91dad80d068b75de629105ec0e688ce16335e16f
[deliverable/linux.git] / mm / zswap.c
1 /*
2 * zswap.c - zswap driver file
3 *
4 * zswap is a backend for frontswap that takes pages that are in the process
5 * of being swapped out and attempts to compress and store them in a
6 * RAM-based memory pool. This can result in a significant I/O reduction on
7 * the swap device and, in the case where decompressing from RAM is faster
8 * than reading from the swap device, can also improve workload performance.
9 *
10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82
83 /* Crypto compressor to use */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 static int zswap_compressor_param_set(const char *,
87 const struct kernel_param *);
88 static struct kernel_param_ops zswap_compressor_param_ops = {
89 .set = zswap_compressor_param_set,
90 .get = param_get_charp,
91 .free = param_free_charp,
92 };
93 module_param_cb(compressor, &zswap_compressor_param_ops,
94 &zswap_compressor, 0644);
95
96 /* Compressed storage zpool to use */
97 #define ZSWAP_ZPOOL_DEFAULT "zbud"
98 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
99 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
100 static struct kernel_param_ops zswap_zpool_param_ops = {
101 .set = zswap_zpool_param_set,
102 .get = param_get_charp,
103 .free = param_free_charp,
104 };
105 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
106
107 /* The maximum percentage of memory that the compressed pool can occupy */
108 static unsigned int zswap_max_pool_percent = 20;
109 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
110
111 /*********************************
112 * data structures
113 **********************************/
114
115 struct zswap_pool {
116 struct zpool *zpool;
117 struct crypto_comp * __percpu *tfm;
118 struct kref kref;
119 struct list_head list;
120 struct rcu_head rcu_head;
121 struct notifier_block notifier;
122 char tfm_name[CRYPTO_MAX_ALG_NAME];
123 };
124
125 /*
126 * struct zswap_entry
127 *
128 * This structure contains the metadata for tracking a single compressed
129 * page within zswap.
130 *
131 * rbnode - links the entry into red-black tree for the appropriate swap type
132 * offset - the swap offset for the entry. Index into the red-black tree.
133 * refcount - the number of outstanding reference to the entry. This is needed
134 * to protect against premature freeing of the entry by code
135 * concurrent calls to load, invalidate, and writeback. The lock
136 * for the zswap_tree structure that contains the entry must
137 * be held while changing the refcount. Since the lock must
138 * be held, there is no reason to also make refcount atomic.
139 * length - the length in bytes of the compressed page data. Needed during
140 * decompression
141 * pool - the zswap_pool the entry's data is in
142 * handle - zpool allocation handle that stores the compressed page data
143 */
144 struct zswap_entry {
145 struct rb_node rbnode;
146 pgoff_t offset;
147 int refcount;
148 unsigned int length;
149 struct zswap_pool *pool;
150 unsigned long handle;
151 };
152
153 struct zswap_header {
154 swp_entry_t swpentry;
155 };
156
157 /*
158 * The tree lock in the zswap_tree struct protects a few things:
159 * - the rbtree
160 * - the refcount field of each entry in the tree
161 */
162 struct zswap_tree {
163 struct rb_root rbroot;
164 spinlock_t lock;
165 };
166
167 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
168
169 /* RCU-protected iteration */
170 static LIST_HEAD(zswap_pools);
171 /* protects zswap_pools list modification */
172 static DEFINE_SPINLOCK(zswap_pools_lock);
173
174 /* used by param callback function */
175 static bool zswap_init_started;
176
177 /*********************************
178 * helpers and fwd declarations
179 **********************************/
180
181 #define zswap_pool_debug(msg, p) \
182 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
183 zpool_get_type((p)->zpool))
184
185 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
186 static int zswap_pool_get(struct zswap_pool *pool);
187 static void zswap_pool_put(struct zswap_pool *pool);
188
189 static const struct zpool_ops zswap_zpool_ops = {
190 .evict = zswap_writeback_entry
191 };
192
193 static bool zswap_is_full(void)
194 {
195 return totalram_pages * zswap_max_pool_percent / 100 <
196 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
197 }
198
