dev: set iflink to 0 for virtual interfaces
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
509 }
510
511 /**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 __dev_remove_offload(po);
526
527 synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533 Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625 }
626
627 /*
628 * Saves at boot time configured settings for any netdevice.
629 */
630 int __init netdev_boot_setup(char *str)
631 {
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658 Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
665 *
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
668 */
669
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
674
675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 if (dev->rtnl_link_ops)
677 return 0;
678
679 return dev->ifindex;
680 }
681 EXPORT_SYMBOL(dev_get_iflink);
682
683 /**
684 * __dev_get_by_name - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
687 *
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
693 */
694
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
696 {
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
699
700 hlist_for_each_entry(dev, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_name);
707
708 /**
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
718 */
719
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721 {
722 struct net_device *dev;
723 struct hlist_head *head = dev_name_hash(net, name);
724
725 hlist_for_each_entry_rcu(dev, head, name_hlist)
726 if (!strncmp(dev->name, name, IFNAMSIZ))
727 return dev;
728
729 return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_name_rcu);
732
733 /**
734 * dev_get_by_name - find a device by its name
735 * @net: the applicable net namespace
736 * @name: name to find
737 *
738 * Find an interface by name. This can be called from any
739 * context and does its own locking. The returned handle has
740 * the usage count incremented and the caller must use dev_put() to
741 * release it when it is no longer needed. %NULL is returned if no
742 * matching device is found.
743 */
744
745 struct net_device *dev_get_by_name(struct net *net, const char *name)
746 {
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_name_rcu(net, name);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_name);
757
758 /**
759 * __dev_get_by_index - find a device by its ifindex
760 * @net: the applicable net namespace
761 * @ifindex: index of device
762 *
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold either the RTNL semaphore
767 * or @dev_base_lock.
768 */
769
770 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_index);
782
783 /**
784 * dev_get_by_index_rcu - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
787 *
788 * Search for an interface by index. Returns %NULL if the device
789 * is not found or a pointer to the device. The device has not
790 * had its reference counter increased so the caller must be careful
791 * about locking. The caller must hold RCU lock.
792 */
793
794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
795 {
796 struct net_device *dev;
797 struct hlist_head *head = dev_index_hash(net, ifindex);
798
799 hlist_for_each_entry_rcu(dev, head, index_hlist)
800 if (dev->ifindex == ifindex)
801 return dev;
802
803 return NULL;
804 }
805 EXPORT_SYMBOL(dev_get_by_index_rcu);
806
807
808 /**
809 * dev_get_by_index - find a device by its ifindex
810 * @net: the applicable net namespace
811 * @ifindex: index of device
812 *
813 * Search for an interface by index. Returns NULL if the device
814 * is not found or a pointer to the device. The device returned has
815 * had a reference added and the pointer is safe until the user calls
816 * dev_put to indicate they have finished with it.
817 */
818
819 struct net_device *dev_get_by_index(struct net *net, int ifindex)
820 {
821 struct net_device *dev;
822
823 rcu_read_lock();
824 dev = dev_get_by_index_rcu(net, ifindex);
825 if (dev)
826 dev_hold(dev);
827 rcu_read_unlock();
828 return dev;
829 }
830 EXPORT_SYMBOL(dev_get_by_index);
831
832 /**
833 * netdev_get_name - get a netdevice name, knowing its ifindex.
834 * @net: network namespace
835 * @name: a pointer to the buffer where the name will be stored.
836 * @ifindex: the ifindex of the interface to get the name from.
837 *
838 * The use of raw_seqcount_begin() and cond_resched() before
839 * retrying is required as we want to give the writers a chance
840 * to complete when CONFIG_PREEMPT is not set.
841 */
842 int netdev_get_name(struct net *net, char *name, int ifindex)
843 {
844 struct net_device *dev;
845 unsigned int seq;
846
847 retry:
848 seq = raw_seqcount_begin(&devnet_rename_seq);
849 rcu_read_lock();
850 dev = dev_get_by_index_rcu(net, ifindex);
851 if (!dev) {
852 rcu_read_unlock();
853 return -ENODEV;
854 }
855
856 strcpy(name, dev->name);
857 rcu_read_unlock();
858 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
859 cond_resched();
860 goto retry;
861 }
862
863 return 0;
864 }
865
866 /**
867 * dev_getbyhwaddr_rcu - find a device by its hardware address
868 * @net: the applicable net namespace
869 * @type: media type of device
870 * @ha: hardware address
871 *
872 * Search for an interface by MAC address. Returns NULL if the device
873 * is not found or a pointer to the device.
874 * The caller must hold RCU or RTNL.
875 * The returned device has not had its ref count increased
876 * and the caller must therefore be careful about locking
877 *
878 */
879
880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
881 const char *ha)
882 {
883 struct net_device *dev;
884
885 for_each_netdev_rcu(net, dev)
886 if (dev->type == type &&
887 !memcmp(dev->dev_addr, ha, dev->addr_len))
888 return dev;
889
890 return NULL;
891 }
892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
893
894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
895 {
896 struct net_device *dev;
897
898 ASSERT_RTNL();
899 for_each_netdev(net, dev)
900 if (dev->type == type)
901 return dev;
902
903 return NULL;
904 }
905 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
906
907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
908 {
909 struct net_device *dev, *ret = NULL;
910
911 rcu_read_lock();
912 for_each_netdev_rcu(net, dev)
913 if (dev->type == type) {
914 dev_hold(dev);
915 ret = dev;
916 break;
917 }
918 rcu_read_unlock();
919 return ret;
920 }
921 EXPORT_SYMBOL(dev_getfirstbyhwtype);
922
923 /**
924 * __dev_get_by_flags - find any device with given flags
925 * @net: the applicable net namespace
926 * @if_flags: IFF_* values
927 * @mask: bitmask of bits in if_flags to check
928 *
929 * Search for any interface with the given flags. Returns NULL if a device
930 * is not found or a pointer to the device. Must be called inside
931 * rtnl_lock(), and result refcount is unchanged.
932 */
933
934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
935 unsigned short mask)
936 {
937 struct net_device *dev, *ret;
938
939 ASSERT_RTNL();
940
941 ret = NULL;
942 for_each_netdev(net, dev) {
943 if (((dev->flags ^ if_flags) & mask) == 0) {
944 ret = dev;
945 break;
946 }
947 }
948 return ret;
949 }
950 EXPORT_SYMBOL(__dev_get_by_flags);
951
952 /**
953 * dev_valid_name - check if name is okay for network device
954 * @name: name string
955 *
956 * Network device names need to be valid file names to
957 * to allow sysfs to work. We also disallow any kind of
958 * whitespace.
959 */
960 bool dev_valid_name(const char *name)
961 {
962 if (*name == '\0')
963 return false;
964 if (strlen(name) >= IFNAMSIZ)
965 return false;
966 if (!strcmp(name, ".") || !strcmp(name, ".."))
967 return false;
968
969 while (*name) {
970 if (*name == '/' || *name == ':' || isspace(*name))
971 return false;
972 name++;
973 }
974 return true;
975 }
976 EXPORT_SYMBOL(dev_valid_name);
977
978 /**
979 * __dev_alloc_name - allocate a name for a device
980 * @net: network namespace to allocate the device name in
981 * @name: name format string
982 * @buf: scratch buffer and result name string
983 *
984 * Passed a format string - eg "lt%d" it will try and find a suitable
985 * id. It scans list of devices to build up a free map, then chooses
986 * the first empty slot. The caller must hold the dev_base or rtnl lock
987 * while allocating the name and adding the device in order to avoid
988 * duplicates.
989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990 * Returns the number of the unit assigned or a negative errno code.
991 */
992
993 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
994 {
995 int i = 0;
996 const char *p;
997 const int max_netdevices = 8*PAGE_SIZE;
998 unsigned long *inuse;
999 struct net_device *d;
1000
1001 p = strnchr(name, IFNAMSIZ-1, '%');
1002 if (p) {
1003 /*
1004 * Verify the string as this thing may have come from
1005 * the user. There must be either one "%d" and no other "%"
1006 * characters.
1007 */
1008 if (p[1] != 'd' || strchr(p + 2, '%'))
1009 return -EINVAL;
1010
1011 /* Use one page as a bit array of possible slots */
1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1013 if (!inuse)
1014 return -ENOMEM;
1015
1016 for_each_netdev(net, d) {
1017 if (!sscanf(d->name, name, &i))
1018 continue;
1019 if (i < 0 || i >= max_netdevices)
1020 continue;
1021
1022 /* avoid cases where sscanf is not exact inverse of printf */
1023 snprintf(buf, IFNAMSIZ, name, i);
1024 if (!strncmp(buf, d->name, IFNAMSIZ))
1025 set_bit(i, inuse);
1026 }
1027
1028 i = find_first_zero_bit(inuse, max_netdevices);
1029 free_page((unsigned long) inuse);
1030 }
1031
1032 if (buf != name)
1033 snprintf(buf, IFNAMSIZ, name, i);
1034 if (!__dev_get_by_name(net, buf))
1035 return i;
1036
1037 /* It is possible to run out of possible slots
1038 * when the name is long and there isn't enough space left
1039 * for the digits, or if all bits are used.
1040 */
1041 return -ENFILE;
1042 }
1043
1044 /**
1045 * dev_alloc_name - allocate a name for a device
1046 * @dev: device
1047 * @name: name format string
1048 *
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1056 */
1057
1058 int dev_alloc_name(struct net_device *dev, const char *name)
1059 {
1060 char buf[IFNAMSIZ];
1061 struct net *net;
1062 int ret;
1063
1064 BUG_ON(!dev_net(dev));
1065 net = dev_net(dev);
1066 ret = __dev_alloc_name(net, name, buf);
1067 if (ret >= 0)
1068 strlcpy(dev->name, buf, IFNAMSIZ);
1069 return ret;
1070 }
1071 EXPORT_SYMBOL(dev_alloc_name);
1072
1073 static int dev_alloc_name_ns(struct net *net,
1074 struct net_device *dev,
1075 const char *name)
1076 {
1077 char buf[IFNAMSIZ];
1078 int ret;
1079
1080 ret = __dev_alloc_name(net, name, buf);
1081 if (ret >= 0)
1082 strlcpy(dev->name, buf, IFNAMSIZ);
1083 return ret;
1084 }
1085
1086 static int dev_get_valid_name(struct net *net,
1087 struct net_device *dev,
1088 const char *name)
1089 {
1090 BUG_ON(!net);
1091
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1094
1095 if (strchr(name, '%'))
1096 return dev_alloc_name_ns(net, dev, name);
1097 else if (__dev_get_by_name(net, name))
1098 return -EEXIST;
1099 else if (dev->name != name)
1100 strlcpy(dev->name, name, IFNAMSIZ);
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * dev_change_name - change name of a device
1107 * @dev: device
1108 * @newname: name (or format string) must be at least IFNAMSIZ
1109 *
1110 * Change name of a device, can pass format strings "eth%d".
1111 * for wildcarding.
1112 */
1113 int dev_change_name(struct net_device *dev, const char *newname)
1114 {
1115 unsigned char old_assign_type;
1116 char oldname[IFNAMSIZ];
1117 int err = 0;
1118 int ret;
1119 struct net *net;
1120
1121 ASSERT_RTNL();
1122 BUG_ON(!dev_net(dev));
1123
1124 net = dev_net(dev);
1125 if (dev->flags & IFF_UP)
1126 return -EBUSY;
1127
1128 write_seqcount_begin(&devnet_rename_seq);
1129
1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1131 write_seqcount_end(&devnet_rename_seq);
1132 return 0;
1133 }
1134
1135 memcpy(oldname, dev->name, IFNAMSIZ);
1136
1137 err = dev_get_valid_name(net, dev, newname);
1138 if (err < 0) {
1139 write_seqcount_end(&devnet_rename_seq);
1140 return err;
1141 }
1142
1143 if (oldname[0] && !strchr(oldname, '%'))
1144 netdev_info(dev, "renamed from %s\n", oldname);
1145
1146 old_assign_type = dev->name_assign_type;
1147 dev->name_assign_type = NET_NAME_RENAMED;
1148
1149 rollback:
1150 ret = device_rename(&dev->dev, dev->name);
1151 if (ret) {
1152 memcpy(dev->name, oldname, IFNAMSIZ);
1153 dev->name_assign_type = old_assign_type;
1154 write_seqcount_end(&devnet_rename_seq);
1155 return ret;
1156 }
1157
1158 write_seqcount_end(&devnet_rename_seq);
1159
1160 netdev_adjacent_rename_links(dev, oldname);
1161
1162 write_lock_bh(&dev_base_lock);
1163 hlist_del_rcu(&dev->name_hlist);
1164 write_unlock_bh(&dev_base_lock);
1165
1166 synchronize_rcu();
1167
1168 write_lock_bh(&dev_base_lock);
1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170 write_unlock_bh(&dev_base_lock);
1171
1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173 ret = notifier_to_errno(ret);
1174
1175 if (ret) {
1176 /* err >= 0 after dev_alloc_name() or stores the first errno */
1177 if (err >= 0) {
1178 err = ret;
1179 write_seqcount_begin(&devnet_rename_seq);
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 memcpy(oldname, newname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 old_assign_type = NET_NAME_RENAMED;
1184 goto rollback;
1185 } else {
1186 pr_err("%s: name change rollback failed: %d\n",
1187 dev->name, ret);
1188 }
1189 }
1190
1191 return err;
1192 }
1193
1194 /**
1195 * dev_set_alias - change ifalias of a device
1196 * @dev: device
1197 * @alias: name up to IFALIASZ
1198 * @len: limit of bytes to copy from info
1199 *
1200 * Set ifalias for a device,
1201 */
1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1203 {
1204 char *new_ifalias;
1205
1206 ASSERT_RTNL();
1207
1208 if (len >= IFALIASZ)
1209 return -EINVAL;
1210
1211 if (!len) {
1212 kfree(dev->ifalias);
1213 dev->ifalias = NULL;
1214 return 0;
1215 }
1216
1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1218 if (!new_ifalias)
1219 return -ENOMEM;
1220 dev->ifalias = new_ifalias;
1221
1222 strlcpy(dev->ifalias, alias, len+1);
1223 return len;
1224 }
1225
1226
1227 /**
1228 * netdev_features_change - device changes features
1229 * @dev: device to cause notification
1230 *
1231 * Called to indicate a device has changed features.
1232 */
1233 void netdev_features_change(struct net_device *dev)
1234 {
1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1236 }
1237 EXPORT_SYMBOL(netdev_features_change);
1238
1239 /**
1240 * netdev_state_change - device changes state
1241 * @dev: device to cause notification
1242 *
1243 * Called to indicate a device has changed state. This function calls
1244 * the notifier chains for netdev_chain and sends a NEWLINK message
1245 * to the routing socket.
1246 */
1247 void netdev_state_change(struct net_device *dev)
1248 {
1249 if (dev->flags & IFF_UP) {
1250 struct netdev_notifier_change_info change_info;
1251
1252 change_info.flags_changed = 0;
1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1254 &change_info.info);
1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1256 }
1257 }
1258 EXPORT_SYMBOL(netdev_state_change);
1259
1260 /**
1261 * netdev_notify_peers - notify network peers about existence of @dev
1262 * @dev: network device
1263 *
1264 * Generate traffic such that interested network peers are aware of
1265 * @dev, such as by generating a gratuitous ARP. This may be used when
1266 * a device wants to inform the rest of the network about some sort of
1267 * reconfiguration such as a failover event or virtual machine
1268 * migration.
1269 */
1270 void netdev_notify_peers(struct net_device *dev)
1271 {
1272 rtnl_lock();
1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1274 rtnl_unlock();
1275 }
1276 EXPORT_SYMBOL(netdev_notify_peers);
1277
1278 static int __dev_open(struct net_device *dev)
1279 {
1280 const struct net_device_ops *ops = dev->netdev_ops;
1281 int ret;
1282
1283 ASSERT_RTNL();
1284
1285 if (!netif_device_present(dev))
1286 return -ENODEV;
1287
1288 /* Block netpoll from trying to do any rx path servicing.
1289 * If we don't do this there is a chance ndo_poll_controller
1290 * or ndo_poll may be running while we open the device
1291 */
1292 netpoll_poll_disable(dev);
1293
1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 ret = notifier_to_errno(ret);
1296 if (ret)
1297 return ret;
1298
1299 set_bit(__LINK_STATE_START, &dev->state);
1300
1301 if (ops->ndo_validate_addr)
1302 ret = ops->ndo_validate_addr(dev);
1303
1304 if (!ret && ops->ndo_open)
1305 ret = ops->ndo_open(dev);
1306
1307 netpoll_poll_enable(dev);
1308
1309 if (ret)
1310 clear_bit(__LINK_STATE_START, &dev->state);
1311 else {
1312 dev->flags |= IFF_UP;
1313 dev_set_rx_mode(dev);
1314 dev_activate(dev);
1315 add_device_randomness(dev->dev_addr, dev->addr_len);
1316 }
1317
1318 return ret;
1319 }
1320
1321 /**
1322 * dev_open - prepare an interface for use.
1323 * @dev: device to open
1324 *
1325 * Takes a device from down to up state. The device's private open
1326 * function is invoked and then the multicast lists are loaded. Finally
1327 * the device is moved into the up state and a %NETDEV_UP message is
1328 * sent to the netdev notifier chain.
1329 *
1330 * Calling this function on an active interface is a nop. On a failure
1331 * a negative errno code is returned.
1332 */
1333 int dev_open(struct net_device *dev)
1334 {
1335 int ret;
1336
1337 if (dev->flags & IFF_UP)
1338 return 0;
1339
1340 ret = __dev_open(dev);
1341 if (ret < 0)
1342 return ret;
1343
1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1345 call_netdevice_notifiers(NETDEV_UP, dev);
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(dev_open);
1350
1351 static int __dev_close_many(struct list_head *head)
1352 {
1353 struct net_device *dev;
1354
1355 ASSERT_RTNL();
1356 might_sleep();
1357
1358 list_for_each_entry(dev, head, close_list) {
1359 /* Temporarily disable netpoll until the interface is down */
1360 netpoll_poll_disable(dev);
1361
1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1363
1364 clear_bit(__LINK_STATE_START, &dev->state);
1365
1366 /* Synchronize to scheduled poll. We cannot touch poll list, it
1367 * can be even on different cpu. So just clear netif_running().
1368 *
1369 * dev->stop() will invoke napi_disable() on all of it's
1370 * napi_struct instances on this device.
1371 */
1372 smp_mb__after_atomic(); /* Commit netif_running(). */
1373 }
1374
1375 dev_deactivate_many(head);
1376
1377 list_for_each_entry(dev, head, close_list) {
1378 const struct net_device_ops *ops = dev->netdev_ops;
1379
1380 /*
1381 * Call the device specific close. This cannot fail.
1382 * Only if device is UP
1383 *
1384 * We allow it to be called even after a DETACH hot-plug
1385 * event.
1386 */
1387 if (ops->ndo_stop)
1388 ops->ndo_stop(dev);
1389
1390 dev->flags &= ~IFF_UP;
1391 netpoll_poll_enable(dev);
1392 }
1393
1394 return 0;
1395 }
1396
1397 static int __dev_close(struct net_device *dev)
1398 {
1399 int retval;
1400 LIST_HEAD(single);
1401
1402 list_add(&dev->close_list, &single);
1403 retval = __dev_close_many(&single);
1404 list_del(&single);
1405
1406 return retval;
1407 }
1408
1409 int dev_close_many(struct list_head *head, bool unlink)
1410 {
1411 struct net_device *dev, *tmp;
1412
1413 /* Remove the devices that don't need to be closed */
1414 list_for_each_entry_safe(dev, tmp, head, close_list)
1415 if (!(dev->flags & IFF_UP))
1416 list_del_init(&dev->close_list);
1417
1418 __dev_close_many(head);
1419
1420 list_for_each_entry_safe(dev, tmp, head, close_list) {
1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1422 call_netdevice_notifiers(NETDEV_DOWN, dev);
1423 if (unlink)
1424 list_del_init(&dev->close_list);
1425 }
1426
1427 return 0;
1428 }
1429 EXPORT_SYMBOL(dev_close_many);
1430
1431 /**
1432 * dev_close - shutdown an interface.
1433 * @dev: device to shutdown
1434 *
1435 * This function moves an active device into down state. A
1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1438 * chain.
1439 */
1440 int dev_close(struct net_device *dev)
1441 {
1442 if (dev->flags & IFF_UP) {
1443 LIST_HEAD(single);
1444
1445 list_add(&dev->close_list, &single);
1446 dev_close_many(&single, true);
1447 list_del(&single);
1448 }
1449 return 0;
1450 }
1451 EXPORT_SYMBOL(dev_close);
1452
1453
1454 /**
1455 * dev_disable_lro - disable Large Receive Offload on a device
1456 * @dev: device
1457 *
1458 * Disable Large Receive Offload (LRO) on a net device. Must be
1459 * called under RTNL. This is needed if received packets may be
1460 * forwarded to another interface.
1461 */
1462 void dev_disable_lro(struct net_device *dev)
1463 {
1464 struct net_device *lower_dev;
1465 struct list_head *iter;
1466
1467 dev->wanted_features &= ~NETIF_F_LRO;
1468 netdev_update_features(dev);
1469
1470 if (unlikely(dev->features & NETIF_F_LRO))
1471 netdev_WARN(dev, "failed to disable LRO!\n");
1472
1473 netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 dev_disable_lro(lower_dev);
1475 }
1476 EXPORT_SYMBOL(dev_disable_lro);
1477
1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 struct net_device *dev)
1480 {
1481 struct netdev_notifier_info info;
1482
1483 netdev_notifier_info_init(&info, dev);
1484 return nb->notifier_call(nb, val, &info);
1485 }
1486
1487 static int dev_boot_phase = 1;
1488
1489 /**
1490 * register_netdevice_notifier - register a network notifier block
1491 * @nb: notifier
1492 *
1493 * Register a notifier to be called when network device events occur.
1494 * The notifier passed is linked into the kernel structures and must
1495 * not be reused until it has been unregistered. A negative errno code
1496 * is returned on a failure.
1497 *
1498 * When registered all registration and up events are replayed
1499 * to the new notifier to allow device to have a race free
1500 * view of the network device list.
1501 */
1502
1503 int register_netdevice_notifier(struct notifier_block *nb)
1504 {
1505 struct net_device *dev;
1506 struct net_device *last;
1507 struct net *net;
1508 int err;
1509
1510 rtnl_lock();
1511 err = raw_notifier_chain_register(&netdev_chain, nb);
1512 if (err)
1513 goto unlock;
1514 if (dev_boot_phase)
1515 goto unlock;
1516 for_each_net(net) {
1517 for_each_netdev(net, dev) {
1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1519 err = notifier_to_errno(err);
1520 if (err)
1521 goto rollback;
1522
1523 if (!(dev->flags & IFF_UP))
1524 continue;
1525
1526 call_netdevice_notifier(nb, NETDEV_UP, dev);
1527 }
1528 }
1529
1530 unlock:
1531 rtnl_unlock();
1532 return err;
1533
1534 rollback:
1535 last = dev;
1536 for_each_net(net) {
1537 for_each_netdev(net, dev) {
1538 if (dev == last)
1539 goto outroll;
1540
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 }
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 }
1548 }
1549
1550 outroll:
1551 raw_notifier_chain_unregister(&netdev_chain, nb);
1552 goto unlock;
1553 }
1554 EXPORT_SYMBOL(register_netdevice_notifier);
1555
1556 /**
1557 * unregister_netdevice_notifier - unregister a network notifier block
1558 * @nb: notifier
1559 *
1560 * Unregister a notifier previously registered by
1561 * register_netdevice_notifier(). The notifier is unlinked into the
1562 * kernel structures and may then be reused. A negative errno code
1563 * is returned on a failure.
1564 *
1565 * After unregistering unregister and down device events are synthesized
1566 * for all devices on the device list to the removed notifier to remove
1567 * the need for special case cleanup code.
1568 */
1569
1570 int unregister_netdevice_notifier(struct notifier_block *nb)
1571 {
1572 struct net_device *dev;
1573 struct net *net;
1574 int err;
1575
1576 rtnl_lock();
1577 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1578 if (err)
1579 goto unlock;
1580
1581 for_each_net(net) {
1582 for_each_netdev(net, dev) {
1583 if (dev->flags & IFF_UP) {
1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1585 dev);
1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1587 }
1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1589 }
1590 }
1591 unlock:
1592 rtnl_unlock();
1593 return err;
1594 }
1595 EXPORT_SYMBOL(unregister_netdevice_notifier);
1596
1597 /**
1598 * call_netdevice_notifiers_info - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 * @info: notifier information data
1602 *
1603 * Call all network notifier blocks. Parameters and return value
1604 * are as for raw_notifier_call_chain().
