net: remove iflink field from struct net_device
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
509 }
510
511 /**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 __dev_remove_offload(po);
526
527 synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533 Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625 }
626
627 /*
628 * Saves at boot time configured settings for any netdevice.
629 */
630 int __init netdev_boot_setup(char *str)
631 {
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658 Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
665 *
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
668 */
669
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
674
675 return dev->ifindex;
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678
679 /**
680 * __dev_get_by_name - find a device by its name
681 * @net: the applicable net namespace
682 * @name: name to find
683 *
684 * Find an interface by name. Must be called under RTNL semaphore
685 * or @dev_base_lock. If the name is found a pointer to the device
686 * is returned. If the name is not found then %NULL is returned. The
687 * reference counters are not incremented so the caller must be
688 * careful with locks.
689 */
690
691 struct net_device *__dev_get_by_name(struct net *net, const char *name)
692 {
693 struct net_device *dev;
694 struct hlist_head *head = dev_name_hash(net, name);
695
696 hlist_for_each_entry(dev, head, name_hlist)
697 if (!strncmp(dev->name, name, IFNAMSIZ))
698 return dev;
699
700 return NULL;
701 }
702 EXPORT_SYMBOL(__dev_get_by_name);
703
704 /**
705 * dev_get_by_name_rcu - find a device by its name
706 * @net: the applicable net namespace
707 * @name: name to find
708 *
709 * Find an interface by name.
710 * If the name is found a pointer to the device is returned.
711 * If the name is not found then %NULL is returned.
712 * The reference counters are not incremented so the caller must be
713 * careful with locks. The caller must hold RCU lock.
714 */
715
716 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
717 {
718 struct net_device *dev;
719 struct hlist_head *head = dev_name_hash(net, name);
720
721 hlist_for_each_entry_rcu(dev, head, name_hlist)
722 if (!strncmp(dev->name, name, IFNAMSIZ))
723 return dev;
724
725 return NULL;
726 }
727 EXPORT_SYMBOL(dev_get_by_name_rcu);
728
729 /**
730 * dev_get_by_name - find a device by its name
731 * @net: the applicable net namespace
732 * @name: name to find
733 *
734 * Find an interface by name. This can be called from any
735 * context and does its own locking. The returned handle has
736 * the usage count incremented and the caller must use dev_put() to
737 * release it when it is no longer needed. %NULL is returned if no
738 * matching device is found.
739 */
740
741 struct net_device *dev_get_by_name(struct net *net, const char *name)
742 {
743 struct net_device *dev;
744
745 rcu_read_lock();
746 dev = dev_get_by_name_rcu(net, name);
747 if (dev)
748 dev_hold(dev);
749 rcu_read_unlock();
750 return dev;
751 }
752 EXPORT_SYMBOL(dev_get_by_name);
753
754 /**
755 * __dev_get_by_index - find a device by its ifindex
756 * @net: the applicable net namespace
757 * @ifindex: index of device
758 *
759 * Search for an interface by index. Returns %NULL if the device
760 * is not found or a pointer to the device. The device has not
761 * had its reference counter increased so the caller must be careful
762 * about locking. The caller must hold either the RTNL semaphore
763 * or @dev_base_lock.
764 */
765
766 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(__dev_get_by_index);
778
779 /**
780 * dev_get_by_index_rcu - find a device by its ifindex
781 * @net: the applicable net namespace
782 * @ifindex: index of device
783 *
784 * Search for an interface by index. Returns %NULL if the device
785 * is not found or a pointer to the device. The device has not
786 * had its reference counter increased so the caller must be careful
787 * about locking. The caller must hold RCU lock.
788 */
789
790 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
791 {
792 struct net_device *dev;
793 struct hlist_head *head = dev_index_hash(net, ifindex);
794
795 hlist_for_each_entry_rcu(dev, head, index_hlist)
796 if (dev->ifindex == ifindex)
797 return dev;
798
799 return NULL;
800 }
801 EXPORT_SYMBOL(dev_get_by_index_rcu);
802
803
804 /**
805 * dev_get_by_index - find a device by its ifindex
806 * @net: the applicable net namespace
807 * @ifindex: index of device
808 *
809 * Search for an interface by index. Returns NULL if the device
810 * is not found or a pointer to the device. The device returned has
811 * had a reference added and the pointer is safe until the user calls
812 * dev_put to indicate they have finished with it.
813 */
814
815 struct net_device *dev_get_by_index(struct net *net, int ifindex)
816 {
817 struct net_device *dev;
818
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (dev)
822 dev_hold(dev);
823 rcu_read_unlock();
824 return dev;
825 }
826 EXPORT_SYMBOL(dev_get_by_index);
827
828 /**
829 * netdev_get_name - get a netdevice name, knowing its ifindex.
830 * @net: network namespace
831 * @name: a pointer to the buffer where the name will be stored.
832 * @ifindex: the ifindex of the interface to get the name from.
833 *
834 * The use of raw_seqcount_begin() and cond_resched() before
835 * retrying is required as we want to give the writers a chance
836 * to complete when CONFIG_PREEMPT is not set.
837 */
838 int netdev_get_name(struct net *net, char *name, int ifindex)
839 {
840 struct net_device *dev;
841 unsigned int seq;
842
843 retry:
844 seq = raw_seqcount_begin(&devnet_rename_seq);
845 rcu_read_lock();
846 dev = dev_get_by_index_rcu(net, ifindex);
847 if (!dev) {
848 rcu_read_unlock();
849 return -ENODEV;
850 }
851
852 strcpy(name, dev->name);
853 rcu_read_unlock();
854 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
855 cond_resched();
856 goto retry;
857 }
858
859 return 0;
860 }
861
862 /**
863 * dev_getbyhwaddr_rcu - find a device by its hardware address
864 * @net: the applicable net namespace
865 * @type: media type of device
866 * @ha: hardware address
867 *
868 * Search for an interface by MAC address. Returns NULL if the device
869 * is not found or a pointer to the device.
870 * The caller must hold RCU or RTNL.
871 * The returned device has not had its ref count increased
872 * and the caller must therefore be careful about locking
873 *
874 */
875
876 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
877 const char *ha)
878 {
879 struct net_device *dev;
880
881 for_each_netdev_rcu(net, dev)
882 if (dev->type == type &&
883 !memcmp(dev->dev_addr, ha, dev->addr_len))
884 return dev;
885
886 return NULL;
887 }
888 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
889
890 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892 struct net_device *dev;
893
894 ASSERT_RTNL();
895 for_each_netdev(net, dev)
896 if (dev->type == type)
897 return dev;
898
899 return NULL;
900 }
901 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
902
903 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
904 {
905 struct net_device *dev, *ret = NULL;
906
907 rcu_read_lock();
908 for_each_netdev_rcu(net, dev)
909 if (dev->type == type) {
910 dev_hold(dev);
911 ret = dev;
912 break;
913 }
914 rcu_read_unlock();
915 return ret;
916 }
917 EXPORT_SYMBOL(dev_getfirstbyhwtype);
918
919 /**
920 * __dev_get_by_flags - find any device with given flags
921 * @net: the applicable net namespace
922 * @if_flags: IFF_* values
923 * @mask: bitmask of bits in if_flags to check
924 *
925 * Search for any interface with the given flags. Returns NULL if a device
926 * is not found or a pointer to the device. Must be called inside
927 * rtnl_lock(), and result refcount is unchanged.
928 */
929
930 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
931 unsigned short mask)
932 {
933 struct net_device *dev, *ret;
934
935 ASSERT_RTNL();
936
937 ret = NULL;
938 for_each_netdev(net, dev) {
939 if (((dev->flags ^ if_flags) & mask) == 0) {
940 ret = dev;
941 break;
942 }
943 }
944 return ret;
945 }
946 EXPORT_SYMBOL(__dev_get_by_flags);
947
948 /**
949 * dev_valid_name - check if name is okay for network device
950 * @name: name string
951 *
952 * Network device names need to be valid file names to
953 * to allow sysfs to work. We also disallow any kind of
954 * whitespace.
955 */
956 bool dev_valid_name(const char *name)
957 {
958 if (*name == '\0')
959 return false;
960 if (strlen(name) >= IFNAMSIZ)
961 return false;
962 if (!strcmp(name, ".") || !strcmp(name, ".."))
963 return false;
964
965 while (*name) {
966 if (*name == '/' || *name == ':' || isspace(*name))
967 return false;
968 name++;
969 }
970 return true;
971 }
972 EXPORT_SYMBOL(dev_valid_name);
973
974 /**
975 * __dev_alloc_name - allocate a name for a device
976 * @net: network namespace to allocate the device name in
977 * @name: name format string
978 * @buf: scratch buffer and result name string
979 *
980 * Passed a format string - eg "lt%d" it will try and find a suitable
981 * id. It scans list of devices to build up a free map, then chooses
982 * the first empty slot. The caller must hold the dev_base or rtnl lock
983 * while allocating the name and adding the device in order to avoid
984 * duplicates.
985 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
986 * Returns the number of the unit assigned or a negative errno code.
987 */
988
989 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
990 {
991 int i = 0;
992 const char *p;
993 const int max_netdevices = 8*PAGE_SIZE;
994 unsigned long *inuse;
995 struct net_device *d;
996
997 p = strnchr(name, IFNAMSIZ-1, '%');
998 if (p) {
999 /*
1000 * Verify the string as this thing may have come from
1001 * the user. There must be either one "%d" and no other "%"
1002 * characters.