199 static void zswap_update_total_size(void)
200 {
201 struct zswap_pool *pool;
202 u64 total = 0;
203
204 rcu_read_lock();
205
206 list_for_each_entry_rcu(pool, &zswap_pools, list)
207 total += zpool_get_total_size(pool->zpool);
208
209 rcu_read_unlock();
210
211 zswap_pool_total_size = total;
212 }
213
214 /*********************************
215 * zswap entry functions
216 **********************************/
217 static struct kmem_cache *zswap_entry_cache;
218
219 static int __init zswap_entry_cache_create(void)
220 {
221 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
222 return zswap_entry_cache == NULL;
223 }
224
225 static void __init zswap_entry_cache_destroy(void)
226 {
227 kmem_cache_destroy(zswap_entry_cache);
228 }
229
230 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
231 {
232 struct zswap_entry *entry;
233 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
234 if (!entry)
235 return NULL;
236 entry->refcount = 1;
237 RB_CLEAR_NODE(&entry->rbnode);
238 return entry;
239 }
240
241 static void zswap_entry_cache_free(struct zswap_entry *entry)
242 {
243 kmem_cache_free(zswap_entry_cache, entry);
244 }
245
246 /*********************************
247 * rbtree functions
248 **********************************/
249 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
250 {
251 struct rb_node *node = root->rb_node;
252 struct zswap_entry *entry;
253
254 while (node) {
255 entry = rb_entry(node, struct zswap_entry, rbnode);
256 if (entry->offset > offset)
257 node = node->rb_left;
258 else if (entry->offset < offset)
259 node = node->rb_right;
260 else
261 return entry;
262 }
263 return NULL;
264 }
265
266 /*
267 * In the case that a entry with the same offset is found, a pointer to
268 * the existing entry is stored in dupentry and the function returns -EEXIST
269 */
270 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
271 struct zswap_entry **dupentry)
272 {
273 struct rb_node **link = &root->rb_node, *parent = NULL;
274 struct zswap_entry *myentry;
275
276 while (*link) {
277 parent = *link;
278 myentry = rb_entry(parent, struct zswap_entry, rbnode);
279 if (myentry->offset > entry->offset)
280 link = &(*link)->rb_left;
281 else if (myentry->offset < entry->offset)
282 link = &(*link)->rb_right;
283 else {
284 *dupentry = myentry;
285 return -EEXIST;
286 }
287 }
288 rb_link_node(&entry->rbnode, parent, link);
289 rb_insert_color(&entry->rbnode, root);
290 return 0;
291 }
292
293 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
294 {
295 if (!RB_EMPTY_NODE(&entry->rbnode)) {
296 rb_erase(&entry->rbnode, root);
297 RB_CLEAR_NODE(&entry->rbnode);
298 }
299 }
300
301 /*
302 * Carries out the common pattern of freeing and entry's zpool allocation,
303 * freeing the entry itself, and decrementing the number of stored pages.
304 */
305 static void zswap_free_entry(struct zswap_entry *entry)
306 {
307 zpool_free(entry->pool->zpool, entry->handle);
308 zswap_pool_put(entry->pool);
309 zswap_entry_cache_free(entry);
310 atomic_dec(&zswap_stored_pages);
311 zswap_update_total_size();
312 }
313
314 /* caller must hold the tree lock */
315 static void zswap_entry_get(struct zswap_entry *entry)
316 {
317 entry->refcount++;
318 }
319
320 /* caller must hold the tree lock
321 * remove from the tree and free it, if nobody reference the entry
322 */
323 static void zswap_entry_put(struct zswap_tree *tree,
324 struct zswap_entry *entry)
325 {
326 int refcount = --entry->refcount;
327
328 BUG_ON(refcount < 0);
329 if (refcount == 0) {
330 zswap_rb_erase(&tree->rbroot, entry);
331 zswap_free_entry(entry);
332 }
333 }
334
335 /* caller must hold the tree lock */
336 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
337 pgoff_t offset)
338 {
339 struct zswap_entry *entry;
340
341 entry = zswap_rb_search(root, offset);
342 if (entry)
343 zswap_entry_get(entry);
344
345 return entry;
346 }
347
348 /*********************************
349 * per-cpu code
350 **********************************/
351 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
352
353 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
354 {
355 u8 *dst;
356
357 switch (action) {
358 case CPU_UP_PREPARE:
359 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
360 if (!dst) {
361 pr_err("can't allocate compressor buffer\n");
362 return NOTIFY_BAD;
363 }
364 per_cpu(zswap_dstmem, cpu) = dst;
365 break;
366 case CPU_DEAD:
367 case CPU_UP_CANCELED:
