page);
2265 break;
2266 }
2267 }
2268 nr -= offset;
2269
2270 if (page) {
2271 /*
2272 * If users can be writing to this page using arbitrary
2273 * virtual addresses, take care about potential aliasing
2274 * before reading the page on the kernel side.
2275 */
2276 if (mapping_writably_mapped(mapping))
2277 flush_dcache_page(page);
2278 /*
2279 * Mark the page accessed if we read the beginning.
2280 */
2281 if (!offset)
2282 mark_page_accessed(page);
2283 } else {
2284 page = ZERO_PAGE(0);
2285 get_page(page);
2286 }
2287
2288 /*
2289 * Ok, we have the page, and it's up-to-date, so
2290 * now we can copy it to user space...
2291 */
2292 ret = copy_page_to_iter(page, offset, nr, to);
2293 retval += ret;
2294 offset += ret;
2295 index += offset >> PAGE_SHIFT;
2296 offset &= ~PAGE_MASK;
2297
2298 put_page(page);
2299 if (!iov_iter_count(to))
2300 break;
2301 if (ret < nr) {
2302 error = -EFAULT;
2303 break;
2304 }
2305 cond_resched();
2306 }
2307
2308 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2309 file_accessed(file);
2310 return retval ? retval : error;
2311 }
2312
2313 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2314 struct pipe_inode_info *pipe, size_t len,
2315 unsigned int flags)
2316 {
2317 struct address_space *mapping = in->f_mapping;
2318 struct inode *inode = mapping->host;
2319 unsigned int loff, nr_pages, req_pages;
2320 struct page *pages[PIPE_DEF_BUFFERS];
2321 struct partial_page partial[PIPE_DEF_BUFFERS];
2322 struct page *page;
2323 pgoff_t index, end_index;
2324 loff_t isize, left;
2325 int error, page_nr;
2326 struct splice_pipe_desc spd = {
2327 .pages = pages,
2328 .partial = partial,
2329 .nr_pages_max = PIPE_DEF_BUFFERS,
2330 .flags = flags,
2331 .ops = &page_cache_pipe_buf_ops,
2332 .spd_release = spd_release_page,
2333 };
2334
2335 isize = i_size_read(inode);
2336 if (unlikely(*ppos >= isize))
2337 return 0;
2338
2339 left = isize - *ppos;
2340 if (unlikely(left < len))
2341 len = left;
2342
2343 if (splice_grow_spd(pipe, &spd))
2344 return -ENOMEM;
2345
2346 index = *ppos >> PAGE_SHIFT;
2347 loff = *ppos & ~PAGE_MASK;
2348 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2349 nr_pages = min(req_pages, spd.nr_pages_max);
2350
2351 spd.nr_pages = find_get_pages_contig(mapping, index,
2352 nr_pages, spd.pages);
2353 index += spd.nr_pages;
2354 error = 0;
2355
2356 while (spd.nr_pages < nr_pages) {
2357 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2358 if (error)
2359 break;
2360 unlock_page(page);
2361 spd.pages[spd.nr_pages++] = page;
2362 index++;
2363 }
2364
2365 index = *ppos >> PAGE_SHIFT;
2366 nr_pages = spd.nr_pages;
2367 spd.nr_pages = 0;
2368
2369 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2370 unsigned int this_len;
2371
2372 if (!len)
2373 break;
2374
2375 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2376 page = spd.pages[page_nr];
2377
2378 if (!PageUptodate(page) || page->mapping != mapping) {
2379 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2380 if (error)
2381 break;
2382 unlock_page(page);
2383 put_page(spd.pages[page_nr]);
2384 spd.pages[page_nr] = page;
2385 }
2386
2387 isize = i_size_read(inode);
2388 end_index = (isize - 1) >> PAGE_SHIFT;
2389 if (unlikely(!isize || index > end_index))
2390 break;
2391
2392 if (end_index == index) {
2393 unsigned int plen;
2394
2395 plen = ((isize - 1) & ~PAGE_MASK) + 1;
2396 if (plen <= loff)
2397 break;
2398
2399 this_len = min(this_len, plen - loff);
2400 len = this_len;
2401 }
2402
2403 spd.partial[page_nr].offset = loff;
2404 spd.partial[page_nr].len = this_len;
2405 len -= this_len;
2406 loff = 0;
2407 spd.nr_pages++;
2408 index++;
2409 }
2410
2411 while (page_nr < nr_pages)
2412 put_page(spd.pages[page_nr++]);
2413
2414 if (spd.nr_pages)
2415 error = splice_to_pipe(pipe, &spd);
2416
2417 splice_shrink_spd(&spd);
2418
2419 if (error > 0) {
2420 *ppos += error;
2421 file_accessed(in);
2422 }
2423 return error;
2424 }
2425
2426 /*
2427 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2428 */
2429 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2430 pgoff_t index, pgoff_t end, int whence)
2431 {
2432 struct page *page;
2433 struct pagevec pvec;
2434 pgoff_t indices[PAGEVEC_SIZE];
2435 bool done = false;
2436 int i;
2437
2438 pagevec_init(&pvec, 0);
2439 pvec.nr = 1; /* start small: we may be there already */
2440 while (!done) {
2441 pvec.nr = find_get_entries(mapping, index,
2442 pvec.nr, pvec.pages, indices);
2443 if (!pvec.nr) {
2444 if (whence == SEEK_DATA)
2445 index = end;
2446 break;
2447 }
2448 for (i = 0; i < pvec.nr; i++, index++) {
2449 if (index < indices[i]) {
2450 if (whence == SEEK_HOLE) {
2451 done = true;
2452 break;
2453 }
2454 index = indices[i];
2455 }
2456 page = pvec.pages[i];
2457 if (page && !radix_tree_exceptional_entry(page)) {
2458 if (!PageUptodate(page))
2459 page = NULL;
2460 }
2461 if (index >= end ||
2462 (page && whence == SEEK_DATA) ||
2463 (!page && whence == SEEK_HOLE)) {
2464 done = true;
2465 break;
2466 }
2467 }
2468 pagevec_remove_exceptionals(&pvec);
2469 pagevec_release(&pvec);
2470 pvec.nr = PAGEVEC_SIZE;
2471 cond_resched();
2472 }
2473 return index;
2474 }
2475
2476 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2477 {
2478 struct address_space *mapping = file->f_mapping;
2479 struct inode *inode = mapping->host;
2480 pgoff_t start, end;
2481 loff_t new_offset;
2482
2483 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2484 return generic_file_llseek_size(file, offset, whence,
2485 MAX_LFS_FILESIZE, i_size_read(inode));
2486 inode_lock(inode);
2487 /* We're holding i_mutex so we can access i_size directly */
2488
2489 if (offset < 0)
2490 offset = -EINVAL;
2491 else if (offset >= inode->i_size)
2492 offset = -ENXIO;
2493 else {
2494 start = offset >> PAGE_SHIFT;
2495 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2496 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2497 new_offset <<= PAGE_SHIFT;
2498 if (new_offset > offset) {
2499 if (new_offset < inode->i_size)
2500 offset = new_offset;
2501 else if (whence == SEEK_DATA)
2502 offset = -ENXIO;
2503 else
2504 offset = inode->i_size;
2505 }
2506 }
2507
2508 if (offset >= 0)
2509 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2510 inode_unlock(inode);
2511 return offset;
2512 }
2513
2514 /*
2515 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2516 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2517 */
2518 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2519 #define LAST_SCAN 4 /* about 150ms max */
2520
2521 static void shmem_tag_pins(struct address_space *mapping)
2522 {
2523 struct radix_tree_iter iter;
2524 void **slot;
2525 pgoff_t start;
2526 struct page *page;
2527
2528 lru_add_drain();
2529 start = 0;
2530 rcu_read_lock();
2531
2532 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2533 page = radix_tree_deref_slot(slot);
2534 if (!page || radix_tree_exception(page)) {
2535 if (radix_tree_deref_retry(page)) {
2536 slot = radix_tree_iter_retry(&iter);
2537 continue;
2538 }
2539 } else if (page_count(page) - page_mapcount(page) > 1) {
2540 spin_lock_irq(&mapping->tree_lock);
2541 radix_tree_tag_set(&mapping->page_tree, iter.index,
2542 SHMEM_TAG_PINNED);
2543 spin_unlock_irq(&mapping->tree_lock);
2544 }
2545
2546 if (need_resched()) {
2547 cond_resched_rcu();
2548 slot = radix_tree_iter_next(&iter);
2549 }
2550 }
2551 rcu_read_unlock();
2552 }
2553
2554 /*
2555 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2556 * via get_user_pages(), drivers might have some pending I/O without any active
2557 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2558 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2559 * them to be dropped.