1605 */
1606
1607 static int call_netdevice_notifiers_info(unsigned long val,
1608 struct net_device *dev,
1609 struct netdev_notifier_info *info)
1610 {
1611 ASSERT_RTNL();
1612 netdev_notifier_info_init(info, dev);
1613 return raw_notifier_call_chain(&netdev_chain, val, info);
1614 }
1615
1616 /**
1617 * call_netdevice_notifiers - call all network notifier blocks
1618 * @val: value passed unmodified to notifier function
1619 * @dev: net_device pointer passed unmodified to notifier function
1620 *
1621 * Call all network notifier blocks. Parameters and return value
1622 * are as for raw_notifier_call_chain().
1623 */
1624
1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1626 {
1627 struct netdev_notifier_info info;
1628
1629 return call_netdevice_notifiers_info(val, dev, &info);
1630 }
1631 EXPORT_SYMBOL(call_netdevice_notifiers);
1632
1633 static struct static_key netstamp_needed __read_mostly;
1634 #ifdef HAVE_JUMP_LABEL
1635 /* We are not allowed to call static_key_slow_dec() from irq context
1636 * If net_disable_timestamp() is called from irq context, defer the
1637 * static_key_slow_dec() calls.
1638 */
1639 static atomic_t netstamp_needed_deferred;
1640 #endif
1641
1642 void net_enable_timestamp(void)
1643 {
1644 #ifdef HAVE_JUMP_LABEL
1645 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1646
1647 if (deferred) {
1648 while (--deferred)
1649 static_key_slow_dec(&netstamp_needed);
1650 return;
1651 }
1652 #endif
1653 static_key_slow_inc(&netstamp_needed);
1654 }
1655 EXPORT_SYMBOL(net_enable_timestamp);
1656
1657 void net_disable_timestamp(void)
1658 {
1659 #ifdef HAVE_JUMP_LABEL
1660 if (in_interrupt()) {
1661 atomic_inc(&netstamp_needed_deferred);
1662 return;
1663 }
1664 #endif
1665 static_key_slow_dec(&netstamp_needed);
1666 }
1667 EXPORT_SYMBOL(net_disable_timestamp);
1668
1669 static inline void net_timestamp_set(struct sk_buff *skb)
1670 {
1671 skb->tstamp.tv64 = 0;
1672 if (static_key_false(&netstamp_needed))
1673 __net_timestamp(skb);
1674 }
1675
1676 #define net_timestamp_check(COND, SKB) \
1677 if (static_key_false(&netstamp_needed)) { \
1678 if ((COND) && !(SKB)->tstamp.tv64) \
1679 __net_timestamp(SKB); \
1680 } \
1681
1682 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 unsigned int len;
1685
1686 if (!(dev->flags & IFF_UP))
1687 return false;
1688
1689 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1690 if (skb->len <= len)
1691 return true;
1692
1693 /* if TSO is enabled, we don't care about the length as the packet
1694 * could be forwarded without being segmented before
1695 */
1696 if (skb_is_gso(skb))
1697 return true;
1698
1699 return false;
1700 }
1701 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1702
1703 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1704 {
1705 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1706 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1707 atomic_long_inc(&dev->rx_dropped);
1708 kfree_skb(skb);
1709 return NET_RX_DROP;
1710 }
1711 }
1712
1713 if (unlikely(!is_skb_forwardable(dev, skb))) {
1714 atomic_long_inc(&dev->rx_dropped);
1715 kfree_skb(skb);
1716 return NET_RX_DROP;
1717 }
1718
1719 skb_scrub_packet(skb, true);
1720 skb->priority = 0;
1721 skb->protocol = eth_type_trans(skb, dev);
1722 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1723
1724 return 0;
1725 }
1726 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1727
1728 /**
1729 * dev_forward_skb - loopback an skb to another netif
1730 *
1731 * @dev: destination network device
1732 * @skb: buffer to forward
1733 *
1734 * return values:
1735 * NET_RX_SUCCESS (no congestion)
1736 * NET_RX_DROP (packet was dropped, but freed)
1737 *
1738 * dev_forward_skb can be used for injecting an skb from the
1739 * start_xmit function of one device into the receive queue
1740 * of another device.
1741 *
1742 * The receiving device may be in another namespace, so
1743 * we have to clear all information in the skb that could
1744 * impact namespace isolation.
1745 */
1746 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1749 }
1750 EXPORT_SYMBOL_GPL(dev_forward_skb);
1751
1752 static inline int deliver_skb(struct sk_buff *skb,
1753 struct packet_type *pt_prev,
1754 struct net_device *orig_dev)
1755 {
1756 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1757 return -ENOMEM;
1758 atomic_inc(&skb->users);
1759 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1760 }
1761
1762 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1763 struct packet_type **pt,
1764 struct net_device *orig_dev,
1765 __be16 type,
1766 struct list_head *ptype_list)
1767 {
1768 struct packet_type *ptype, *pt_prev = *pt;
1769
1770 list_for_each_entry_rcu(ptype, ptype_list, list) {
1771 if (ptype->type != type)
1772 continue;
1773 if (pt_prev)
1774 deliver_skb(skb, pt_prev, orig_dev);
1775 pt_prev = ptype;
1776 }
1777 *pt = pt_prev;
1778 }
1779
1780 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1781 {
1782 if (!ptype->af_packet_priv || !skb->sk)
1783 return false;
1784
1785 if (ptype->id_match)
1786 return ptype->id_match(ptype, skb->sk);
1787 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1788 return true;
1789
1790 return false;
1791 }
1792
1793 /*
1794 * Support routine. Sends outgoing frames to any network
1795 * taps currently in use.
1796 */
1797
1798 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1799 {
1800 struct packet_type *ptype;
1801 struct sk_buff *skb2 = NULL;
1802 struct packet_type *pt_prev = NULL;
1803 struct list_head *ptype_list = &ptype_all;
1804
1805 rcu_read_lock();
1806 again:
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 /* Never send packets back to the socket
1809 * they originated from - MvS (miquels@drinkel.ow.org)
1810 */
1811 if (skb_loop_sk(ptype, skb))
1812 continue;
1813
1814 if (pt_prev) {
1815 deliver_skb(skb2, pt_prev, skb->dev);
1816 pt_prev = ptype;
1817 continue;
1818 }
1819
1820 /* need to clone skb, done only once */
1821 skb2 = skb_clone(skb, GFP_ATOMIC);
1822 if (!skb2)
1823 goto out_unlock;
1824
1825 net_timestamp_set(skb2);
1826
1827 /* skb->nh should be correctly
1828 * set by sender, so that the second statement is
1829 * just protection against buggy protocols.
1830 */
1831 skb_reset_mac_header(skb2);
1832
1833 if (skb_network_header(skb2) < skb2->data ||
1834 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1835 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1836 ntohs(skb2->protocol),
1837 dev->name);
1838 skb_reset_network_header(skb2);
1839 }
1840
1841 skb2->transport_header = skb2->network_header;
1842 skb2->pkt_type = PACKET_OUTGOING;
1843 pt_prev = ptype;
1844 }
1845
1846 if (ptype_list == &ptype_all) {
1847 ptype_list = &dev->ptype_all;
1848 goto again;
1849 }
1850 out_unlock:
1851 if (pt_prev)
1852 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1853 rcu_read_unlock();
1854 }
1855
1856 /**
1857 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1858 * @dev: Network device
1859 * @txq: number of queues available
1860 *
1861 * If real_num_tx_queues is changed the tc mappings may no longer be
1862 * valid. To resolve this verify the tc mapping remains valid and if
1863 * not NULL the mapping. With no priorities mapping to this
1864 * offset/count pair it will no longer be used. In the worst case TC0
1865 * is invalid nothing can be done so disable priority mappings. If is
1866 * expected that drivers will fix this mapping if they can before
1867 * calling netif_set_real_num_tx_queues.
1868 */
1869 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1870 {
1871 int i;
1872 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1873
1874 /* If TC0 is invalidated disable TC mapping */
1875 if (tc->offset + tc->count > txq) {
1876 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1877 dev->num_tc = 0;
1878 return;
1879 }
1880
1881 /* Invalidated prio to tc mappings set to TC0 */
1882 for (i = 1; i < TC_BITMASK + 1; i++) {
1883 int q = netdev_get_prio_tc_map(dev, i);
1884
1885 tc = &dev->tc_to_txq[q];
1886 if (tc->offset + tc->count > txq) {
1887 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1888 i, q);
1889 netdev_set_prio_tc_map(dev, i, 0);
1890 }
1891 }
1892 }
1893
1894 #ifdef CONFIG_XPS
1895 static DEFINE_MUTEX(xps_map_mutex);
1896 #define xmap_dereference(P) \
1897 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1898
1899 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1900 int cpu, u16 index)
1901 {
1902 struct xps_map *map = NULL;
1903 int pos;
1904
1905 if (dev_maps)
1906 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1907
1908 for (pos = 0; map && pos < map->len; pos++) {
1909 if (map->queues[pos] == index) {
1910 if (map->len > 1) {
1911 map->queues[pos] = map->queues[--map->len];
1912 } else {
1913 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1914 kfree_rcu(map, rcu);
1915 map = NULL;
1916 }
1917 break;
1918 }
1919 }
1920
1921 return map;
1922 }
1923
1924 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1925 {
1926 struct xps_dev_maps *dev_maps;
1927 int cpu, i;
1928 bool active = false;
1929
1930 mutex_lock(&xps_map_mutex);
1931 dev_maps = xmap_dereference(dev->xps_maps);
1932
1933 if (!dev_maps)
1934 goto out_no_maps;
1935
1936 for_each_possible_cpu(cpu) {
1937 for (i = index; i < dev->num_tx_queues; i++) {
1938 if (!remove_xps_queue(dev_maps, cpu, i))
1939 break;
1940 }
1941 if (i == dev->num_tx_queues)
1942 active = true;
1943 }
1944
1945 if (!active) {
1946 RCU_INIT_POINTER(dev->xps_maps, NULL);
1947 kfree_rcu(dev_maps, rcu);
1948 }
1949
1950 for (i = index; i < dev->num_tx_queues; i++)
1951 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1952 NUMA_NO_NODE);
1953
1954 out_no_maps:
1955 mutex_unlock(&xps_map_mutex);
1956 }
1957
1958 static struct xps_map *expand_xps_map(struct xps_map *map,
1959 int cpu, u16 index)
1960 {
1961 struct xps_map *new_map;
1962 int alloc_len = XPS_MIN_MAP_ALLOC;
1963 int i, pos;
1964
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] != index)
1967 continue;
1968 return map;
1969 }
1970
1971 /* Need to add queue to this CPU's existing map */
1972 if (map) {
1973 if (pos < map->alloc_len)
1974 return map;
1975
1976 alloc_len = map->alloc_len * 2;
1977 }
1978
1979 /* Need to allocate new map to store queue on this CPU's map */
1980 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1981 cpu_to_node(cpu));
1982 if (!new_map)
1983 return NULL;
1984
1985 for (i = 0; i < pos; i++)
1986 new_map->queues[i] = map->queues[i];
1987 new_map->alloc_len = alloc_len;
1988 new_map->len = pos;
1989
1990 return new_map;
1991 }
1992
1993 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1994 u16 index)
1995 {
1996 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1997 struct xps_map *map, *new_map;
1998 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1999 int cpu, numa_node_id = -2;
2000 bool active = false;
2001
2002 mutex_lock(&xps_map_mutex);
2003
2004 dev_maps = xmap_dereference(dev->xps_maps);
2005
2006 /* allocate memory for queue storage */
2007 for_each_online_cpu(cpu) {
2008 if (!cpumask_test_cpu(cpu, mask))
2009 continue;
2010
2011 if (!new_dev_maps)
2012 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2013 if (!new_dev_maps) {
2014 mutex_unlock(&xps_map_mutex);
2015 return -ENOMEM;
2016 }
2017
2018 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2019 NULL;
2020
2021 map = expand_xps_map(map, cpu, index);
2022 if (!map)
2023 goto error;
2024
2025 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2026 }
2027
2028 if (!new_dev_maps)
2029 goto out_no_new_maps;
2030
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2033 /* add queue to CPU maps */
2034 int pos = 0;
2035
2036 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 while ((pos < map->len) && (map->queues[pos] != index))
2038 pos++;
2039
2040 if (pos == map->len)
2041 map->queues[map->len++] = index;
2042 #ifdef CONFIG_NUMA
2043 if (numa_node_id == -2)
2044 numa_node_id = cpu_to_node(cpu);
2045 else if (numa_node_id != cpu_to_node(cpu))
2046 numa_node_id = -1;
2047 #endif
2048 } else if (dev_maps) {
2049 /* fill in the new device map from the old device map */
2050 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2051 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2052 }
2053
2054 }
2055
2056 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2057
2058 /* Cleanup old maps */
2059 if (dev_maps) {
2060 for_each_possible_cpu(cpu) {
2061 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2062 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2063 if (map && map != new_map)
2064 kfree_rcu(map, rcu);
2065 }
2066
2067 kfree_rcu(dev_maps, rcu);
2068 }
2069
2070 dev_maps = new_dev_maps;
2071 active = true;
2072
2073 out_no_new_maps:
2074 /* update Tx queue numa node */
2075 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2076 (numa_node_id >= 0) ? numa_node_id :
2077 NUMA_NO_NODE);
2078
2079 if (!dev_maps)
2080 goto out_no_maps;
2081
2082 /* removes queue from unused CPUs */
2083 for_each_possible_cpu(cpu) {
2084 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2085 continue;
2086
2087 if (remove_xps_queue(dev_maps, cpu, index))
2088 active = true;
2089 }
2090
2091 /* free map if not active */
2092 if (!active) {
2093 RCU_INIT_POINTER(dev->xps_maps, NULL);
2094 kfree_rcu(dev_maps, rcu);
2095 }
2096
2097 out_no_maps:
2098 mutex_unlock(&xps_map_mutex);
2099
2100 return 0;
2101 error:
2102 /* remove any maps that we added */
2103 for_each_possible_cpu(cpu) {
2104 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2105 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2106 NULL;
2107 if (new_map && new_map != map)
2108 kfree(new_map);
2109 }
2110
2111 mutex_unlock(&xps_map_mutex);
2112
2113 kfree(new_dev_maps);
2114 return -ENOMEM;
2115 }
2116 EXPORT_SYMBOL(netif_set_xps_queue);
2117
2118 #endif
2119 /*
2120 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2121 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2122 */
2123 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2124 {
2125 int rc;
2126
2127 if (txq < 1 || txq > dev->num_tx_queues)
2128 return -EINVAL;
2129
2130 if (dev->reg_state == NETREG_REGISTERED ||
2131 dev->reg_state == NETREG_UNREGISTERING) {
2132 ASSERT_RTNL();
2133
2134 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2135 txq);
2136 if (rc)
2137 return rc;
2138
2139 if (dev->num_tc)
2140 netif_setup_tc(dev, txq);
2141
2142 if (txq < dev->real_num_tx_queues) {
2143 qdisc_reset_all_tx_gt(dev, txq);
2144 #ifdef CONFIG_XPS
2145 netif_reset_xps_queues_gt(dev, txq);
2146 #endif
2147 }
2148 }
2149
2150 dev->real_num_tx_queues = txq;
2151 return 0;
2152 }
2153 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2154
2155 #ifdef CONFIG_SYSFS
2156 /**
2157 * netif_set_real_num_rx_queues - set actual number of RX queues used
2158 * @dev: Network device
2159 * @rxq: Actual number of RX queues
2160 *
2161 * This must be called either with the rtnl_lock held or before
2162 * registration of the net device. Returns 0 on success, or a
2163 * negative error code. If called before registration, it always
2164 * succeeds.
2165 */
2166 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2167 {
2168 int rc;
2169
2170 if (rxq < 1 || rxq > dev->num_rx_queues)
2171 return -EINVAL;
2172
2173 if (dev->reg_state == NETREG_REGISTERED) {
2174 ASSERT_RTNL();
2175
2176 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2177 rxq);
2178 if (rc)
2179 return rc;
2180 }
2181
2182 dev->real_num_rx_queues = rxq;
2183 return 0;
2184 }
2185 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2186 #endif
2187
2188 /**
2189 * netif_get_num_default_rss_queues - default number of RSS queues
2190 *
2191 * This routine should set an upper limit on the number of RSS queues
2192 * used by default by multiqueue devices.
2193 */
2194 int netif_get_num_default_rss_queues(void)
2195 {
2196 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2197 }
2198 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2199
2200 static inline void __netif_reschedule(struct Qdisc *q)
2201 {
2202 struct softnet_data *sd;
2203 unsigned long flags;
2204
2205 local_irq_save(flags);
2206 sd = this_cpu_ptr(&softnet_data);
2207 q->next_sched = NULL;
2208 *sd->output_queue_tailp = q;
2209 sd->output_queue_tailp = &q->next_sched;
2210 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2211 local_irq_restore(flags);
2212 }
2213
2214 void __netif_schedule(struct Qdisc *q)
2215 {
2216 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2217 __netif_reschedule(q);
2218 }
2219 EXPORT_SYMBOL(__netif_schedule);
2220
2221 struct dev_kfree_skb_cb {
2222 enum skb_free_reason reason;
2223 };
2224
2225 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2226 {
2227 return (struct dev_kfree_skb_cb *)skb->cb;
2228 }
2229
2230 void netif_schedule_queue(struct netdev_queue *txq)
2231 {
2232 rcu_read_lock();
2233 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2234 struct Qdisc *q = rcu_dereference(txq->qdisc);
2235
2236 __netif_schedule(q);
2237 }
2238 rcu_read_unlock();
2239 }
2240 EXPORT_SYMBOL(netif_schedule_queue);
2241
2242 /**
2243 * netif_wake_subqueue - allow sending packets on subqueue
2244 * @dev: network device
2245 * @queue_index: sub queue index
2246 *
2247 * Resume individual transmit queue of a device with multiple transmit queues.
2248 */
2249 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2250 {
2251 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2252
2253 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2254 struct Qdisc *q;
2255
2256 rcu_read_lock();
2257 q = rcu_dereference(txq->qdisc);
2258 __netif_schedule(q);
2259 rcu_read_unlock();
2260 }
2261 }
2262 EXPORT_SYMBOL(netif_wake_subqueue);
2263
2264 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2265 {
2266 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2267 struct Qdisc *q;
2268
2269 rcu_read_lock();
2270 q = rcu_dereference(dev_queue->qdisc);
2271 __netif_schedule(q);
2272 rcu_read_unlock();
2273 }
2274 }
2275 EXPORT_SYMBOL(netif_tx_wake_queue);
2276
2277 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2278 {
2279 unsigned long flags;
2280
2281 if (likely(atomic_read(&skb->users) == 1)) {
2282 smp_rmb();
2283 atomic_set(&skb->users, 0);
2284 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2285 return;
2286 }
2287 get_kfree_skb_cb(skb)->reason = reason;
2288 local_irq_save(flags);
2289 skb->next = __this_cpu_read(softnet_data.completion_queue);
2290 __this_cpu_write(softnet_data.completion_queue, skb);
2291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2292 local_irq_restore(flags);
2293 }
2294 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2295
2296 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2297 {
2298 if (in_irq() || irqs_disabled())
2299 __dev_kfree_skb_irq(skb, reason);
2300 else
2301 dev_kfree_skb(skb);
2302 }
2303 EXPORT_SYMBOL(__dev_kfree_skb_any);
2304
2305
2306 /**
2307 * netif_device_detach - mark device as removed
2308 * @dev: network device
2309 *
2310 * Mark device as removed from system and therefore no longer available.
2311 */
2312 void netif_device_detach(struct net_device *dev)
2313 {
2314 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2315 netif_running(dev)) {
2316 netif_tx_stop_all_queues(dev);
2317 }
2318 }
2319 EXPORT_SYMBOL(netif_device_detach);
2320
2321 /**
2322 * netif_device_attach - mark device as attached
2323 * @dev: network device
2324 *
2325 * Mark device as attached from system and restart if needed.
2326 */
2327 void netif_device_attach(struct net_device *dev)
2328 {
2329 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2330 netif_running(dev)) {
2331 netif_tx_wake_all_queues(dev);
2332 __netdev_watchdog_up(dev);
2333 }
2334 }
2335 EXPORT_SYMBOL(netif_device_attach);
2336
2337 static void skb_warn_bad_offload(const struct sk_buff *skb)
2338 {
2339 static const netdev_features_t null_features = 0;
2340 struct net_device *dev = skb->dev;
2341 const char *driver = "";
2342
2343 if (!net_ratelimit())
2344 return;
2345
2346 if (dev && dev->dev.parent)
2347 driver = dev_driver_string(dev->dev.parent);
2348
2349 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2350 "gso_type=%d ip_summed=%d\n",
2351 driver, dev ? &dev->features : &null_features,
2352 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2353 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2354 skb_shinfo(skb)->gso_type, skb->ip_summed);
2355 }
2356
2357 /*
2358 * Invalidate hardware checksum when packet is to be mangled, and
2359 * complete checksum manually on outgoing path.
2360 */
2361 int skb_checksum_help(struct sk_buff *skb)
2362 {
2363 __wsum csum;
2364 int ret = 0, offset;
2365
2366 if (skb->ip_summed == CHECKSUM_COMPLETE)
2367 goto out_set_summed;
2368
2369 if (unlikely(skb_shinfo(skb)->gso_size)) {
2370 skb_warn_bad_offload(skb);
2371 return -EINVAL;
2372 }
2373
2374 /* Before computing a checksum, we should make sure no frag could
2375 * be modified by an external entity : checksum could be wrong.
2376 */
2377 if (skb_has_shared_frag(skb)) {
2378 ret = __skb_linearize(skb);
2379 if (ret)
2380 goto out;
2381 }
2382
2383 offset = skb_checksum_start_offset(skb);
2384 BUG_ON(offset >= skb_headlen(skb));
2385 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2386
2387 offset += skb->csum_offset;
2388 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2389
2390 if (skb_cloned(skb) &&
2391 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2392 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2393 if (ret)
2394 goto out;
2395 }
2396
2397 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2398 out_set_summed:
2399 skb->ip_summed = CHECKSUM_NONE;
2400 out:
2401 return ret;
2402 }
2403 EXPORT_SYMBOL(skb_checksum_help);
2404
2405 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2406 {
2407 __be16 type = skb->protocol;
2408
2409 /* Tunnel gso handlers can set protocol to ethernet. */
2410 if (type == htons(ETH_P_TEB)) {
2411 struct ethhdr *eth;
2412
2413 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2414 return 0;
2415
2416 eth = (struct ethhdr *)skb_mac_header(skb);
2417 type = eth->h_proto;
2418 }
2419
2420 return __vlan_get_protocol(skb, type, depth);
2421 }
2422
2423 /**
2424 * skb_mac_gso_segment - mac layer segmentation handler.
2425 * @skb: buffer to segment
2426 * @features: features for the output path (see dev->features)
2427 */
2428 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2429 netdev_features_t features)
2430 {
2431 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2432 struct packet_offload *ptype;
2433 int vlan_depth = skb->mac_len;
2434 __be16 type = skb_network_protocol(skb, &vlan_depth);
2435
2436 if (unlikely(!type))
2437 return ERR_PTR(-EINVAL);
2438
2439 __skb_pull(skb, vlan_depth);
2440
2441 rcu_read_lock();
2442 list_for_each_entry_rcu(ptype, &offload_base, list) {
2443 if (ptype->type == type && ptype->callbacks.gso_segment) {
2444 segs = ptype->callbacks.gso_segment(skb, features);
2445 break;
2446 }
2447 }
2448 rcu_read_unlock();
2449
2450 __skb_push(skb, skb->data - skb_mac_header(skb));
2451
2452 return segs;
2453 }
2454 EXPORT_SYMBOL(skb_mac_gso_segment);
2455
2456
2457 /* openvswitch calls this on rx path, so we need a different check.
2458 */
2459 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2460 {
2461 if (tx_path)
2462 return skb->ip_summed != CHECKSUM_PARTIAL;
2463 else
2464 return skb->ip_summed == CHECKSUM_NONE;
2465 }
2466
2467 /**
2468 * __skb_gso_segment - Perform segmentation on skb.