1003 */
1004 if (p[1] != 'd' || strchr(p + 2, '%'))
1005 return -EINVAL;
1006
1007 /* Use one page as a bit array of possible slots */
1008 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1009 if (!inuse)
1010 return -ENOMEM;
1011
1012 for_each_netdev(net, d) {
1013 if (!sscanf(d->name, name, &i))
1014 continue;
1015 if (i < 0 || i >= max_netdevices)
1016 continue;
1017
1018 /* avoid cases where sscanf is not exact inverse of printf */
1019 snprintf(buf, IFNAMSIZ, name, i);
1020 if (!strncmp(buf, d->name, IFNAMSIZ))
1021 set_bit(i, inuse);
1022 }
1023
1024 i = find_first_zero_bit(inuse, max_netdevices);
1025 free_page((unsigned long) inuse);
1026 }
1027
1028 if (buf != name)
1029 snprintf(buf, IFNAMSIZ, name, i);
1030 if (!__dev_get_by_name(net, buf))
1031 return i;
1032
1033 /* It is possible to run out of possible slots
1034 * when the name is long and there isn't enough space left
1035 * for the digits, or if all bits are used.
1036 */
1037 return -ENFILE;
1038 }
1039
1040 /**
1041 * dev_alloc_name - allocate a name for a device
1042 * @dev: device
1043 * @name: name format string
1044 *
1045 * Passed a format string - eg "lt%d" it will try and find a suitable
1046 * id. It scans list of devices to build up a free map, then chooses
1047 * the first empty slot. The caller must hold the dev_base or rtnl lock
1048 * while allocating the name and adding the device in order to avoid
1049 * duplicates.
1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 * Returns the number of the unit assigned or a negative errno code.
1052 */
1053
1054 int dev_alloc_name(struct net_device *dev, const char *name)
1055 {
1056 char buf[IFNAMSIZ];
1057 struct net *net;
1058 int ret;
1059
1060 BUG_ON(!dev_net(dev));
1061 net = dev_net(dev);
1062 ret = __dev_alloc_name(net, name, buf);
1063 if (ret >= 0)
1064 strlcpy(dev->name, buf, IFNAMSIZ);
1065 return ret;
1066 }
1067 EXPORT_SYMBOL(dev_alloc_name);
1068
1069 static int dev_alloc_name_ns(struct net *net,
1070 struct net_device *dev,
1071 const char *name)
1072 {
1073 char buf[IFNAMSIZ];
1074 int ret;
1075
1076 ret = __dev_alloc_name(net, name, buf);
1077 if (ret >= 0)
1078 strlcpy(dev->name, buf, IFNAMSIZ);
1079 return ret;
1080 }
1081
1082 static int dev_get_valid_name(struct net *net,
1083 struct net_device *dev,
1084 const char *name)
1085 {
1086 BUG_ON(!net);
1087
1088 if (!dev_valid_name(name))
1089 return -EINVAL;
1090
1091 if (strchr(name, '%'))
1092 return dev_alloc_name_ns(net, dev, name);
1093 else if (__dev_get_by_name(net, name))
1094 return -EEXIST;
1095 else if (dev->name != name)
1096 strlcpy(dev->name, name, IFNAMSIZ);
1097
1098 return 0;
1099 }
1100
1101 /**
1102 * dev_change_name - change name of a device
1103 * @dev: device
1104 * @newname: name (or format string) must be at least IFNAMSIZ
1105 *
1106 * Change name of a device, can pass format strings "eth%d".
1107 * for wildcarding.
1108 */
1109 int dev_change_name(struct net_device *dev, const char *newname)
1110 {
1111 unsigned char old_assign_type;
1112 char oldname[IFNAMSIZ];
1113 int err = 0;
1114 int ret;
1115 struct net *net;
1116
1117 ASSERT_RTNL();
1118 BUG_ON(!dev_net(dev));
1119
1120 net = dev_net(dev);
1121 if (dev->flags & IFF_UP)
1122 return -EBUSY;
1123
1124 write_seqcount_begin(&devnet_rename_seq);
1125
1126 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1127 write_seqcount_end(&devnet_rename_seq);
1128 return 0;
1129 }
1130
1131 memcpy(oldname, dev->name, IFNAMSIZ);
1132
1133 err = dev_get_valid_name(net, dev, newname);
1134 if (err < 0) {
1135 write_seqcount_end(&devnet_rename_seq);
1136 return err;
1137 }
1138
1139 if (oldname[0] && !strchr(oldname, '%'))
1140 netdev_info(dev, "renamed from %s\n", oldname);
1141
1142 old_assign_type = dev->name_assign_type;
1143 dev->name_assign_type = NET_NAME_RENAMED;
1144
1145 rollback:
1146 ret = device_rename(&dev->dev, dev->name);
1147 if (ret) {
1148 memcpy(dev->name, oldname, IFNAMSIZ);
1149 dev->name_assign_type = old_assign_type;
1150 write_seqcount_end(&devnet_rename_seq);
1151 return ret;
1152 }
1153
1154 write_seqcount_end(&devnet_rename_seq);
1155
1156 netdev_adjacent_rename_links(dev, oldname);
1157
1158 write_lock_bh(&dev_base_lock);
1159 hlist_del_rcu(&dev->name_hlist);
1160 write_unlock_bh(&dev_base_lock);
1161
1162 synchronize_rcu();
1163
1164 write_lock_bh(&dev_base_lock);
1165 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1166 write_unlock_bh(&dev_base_lock);
1167
1168 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1169 ret = notifier_to_errno(ret);
1170
1171 if (ret) {
1172 /* err >= 0 after dev_alloc_name() or stores the first errno */
1173 if (err >= 0) {
1174 err = ret;
1175 write_seqcount_begin(&devnet_rename_seq);
1176 memcpy(dev->name, oldname, IFNAMSIZ);
1177 memcpy(oldname, newname, IFNAMSIZ);
1178 dev->name_assign_type = old_assign_type;
1179 old_assign_type = NET_NAME_RENAMED;
1180 goto rollback;
1181 } else {
1182 pr_err("%s: name change rollback failed: %d\n",
1183 dev->name, ret);
1184 }
1185 }
1186
1187 return err;
1188 }
1189
1190 /**
1191 * dev_set_alias - change ifalias of a device
1192 * @dev: device
1193 * @alias: name up to IFALIASZ
1194 * @len: limit of bytes to copy from info
1195 *
1196 * Set ifalias for a device,
1197 */
1198 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1199 {
1200 char *new_ifalias;
1201
1202 ASSERT_RTNL();
1203
1204 if (len >= IFALIASZ)
1205 return -EINVAL;
1206
1207 if (!len) {
1208 kfree(dev->ifalias);
1209 dev->ifalias = NULL;
1210 return 0;
1211 }
1212
1213 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1214 if (!new_ifalias)
1215 return -ENOMEM;
1216 dev->ifalias = new_ifalias;
1217
1218 strlcpy(dev->ifalias, alias, len+1);
1219 return len;
1220 }
1221
1222
1223 /**
1224 * netdev_features_change - device changes features
1225 * @dev: device to cause notification
1226 *
1227 * Called to indicate a device has changed features.
1228 */
1229 void netdev_features_change(struct net_device *dev)
1230 {
1231 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1232 }
1233 EXPORT_SYMBOL(netdev_features_change);
1234
1235 /**
1236 * netdev_state_change - device changes state
1237 * @dev: device to cause notification
1238 *
1239 * Called to indicate a device has changed state. This function calls
1240 * the notifier chains for netdev_chain and sends a NEWLINK message
1241 * to the routing socket.
1242 */
1243 void netdev_state_change(struct net_device *dev)
1244 {
1245 if (dev->flags & IFF_UP) {
1246 struct netdev_notifier_change_info change_info;
1247
1248 change_info.flags_changed = 0;
1249 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1250 &change_info.info);
1251 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1252 }
1253 }
1254 EXPORT_SYMBOL(netdev_state_change);
1255
1256 /**
1257 * netdev_notify_peers - notify network peers about existence of @dev
1258 * @dev: network device
1259 *
1260 * Generate traffic such that interested network peers are aware of
1261 * @dev, such as by generating a gratuitous ARP. This may be used when
1262 * a device wants to inform the rest of the network about some sort of
1263 * reconfiguration such as a failover event or virtual machine
1264 * migration.
1265 */
1266 void netdev_notify_peers(struct net_device *dev)
1267 {
1268 rtnl_lock();
1269 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1270 rtnl_unlock();
1271 }
1272 EXPORT_SYMBOL(netdev_notify_peers);
1273
1274 static int __dev_open(struct net_device *dev)
1275 {
1276 const struct net_device_ops *ops = dev->netdev_ops;
1277 int ret;
1278
1279 ASSERT_RTNL();
1280
1281 if (!netif_device_present(dev))
1282 return -ENODEV;
1283
1284 /* Block netpoll from trying to do any rx path servicing.
1285 * If we don't do this there is a chance ndo_poll_controller
1286 * or ndo_poll may be running while we open the device
1287 */
1288 netpoll_poll_disable(dev);
1289
1290 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1291 ret = notifier_to_errno(ret);
1292 if (ret)
1293 return ret;
1294
1295 set_bit(__LINK_STATE_START, &dev->state);
1296
1297 if (ops->ndo_validate_addr)
1298 ret = ops->ndo_validate_addr(dev);
1299
1300 if (!ret && ops->ndo_open)
1301 ret = ops->ndo_open(dev);
1302
1303 netpoll_poll_enable(dev);
1304
1305 if (ret)
1306 clear_bit(__LINK_STATE_START, &dev->state);
1307 else {
1308 dev->flags |= IFF_UP;
1309 dev_set_rx_mode(dev);
1310 dev_activate(dev);
1311 add_device_randomness(dev->dev_addr, dev->addr_len);
1312 }
1313
1314 return ret;
1315 }
1316
1317 /**
1318 * dev_open - prepare an interface for use.