2560 * The caller must guarantee that no new user will acquire writable references
2561 * to those pages to avoid races.
2562 */
2563 static int shmem_wait_for_pins(struct address_space *mapping)
2564 {
2565 struct radix_tree_iter iter;
2566 void **slot;
2567 pgoff_t start;
2568 struct page *page;
2569 int error, scan;
2570
2571 shmem_tag_pins(mapping);
2572
2573 error = 0;
2574 for (scan = 0; scan <= LAST_SCAN; scan++) {
2575 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2576 break;
2577
2578 if (!scan)
2579 lru_add_drain_all();
2580 else if (schedule_timeout_killable((HZ << scan) / 200))
2581 scan = LAST_SCAN;
2582
2583 start = 0;
2584 rcu_read_lock();
2585 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2586 start, SHMEM_TAG_PINNED) {
2587
2588 page = radix_tree_deref_slot(slot);
2589 if (radix_tree_exception(page)) {
2590 if (radix_tree_deref_retry(page)) {
2591 slot = radix_tree_iter_retry(&iter);
2592 continue;
2593 }
2594
2595 page = NULL;
2596 }
2597
2598 if (page &&
2599 page_count(page) - page_mapcount(page) != 1) {
2600 if (scan < LAST_SCAN)
2601 goto continue_resched;
2602
2603 /*
2604 * On the last scan, we clean up all those tags
2605 * we inserted; but make a note that we still
2606 * found pages pinned.
2607 */
2608 error = -EBUSY;
2609 }
2610
2611 spin_lock_irq(&mapping->tree_lock);
2612 radix_tree_tag_clear(&mapping->page_tree,
2613 iter.index, SHMEM_TAG_PINNED);
2614 spin_unlock_irq(&mapping->tree_lock);
2615 continue_resched:
2616 if (need_resched()) {
2617 cond_resched_rcu();
2618 slot = radix_tree_iter_next(&iter);
2619 }
2620 }
2621 rcu_read_unlock();
2622 }
2623
2624 return error;
2625 }
2626
2627 #define F_ALL_SEALS (F_SEAL_SEAL | \
2628 F_SEAL_SHRINK | \
2629 F_SEAL_GROW | \
2630 F_SEAL_WRITE)
2631
2632 int shmem_add_seals(struct file *file, unsigned int seals)
2633 {
2634 struct inode *inode = file_inode(file);
2635 struct shmem_inode_info *info = SHMEM_I(inode);
2636 int error;
2637
2638 /*
2639 * SEALING
2640 * Sealing allows multiple parties to share a shmem-file but restrict
2641 * access to a specific subset of file operations. Seals can only be
2642 * added, but never removed. This way, mutually untrusted parties can
2643 * share common memory regions with a well-defined policy. A malicious
2644 * peer can thus never perform unwanted operations on a shared object.
2645 *
2646 * Seals are only supported on special shmem-files and always affect
2647 * the whole underlying inode. Once a seal is set, it may prevent some
2648 * kinds of access to the file. Currently, the following seals are
2649 * defined:
2650 * SEAL_SEAL: Prevent further seals from being set on this file
2651 * SEAL_SHRINK: Prevent the file from shrinking
2652 * SEAL_GROW: Prevent the file from growing
2653 * SEAL_WRITE: Prevent write access to the file
2654 *
2655 * As we don't require any trust relationship between two parties, we
2656 * must prevent seals from being removed. Therefore, sealing a file
2657 * only adds a given set of seals to the file, it never touches
2658 * existing seals. Furthermore, the "setting seals"-operation can be
2659 * sealed itself, which basically prevents any further seal from being
2660 * added.
2661 *
2662 * Semantics of sealing are only defined on volatile files. Only
2663 * anonymous shmem files support sealing. More importantly, seals are
2664 * never written to disk. Therefore, there's no plan to support it on
2665 * other file types.
2666 */
2667
2668 if (file->f_op != &shmem_file_operations)
2669 return -EINVAL;
2670 if (!(file->f_mode & FMODE_WRITE))
2671 return -EPERM;
2672 if (seals & ~(unsigned int)F_ALL_SEALS)
2673 return -EINVAL;
2674
2675 inode_lock(inode);
2676
2677 if (info->seals & F_SEAL_SEAL) {
2678 error = -EPERM;
2679 goto unlock;
2680 }
2681
2682 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2683 error = mapping_deny_writable(file->f_mapping);
2684 if (error)
2685 goto unlock;
2686
2687 error = shmem_wait_for_pins(file->f_mapping);
2688 if (error) {
2689 mapping_allow_writable(file->f_mapping);
2690 goto unlock;
2691 }
2692 }
2693
2694 info->seals |= seals;
2695 error = 0;
2696
2697 unlock:
2698 inode_unlock(inode);
2699 return error;
2700 }
2701 EXPORT_SYMBOL_GPL(shmem_add_seals);
2702
2703 int shmem_get_seals(struct file *file)
2704 {
2705 if (file->f_op != &shmem_file_operations)
2706 return -EINVAL;
2707
2708 return SHMEM_I(file_inode(file))->seals;
2709 }
2710 EXPORT_SYMBOL_GPL(shmem_get_seals);
2711
2712 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2713 {
2714 long error;
2715
2716 switch (cmd) {
2717 case F_ADD_SEALS:
2718 /* disallow upper 32bit */
2719 if (arg > UINT_MAX)
2720 return -EINVAL;
2721
2722 error = shmem_add_seals(file, arg);
2723 break;
2724 case F_GET_SEALS:
2725 error = shmem_get_seals(file);
2726 break;
2727 default:
2728 error = -EINVAL;
2729 break;
2730 }
2731
2732 return error;
2733 }
2734
2735 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2736 loff_t len)
2737 {
2738 struct inode *inode = file_inode(file);
2739 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2740 struct shmem_inode_info *info = SHMEM_I(inode);
2741 struct shmem_falloc shmem_falloc;
2742 pgoff_t start, index, end;
2743 int error;
2744
2745 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2746 return -EOPNOTSUPP;
2747
2748 inode_lock(inode);
2749
2750 if (mode & FALLOC_FL_PUNCH_HOLE) {
2751 struct address_space *mapping = file->f_mapping;
2752 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2753 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2754 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2755
2756 /* protected by i_mutex */
2757 if (info->seals & F_SEAL_WRITE) {
2758 error = -EPERM;
2759 goto out;
2760 }
2761
2762 shmem_falloc.waitq = &shmem_falloc_waitq;
2763 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2764 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2765 spin_lock(&inode->i_lock);
2766 inode->i_private = &shmem_falloc;
2767 spin_unlock(&inode->i_lock);
2768
2769 if ((u64)unmap_end > (u64)unmap_start)
2770 unmap_mapping_range(mapping, unmap_start,
2771 1 + unmap_end - unmap_start, 0);
2772 shmem_truncate_range(inode, offset, offset + len - 1);
2773 /* No need to unmap again: hole-punching leaves COWed pages */
2774
2775 spin_lock(&inode->i_lock);
2776 inode->i_private = NULL;
2777 wake_up_all(&shmem_falloc_waitq);
2778 spin_unlock(&inode->i_lock);
2779 error = 0;
2780 goto out;
2781 }
2782
2783 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784 error = inode_newsize_ok(inode, offset + len);
2785 if (error)
2786 goto out;
2787
2788 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789 error = -EPERM;
2790 goto out;
2791 }
2792
2793 start = offset >> PAGE_SHIFT;
2794 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795 /* Try to avoid a swapstorm if len is impossible to satisfy */
2796 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797 error = -ENOSPC;
2798 goto out;
2799 }
2800
2801 shmem_falloc.waitq = NULL;
2802 shmem_falloc.start = start;
2803 shmem_falloc.next = start;
2804 shmem_falloc.nr_falloced = 0;
2805 shmem_falloc.nr_unswapped = 0;
2806 spin_lock(&inode->i_lock);
2807 inode->i_private = &shmem_falloc;
2808 spin_unlock(&inode->i_lock);
2809
2810 for (index = start; index < end; index++) {
2811 struct page *page;
2812
2813 /*
2814 * Good, the fallocate(2) manpage permits EINTR: we may have
2815 * been interrupted because we are using up too much memory.