2469 * @skb: buffer to segment
2470 * @features: features for the output path (see dev->features)
2471 * @tx_path: whether it is called in TX path
2472 *
2473 * This function segments the given skb and returns a list of segments.
2474 *
2475 * It may return NULL if the skb requires no segmentation. This is
2476 * only possible when GSO is used for verifying header integrity.
2477 */
2478 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2479 netdev_features_t features, bool tx_path)
2480 {
2481 if (unlikely(skb_needs_check(skb, tx_path))) {
2482 int err;
2483
2484 skb_warn_bad_offload(skb);
2485
2486 err = skb_cow_head(skb, 0);
2487 if (err < 0)
2488 return ERR_PTR(err);
2489 }
2490
2491 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2492 SKB_GSO_CB(skb)->encap_level = 0;
2493
2494 skb_reset_mac_header(skb);
2495 skb_reset_mac_len(skb);
2496
2497 return skb_mac_gso_segment(skb, features);
2498 }
2499 EXPORT_SYMBOL(__skb_gso_segment);
2500
2501 /* Take action when hardware reception checksum errors are detected. */
2502 #ifdef CONFIG_BUG
2503 void netdev_rx_csum_fault(struct net_device *dev)
2504 {
2505 if (net_ratelimit()) {
2506 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2507 dump_stack();
2508 }
2509 }
2510 EXPORT_SYMBOL(netdev_rx_csum_fault);
2511 #endif
2512
2513 /* Actually, we should eliminate this check as soon as we know, that:
2514 * 1. IOMMU is present and allows to map all the memory.
2515 * 2. No high memory really exists on this machine.
2516 */
2517
2518 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2519 {
2520 #ifdef CONFIG_HIGHMEM
2521 int i;
2522 if (!(dev->features & NETIF_F_HIGHDMA)) {
2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2525 if (PageHighMem(skb_frag_page(frag)))
2526 return 1;
2527 }
2528 }
2529
2530 if (PCI_DMA_BUS_IS_PHYS) {
2531 struct device *pdev = dev->dev.parent;
2532
2533 if (!pdev)
2534 return 0;
2535 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2536 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2537 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2538 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2539 return 1;
2540 }
2541 }
2542 #endif
2543 return 0;
2544 }
2545
2546 /* If MPLS offload request, verify we are testing hardware MPLS features
2547 * instead of standard features for the netdev.
2548 */
2549 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2550 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2551 netdev_features_t features,
2552 __be16 type)
2553 {
2554 if (eth_p_mpls(type))
2555 features &= skb->dev->mpls_features;
2556
2557 return features;
2558 }
2559 #else
2560 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561 netdev_features_t features,
2562 __be16 type)
2563 {
2564 return features;
2565 }
2566 #endif
2567
2568 static netdev_features_t harmonize_features(struct sk_buff *skb,
2569 netdev_features_t features)
2570 {
2571 int tmp;
2572 __be16 type;
2573
2574 type = skb_network_protocol(skb, &tmp);
2575 features = net_mpls_features(skb, features, type);
2576
2577 if (skb->ip_summed != CHECKSUM_NONE &&
2578 !can_checksum_protocol(features, type)) {
2579 features &= ~NETIF_F_ALL_CSUM;
2580 } else if (illegal_highdma(skb->dev, skb)) {
2581 features &= ~NETIF_F_SG;
2582 }
2583
2584 return features;
2585 }
2586
2587 netdev_features_t passthru_features_check(struct sk_buff *skb,
2588 struct net_device *dev,
2589 netdev_features_t features)
2590 {
2591 return features;
2592 }
2593 EXPORT_SYMBOL(passthru_features_check);
2594
2595 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2596 struct net_device *dev,
2597 netdev_features_t features)
2598 {
2599 return vlan_features_check(skb, features);
2600 }
2601
2602 netdev_features_t netif_skb_features(struct sk_buff *skb)
2603 {
2604 struct net_device *dev = skb->dev;
2605 netdev_features_t features = dev->features;
2606 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2607
2608 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2609 features &= ~NETIF_F_GSO_MASK;
2610
2611 /* If encapsulation offload request, verify we are testing
2612 * hardware encapsulation features instead of standard
2613 * features for the netdev
2614 */
2615 if (skb->encapsulation)
2616 features &= dev->hw_enc_features;
2617
2618 if (skb_vlan_tagged(skb))
2619 features = netdev_intersect_features(features,
2620 dev->vlan_features |
2621 NETIF_F_HW_VLAN_CTAG_TX |
2622 NETIF_F_HW_VLAN_STAG_TX);
2623
2624 if (dev->netdev_ops->ndo_features_check)
2625 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2626 features);
2627 else
2628 features &= dflt_features_check(skb, dev, features);
2629
2630 return harmonize_features(skb, features);
2631 }
2632 EXPORT_SYMBOL(netif_skb_features);
2633
2634 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2635 struct netdev_queue *txq, bool more)
2636 {
2637 unsigned int len;
2638 int rc;
2639
2640 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2641 dev_queue_xmit_nit(skb, dev);
2642
2643 len = skb->len;
2644 trace_net_dev_start_xmit(skb, dev);
2645 rc = netdev_start_xmit(skb, dev, txq, more);
2646 trace_net_dev_xmit(skb, rc, dev, len);
2647
2648 return rc;
2649 }
2650
2651 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2652 struct netdev_queue *txq, int *ret)
2653 {
2654 struct sk_buff *skb = first;
2655 int rc = NETDEV_TX_OK;
2656
2657 while (skb) {
2658 struct sk_buff *next = skb->next;
2659
2660 skb->next = NULL;
2661 rc = xmit_one(skb, dev, txq, next != NULL);
2662 if (unlikely(!dev_xmit_complete(rc))) {
2663 skb->next = next;
2664 goto out;
2665 }
2666
2667 skb = next;
2668 if (netif_xmit_stopped(txq) && skb) {
2669 rc = NETDEV_TX_BUSY;
2670 break;
2671 }
2672 }
2673
2674 out:
2675 *ret = rc;
2676 return skb;
2677 }
2678
2679 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2680 netdev_features_t features)
2681 {
2682 if (skb_vlan_tag_present(skb) &&
2683 !vlan_hw_offload_capable(features, skb->vlan_proto))
2684 skb = __vlan_hwaccel_push_inside(skb);
2685 return skb;
2686 }
2687
2688 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2689 {
2690 netdev_features_t features;
2691
2692 if (skb->next)
2693 return skb;
2694
2695 features = netif_skb_features(skb);
2696 skb = validate_xmit_vlan(skb, features);
2697 if (unlikely(!skb))
2698 goto out_null;
2699
2700 if (netif_needs_gso(dev, skb, features)) {
2701 struct sk_buff *segs;
2702
2703 segs = skb_gso_segment(skb, features);
2704 if (IS_ERR(segs)) {
2705 goto out_kfree_skb;
2706 } else if (segs) {
2707 consume_skb(skb);
2708 skb = segs;
2709 }
2710 } else {
2711 if (skb_needs_linearize(skb, features) &&
2712 __skb_linearize(skb))
2713 goto out_kfree_skb;
2714
2715 /* If packet is not checksummed and device does not
2716 * support checksumming for this protocol, complete
2717 * checksumming here.
2718 */
2719 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2720 if (skb->encapsulation)
2721 skb_set_inner_transport_header(skb,
2722 skb_checksum_start_offset(skb));
2723 else
2724 skb_set_transport_header(skb,
2725 skb_checksum_start_offset(skb));
2726 if (!(features & NETIF_F_ALL_CSUM) &&
2727 skb_checksum_help(skb))
2728 goto out_kfree_skb;
2729 }
2730 }
2731
2732 return skb;
2733
2734 out_kfree_skb:
2735 kfree_skb(skb);
2736 out_null:
2737 return NULL;
2738 }
2739
2740 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2741 {
2742 struct sk_buff *next, *head = NULL, *tail;
2743
2744 for (; skb != NULL; skb = next) {
2745 next = skb->next;
2746 skb->next = NULL;
2747
2748 /* in case skb wont be segmented, point to itself */
2749 skb->prev = skb;
2750
2751 skb = validate_xmit_skb(skb, dev);
2752 if (!skb)
2753 continue;
2754
2755 if (!head)
2756 head = skb;
2757 else
2758 tail->next = skb;
2759 /* If skb was segmented, skb->prev points to
2760 * the last segment. If not, it still contains skb.
2761 */
2762 tail = skb->prev;
2763 }
2764 return head;
2765 }
2766
2767 static void qdisc_pkt_len_init(struct sk_buff *skb)
2768 {
2769 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2770
2771 qdisc_skb_cb(skb)->pkt_len = skb->len;
2772
2773 /* To get more precise estimation of bytes sent on wire,
2774 * we add to pkt_len the headers size of all segments
2775 */
2776 if (shinfo->gso_size) {
2777 unsigned int hdr_len;
2778 u16 gso_segs = shinfo->gso_segs;
2779
2780 /* mac layer + network layer */
2781 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2782
2783 /* + transport layer */
2784 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2785 hdr_len += tcp_hdrlen(skb);
2786 else
2787 hdr_len += sizeof(struct udphdr);
2788
2789 if (shinfo->gso_type & SKB_GSO_DODGY)
2790 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2791 shinfo->gso_size);
2792
2793 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2794 }
2795 }
2796
2797 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2798 struct net_device *dev,
2799 struct netdev_queue *txq)
2800 {
2801 spinlock_t *root_lock = qdisc_lock(q);
2802 bool contended;
2803 int rc;
2804
2805 qdisc_pkt_len_init(skb);
2806 qdisc_calculate_pkt_len(skb, q);
2807 /*
2808 * Heuristic to force contended enqueues to serialize on a
2809 * separate lock before trying to get qdisc main lock.
2810 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2811 * often and dequeue packets faster.
2812 */
2813 contended = qdisc_is_running(q);
2814 if (unlikely(contended))
2815 spin_lock(&q->busylock);
2816
2817 spin_lock(root_lock);
2818 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2819 kfree_skb(skb);
2820 rc = NET_XMIT_DROP;
2821 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2822 qdisc_run_begin(q)) {
2823 /*
2824 * This is a work-conserving queue; there are no old skbs
2825 * waiting to be sent out; and the qdisc is not running -
2826 * xmit the skb directly.
2827 */
2828
2829 qdisc_bstats_update(q, skb);
2830
2831 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2832 if (unlikely(contended)) {
2833 spin_unlock(&q->busylock);
2834 contended = false;
2835 }
2836 __qdisc_run(q);
2837 } else
2838 qdisc_run_end(q);
2839
2840 rc = NET_XMIT_SUCCESS;
2841 } else {
2842 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2843 if (qdisc_run_begin(q)) {
2844 if (unlikely(contended)) {
2845 spin_unlock(&q->busylock);
2846 contended = false;
2847 }
2848 __qdisc_run(q);
2849 }
2850 }
2851 spin_unlock(root_lock);
2852 if (unlikely(contended))
2853 spin_unlock(&q->busylock);
2854 return rc;
2855 }
2856
2857 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2858 static void skb_update_prio(struct sk_buff *skb)
2859 {
2860 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2861
2862 if (!skb->priority && skb->sk && map) {
2863 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2864
2865 if (prioidx < map->priomap_len)
2866 skb->priority = map->priomap[prioidx];
2867 }
2868 }
2869 #else
2870 #define skb_update_prio(skb)
2871 #endif
2872
2873 static DEFINE_PER_CPU(int, xmit_recursion);
2874 #define RECURSION_LIMIT 10
2875
2876 /**
2877 * dev_loopback_xmit - loop back @skb
2878 * @skb: buffer to transmit
2879 */
2880 int dev_loopback_xmit(struct sk_buff *skb)
2881 {
2882 skb_reset_mac_header(skb);
2883 __skb_pull(skb, skb_network_offset(skb));
2884 skb->pkt_type = PACKET_LOOPBACK;
2885 skb->ip_summed = CHECKSUM_UNNECESSARY;
2886 WARN_ON(!skb_dst(skb));
2887 skb_dst_force(skb);
2888 netif_rx_ni(skb);
2889 return 0;
2890 }
2891 EXPORT_SYMBOL(dev_loopback_xmit);
2892
2893 /**
2894 * __dev_queue_xmit - transmit a buffer
2895 * @skb: buffer to transmit
2896 * @accel_priv: private data used for L2 forwarding offload
2897 *
2898 * Queue a buffer for transmission to a network device. The caller must
2899 * have set the device and priority and built the buffer before calling
2900 * this function. The function can be called from an interrupt.
2901 *
2902 * A negative errno code is returned on a failure. A success does not
2903 * guarantee the frame will be transmitted as it may be dropped due
2904 * to congestion or traffic shaping.
2905 *
2906 * -----------------------------------------------------------------------------------
2907 * I notice this method can also return errors from the queue disciplines,
2908 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2909 * be positive.
2910 *
2911 * Regardless of the return value, the skb is consumed, so it is currently
2912 * difficult to retry a send to this method. (You can bump the ref count
2913 * before sending to hold a reference for retry if you are careful.)
2914 *
2915 * When calling this method, interrupts MUST be enabled. This is because
2916 * the BH enable code must have IRQs enabled so that it will not deadlock.
2917 * --BLG
2918 */
2919 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2920 {
2921 struct net_device *dev = skb->dev;
2922 struct netdev_queue *txq;
2923 struct Qdisc *q;
2924 int rc = -ENOMEM;
2925
2926 skb_reset_mac_header(skb);
2927
2928 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2929 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2930
2931 /* Disable soft irqs for various locks below. Also
2932 * stops preemption for RCU.
2933 */
2934 rcu_read_lock_bh();
2935
2936 skb_update_prio(skb);
2937
2938 /* If device/qdisc don't need skb->dst, release it right now while
2939 * its hot in this cpu cache.
2940 */
2941 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2942 skb_dst_drop(skb);
2943 else
2944 skb_dst_force(skb);
2945
2946 txq = netdev_pick_tx(dev, skb, accel_priv);
2947 q = rcu_dereference_bh(txq->qdisc);
2948
2949 #ifdef CONFIG_NET_CLS_ACT
2950 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2951 #endif
2952 trace_net_dev_queue(skb);
2953 if (q->enqueue) {
2954 rc = __dev_xmit_skb(skb, q, dev, txq);
2955 goto out;
2956 }
2957
2958 /* The device has no queue. Common case for software devices:
2959 loopback, all the sorts of tunnels...
2960
2961 Really, it is unlikely that netif_tx_lock protection is necessary
2962 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2963 counters.)
2964 However, it is possible, that they rely on protection
2965 made by us here.
2966
2967 Check this and shot the lock. It is not prone from deadlocks.
2968 Either shot noqueue qdisc, it is even simpler 8)
2969 */
2970 if (dev->flags & IFF_UP) {
2971 int cpu = smp_processor_id(); /* ok because BHs are off */
2972
2973 if (txq->xmit_lock_owner != cpu) {
2974
2975 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2976 goto recursion_alert;
2977
2978 skb = validate_xmit_skb(skb, dev);
2979 if (!skb)
2980 goto drop;
2981
2982 HARD_TX_LOCK(dev, txq, cpu);
2983
2984 if (!netif_xmit_stopped(txq)) {
2985 __this_cpu_inc(xmit_recursion);
2986 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2987 __this_cpu_dec(xmit_recursion);
2988 if (dev_xmit_complete(rc)) {
2989 HARD_TX_UNLOCK(dev, txq);
2990 goto out;
2991 }
2992 }
2993 HARD_TX_UNLOCK(dev, txq);
2994 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2995 dev->name);
2996 } else {
2997 /* Recursion is detected! It is possible,
2998 * unfortunately
2999 */
3000 recursion_alert:
3001 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3002 dev->name);
3003 }
3004 }
3005
3006 rc = -ENETDOWN;
3007 drop:
3008 rcu_read_unlock_bh();
3009
3010 atomic_long_inc(&dev->tx_dropped);
3011 kfree_skb_list(skb);
3012 return rc;
3013 out:
3014 rcu_read_unlock_bh();
3015 return rc;
3016 }
3017
3018 int dev_queue_xmit(struct sk_buff *skb)
3019 {
3020 return __dev_queue_xmit(skb, NULL);
3021 }
3022 EXPORT_SYMBOL(dev_queue_xmit);
3023
3024 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3025 {
3026 return __dev_queue_xmit(skb, accel_priv);
3027 }
3028 EXPORT_SYMBOL(dev_queue_xmit_accel);
3029
3030
3031 /*=======================================================================
3032 Receiver routines
3033 =======================================================================*/
3034
3035 int netdev_max_backlog __read_mostly = 1000;
3036 EXPORT_SYMBOL(netdev_max_backlog);
3037
3038 int netdev_tstamp_prequeue __read_mostly = 1;
3039 int netdev_budget __read_mostly = 300;
3040 int weight_p __read_mostly = 64; /* old backlog weight */
3041
3042 /* Called with irq disabled */
3043 static inline void ____napi_schedule(struct softnet_data *sd,
3044 struct napi_struct *napi)
3045 {
3046 list_add_tail(&napi->poll_list, &sd->poll_list);
3047 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 }
3049
3050 #ifdef CONFIG_RPS
3051
3052 /* One global table that all flow-based protocols share. */
3053 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3054 EXPORT_SYMBOL(rps_sock_flow_table);
3055 u32 rps_cpu_mask __read_mostly;
3056 EXPORT_SYMBOL(rps_cpu_mask);
3057
3058 struct static_key rps_needed __read_mostly;
3059
3060 static struct rps_dev_flow *
3061 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3062 struct rps_dev_flow *rflow, u16 next_cpu)
3063 {
3064 if (next_cpu != RPS_NO_CPU) {
3065 #ifdef CONFIG_RFS_ACCEL
3066 struct netdev_rx_queue *rxqueue;
3067 struct rps_dev_flow_table *flow_table;
3068 struct rps_dev_flow *old_rflow;
3069 u32 flow_id;
3070 u16 rxq_index;
3071 int rc;
3072
3073 /* Should we steer this flow to a different hardware queue? */
3074 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3075 !(dev->features & NETIF_F_NTUPLE))
3076 goto out;
3077 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3078 if (rxq_index == skb_get_rx_queue(skb))
3079 goto out;
3080
3081 rxqueue = dev->_rx + rxq_index;
3082 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3083 if (!flow_table)
3084 goto out;
3085 flow_id = skb_get_hash(skb) & flow_table->mask;
3086 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3087 rxq_index, flow_id);
3088 if (rc < 0)
3089 goto out;
3090 old_rflow = rflow;
3091 rflow = &flow_table->flows[flow_id];
3092 rflow->filter = rc;
3093 if (old_rflow->filter == rflow->filter)
3094 old_rflow->filter = RPS_NO_FILTER;
3095 out:
3096 #endif
3097 rflow->last_qtail =
3098 per_cpu(softnet_data, next_cpu).input_queue_head;
3099 }
3100
3101 rflow->cpu = next_cpu;
3102 return rflow;
3103 }
3104
3105 /*
3106 * get_rps_cpu is called from netif_receive_skb and returns the target
3107 * CPU from the RPS map of the receiving queue for a given skb.
3108 * rcu_read_lock must be held on entry.
3109 */
3110 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3111 struct rps_dev_flow **rflowp)
3112 {
3113 const struct rps_sock_flow_table *sock_flow_table;
3114 struct netdev_rx_queue *rxqueue = dev->_rx;
3115 struct rps_dev_flow_table *flow_table;
3116 struct rps_map *map;
3117 int cpu = -1;
3118 u32 tcpu;
3119 u32 hash;
3120
3121 if (skb_rx_queue_recorded(skb)) {
3122 u16 index = skb_get_rx_queue(skb);
3123
3124 if (unlikely(index >= dev->real_num_rx_queues)) {
3125 WARN_ONCE(dev->real_num_rx_queues > 1,
3126 "%s received packet on queue %u, but number "
3127 "of RX queues is %u\n",
3128 dev->name, index, dev->real_num_rx_queues);
3129 goto done;
3130 }
3131 rxqueue += index;
3132 }
3133
3134 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3135
3136 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3137 map = rcu_dereference(rxqueue->rps_map);
3138 if (!flow_table && !map)
3139 goto done;
3140
3141 skb_reset_network_header(skb);
3142 hash = skb_get_hash(skb);
3143 if (!hash)
3144 goto done;
3145
3146 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3147 if (flow_table && sock_flow_table) {
3148 struct rps_dev_flow *rflow;
3149 u32 next_cpu;
3150 u32 ident;
3151
3152 /* First check into global flow table if there is a match */
3153 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3154 if ((ident ^ hash) & ~rps_cpu_mask)
3155 goto try_rps;
3156
3157 next_cpu = ident & rps_cpu_mask;
3158
3159 /* OK, now we know there is a match,
3160 * we can look at the local (per receive queue) flow table
3161 */
3162 rflow = &flow_table->flows[hash & flow_table->mask];
3163 tcpu = rflow->cpu;
3164
3165 /*
3166 * If the desired CPU (where last recvmsg was done) is
3167 * different from current CPU (one in the rx-queue flow
3168 * table entry), switch if one of the following holds:
3169 * - Current CPU is unset (equal to RPS_NO_CPU).
3170 * - Current CPU is offline.
3171 * - The current CPU's queue tail has advanced beyond the
3172 * last packet that was enqueued using this table entry.
3173 * This guarantees that all previous packets for the flow
3174 * have been dequeued, thus preserving in order delivery.
3175 */
3176 if (unlikely(tcpu != next_cpu) &&
3177 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3178 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3179 rflow->last_qtail)) >= 0)) {
3180 tcpu = next_cpu;
3181 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3182 }
3183
3184 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3185 *rflowp = rflow;
3186 cpu = tcpu;
3187 goto done;
3188 }
3189 }
3190
3191 try_rps:
3192
3193 if (map) {
3194 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3195 if (cpu_online(tcpu)) {
3196 cpu = tcpu;
3197 goto done;
3198 }
3199 }
3200
3201 done:
3202 return cpu;
3203 }
3204
3205 #ifdef CONFIG_RFS_ACCEL
3206
3207 /**
3208 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3209 * @dev: Device on which the filter was set
3210 * @rxq_index: RX queue index
3211 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3212 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3213 *
3214 * Drivers that implement ndo_rx_flow_steer() should periodically call
3215 * this function for each installed filter and remove the filters for
3216 * which it returns %true.
3217 */
3218 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3219 u32 flow_id, u16 filter_id)
3220 {
3221 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3222 struct rps_dev_flow_table *flow_table;
3223 struct rps_dev_flow *rflow;
3224 bool expire = true;
3225 int cpu;
3226
3227 rcu_read_lock();
3228 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3229 if (flow_table && flow_id <= flow_table->mask) {
3230 rflow = &flow_table->flows[flow_id];
3231 cpu = ACCESS_ONCE(rflow->cpu);
3232 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3233 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3234 rflow->last_qtail) <
3235 (int)(10 * flow_table->mask)))
3236 expire = false;
3237 }
3238 rcu_read_unlock();
3239 return expire;
3240 }
3241 EXPORT_SYMBOL(rps_may_expire_flow);
3242
3243 #endif /* CONFIG_RFS_ACCEL */
3244
3245 /* Called from hardirq (IPI) context */
3246 static void rps_trigger_softirq(void *data)
3247 {
3248 struct softnet_data *sd = data;
3249
3250 ____napi_schedule(sd, &sd->backlog);
3251 sd->received_rps++;
3252 }
3253
3254 #endif /* CONFIG_RPS */
3255
3256 /*
3257 * Check if this softnet_data structure is another cpu one
3258 * If yes, queue it to our IPI list and return 1
3259 * If no, return 0
3260 */
3261 static int rps_ipi_queued(struct softnet_data *sd)
3262 {
3263 #ifdef CONFIG_RPS
3264 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3265
3266 if (sd != mysd) {
3267 sd->rps_ipi_next = mysd->rps_ipi_list;
3268 mysd->rps_ipi_list = sd;
3269
3270 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3271 return 1;
3272 }
3273 #endif /* CONFIG_RPS */
3274 return 0;
3275 }
3276
3277 #ifdef CONFIG_NET_FLOW_LIMIT
3278 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3279 #endif
3280
3281 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3282 {
3283 #ifdef CONFIG_NET_FLOW_LIMIT
3284 struct sd_flow_limit *fl;
3285 struct softnet_data *sd;
3286 unsigned int old_flow, new_flow;
3287
3288 if (qlen < (netdev_max_backlog >> 1))
3289 return false;
3290
3291 sd = this_cpu_ptr(&softnet_data);
3292
3293 rcu_read_lock();
3294 fl = rcu_dereference(sd->flow_limit);
3295 if (fl) {
3296 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3297 old_flow = fl->history[fl->history_head];
3298 fl->history[fl->history_head] = new_flow;
3299
3300 fl->history_head++;
3301 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3302
3303 if (likely(fl->buckets[old_flow]))
3304 fl->buckets[old_flow]--;
3305
3306 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3307 fl->count++;
3308 rcu_read_unlock();
3309 return true;
3310 }
3311 }
3312 rcu_read_unlock();
3313 #endif
3314 return false;
3315 }
3316
3317 /*
3318 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3319 * queue (may be a remote CPU queue).