1319 * @dev: device to open
1320 *
1321 * Takes a device from down to up state. The device's private open
1322 * function is invoked and then the multicast lists are loaded. Finally
1323 * the device is moved into the up state and a %NETDEV_UP message is
1324 * sent to the netdev notifier chain.
1325 *
1326 * Calling this function on an active interface is a nop. On a failure
1327 * a negative errno code is returned.
1328 */
1329 int dev_open(struct net_device *dev)
1330 {
1331 int ret;
1332
1333 if (dev->flags & IFF_UP)
1334 return 0;
1335
1336 ret = __dev_open(dev);
1337 if (ret < 0)
1338 return ret;
1339
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1341 call_netdevice_notifiers(NETDEV_UP, dev);
1342
1343 return ret;
1344 }
1345 EXPORT_SYMBOL(dev_open);
1346
1347 static int __dev_close_many(struct list_head *head)
1348 {
1349 struct net_device *dev;
1350
1351 ASSERT_RTNL();
1352 might_sleep();
1353
1354 list_for_each_entry(dev, head, close_list) {
1355 /* Temporarily disable netpoll until the interface is down */
1356 netpoll_poll_disable(dev);
1357
1358 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1359
1360 clear_bit(__LINK_STATE_START, &dev->state);
1361
1362 /* Synchronize to scheduled poll. We cannot touch poll list, it
1363 * can be even on different cpu. So just clear netif_running().
1364 *
1365 * dev->stop() will invoke napi_disable() on all of it's
1366 * napi_struct instances on this device.
1367 */
1368 smp_mb__after_atomic(); /* Commit netif_running(). */
1369 }
1370
1371 dev_deactivate_many(head);
1372
1373 list_for_each_entry(dev, head, close_list) {
1374 const struct net_device_ops *ops = dev->netdev_ops;
1375
1376 /*
1377 * Call the device specific close. This cannot fail.
1378 * Only if device is UP
1379 *
1380 * We allow it to be called even after a DETACH hot-plug
1381 * event.
1382 */
1383 if (ops->ndo_stop)
1384 ops->ndo_stop(dev);
1385
1386 dev->flags &= ~IFF_UP;
1387 netpoll_poll_enable(dev);
1388 }
1389
1390 return 0;
1391 }
1392
1393 static int __dev_close(struct net_device *dev)
1394 {
1395 int retval;
1396 LIST_HEAD(single);
1397
1398 list_add(&dev->close_list, &single);
1399 retval = __dev_close_many(&single);
1400 list_del(&single);
1401
1402 return retval;
1403 }
1404
1405 int dev_close_many(struct list_head *head, bool unlink)
1406 {
1407 struct net_device *dev, *tmp;
1408
1409 /* Remove the devices that don't need to be closed */
1410 list_for_each_entry_safe(dev, tmp, head, close_list)
1411 if (!(dev->flags & IFF_UP))
1412 list_del_init(&dev->close_list);
1413
1414 __dev_close_many(head);
1415
1416 list_for_each_entry_safe(dev, tmp, head, close_list) {
1417 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1418 call_netdevice_notifiers(NETDEV_DOWN, dev);
1419 if (unlink)
1420 list_del_init(&dev->close_list);
1421 }
1422
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close_many);
1426
1427 /**
1428 * dev_close - shutdown an interface.
1429 * @dev: device to shutdown
1430 *
1431 * This function moves an active device into down state. A
1432 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1433 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1434 * chain.
1435 */
1436 int dev_close(struct net_device *dev)
1437 {
1438 if (dev->flags & IFF_UP) {
1439 LIST_HEAD(single);
1440
1441 list_add(&dev->close_list, &single);
1442 dev_close_many(&single, true);
1443 list_del(&single);
1444 }
1445 return 0;
1446 }
1447 EXPORT_SYMBOL(dev_close);
1448
1449
1450 /**
1451 * dev_disable_lro - disable Large Receive Offload on a device
1452 * @dev: device
1453 *
1454 * Disable Large Receive Offload (LRO) on a net device. Must be
1455 * called under RTNL. This is needed if received packets may be
1456 * forwarded to another interface.
1457 */
1458 void dev_disable_lro(struct net_device *dev)
1459 {
1460 struct net_device *lower_dev;
1461 struct list_head *iter;
1462
1463 dev->wanted_features &= ~NETIF_F_LRO;
1464 netdev_update_features(dev);
1465
1466 if (unlikely(dev->features & NETIF_F_LRO))
1467 netdev_WARN(dev, "failed to disable LRO!\n");
1468
1469 netdev_for_each_lower_dev(dev, lower_dev, iter)
1470 dev_disable_lro(lower_dev);
1471 }
1472 EXPORT_SYMBOL(dev_disable_lro);
1473
1474 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1475 struct net_device *dev)
1476 {
1477 struct netdev_notifier_info info;
1478
1479 netdev_notifier_info_init(&info, dev);
1480 return nb->notifier_call(nb, val, &info);
1481 }
1482
1483 static int dev_boot_phase = 1;
1484
1485 /**
1486 * register_netdevice_notifier - register a network notifier block
1487 * @nb: notifier
1488 *
1489 * Register a notifier to be called when network device events occur.
1490 * The notifier passed is linked into the kernel structures and must
1491 * not be reused until it has been unregistered. A negative errno code
1492 * is returned on a failure.
1493 *
1494 * When registered all registration and up events are replayed
1495 * to the new notifier to allow device to have a race free
1496 * view of the network device list.
1497 */
1498
1499 int register_netdevice_notifier(struct notifier_block *nb)
1500 {
1501 struct net_device *dev;
1502 struct net_device *last;
1503 struct net *net;
1504 int err;
1505
1506 rtnl_lock();
1507 err = raw_notifier_chain_register(&netdev_chain, nb);
1508 if (err)
1509 goto unlock;
1510 if (dev_boot_phase)
1511 goto unlock;
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1515 err = notifier_to_errno(err);
1516 if (err)
1517 goto rollback;
1518
1519 if (!(dev->flags & IFF_UP))
1520 continue;
1521
1522 call_netdevice_notifier(nb, NETDEV_UP, dev);
1523 }
1524 }
1525
1526 unlock:
1527 rtnl_unlock();
1528 return err;
1529
1530 rollback:
1531 last = dev;
1532 for_each_net(net) {
1533 for_each_netdev(net, dev) {
1534 if (dev == last)
1535 goto outroll;
1536
1537 if (dev->flags & IFF_UP) {
1538 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1539 dev);
1540 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1541 }
1542 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1543 }
1544 }
1545
1546 outroll:
1547 raw_notifier_chain_unregister(&netdev_chain, nb);
1548 goto unlock;
1549 }
1550 EXPORT_SYMBOL(register_netdevice_notifier);
1551
1552 /**
1553 * unregister_netdevice_notifier - unregister a network notifier block
1554 * @nb: notifier
1555 *
1556 * Unregister a notifier previously registered by
1557 * register_netdevice_notifier(). The notifier is unlinked into the
1558 * kernel structures and may then be reused. A negative errno code
1559 * is returned on a failure.
1560 *
1561 * After unregistering unregister and down device events are synthesized
1562 * for all devices on the device list to the removed notifier to remove
1563 * the need for special case cleanup code.
1564 */
1565
1566 int unregister_netdevice_notifier(struct notifier_block *nb)
1567 {
1568 struct net_device *dev;
1569 struct net *net;
1570 int err;
1571
1572 rtnl_lock();
1573 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1574 if (err)
1575 goto unlock;
1576
1577 for_each_net(net) {
1578 for_each_netdev(net, dev) {
1579 if (dev->flags & IFF_UP) {
1580 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581 dev);
1582 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1583 }
1584 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1585 }
1586 }
1587 unlock:
1588 rtnl_unlock();
1589 return err;
1590 }
1591 EXPORT_SYMBOL(unregister_netdevice_notifier);
1592
1593 /**
1594 * call_netdevice_notifiers_info - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
1596 * @dev: net_device pointer passed unmodified to notifier function
1597 * @info: notifier information data
1598 *
1599 * Call all network notifier blocks. Parameters and return value
1600 * are as for raw_notifier_call_chain().
1601 */
1602
1603 static int call_netdevice_notifiers_info(unsigned long val,
1604 struct net_device *dev,
1605 struct netdev_notifier_info *info)
1606 {
1607 ASSERT_RTNL();
1608 netdev_notifier_info_init(info, dev);
1609 return raw_notifier_call_chain(&netdev_chain, val, info);
1610 }
1611
1612 /**
1613 * call_netdevice_notifiers - call all network notifier blocks
1614 * @val: value passed unmodified to notifier function
1615 * @dev: net_device pointer passed unmodified to notifier function
1616 *
1617 * Call all network notifier blocks. Parameters and return value
1618 * are as for raw_notifier_call_chain().
1619 */
1620
1621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1622 {
1623 struct netdev_notifier_info info;
1624
1625 return call_netdevice_notifiers_info(val, dev, &info);
1626 }
1627 EXPORT_SYMBOL(call_netdevice_notifiers);
1628
1629 static struct static_key netstamp_needed __read_mostly;
1630 #ifdef HAVE_JUMP_LABEL
1631 /* We are not allowed to call static_key_slow_dec() from irq context
1632 * If net_disable_timestamp() is called from irq context, defer the
1633 * static_key_slow_dec() calls.