2816 */
2817 if (signal_pending(current))
2818 error = -EINTR;
2819 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2820 error = -ENOMEM;
2821 else
2822 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2823 if (error) {
2824 /* Remove the !PageUptodate pages we added */
2825 if (index > start) {
2826 shmem_undo_range(inode,
2827 (loff_t)start << PAGE_SHIFT,
2828 ((loff_t)index << PAGE_SHIFT) - 1, true);
2829 }
2830 goto undone;
2831 }
2832
2833 /*
2834 * Inform shmem_writepage() how far we have reached.
2835 * No need for lock or barrier: we have the page lock.
2836 */
2837 shmem_falloc.next++;
2838 if (!PageUptodate(page))
2839 shmem_falloc.nr_falloced++;
2840
2841 /*
2842 * If !PageUptodate, leave it that way so that freeable pages
2843 * can be recognized if we need to rollback on error later.
2844 * But set_page_dirty so that memory pressure will swap rather
2845 * than free the pages we are allocating (and SGP_CACHE pages
2846 * might still be clean: we now need to mark those dirty too).
2847 */
2848 set_page_dirty(page);
2849 unlock_page(page);
2850 put_page(page);
2851 cond_resched();
2852 }
2853
2854 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2855 i_size_write(inode, offset + len);
2856 inode->i_ctime = CURRENT_TIME;
2857 undone:
2858 spin_lock(&inode->i_lock);
2859 inode->i_private = NULL;
2860 spin_unlock(&inode->i_lock);
2861 out:
2862 inode_unlock(inode);
2863 return error;
2864 }
2865
2866 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2867 {
2868 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2869
2870 buf->f_type = TMPFS_MAGIC;
2871 buf->f_bsize = PAGE_SIZE;
2872 buf->f_namelen = NAME_MAX;
2873 if (sbinfo->max_blocks) {
2874 buf->f_blocks = sbinfo->max_blocks;
2875 buf->f_bavail =
2876 buf->f_bfree = sbinfo->max_blocks -
2877 percpu_counter_sum(&sbinfo->used_blocks);
2878 }
2879 if (sbinfo->max_inodes) {
2880 buf->f_files = sbinfo->max_inodes;
2881 buf->f_ffree = sbinfo->free_inodes;
2882 }
2883 /* else leave those fields 0 like simple_statfs */
2884 return 0;
2885 }
2886
2887 /*
2888 * File creation. Allocate an inode, and we're done..
2889 */
2890 static int
2891 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892 {
2893 struct inode *inode;
2894 int error = -ENOSPC;
2895
2896 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2897 if (inode) {
2898 error = simple_acl_create(dir, inode);
2899 if (error)
2900 goto out_iput;
2901 error = security_inode_init_security(inode, dir,
2902 &dentry->d_name,
2903 shmem_initxattrs, NULL);
2904 if (error && error != -EOPNOTSUPP)
2905 goto out_iput;
2906
2907 error = 0;
2908 dir->i_size += BOGO_DIRENT_SIZE;
2909 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2910 d_instantiate(dentry, inode);
2911 dget(dentry); /* Extra count - pin the dentry in core */
2912 }
2913 return error;
2914 out_iput:
2915 iput(inode);
2916 return error;
2917 }
2918
2919 static int
2920 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2921 {
2922 struct inode *inode;
2923 int error = -ENOSPC;
2924
2925 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2926 if (inode) {
2927 error = security_inode_init_security(inode, dir,
2928 NULL,
2929 shmem_initxattrs, NULL);
2930 if (error && error != -EOPNOTSUPP)
2931 goto out_iput;
2932 error = simple_acl_create(dir, inode);
2933 if (error)
2934 goto out_iput;
2935 d_tmpfile(dentry, inode);
2936 }
2937 return error;
2938 out_iput:
2939 iput(inode);
2940 return error;
2941 }
2942
2943 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2944 {
2945 int error;
2946
2947 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2948 return error;
2949 inc_nlink(dir);
2950 return 0;
2951 }
2952
2953 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2954 bool excl)
2955 {
2956 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2957 }
2958
2959 /*
2960 * Link a file..
2961 */
2962 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2963 {
2964 struct inode *inode = d_inode(old_dentry);
2965 int ret;
2966
2967 /*
2968 * No ordinary (disk based) filesystem counts links as inodes;
2969 * but each new link needs a new dentry, pinning lowmem, and
2970 * tmpfs dentries cannot be pruned until they are unlinked.
2971 */
2972 ret = shmem_reserve_inode(inode->i_sb);
2973 if (ret)
2974 goto out;
2975
2976 dir->i_size += BOGO_DIRENT_SIZE;
2977 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2978 inc_nlink(inode);
2979 ihold(inode); /* New dentry reference */
2980 dget(dentry); /* Extra pinning count for the created dentry */
2981 d_instantiate(dentry, inode);
2982 out:
2983 return ret;
2984 }
2985
2986 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988 struct inode *inode = d_inode(dentry);
2989
2990 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2991 shmem_free_inode(inode->i_sb);
2992
2993 dir->i_size -= BOGO_DIRENT_SIZE;
2994 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2995 drop_nlink(inode);
2996 dput(dentry); /* Undo the count from "create" - this does all the work */
2997 return 0;
2998 }
2999
3000 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3001 {
3002 if (!simple_empty(dentry))
3003 return -ENOTEMPTY;
3004
3005 drop_nlink(d_inode(dentry));
3006 drop_nlink(dir);
3007 return shmem_unlink(dir, dentry);
3008 }
3009
3010 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3011 {
3012 bool old_is_dir = d_is_dir(old_dentry);
3013 bool new_is_dir = d_is_dir(new_dentry);
3014
3015 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3016 if (old_is_dir) {
3017 drop_nlink(old_dir);
3018 inc_nlink(new_dir);
3019 } else {
3020 drop_nlink(new_dir);
3021 inc_nlink(old_dir);
3022 }
3023 }
3024 old_dir->i_ctime = old_dir->i_mtime =
3025 new_dir->i_ctime = new_dir->i_mtime =
3026 d_inode(old_dentry)->i_ctime =
3027 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
3028
3029 return 0;
3030 }
3031
3032 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3033 {
3034 struct dentry *whiteout;
3035 int error;
3036
3037 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3038 if (!whiteout)
3039 return -ENOMEM;
3040
3041 error = shmem_mknod(old_dir, whiteout,
3042 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3043 dput(whiteout);
3044 if (error)
3045 return error;
3046
3047 /*
3048 * Cheat and hash the whiteout while the old dentry is still in
3049 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3050 *
3051 * d_lookup() will consistently find one of them at this point,
3052 * not sure which one, but that isn't even important.