3320 */
3321 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3322 unsigned int *qtail)
3323 {
3324 struct softnet_data *sd;
3325 unsigned long flags;
3326 unsigned int qlen;
3327
3328 sd = &per_cpu(softnet_data, cpu);
3329
3330 local_irq_save(flags);
3331
3332 rps_lock(sd);
3333 qlen = skb_queue_len(&sd->input_pkt_queue);
3334 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3335 if (qlen) {
3336 enqueue:
3337 __skb_queue_tail(&sd->input_pkt_queue, skb);
3338 input_queue_tail_incr_save(sd, qtail);
3339 rps_unlock(sd);
3340 local_irq_restore(flags);
3341 return NET_RX_SUCCESS;
3342 }
3343
3344 /* Schedule NAPI for backlog device
3345 * We can use non atomic operation since we own the queue lock
3346 */
3347 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3348 if (!rps_ipi_queued(sd))
3349 ____napi_schedule(sd, &sd->backlog);
3350 }
3351 goto enqueue;
3352 }
3353
3354 sd->dropped++;
3355 rps_unlock(sd);
3356
3357 local_irq_restore(flags);
3358
3359 atomic_long_inc(&skb->dev->rx_dropped);
3360 kfree_skb(skb);
3361 return NET_RX_DROP;
3362 }
3363
3364 static int netif_rx_internal(struct sk_buff *skb)
3365 {
3366 int ret;
3367
3368 net_timestamp_check(netdev_tstamp_prequeue, skb);
3369
3370 trace_netif_rx(skb);
3371 #ifdef CONFIG_RPS
3372 if (static_key_false(&rps_needed)) {
3373 struct rps_dev_flow voidflow, *rflow = &voidflow;
3374 int cpu;
3375
3376 preempt_disable();
3377 rcu_read_lock();
3378
3379 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3380 if (cpu < 0)
3381 cpu = smp_processor_id();
3382
3383 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3384
3385 rcu_read_unlock();
3386 preempt_enable();
3387 } else
3388 #endif
3389 {
3390 unsigned int qtail;
3391 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3392 put_cpu();
3393 }
3394 return ret;
3395 }
3396
3397 /**
3398 * netif_rx - post buffer to the network code
3399 * @skb: buffer to post
3400 *
3401 * This function receives a packet from a device driver and queues it for
3402 * the upper (protocol) levels to process. It always succeeds. The buffer
3403 * may be dropped during processing for congestion control or by the
3404 * protocol layers.
3405 *
3406 * return values:
3407 * NET_RX_SUCCESS (no congestion)
3408 * NET_RX_DROP (packet was dropped)
3409 *
3410 */
3411
3412 int netif_rx(struct sk_buff *skb)
3413 {
3414 trace_netif_rx_entry(skb);
3415
3416 return netif_rx_internal(skb);
3417 }
3418 EXPORT_SYMBOL(netif_rx);
3419
3420 int netif_rx_ni(struct sk_buff *skb)
3421 {
3422 int err;
3423
3424 trace_netif_rx_ni_entry(skb);
3425
3426 preempt_disable();
3427 err = netif_rx_internal(skb);
3428 if (local_softirq_pending())
3429 do_softirq();
3430 preempt_enable();
3431
3432 return err;
3433 }
3434 EXPORT_SYMBOL(netif_rx_ni);
3435
3436 static void net_tx_action(struct softirq_action *h)
3437 {
3438 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3439
3440 if (sd->completion_queue) {
3441 struct sk_buff *clist;
3442
3443 local_irq_disable();
3444 clist = sd->completion_queue;
3445 sd->completion_queue = NULL;
3446 local_irq_enable();
3447
3448 while (clist) {
3449 struct sk_buff *skb = clist;
3450 clist = clist->next;
3451
3452 WARN_ON(atomic_read(&skb->users));
3453 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3454 trace_consume_skb(skb);
3455 else
3456 trace_kfree_skb(skb, net_tx_action);
3457 __kfree_skb(skb);
3458 }
3459 }
3460
3461 if (sd->output_queue) {
3462 struct Qdisc *head;
3463
3464 local_irq_disable();
3465 head = sd->output_queue;
3466 sd->output_queue = NULL;
3467 sd->output_queue_tailp = &sd->output_queue;
3468 local_irq_enable();
3469
3470 while (head) {
3471 struct Qdisc *q = head;
3472 spinlock_t *root_lock;
3473
3474 head = head->next_sched;
3475
3476 root_lock = qdisc_lock(q);
3477 if (spin_trylock(root_lock)) {
3478 smp_mb__before_atomic();
3479 clear_bit(__QDISC_STATE_SCHED,
3480 &q->state);
3481 qdisc_run(q);
3482 spin_unlock(root_lock);
3483 } else {
3484 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3485 &q->state)) {
3486 __netif_reschedule(q);
3487 } else {
3488 smp_mb__before_atomic();
3489 clear_bit(__QDISC_STATE_SCHED,
3490 &q->state);
3491 }
3492 }
3493 }
3494 }
3495 }
3496
3497 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3498 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3499 /* This hook is defined here for ATM LANE */
3500 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3501 unsigned char *addr) __read_mostly;
3502 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3503 #endif
3504
3505 #ifdef CONFIG_NET_CLS_ACT
3506 /* TODO: Maybe we should just force sch_ingress to be compiled in
3507 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3508 * a compare and 2 stores extra right now if we dont have it on
3509 * but have CONFIG_NET_CLS_ACT
3510 * NOTE: This doesn't stop any functionality; if you dont have
3511 * the ingress scheduler, you just can't add policies on ingress.
3512 *
3513 */
3514 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3515 {
3516 struct net_device *dev = skb->dev;
3517 u32 ttl = G_TC_RTTL(skb->tc_verd);
3518 int result = TC_ACT_OK;
3519 struct Qdisc *q;
3520
3521 if (unlikely(MAX_RED_LOOP < ttl++)) {
3522 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3523 skb->skb_iif, dev->ifindex);
3524 return TC_ACT_SHOT;
3525 }
3526
3527 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3528 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3529
3530 q = rcu_dereference(rxq->qdisc);
3531 if (q != &noop_qdisc) {
3532 spin_lock(qdisc_lock(q));
3533 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3534 result = qdisc_enqueue_root(skb, q);
3535 spin_unlock(qdisc_lock(q));
3536 }
3537
3538 return result;
3539 }
3540
3541 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3542 struct packet_type **pt_prev,
3543 int *ret, struct net_device *orig_dev)
3544 {
3545 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3546
3547 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3548 goto out;
3549
3550 if (*pt_prev) {
3551 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3552 *pt_prev = NULL;
3553 }
3554
3555 switch (ing_filter(skb, rxq)) {
3556 case TC_ACT_SHOT:
3557 case TC_ACT_STOLEN:
3558 kfree_skb(skb);
3559 return NULL;
3560 }
3561
3562 out:
3563 skb->tc_verd = 0;
3564 return skb;
3565 }
3566 #endif
3567
3568 /**
3569 * netdev_rx_handler_register - register receive handler
3570 * @dev: device to register a handler for
3571 * @rx_handler: receive handler to register
3572 * @rx_handler_data: data pointer that is used by rx handler
3573 *
3574 * Register a receive handler for a device. This handler will then be
3575 * called from __netif_receive_skb. A negative errno code is returned
3576 * on a failure.
3577 *
3578 * The caller must hold the rtnl_mutex.
3579 *
3580 * For a general description of rx_handler, see enum rx_handler_result.
3581 */
3582 int netdev_rx_handler_register(struct net_device *dev,
3583 rx_handler_func_t *rx_handler,
3584 void *rx_handler_data)
3585 {
3586 ASSERT_RTNL();
3587
3588 if (dev->rx_handler)
3589 return -EBUSY;
3590
3591 /* Note: rx_handler_data must be set before rx_handler */
3592 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3593 rcu_assign_pointer(dev->rx_handler, rx_handler);
3594
3595 return 0;
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3598
3599 /**
3600 * netdev_rx_handler_unregister - unregister receive handler
3601 * @dev: device to unregister a handler from
3602 *
3603 * Unregister a receive handler from a device.
3604 *
3605 * The caller must hold the rtnl_mutex.
3606 */
3607 void netdev_rx_handler_unregister(struct net_device *dev)
3608 {
3609
3610 ASSERT_RTNL();
3611 RCU_INIT_POINTER(dev->rx_handler, NULL);
3612 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3613 * section has a guarantee to see a non NULL rx_handler_data
3614 * as well.
3615 */
3616 synchronize_net();
3617 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3618 }
3619 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3620
3621 /*
3622 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3623 * the special handling of PFMEMALLOC skbs.
3624 */
3625 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3626 {
3627 switch (skb->protocol) {
3628 case htons(ETH_P_ARP):
3629 case htons(ETH_P_IP):
3630 case htons(ETH_P_IPV6):
3631 case htons(ETH_P_8021Q):
3632 case htons(ETH_P_8021AD):
3633 return true;
3634 default:
3635 return false;
3636 }
3637 }
3638
3639 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3640 {
3641 struct packet_type *ptype, *pt_prev;
3642 rx_handler_func_t *rx_handler;
3643 struct net_device *orig_dev;
3644 bool deliver_exact = false;
3645 int ret = NET_RX_DROP;
3646 __be16 type;
3647
3648 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3649
3650 trace_netif_receive_skb(skb);
3651
3652 orig_dev = skb->dev;
3653
3654 skb_reset_network_header(skb);
3655 if (!skb_transport_header_was_set(skb))
3656 skb_reset_transport_header(skb);
3657 skb_reset_mac_len(skb);
3658
3659 pt_prev = NULL;
3660
3661 rcu_read_lock();
3662
3663 another_round:
3664 skb->skb_iif = skb->dev->ifindex;
3665
3666 __this_cpu_inc(softnet_data.processed);
3667
3668 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3669 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3670 skb = skb_vlan_untag(skb);
3671 if (unlikely(!skb))
3672 goto unlock;
3673 }
3674
3675 #ifdef CONFIG_NET_CLS_ACT
3676 if (skb->tc_verd & TC_NCLS) {
3677 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3678 goto ncls;
3679 }
3680 #endif
3681
3682 if (pfmemalloc)
3683 goto skip_taps;
3684
3685 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3686 if (pt_prev)
3687 ret = deliver_skb(skb, pt_prev, orig_dev);
3688 pt_prev = ptype;
3689 }
3690
3691 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3692 if (pt_prev)
3693 ret = deliver_skb(skb, pt_prev, orig_dev);
3694 pt_prev = ptype;
3695 }
3696
3697 skip_taps:
3698 #ifdef CONFIG_NET_CLS_ACT
3699 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3700 if (!skb)
3701 goto unlock;
3702 ncls:
3703 #endif
3704
3705 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3706 goto drop;
3707
3708 if (skb_vlan_tag_present(skb)) {
3709 if (pt_prev) {
3710 ret = deliver_skb(skb, pt_prev, orig_dev);
3711 pt_prev = NULL;
3712 }
3713 if (vlan_do_receive(&skb))
3714 goto another_round;
3715 else if (unlikely(!skb))
3716 goto unlock;
3717 }
3718
3719 rx_handler = rcu_dereference(skb->dev->rx_handler);
3720 if (rx_handler) {
3721 if (pt_prev) {
3722 ret = deliver_skb(skb, pt_prev, orig_dev);
3723 pt_prev = NULL;
3724 }
3725 switch (rx_handler(&skb)) {
3726 case RX_HANDLER_CONSUMED:
3727 ret = NET_RX_SUCCESS;
3728 goto unlock;
3729 case RX_HANDLER_ANOTHER:
3730 goto another_round;
3731 case RX_HANDLER_EXACT:
3732 deliver_exact = true;
3733 case RX_HANDLER_PASS:
3734 break;
3735 default:
3736 BUG();
3737 }
3738 }
3739
3740 if (unlikely(skb_vlan_tag_present(skb))) {
3741 if (skb_vlan_tag_get_id(skb))
3742 skb->pkt_type = PACKET_OTHERHOST;
3743 /* Note: we might in the future use prio bits
3744 * and set skb->priority like in vlan_do_receive()
3745 * For the time being, just ignore Priority Code Point
3746 */
3747 skb->vlan_tci = 0;
3748 }
3749
3750 type = skb->protocol;
3751
3752 /* deliver only exact match when indicated */
3753 if (likely(!deliver_exact)) {
3754 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3755 &ptype_base[ntohs(type) &
3756 PTYPE_HASH_MASK]);
3757 }
3758
3759 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3760 &orig_dev->ptype_specific);
3761
3762 if (unlikely(skb->dev != orig_dev)) {
3763 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3764 &skb->dev->ptype_specific);
3765 }
3766
3767 if (pt_prev) {
3768 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3769 goto drop;
3770 else
3771 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3772 } else {
3773 drop:
3774 atomic_long_inc(&skb->dev->rx_dropped);
3775 kfree_skb(skb);
3776 /* Jamal, now you will not able to escape explaining
3777 * me how you were going to use this. :-)
3778 */
3779 ret = NET_RX_DROP;
3780 }
3781
3782 unlock:
3783 rcu_read_unlock();
3784 return ret;
3785 }
3786
3787 static int __netif_receive_skb(struct sk_buff *skb)
3788 {
3789 int ret;
3790
3791 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3792 unsigned long pflags = current->flags;
3793
3794 /*
3795 * PFMEMALLOC skbs are special, they should
3796 * - be delivered to SOCK_MEMALLOC sockets only
3797 * - stay away from userspace
3798 * - have bounded memory usage
3799 *
3800 * Use PF_MEMALLOC as this saves us from propagating the allocation
3801 * context down to all allocation sites.
3802 */
3803 current->flags |= PF_MEMALLOC;
3804 ret = __netif_receive_skb_core(skb, true);
3805 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3806 } else
3807 ret = __netif_receive_skb_core(skb, false);
3808
3809 return ret;
3810 }
3811
3812 static int netif_receive_skb_internal(struct sk_buff *skb)
3813 {
3814 net_timestamp_check(netdev_tstamp_prequeue, skb);
3815
3816 if (skb_defer_rx_timestamp(skb))
3817 return NET_RX_SUCCESS;
3818
3819 #ifdef CONFIG_RPS
3820 if (static_key_false(&rps_needed)) {
3821 struct rps_dev_flow voidflow, *rflow = &voidflow;
3822 int cpu, ret;
3823
3824 rcu_read_lock();
3825
3826 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3827
3828 if (cpu >= 0) {
3829 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3830 rcu_read_unlock();
3831 return ret;
3832 }
3833 rcu_read_unlock();
3834 }
3835 #endif
3836 return __netif_receive_skb(skb);
3837 }
3838
3839 /**
3840 * netif_receive_skb - process receive buffer from network
3841 * @skb: buffer to process
3842 *
3843 * netif_receive_skb() is the main receive data processing function.
3844 * It always succeeds. The buffer may be dropped during processing
3845 * for congestion control or by the protocol layers.
3846 *
3847 * This function may only be called from softirq context and interrupts
3848 * should be enabled.
3849 *
3850 * Return values (usually ignored):
3851 * NET_RX_SUCCESS: no congestion
3852 * NET_RX_DROP: packet was dropped
3853 */
3854 int netif_receive_skb(struct sk_buff *skb)
3855 {
3856 trace_netif_receive_skb_entry(skb);
3857
3858 return netif_receive_skb_internal(skb);
3859 }
3860 EXPORT_SYMBOL(netif_receive_skb);
3861
3862 /* Network device is going away, flush any packets still pending
3863 * Called with irqs disabled.
3864 */
3865 static void flush_backlog(void *arg)
3866 {
3867 struct net_device *dev = arg;
3868 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3869 struct sk_buff *skb, *tmp;
3870
3871 rps_lock(sd);
3872 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3873 if (skb->dev == dev) {
3874 __skb_unlink(skb, &sd->input_pkt_queue);
3875 kfree_skb(skb);
3876 input_queue_head_incr(sd);
3877 }
3878 }
3879 rps_unlock(sd);
3880
3881 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3882 if (skb->dev == dev) {
3883 __skb_unlink(skb, &sd->process_queue);
3884 kfree_skb(skb);
3885 input_queue_head_incr(sd);
3886 }
3887 }
3888 }
3889
3890 static int napi_gro_complete(struct sk_buff *skb)
3891 {
3892 struct packet_offload *ptype;
3893 __be16 type = skb->protocol;
3894 struct list_head *head = &offload_base;
3895 int err = -ENOENT;
3896
3897 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3898
3899 if (NAPI_GRO_CB(skb)->count == 1) {
3900 skb_shinfo(skb)->gso_size = 0;
3901 goto out;
3902 }
3903
3904 rcu_read_lock();
3905 list_for_each_entry_rcu(ptype, head, list) {
3906 if (ptype->type != type || !ptype->callbacks.gro_complete)
3907 continue;
3908
3909 err = ptype->callbacks.gro_complete(skb, 0);
3910 break;
3911 }
3912 rcu_read_unlock();
3913
3914 if (err) {
3915 WARN_ON(&ptype->list == head);
3916 kfree_skb(skb);
3917 return NET_RX_SUCCESS;
3918 }
3919
3920 out:
3921 return netif_receive_skb_internal(skb);
3922 }
3923
3924 /* napi->gro_list contains packets ordered by age.
3925 * youngest packets at the head of it.
3926 * Complete skbs in reverse order to reduce latencies.
3927 */
3928 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3929 {
3930 struct sk_buff *skb, *prev = NULL;
3931
3932 /* scan list and build reverse chain */
3933 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3934 skb->prev = prev;
3935 prev = skb;
3936 }
3937
3938 for (skb = prev; skb; skb = prev) {
3939 skb->next = NULL;
3940
3941 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3942 return;
3943
3944 prev = skb->prev;
3945 napi_gro_complete(skb);
3946 napi->gro_count--;
3947 }
3948
3949 napi->gro_list = NULL;
3950 }
3951 EXPORT_SYMBOL(napi_gro_flush);
3952
3953 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3954 {
3955 struct sk_buff *p;
3956 unsigned int maclen = skb->dev->hard_header_len;
3957 u32 hash = skb_get_hash_raw(skb);
3958
3959 for (p = napi->gro_list; p; p = p->next) {
3960 unsigned long diffs;
3961
3962 NAPI_GRO_CB(p)->flush = 0;
3963
3964 if (hash != skb_get_hash_raw(p)) {
3965 NAPI_GRO_CB(p)->same_flow = 0;
3966 continue;
3967 }
3968
3969 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3970 diffs |= p->vlan_tci ^ skb->vlan_tci;
3971 if (maclen == ETH_HLEN)
3972 diffs |= compare_ether_header(skb_mac_header(p),
3973 skb_mac_header(skb));
3974 else if (!diffs)
3975 diffs = memcmp(skb_mac_header(p),
3976 skb_mac_header(skb),
3977 maclen);
3978 NAPI_GRO_CB(p)->same_flow = !diffs;
3979 }
3980 }
3981
3982 static void skb_gro_reset_offset(struct sk_buff *skb)
3983 {
3984 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3985 const skb_frag_t *frag0 = &pinfo->frags[0];
3986
3987 NAPI_GRO_CB(skb)->data_offset = 0;
3988 NAPI_GRO_CB(skb)->frag0 = NULL;
3989 NAPI_GRO_CB(skb)->frag0_len = 0;
3990
3991 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3992 pinfo->nr_frags &&
3993 !PageHighMem(skb_frag_page(frag0))) {
3994 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3995 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3996 }
3997 }
3998
3999 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4000 {
4001 struct skb_shared_info *pinfo = skb_shinfo(skb);
4002
4003 BUG_ON(skb->end - skb->tail < grow);
4004
4005 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4006
4007 skb->data_len -= grow;
4008 skb->tail += grow;
4009
4010 pinfo->frags[0].page_offset += grow;
4011 skb_frag_size_sub(&pinfo->frags[0], grow);
4012
4013 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4014 skb_frag_unref(skb, 0);
4015 memmove(pinfo->frags, pinfo->frags + 1,
4016 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4017 }
4018 }
4019
4020 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4021 {
4022 struct sk_buff **pp = NULL;
4023 struct packet_offload *ptype;
4024 __be16 type = skb->protocol;
4025 struct list_head *head = &offload_base;
4026 int same_flow;
4027 enum gro_result ret;
4028 int grow;
4029
4030 if (!(skb->dev->features & NETIF_F_GRO))
4031 goto normal;
4032
4033 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4034 goto normal;
4035
4036 gro_list_prepare(napi, skb);
4037
4038 rcu_read_lock();
4039 list_for_each_entry_rcu(ptype, head, list) {
4040 if (ptype->type != type || !ptype->callbacks.gro_receive)
4041 continue;
4042
4043 skb_set_network_header(skb, skb_gro_offset(skb));
4044 skb_reset_mac_len(skb);
4045 NAPI_GRO_CB(skb)->same_flow = 0;
4046 NAPI_GRO_CB(skb)->flush = 0;
4047 NAPI_GRO_CB(skb)->free = 0;
4048 NAPI_GRO_CB(skb)->udp_mark = 0;
4049 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4050
4051 /* Setup for GRO checksum validation */
4052 switch (skb->ip_summed) {
4053 case CHECKSUM_COMPLETE:
4054 NAPI_GRO_CB(skb)->csum = skb->csum;
4055 NAPI_GRO_CB(skb)->csum_valid = 1;
4056 NAPI_GRO_CB(skb)->csum_cnt = 0;
4057 break;
4058 case CHECKSUM_UNNECESSARY:
4059 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4060 NAPI_GRO_CB(skb)->csum_valid = 0;
4061 break;
4062 default:
4063 NAPI_GRO_CB(skb)->csum_cnt = 0;
4064 NAPI_GRO_CB(skb)->csum_valid = 0;
4065 }
4066
4067 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4068 break;
4069 }
4070 rcu_read_unlock();
4071
4072 if (&ptype->list == head)
4073 goto normal;
4074
4075 same_flow = NAPI_GRO_CB(skb)->same_flow;
4076 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4077
4078 if (pp) {
4079 struct sk_buff *nskb = *pp;
4080
4081 *pp = nskb->next;
4082 nskb->next = NULL;
4083 napi_gro_complete(nskb);
4084 napi->gro_count--;
4085 }
4086
4087 if (same_flow)
4088 goto ok;
4089
4090 if (NAPI_GRO_CB(skb)->flush)
4091 goto normal;
4092
4093 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4094 struct sk_buff *nskb = napi->gro_list;
4095
4096 /* locate the end of the list to select the 'oldest' flow */
4097 while (nskb->next) {
4098 pp = &nskb->next;
4099 nskb = *pp;
4100 }
4101 *pp = NULL;
4102 nskb->next = NULL;
4103 napi_gro_complete(nskb);
4104 } else {
4105 napi->gro_count++;
4106 }
4107 NAPI_GRO_CB(skb)->count = 1;
4108 NAPI_GRO_CB(skb)->age = jiffies;
4109 NAPI_GRO_CB(skb)->last = skb;
4110 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4111 skb->next = napi->gro_list;
4112 napi->gro_list = skb;
4113 ret = GRO_HELD;
4114
4115 pull:
4116 grow = skb_gro_offset(skb) - skb_headlen(skb);
4117 if (grow > 0)
4118 gro_pull_from_frag0(skb, grow);
4119 ok:
4120 return ret;
4121
4122 normal:
4123 ret = GRO_NORMAL;
4124 goto pull;
4125 }
4126
4127 struct packet_offload *gro_find_receive_by_type(__be16 type)
4128 {
4129 struct list_head *offload_head = &offload_base;
4130 struct packet_offload *ptype;
4131
4132 list_for_each_entry_rcu(ptype, offload_head, list) {
4133 if (ptype->type != type || !ptype->callbacks.gro_receive)
4134 continue;
4135 return ptype;
4136 }
4137 return NULL;
4138 }
4139 EXPORT_SYMBOL(gro_find_receive_by_type);
4140
4141 struct packet_offload *gro_find_complete_by_type(__be16 type)
4142 {
4143 struct list_head *offload_head = &offload_base;
4144 struct packet_offload *ptype;
4145
4146 list_for_each_entry_rcu(ptype, offload_head, list) {
4147 if (ptype->type != type || !ptype->callbacks.gro_complete)
4148 continue;
4149 return ptype;
4150 }
4151 return NULL;
4152 }
4153 EXPORT_SYMBOL(gro_find_complete_by_type);
4154
4155 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4156 {
4157 switch (ret) {
4158 case GRO_NORMAL:
4159 if (netif_receive_skb_internal(skb))
4160 ret = GRO_DROP;
4161 break;
4162
4163 case GRO_DROP:
4164 kfree_skb(skb);
4165 break;
4166
4167 case GRO_MERGED_FREE:
4168 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4169 kmem_cache_free(skbuff_head_cache, skb);
4170 else
4171 __kfree_skb(skb);
4172 break;
4173
4174 case GRO_HELD:
4175 case GRO_MERGED:
4176 break;
4177 }
4178
4179 return ret;
4180 }
4181
4182 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4183 {
4184 trace_napi_gro_receive_entry(skb);
4185
4186 skb_gro_reset_offset(skb);
4187
4188 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4189 }
4190 EXPORT_SYMBOL(napi_gro_receive);
4191
4192 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4193 {
4194 if (unlikely(skb->pfmemalloc)) {
4195 consume_skb(skb);
4196 return;
4197 }
4198 __skb_pull(skb, skb_headlen(skb));
4199 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4200 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4201 skb->vlan_tci = 0;
4202 skb->dev = napi->dev;
4203 skb->skb_iif = 0;
4204 skb->encapsulation = 0;
4205 skb_shinfo(skb)->gso_type = 0;
4206 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4207
4208 napi->skb = skb;
4209 }
4210
4211 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4212 {
4213 struct sk_buff *skb = napi->skb;
4214
4215 if (!skb) {
4216 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4217 napi->skb = skb;
4218 }
4219 return skb;
4220 }
4221 EXPORT_SYMBOL(napi_get_frags);
4222
4223 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4224 struct sk_buff *skb,
4225 gro_result_t ret)
4226 {
4227 switch (ret) {
4228 case GRO_NORMAL:
4229 case GRO_HELD:
4230 __skb_push(skb, ETH_HLEN);
4231 skb->protocol = eth_type_trans(skb, skb->dev);
4232 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4233 ret = GRO_DROP;
4234 break;
4235
4236 case GRO_DROP:
4237 case GRO_MERGED_FREE:
4238 napi_reuse_skb(napi, skb);
4239 break;
4240
4241 case GRO_MERGED:
4242 break;
4243 }
4244
4245 return ret;
4246 }
4247
4248 /* Upper GRO stack assumes network header starts at gro_offset=0
4249 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4250 * We copy ethernet header into skb->data to have a common layout.