368 dst = per_cpu(zswap_dstmem, cpu);
369 kfree(dst);
370 per_cpu(zswap_dstmem, cpu) = NULL;
371 break;
372 default:
373 break;
374 }
375 return NOTIFY_OK;
376 }
377
378 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
379 unsigned long action, void *pcpu)
380 {
381 return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
382 }
383
384 static struct notifier_block zswap_dstmem_notifier = {
385 .notifier_call = zswap_cpu_dstmem_notifier,
386 };
387
388 static int __init zswap_cpu_dstmem_init(void)
389 {
390 unsigned long cpu;
391
392 cpu_notifier_register_begin();
393 for_each_online_cpu(cpu)
394 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
395 NOTIFY_BAD)
396 goto cleanup;
397 __register_cpu_notifier(&zswap_dstmem_notifier);
398 cpu_notifier_register_done();
399 return 0;
400
401 cleanup:
402 for_each_online_cpu(cpu)
403 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
404 cpu_notifier_register_done();
405 return -ENOMEM;
406 }
407
408 static void zswap_cpu_dstmem_destroy(void)
409 {
410 unsigned long cpu;
411
412 cpu_notifier_register_begin();
413 for_each_online_cpu(cpu)
414 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
415 __unregister_cpu_notifier(&zswap_dstmem_notifier);
416 cpu_notifier_register_done();
417 }
418
419 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
420 unsigned long action, unsigned long cpu)
421 {
422 struct crypto_comp *tfm;
423
424 switch (action) {
425 case CPU_UP_PREPARE:
426 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
427 break;
428 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
429 if (IS_ERR_OR_NULL(tfm)) {
430 pr_err("could not alloc crypto comp %s : %ld\n",
431 pool->tfm_name, PTR_ERR(tfm));
432 return NOTIFY_BAD;
433 }
434 *per_cpu_ptr(pool->tfm, cpu) = tfm;
435 break;
436 case CPU_DEAD:
437 case CPU_UP_CANCELED:
438 tfm = *per_cpu_ptr(pool->tfm, cpu);
439 if (!IS_ERR_OR_NULL(tfm))
440 crypto_free_comp(tfm);
441 *per_cpu_ptr(pool->tfm, cpu) = NULL;
442 break;
443 default:
444 break;
445 }
446 return NOTIFY_OK;
447 }
448
449 static int zswap_cpu_comp_notifier(struct notifier_block *nb,
450 unsigned long action, void *pcpu)
451 {
452 unsigned long cpu = (unsigned long)pcpu;
453 struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
454
455 return __zswap_cpu_comp_notifier(pool, action, cpu);
456 }
457
458 static int zswap_cpu_comp_init(struct zswap_pool *pool)
459 {
460 unsigned long cpu;
461
462 memset(&pool->notifier, 0, sizeof(pool->notifier));
463 pool->notifier.notifier_call = zswap_cpu_comp_notifier;
464
465 cpu_notifier_register_begin();
466 for_each_online_cpu(cpu)
467 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
468 NOTIFY_BAD)
469 goto cleanup;
470 __register_cpu_notifier(&pool->notifier);
471 cpu_notifier_register_done();
472 return 0;
473
474 cleanup:
475 for_each_online_cpu(cpu)
476 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
477 cpu_notifier_register_done();
478 return -ENOMEM;
479 }
480
481 static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
482 {
483 unsigned long cpu;
484
485 cpu_notifier_register_begin();
486 for_each_online_cpu(cpu)
487 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
488 __unregister_cpu_notifier(&pool->notifier);
489 cpu_notifier_register_done();
490 }
491
492 /*********************************
493 * pool functions
494 **********************************/
495
496 static struct zswap_pool *__zswap_pool_current(void)
497 {
498 struct zswap_pool *pool;
499
500 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
501 WARN_ON(!pool);
502
503 return pool;
504 }
505
506 static struct zswap_pool *zswap_pool_current(void)
507 {
508 assert_spin_locked(&zswap_pools_lock);
509
510 return __zswap_pool_current();
511 }
512
513 static struct zswap_pool *zswap_pool_current_get(void)
514 {
515 struct zswap_pool *pool;
516
517 rcu_read_lock();
518
519 pool = __zswap_pool_current();
520 if (!pool || !zswap_pool_get(pool))
521 pool = NULL;
522
523 rcu_read_unlock();
524
525 return pool;
526 }
527
528 static struct zswap_pool *zswap_pool_last_get(void)
529 {
530 struct zswap_pool *pool, *last = NULL;
531
532 rcu_read_lock();
533
534 list_for_each_entry_rcu(pool, &zswap_pools, list)
535 last = pool;
536 if (!WARN_ON(!last) && !zswap_pool_get(last))
537 last = NULL;
538
539 rcu_read_unlock();
540
541 return last;
542 }
543
544 /* type and compressor must be null-terminated */