3053 */
3054 d_rehash(whiteout);
3055 return 0;
3056 }
3057
3058 /*
3059 * The VFS layer already does all the dentry stuff for rename,
3060 * we just have to decrement the usage count for the target if
3061 * it exists so that the VFS layer correctly free's it when it
3062 * gets overwritten.
3063 */
3064 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3065 {
3066 struct inode *inode = d_inode(old_dentry);
3067 int they_are_dirs = S_ISDIR(inode->i_mode);
3068
3069 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3070 return -EINVAL;
3071
3072 if (flags & RENAME_EXCHANGE)
3073 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3074
3075 if (!simple_empty(new_dentry))
3076 return -ENOTEMPTY;
3077
3078 if (flags & RENAME_WHITEOUT) {
3079 int error;
3080
3081 error = shmem_whiteout(old_dir, old_dentry);
3082 if (error)
3083 return error;
3084 }
3085
3086 if (d_really_is_positive(new_dentry)) {
3087 (void) shmem_unlink(new_dir, new_dentry);
3088 if (they_are_dirs) {
3089 drop_nlink(d_inode(new_dentry));
3090 drop_nlink(old_dir);
3091 }
3092 } else if (they_are_dirs) {
3093 drop_nlink(old_dir);
3094 inc_nlink(new_dir);
3095 }
3096
3097 old_dir->i_size -= BOGO_DIRENT_SIZE;
3098 new_dir->i_size += BOGO_DIRENT_SIZE;
3099 old_dir->i_ctime = old_dir->i_mtime =
3100 new_dir->i_ctime = new_dir->i_mtime =
3101 inode->i_ctime = CURRENT_TIME;
3102 return 0;
3103 }
3104
3105 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3106 {
3107 int error;
3108 int len;
3109 struct inode *inode;
3110 struct page *page;
3111 struct shmem_inode_info *info;
3112
3113 len = strlen(symname) + 1;
3114 if (len > PAGE_SIZE)
3115 return -ENAMETOOLONG;
3116
3117 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3118 if (!inode)
3119 return -ENOSPC;
3120
3121 error = security_inode_init_security(inode, dir, &dentry->d_name,
3122 shmem_initxattrs, NULL);
3123 if (error) {
3124 if (error != -EOPNOTSUPP) {
3125 iput(inode);
3126 return error;
3127 }
3128 error = 0;
3129 }
3130
3131 info = SHMEM_I(inode);
3132 inode->i_size = len-1;
3133 if (len <= SHORT_SYMLINK_LEN) {
3134 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3135 if (!inode->i_link) {
3136 iput(inode);
3137 return -ENOMEM;
3138 }
3139 inode->i_op = &shmem_short_symlink_operations;
3140 } else {
3141 inode_nohighmem(inode);
3142 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3143 if (error) {
3144 iput(inode);
3145 return error;
3146 }
3147 inode->i_mapping->a_ops = &shmem_aops;
3148 inode->i_op = &shmem_symlink_inode_operations;
3149 memcpy(page_address(page), symname, len);
3150 SetPageUptodate(page);
3151 set_page_dirty(page);
3152 unlock_page(page);
3153 put_page(page);
3154 }
3155 dir->i_size += BOGO_DIRENT_SIZE;
3156 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3157 d_instantiate(dentry, inode);
3158 dget(dentry);
3159 return 0;
3160 }
3161
3162 static void shmem_put_link(void *arg)
3163 {
3164 mark_page_accessed(arg);
3165 put_page(arg);
3166 }
3167
3168 static const char *shmem_get_link(struct dentry *dentry,
3169 struct inode *inode,
3170 struct delayed_call *done)
3171 {
3172 struct page *page = NULL;
3173 int error;
3174 if (!dentry) {
3175 page = find_get_page(inode->i_mapping, 0);
3176 if (!page)
3177 return ERR_PTR(-ECHILD);
3178 if (!PageUptodate(page)) {
3179 put_page(page);
3180 return ERR_PTR(-ECHILD);
3181 }
3182 } else {
3183 error = shmem_getpage(inode, 0, &page, SGP_READ);
3184 if (error)
3185 return ERR_PTR(error);
3186 unlock_page(page);
3187 }
3188 set_delayed_call(done, shmem_put_link, page);
3189 return page_address(page);
3190 }
3191
3192 #ifdef CONFIG_TMPFS_XATTR
3193 /*
3194 * Superblocks without xattr inode operations may get some security.* xattr
3195 * support from the LSM "for free". As soon as we have any other xattrs
3196 * like ACLs, we also need to implement the security.* handlers at
3197 * filesystem level, though.
3198 */
3199
3200 /*
3201 * Callback for security_inode_init_security() for acquiring xattrs.