1634 */
1635 static atomic_t netstamp_needed_deferred;
1636 #endif
1637
1638 void net_enable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1642
1643 if (deferred) {
1644 while (--deferred)
1645 static_key_slow_dec(&netstamp_needed);
1646 return;
1647 }
1648 #endif
1649 static_key_slow_inc(&netstamp_needed);
1650 }
1651 EXPORT_SYMBOL(net_enable_timestamp);
1652
1653 void net_disable_timestamp(void)
1654 {
1655 #ifdef HAVE_JUMP_LABEL
1656 if (in_interrupt()) {
1657 atomic_inc(&netstamp_needed_deferred);
1658 return;
1659 }
1660 #endif
1661 static_key_slow_dec(&netstamp_needed);
1662 }
1663 EXPORT_SYMBOL(net_disable_timestamp);
1664
1665 static inline void net_timestamp_set(struct sk_buff *skb)
1666 {
1667 skb->tstamp.tv64 = 0;
1668 if (static_key_false(&netstamp_needed))
1669 __net_timestamp(skb);
1670 }
1671
1672 #define net_timestamp_check(COND, SKB) \
1673 if (static_key_false(&netstamp_needed)) { \
1674 if ((COND) && !(SKB)->tstamp.tv64) \
1675 __net_timestamp(SKB); \
1676 } \
1677
1678 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 unsigned int len;
1681
1682 if (!(dev->flags & IFF_UP))
1683 return false;
1684
1685 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1686 if (skb->len <= len)
1687 return true;
1688
1689 /* if TSO is enabled, we don't care about the length as the packet
1690 * could be forwarded without being segmented before
1691 */
1692 if (skb_is_gso(skb))
1693 return true;
1694
1695 return false;
1696 }
1697 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1698
1699 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1702 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1703 atomic_long_inc(&dev->rx_dropped);
1704 kfree_skb(skb);
1705 return NET_RX_DROP;
1706 }
1707 }
1708
1709 if (unlikely(!is_skb_forwardable(dev, skb))) {
1710 atomic_long_inc(&dev->rx_dropped);
1711 kfree_skb(skb);
1712 return NET_RX_DROP;
1713 }
1714
1715 skb_scrub_packet(skb, true);
1716 skb->priority = 0;
1717 skb->protocol = eth_type_trans(skb, dev);
1718 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1719
1720 return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1723
1724 /**
1725 * dev_forward_skb - loopback an skb to another netif
1726 *
1727 * @dev: destination network device
1728 * @skb: buffer to forward
1729 *
1730 * return values:
1731 * NET_RX_SUCCESS (no congestion)
1732 * NET_RX_DROP (packet was dropped, but freed)
1733 *
1734 * dev_forward_skb can be used for injecting an skb from the
1735 * start_xmit function of one device into the receive queue
1736 * of another device.
1737 *
1738 * The receiving device may be in another namespace, so
1739 * we have to clear all information in the skb that could
1740 * impact namespace isolation.
1741 */
1742 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1743 {
1744 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1745 }
1746 EXPORT_SYMBOL_GPL(dev_forward_skb);
1747
1748 static inline int deliver_skb(struct sk_buff *skb,
1749 struct packet_type *pt_prev,
1750 struct net_device *orig_dev)
1751 {
1752 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1753 return -ENOMEM;
1754 atomic_inc(&skb->users);
1755 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1756 }
1757
1758 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1759 struct packet_type **pt,
1760 struct net_device *orig_dev,
1761 __be16 type,
1762 struct list_head *ptype_list)
1763 {
1764 struct packet_type *ptype, *pt_prev = *pt;
1765
1766 list_for_each_entry_rcu(ptype, ptype_list, list) {
1767 if (ptype->type != type)
1768 continue;
1769 if (pt_prev)
1770 deliver_skb(skb, pt_prev, orig_dev);
1771 pt_prev = ptype;
1772 }
1773 *pt = pt_prev;
1774 }
1775
1776 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1777 {
1778 if (!ptype->af_packet_priv || !skb->sk)
1779 return false;
1780
1781 if (ptype->id_match)
1782 return ptype->id_match(ptype, skb->sk);
1783 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1784 return true;
1785
1786 return false;
1787 }
1788
1789 /*
1790 * Support routine. Sends outgoing frames to any network
1791 * taps currently in use.
1792 */
1793
1794 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1795 {
1796 struct packet_type *ptype;
1797 struct sk_buff *skb2 = NULL;
1798 struct packet_type *pt_prev = NULL;
1799 struct list_head *ptype_list = &ptype_all;
1800
1801 rcu_read_lock();
1802 again:
1803 list_for_each_entry_rcu(ptype, ptype_list, list) {
1804 /* Never send packets back to the socket
1805 * they originated from - MvS (miquels@drinkel.ow.org)
1806 */
1807 if (skb_loop_sk(ptype, skb))
1808 continue;
1809
1810 if (pt_prev) {
1811 deliver_skb(skb2, pt_prev, skb->dev);
1812 pt_prev = ptype;
1813 continue;
1814 }
1815
1816 /* need to clone skb, done only once */
1817 skb2 = skb_clone(skb, GFP_ATOMIC);
1818 if (!skb2)
1819 goto out_unlock;
1820
1821 net_timestamp_set(skb2);
1822
1823 /* skb->nh should be correctly
1824 * set by sender, so that the second statement is
1825 * just protection against buggy protocols.
1826 */
1827 skb_reset_mac_header(skb2);
1828
1829 if (skb_network_header(skb2) < skb2->data ||
1830 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1831 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1832 ntohs(skb2->protocol),
1833 dev->name);
1834 skb_reset_network_header(skb2);
1835 }
1836
1837 skb2->transport_header = skb2->network_header;
1838 skb2->pkt_type = PACKET_OUTGOING;
1839 pt_prev = ptype;
1840 }
1841
1842 if (ptype_list == &ptype_all) {
1843 ptype_list = &dev->ptype_all;
1844 goto again;
1845 }
1846 out_unlock:
1847 if (pt_prev)
1848 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1849 rcu_read_unlock();
1850 }
1851
1852 /**
1853 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1854 * @dev: Network device
1855 * @txq: number of queues available
1856 *
1857 * If real_num_tx_queues is changed the tc mappings may no longer be
1858 * valid. To resolve this verify the tc mapping remains valid and if
1859 * not NULL the mapping. With no priorities mapping to this
1860 * offset/count pair it will no longer be used. In the worst case TC0
1861 * is invalid nothing can be done so disable priority mappings. If is
1862 * expected that drivers will fix this mapping if they can before
1863 * calling netif_set_real_num_tx_queues.
1864 */
1865 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1866 {
1867 int i;
1868 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1869
1870 /* If TC0 is invalidated disable TC mapping */
1871 if (tc->offset + tc->count > txq) {
1872 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1873 dev->num_tc = 0;
1874 return;
1875 }
1876
1877 /* Invalidated prio to tc mappings set to TC0 */
1878 for (i = 1; i < TC_BITMASK + 1; i++) {
1879 int q = netdev_get_prio_tc_map(dev, i);
1880
1881 tc = &dev->tc_to_txq[q];
1882 if (tc->offset + tc->count > txq) {
1883 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1884 i, q);
1885 netdev_set_prio_tc_map(dev, i, 0);
1886 }
1887 }
1888 }
1889
1890 #ifdef CONFIG_XPS
1891 static DEFINE_MUTEX(xps_map_mutex);
1892 #define xmap_dereference(P) \
1893 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1894
1895 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1896 int cpu, u16 index)
1897 {
1898 struct xps_map *map = NULL;
1899 int pos;
1900
1901 if (dev_maps)
1902 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1903
1904 for (pos = 0; map && pos < map->len; pos++) {
1905 if (map->queues[pos] == index) {
1906 if (map->len > 1) {
1907 map->queues[pos] = map->queues[--map->len];
1908 } else {
1909 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1910 kfree_rcu(map, rcu);
1911 map = NULL;
1912 }
1913 break;
1914 }
1915 }
1916
1917 return map;
1918 }
1919
1920 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps;
1923 int cpu, i;
1924 bool active = false;
1925
1926 mutex_lock(&xps_map_mutex);
1927 dev_maps = xmap_dereference(dev->xps_maps);
1928
1929 if (!dev_maps)
1930 goto out_no_maps;
1931
1932 for_each_possible_cpu(cpu) {
1933 for (i = index; i < dev->num_tx_queues; i++) {
1934 if (!remove_xps_queue(dev_maps, cpu, i))
1935 break;
1936 }
1937 if (i == dev->num_tx_queues)
1938 active = true;
1939 }
1940
1941 if (!active) {
1942 RCU_INIT_POINTER(dev->xps_maps, NULL);
1943 kfree_rcu(dev_maps, rcu);
1944 }
1945
1946 for (i = index; i < dev->num_tx_queues; i++)
1947 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1948 NUMA_NO_NODE);
1949
1950 out_no_maps:
1951 mutex_unlock(&xps_map_mutex);
1952 }
1953
1954 static struct xps_map *expand_xps_map(struct xps_map *map,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *new_map;
1958 int alloc_len = XPS_MIN_MAP_ALLOC;
1959 int i, pos;
1960
1961 for (pos = 0; map && pos < map->len; pos++) {
1962 if (map->queues[pos] != index)
1963 continue;
1964 return map;
1965 }
1966
1967 /* Need to add queue to this CPU's existing map */
1968 if (map) {
1969 if (pos < map->alloc_len)
1970 return map;
1971
1972 alloc_len = map->alloc_len * 2;
1973 }
1974
1975 /* Need to allocate new map to store queue on this CPU's map */
1976 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1977 cpu_to_node(cpu));
1978 if (!new_map)