545 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
546 {
547 struct zswap_pool *pool;
548
549 assert_spin_locked(&zswap_pools_lock);
550
551 list_for_each_entry_rcu(pool, &zswap_pools, list) {
552 if (strcmp(pool->tfm_name, compressor))
553 continue;
554 if (strcmp(zpool_get_type(pool->zpool), type))
555 continue;
556 /* if we can't get it, it's about to be destroyed */
557 if (!zswap_pool_get(pool))
558 continue;
559 return pool;
560 }
561
562 return NULL;
563 }
564
565 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
566 {
567 struct zswap_pool *pool;
568 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
569
570 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
571 if (!pool) {
572 pr_err("pool alloc failed\n");
573 return NULL;
574 }
575
576 pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops);
577 if (!pool->zpool) {
578 pr_err("%s zpool not available\n", type);
579 goto error;
580 }
581 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
582
583 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
584 pool->tfm = alloc_percpu(struct crypto_comp *);
585 if (!pool->tfm) {
586 pr_err("percpu alloc failed\n");
587 goto error;
588 }
589
590 if (zswap_cpu_comp_init(pool))
591 goto error;
592 pr_debug("using %s compressor\n", pool->tfm_name);
593
594 /* being the current pool takes 1 ref; this func expects the
595 * caller to always add the new pool as the current pool
596 */
597 kref_init(&pool->kref);
598 INIT_LIST_HEAD(&pool->list);
599
600 zswap_pool_debug("created", pool);
601
602 return pool;
603
604 error:
605 free_percpu(pool->tfm);
606 if (pool->zpool)
607 zpool_destroy_pool(pool->zpool);
608 kfree(pool);
609 return NULL;
610 }
611
612 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
613 {
614 if (!crypto_has_comp(zswap_compressor, 0, 0)) {
615 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
616 pr_err("default compressor %s not available\n",
617 zswap_compressor);
618 return NULL;
619 }
620 pr_err("compressor %s not available, using default %s\n",
621 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
622 param_free_charp(&zswap_compressor);
623 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
624 }
625 if (!zpool_has_pool(zswap_zpool_type)) {
626 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
627 pr_err("default zpool %s not available\n",
628 zswap_zpool_type);
629 return NULL;
630 }
631 pr_err("zpool %s not available, using default %s\n",
632 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
633 param_free_charp(&zswap_zpool_type);
634 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
635 }
636
637 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
638 }
639
640 static void zswap_pool_destroy(struct zswap_pool *pool)
641 {
642 zswap_pool_debug("destroying", pool);
643
644 zswap_cpu_comp_destroy(pool);
645 free_percpu(pool->tfm);
646 zpool_destroy_pool(pool->zpool);
647 kfree(pool);
648 }
649
650 static int __must_check zswap_pool_get(struct zswap_pool *pool)
651 {
652 return kref_get_unless_zero(&pool->kref);
653 }
654
655 static void __zswap_pool_release(struct rcu_head *head)
656 {
657 struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
658
659 /* nobody should have been able to get a kref... */
660 WARN_ON(kref_get_unless_zero(&pool->kref));
661
662 /* pool is now off zswap_pools list and has no references. */
663 zswap_pool_destroy(pool);
664 }
665
666 static void __zswap_pool_empty(struct kref *kref)
667 {
668 struct zswap_pool *pool;
669
670 pool = container_of(kref, typeof(*pool), kref);
671
672 spin_lock(&zswap_pools_lock);
673
674 WARN_ON(pool == zswap_pool_current());
675
676 list_del_rcu(&pool->list);
677 call_rcu(&pool->rcu_head, __zswap_pool_release);
678
679 spin_unlock(&zswap_pools_lock);
680 }
681
682 static void zswap_pool_put(struct zswap_pool *pool)
683 {
684 kref_put(&pool->kref, __zswap_pool_empty);
685 }
686
687 /*********************************
688 * param callbacks
689 **********************************/
690
691 /* val must be a null-terminated string */
692 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
693 char *type, char *compressor)
694 {
695 struct zswap_pool *pool, *put_pool = NULL;
696 char *s = strstrip((char *)val);
697 int ret;
698
699 /* no change required */
700 if (!strcmp(s, *(char **)kp->arg))
701 return 0;
702
703 /* if this is load-time (pre-init) param setting,
704 * don't create a pool; that's done during init.