3202 */
3203 static int shmem_initxattrs(struct inode *inode,
3204 const struct xattr *xattr_array,
3205 void *fs_info)
3206 {
3207 struct shmem_inode_info *info = SHMEM_I(inode);
3208 const struct xattr *xattr;
3209 struct simple_xattr *new_xattr;
3210 size_t len;
3211
3212 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3213 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3214 if (!new_xattr)
3215 return -ENOMEM;
3216
3217 len = strlen(xattr->name) + 1;
3218 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3219 GFP_KERNEL);
3220 if (!new_xattr->name) {
3221 kfree(new_xattr);
3222 return -ENOMEM;
3223 }
3224
3225 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3226 XATTR_SECURITY_PREFIX_LEN);
3227 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3228 xattr->name, len);
3229
3230 simple_xattr_list_add(&info->xattrs, new_xattr);
3231 }
3232
3233 return 0;
3234 }
3235
3236 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3237 struct dentry *unused, struct inode *inode,
3238 const char *name, void *buffer, size_t size)
3239 {
3240 struct shmem_inode_info *info = SHMEM_I(inode);
3241
3242 name = xattr_full_name(handler, name);
3243 return simple_xattr_get(&info->xattrs, name, buffer, size);
3244 }
3245
3246 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3247 struct dentry *unused, struct inode *inode,
3248 const char *name, const void *value,
3249 size_t size, int flags)
3250 {
3251 struct shmem_inode_info *info = SHMEM_I(inode);
3252
3253 name = xattr_full_name(handler, name);
3254 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3255 }
3256
3257 static const struct xattr_handler shmem_security_xattr_handler = {
3258 .prefix = XATTR_SECURITY_PREFIX,
3259 .get = shmem_xattr_handler_get,
3260 .set = shmem_xattr_handler_set,
3261 };
3262
3263 static const struct xattr_handler shmem_trusted_xattr_handler = {
3264 .prefix = XATTR_TRUSTED_PREFIX,
3265 .get = shmem_xattr_handler_get,
3266 .set = shmem_xattr_handler_set,
3267 };
3268
3269 static const struct xattr_handler *shmem_xattr_handlers[] = {
3270 #ifdef CONFIG_TMPFS_POSIX_ACL
3271 &posix_acl_access_xattr_handler,
3272 &posix_acl_default_xattr_handler,
3273 #endif
3274 &shmem_security_xattr_handler,
3275 &shmem_trusted_xattr_handler,
3276 NULL
3277 };
3278
3279 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3280 {
3281 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3282 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3283 }
3284 #endif /* CONFIG_TMPFS_XATTR */
3285
3286 static const struct inode_operations shmem_short_symlink_operations = {
3287 .readlink = generic_readlink,
3288 .get_link = simple_get_link,
3289 #ifdef CONFIG_TMPFS_XATTR
3290 .setxattr = generic_setxattr,
3291 .getxattr = generic_getxattr,
3292 .listxattr = shmem_listxattr,
3293 .removexattr = generic_removexattr,
3294 #endif
3295 };
3296
3297 static const struct inode_operations shmem_symlink_inode_operations = {
3298 .readlink = generic_readlink,
3299 .get_link = shmem_get_link,
3300 #ifdef CONFIG_TMPFS_XATTR
3301 .setxattr = generic_setxattr,
3302 .getxattr = generic_getxattr,
3303 .listxattr = shmem_listxattr,
3304 .removexattr = generic_removexattr,
3305 #endif
3306 };
3307
3308 static struct dentry *shmem_get_parent(struct dentry *child)
3309 {
3310 return ERR_PTR(-ESTALE);
3311 }
3312
3313 static int shmem_match(struct inode *ino, void *vfh)
3314 {
3315 __u32 *fh = vfh;
3316 __u64 inum = fh[2];
3317 inum = (inum << 32) | fh[1];
3318 return ino->i_ino == inum && fh[0] == ino->i_generation;
3319 }
3320
3321 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3322 struct fid *fid, int fh_len, int fh_type)
3323 {
3324 struct inode *inode;
3325 struct dentry *dentry = NULL;
3326 u64 inum;
3327
3328 if (fh_len < 3)
3329 return NULL;
3330
3331 inum = fid->raw[2];
3332 inum = (inum << 32) | fid->raw[1];
3333
3334 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3335 shmem_match, fid->raw);
3336 if (inode) {
3337 dentry = d_find_alias(inode);
3338 iput(inode);
3339 }
3340
3341 return dentry;
3342 }
3343
3344 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3345 struct inode *parent)
3346 {
3347 if (*len < 3) {
3348 *len = 3;
3349 return FILEID_INVALID;
3350 }
3351
3352 if (inode_unhashed(inode)) {
3353 /* Unfortunately insert_inode_hash is not idempotent,
3354 * so as we hash inodes here rather than at creation
3355 * time, we need a lock to ensure we only try
3356 * to do it once
3357 */
3358 static DEFINE_SPINLOCK(lock);
3359 spin_lock(&lock);
3360 if (inode_unhashed(inode))
3361 __insert_inode_hash(inode,
3362 inode->i_ino + inode->i_generation);
3363 spin_unlock(&lock);
3364 }
3365
3366 fh[0] = inode->i_generation;
3367 fh[1] = inode->i_ino;
3368 fh[2] = ((__u64)inode->i_ino) >> 32;
3369
3370 *len = 3;
3371 return 1;
3372 }
3373
3374 static const struct export_operations shmem_export_ops = {
3375 .get_parent = shmem_get_parent,
3376 .encode_fh = shmem_encode_fh,
3377 .fh_to_dentry = shmem_fh_to_dentry,
3378 };
3379
3380 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3381 bool remount)
3382 {
3383 char *this_char, *value, *rest;
3384 struct mempolicy *mpol = NULL;
3385 uid_t uid;
3386 gid_t gid;
3387
3388 while (options != NULL) {
3389 this_char = options;
3390 for (;;) {
3391 /*
3392 * NUL-terminate this option: unfortunately,
3393 * mount options form a comma-separated list,
3394 * but mpol's nodelist may also contain commas.
3395 */
3396 options = strchr(options, ',');
3397 if (options == NULL)
3398 break;
3399 options++;
3400 if (!isdigit(*options)) {
3401 options[-1] = '\0';
3402 break;
3403 }
3404 }
3405 if (!*this_char)
3406 continue;
3407 if ((value = strchr(this_char,'=')) != NULL) {
3408 *value++ = 0;
3409 } else {
3410 pr_err("tmpfs: No value for mount option '%s'\n",
3411 this_char);
3412 goto error;
3413 }
3414
3415 if (!strcmp(this_char,"size")) {
3416 unsigned long long size;
3417 size = memparse(value,&rest);
3418 if (*rest == '%') {
3419 size <<= PAGE_SHIFT;
3420 size *= totalram_pages;
3421 do_div(size, 100);
3422 rest++;
3423 }
3424 if (*rest)
3425 goto bad_val;
3426 sbinfo->max_blocks =
3427 DIV_ROUND_UP(size, PAGE_SIZE);
3428 } else if (!strcmp(this_char,"nr_blocks")) {
3429 sbinfo->max_blocks = memparse(value, &rest);
3430 if (*rest)
3431 goto bad_val;
3432 } else if (!strcmp(this_char,"nr_inodes")) {
3433 sbinfo->max_inodes = memparse(value, &rest);
3434 if (*rest)
3435 goto bad_val;
3436 } else if (!strcmp(this_char,"mode")) {
3437 if (remount)
3438 continue;
3439 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3440 if (*rest)
3441 goto bad_val;
3442 } else if (!strcmp(this_char,"uid")) {
3443 if (remount)
3444 continue;
3445 uid = simple_strtoul(value, &rest, 0);
3446 if (*rest)
3447 goto bad_val;
3448 sbinfo->uid = make_kuid(current_user_ns(), uid);
3449 if (!uid_valid(sbinfo->uid))
3450 goto bad_val;
3451 } else if (!strcmp(this_char,"gid")) {
3452 if (remount)
3453 continue;
3454 gid = simple_strtoul(value, &rest, 0);
3455 if (*rest)
3456 goto bad_val;
3457 sbinfo->gid = make_kgid(current_user_ns(), gid);
3458 if (!gid_valid(sbinfo->gid))
3459 goto bad_val;
3460 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3461 } else if (!strcmp(this_char, "huge")) {
3462 int huge;
3463 huge = shmem_parse_huge(value);
3464 if (huge < 0)
3465 goto bad_val;
3466 if (!has_transparent_hugepage() &&
3467 huge != SHMEM_HUGE_NEVER)
3468 goto bad_val;
3469 sbinfo->huge = huge;
3470 #endif
3471 #ifdef CONFIG_NUMA
3472 } else if (!strcmp(this_char,"mpol")) {
3473 mpol_put(mpol);
3474 mpol = NULL;
3475 if (mpol_parse_str(value, &mpol))
3476 goto bad_val;
3477 #endif
3478 } else {
3479 pr_err("tmpfs: Bad mount option %s\n", this_char);
3480 goto error;
3481 }
3482 }
3483 sbinfo->mpol = mpol;
3484 return 0;
3485
3486 bad_val:
3487 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3488 value, this_char);
3489 error:
3490 mpol_put(mpol);
3491 return 1;
3492
3493 }
3494
3495 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3496 {
3497 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3498 struct shmem_sb_info config = *sbinfo;
3499 unsigned long inodes;
3500 int error = -EINVAL;
3501
3502 config.mpol = NULL;
3503 if (shmem_parse_options(data, &config, true))
3504 return error;
3505
3506 spin_lock(&sbinfo->stat_lock);
3507 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3509 goto out;
3510 if (config.max_inodes < inodes)
3511 goto out;
3512 /*
3513 * Those tests disallow limited->unlimited while any are in use;
3514 * but we must separately disallow unlimited->limited, because
3515 * in that case we have no record of how much is already in use.