1979 return NULL;
1980
1981 for (i = 0; i < pos; i++)
1982 new_map->queues[i] = map->queues[i];
1983 new_map->alloc_len = alloc_len;
1984 new_map->len = pos;
1985
1986 return new_map;
1987 }
1988
1989 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1990 u16 index)
1991 {
1992 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1993 struct xps_map *map, *new_map;
1994 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1995 int cpu, numa_node_id = -2;
1996 bool active = false;
1997
1998 mutex_lock(&xps_map_mutex);
1999
2000 dev_maps = xmap_dereference(dev->xps_maps);
2001
2002 /* allocate memory for queue storage */
2003 for_each_online_cpu(cpu) {
2004 if (!cpumask_test_cpu(cpu, mask))
2005 continue;
2006
2007 if (!new_dev_maps)
2008 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2009 if (!new_dev_maps) {
2010 mutex_unlock(&xps_map_mutex);
2011 return -ENOMEM;
2012 }
2013
2014 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2015 NULL;
2016
2017 map = expand_xps_map(map, cpu, index);
2018 if (!map)
2019 goto error;
2020
2021 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2022 }
2023
2024 if (!new_dev_maps)
2025 goto out_no_new_maps;
2026
2027 for_each_possible_cpu(cpu) {
2028 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2029 /* add queue to CPU maps */
2030 int pos = 0;
2031
2032 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2033 while ((pos < map->len) && (map->queues[pos] != index))
2034 pos++;
2035
2036 if (pos == map->len)
2037 map->queues[map->len++] = index;
2038 #ifdef CONFIG_NUMA
2039 if (numa_node_id == -2)
2040 numa_node_id = cpu_to_node(cpu);
2041 else if (numa_node_id != cpu_to_node(cpu))
2042 numa_node_id = -1;
2043 #endif
2044 } else if (dev_maps) {
2045 /* fill in the new device map from the old device map */
2046 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2047 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2048 }
2049
2050 }
2051
2052 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2053
2054 /* Cleanup old maps */
2055 if (dev_maps) {
2056 for_each_possible_cpu(cpu) {
2057 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2058 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2059 if (map && map != new_map)
2060 kfree_rcu(map, rcu);
2061 }
2062
2063 kfree_rcu(dev_maps, rcu);
2064 }
2065
2066 dev_maps = new_dev_maps;
2067 active = true;
2068
2069 out_no_new_maps:
2070 /* update Tx queue numa node */
2071 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2072 (numa_node_id >= 0) ? numa_node_id :
2073 NUMA_NO_NODE);
2074
2075 if (!dev_maps)
2076 goto out_no_maps;
2077
2078 /* removes queue from unused CPUs */
2079 for_each_possible_cpu(cpu) {
2080 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2081 continue;
2082
2083 if (remove_xps_queue(dev_maps, cpu, index))
2084 active = true;
2085 }
2086
2087 /* free map if not active */
2088 if (!active) {
2089 RCU_INIT_POINTER(dev->xps_maps, NULL);
2090 kfree_rcu(dev_maps, rcu);
2091 }
2092
2093 out_no_maps:
2094 mutex_unlock(&xps_map_mutex);
2095
2096 return 0;
2097 error:
2098 /* remove any maps that we added */
2099 for_each_possible_cpu(cpu) {
2100 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2101 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2102 NULL;
2103 if (new_map && new_map != map)
2104 kfree(new_map);
2105 }
2106
2107 mutex_unlock(&xps_map_mutex);
2108
2109 kfree(new_dev_maps);
2110 return -ENOMEM;
2111 }
2112 EXPORT_SYMBOL(netif_set_xps_queue);
2113
2114 #endif
2115 /*
2116 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2117 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2118 */
2119 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2120 {
2121 int rc;
2122
2123 if (txq < 1 || txq > dev->num_tx_queues)
2124 return -EINVAL;
2125
2126 if (dev->reg_state == NETREG_REGISTERED ||
2127 dev->reg_state == NETREG_UNREGISTERING) {
2128 ASSERT_RTNL();
2129
2130 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2131 txq);
2132 if (rc)
2133 return rc;
2134
2135 if (dev->num_tc)
2136 netif_setup_tc(dev, txq);
2137
2138 if (txq < dev->real_num_tx_queues) {
2139 qdisc_reset_all_tx_gt(dev, txq);
2140 #ifdef CONFIG_XPS
2141 netif_reset_xps_queues_gt(dev, txq);
2142 #endif
2143 }
2144 }
2145
2146 dev->real_num_tx_queues = txq;
2147 return 0;
2148 }
2149 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2150
2151 #ifdef CONFIG_SYSFS
2152 /**
2153 * netif_set_real_num_rx_queues - set actual number of RX queues used
2154 * @dev: Network device
2155 * @rxq: Actual number of RX queues
2156 *
2157 * This must be called either with the rtnl_lock held or before
2158 * registration of the net device. Returns 0 on success, or a
2159 * negative error code. If called before registration, it always
2160 * succeeds.
2161 */
2162 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2163 {
2164 int rc;
2165
2166 if (rxq < 1 || rxq > dev->num_rx_queues)
2167 return -EINVAL;
2168
2169 if (dev->reg_state == NETREG_REGISTERED) {
2170 ASSERT_RTNL();
2171
2172 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2173 rxq);
2174 if (rc)
2175 return rc;
2176 }
2177
2178 dev->real_num_rx_queues = rxq;
2179 return 0;
2180 }
2181 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2182 #endif
2183
2184 /**
2185 * netif_get_num_default_rss_queues - default number of RSS queues
2186 *
2187 * This routine should set an upper limit on the number of RSS queues
2188 * used by default by multiqueue devices.
2189 */
2190 int netif_get_num_default_rss_queues(void)
2191 {
2192 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2193 }
2194 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2195
2196 static inline void __netif_reschedule(struct Qdisc *q)
2197 {
2198 struct softnet_data *sd;
2199 unsigned long flags;
2200
2201 local_irq_save(flags);
2202 sd = this_cpu_ptr(&softnet_data);
2203 q->next_sched = NULL;
2204 *sd->output_queue_tailp = q;
2205 sd->output_queue_tailp = &q->next_sched;
2206 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2207 local_irq_restore(flags);
2208 }
2209
2210 void __netif_schedule(struct Qdisc *q)
2211 {
2212 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2213 __netif_reschedule(q);
2214 }
2215 EXPORT_SYMBOL(__netif_schedule);
2216
2217 struct dev_kfree_skb_cb {
2218 enum skb_free_reason reason;
2219 };
2220
2221 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2222 {
2223 return (struct dev_kfree_skb_cb *)skb->cb;
2224 }
2225
2226 void netif_schedule_queue(struct netdev_queue *txq)
2227 {
2228 rcu_read_lock();
2229 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2230 struct Qdisc *q = rcu_dereference(txq->qdisc);
2231
2232 __netif_schedule(q);
2233 }
2234 rcu_read_unlock();
2235 }
2236 EXPORT_SYMBOL(netif_schedule_queue);
2237
2238 /**
2239 * netif_wake_subqueue - allow sending packets on subqueue
2240 * @dev: network device
2241 * @queue_index: sub queue index
2242 *
2243 * Resume individual transmit queue of a device with multiple transmit queues.
2244 */
2245 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2246 {
2247 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2248
2249 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2250 struct Qdisc *q;
2251
2252 rcu_read_lock();
2253 q = rcu_dereference(txq->qdisc);
2254 __netif_schedule(q);
2255 rcu_read_unlock();
2256 }
2257 }
2258 EXPORT_SYMBOL(netif_wake_subqueue);
2259
2260 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2261 {
2262 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2263 struct Qdisc *q;
2264
2265 rcu_read_lock();
2266 q = rcu_dereference(dev_queue->qdisc);
2267 __netif_schedule(q);
2268 rcu_read_unlock();
2269 }
2270 }
2271 EXPORT_SYMBOL(netif_tx_wake_queue);
2272
2273 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2274 {
2275 unsigned long flags;
2276
2277 if (likely(atomic_read(&skb->users) == 1)) {
2278 smp_rmb();
2279 atomic_set(&skb->users, 0);
2280 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2281 return;
2282 }
2283 get_kfree_skb_cb(skb)->reason = reason;
2284 local_irq_save(flags);
2285 skb->next = __this_cpu_read(softnet_data.completion_queue);
2286 __this_cpu_write(softnet_data.completion_queue, skb);
2287 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2288 local_irq_restore(flags);
2289 }
2290 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2291
2292 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2293 {
2294 if (in_irq() || irqs_disabled())
2295 __dev_kfree_skb_irq(skb, reason);
2296 else
2297 dev_kfree_skb(skb);
2298 }
2299 EXPORT_SYMBOL(__dev_kfree_skb_any);
2300
2301
2302 /**
2303 * netif_device_detach - mark device as removed
2304 * @dev: network device
2305 *
2306 * Mark device as removed from system and therefore no longer available.
2307 */
2308 void netif_device_detach(struct net_device *dev)
2309 {
2310 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2311 netif_running(dev)) {
2312 netif_tx_stop_all_queues(dev);
2313 }
2314 }
2315 EXPORT_SYMBOL(netif_device_detach);
2316
2317 /**
2318 * netif_device_attach - mark device as attached
2319 * @dev: network device
2320 *
2321 * Mark device as attached from system and restart if needed.