705 */
706 if (!zswap_init_started)
707 return param_set_charp(s, kp);
708
709 if (!type) {
710 if (!zpool_has_pool(s)) {
711 pr_err("zpool %s not available\n", s);
712 return -ENOENT;
713 }
714 type = s;
715 } else if (!compressor) {
716 if (!crypto_has_comp(s, 0, 0)) {
717 pr_err("compressor %s not available\n", s);
718 return -ENOENT;
719 }
720 compressor = s;
721 } else {
722 WARN_ON(1);
723 return -EINVAL;
724 }
725
726 spin_lock(&zswap_pools_lock);
727
728 pool = zswap_pool_find_get(type, compressor);
729 if (pool) {
730 zswap_pool_debug("using existing", pool);
731 list_del_rcu(&pool->list);
732 } else {
733 spin_unlock(&zswap_pools_lock);
734 pool = zswap_pool_create(type, compressor);
735 spin_lock(&zswap_pools_lock);
736 }
737
738 if (pool)
739 ret = param_set_charp(s, kp);
740 else
741 ret = -EINVAL;
742
743 if (!ret) {
744 put_pool = zswap_pool_current();
745 list_add_rcu(&pool->list, &zswap_pools);
746 } else if (pool) {
747 /* add the possibly pre-existing pool to the end of the pools
748 * list; if it's new (and empty) then it'll be removed and
749 * destroyed by the put after we drop the lock
750 */
751 list_add_tail_rcu(&pool->list, &zswap_pools);
752 put_pool = pool;
753 }
754
755 spin_unlock(&zswap_pools_lock);
756
757 /* drop the ref from either the old current pool,
758 * or the new pool we failed to add
759 */
760 if (put_pool)
761 zswap_pool_put(put_pool);
762
763 return ret;
764 }
765
766 static int zswap_compressor_param_set(const char *val,
767 const struct kernel_param *kp)
768 {
769 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
770 }
771
772 static int zswap_zpool_param_set(const char *val,
773 const struct kernel_param *kp)
774 {
775 return __zswap_param_set(val, kp, NULL, zswap_compressor);
776 }
777
778 /*********************************
779 * writeback code
780 **********************************/
781 /* return enum for zswap_get_swap_cache_page */
782 enum zswap_get_swap_ret {
783 ZSWAP_SWAPCACHE_NEW,
784 ZSWAP_SWAPCACHE_EXIST,
785 ZSWAP_SWAPCACHE_FAIL,
786 };
787
788 /*
789 * zswap_get_swap_cache_page
790 *
791 * This is an adaption of read_swap_cache_async()
792 *
793 * This function tries to find a page with the given swap entry
794 * in the swapper_space address space (the swap cache). If the page
795 * is found, it is returned in retpage. Otherwise, a page is allocated,
796 * added to the swap cache, and returned in retpage.
797 *
798 * If success, the swap cache page is returned in retpage
799 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
800 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
801 * the new page is added to swapcache and locked
802 * Returns ZSWAP_SWAPCACHE_FAIL on error
803 */
804 static int zswap_get_swap_cache_page(swp_entry_t entry,
805 struct page **retpage)
806 {
807 bool page_was_allocated;
808
809 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
810 NULL, 0, &page_was_allocated);
811 if (page_was_allocated)
812 return ZSWAP_SWAPCACHE_NEW;
813 if (!*retpage)
814 return ZSWAP_SWAPCACHE_FAIL;
815 return ZSWAP_SWAPCACHE_EXIST;
816 }
817
818 /*
819 * Attempts to free an entry by adding a page to the swap cache,
820 * decompressing the entry data into the page, and issuing a
821 * bio write to write the page back to the swap device.
822 *
823 * This can be thought of as a "resumed writeback" of the page
824 * to the swap device. We are basically resuming the same swap
825 * writeback path that was intercepted with the frontswap_store()
826 * in the first place. After the page has been decompressed into
827 * the swap cache, the compressed version stored by zswap can be
828 * freed.