4251 */
4252 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4253 {
4254 struct sk_buff *skb = napi->skb;
4255 const struct ethhdr *eth;
4256 unsigned int hlen = sizeof(*eth);
4257
4258 napi->skb = NULL;
4259
4260 skb_reset_mac_header(skb);
4261 skb_gro_reset_offset(skb);
4262
4263 eth = skb_gro_header_fast(skb, 0);
4264 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4265 eth = skb_gro_header_slow(skb, hlen, 0);
4266 if (unlikely(!eth)) {
4267 napi_reuse_skb(napi, skb);
4268 return NULL;
4269 }
4270 } else {
4271 gro_pull_from_frag0(skb, hlen);
4272 NAPI_GRO_CB(skb)->frag0 += hlen;
4273 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4274 }
4275 __skb_pull(skb, hlen);
4276
4277 /*
4278 * This works because the only protocols we care about don't require
4279 * special handling.
4280 * We'll fix it up properly in napi_frags_finish()
4281 */
4282 skb->protocol = eth->h_proto;
4283
4284 return skb;
4285 }
4286
4287 gro_result_t napi_gro_frags(struct napi_struct *napi)
4288 {
4289 struct sk_buff *skb = napi_frags_skb(napi);
4290
4291 if (!skb)
4292 return GRO_DROP;
4293
4294 trace_napi_gro_frags_entry(skb);
4295
4296 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4297 }
4298 EXPORT_SYMBOL(napi_gro_frags);
4299
4300 /* Compute the checksum from gro_offset and return the folded value
4301 * after adding in any pseudo checksum.
4302 */
4303 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4304 {
4305 __wsum wsum;
4306 __sum16 sum;
4307
4308 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4309
4310 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4311 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4312 if (likely(!sum)) {
4313 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4314 !skb->csum_complete_sw)
4315 netdev_rx_csum_fault(skb->dev);
4316 }
4317
4318 NAPI_GRO_CB(skb)->csum = wsum;
4319 NAPI_GRO_CB(skb)->csum_valid = 1;
4320
4321 return sum;
4322 }
4323 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4324
4325 /*
4326 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4327 * Note: called with local irq disabled, but exits with local irq enabled.
4328 */
4329 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4330 {
4331 #ifdef CONFIG_RPS
4332 struct softnet_data *remsd = sd->rps_ipi_list;
4333
4334 if (remsd) {
4335 sd->rps_ipi_list = NULL;
4336
4337 local_irq_enable();
4338
4339 /* Send pending IPI's to kick RPS processing on remote cpus. */
4340 while (remsd) {
4341 struct softnet_data *next = remsd->rps_ipi_next;
4342
4343 if (cpu_online(remsd->cpu))
4344 smp_call_function_single_async(remsd->cpu,
4345 &remsd->csd);
4346 remsd = next;
4347 }
4348 } else
4349 #endif
4350 local_irq_enable();
4351 }
4352
4353 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4354 {
4355 #ifdef CONFIG_RPS
4356 return sd->rps_ipi_list != NULL;
4357 #else
4358 return false;
4359 #endif
4360 }
4361
4362 static int process_backlog(struct napi_struct *napi, int quota)
4363 {
4364 int work = 0;
4365 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4366
4367 /* Check if we have pending ipi, its better to send them now,
4368 * not waiting net_rx_action() end.
4369 */
4370 if (sd_has_rps_ipi_waiting(sd)) {
4371 local_irq_disable();
4372 net_rps_action_and_irq_enable(sd);
4373 }
4374
4375 napi->weight = weight_p;
4376 local_irq_disable();
4377 while (1) {
4378 struct sk_buff *skb;
4379
4380 while ((skb = __skb_dequeue(&sd->process_queue))) {
4381 local_irq_enable();
4382 __netif_receive_skb(skb);
4383 local_irq_disable();
4384 input_queue_head_incr(sd);
4385 if (++work >= quota) {
4386 local_irq_enable();
4387 return work;
4388 }
4389 }
4390
4391 rps_lock(sd);
4392 if (skb_queue_empty(&sd->input_pkt_queue)) {
4393 /*
4394 * Inline a custom version of __napi_complete().
4395 * only current cpu owns and manipulates this napi,
4396 * and NAPI_STATE_SCHED is the only possible flag set
4397 * on backlog.
4398 * We can use a plain write instead of clear_bit(),
4399 * and we dont need an smp_mb() memory barrier.
4400 */
4401 napi->state = 0;
4402 rps_unlock(sd);
4403
4404 break;
4405 }
4406
4407 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4408 &sd->process_queue);
4409 rps_unlock(sd);
4410 }
4411 local_irq_enable();
4412
4413 return work;
4414 }
4415
4416 /**
4417 * __napi_schedule - schedule for receive
4418 * @n: entry to schedule
4419 *
4420 * The entry's receive function will be scheduled to run.
4421 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4422 */
4423 void __napi_schedule(struct napi_struct *n)
4424 {
4425 unsigned long flags;
4426
4427 local_irq_save(flags);
4428 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4429 local_irq_restore(flags);
4430 }
4431 EXPORT_SYMBOL(__napi_schedule);
4432
4433 /**
4434 * __napi_schedule_irqoff - schedule for receive
4435 * @n: entry to schedule
4436 *
4437 * Variant of __napi_schedule() assuming hard irqs are masked
4438 */
4439 void __napi_schedule_irqoff(struct napi_struct *n)
4440 {
4441 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4442 }
4443 EXPORT_SYMBOL(__napi_schedule_irqoff);
4444
4445 void __napi_complete(struct napi_struct *n)
4446 {
4447 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4448
4449 list_del_init(&n->poll_list);
4450 smp_mb__before_atomic();
4451 clear_bit(NAPI_STATE_SCHED, &n->state);
4452 }
4453 EXPORT_SYMBOL(__napi_complete);
4454
4455 void napi_complete_done(struct napi_struct *n, int work_done)
4456 {
4457 unsigned long flags;
4458
4459 /*
4460 * don't let napi dequeue from the cpu poll list
4461 * just in case its running on a different cpu
4462 */
4463 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4464 return;
4465
4466 if (n->gro_list) {
4467 unsigned long timeout = 0;
4468
4469 if (work_done)
4470 timeout = n->dev->gro_flush_timeout;
4471
4472 if (timeout)
4473 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4474 HRTIMER_MODE_REL_PINNED);
4475 else
4476 napi_gro_flush(n, false);
4477 }
4478 if (likely(list_empty(&n->poll_list))) {
4479 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4480 } else {
4481 /* If n->poll_list is not empty, we need to mask irqs */
4482 local_irq_save(flags);
4483 __napi_complete(n);
4484 local_irq_restore(flags);
4485 }
4486 }
4487 EXPORT_SYMBOL(napi_complete_done);
4488
4489 /* must be called under rcu_read_lock(), as we dont take a reference */
4490 struct napi_struct *napi_by_id(unsigned int napi_id)
4491 {
4492 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4493 struct napi_struct *napi;
4494
4495 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4496 if (napi->napi_id == napi_id)
4497 return napi;
4498
4499 return NULL;
4500 }
4501 EXPORT_SYMBOL_GPL(napi_by_id);
4502
4503 void napi_hash_add(struct napi_struct *napi)
4504 {
4505 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4506
4507 spin_lock(&napi_hash_lock);
4508
4509 /* 0 is not a valid id, we also skip an id that is taken
4510 * we expect both events to be extremely rare
4511 */
4512 napi->napi_id = 0;
4513 while (!napi->napi_id) {
4514 napi->napi_id = ++napi_gen_id;
4515 if (napi_by_id(napi->napi_id))
4516 napi->napi_id = 0;
4517 }
4518
4519 hlist_add_head_rcu(&napi->napi_hash_node,
4520 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4521
4522 spin_unlock(&napi_hash_lock);
4523 }
4524 }
4525 EXPORT_SYMBOL_GPL(napi_hash_add);
4526
4527 /* Warning : caller is responsible to make sure rcu grace period
4528 * is respected before freeing memory containing @napi
4529 */
4530 void napi_hash_del(struct napi_struct *napi)
4531 {
4532 spin_lock(&napi_hash_lock);
4533
4534 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4535 hlist_del_rcu(&napi->napi_hash_node);
4536
4537 spin_unlock(&napi_hash_lock);
4538 }
4539 EXPORT_SYMBOL_GPL(napi_hash_del);
4540
4541 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4542 {
4543 struct napi_struct *napi;
4544
4545 napi = container_of(timer, struct napi_struct, timer);
4546 if (napi->gro_list)
4547 napi_schedule(napi);
4548
4549 return HRTIMER_NORESTART;
4550 }
4551
4552 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4553 int (*poll)(struct napi_struct *, int), int weight)
4554 {
4555 INIT_LIST_HEAD(&napi->poll_list);
4556 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4557 napi->timer.function = napi_watchdog;
4558 napi->gro_count = 0;
4559 napi->gro_list = NULL;
4560 napi->skb = NULL;
4561 napi->poll = poll;
4562 if (weight > NAPI_POLL_WEIGHT)
4563 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4564 weight, dev->name);
4565 napi->weight = weight;
4566 list_add(&napi->dev_list, &dev->napi_list);
4567 napi->dev = dev;
4568 #ifdef CONFIG_NETPOLL
4569 spin_lock_init(&napi->poll_lock);
4570 napi->poll_owner = -1;
4571 #endif
4572 set_bit(NAPI_STATE_SCHED, &napi->state);
4573 }
4574 EXPORT_SYMBOL(netif_napi_add);
4575
4576 void napi_disable(struct napi_struct *n)
4577 {
4578 might_sleep();
4579 set_bit(NAPI_STATE_DISABLE, &n->state);
4580
4581 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4582 msleep(1);
4583
4584 hrtimer_cancel(&n->timer);
4585
4586 clear_bit(NAPI_STATE_DISABLE, &n->state);
4587 }
4588 EXPORT_SYMBOL(napi_disable);
4589
4590 void netif_napi_del(struct napi_struct *napi)
4591 {
4592 list_del_init(&napi->dev_list);
4593 napi_free_frags(napi);
4594
4595 kfree_skb_list(napi->gro_list);
4596 napi->gro_list = NULL;
4597 napi->gro_count = 0;
4598 }
4599 EXPORT_SYMBOL(netif_napi_del);
4600
4601 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4602 {
4603 void *have;
4604 int work, weight;
4605
4606 list_del_init(&n->poll_list);
4607
4608 have = netpoll_poll_lock(n);
4609
4610 weight = n->weight;
4611
4612 /* This NAPI_STATE_SCHED test is for avoiding a race
4613 * with netpoll's poll_napi(). Only the entity which
4614 * obtains the lock and sees NAPI_STATE_SCHED set will
4615 * actually make the ->poll() call. Therefore we avoid
4616 * accidentally calling ->poll() when NAPI is not scheduled.
4617 */
4618 work = 0;
4619 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4620 work = n->poll(n, weight);
4621 trace_napi_poll(n);
4622 }
4623
4624 WARN_ON_ONCE(work > weight);
4625
4626 if (likely(work < weight))
4627 goto out_unlock;
4628
4629 /* Drivers must not modify the NAPI state if they
4630 * consume the entire weight. In such cases this code
4631 * still "owns" the NAPI instance and therefore can
4632 * move the instance around on the list at-will.
4633 */
4634 if (unlikely(napi_disable_pending(n))) {
4635 napi_complete(n);
4636 goto out_unlock;
4637 }
4638
4639 if (n->gro_list) {
4640 /* flush too old packets
4641 * If HZ < 1000, flush all packets.
4642 */
4643 napi_gro_flush(n, HZ >= 1000);
4644 }
4645
4646 /* Some drivers may have called napi_schedule
4647 * prior to exhausting their budget.
4648 */
4649 if (unlikely(!list_empty(&n->poll_list))) {
4650 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4651 n->dev ? n->dev->name : "backlog");
4652 goto out_unlock;
4653 }
4654
4655 list_add_tail(&n->poll_list, repoll);
4656
4657 out_unlock:
4658 netpoll_poll_unlock(have);
4659
4660 return work;
4661 }
4662
4663 static void net_rx_action(struct softirq_action *h)
4664 {
4665 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4666 unsigned long time_limit = jiffies + 2;
4667 int budget = netdev_budget;
4668 LIST_HEAD(list);
4669 LIST_HEAD(repoll);
4670
4671 local_irq_disable();
4672 list_splice_init(&sd->poll_list, &list);
4673 local_irq_enable();
4674
4675 for (;;) {
4676 struct napi_struct *n;
4677
4678 if (list_empty(&list)) {
4679 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4680 return;
4681 break;
4682 }
4683
4684 n = list_first_entry(&list, struct napi_struct, poll_list);
4685 budget -= napi_poll(n, &repoll);
4686
4687 /* If softirq window is exhausted then punt.
4688 * Allow this to run for 2 jiffies since which will allow
4689 * an average latency of 1.5/HZ.
4690 */
4691 if (unlikely(budget <= 0 ||
4692 time_after_eq(jiffies, time_limit))) {
4693 sd->time_squeeze++;
4694 break;
4695 }
4696 }
4697
4698 local_irq_disable();
4699
4700 list_splice_tail_init(&sd->poll_list, &list);
4701 list_splice_tail(&repoll, &list);
4702 list_splice(&list, &sd->poll_list);
4703 if (!list_empty(&sd->poll_list))
4704 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4705
4706 net_rps_action_and_irq_enable(sd);
4707 }
4708
4709 struct netdev_adjacent {
4710 struct net_device *dev;
4711
4712 /* upper master flag, there can only be one master device per list */
4713 bool master;
4714
4715 /* counter for the number of times this device was added to us */
4716 u16 ref_nr;
4717
4718 /* private field for the users */
4719 void *private;
4720
4721 struct list_head list;
4722 struct rcu_head rcu;
4723 };
4724
4725 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4726 struct net_device *adj_dev,
4727 struct list_head *adj_list)
4728 {
4729 struct netdev_adjacent *adj;
4730
4731 list_for_each_entry(adj, adj_list, list) {
4732 if (adj->dev == adj_dev)
4733 return adj;
4734 }
4735 return NULL;
4736 }
4737
4738 /**
4739 * netdev_has_upper_dev - Check if device is linked to an upper device
4740 * @dev: device
4741 * @upper_dev: upper device to check
4742 *
4743 * Find out if a device is linked to specified upper device and return true
4744 * in case it is. Note that this checks only immediate upper device,
4745 * not through a complete stack of devices. The caller must hold the RTNL lock.
4746 */
4747 bool netdev_has_upper_dev(struct net_device *dev,
4748 struct net_device *upper_dev)
4749 {
4750 ASSERT_RTNL();
4751
4752 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4753 }
4754 EXPORT_SYMBOL(netdev_has_upper_dev);
4755
4756 /**
4757 * netdev_has_any_upper_dev - Check if device is linked to some device
4758 * @dev: device
4759 *
4760 * Find out if a device is linked to an upper device and return true in case
4761 * it is. The caller must hold the RTNL lock.
4762 */
4763 static bool netdev_has_any_upper_dev(struct net_device *dev)
4764 {
4765 ASSERT_RTNL();
4766
4767 return !list_empty(&dev->all_adj_list.upper);
4768 }
4769
4770 /**
4771 * netdev_master_upper_dev_get - Get master upper device
4772 * @dev: device
4773 *
4774 * Find a master upper device and return pointer to it or NULL in case
4775 * it's not there. The caller must hold the RTNL lock.
4776 */
4777 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4778 {
4779 struct netdev_adjacent *upper;
4780
4781 ASSERT_RTNL();
4782
4783 if (list_empty(&dev->adj_list.upper))
4784 return NULL;
4785
4786 upper = list_first_entry(&dev->adj_list.upper,
4787 struct netdev_adjacent, list);
4788 if (likely(upper->master))
4789 return upper->dev;
4790 return NULL;
4791 }
4792 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4793
4794 void *netdev_adjacent_get_private(struct list_head *adj_list)
4795 {
4796 struct netdev_adjacent *adj;
4797
4798 adj = list_entry(adj_list, struct netdev_adjacent, list);
4799
4800 return adj->private;
4801 }
4802 EXPORT_SYMBOL(netdev_adjacent_get_private);
4803
4804 /**
4805 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4806 * @dev: device
4807 * @iter: list_head ** of the current position
4808 *
4809 * Gets the next device from the dev's upper list, starting from iter
4810 * position. The caller must hold RCU read lock.
4811 */
4812 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4813 struct list_head **iter)
4814 {
4815 struct netdev_adjacent *upper;
4816
4817 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4818
4819 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4820
4821 if (&upper->list == &dev->adj_list.upper)
4822 return NULL;
4823
4824 *iter = &upper->list;
4825
4826 return upper->dev;
4827 }
4828 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4829
4830 /**
4831 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4832 * @dev: device
4833 * @iter: list_head ** of the current position
4834 *
4835 * Gets the next device from the dev's upper list, starting from iter
4836 * position. The caller must hold RCU read lock.
4837 */
4838 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4839 struct list_head **iter)
4840 {
4841 struct netdev_adjacent *upper;
4842
4843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4844
4845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4846
4847 if (&upper->list == &dev->all_adj_list.upper)
4848 return NULL;
4849
4850 *iter = &upper->list;
4851
4852 return upper->dev;
4853 }
4854 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4855
4856 /**
4857 * netdev_lower_get_next_private - Get the next ->private from the
4858 * lower neighbour list
4859 * @dev: device
4860 * @iter: list_head ** of the current position
4861 *
4862 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4863 * list, starting from iter position. The caller must hold either hold the
4864 * RTNL lock or its own locking that guarantees that the neighbour lower
4865 * list will remain unchainged.
4866 */
4867 void *netdev_lower_get_next_private(struct net_device *dev,
4868 struct list_head **iter)
4869 {
4870 struct netdev_adjacent *lower;
4871
4872 lower = list_entry(*iter, struct netdev_adjacent, list);
4873
4874 if (&lower->list == &dev->adj_list.lower)
4875 return NULL;
4876
4877 *iter = lower->list.next;
4878
4879 return lower->private;
4880 }
4881 EXPORT_SYMBOL(netdev_lower_get_next_private);
4882
4883 /**
4884 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4885 * lower neighbour list, RCU
4886 * variant
4887 * @dev: device
4888 * @iter: list_head ** of the current position
4889 *
4890 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4891 * list, starting from iter position. The caller must hold RCU read lock.
4892 */
4893 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4894 struct list_head **iter)
4895 {
4896 struct netdev_adjacent *lower;
4897
4898 WARN_ON_ONCE(!rcu_read_lock_held());
4899
4900 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4901
4902 if (&lower->list == &dev->adj_list.lower)
4903 return NULL;
4904
4905 *iter = &lower->list;
4906
4907 return lower->private;
4908 }
4909 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4910
4911 /**
4912 * netdev_lower_get_next - Get the next device from the lower neighbour
4913 * list
4914 * @dev: device
4915 * @iter: list_head ** of the current position
4916 *
4917 * Gets the next netdev_adjacent from the dev's lower neighbour
4918 * list, starting from iter position. The caller must hold RTNL lock or
4919 * its own locking that guarantees that the neighbour lower
4920 * list will remain unchainged.
4921 */
4922 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4923 {
4924 struct netdev_adjacent *lower;
4925
4926 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4927
4928 if (&lower->list == &dev->adj_list.lower)
4929 return NULL;
4930
4931 *iter = &lower->list;
4932
4933 return lower->dev;
4934 }
4935 EXPORT_SYMBOL(netdev_lower_get_next);
4936
4937 /**
4938 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4939 * lower neighbour list, RCU
4940 * variant
4941 * @dev: device
4942 *
4943 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4944 * list. The caller must hold RCU read lock.
4945 */
4946 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4947 {
4948 struct netdev_adjacent *lower;
4949
4950 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4951 struct netdev_adjacent, list);
4952 if (lower)
4953 return lower->private;
4954 return NULL;
4955 }
4956 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4957
4958 /**
4959 * netdev_master_upper_dev_get_rcu - Get master upper device
4960 * @dev: device
4961 *
4962 * Find a master upper device and return pointer to it or NULL in case
4963 * it's not there. The caller must hold the RCU read lock.