2322 */
2323 void netif_device_attach(struct net_device *dev)
2324 {
2325 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2326 netif_running(dev)) {
2327 netif_tx_wake_all_queues(dev);
2328 __netdev_watchdog_up(dev);
2329 }
2330 }
2331 EXPORT_SYMBOL(netif_device_attach);
2332
2333 static void skb_warn_bad_offload(const struct sk_buff *skb)
2334 {
2335 static const netdev_features_t null_features = 0;
2336 struct net_device *dev = skb->dev;
2337 const char *driver = "";
2338
2339 if (!net_ratelimit())
2340 return;
2341
2342 if (dev && dev->dev.parent)
2343 driver = dev_driver_string(dev->dev.parent);
2344
2345 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2346 "gso_type=%d ip_summed=%d\n",
2347 driver, dev ? &dev->features : &null_features,
2348 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2349 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2350 skb_shinfo(skb)->gso_type, skb->ip_summed);
2351 }
2352
2353 /*
2354 * Invalidate hardware checksum when packet is to be mangled, and
2355 * complete checksum manually on outgoing path.
2356 */
2357 int skb_checksum_help(struct sk_buff *skb)
2358 {
2359 __wsum csum;
2360 int ret = 0, offset;
2361
2362 if (skb->ip_summed == CHECKSUM_COMPLETE)
2363 goto out_set_summed;
2364
2365 if (unlikely(skb_shinfo(skb)->gso_size)) {
2366 skb_warn_bad_offload(skb);
2367 return -EINVAL;
2368 }
2369
2370 /* Before computing a checksum, we should make sure no frag could
2371 * be modified by an external entity : checksum could be wrong.
2372 */
2373 if (skb_has_shared_frag(skb)) {
2374 ret = __skb_linearize(skb);
2375 if (ret)
2376 goto out;
2377 }
2378
2379 offset = skb_checksum_start_offset(skb);
2380 BUG_ON(offset >= skb_headlen(skb));
2381 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2382
2383 offset += skb->csum_offset;
2384 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2385
2386 if (skb_cloned(skb) &&
2387 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2388 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2389 if (ret)
2390 goto out;
2391 }
2392
2393 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2394 out_set_summed:
2395 skb->ip_summed = CHECKSUM_NONE;
2396 out:
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(skb_checksum_help);
2400
2401 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2402 {
2403 __be16 type = skb->protocol;
2404
2405 /* Tunnel gso handlers can set protocol to ethernet. */
2406 if (type == htons(ETH_P_TEB)) {
2407 struct ethhdr *eth;
2408
2409 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2410 return 0;
2411
2412 eth = (struct ethhdr *)skb_mac_header(skb);
2413 type = eth->h_proto;
2414 }
2415
2416 return __vlan_get_protocol(skb, type, depth);
2417 }
2418
2419 /**
2420 * skb_mac_gso_segment - mac layer segmentation handler.
2421 * @skb: buffer to segment
2422 * @features: features for the output path (see dev->features)
2423 */
2424 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2425 netdev_features_t features)
2426 {
2427 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2428 struct packet_offload *ptype;
2429 int vlan_depth = skb->mac_len;
2430 __be16 type = skb_network_protocol(skb, &vlan_depth);
2431
2432 if (unlikely(!type))
2433 return ERR_PTR(-EINVAL);
2434
2435 __skb_pull(skb, vlan_depth);
2436
2437 rcu_read_lock();
2438 list_for_each_entry_rcu(ptype, &offload_base, list) {
2439 if (ptype->type == type && ptype->callbacks.gso_segment) {
2440 segs = ptype->callbacks.gso_segment(skb, features);
2441 break;
2442 }
2443 }
2444 rcu_read_unlock();
2445
2446 __skb_push(skb, skb->data - skb_mac_header(skb));
2447
2448 return segs;
2449 }
2450 EXPORT_SYMBOL(skb_mac_gso_segment);
2451
2452
2453 /* openvswitch calls this on rx path, so we need a different check.
2454 */
2455 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2456 {
2457 if (tx_path)
2458 return skb->ip_summed != CHECKSUM_PARTIAL;
2459 else
2460 return skb->ip_summed == CHECKSUM_NONE;
2461 }
2462
2463 /**
2464 * __skb_gso_segment - Perform segmentation on skb.
2465 * @skb: buffer to segment
2466 * @features: features for the output path (see dev->features)
2467 * @tx_path: whether it is called in TX path
2468 *
2469 * This function segments the given skb and returns a list of segments.
2470 *
2471 * It may return NULL if the skb requires no segmentation. This is
2472 * only possible when GSO is used for verifying header integrity.
2473 */
2474 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2475 netdev_features_t features, bool tx_path)
2476 {
2477 if (unlikely(skb_needs_check(skb, tx_path))) {
2478 int err;
2479
2480 skb_warn_bad_offload(skb);
2481
2482 err = skb_cow_head(skb, 0);
2483 if (err < 0)
2484 return ERR_PTR(err);
2485 }
2486
2487 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2488 SKB_GSO_CB(skb)->encap_level = 0;
2489
2490 skb_reset_mac_header(skb);
2491 skb_reset_mac_len(skb);
2492
2493 return skb_mac_gso_segment(skb, features);
2494 }
2495 EXPORT_SYMBOL(__skb_gso_segment);
2496
2497 /* Take action when hardware reception checksum errors are detected. */
2498 #ifdef CONFIG_BUG
2499 void netdev_rx_csum_fault(struct net_device *dev)
2500 {
2501 if (net_ratelimit()) {
2502 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2503 dump_stack();
2504 }
2505 }
2506 EXPORT_SYMBOL(netdev_rx_csum_fault);
2507 #endif
2508
2509 /* Actually, we should eliminate this check as soon as we know, that:
2510 * 1. IOMMU is present and allows to map all the memory.
2511 * 2. No high memory really exists on this machine.
2512 */
2513
2514 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2515 {
2516 #ifdef CONFIG_HIGHMEM
2517 int i;
2518 if (!(dev->features & NETIF_F_HIGHDMA)) {
2519 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2520 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2521 if (PageHighMem(skb_frag_page(frag)))
2522 return 1;
2523 }
2524 }
2525
2526 if (PCI_DMA_BUS_IS_PHYS) {
2527 struct device *pdev = dev->dev.parent;
2528
2529 if (!pdev)
2530 return 0;
2531 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2532 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2533 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2534 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2535 return 1;
2536 }
2537 }
2538 #endif
2539 return 0;
2540 }
2541
2542 /* If MPLS offload request, verify we are testing hardware MPLS features
2543 * instead of standard features for the netdev.
2544 */
2545 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2546 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2547 netdev_features_t features,
2548 __be16 type)
2549 {
2550 if (eth_p_mpls(type))
2551 features &= skb->dev->mpls_features;
2552
2553 return features;
2554 }
2555 #else
2556 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2557 netdev_features_t features,
2558 __be16 type)
2559 {
2560 return features;
2561 }
2562 #endif
2563
2564 static netdev_features_t harmonize_features(struct sk_buff *skb,
2565 netdev_features_t features)
2566 {
2567 int tmp;
2568 __be16 type;
2569
2570 type = skb_network_protocol(skb, &tmp);
2571 features = net_mpls_features(skb, features, type);
2572
2573 if (skb->ip_summed != CHECKSUM_NONE &&
2574 !can_checksum_protocol(features, type)) {
2575 features &= ~NETIF_F_ALL_CSUM;
2576 } else if (illegal_highdma(skb->dev, skb)) {
2577 features &= ~NETIF_F_SG;
2578 }
2579
2580 return features;
2581 }
2582
2583 netdev_features_t passthru_features_check(struct sk_buff *skb,
2584 struct net_device *dev,
2585 netdev_features_t features)
2586 {
2587 return features;
2588 }
2589 EXPORT_SYMBOL(passthru_features_check);
2590
2591 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2592 struct net_device *dev,
2593 netdev_features_t features)
2594 {
2595 return vlan_features_check(skb, features);
2596 }
2597
2598 netdev_features_t netif_skb_features(struct sk_buff *skb)
2599 {
2600 struct net_device *dev = skb->dev;
2601 netdev_features_t features = dev->features;
2602 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2603
2604 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2605 features &= ~NETIF_F_GSO_MASK;
2606
2607 /* If encapsulation offload request, verify we are testing
2608 * hardware encapsulation features instead of standard
2609 * features for the netdev
2610 */
2611 if (skb->encapsulation)
2612 features &= dev->hw_enc_features;
2613
2614 if (skb_vlan_tagged(skb))
2615 features = netdev_intersect_features(features,
2616 dev->vlan_features |
2617 NETIF_F_HW_VLAN_CTAG_TX |
2618 NETIF_F_HW_VLAN_STAG_TX);
2619
2620 if (dev->netdev_ops->ndo_features_check)
2621 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2622 features);
2623 else
2624 features &= dflt_features_check(skb, dev, features);
2625
2626 return harmonize_features(skb, features);
2627 }
2628 EXPORT_SYMBOL(netif_skb_features);
2629
2630 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2631 struct netdev_queue *txq, bool more)
2632 {
2633 unsigned int len;
2634 int rc;
2635
2636 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2637 dev_queue_xmit_nit(skb, dev);
2638
2639 len = skb->len;
2640 trace_net_dev_start_xmit(skb, dev);
2641 rc = netdev_start_xmit(skb, dev, txq, more);
2642 trace_net_dev_xmit(skb, rc, dev, len);
2643
2644 return rc;
2645 }
2646
2647 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2648 struct netdev_queue *txq, int *ret)
2649 {
2650 struct sk_buff *skb = first;
2651 int rc = NETDEV_TX_OK;
2652
2653 while (skb) {
2654 struct sk_buff *next = skb->next;
2655
2656 skb->next = NULL;
2657 rc = xmit_one(skb, dev, txq, next != NULL);
2658 if (unlikely(!dev_xmit_complete(rc))) {
2659 skb->next = next;
2660 goto out;
2661 }
2662
2663 skb = next;
2664 if (netif_xmit_stopped(txq) && skb) {
2665 rc = NETDEV_TX_BUSY;
2666 break;
2667 }
2668 }
2669
2670 out:
2671 *ret = rc;
2672 return skb;
2673 }
2674
2675 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2676 netdev_features_t features)
2677 {
2678 if (skb_vlan_tag_present(skb) &&
2679 !vlan_hw_offload_capable(features, skb->vlan_proto))
2680 skb = __vlan_hwaccel_push_inside(skb);
2681 return skb;
2682 }
2683
2684 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2685 {
2686 netdev_features_t features;
2687
2688 if (skb->next)
2689 return skb;
2690
2691 features = netif_skb_features(skb);
2692 skb = validate_xmit_vlan(skb, features);
2693 if (unlikely(!skb))
2694 goto out_null;
2695
2696 if (netif_needs_gso(dev, skb, features)) {
2697 struct sk_buff *segs;
2698
2699 segs = skb_gso_segment(skb, features);
2700 if (IS_ERR(segs)) {
2701 goto out_kfree_skb;
2702 } else if (segs) {
2703 consume_skb(skb);
2704 skb = segs;
2705 }
2706 } else {
2707 if (skb_needs_linearize(skb, features) &&
2708 __skb_linearize(skb))
2709 goto out_kfree_skb;
2710
2711 /* If packet is not checksummed and device does not
2712 * support checksumming for this protocol, complete
2713 * checksumming here.