829 */
830 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
831 {
832 struct zswap_header *zhdr;
833 swp_entry_t swpentry;
834 struct zswap_tree *tree;
835 pgoff_t offset;
836 struct zswap_entry *entry;
837 struct page *page;
838 struct crypto_comp *tfm;
839 u8 *src, *dst;
840 unsigned int dlen;
841 int ret;
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 };
845
846 /* extract swpentry from data */
847 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
848 swpentry = zhdr->swpentry; /* here */
849 zpool_unmap_handle(pool, handle);
850 tree = zswap_trees[swp_type(swpentry)];
851 offset = swp_offset(swpentry);
852
853 /* find and ref zswap entry */
854 spin_lock(&tree->lock);
855 entry = zswap_entry_find_get(&tree->rbroot, offset);
856 if (!entry) {
857 /* entry was invalidated */
858 spin_unlock(&tree->lock);
859 return 0;
860 }
861 spin_unlock(&tree->lock);
862 BUG_ON(offset != entry->offset);
863
864 /* try to allocate swap cache page */
865 switch (zswap_get_swap_cache_page(swpentry, &page)) {
866 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
867 ret = -ENOMEM;
868 goto fail;
869
870 case ZSWAP_SWAPCACHE_EXIST:
871 /* page is already in the swap cache, ignore for now */
872 put_page(page);
873 ret = -EEXIST;
874 goto fail;
875
876 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
877 /* decompress */
878 dlen = PAGE_SIZE;
879 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
880 ZPOOL_MM_RO) + sizeof(struct zswap_header);
881 dst = kmap_atomic(page);
882 tfm = *get_cpu_ptr(entry->pool->tfm);
883 ret = crypto_comp_decompress(tfm, src, entry->length,
884 dst, &dlen);
885 put_cpu_ptr(entry->pool->tfm);
886 kunmap_atomic(dst);
887 zpool_unmap_handle(entry->pool->zpool, entry->handle);
888 BUG_ON(ret);
889 BUG_ON(dlen != PAGE_SIZE);
890
891 /* page is up to date */
892 SetPageUptodate(page);
893 }
894
895 /* move it to the tail of the inactive list after end_writeback */
896 SetPageReclaim(page);
897
898 /* start writeback */
899 __swap_writepage(page, &wbc, end_swap_bio_write);
900 put_page(page);
901 zswap_written_back_pages++;
902
903 spin_lock(&tree->lock);
904 /* drop local reference */
905 zswap_entry_put(tree, entry);
906
907 /*
908 * There are two possible situations for entry here:
909 * (1) refcount is 1(normal case), entry is valid and on the tree
910 * (2) refcount is 0, entry is freed and not on the tree
911 * because invalidate happened during writeback
912 * search the tree and free the entry if find entry
913 */
914 if (entry == zswap_rb_search(&tree->rbroot, offset))
915 zswap_entry_put(tree, entry);
916 spin_unlock(&tree->lock);
917
918 goto end;
919
920 /*
921 * if we get here due to ZSWAP_SWAPCACHE_EXIST
922 * a load may happening concurrently
923 * it is safe and okay to not free the entry
924 * if we free the entry in the following put
925 * it it either okay to return !0
926 */
927 fail:
928 spin_lock(&tree->lock);
929 zswap_entry_put(tree, entry);
930 spin_unlock(&tree->lock);
931
932 end:
933 return ret;
934 }
935
936 static int zswap_shrink(void)
937 {
938 struct zswap_pool *pool;
939 int ret;
940
941 pool = zswap_pool_last_get();
942 if (!pool)
943 return -ENOENT;
944
945 ret = zpool_shrink(pool->zpool, 1, NULL);
946
947 zswap_pool_put(pool);
948
949 return ret;
950 }
951
952 /*********************************
953 * frontswap hooks
954 **********************************/
955 /* attempts to compress and store an single page */
956 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
957 struct page *page)
958 {
959 struct zswap_tree *tree = zswap_trees[type];
960 struct zswap_entry *entry, *dupentry;
961 struct crypto_comp *tfm;
962 int ret;
963 unsigned int dlen = PAGE_SIZE, len;
964 unsigned long handle;
965 char *buf;
966 u8 *src, *dst;
967 struct zswap_header *zhdr;
968
969 if (!zswap_enabled || !tree) {
970 ret = -ENODEV;
971 goto reject;
972 }
973
974 /* reclaim space if needed */
975 if (zswap_is_full()) {
976 zswap_pool_limit_hit++;
977 if (zswap_shrink()) {
978 zswap_reject_reclaim_fail++;
979 ret = -ENOMEM;
980 goto reject;