4964 */
4965 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4966 {
4967 struct netdev_adjacent *upper;
4968
4969 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4970 struct netdev_adjacent, list);
4971 if (upper && likely(upper->master))
4972 return upper->dev;
4973 return NULL;
4974 }
4975 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4976
4977 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4978 struct net_device *adj_dev,
4979 struct list_head *dev_list)
4980 {
4981 char linkname[IFNAMSIZ+7];
4982 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4983 "upper_%s" : "lower_%s", adj_dev->name);
4984 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4985 linkname);
4986 }
4987 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4988 char *name,
4989 struct list_head *dev_list)
4990 {
4991 char linkname[IFNAMSIZ+7];
4992 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4993 "upper_%s" : "lower_%s", name);
4994 sysfs_remove_link(&(dev->dev.kobj), linkname);
4995 }
4996
4997 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4998 struct net_device *adj_dev,
4999 struct list_head *dev_list)
5000 {
5001 return (dev_list == &dev->adj_list.upper ||
5002 dev_list == &dev->adj_list.lower) &&
5003 net_eq(dev_net(dev), dev_net(adj_dev));
5004 }
5005
5006 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5007 struct net_device *adj_dev,
5008 struct list_head *dev_list,
5009 void *private, bool master)
5010 {
5011 struct netdev_adjacent *adj;
5012 int ret;
5013
5014 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5015
5016 if (adj) {
5017 adj->ref_nr++;
5018 return 0;
5019 }
5020
5021 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5022 if (!adj)
5023 return -ENOMEM;
5024
5025 adj->dev = adj_dev;
5026 adj->master = master;
5027 adj->ref_nr = 1;
5028 adj->private = private;
5029 dev_hold(adj_dev);
5030
5031 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5032 adj_dev->name, dev->name, adj_dev->name);
5033
5034 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5035 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5036 if (ret)
5037 goto free_adj;
5038 }
5039
5040 /* Ensure that master link is always the first item in list. */
5041 if (master) {
5042 ret = sysfs_create_link(&(dev->dev.kobj),
5043 &(adj_dev->dev.kobj), "master");
5044 if (ret)
5045 goto remove_symlinks;
5046
5047 list_add_rcu(&adj->list, dev_list);
5048 } else {
5049 list_add_tail_rcu(&adj->list, dev_list);
5050 }
5051
5052 return 0;
5053
5054 remove_symlinks:
5055 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5056 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5057 free_adj:
5058 kfree(adj);
5059 dev_put(adj_dev);
5060
5061 return ret;
5062 }
5063
5064 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5065 struct net_device *adj_dev,
5066 struct list_head *dev_list)
5067 {
5068 struct netdev_adjacent *adj;
5069
5070 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5071
5072 if (!adj) {
5073 pr_err("tried to remove device %s from %s\n",
5074 dev->name, adj_dev->name);
5075 BUG();
5076 }
5077
5078 if (adj->ref_nr > 1) {
5079 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5080 adj->ref_nr-1);
5081 adj->ref_nr--;
5082 return;
5083 }
5084
5085 if (adj->master)
5086 sysfs_remove_link(&(dev->dev.kobj), "master");
5087
5088 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5089 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5090
5091 list_del_rcu(&adj->list);
5092 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5093 adj_dev->name, dev->name, adj_dev->name);
5094 dev_put(adj_dev);
5095 kfree_rcu(adj, rcu);
5096 }
5097
5098 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5099 struct net_device *upper_dev,
5100 struct list_head *up_list,
5101 struct list_head *down_list,
5102 void *private, bool master)
5103 {
5104 int ret;
5105
5106 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5107 master);
5108 if (ret)
5109 return ret;
5110
5111 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5112 false);
5113 if (ret) {
5114 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5115 return ret;
5116 }
5117
5118 return 0;
5119 }
5120
5121 static int __netdev_adjacent_dev_link(struct net_device *dev,
5122 struct net_device *upper_dev)
5123 {
5124 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5125 &dev->all_adj_list.upper,
5126 &upper_dev->all_adj_list.lower,
5127 NULL, false);
5128 }
5129
5130 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5131 struct net_device *upper_dev,
5132 struct list_head *up_list,
5133 struct list_head *down_list)
5134 {
5135 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5136 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5137 }
5138
5139 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5140 struct net_device *upper_dev)
5141 {
5142 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5143 &dev->all_adj_list.upper,
5144 &upper_dev->all_adj_list.lower);
5145 }
5146
5147 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5148 struct net_device *upper_dev,
5149 void *private, bool master)
5150 {
5151 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5152
5153 if (ret)
5154 return ret;
5155
5156 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5157 &dev->adj_list.upper,
5158 &upper_dev->adj_list.lower,
5159 private, master);
5160 if (ret) {
5161 __netdev_adjacent_dev_unlink(dev, upper_dev);
5162 return ret;
5163 }
5164
5165 return 0;
5166 }
5167
5168 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5169 struct net_device *upper_dev)
5170 {
5171 __netdev_adjacent_dev_unlink(dev, upper_dev);
5172 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5173 &dev->adj_list.upper,
5174 &upper_dev->adj_list.lower);
5175 }
5176
5177 static int __netdev_upper_dev_link(struct net_device *dev,
5178 struct net_device *upper_dev, bool master,
5179 void *private)
5180 {
5181 struct netdev_adjacent *i, *j, *to_i, *to_j;
5182 int ret = 0;
5183
5184 ASSERT_RTNL();
5185
5186 if (dev == upper_dev)
5187 return -EBUSY;
5188
5189 /* To prevent loops, check if dev is not upper device to upper_dev. */
5190 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5191 return -EBUSY;
5192
5193 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5194 return -EEXIST;
5195
5196 if (master && netdev_master_upper_dev_get(dev))
5197 return -EBUSY;
5198
5199 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5200 master);
5201 if (ret)
5202 return ret;
5203
5204 /* Now that we linked these devs, make all the upper_dev's
5205 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5206 * versa, and don't forget the devices itself. All of these
5207 * links are non-neighbours.
5208 */
5209 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5210 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5211 pr_debug("Interlinking %s with %s, non-neighbour\n",
5212 i->dev->name, j->dev->name);
5213 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5214 if (ret)
5215 goto rollback_mesh;
5216 }
5217 }
5218
5219 /* add dev to every upper_dev's upper device */
5220 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5221 pr_debug("linking %s's upper device %s with %s\n",
5222 upper_dev->name, i->dev->name, dev->name);
5223 ret = __netdev_adjacent_dev_link(dev, i->dev);
5224 if (ret)
5225 goto rollback_upper_mesh;
5226 }
5227
5228 /* add upper_dev to every dev's lower device */
5229 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5230 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5231 i->dev->name, upper_dev->name);
5232 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5233 if (ret)
5234 goto rollback_lower_mesh;
5235 }
5236
5237 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5238 return 0;
5239
5240 rollback_lower_mesh:
5241 to_i = i;
5242 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5243 if (i == to_i)
5244 break;
5245 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5246 }
5247
5248 i = NULL;
5249
5250 rollback_upper_mesh:
5251 to_i = i;
5252 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5253 if (i == to_i)
5254 break;
5255 __netdev_adjacent_dev_unlink(dev, i->dev);
5256 }
5257
5258 i = j = NULL;
5259
5260 rollback_mesh:
5261 to_i = i;
5262 to_j = j;
5263 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5264 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5265 if (i == to_i && j == to_j)
5266 break;
5267 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5268 }
5269 if (i == to_i)
5270 break;
5271 }
5272
5273 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5274
5275 return ret;
5276 }
5277
5278 /**
5279 * netdev_upper_dev_link - Add a link to the upper device
5280 * @dev: device
5281 * @upper_dev: new upper device
5282 *
5283 * Adds a link to device which is upper to this one. The caller must hold
5284 * the RTNL lock. On a failure a negative errno code is returned.
5285 * On success the reference counts are adjusted and the function
5286 * returns zero.
5287 */
5288 int netdev_upper_dev_link(struct net_device *dev,
5289 struct net_device *upper_dev)
5290 {
5291 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5292 }
5293 EXPORT_SYMBOL(netdev_upper_dev_link);
5294
5295 /**
5296 * netdev_master_upper_dev_link - Add a master link to the upper device
5297 * @dev: device
5298 * @upper_dev: new upper device
5299 *
5300 * Adds a link to device which is upper to this one. In this case, only
5301 * one master upper device can be linked, although other non-master devices
5302 * might be linked as well. The caller must hold the RTNL lock.
5303 * On a failure a negative errno code is returned. On success the reference
5304 * counts are adjusted and the function returns zero.
5305 */
5306 int netdev_master_upper_dev_link(struct net_device *dev,
5307 struct net_device *upper_dev)
5308 {
5309 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5310 }
5311 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5312
5313 int netdev_master_upper_dev_link_private(struct net_device *dev,
5314 struct net_device *upper_dev,
5315 void *private)
5316 {
5317 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5318 }
5319 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5320
5321 /**
5322 * netdev_upper_dev_unlink - Removes a link to upper device
5323 * @dev: device
5324 * @upper_dev: new upper device
5325 *
5326 * Removes a link to device which is upper to this one. The caller must hold
5327 * the RTNL lock.
5328 */
5329 void netdev_upper_dev_unlink(struct net_device *dev,
5330 struct net_device *upper_dev)
5331 {
5332 struct netdev_adjacent *i, *j;
5333 ASSERT_RTNL();
5334
5335 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5336
5337 /* Here is the tricky part. We must remove all dev's lower
5338 * devices from all upper_dev's upper devices and vice
5339 * versa, to maintain the graph relationship.
5340 */
5341 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5342 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5343 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5344
5345 /* remove also the devices itself from lower/upper device
5346 * list
5347 */
5348 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5349 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5350
5351 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5352 __netdev_adjacent_dev_unlink(dev, i->dev);
5353
5354 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5355 }
5356 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5357
5358 /**
5359 * netdev_bonding_info_change - Dispatch event about slave change
5360 * @dev: device
5361 * @bonding_info: info to dispatch
5362 *
5363 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5364 * The caller must hold the RTNL lock.
5365 */
5366 void netdev_bonding_info_change(struct net_device *dev,
5367 struct netdev_bonding_info *bonding_info)
5368 {
5369 struct netdev_notifier_bonding_info info;
5370
5371 memcpy(&info.bonding_info, bonding_info,
5372 sizeof(struct netdev_bonding_info));
5373 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5374 &info.info);
5375 }
5376 EXPORT_SYMBOL(netdev_bonding_info_change);
5377
5378 static void netdev_adjacent_add_links(struct net_device *dev)
5379 {
5380 struct netdev_adjacent *iter;
5381
5382 struct net *net = dev_net(dev);
5383
5384 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5385 if (!net_eq(net,dev_net(iter->dev)))
5386 continue;
5387 netdev_adjacent_sysfs_add(iter->dev, dev,
5388 &iter->dev->adj_list.lower);
5389 netdev_adjacent_sysfs_add(dev, iter->dev,
5390 &dev->adj_list.upper);
5391 }
5392
5393 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5394 if (!net_eq(net,dev_net(iter->dev)))
5395 continue;
5396 netdev_adjacent_sysfs_add(iter->dev, dev,
5397 &iter->dev->adj_list.upper);
5398 netdev_adjacent_sysfs_add(dev, iter->dev,
5399 &dev->adj_list.lower);
5400 }
5401 }
5402
5403 static void netdev_adjacent_del_links(struct net_device *dev)
5404 {
5405 struct netdev_adjacent *iter;
5406
5407 struct net *net = dev_net(dev);
5408
5409 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5410 if (!net_eq(net,dev_net(iter->dev)))
5411 continue;
5412 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5413 &iter->dev->adj_list.lower);
5414 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5415 &dev->adj_list.upper);
5416 }
5417
5418 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5419 if (!net_eq(net,dev_net(iter->dev)))
5420 continue;
5421 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5422 &iter->dev->adj_list.upper);
5423 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5424 &dev->adj_list.lower);
5425 }
5426 }
5427
5428 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5429 {
5430 struct netdev_adjacent *iter;
5431
5432 struct net *net = dev_net(dev);
5433
5434 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5435 if (!net_eq(net,dev_net(iter->dev)))
5436 continue;
5437 netdev_adjacent_sysfs_del(iter->dev, oldname,
5438 &iter->dev->adj_list.lower);
5439 netdev_adjacent_sysfs_add(iter->dev, dev,
5440 &iter->dev->adj_list.lower);
5441 }
5442
5443 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5444 if (!net_eq(net,dev_net(iter->dev)))
5445 continue;
5446 netdev_adjacent_sysfs_del(iter->dev, oldname,
5447 &iter->dev->adj_list.upper);
5448 netdev_adjacent_sysfs_add(iter->dev, dev,
5449 &iter->dev->adj_list.upper);
5450 }
5451 }
5452
5453 void *netdev_lower_dev_get_private(struct net_device *dev,
5454 struct net_device *lower_dev)
5455 {
5456 struct netdev_adjacent *lower;
5457
5458 if (!lower_dev)
5459 return NULL;
5460 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5461 if (!lower)
5462 return NULL;
5463
5464 return lower->private;
5465 }
5466 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5467
5468
5469 int dev_get_nest_level(struct net_device *dev,
5470 bool (*type_check)(struct net_device *dev))
5471 {
5472 struct net_device *lower = NULL;
5473 struct list_head *iter;
5474 int max_nest = -1;
5475 int nest;
5476
5477 ASSERT_RTNL();
5478
5479 netdev_for_each_lower_dev(dev, lower, iter) {
5480 nest = dev_get_nest_level(lower, type_check);
5481 if (max_nest < nest)
5482 max_nest = nest;
5483 }
5484
5485 if (type_check(dev))
5486 max_nest++;
5487
5488 return max_nest;
5489 }
5490 EXPORT_SYMBOL(dev_get_nest_level);
5491
5492 static void dev_change_rx_flags(struct net_device *dev, int flags)
5493 {
5494 const struct net_device_ops *ops = dev->netdev_ops;
5495
5496 if (ops->ndo_change_rx_flags)
5497 ops->ndo_change_rx_flags(dev, flags);
5498 }
5499
5500 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5501 {
5502 unsigned int old_flags = dev->flags;
5503 kuid_t uid;
5504 kgid_t gid;
5505
5506 ASSERT_RTNL();
5507
5508 dev->flags |= IFF_PROMISC;
5509 dev->promiscuity += inc;
5510 if (dev->promiscuity == 0) {
5511 /*
5512 * Avoid overflow.
5513 * If inc causes overflow, untouch promisc and return error.
5514 */
5515 if (inc < 0)
5516 dev->flags &= ~IFF_PROMISC;
5517 else {
5518 dev->promiscuity -= inc;
5519 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5520 dev->name);
5521 return -EOVERFLOW;
5522 }
5523 }
5524 if (dev->flags != old_flags) {
5525 pr_info("device %s %s promiscuous mode\n",
5526 dev->name,
5527 dev->flags & IFF_PROMISC ? "entered" : "left");
5528 if (audit_enabled) {
5529 current_uid_gid(&uid, &gid);
5530 audit_log(current->audit_context, GFP_ATOMIC,
5531 AUDIT_ANOM_PROMISCUOUS,
5532 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5533 dev->name, (dev->flags & IFF_PROMISC),
5534 (old_flags & IFF_PROMISC),
5535 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5536 from_kuid(&init_user_ns, uid),
5537 from_kgid(&init_user_ns, gid),
5538 audit_get_sessionid(current));
5539 }
5540
5541 dev_change_rx_flags(dev, IFF_PROMISC);
5542 }
5543 if (notify)
5544 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5545 return 0;
5546 }
5547
5548 /**
5549 * dev_set_promiscuity - update promiscuity count on a device
5550 * @dev: device
5551 * @inc: modifier
5552 *
5553 * Add or remove promiscuity from a device. While the count in the device
5554 * remains above zero the interface remains promiscuous. Once it hits zero
5555 * the device reverts back to normal filtering operation. A negative inc
5556 * value is used to drop promiscuity on the device.
5557 * Return 0 if successful or a negative errno code on error.
5558 */
5559 int dev_set_promiscuity(struct net_device *dev, int inc)
5560 {
5561 unsigned int old_flags = dev->flags;
5562 int err;
5563
5564 err = __dev_set_promiscuity(dev, inc, true);
5565 if (err < 0)
5566 return err;
5567 if (dev->flags != old_flags)
5568 dev_set_rx_mode(dev);
5569 return err;
5570 }
5571 EXPORT_SYMBOL(dev_set_promiscuity);
5572
5573 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5574 {
5575 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5576
5577 ASSERT_RTNL();
5578
5579 dev->flags |= IFF_ALLMULTI;
5580 dev->allmulti += inc;
5581 if (dev->allmulti == 0) {
5582 /*
5583 * Avoid overflow.
5584 * If inc causes overflow, untouch allmulti and return error.
5585 */
5586 if (inc < 0)
5587 dev->flags &= ~IFF_ALLMULTI;
5588 else {
5589 dev->allmulti -= inc;
5590 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5591 dev->name);
5592 return -EOVERFLOW;
5593 }
5594 }
5595 if (dev->flags ^ old_flags) {
5596 dev_change_rx_flags(dev, IFF_ALLMULTI);
5597 dev_set_rx_mode(dev);
5598 if (notify)
5599 __dev_notify_flags(dev, old_flags,
5600 dev->gflags ^ old_gflags);
5601 }
5602 return 0;
5603 }
5604
5605 /**
5606 * dev_set_allmulti - update allmulti count on a device
5607 * @dev: device
5608 * @inc: modifier
5609 *
5610 * Add or remove reception of all multicast frames to a device. While the
5611 * count in the device remains above zero the interface remains listening
5612 * to all interfaces. Once it hits zero the device reverts back to normal
5613 * filtering operation. A negative @inc value is used to drop the counter
5614 * when releasing a resource needing all multicasts.
5615 * Return 0 if successful or a negative errno code on error.
5616 */
5617
5618 int dev_set_allmulti(struct net_device *dev, int inc)
5619 {
5620 return __dev_set_allmulti(dev, inc, true);
5621 }
5622 EXPORT_SYMBOL(dev_set_allmulti);
5623
5624 /*
5625 * Upload unicast and multicast address lists to device and
5626 * configure RX filtering. When the device doesn't support unicast
5627 * filtering it is put in promiscuous mode while unicast addresses
5628 * are present.
5629 */
5630 void __dev_set_rx_mode(struct net_device *dev)
5631 {
5632 const struct net_device_ops *ops = dev->netdev_ops;
5633
5634 /* dev_open will call this function so the list will stay sane. */
5635 if (!(dev->flags&IFF_UP))
5636 return;
5637
5638 if (!netif_device_present(dev))
5639 return;
5640
5641 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5642 /* Unicast addresses changes may only happen under the rtnl,
5643 * therefore calling __dev_set_promiscuity here is safe.
5644 */
5645 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5646 __dev_set_promiscuity(dev, 1, false);
5647 dev->uc_promisc = true;
5648 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5649 __dev_set_promiscuity(dev, -1, false);
5650 dev->uc_promisc = false;
5651 }
5652 }
5653
5654 if (ops->ndo_set_rx_mode)
5655 ops->ndo_set_rx_mode(dev);
5656 }
5657
5658 void dev_set_rx_mode(struct net_device *dev)
5659 {
5660 netif_addr_lock_bh(dev);
5661 __dev_set_rx_mode(dev);
5662 netif_addr_unlock_bh(dev);
5663 }
5664
5665 /**
5666 * dev_get_flags - get flags reported to userspace
5667 * @dev: device
5668 *
5669 * Get the combination of flag bits exported through APIs to userspace.
5670 */
5671 unsigned int dev_get_flags(const struct net_device *dev)
5672 {
5673 unsigned int flags;
5674
5675 flags = (dev->flags & ~(IFF_PROMISC |
5676 IFF_ALLMULTI |
5677 IFF_RUNNING |
5678 IFF_LOWER_UP |
5679 IFF_DORMANT)) |
5680 (dev->gflags & (IFF_PROMISC |
5681 IFF_ALLMULTI));
5682
5683 if (netif_running(dev)) {
5684 if (netif_oper_up(dev))
5685 flags |= IFF_RUNNING;
5686 if (netif_carrier_ok(dev))
5687 flags |= IFF_LOWER_UP;
5688 if (netif_dormant(dev))
5689 flags |= IFF_DORMANT;
5690 }
5691
5692 return flags;
5693 }
5694 EXPORT_SYMBOL(dev_get_flags);
5695
5696 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5697 {
5698 unsigned int old_flags = dev->flags;
5699 int ret;
5700
5701 ASSERT_RTNL();
5702
5703 /*
5704 * Set the flags on our device.
5705 */
5706
5707 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5708 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5709 IFF_AUTOMEDIA)) |
5710 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5711 IFF_ALLMULTI));
5712
5713 /*
5714 * Load in the correct multicast list now the flags have changed.
5715 */
5716
5717 if ((old_flags ^ flags) & IFF_MULTICAST)
5718 dev_change_rx_flags(dev, IFF_MULTICAST);
5719
5720 dev_set_rx_mode(dev);
5721
5722 /*
5723 * Have we downed the interface. We handle IFF_UP ourselves
5724 * according to user attempts to set it, rather than blindly
5725 * setting it.
5726 */
5727
5728 ret = 0;
5729 if ((old_flags ^ flags) & IFF_UP)
5730 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5731
5732 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5733 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5734 unsigned int old_flags = dev->flags;
5735
5736 dev->gflags ^= IFF_PROMISC;
5737
5738 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5739 if (dev->flags != old_flags)
5740 dev_set_rx_mode(dev);
5741 }
5742
5743 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5744 is important. Some (broken) drivers set IFF_PROMISC, when
5745 IFF_ALLMULTI is requested not asking us and not reporting.
5746 */
5747 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5748 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5749
5750 dev->gflags ^= IFF_ALLMULTI;
5751 __dev_set_allmulti(dev, inc, false);
5752 }
5753
5754 return ret;
5755 }
5756
5757 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5758 unsigned int gchanges)
5759 {
5760 unsigned int changes = dev->flags ^ old_flags;
5761
5762 if (gchanges)
5763 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5764
5765 if (changes & IFF_UP) {
5766 if (dev->flags & IFF_UP)
5767 call_netdevice_notifiers(NETDEV_UP, dev);
5768 else
5769 call_netdevice_notifiers(NETDEV_DOWN, dev);
5770 }
5771
5772 if (dev->flags & IFF_UP &&
5773 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5774 struct netdev_notifier_change_info change_info;
5775
5776 change_info.flags_changed = changes;
5777 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5778 &change_info.info);
5779 }
5780 }
5781
5782 /**
5783 * dev_change_flags - change device settings
5784 * @dev: device
5785 * @flags: device state flags
5786 *
5787 * Change settings on device based state flags. The flags are
5788 * in the userspace exported format.
5789 */
5790 int dev_change_flags(struct net_device *dev, unsigned int flags)
5791 {
5792 int ret;
5793 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5794
5795 ret = __dev_change_flags(dev, flags);
5796 if (ret < 0)
5797 return ret;
5798
5799 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5800 __dev_notify_flags(dev, old_flags, changes);
5801 return ret;
5802 }
5803 EXPORT_SYMBOL(dev_change_flags);
5804
5805 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5806 {
5807 const struct net_device_ops *ops = dev->netdev_ops;
5808
5809 if (ops->ndo_change_mtu)
5810 return ops->ndo_change_mtu(dev, new_mtu);
5811
5812 dev->mtu = new_mtu;
5813 return 0;
5814 }
5815
5816 /**
5817 * dev_set_mtu - Change maximum transfer unit
5818 * @dev: device
5819 * @new_mtu: new transfer unit
5820 *
5821 * Change the maximum transfer size of the network device.
5822 */
5823 int dev_set_mtu(struct net_device *dev, int new_mtu)
5824 {
5825 int err, orig_mtu;
5826
5827 if (new_mtu == dev->mtu)
5828 return 0;
5829
5830 /* MTU must be positive. */
5831 if (new_mtu < 0)
5832 return -EINVAL;
5833
5834 if (!netif_device_present(dev))
5835 return -ENODEV;
5836
5837 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5838 err = notifier_to_errno(err);
5839 if (err)
5840 return err;
5841
5842 orig_mtu = dev->mtu;
5843 err = __dev_set_mtu(dev, new_mtu);
5844
5845 if (!err) {
5846 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5847 err = notifier_to_errno(err);
5848 if (err) {
5849 /* setting mtu back and notifying everyone again,
5850 * so that they have a chance to revert changes.