3516 */
3517 if (config.max_blocks && !sbinfo->max_blocks)
3518 goto out;
3519 if (config.max_inodes && !sbinfo->max_inodes)
3520 goto out;
3521
3522 error = 0;
3523 sbinfo->huge = config.huge;
3524 sbinfo->max_blocks = config.max_blocks;
3525 sbinfo->max_inodes = config.max_inodes;
3526 sbinfo->free_inodes = config.max_inodes - inodes;
3527
3528 /*
3529 * Preserve previous mempolicy unless mpol remount option was specified.
3530 */
3531 if (config.mpol) {
3532 mpol_put(sbinfo->mpol);
3533 sbinfo->mpol = config.mpol; /* transfers initial ref */
3534 }
3535 out:
3536 spin_unlock(&sbinfo->stat_lock);
3537 return error;
3538 }
3539
3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541 {
3542 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543
3544 if (sbinfo->max_blocks != shmem_default_max_blocks())
3545 seq_printf(seq, ",size=%luk",
3546 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547 if (sbinfo->max_inodes != shmem_default_max_inodes())
3548 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3550 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552 seq_printf(seq, ",uid=%u",
3553 from_kuid_munged(&init_user_ns, sbinfo->uid));
3554 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555 seq_printf(seq, ",gid=%u",
3556 from_kgid_munged(&init_user_ns, sbinfo->gid));
3557 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3558 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3559 if (sbinfo->huge)
3560 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3561 #endif
3562 shmem_show_mpol(seq, sbinfo->mpol);
3563 return 0;
3564 }
3565
3566 #define MFD_NAME_PREFIX "memfd:"
3567 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3568 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3569
3570 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3571
3572 SYSCALL_DEFINE2(memfd_create,
3573 const char __user *, uname,
3574 unsigned int, flags)
3575 {
3576 struct shmem_inode_info *info;
3577 struct file *file;
3578 int fd, error;
3579 char *name;
3580 long len;
3581
3582 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3583 return -EINVAL;
3584
3585 /* length includes terminating zero */
3586 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3587 if (len <= 0)
3588 return -EFAULT;
3589 if (len > MFD_NAME_MAX_LEN + 1)
3590 return -EINVAL;
3591
3592 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3593 if (!name)
3594 return -ENOMEM;
3595
3596 strcpy(name, MFD_NAME_PREFIX);
3597 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3598 error = -EFAULT;
3599 goto err_name;
3600 }
3601
3602 /* terminating-zero may have changed after strnlen_user() returned */
3603 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3604 error = -EFAULT;
3605 goto err_name;
3606 }
3607
3608 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3609 if (fd < 0) {
3610 error = fd;
3611 goto err_name;
3612 }
3613
3614 file = shmem_file_setup(name, 0, VM_NORESERVE);
3615 if (IS_ERR(file)) {
3616 error = PTR_ERR(file);
3617 goto err_fd;
3618 }
3619 info = SHMEM_I(file_inode(file));
3620 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3621 file->f_flags |= O_RDWR | O_LARGEFILE;
3622 if (flags & MFD_ALLOW_SEALING)
3623 info->seals &= ~F_SEAL_SEAL;
3624
3625 fd_install(fd, file);
3626 kfree(name);
3627 return fd;
3628
3629 err_fd:
3630 put_unused_fd(fd);
3631 err_name:
3632 kfree(name);
3633 return error;
3634 }
3635
3636 #endif /* CONFIG_TMPFS */
3637
3638 static void shmem_put_super(struct super_block *sb)
3639 {
3640 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3641
3642 percpu_counter_destroy(&sbinfo->used_blocks);
3643 mpol_put(sbinfo->mpol);
3644 kfree(sbinfo);
3645 sb->s_fs_info = NULL;
3646 }
3647
3648 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3649 {
3650 struct inode *inode;
3651 struct shmem_sb_info *sbinfo;
3652 int err = -ENOMEM;
3653
3654 /* Round up to L1_CACHE_BYTES to resist false sharing */
3655 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3656 L1_CACHE_BYTES), GFP_KERNEL);
3657 if (!sbinfo)
3658 return -ENOMEM;
3659
3660 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3661 sbinfo->uid = current_fsuid();
3662 sbinfo->gid = current_fsgid();
3663 sb->s_fs_info = sbinfo;
3664
3665 #ifdef CONFIG_TMPFS
3666 /*
3667 * Per default we only allow half of the physical ram per
3668 * tmpfs instance, limiting inodes to one per page of lowmem;
3669 * but the internal instance is left unlimited.
3670 */
3671 if (!(sb->s_flags & MS_KERNMOUNT)) {
3672 sbinfo->max_blocks = shmem_default_max_blocks();
3673 sbinfo->max_inodes = shmem_default_max_inodes();
3674 if (shmem_parse_options(data, sbinfo, false)) {
3675 err = -EINVAL;
3676 goto failed;
3677 }
3678 } else {
3679 sb->s_flags |= MS_NOUSER;
3680 }
3681 sb->s_export_op = &shmem_export_ops;
3682 sb->s_flags |= MS_NOSEC;
3683 #else
3684 sb->s_flags |= MS_NOUSER;
3685 #endif
3686
3687 spin_lock_init(&sbinfo->stat_lock);
3688 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3689 goto failed;
3690 sbinfo->free_inodes = sbinfo->max_inodes;
3691 spin_lock_init(&sbinfo->shrinklist_lock);
3692 INIT_LIST_HEAD(&sbinfo->shrinklist);
3693
3694 sb->s_maxbytes = MAX_LFS_FILESIZE;
3695 sb->s_blocksize = PAGE_SIZE;
3696 sb->s_blocksize_bits = PAGE_SHIFT;
3697 sb->s_magic = TMPFS_MAGIC;
3698 sb->s_op = &shmem_ops;
3699 sb->s_time_gran = 1;
3700 #ifdef CONFIG_TMPFS_XATTR
3701 sb->s_xattr = shmem_xattr_handlers;
3702 #endif
3703 #ifdef CONFIG_TMPFS_POSIX_ACL
3704 sb->s_flags |= MS_POSIXACL;
3705 #endif
3706
3707 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3708 if (!inode)
3709 goto failed;
3710 inode->i_uid = sbinfo->uid;
3711 inode->i_gid = sbinfo->gid;
3712 sb->s_root = d_make_root(inode);
3713 if (!sb->s_root)
3714 goto failed;
3715 return 0;
3716
3717 failed:
3718 shmem_put_super(sb);
3719 return err;
3720 }
3721
3722 static struct kmem_cache *shmem_inode_cachep;
3723
3724 static struct inode *shmem_alloc_inode(struct super_block *sb)
3725 {
3726 struct shmem_inode_info *info;
3727 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728 if (!info)
3729 return NULL;
3730 return &info->vfs_inode;
3731 }
3732
3733 static void shmem_destroy_callback(struct rcu_head *head)
3734 {
3735 struct inode *inode = container_of(head, struct inode, i_rcu);
3736 if (S_ISLNK(inode->i_mode))
3737 kfree(inode->i_link);
3738 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3739 }
3740
3741 static void shmem_destroy_inode(struct inode *inode)
3742 {
3743 if (S_ISREG(inode->i_mode))
3744 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3745 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3746 }
3747
3748 static void shmem_init_inode(void *foo)
3749 {
3750 struct shmem_inode_info *info = foo;
3751 inode_init_once(&info->vfs_inode);
3752 }
3753
3754 static int shmem_init_inodecache(void)
3755 {
3756 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3757 sizeof(struct shmem_inode_info),
3758 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3759 return 0;
3760 }
3761
3762 static void shmem_destroy_inodecache(void)
3763 {
3764 kmem_cache_destroy(shmem_inode_cachep);
3765 }
3766
3767 static const struct address_space_operations shmem_aops = {
3768 .writepage = shmem_writepage,
3769 .set_page_dirty = __set_page_dirty_no_writeback,
3770 #ifdef CONFIG_TMPFS