2714 */
2715 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2716 if (skb->encapsulation)
2717 skb_set_inner_transport_header(skb,
2718 skb_checksum_start_offset(skb));
2719 else
2720 skb_set_transport_header(skb,
2721 skb_checksum_start_offset(skb));
2722 if (!(features & NETIF_F_ALL_CSUM) &&
2723 skb_checksum_help(skb))
2724 goto out_kfree_skb;
2725 }
2726 }
2727
2728 return skb;
2729
2730 out_kfree_skb:
2731 kfree_skb(skb);
2732 out_null:
2733 return NULL;
2734 }
2735
2736 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2737 {
2738 struct sk_buff *next, *head = NULL, *tail;
2739
2740 for (; skb != NULL; skb = next) {
2741 next = skb->next;
2742 skb->next = NULL;
2743
2744 /* in case skb wont be segmented, point to itself */
2745 skb->prev = skb;
2746
2747 skb = validate_xmit_skb(skb, dev);
2748 if (!skb)
2749 continue;
2750
2751 if (!head)
2752 head = skb;
2753 else
2754 tail->next = skb;
2755 /* If skb was segmented, skb->prev points to
2756 * the last segment. If not, it still contains skb.
2757 */
2758 tail = skb->prev;
2759 }
2760 return head;
2761 }
2762
2763 static void qdisc_pkt_len_init(struct sk_buff *skb)
2764 {
2765 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2766
2767 qdisc_skb_cb(skb)->pkt_len = skb->len;
2768
2769 /* To get more precise estimation of bytes sent on wire,
2770 * we add to pkt_len the headers size of all segments
2771 */
2772 if (shinfo->gso_size) {
2773 unsigned int hdr_len;
2774 u16 gso_segs = shinfo->gso_segs;
2775
2776 /* mac layer + network layer */
2777 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2778
2779 /* + transport layer */
2780 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2781 hdr_len += tcp_hdrlen(skb);
2782 else
2783 hdr_len += sizeof(struct udphdr);
2784
2785 if (shinfo->gso_type & SKB_GSO_DODGY)
2786 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2787 shinfo->gso_size);
2788
2789 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2790 }
2791 }
2792
2793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2794 struct net_device *dev,
2795 struct netdev_queue *txq)
2796 {
2797 spinlock_t *root_lock = qdisc_lock(q);
2798 bool contended;
2799 int rc;
2800
2801 qdisc_pkt_len_init(skb);
2802 qdisc_calculate_pkt_len(skb, q);
2803 /*
2804 * Heuristic to force contended enqueues to serialize on a
2805 * separate lock before trying to get qdisc main lock.
2806 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2807 * often and dequeue packets faster.
2808 */
2809 contended = qdisc_is_running(q);
2810 if (unlikely(contended))
2811 spin_lock(&q->busylock);
2812
2813 spin_lock(root_lock);
2814 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2815 kfree_skb(skb);
2816 rc = NET_XMIT_DROP;
2817 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2818 qdisc_run_begin(q)) {
2819 /*
2820 * This is a work-conserving queue; there are no old skbs
2821 * waiting to be sent out; and the qdisc is not running -
2822 * xmit the skb directly.
2823 */
2824
2825 qdisc_bstats_update(q, skb);
2826
2827 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2828 if (unlikely(contended)) {
2829 spin_unlock(&q->busylock);
2830 contended = false;
2831 }
2832 __qdisc_run(q);
2833 } else
2834 qdisc_run_end(q);
2835
2836 rc = NET_XMIT_SUCCESS;
2837 } else {
2838 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2839 if (qdisc_run_begin(q)) {
2840 if (unlikely(contended)) {
2841 spin_unlock(&q->busylock);
2842 contended = false;
2843 }
2844 __qdisc_run(q);
2845 }
2846 }
2847 spin_unlock(root_lock);
2848 if (unlikely(contended))
2849 spin_unlock(&q->busylock);
2850 return rc;
2851 }
2852
2853 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2854 static void skb_update_prio(struct sk_buff *skb)
2855 {
2856 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2857
2858 if (!skb->priority && skb->sk && map) {
2859 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2860
2861 if (prioidx < map->priomap_len)
2862 skb->priority = map->priomap[prioidx];
2863 }
2864 }
2865 #else
2866 #define skb_update_prio(skb)
2867 #endif
2868
2869 static DEFINE_PER_CPU(int, xmit_recursion);
2870 #define RECURSION_LIMIT 10
2871
2872 /**
2873 * dev_loopback_xmit - loop back @skb
2874 * @skb: buffer to transmit
2875 */
2876 int dev_loopback_xmit(struct sk_buff *skb)
2877 {
2878 skb_reset_mac_header(skb);
2879 __skb_pull(skb, skb_network_offset(skb));
2880 skb->pkt_type = PACKET_LOOPBACK;
2881 skb->ip_summed = CHECKSUM_UNNECESSARY;
2882 WARN_ON(!skb_dst(skb));
2883 skb_dst_force(skb);
2884 netif_rx_ni(skb);
2885 return 0;
2886 }
2887 EXPORT_SYMBOL(dev_loopback_xmit);
2888
2889 /**
2890 * __dev_queue_xmit - transmit a buffer
2891 * @skb: buffer to transmit
2892 * @accel_priv: private data used for L2 forwarding offload
2893 *
2894 * Queue a buffer for transmission to a network device. The caller must
2895 * have set the device and priority and built the buffer before calling
2896 * this function. The function can be called from an interrupt.
2897 *
2898 * A negative errno code is returned on a failure. A success does not
2899 * guarantee the frame will be transmitted as it may be dropped due
2900 * to congestion or traffic shaping.
2901 *
2902 * -----------------------------------------------------------------------------------
2903 * I notice this method can also return errors from the queue disciplines,
2904 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2905 * be positive.
2906 *
2907 * Regardless of the return value, the skb is consumed, so it is currently
2908 * difficult to retry a send to this method. (You can bump the ref count
2909 * before sending to hold a reference for retry if you are careful.)
2910 *
2911 * When calling this method, interrupts MUST be enabled. This is because
2912 * the BH enable code must have IRQs enabled so that it will not deadlock.
2913 * --BLG
2914 */
2915 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2916 {
2917 struct net_device *dev = skb->dev;
2918 struct netdev_queue *txq;
2919 struct Qdisc *q;
2920 int rc = -ENOMEM;
2921
2922 skb_reset_mac_header(skb);
2923
2924 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2925 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2926
2927 /* Disable soft irqs for various locks below. Also
2928 * stops preemption for RCU.
2929 */
2930 rcu_read_lock_bh();
2931
2932 skb_update_prio(skb);
2933
2934 /* If device/qdisc don't need skb->dst, release it right now while
2935 * its hot in this cpu cache.
2936 */
2937 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2938 skb_dst_drop(skb);
2939 else
2940 skb_dst_force(skb);
2941
2942 txq = netdev_pick_tx(dev, skb, accel_priv);
2943 q = rcu_dereference_bh(txq->qdisc);
2944
2945 #ifdef CONFIG_NET_CLS_ACT
2946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2947 #endif
2948 trace_net_dev_queue(skb);
2949 if (q->enqueue) {
2950 rc = __dev_xmit_skb(skb, q, dev, txq);
2951 goto out;
2952 }
2953
2954 /* The device has no queue. Common case for software devices:
2955 loopback, all the sorts of tunnels...
2956
2957 Really, it is unlikely that netif_tx_lock protection is necessary
2958 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2959 counters.)
2960 However, it is possible, that they rely on protection
2961 made by us here.