5851 */
5852 __dev_set_mtu(dev, orig_mtu);
5853 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5854 }
5855 }
5856 return err;
5857 }
5858 EXPORT_SYMBOL(dev_set_mtu);
5859
5860 /**
5861 * dev_set_group - Change group this device belongs to
5862 * @dev: device
5863 * @new_group: group this device should belong to
5864 */
5865 void dev_set_group(struct net_device *dev, int new_group)
5866 {
5867 dev->group = new_group;
5868 }
5869 EXPORT_SYMBOL(dev_set_group);
5870
5871 /**
5872 * dev_set_mac_address - Change Media Access Control Address
5873 * @dev: device
5874 * @sa: new address
5875 *
5876 * Change the hardware (MAC) address of the device
5877 */
5878 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5879 {
5880 const struct net_device_ops *ops = dev->netdev_ops;
5881 int err;
5882
5883 if (!ops->ndo_set_mac_address)
5884 return -EOPNOTSUPP;
5885 if (sa->sa_family != dev->type)
5886 return -EINVAL;
5887 if (!netif_device_present(dev))
5888 return -ENODEV;
5889 err = ops->ndo_set_mac_address(dev, sa);
5890 if (err)
5891 return err;
5892 dev->addr_assign_type = NET_ADDR_SET;
5893 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5894 add_device_randomness(dev->dev_addr, dev->addr_len);
5895 return 0;
5896 }
5897 EXPORT_SYMBOL(dev_set_mac_address);
5898
5899 /**
5900 * dev_change_carrier - Change device carrier
5901 * @dev: device
5902 * @new_carrier: new value
5903 *
5904 * Change device carrier
5905 */
5906 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5907 {
5908 const struct net_device_ops *ops = dev->netdev_ops;
5909
5910 if (!ops->ndo_change_carrier)
5911 return -EOPNOTSUPP;
5912 if (!netif_device_present(dev))
5913 return -ENODEV;
5914 return ops->ndo_change_carrier(dev, new_carrier);
5915 }
5916 EXPORT_SYMBOL(dev_change_carrier);
5917
5918 /**
5919 * dev_get_phys_port_id - Get device physical port ID
5920 * @dev: device
5921 * @ppid: port ID
5922 *
5923 * Get device physical port ID
5924 */
5925 int dev_get_phys_port_id(struct net_device *dev,
5926 struct netdev_phys_item_id *ppid)
5927 {
5928 const struct net_device_ops *ops = dev->netdev_ops;
5929
5930 if (!ops->ndo_get_phys_port_id)
5931 return -EOPNOTSUPP;
5932 return ops->ndo_get_phys_port_id(dev, ppid);
5933 }
5934 EXPORT_SYMBOL(dev_get_phys_port_id);
5935
5936 /**
5937 * dev_get_phys_port_name - Get device physical port name
5938 * @dev: device
5939 * @name: port name
5940 *
5941 * Get device physical port name
5942 */
5943 int dev_get_phys_port_name(struct net_device *dev,
5944 char *name, size_t len)
5945 {
5946 const struct net_device_ops *ops = dev->netdev_ops;
5947
5948 if (!ops->ndo_get_phys_port_name)
5949 return -EOPNOTSUPP;
5950 return ops->ndo_get_phys_port_name(dev, name, len);
5951 }
5952 EXPORT_SYMBOL(dev_get_phys_port_name);
5953
5954 /**
5955 * dev_new_index - allocate an ifindex
5956 * @net: the applicable net namespace
5957 *
5958 * Returns a suitable unique value for a new device interface
5959 * number. The caller must hold the rtnl semaphore or the
5960 * dev_base_lock to be sure it remains unique.
5961 */
5962 static int dev_new_index(struct net *net)
5963 {
5964 int ifindex = net->ifindex;
5965 for (;;) {
5966 if (++ifindex <= 0)
5967 ifindex = 1;
5968 if (!__dev_get_by_index(net, ifindex))
5969 return net->ifindex = ifindex;
5970 }
5971 }
5972
5973 /* Delayed registration/unregisteration */
5974 static LIST_HEAD(net_todo_list);
5975 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5976
5977 static void net_set_todo(struct net_device *dev)
5978 {
5979 list_add_tail(&dev->todo_list, &net_todo_list);
5980 dev_net(dev)->dev_unreg_count++;
5981 }
5982
5983 static void rollback_registered_many(struct list_head *head)
5984 {
5985 struct net_device *dev, *tmp;
5986 LIST_HEAD(close_head);
5987
5988 BUG_ON(dev_boot_phase);
5989 ASSERT_RTNL();
5990
5991 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5992 /* Some devices call without registering
5993 * for initialization unwind. Remove those
5994 * devices and proceed with the remaining.
5995 */
5996 if (dev->reg_state == NETREG_UNINITIALIZED) {
5997 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5998 dev->name, dev);
5999
6000 WARN_ON(1);
6001 list_del(&dev->unreg_list);
6002 continue;
6003 }
6004 dev->dismantle = true;
6005 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6006 }
6007
6008 /* If device is running, close it first. */
6009 list_for_each_entry(dev, head, unreg_list)
6010 list_add_tail(&dev->close_list, &close_head);
6011 dev_close_many(&close_head, true);
6012
6013 list_for_each_entry(dev, head, unreg_list) {
6014 /* And unlink it from device chain. */
6015 unlist_netdevice(dev);
6016
6017 dev->reg_state = NETREG_UNREGISTERING;
6018 }
6019
6020 synchronize_net();
6021
6022 list_for_each_entry(dev, head, unreg_list) {
6023 struct sk_buff *skb = NULL;
6024
6025 /* Shutdown queueing discipline. */
6026 dev_shutdown(dev);
6027
6028
6029 /* Notify protocols, that we are about to destroy
6030 this device. They should clean all the things.
6031 */
6032 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6033
6034 if (!dev->rtnl_link_ops ||
6035 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6036 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6037 GFP_KERNEL);
6038
6039 /*
6040 * Flush the unicast and multicast chains
6041 */
6042 dev_uc_flush(dev);
6043 dev_mc_flush(dev);
6044
6045 if (dev->netdev_ops->ndo_uninit)
6046 dev->netdev_ops->ndo_uninit(dev);
6047
6048 if (skb)
6049 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6050
6051 /* Notifier chain MUST detach us all upper devices. */
6052 WARN_ON(netdev_has_any_upper_dev(dev));
6053
6054 /* Remove entries from kobject tree */
6055 netdev_unregister_kobject(dev);
6056 #ifdef CONFIG_XPS
6057 /* Remove XPS queueing entries */
6058 netif_reset_xps_queues_gt(dev, 0);
6059 #endif
6060 }
6061
6062 synchronize_net();
6063
6064 list_for_each_entry(dev, head, unreg_list)
6065 dev_put(dev);
6066 }
6067
6068 static void rollback_registered(struct net_device *dev)
6069 {
6070 LIST_HEAD(single);
6071
6072 list_add(&dev->unreg_list, &single);
6073 rollback_registered_many(&single);
6074 list_del(&single);
6075 }
6076
6077 static netdev_features_t netdev_fix_features(struct net_device *dev,
6078 netdev_features_t features)
6079 {
6080 /* Fix illegal checksum combinations */
6081 if ((features & NETIF_F_HW_CSUM) &&
6082 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6083 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6084 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6085 }
6086
6087 /* TSO requires that SG is present as well. */
6088 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6089 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6090 features &= ~NETIF_F_ALL_TSO;
6091 }
6092
6093 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6094 !(features & NETIF_F_IP_CSUM)) {
6095 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6096 features &= ~NETIF_F_TSO;
6097 features &= ~NETIF_F_TSO_ECN;
6098 }
6099
6100 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6101 !(features & NETIF_F_IPV6_CSUM)) {
6102 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6103 features &= ~NETIF_F_TSO6;
6104 }
6105
6106 /* TSO ECN requires that TSO is present as well. */
6107 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6108 features &= ~NETIF_F_TSO_ECN;
6109
6110 /* Software GSO depends on SG. */
6111 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6112 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6113 features &= ~NETIF_F_GSO;
6114 }
6115
6116 /* UFO needs SG and checksumming */
6117 if (features & NETIF_F_UFO) {
6118 /* maybe split UFO into V4 and V6? */
6119 if (!((features & NETIF_F_GEN_CSUM) ||
6120 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6121 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6122 netdev_dbg(dev,
6123 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6124 features &= ~NETIF_F_UFO;
6125 }
6126
6127 if (!(features & NETIF_F_SG)) {
6128 netdev_dbg(dev,
6129 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6130 features &= ~NETIF_F_UFO;
6131 }
6132 }
6133
6134 #ifdef CONFIG_NET_RX_BUSY_POLL
6135 if (dev->netdev_ops->ndo_busy_poll)
6136 features |= NETIF_F_BUSY_POLL;
6137 else
6138 #endif
6139 features &= ~NETIF_F_BUSY_POLL;
6140
6141 return features;
6142 }
6143
6144 int __netdev_update_features(struct net_device *dev)
6145 {
6146 netdev_features_t features;
6147 int err = 0;
6148
6149 ASSERT_RTNL();
6150
6151 features = netdev_get_wanted_features(dev);
6152
6153 if (dev->netdev_ops->ndo_fix_features)
6154 features = dev->netdev_ops->ndo_fix_features(dev, features);
6155
6156 /* driver might be less strict about feature dependencies */
6157 features = netdev_fix_features(dev, features);
6158
6159 if (dev->features == features)
6160 return 0;
6161
6162 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6163 &dev->features, &features);
6164
6165 if (dev->netdev_ops->ndo_set_features)
6166 err = dev->netdev_ops->ndo_set_features(dev, features);
6167
6168 if (unlikely(err < 0)) {
6169 netdev_err(dev,
6170 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6171 err, &features, &dev->features);
6172 return -1;
6173 }
6174
6175 if (!err)
6176 dev->features = features;
6177
6178 return 1;
6179 }
6180
6181 /**
6182 * netdev_update_features - recalculate device features
6183 * @dev: the device to check
6184 *
6185 * Recalculate dev->features set and send notifications if it
6186 * has changed. Should be called after driver or hardware dependent
6187 * conditions might have changed that influence the features.
6188 */
6189 void netdev_update_features(struct net_device *dev)
6190 {
6191 if (__netdev_update_features(dev))
6192 netdev_features_change(dev);
6193 }
6194 EXPORT_SYMBOL(netdev_update_features);
6195
6196 /**
6197 * netdev_change_features - recalculate device features
6198 * @dev: the device to check
6199 *
6200 * Recalculate dev->features set and send notifications even
6201 * if they have not changed. Should be called instead of
6202 * netdev_update_features() if also dev->vlan_features might
6203 * have changed to allow the changes to be propagated to stacked
6204 * VLAN devices.
6205 */
6206 void netdev_change_features(struct net_device *dev)
6207 {
6208 __netdev_update_features(dev);
6209 netdev_features_change(dev);
6210 }
6211 EXPORT_SYMBOL(netdev_change_features);
6212
6213 /**
6214 * netif_stacked_transfer_operstate - transfer operstate
6215 * @rootdev: the root or lower level device to transfer state from
6216 * @dev: the device to transfer operstate to
6217 *
6218 * Transfer operational state from root to device. This is normally
6219 * called when a stacking relationship exists between the root
6220 * device and the device(a leaf device).
6221 */
6222 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6223 struct net_device *dev)
6224 {
6225 if (rootdev->operstate == IF_OPER_DORMANT)
6226 netif_dormant_on(dev);
6227 else
6228 netif_dormant_off(dev);
6229
6230 if (netif_carrier_ok(rootdev)) {
6231 if (!netif_carrier_ok(dev))
6232 netif_carrier_on(dev);
6233 } else {
6234 if (netif_carrier_ok(dev))
6235 netif_carrier_off(dev);
6236 }
6237 }
6238 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6239
6240 #ifdef CONFIG_SYSFS
6241 static int netif_alloc_rx_queues(struct net_device *dev)
6242 {
6243 unsigned int i, count = dev->num_rx_queues;
6244 struct netdev_rx_queue *rx;
6245 size_t sz = count * sizeof(*rx);
6246
6247 BUG_ON(count < 1);
6248
6249 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6250 if (!rx) {
6251 rx = vzalloc(sz);
6252 if (!rx)
6253 return -ENOMEM;
6254 }
6255 dev->_rx = rx;
6256
6257 for (i = 0; i < count; i++)
6258 rx[i].dev = dev;
6259 return 0;
6260 }
6261 #endif
6262
6263 static void netdev_init_one_queue(struct net_device *dev,
6264 struct netdev_queue *queue, void *_unused)
6265 {
6266 /* Initialize queue lock */
6267 spin_lock_init(&queue->_xmit_lock);
6268 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6269 queue->xmit_lock_owner = -1;
6270 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6271 queue->dev = dev;
6272 #ifdef CONFIG_BQL
6273 dql_init(&queue->dql, HZ);
6274 #endif
6275 }
6276
6277 static void netif_free_tx_queues(struct net_device *dev)
6278 {
6279 kvfree(dev->_tx);
6280 }
6281
6282 static int netif_alloc_netdev_queues(struct net_device *dev)
6283 {
6284 unsigned int count = dev->num_tx_queues;
6285 struct netdev_queue *tx;
6286 size_t sz = count * sizeof(*tx);
6287
6288 BUG_ON(count < 1 || count > 0xffff);
6289
6290 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6291 if (!tx) {
6292 tx = vzalloc(sz);
6293 if (!tx)
6294 return -ENOMEM;
6295 }
6296 dev->_tx = tx;
6297
6298 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6299 spin_lock_init(&dev->tx_global_lock);
6300
6301 return 0;
6302 }
6303
6304 /**
6305 * register_netdevice - register a network device
6306 * @dev: device to register
6307 *
6308 * Take a completed network device structure and add it to the kernel
6309 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6310 * chain. 0 is returned on success. A negative errno code is returned
6311 * on a failure to set up the device, or if the name is a duplicate.
6312 *
6313 * Callers must hold the rtnl semaphore. You may want
6314 * register_netdev() instead of this.
6315 *
6316 * BUGS:
6317 * The locking appears insufficient to guarantee two parallel registers
6318 * will not get the same name.
6319 */
6320
6321 int register_netdevice(struct net_device *dev)
6322 {
6323 int ret;
6324 struct net *net = dev_net(dev);
6325
6326 BUG_ON(dev_boot_phase);
6327 ASSERT_RTNL();
6328
6329 might_sleep();
6330
6331 /* When net_device's are persistent, this will be fatal. */
6332 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6333 BUG_ON(!net);
6334
6335 spin_lock_init(&dev->addr_list_lock);
6336 netdev_set_addr_lockdep_class(dev);
6337
6338 ret = dev_get_valid_name(net, dev, dev->name);
6339 if (ret < 0)
6340 goto out;
6341
6342 /* Init, if this function is available */
6343 if (dev->netdev_ops->ndo_init) {
6344 ret = dev->netdev_ops->ndo_init(dev);
6345 if (ret) {
6346 if (ret > 0)
6347 ret = -EIO;
6348 goto out;
6349 }
6350 }
6351
6352 if (((dev->hw_features | dev->features) &
6353 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6354 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6355 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6356 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6357 ret = -EINVAL;
6358 goto err_uninit;
6359 }
6360
6361 ret = -EBUSY;
6362 if (!dev->ifindex)
6363 dev->ifindex = dev_new_index(net);
6364 else if (__dev_get_by_index(net, dev->ifindex))
6365 goto err_uninit;
6366
6367 /* Transfer changeable features to wanted_features and enable
6368 * software offloads (GSO and GRO).
6369 */
6370 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6371 dev->features |= NETIF_F_SOFT_FEATURES;
6372 dev->wanted_features = dev->features & dev->hw_features;
6373
6374 if (!(dev->flags & IFF_LOOPBACK)) {
6375 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6376 }
6377
6378 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6379 */
6380 dev->vlan_features |= NETIF_F_HIGHDMA;
6381
6382 /* Make NETIF_F_SG inheritable to tunnel devices.
6383 */
6384 dev->hw_enc_features |= NETIF_F_SG;
6385
6386 /* Make NETIF_F_SG inheritable to MPLS.
6387 */
6388 dev->mpls_features |= NETIF_F_SG;
6389
6390 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6391 ret = notifier_to_errno(ret);
6392 if (ret)
6393 goto err_uninit;
6394
6395 ret = netdev_register_kobject(dev);
6396 if (ret)
6397 goto err_uninit;
6398 dev->reg_state = NETREG_REGISTERED;
6399
6400 __netdev_update_features(dev);
6401
6402 /*
6403 * Default initial state at registry is that the
6404 * device is present.
6405 */
6406
6407 set_bit(__LINK_STATE_PRESENT, &dev->state);
6408
6409 linkwatch_init_dev(dev);
6410
6411 dev_init_scheduler(dev);
6412 dev_hold(dev);
6413 list_netdevice(dev);
6414 add_device_randomness(dev->dev_addr, dev->addr_len);
6415
6416 /* If the device has permanent device address, driver should
6417 * set dev_addr and also addr_assign_type should be set to
6418 * NET_ADDR_PERM (default value).
6419 */
6420 if (dev->addr_assign_type == NET_ADDR_PERM)
6421 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6422
6423 /* Notify protocols, that a new device appeared. */
6424 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6425 ret = notifier_to_errno(ret);
6426 if (ret) {
6427 rollback_registered(dev);
6428 dev->reg_state = NETREG_UNREGISTERED;
6429 }
6430 /*
6431 * Prevent userspace races by waiting until the network
6432 * device is fully setup before sending notifications.
6433 */
6434 if (!dev->rtnl_link_ops ||
6435 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6436 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6437
6438 out:
6439 return ret;
6440
6441 err_uninit:
6442 if (dev->netdev_ops->ndo_uninit)
6443 dev->netdev_ops->ndo_uninit(dev);
6444 goto out;
6445 }
6446 EXPORT_SYMBOL(register_netdevice);
6447
6448 /**
6449 * init_dummy_netdev - init a dummy network device for NAPI
6450 * @dev: device to init
6451 *
6452 * This takes a network device structure and initialize the minimum
6453 * amount of fields so it can be used to schedule NAPI polls without
6454 * registering a full blown interface. This is to be used by drivers
6455 * that need to tie several hardware interfaces to a single NAPI
6456 * poll scheduler due to HW limitations.
6457 */
6458 int init_dummy_netdev(struct net_device *dev)
6459 {
6460 /* Clear everything. Note we don't initialize spinlocks
6461 * are they aren't supposed to be taken by any of the
6462 * NAPI code and this dummy netdev is supposed to be
6463 * only ever used for NAPI polls
6464 */
6465 memset(dev, 0, sizeof(struct net_device));
6466
6467 /* make sure we BUG if trying to hit standard
6468 * register/unregister code path
6469 */
6470 dev->reg_state = NETREG_DUMMY;
6471
6472 /* NAPI wants this */
6473 INIT_LIST_HEAD(&dev->napi_list);
6474
6475 /* a dummy interface is started by default */
6476 set_bit(__LINK_STATE_PRESENT, &dev->state);
6477 set_bit(__LINK_STATE_START, &dev->state);
6478
6479 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6480 * because users of this 'device' dont need to change
6481 * its refcount.
6482 */
6483
6484 return 0;
6485 }
6486 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6487
6488
6489 /**
6490 * register_netdev - register a network device
6491 * @dev: device to register
6492 *
6493 * Take a completed network device structure and add it to the kernel
6494 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6495 * chain. 0 is returned on success. A negative errno code is returned
6496 * on a failure to set up the device, or if the name is a duplicate.
6497 *
6498 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6499 * and expands the device name if you passed a format string to
6500 * alloc_netdev.
6501 */
6502 int register_netdev(struct net_device *dev)
6503 {
6504 int err;
6505
6506 rtnl_lock();
6507 err = register_netdevice(dev);
6508 rtnl_unlock();
6509 return err;
6510 }
6511 EXPORT_SYMBOL(register_netdev);
6512
6513 int netdev_refcnt_read(const struct net_device *dev)
6514 {
6515 int i, refcnt = 0;
6516
6517 for_each_possible_cpu(i)
6518 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6519 return refcnt;
6520 }
6521 EXPORT_SYMBOL(netdev_refcnt_read);
6522
6523 /**
6524 * netdev_wait_allrefs - wait until all references are gone.
6525 * @dev: target net_device
6526 *
6527 * This is called when unregistering network devices.
6528 *
6529 * Any protocol or device that holds a reference should register
6530 * for netdevice notification, and cleanup and put back the
6531 * reference if they receive an UNREGISTER event.
6532 * We can get stuck here if buggy protocols don't correctly
6533 * call dev_put.
6534 */
6535 static void netdev_wait_allrefs(struct net_device *dev)
6536 {
6537 unsigned long rebroadcast_time, warning_time;
6538 int refcnt;
6539
6540 linkwatch_forget_dev(dev);
6541
6542 rebroadcast_time = warning_time = jiffies;
6543 refcnt = netdev_refcnt_read(dev);
6544
6545 while (refcnt != 0) {
6546 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6547 rtnl_lock();
6548
6549 /* Rebroadcast unregister notification */
6550 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6551
6552 __rtnl_unlock();
6553 rcu_barrier();
6554 rtnl_lock();
6555
6556 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6557 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6558 &dev->state)) {
6559 /* We must not have linkwatch events
6560 * pending on unregister. If this
6561 * happens, we simply run the queue
6562 * unscheduled, resulting in a noop
6563 * for this device.
6564 */
6565 linkwatch_run_queue();
6566 }
6567
6568 __rtnl_unlock();
6569
6570 rebroadcast_time = jiffies;
6571 }
6572
6573 msleep(250);
6574
6575 refcnt = netdev_refcnt_read(dev);
6576
6577 if (time_after(jiffies, warning_time + 10 * HZ)) {
6578 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6579 dev->name, refcnt);
6580 warning_time = jiffies;
6581 }
6582 }
6583 }
6584
6585 /* The sequence is:
6586 *
6587 * rtnl_lock();
6588 * ...
6589 * register_netdevice(x1);
6590 * register_netdevice(x2);
6591 * ...
6592 * unregister_netdevice(y1);
6593 * unregister_netdevice(y2);
6594 * ...
6595 * rtnl_unlock();
6596 * free_netdev(y1);
6597 * free_netdev(y2);
6598 *
6599 * We are invoked by rtnl_unlock().
6600 * This allows us to deal with problems:
6601 * 1) We can delete sysfs objects which invoke hotplug
6602 * without deadlocking with linkwatch via keventd.
6603 * 2) Since we run with the RTNL semaphore not held, we can sleep
6604 * safely in order to wait for the netdev refcnt to drop to zero.
6605 *
6606 * We must not return until all unregister events added during
6607 * the interval the lock was held have been completed.
6608 */
6609 void netdev_run_todo(void)
6610 {
6611 struct list_head list;
6612
6613 /* Snapshot list, allow later requests */
6614 list_replace_init(&net_todo_list, &list);
6615
6616 __rtnl_unlock();
6617
6618
6619 /* Wait for rcu callbacks to finish before next phase */
6620 if (!list_empty(&list))
6621 rcu_barrier();
6622
6623 while (!list_empty(&list)) {
6624 struct net_device *dev
6625 = list_first_entry(&list, struct net_device, todo_list);
6626 list_del(&dev->todo_list);
6627
6628 rtnl_lock();
6629 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6630 __rtnl_unlock();
6631
6632 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6633 pr_err("network todo '%s' but state %d\n",
6634 dev->name, dev->reg_state);
6635 dump_stack();
6636 continue;
6637 }
6638
6639 dev->reg_state = NETREG_UNREGISTERED;
6640
6641 on_each_cpu(flush_backlog, dev, 1);
6642
6643 netdev_wait_allrefs(dev);
6644
6645 /* paranoia */
6646 BUG_ON(netdev_refcnt_read(dev));
6647 BUG_ON(!list_empty(&dev->ptype_all));
6648 BUG_ON(!list_empty(&dev->ptype_specific));
6649 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6650 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6651 WARN_ON(dev->dn_ptr);
6652
6653 if (dev->destructor)
6654 dev->destructor(dev);
6655
6656 /* Report a network device has been unregistered */
6657 rtnl_lock();
6658 dev_net(dev)->dev_unreg_count--;
6659 __rtnl_unlock();
6660 wake_up(&netdev_unregistering_wq);
6661
6662 /* Free network device */
6663 kobject_put(&dev->dev.kobj);
6664 }
6665 }
6666
6667 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6668 * fields in the same order, with only the type differing.
6669 */
6670 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6671 const struct net_device_stats *netdev_stats)
6672 {
6673 #if BITS_PER_LONG == 64
6674 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6675 memcpy(stats64, netdev_stats, sizeof(*stats64));
6676 #else
6677 size_t i, n = sizeof(*stats64) / sizeof(u64);
6678 const unsigned long *src = (const unsigned long *)netdev_stats;
6679 u64 *dst = (u64 *)stats64;
6680
6681 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6682 sizeof(*stats64) / sizeof(u64));
6683 for (i = 0; i < n; i++)
6684 dst[i] = src[i];
6685 #endif
6686 }
6687 EXPORT_SYMBOL(netdev_stats_to_stats64);
6688
6689 /**
6690 * dev_get_stats - get network device statistics
6691 * @dev: device to get statistics from
6692 * @storage: place to store stats
6693 *
6694 * Get network statistics from device. Return @storage.
6695 * The device driver may provide its own method by setting
6696 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6697 * otherwise the internal statistics structure is used.