3771 .write_begin = shmem_write_begin,
3772 .write_end = shmem_write_end,
3773 #endif
3774 #ifdef CONFIG_MIGRATION
3775 .migratepage = migrate_page,
3776 #endif
3777 .error_remove_page = generic_error_remove_page,
3778 };
3779
3780 static const struct file_operations shmem_file_operations = {
3781 .mmap = shmem_mmap,
3782 .get_unmapped_area = shmem_get_unmapped_area,
3783 #ifdef CONFIG_TMPFS
3784 .llseek = shmem_file_llseek,
3785 .read_iter = shmem_file_read_iter,
3786 .write_iter = generic_file_write_iter,
3787 .fsync = noop_fsync,
3788 .splice_read = shmem_file_splice_read,
3789 .splice_write = iter_file_splice_write,
3790 .fallocate = shmem_fallocate,
3791 #endif
3792 };
3793
3794 static const struct inode_operations shmem_inode_operations = {
3795 .getattr = shmem_getattr,
3796 .setattr = shmem_setattr,
3797 #ifdef CONFIG_TMPFS_XATTR
3798 .setxattr = generic_setxattr,
3799 .getxattr = generic_getxattr,
3800 .listxattr = shmem_listxattr,
3801 .removexattr = generic_removexattr,
3802 .set_acl = simple_set_acl,
3803 #endif
3804 };
3805
3806 static const struct inode_operations shmem_dir_inode_operations = {
3807 #ifdef CONFIG_TMPFS
3808 .create = shmem_create,
3809 .lookup = simple_lookup,
3810 .link = shmem_link,
3811 .unlink = shmem_unlink,
3812 .symlink = shmem_symlink,
3813 .mkdir = shmem_mkdir,
3814 .rmdir = shmem_rmdir,
3815 .mknod = shmem_mknod,
3816 .rename = shmem_rename2,
3817 .tmpfile = shmem_tmpfile,
3818 #endif
3819 #ifdef CONFIG_TMPFS_XATTR
3820 .setxattr = generic_setxattr,
3821 .getxattr = generic_getxattr,
3822 .listxattr = shmem_listxattr,
3823 .removexattr = generic_removexattr,
3824 #endif
3825 #ifdef CONFIG_TMPFS_POSIX_ACL
3826 .setattr = shmem_setattr,
3827 .set_acl = simple_set_acl,
3828 #endif
3829 };
3830
3831 static const struct inode_operations shmem_special_inode_operations = {
3832 #ifdef CONFIG_TMPFS_XATTR
3833 .setxattr = generic_setxattr,
3834 .getxattr = generic_getxattr,
3835 .listxattr = shmem_listxattr,
3836 .removexattr = generic_removexattr,
3837 #endif
3838 #ifdef CONFIG_TMPFS_POSIX_ACL
3839 .setattr = shmem_setattr,
3840 .set_acl = simple_set_acl,
3841 #endif
3842 };
3843
3844 static const struct super_operations shmem_ops = {
3845 .alloc_inode = shmem_alloc_inode,
3846 .destroy_inode = shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848 .statfs = shmem_statfs,
3849 .remount_fs = shmem_remount_fs,
3850 .show_options = shmem_show_options,
3851 #endif
3852 .evict_inode = shmem_evict_inode,
3853 .drop_inode = generic_delete_inode,
3854 .put_super = shmem_put_super,
3855 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3856 .nr_cached_objects = shmem_unused_huge_count,
3857 .free_cached_objects = shmem_unused_huge_scan,
3858 #endif
3859 };
3860
3861 static const struct vm_operations_struct shmem_vm_ops = {
3862 .fault = shmem_fault,
3863 .map_pages = filemap_map_pages,
3864 #ifdef CONFIG_NUMA
3865 .set_policy = shmem_set_policy,
3866 .get_policy = shmem_get_policy,
3867 #endif
3868 };
3869
3870 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3871 int flags, const char *dev_name, void *data)
3872 {
3873 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3874 }
3875
3876 static struct file_system_type shmem_fs_type = {
3877 .owner = THIS_MODULE,
3878 .name = "tmpfs",
3879 .mount = shmem_mount,
3880 .kill_sb = kill_litter_super,
3881 .fs_flags = FS_USERNS_MOUNT,
3882 };
3883
3884 int __init shmem_init(void)
3885 {
3886 int error;
3887
3888 /* If rootfs called this, don't re-init */
3889 if (shmem_inode_cachep)
3890 return 0;
3891
3892 error = shmem_init_inodecache();
3893 if (error)
3894 goto out3;
3895
3896 error = register_filesystem(&shmem_fs_type);
3897 if (error) {
3898 pr_err("Could not register tmpfs\n");
3899 goto out2;
3900 }
3901
3902 shm_mnt = kern_mount(&shmem_fs_type);
3903 if (IS_ERR(shm_mnt)) {
3904 error = PTR_ERR(shm_mnt);
3905 pr_err("Could not kern_mount tmpfs\n");
3906 goto out1;
3907 }
3908
3909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3910 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3911 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3912 else
3913 shmem_huge = 0; /* just in case it was patched */
3914 #endif
3915 return 0;
3916
3917 out1:
3918 unregister_filesystem(&shmem_fs_type);
3919 out2:
3920 shmem_destroy_inodecache();
3921 out3:
3922 shm_mnt = ERR_PTR(error);
3923 return error;
3924 }
3925
3926 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3927 static ssize_t shmem_enabled_show(struct kobject *kobj,
3928 struct kobj_attribute *attr, char *buf)
3929 {
3930 int values[] = {
3931 SHMEM_HUGE_ALWAYS,
3932 SHMEM_HUGE_WITHIN_SIZE,
3933 SHMEM_HUGE_ADVISE,
3934 SHMEM_HUGE_NEVER,
3935 SHMEM_HUGE_DENY,
3936 SHMEM_HUGE_FORCE,
3937 };
3938 int i, count;
3939
3940 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3941 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3942
3943 count += sprintf(buf + count, fmt,
3944 shmem_format_huge(values[i]));
3945 }
3946 buf[count - 1] = '\n';
3947 return count;
3948 }
3949
3950 static ssize_t shmem_enabled_store(struct kobject *kobj,
3951 struct kobj_attribute *attr, const char *buf, size_t count)
3952 {
3953 char tmp[16];
3954 int huge;
3955
3956 if (count + 1 > sizeof(tmp))
3957 return -EINVAL;
3958 memcpy(tmp, buf, count);
3959 tmp[count] = '\0';
3960 if (count && tmp[count - 1] == '\n')
3961 tmp[count - 1] = '\0';
3962
3963 huge = shmem_parse_huge(tmp);
3964 if (huge == -EINVAL)
3965 return -EINVAL;
3966 if (!has_transparent_hugepage() &&
3967 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3968 return -EINVAL;
3969
3970 shmem_huge = huge;
3971 if (shmem_huge < SHMEM_HUGE_DENY)
3972 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3973 return count;
3974 }
3975
3976 struct kobj_attribute shmem_enabled_attr =
3977 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3978 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3979
3980 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3981 bool shmem_huge_enabled(struct vm_area_struct *vma)
3982 {
3983 struct inode *inode = file_inode(vma->vm_file);
3984 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3985 loff_t i_size;
3986 pgoff_t off;
3987
3988 if (shmem_huge == SHMEM_HUGE_FORCE)
3989 return true;
3990 if (shmem_huge == SHMEM_HUGE_DENY)
3991 return false;
3992 switch (sbinfo->huge) {
3993 case SHMEM_HUGE_NEVER:
3994 return false;
3995 case SHMEM_HUGE_ALWAYS:
3996 return true;
3997 case SHMEM_HUGE_WITHIN_SIZE:
3998 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3999 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4000 if (i_size >= HPAGE_PMD_SIZE &&
4001 i_size >> PAGE_SHIFT >= off)
4002 return true;
4003 case SHMEM_HUGE_ADVISE:
4004 /* TODO: implement fadvise() hints */
4005 return (vma->vm_flags & VM_HUGEPAGE);
4006 default:
4007 VM_BUG_ON(1);
4008 return false;
4009 }
4010 }
4011 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4012
4013 #else /* !CONFIG_SHMEM */
4014
4015 /*
4016 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4017 *
4018 * This is intended for small system where the benefits of the full
4019 * shmem code (swap-backed and resource-limited) are outweighed by
4020 * their complexity. On systems without swap this code should be
4021 * effectively equivalent, but much lighter weight.