981 }
982 }
983
984 /* allocate entry */
985 entry = zswap_entry_cache_alloc(GFP_KERNEL);
986 if (!entry) {
987 zswap_reject_kmemcache_fail++;
988 ret = -ENOMEM;
989 goto reject;
990 }
991
992 /* if entry is successfully added, it keeps the reference */
993 entry->pool = zswap_pool_current_get();
994 if (!entry->pool) {
995 ret = -EINVAL;
996 goto freepage;
997 }
998
999 /* compress */
1000 dst = get_cpu_var(zswap_dstmem);
1001 tfm = *get_cpu_ptr(entry->pool->tfm);
1002 src = kmap_atomic(page);
1003 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1004 kunmap_atomic(src);
1005 put_cpu_ptr(entry->pool->tfm);
1006 if (ret) {
1007 ret = -EINVAL;
1008 goto put_dstmem;
1009 }
1010
1011 /* store */
1012 len = dlen + sizeof(struct zswap_header);
1013 ret = zpool_malloc(entry->pool->zpool, len,
1014 __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1015 &handle);
1016 if (ret == -ENOSPC) {
1017 zswap_reject_compress_poor++;
1018 goto put_dstmem;
1019 }
1020 if (ret) {
1021 zswap_reject_alloc_fail++;
1022 goto put_dstmem;
1023 }
1024 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1025 zhdr->swpentry = swp_entry(type, offset);
1026 buf = (u8 *)(zhdr + 1);
1027 memcpy(buf, dst, dlen);
1028 zpool_unmap_handle(entry->pool->zpool, handle);
1029 put_cpu_var(zswap_dstmem);
1030
1031 /* populate entry */
1032 entry->offset = offset;
1033 entry->handle = handle;
1034 entry->length = dlen;
1035
1036 /* map */
1037 spin_lock(&tree->lock);
1038 do {
1039 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1040 if (ret == -EEXIST) {
1041 zswap_duplicate_entry++;
1042 /* remove from rbtree */
1043 zswap_rb_erase(&tree->rbroot, dupentry);
1044 zswap_entry_put(tree, dupentry);
1045 }
1046 } while (ret == -EEXIST);
1047 spin_unlock(&tree->lock);
1048
1049 /* update stats */
1050 atomic_inc(&zswap_stored_pages);
1051 zswap_update_total_size();
1052
1053 return 0;
1054
1055 put_dstmem:
1056 put_cpu_var(zswap_dstmem);
1057 zswap_pool_put(entry->pool);
1058 freepage:
1059 zswap_entry_cache_free(entry);
1060 reject:
1061 return ret;
1062 }
1063
1064 /*
1065 * returns 0 if the page was successfully decompressed
1066 * return -1 on entry not found or error
1067 */
1068 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1069 struct page *page)
1070 {
1071 struct zswap_tree *tree = zswap_trees[type];
1072 struct zswap_entry *entry;
1073 struct crypto_comp *tfm;
1074 u8 *src, *dst;
1075 unsigned int dlen;
1076 int ret;
1077
1078 /* find */
1079 spin_lock(&tree->lock);
1080 entry = zswap_entry_find_get(&tree->rbroot, offset);
1081 if (!entry) {
1082 /* entry was written back */
1083 spin_unlock(&tree->lock);
1084 return -1;
1085 }
1086 spin_unlock(&tree->lock);
1087
1088 /* decompress */
1089 dlen = PAGE_SIZE;
1090 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1091 ZPOOL_MM_RO) + sizeof(struct zswap_header);
1092 dst = kmap_atomic(page);
1093 tfm = *get_cpu_ptr(entry->pool->tfm);
1094 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1095 put_cpu_ptr(entry->pool->tfm);
1096 kunmap_atomic(dst);
1097 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1098 BUG_ON(ret);
1099
1100 spin_lock(&tree->lock);
1101 zswap_entry_put(tree, entry);
1102 spin_unlock(&tree->lock);
1103
1104 return 0;
1105 }
1106
1107 /* frees an entry in zswap */
1108 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1109 {
1110 struct zswap_tree *tree = zswap_trees[type];
1111 struct zswap_entry *entry;
1112
1113 /* find */
1114 spin_lock(&tree->lock);
1115 entry = zswap_rb_search(&tree->rbroot, offset);
1116 if (!entry) {
1117 /* entry was written back */
1118 spin_unlock(&tree->lock);
1119 return;
1120 }
1121
1122 /* remove from rbtree */
1123 zswap_rb_erase(&tree->rbroot, entry);
1124
1125 /* drop the initial reference from entry creation */
1126 zswap_entry_put(tree, entry);
1127
1128 spin_unlock(&tree->lock);
1129 }
1130
1131 /* frees all zswap entries for the given swap type */
1132 static void zswap_frontswap_invalidate_area(unsigned type)
1133 {
1134 struct zswap_tree *tree = zswap_trees[type];