6698 */
6699 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6700 struct rtnl_link_stats64 *storage)
6701 {
6702 const struct net_device_ops *ops = dev->netdev_ops;
6703
6704 if (ops->ndo_get_stats64) {
6705 memset(storage, 0, sizeof(*storage));
6706 ops->ndo_get_stats64(dev, storage);
6707 } else if (ops->ndo_get_stats) {
6708 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6709 } else {
6710 netdev_stats_to_stats64(storage, &dev->stats);
6711 }
6712 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6713 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6714 return storage;
6715 }
6716 EXPORT_SYMBOL(dev_get_stats);
6717
6718 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6719 {
6720 struct netdev_queue *queue = dev_ingress_queue(dev);
6721
6722 #ifdef CONFIG_NET_CLS_ACT
6723 if (queue)
6724 return queue;
6725 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6726 if (!queue)
6727 return NULL;
6728 netdev_init_one_queue(dev, queue, NULL);
6729 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6730 queue->qdisc_sleeping = &noop_qdisc;
6731 rcu_assign_pointer(dev->ingress_queue, queue);
6732 #endif
6733 return queue;
6734 }
6735
6736 static const struct ethtool_ops default_ethtool_ops;
6737
6738 void netdev_set_default_ethtool_ops(struct net_device *dev,
6739 const struct ethtool_ops *ops)
6740 {
6741 if (dev->ethtool_ops == &default_ethtool_ops)
6742 dev->ethtool_ops = ops;
6743 }
6744 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6745
6746 void netdev_freemem(struct net_device *dev)
6747 {
6748 char *addr = (char *)dev - dev->padded;
6749
6750 kvfree(addr);
6751 }
6752
6753 /**
6754 * alloc_netdev_mqs - allocate network device
6755 * @sizeof_priv: size of private data to allocate space for
6756 * @name: device name format string
6757 * @name_assign_type: origin of device name
6758 * @setup: callback to initialize device
6759 * @txqs: the number of TX subqueues to allocate
6760 * @rxqs: the number of RX subqueues to allocate
6761 *
6762 * Allocates a struct net_device with private data area for driver use
6763 * and performs basic initialization. Also allocates subqueue structs
6764 * for each queue on the device.
6765 */
6766 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6767 unsigned char name_assign_type,
6768 void (*setup)(struct net_device *),
6769 unsigned int txqs, unsigned int rxqs)
6770 {
6771 struct net_device *dev;
6772 size_t alloc_size;
6773 struct net_device *p;
6774
6775 BUG_ON(strlen(name) >= sizeof(dev->name));
6776
6777 if (txqs < 1) {
6778 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6779 return NULL;
6780 }
6781
6782 #ifdef CONFIG_SYSFS
6783 if (rxqs < 1) {
6784 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6785 return NULL;
6786 }
6787 #endif
6788
6789 alloc_size = sizeof(struct net_device);
6790 if (sizeof_priv) {
6791 /* ensure 32-byte alignment of private area */
6792 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6793 alloc_size += sizeof_priv;
6794 }
6795 /* ensure 32-byte alignment of whole construct */
6796 alloc_size += NETDEV_ALIGN - 1;
6797
6798 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6799 if (!p)
6800 p = vzalloc(alloc_size);
6801 if (!p)
6802 return NULL;
6803
6804 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6805 dev->padded = (char *)dev - (char *)p;
6806
6807 dev->pcpu_refcnt = alloc_percpu(int);
6808 if (!dev->pcpu_refcnt)
6809 goto free_dev;
6810
6811 if (dev_addr_init(dev))
6812 goto free_pcpu;
6813
6814 dev_mc_init(dev);
6815 dev_uc_init(dev);
6816
6817 dev_net_set(dev, &init_net);
6818
6819 dev->gso_max_size = GSO_MAX_SIZE;
6820 dev->gso_max_segs = GSO_MAX_SEGS;
6821 dev->gso_min_segs = 0;
6822
6823 INIT_LIST_HEAD(&dev->napi_list);
6824 INIT_LIST_HEAD(&dev->unreg_list);
6825 INIT_LIST_HEAD(&dev->close_list);
6826 INIT_LIST_HEAD(&dev->link_watch_list);
6827 INIT_LIST_HEAD(&dev->adj_list.upper);
6828 INIT_LIST_HEAD(&dev->adj_list.lower);
6829 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6830 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6831 INIT_LIST_HEAD(&dev->ptype_all);
6832 INIT_LIST_HEAD(&dev->ptype_specific);
6833 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6834 setup(dev);
6835
6836 dev->num_tx_queues = txqs;
6837 dev->real_num_tx_queues = txqs;
6838 if (netif_alloc_netdev_queues(dev))
6839 goto free_all;
6840
6841 #ifdef CONFIG_SYSFS
6842 dev->num_rx_queues = rxqs;
6843 dev->real_num_rx_queues = rxqs;
6844 if (netif_alloc_rx_queues(dev))
6845 goto free_all;
6846 #endif
6847
6848 strcpy(dev->name, name);
6849 dev->name_assign_type = name_assign_type;
6850 dev->group = INIT_NETDEV_GROUP;
6851 if (!dev->ethtool_ops)
6852 dev->ethtool_ops = &default_ethtool_ops;
6853 return dev;
6854
6855 free_all:
6856 free_netdev(dev);
6857 return NULL;
6858
6859 free_pcpu:
6860 free_percpu(dev->pcpu_refcnt);
6861 free_dev:
6862 netdev_freemem(dev);
6863 return NULL;
6864 }
6865 EXPORT_SYMBOL(alloc_netdev_mqs);
6866
6867 /**
6868 * free_netdev - free network device
6869 * @dev: device
6870 *
6871 * This function does the last stage of destroying an allocated device
6872 * interface. The reference to the device object is released.
6873 * If this is the last reference then it will be freed.
6874 */
6875 void free_netdev(struct net_device *dev)
6876 {
6877 struct napi_struct *p, *n;
6878
6879 netif_free_tx_queues(dev);
6880 #ifdef CONFIG_SYSFS
6881 kvfree(dev->_rx);
6882 #endif
6883
6884 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6885
6886 /* Flush device addresses */
6887 dev_addr_flush(dev);
6888
6889 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6890 netif_napi_del(p);
6891
6892 free_percpu(dev->pcpu_refcnt);
6893 dev->pcpu_refcnt = NULL;
6894
6895 /* Compatibility with error handling in drivers */
6896 if (dev->reg_state == NETREG_UNINITIALIZED) {
6897 netdev_freemem(dev);
6898 return;
6899 }
6900
6901 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6902 dev->reg_state = NETREG_RELEASED;
6903
6904 /* will free via device release */
6905 put_device(&dev->dev);
6906 }
6907 EXPORT_SYMBOL(free_netdev);
6908
6909 /**
6910 * synchronize_net - Synchronize with packet receive processing
6911 *
6912 * Wait for packets currently being received to be done.
6913 * Does not block later packets from starting.
6914 */
6915 void synchronize_net(void)
6916 {
6917 might_sleep();
6918 if (rtnl_is_locked())
6919 synchronize_rcu_expedited();
6920 else
6921 synchronize_rcu();
6922 }
6923 EXPORT_SYMBOL(synchronize_net);
6924
6925 /**
6926 * unregister_netdevice_queue - remove device from the kernel
6927 * @dev: device
6928 * @head: list
6929 *
6930 * This function shuts down a device interface and removes it
6931 * from the kernel tables.
6932 * If head not NULL, device is queued to be unregistered later.
6933 *
6934 * Callers must hold the rtnl semaphore. You may want
6935 * unregister_netdev() instead of this.
6936 */
6937
6938 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6939 {
6940 ASSERT_RTNL();
6941
6942 if (head) {
6943 list_move_tail(&dev->unreg_list, head);
6944 } else {
6945 rollback_registered(dev);
6946 /* Finish processing unregister after unlock */
6947 net_set_todo(dev);
6948 }
6949 }
6950 EXPORT_SYMBOL(unregister_netdevice_queue);
6951
6952 /**
6953 * unregister_netdevice_many - unregister many devices
6954 * @head: list of devices
6955 *
6956 * Note: As most callers use a stack allocated list_head,
6957 * we force a list_del() to make sure stack wont be corrupted later.
6958 */
6959 void unregister_netdevice_many(struct list_head *head)
6960 {
6961 struct net_device *dev;
6962
6963 if (!list_empty(head)) {
6964 rollback_registered_many(head);
6965 list_for_each_entry(dev, head, unreg_list)
6966 net_set_todo(dev);
6967 list_del(head);
6968 }
6969 }
6970 EXPORT_SYMBOL(unregister_netdevice_many);
6971
6972 /**
6973 * unregister_netdev - remove device from the kernel
6974 * @dev: device
6975 *
6976 * This function shuts down a device interface and removes it
6977 * from the kernel tables.
6978 *
6979 * This is just a wrapper for unregister_netdevice that takes
6980 * the rtnl semaphore. In general you want to use this and not
6981 * unregister_netdevice.
6982 */
6983 void unregister_netdev(struct net_device *dev)
6984 {
6985 rtnl_lock();
6986 unregister_netdevice(dev);
6987 rtnl_unlock();
6988 }
6989 EXPORT_SYMBOL(unregister_netdev);
6990
6991 /**
6992 * dev_change_net_namespace - move device to different nethost namespace
6993 * @dev: device
6994 * @net: network namespace
6995 * @pat: If not NULL name pattern to try if the current device name
6996 * is already taken in the destination network namespace.
6997 *
6998 * This function shuts down a device interface and moves it
6999 * to a new network namespace. On success 0 is returned, on
7000 * a failure a netagive errno code is returned.
7001 *
7002 * Callers must hold the rtnl semaphore.
7003 */
7004
7005 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7006 {
7007 int err;
7008
7009 ASSERT_RTNL();
7010
7011 /* Don't allow namespace local devices to be moved. */
7012 err = -EINVAL;
7013 if (dev->features & NETIF_F_NETNS_LOCAL)
7014 goto out;
7015
7016 /* Ensure the device has been registrered */
7017 if (dev->reg_state != NETREG_REGISTERED)
7018 goto out;
7019
7020 /* Get out if there is nothing todo */
7021 err = 0;
7022 if (net_eq(dev_net(dev), net))
7023 goto out;
7024
7025 /* Pick the destination device name, and ensure
7026 * we can use it in the destination network namespace.
7027 */
7028 err = -EEXIST;
7029 if (__dev_get_by_name(net, dev->name)) {
7030 /* We get here if we can't use the current device name */
7031 if (!pat)
7032 goto out;
7033 if (dev_get_valid_name(net, dev, pat) < 0)
7034 goto out;
7035 }
7036
7037 /*
7038 * And now a mini version of register_netdevice unregister_netdevice.
7039 */
7040
7041 /* If device is running close it first. */
7042 dev_close(dev);
7043
7044 /* And unlink it from device chain */
7045 err = -ENODEV;
7046 unlist_netdevice(dev);
7047
7048 synchronize_net();
7049
7050 /* Shutdown queueing discipline. */
7051 dev_shutdown(dev);
7052
7053 /* Notify protocols, that we are about to destroy
7054 this device. They should clean all the things.
7055
7056 Note that dev->reg_state stays at NETREG_REGISTERED.
7057 This is wanted because this way 8021q and macvlan know
7058 the device is just moving and can keep their slaves up.
7059 */
7060 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7061 rcu_barrier();
7062 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7063 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7064
7065 /*
7066 * Flush the unicast and multicast chains
7067 */
7068 dev_uc_flush(dev);
7069 dev_mc_flush(dev);
7070
7071 /* Send a netdev-removed uevent to the old namespace */
7072 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7073 netdev_adjacent_del_links(dev);
7074
7075 /* Actually switch the network namespace */
7076 dev_net_set(dev, net);
7077
7078 /* If there is an ifindex conflict assign a new one */
7079 if (__dev_get_by_index(net, dev->ifindex))
7080 dev->ifindex = dev_new_index(net);
7081
7082 /* Send a netdev-add uevent to the new namespace */
7083 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7084 netdev_adjacent_add_links(dev);
7085
7086 /* Fixup kobjects */
7087 err = device_rename(&dev->dev, dev->name);
7088 WARN_ON(err);
7089
7090 /* Add the device back in the hashes */
7091 list_netdevice(dev);
7092
7093 /* Notify protocols, that a new device appeared. */
7094 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7095
7096 /*
7097 * Prevent userspace races by waiting until the network
7098 * device is fully setup before sending notifications.
7099 */
7100 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7101
7102 synchronize_net();
7103 err = 0;
7104 out:
7105 return err;
7106 }
7107 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7108
7109 static int dev_cpu_callback(struct notifier_block *nfb,
7110 unsigned long action,
7111 void *ocpu)
7112 {
7113 struct sk_buff **list_skb;
7114 struct sk_buff *skb;
7115 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7116 struct softnet_data *sd, *oldsd;
7117
7118 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7119 return NOTIFY_OK;
7120
7121 local_irq_disable();
7122 cpu = smp_processor_id();
7123 sd = &per_cpu(softnet_data, cpu);
7124 oldsd = &per_cpu(softnet_data, oldcpu);
7125
7126 /* Find end of our completion_queue. */
7127 list_skb = &sd->completion_queue;
7128 while (*list_skb)
7129 list_skb = &(*list_skb)->next;
7130 /* Append completion queue from offline CPU. */
7131 *list_skb = oldsd->completion_queue;
7132 oldsd->completion_queue = NULL;
7133
7134 /* Append output queue from offline CPU. */
7135 if (oldsd->output_queue) {
7136 *sd->output_queue_tailp = oldsd->output_queue;
7137 sd->output_queue_tailp = oldsd->output_queue_tailp;
7138 oldsd->output_queue = NULL;
7139 oldsd->output_queue_tailp = &oldsd->output_queue;
7140 }
7141 /* Append NAPI poll list from offline CPU, with one exception :
7142 * process_backlog() must be called by cpu owning percpu backlog.
7143 * We properly handle process_queue & input_pkt_queue later.
7144 */
7145 while (!list_empty(&oldsd->poll_list)) {
7146 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7147 struct napi_struct,
7148 poll_list);
7149
7150 list_del_init(&napi->poll_list);
7151 if (napi->poll == process_backlog)
7152 napi->state = 0;
7153 else
7154 ____napi_schedule(sd, napi);
7155 }
7156
7157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7158 local_irq_enable();
7159
7160 /* Process offline CPU's input_pkt_queue */
7161 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7162 netif_rx_ni(skb);
7163 input_queue_head_incr(oldsd);
7164 }
7165 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7166 netif_rx_ni(skb);
7167 input_queue_head_incr(oldsd);
7168 }
7169
7170 return NOTIFY_OK;
7171 }
7172
7173
7174 /**
7175 * netdev_increment_features - increment feature set by one
7176 * @all: current feature set
7177 * @one: new feature set
7178 * @mask: mask feature set
7179 *
7180 * Computes a new feature set after adding a device with feature set
7181 * @one to the master device with current feature set @all. Will not
7182 * enable anything that is off in @mask. Returns the new feature set.
7183 */
7184 netdev_features_t netdev_increment_features(netdev_features_t all,
7185 netdev_features_t one, netdev_features_t mask)
7186 {
7187 if (mask & NETIF_F_GEN_CSUM)
7188 mask |= NETIF_F_ALL_CSUM;
7189 mask |= NETIF_F_VLAN_CHALLENGED;
7190
7191 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7192 all &= one | ~NETIF_F_ALL_FOR_ALL;
7193
7194 /* If one device supports hw checksumming, set for all. */
7195 if (all & NETIF_F_GEN_CSUM)
7196 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7197
7198 return all;
7199 }
7200 EXPORT_SYMBOL(netdev_increment_features);
7201
7202 static struct hlist_head * __net_init netdev_create_hash(void)
7203 {
7204 int i;
7205 struct hlist_head *hash;
7206
7207 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7208 if (hash != NULL)
7209 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7210 INIT_HLIST_HEAD(&hash[i]);
7211
7212 return hash;
7213 }
7214
7215 /* Initialize per network namespace state */
7216 static int __net_init netdev_init(struct net *net)
7217 {
7218 if (net != &init_net)
7219 INIT_LIST_HEAD(&net->dev_base_head);
7220
7221 net->dev_name_head = netdev_create_hash();
7222 if (net->dev_name_head == NULL)
7223 goto err_name;
7224
7225 net->dev_index_head = netdev_create_hash();
7226 if (net->dev_index_head == NULL)
7227 goto err_idx;
7228
7229 return 0;
7230
7231 err_idx:
7232 kfree(net->dev_name_head);
7233 err_name:
7234 return -ENOMEM;
7235 }
7236
7237 /**
7238 * netdev_drivername - network driver for the device
7239 * @dev: network device
7240 *
7241 * Determine network driver for device.
7242 */
7243 const char *netdev_drivername(const struct net_device *dev)
7244 {
7245 const struct device_driver *driver;
7246 const struct device *parent;
7247 const char *empty = "";
7248
7249 parent = dev->dev.parent;
7250 if (!parent)
7251 return empty;
7252
7253 driver = parent->driver;
7254 if (driver && driver->name)
7255 return driver->name;
7256 return empty;
7257 }
7258
7259 static void __netdev_printk(const char *level, const struct net_device *dev,
7260 struct va_format *vaf)
7261 {
7262 if (dev && dev->dev.parent) {
7263 dev_printk_emit(level[1] - '0',
7264 dev->dev.parent,
7265 "%s %s %s%s: %pV",
7266 dev_driver_string(dev->dev.parent),
7267 dev_name(dev->dev.parent),
7268 netdev_name(dev), netdev_reg_state(dev),
7269 vaf);
7270 } else if (dev) {
7271 printk("%s%s%s: %pV",
7272 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7273 } else {
7274 printk("%s(NULL net_device): %pV", level, vaf);
7275 }
7276 }
7277
7278 void netdev_printk(const char *level, const struct net_device *dev,
7279 const char *format, ...)
7280 {
7281 struct va_format vaf;
7282 va_list args;
7283
7284 va_start(args, format);
7285
7286 vaf.fmt = format;
7287 vaf.va = &args;
7288
7289 __netdev_printk(level, dev, &vaf);
7290
7291 va_end(args);
7292 }
7293 EXPORT_SYMBOL(netdev_printk);
7294
7295 #define define_netdev_printk_level(func, level) \
7296 void func(const struct net_device *dev, const char *fmt, ...) \
7297 { \
7298 struct va_format vaf; \
7299 va_list args; \
7300 \
7301 va_start(args, fmt); \
7302 \
7303 vaf.fmt = fmt; \
7304 vaf.va = &args; \
7305 \
7306 __netdev_printk(level, dev, &vaf); \
7307 \
7308 va_end(args); \
7309 } \
7310 EXPORT_SYMBOL(func);
7311
7312 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7313 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7314 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7315 define_netdev_printk_level(netdev_err, KERN_ERR);
7316 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7317 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7318 define_netdev_printk_level(netdev_info, KERN_INFO);
7319
7320 static void __net_exit netdev_exit(struct net *net)
7321 {
7322 kfree(net->dev_name_head);
7323 kfree(net->dev_index_head);
7324 }
7325
7326 static struct pernet_operations __net_initdata netdev_net_ops = {
7327 .init = netdev_init,
7328 .exit = netdev_exit,
7329 };
7330
7331 static void __net_exit default_device_exit(struct net *net)
7332 {
7333 struct net_device *dev, *aux;
7334 /*
7335 * Push all migratable network devices back to the
7336 * initial network namespace
7337 */
7338 rtnl_lock();
7339 for_each_netdev_safe(net, dev, aux) {
7340 int err;
7341 char fb_name[IFNAMSIZ];
7342
7343 /* Ignore unmoveable devices (i.e. loopback) */
7344 if (dev->features & NETIF_F_NETNS_LOCAL)
7345 continue;
7346
7347 /* Leave virtual devices for the generic cleanup */
7348 if (dev->rtnl_link_ops)
7349 continue;
7350
7351 /* Push remaining network devices to init_net */
7352 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7353 err = dev_change_net_namespace(dev, &init_net, fb_name);
7354 if (err) {
7355 pr_emerg("%s: failed to move %s to init_net: %d\n",
7356 __func__, dev->name, err);
7357 BUG();
7358 }
7359 }
7360 rtnl_unlock();
7361 }
7362
7363 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7364 {
7365 /* Return with the rtnl_lock held when there are no network
7366 * devices unregistering in any network namespace in net_list.
7367 */
7368 struct net *net;
7369 bool unregistering;
7370 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7371
7372 add_wait_queue(&netdev_unregistering_wq, &wait);
7373 for (;;) {
7374 unregistering = false;
7375 rtnl_lock();
7376 list_for_each_entry(net, net_list, exit_list) {
7377 if (net->dev_unreg_count > 0) {
7378 unregistering = true;
7379 break;
7380 }
7381 }
7382 if (!unregistering)
7383 break;
7384 __rtnl_unlock();
7385
7386 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7387 }
7388 remove_wait_queue(&netdev_unregistering_wq, &wait);
7389 }
7390
7391 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7392 {
7393 /* At exit all network devices most be removed from a network
7394 * namespace. Do this in the reverse order of registration.
7395 * Do this across as many network namespaces as possible to
7396 * improve batching efficiency.
7397 */
7398 struct net_device *dev;
7399 struct net *net;
7400 LIST_HEAD(dev_kill_list);
7401
7402 /* To prevent network device cleanup code from dereferencing
7403 * loopback devices or network devices that have been freed
7404 * wait here for all pending unregistrations to complete,
7405 * before unregistring the loopback device and allowing the
7406 * network namespace be freed.
7407 *
7408 * The netdev todo list containing all network devices
7409 * unregistrations that happen in default_device_exit_batch
7410 * will run in the rtnl_unlock() at the end of
7411 * default_device_exit_batch.
7412 */
7413 rtnl_lock_unregistering(net_list);
7414 list_for_each_entry(net, net_list, exit_list) {
7415 for_each_netdev_reverse(net, dev) {
7416 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7417 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7418 else
7419 unregister_netdevice_queue(dev, &dev_kill_list);
7420 }
7421 }
7422 unregister_netdevice_many(&dev_kill_list);
7423 rtnl_unlock();
7424 }
7425
7426 static struct pernet_operations __net_initdata default_device_ops = {
7427 .exit = default_device_exit,
7428 .exit_batch = default_device_exit_batch,
7429 };
7430
7431 /*
7432 * Initialize the DEV module. At boot time this walks the device list and
7433 * unhooks any devices that fail to initialise (normally hardware not
7434 * present) and leaves us with a valid list of present and active devices.
7435 *
7436 */
7437
7438 /*
7439 * This is called single threaded during boot, so no need
7440 * to take the rtnl semaphore.
7441 */
7442 static int __init net_dev_init(void)
7443 {
7444 int i, rc = -ENOMEM;
7445
7446 BUG_ON(!dev_boot_phase);
7447
7448 if (dev_proc_init())
7449 goto out;
7450
7451 if (netdev_kobject_init())
7452 goto out;
7453
7454 INIT_LIST_HEAD(&ptype_all);
7455 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7456 INIT_LIST_HEAD(&ptype_base[i]);
7457
7458 INIT_LIST_HEAD(&offload_base);
7459
7460 if (register_pernet_subsys(&netdev_net_ops))
7461 goto out;
7462
7463 /*
7464 * Initialise the packet receive queues.
7465 */
7466
7467 for_each_possible_cpu(i) {
7468 struct softnet_data *sd = &per_cpu(softnet_data, i);
7469
7470 skb_queue_head_init(&sd->input_pkt_queue);
7471 skb_queue_head_init(&sd->process_queue);
7472 INIT_LIST_HEAD(&sd->poll_list);
7473 sd->output_queue_tailp = &sd->output_queue;
7474 #ifdef CONFIG_RPS
7475 sd->csd.func = rps_trigger_softirq;
7476 sd->csd.info = sd;
7477 sd->cpu = i;
7478 #endif
7479
7480 sd->backlog.poll = process_backlog;
7481 sd->backlog.weight = weight_p;
7482 }
7483
7484 dev_boot_phase = 0;
7485
7486 /* The loopback device is special if any other network devices
7487 * is present in a network namespace the loopback device must
7488 * be present. Since we now dynamically allocate and free the
7489 * loopback device ensure this invariant is maintained by
7490 * keeping the loopback device as the first device on the
7491 * list of network devices. Ensuring the loopback devices
7492 * is the first device that appears and the last network device
7493 * that disappears.
7494 */
7495 if (register_pernet_device(&loopback_net_ops))
7496 goto out;
7497
7498 if (register_pernet_device(&default_device_ops))
7499 goto out;
7500
7501 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7502 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7503
7504 hotcpu_notifier(dev_cpu_callback, 0);
7505 dst_init();
7506 rc = 0;
7507 out:
7508 return rc;
7509 }
7510
7511 subsys_initcall(net_dev_init);
This page took 0.207025 seconds and 5 git commands to generate.