4022 */
4023
4024 static struct file_system_type shmem_fs_type = {
4025 .name = "tmpfs",
4026 .mount = ramfs_mount,
4027 .kill_sb = kill_litter_super,
4028 .fs_flags = FS_USERNS_MOUNT,
4029 };
4030
4031 int __init shmem_init(void)
4032 {
4033 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4034
4035 shm_mnt = kern_mount(&shmem_fs_type);
4036 BUG_ON(IS_ERR(shm_mnt));
4037
4038 return 0;
4039 }
4040
4041 int shmem_unuse(swp_entry_t swap, struct page *page)
4042 {
4043 return 0;
4044 }
4045
4046 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4047 {
4048 return 0;
4049 }
4050
4051 void shmem_unlock_mapping(struct address_space *mapping)
4052 {
4053 }
4054
4055 #ifdef CONFIG_MMU
4056 unsigned long shmem_get_unmapped_area(struct file *file,
4057 unsigned long addr, unsigned long len,
4058 unsigned long pgoff, unsigned long flags)
4059 {
4060 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4061 }
4062 #endif
4063
4064 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4065 {
4066 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4067 }
4068 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4069
4070 #define shmem_vm_ops generic_file_vm_ops
4071 #define shmem_file_operations ramfs_file_operations
4072 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4073 #define shmem_acct_size(flags, size) 0
4074 #define shmem_unacct_size(flags, size) do {} while (0)
4075
4076 #endif /* CONFIG_SHMEM */
4077
4078 /* common code */
4079
4080 static struct dentry_operations anon_ops = {
4081 .d_dname = simple_dname
4082 };
4083
4084 static struct file *__shmem_file_setup(const char *name, loff_t size,
4085 unsigned long flags, unsigned int i_flags)
4086 {
4087 struct file *res;
4088 struct inode *inode;
4089 struct path path;
4090 struct super_block *sb;
4091 struct qstr this;
4092
4093 if (IS_ERR(shm_mnt))
4094 return ERR_CAST(shm_mnt);
4095
4096 if (size < 0 || size > MAX_LFS_FILESIZE)
4097 return ERR_PTR(-EINVAL);
4098
4099 if (shmem_acct_size(flags, size))
4100 return ERR_PTR(-ENOMEM);
4101
4102 res = ERR_PTR(-ENOMEM);
4103 this.name = name;
4104 this.len = strlen(name);
4105 this.hash = 0; /* will go */
4106 sb = shm_mnt->mnt_sb;
4107 path.mnt = mntget(shm_mnt);
4108 path.dentry = d_alloc_pseudo(sb, &this);
4109 if (!path.dentry)
4110 goto put_memory;
4111 d_set_d_op(path.dentry, &anon_ops);
4112
4113 res = ERR_PTR(-ENOSPC);
4114 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4115 if (!inode)
4116 goto put_memory;
4117
4118 inode->i_flags |= i_flags;
4119 d_instantiate(path.dentry, inode);
4120 inode->i_size = size;
4121 clear_nlink(inode); /* It is unlinked */
4122 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4123 if (IS_ERR(res))
4124 goto put_path;
4125
4126 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4127 &shmem_file_operations);
4128 if (IS_ERR(res))
4129 goto put_path;
4130
4131 return res;
4132
4133 put_memory:
4134 shmem_unacct_size(flags, size);
4135 put_path:
4136 path_put(&path);
4137 return res;
4138 }
4139
4140 /**
4141 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4142 * kernel internal. There will be NO LSM permission checks against the
4143 * underlying inode. So users of this interface must do LSM checks at a
4144 * higher layer. The users are the big_key and shm implementations. LSM
4145 * checks are provided at the key or shm level rather than the inode.
4146 * @name: name for dentry (to be seen in /proc/<pid>/maps
4147 * @size: size to be set for the file
4148 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149 */
4150 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4151 {
4152 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4153 }
4154
4155 /**
4156 * shmem_file_setup - get an unlinked file living in tmpfs
4157 * @name: name for dentry (to be seen in /proc/<pid>/maps
4158 * @size: size to be set for the file
4159 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4160 */
4161 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4162 {
4163 return __shmem_file_setup(name, size, flags, 0);
4164 }
4165 EXPORT_SYMBOL_GPL(shmem_file_setup);
4166
4167 /**
4168 * shmem_zero_setup - setup a shared anonymous mapping
4169 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4170 */
4171 int shmem_zero_setup(struct vm_area_struct *vma)
4172 {
4173 struct file *file;
4174 loff_t size = vma->vm_end - vma->vm_start;
4175
4176 /*
4177 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4178 * between XFS directory reading and selinux: since this file is only
4179 * accessible to the user through its mapping, use S_PRIVATE flag to
4180 * bypass file security, in the same way as shmem_kernel_file_setup().
4181 */
4182 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4183 if (IS_ERR(file))
4184 return PTR_ERR(file);
4185
4186 if (vma->vm_file)
4187 fput(vma->vm_file);
4188 vma->vm_file = file;
4189 vma->vm_ops = &shmem_vm_ops;
4190
4191 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4192 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4193 (vma->vm_end & HPAGE_PMD_MASK)) {
4194 khugepaged_enter(vma, vma->vm_flags);
4195 }
4196
4197 return 0;
4198 }
4199
4200 /**
4201 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4202 * @mapping: the page's address_space
4203 * @index: the page index
4204 * @gfp: the page allocator flags to use if allocating
4205 *
4206 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4207 * with any new page allocations done using the specified allocation flags.
4208 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4209 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4210 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4211 *
4212 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4213 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4214 */
4215 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4216 pgoff_t index, gfp_t gfp)
4217 {
4218 #ifdef CONFIG_SHMEM
4219 struct inode *inode = mapping->host;
4220 struct page *page;
4221 int error;
4222
4223 BUG_ON(mapping->a_ops != &shmem_aops);
4224 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4225 gfp, NULL, NULL);
4226 if (error)
4227 page = ERR_PTR(error);
4228 else
4229 unlock_page(page);
4230 return page;
4231 #else
4232 /*
4233 * The tiny !SHMEM case uses ramfs without swap
4234 */
4235 return read_cache_page_gfp(mapping, index, gfp);
4236 #endif
4237 }
4238 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.126054 seconds and 5 git commands to generate.