1135 struct zswap_entry *entry, *n;
1136
1137 if (!tree)
1138 return;
1139
1140 /* walk the tree and free everything */
1141 spin_lock(&tree->lock);
1142 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1143 zswap_free_entry(entry);
1144 tree->rbroot = RB_ROOT;
1145 spin_unlock(&tree->lock);
1146 kfree(tree);
1147 zswap_trees[type] = NULL;
1148 }
1149
1150 static void zswap_frontswap_init(unsigned type)
1151 {
1152 struct zswap_tree *tree;
1153
1154 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1155 if (!tree) {
1156 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1157 return;
1158 }
1159
1160 tree->rbroot = RB_ROOT;
1161 spin_lock_init(&tree->lock);
1162 zswap_trees[type] = tree;
1163 }
1164
1165 static struct frontswap_ops zswap_frontswap_ops = {
1166 .store = zswap_frontswap_store,
1167 .load = zswap_frontswap_load,
1168 .invalidate_page = zswap_frontswap_invalidate_page,
1169 .invalidate_area = zswap_frontswap_invalidate_area,
1170 .init = zswap_frontswap_init
1171 };
1172
1173 /*********************************
1174 * debugfs functions
1175 **********************************/
1176 #ifdef CONFIG_DEBUG_FS
1177 #include <linux/debugfs.h>
1178
1179 static struct dentry *zswap_debugfs_root;
1180
1181 static int __init zswap_debugfs_init(void)
1182 {
1183 if (!debugfs_initialized())
1184 return -ENODEV;
1185
1186 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1187 if (!zswap_debugfs_root)
1188 return -ENOMEM;
1189
1190 debugfs_create_u64("pool_limit_hit", S_IRUGO,
1191 zswap_debugfs_root, &zswap_pool_limit_hit);
1192 debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1193 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1194 debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1195 zswap_debugfs_root, &zswap_reject_alloc_fail);
1196 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1197 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1198 debugfs_create_u64("reject_compress_poor", S_IRUGO,
1199 zswap_debugfs_root, &zswap_reject_compress_poor);
1200 debugfs_create_u64("written_back_pages", S_IRUGO,
1201 zswap_debugfs_root, &zswap_written_back_pages);
1202 debugfs_create_u64("duplicate_entry", S_IRUGO,
1203 zswap_debugfs_root, &zswap_duplicate_entry);
1204 debugfs_create_u64("pool_total_size", S_IRUGO,
1205 zswap_debugfs_root, &zswap_pool_total_size);
1206 debugfs_create_atomic_t("stored_pages", S_IRUGO,
1207 zswap_debugfs_root, &zswap_stored_pages);
1208
1209 return 0;
1210 }
1211
1212 static void __exit zswap_debugfs_exit(void)
1213 {
1214 debugfs_remove_recursive(zswap_debugfs_root);
1215 }
1216 #else
1217 static int __init zswap_debugfs_init(void)
1218 {
1219 return 0;
1220 }
1221
1222 static void __exit zswap_debugfs_exit(void) { }
1223 #endif
1224
1225 /*********************************
1226 * module init and exit
1227 **********************************/
1228 static int __init init_zswap(void)
1229 {
1230 struct zswap_pool *pool;
1231
1232 zswap_init_started = true;
1233
1234 if (zswap_entry_cache_create()) {
1235 pr_err("entry cache creation failed\n");
1236 goto cache_fail;
1237 }
1238
1239 if (zswap_cpu_dstmem_init()) {
1240 pr_err("dstmem alloc failed\n");
1241 goto dstmem_fail;
1242 }
1243
1244 pool = __zswap_pool_create_fallback();
1245 if (!pool) {
1246 pr_err("pool creation failed\n");
1247 goto pool_fail;
1248 }
1249 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1250 zpool_get_type(pool->zpool));
1251
1252 list_add(&pool->list, &zswap_pools);
1253
1254 frontswap_register_ops(&zswap_frontswap_ops);
1255 if (zswap_debugfs_init())
1256 pr_warn("debugfs initialization failed\n");
1257 return 0;
1258
1259 pool_fail:
1260 zswap_cpu_dstmem_destroy();
1261 dstmem_fail:
1262 zswap_entry_cache_destroy();
1263 cache_fail:
1264 return -ENOMEM;
1265 }
1266 /* must be late so crypto has time to come up */
1267 late_initcall(init_zswap);
1268
1269 MODULE_LICENSE("GPL");
1270 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1271 MODULE_DESCRIPTION("Compressed cache for swap pages");
This page took 0.070763 seconds and 4 git commands to generate.