2962
2963 Check this and shot the lock. It is not prone from deadlocks.
2964 Either shot noqueue qdisc, it is even simpler 8)
2965 */
2966 if (dev->flags & IFF_UP) {
2967 int cpu = smp_processor_id(); /* ok because BHs are off */
2968
2969 if (txq->xmit_lock_owner != cpu) {
2970
2971 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2972 goto recursion_alert;
2973
2974 skb = validate_xmit_skb(skb, dev);
2975 if (!skb)
2976 goto drop;
2977
2978 HARD_TX_LOCK(dev, txq, cpu);
2979
2980 if (!netif_xmit_stopped(txq)) {
2981 __this_cpu_inc(xmit_recursion);
2982 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2983 __this_cpu_dec(xmit_recursion);
2984 if (dev_xmit_complete(rc)) {
2985 HARD_TX_UNLOCK(dev, txq);
2986 goto out;
2987 }
2988 }
2989 HARD_TX_UNLOCK(dev, txq);
2990 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2991 dev->name);
2992 } else {
2993 /* Recursion is detected! It is possible,
2994 * unfortunately
2995 */
2996 recursion_alert:
2997 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2998 dev->name);
2999 }
3000 }
3001
3002 rc = -ENETDOWN;
3003 drop:
3004 rcu_read_unlock_bh();
3005
3006 atomic_long_inc(&dev->tx_dropped);
3007 kfree_skb_list(skb);
3008 return rc;
3009 out:
3010 rcu_read_unlock_bh();
3011 return rc;
3012 }
3013
3014 int dev_queue_xmit(struct sk_buff *skb)
3015 {
3016 return __dev_queue_xmit(skb, NULL);
3017 }
3018 EXPORT_SYMBOL(dev_queue_xmit);
3019
3020 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3021 {
3022 return __dev_queue_xmit(skb, accel_priv);
3023 }
3024 EXPORT_SYMBOL(dev_queue_xmit_accel);
3025
3026
3027 /*=======================================================================
3028 Receiver routines
3029 =======================================================================*/
3030
3031 int netdev_max_backlog __read_mostly = 1000;
3032 EXPORT_SYMBOL(netdev_max_backlog);
3033
3034 int netdev_tstamp_prequeue __read_mostly = 1;
3035 int netdev_budget __read_mostly = 300;
3036 int weight_p __read_mostly = 64; /* old backlog weight */
3037
3038 /* Called with irq disabled */
3039 static inline void ____napi_schedule(struct softnet_data *sd,
3040 struct napi_struct *napi)
3041 {
3042 list_add_tail(&napi->poll_list, &sd->poll_list);
3043 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3044 }
3045
3046 #ifdef CONFIG_RPS
3047
3048 /* One global table that all flow-based protocols share. */
3049 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3050 EXPORT_SYMBOL(rps_sock_flow_table);
3051 u32 rps_cpu_mask __read_mostly;
3052 EXPORT_SYMBOL(rps_cpu_mask);
3053
3054 struct static_key rps_needed __read_mostly;
3055
3056 static struct rps_dev_flow *
3057 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3058 struct rps_dev_flow *rflow, u16 next_cpu)
3059 {
3060 if (next_cpu != RPS_NO_CPU) {
3061 #ifdef CONFIG_RFS_ACCEL
3062 struct netdev_rx_queue *rxqueue;
3063 struct rps_dev_flow_table *flow_table;
3064 struct rps_dev_flow *old_rflow;
3065 u32 flow_id;
3066 u16 rxq_index;
3067 int rc;
3068
3069 /* Should we steer this flow to a different hardware queue? */
3070 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3071 !(dev->features & NETIF_F_NTUPLE))
3072 goto out;
3073 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3074 if (rxq_index == skb_get_rx_queue(skb))
3075 goto out;
3076
3077 rxqueue = dev->_rx + rxq_index;
3078 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3079 if (!flow_table)
3080 goto out;
3081 flow_id = skb_get_hash(skb) & flow_table->mask;
3082 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3083 rxq_index, flow_id);
3084 if (rc < 0)
3085 goto out;
3086 old_rflow = rflow;
3087 rflow = &flow_table->flows[flow_id];
3088 rflow->filter = rc;
3089 if (old_rflow->filter == rflow->filter)
3090 old_rflow->filter = RPS_NO_FILTER;
3091 out:
3092 #endif
3093 rflow->last_qtail =
3094 per_cpu(softnet_data, next_cpu).input_queue_head;
3095 }
3096
3097 rflow->cpu = next_cpu;
3098 return rflow;
3099 }
3100
3101 /*
3102 * get_rps_cpu is called from netif_receive_skb and returns the target
3103 * CPU from the RPS map of the receiving queue for a given skb.
3104 * rcu_read_lock must be held on entry.
3105 */
3106 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3107 struct rps_dev_flow **rflowp)
3108 {
3109 const struct rps_sock_flow_table *sock_flow_table;
3110 struct netdev_rx_queue *rxqueue = dev->_rx;
3111 struct rps_dev_flow_table *flow_table;
3112 struct rps_map *map;
3113 int cpu = -1;
3114 u32 tcpu;
3115 u32 hash;
3116
3117 if (skb_rx_queue_recorded(skb)) {
3118 u16 index = skb_get_rx_queue(skb);
3119
3120 if (unlikely(index >= dev->real_num_rx_queues)) {
3121 WARN_ONCE(dev->real_num_rx_queues > 1,
3122 "%s received packet on queue %u, but number "
3123 "of RX queues is %u\n",
3124 dev->name, index, dev->real_num_rx_queues);
3125 goto done;
3126 }
3127 rxqueue += index;
3128 }
3129
3130 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3131
3132 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3133 map = rcu_dereference(rxqueue->rps_map);
3134 if (!flow_table && !map)
3135 goto done;
3136
3137 skb_reset_network_header(skb);
3138 hash = skb_get_hash(skb);
3139 if (!hash)
3140 goto done;
3141
3142 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3143 if (flow_table && sock_flow_table) {
3144 struct rps_dev_flow *rflow;
3145 u32 next_cpu;
3146 u32 ident;
3147
3148 /* First check into global flow table if there is a match */
3149 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3150 if ((ident ^ hash) & ~rps_cpu_mask)
3151 goto try_rps;
3152
3153 next_cpu = ident & rps_cpu_mask;
3154
3155 /* OK, now we know there is a match,
3156 * we can look at the local (per receive queue) flow table
3157 */
3158 rflow = &flow_table->flows[hash & flow_table->mask];
3159 tcpu = rflow->cpu;
3160
3161 /*
3162 * If the desired CPU (where last recvmsg was done) is
3163 * different from current CPU (one in the rx-queue flow
3164 * table entry), switch if one of the following holds:
3165 * - Current CPU is unset (equal to RPS_NO_CPU).
3166 * - Current CPU is offline.
3167 * - The current CPU's queue tail has advanced beyond the
3168 * last packet that was enqueued using this table entry.
3169 * This guarantees that all previous packets for the flow
3170 * have been dequeued, thus preserving in order delivery.
3171 */
3172 if (unlikely(tcpu != next_cpu) &&
3173 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3174 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3175 rflow->last_qtail)) >= 0)) {
3176 tcpu = next_cpu;
3177 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3178 }
3179
3180 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3181 *rflowp = rflow;
3182 cpu = tcpu;
3183 goto done;
3184 }
3185 }
3186
3187 try_rps:
3188
3189 if (map) {
3190 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3191 if (cpu_online(tcpu)) {
3192 cpu = tcpu;
3193 goto done;
3194 }
3195 }
3196
3197 done:
3198 return cpu;
3199 }
3200
3201 #ifdef CONFIG_RFS_ACCEL
3202
3203 /**
3204 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3205 * @dev: Device on which the filter was set
3206 * @rxq_index: RX queue index
3207 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3208 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3209 *
3210 * Drivers that implement ndo_rx_flow_steer() should periodically call
3211 * this function for each installed filter and remove the filters for
3212 * which it returns %true.
3213 */
3214 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3215 u32 flow_id, u16 filter_id)
3216 {
3217 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3218 struct rps_dev_flow_table *flow_table;
3219 struct rps_dev_flow *rflow;
3220 bool expire = true;
3221 int cpu;
3222
3223 rcu_read_lock();
3224 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3225 if (flow_table && flow_id <= flow_table->mask) {
3226 rflow = &flow_table->flows[flow_id];
3227 cpu = ACCESS_ONCE(rflow->cpu);
3228 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3229 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3230 rflow->last_qtail) <
3231 (int)(10 * flow_table->mask)))
3232 expire = false;
3233 }
3234 rcu_read_unlock();
3235 return expire;
3236 }
3237 EXPORT_SYMBOL(rps_may_expire_flow);
3238
3239 #endif /* CONFIG_RFS_ACCEL */
3240
3241 /* Called from hardirq (IPI) context */
3242 static void rps_trigger_softirq(void *data)
3243 {
3244 struct softnet_data *sd = data;
3245
3246 ____napi_schedule(sd, &sd->backlog);
3247 sd->received_rps++;
3248 }
3249
3250 #endif /* CONFIG_RPS */
3251
3252 /*
3253 * Check if this softnet_data structure is another cpu one
3254 * If yes, queue it to our IPI list and return 1
3255 * If no, return 0
3256 */
3257 static int rps_ipi_queued(struct softnet_data *sd)
3258 {
3259 #ifdef CONFIG_RPS
3260 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3261
3262 if (sd != mysd) {
3263 sd->rps_ipi_next = mysd->rps_ipi_list;
3264 mysd->rps_ipi_list = sd;
3265
3266 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3267 return 1;
3268 }
3269 #endif /* CONFIG_RPS */
3270 return 0;
3271 }
3272
3273 #ifdef CONFIG_NET_FLOW_LIMIT
3274 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3275 #endif
3276
3277 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3278 {
3279 #ifdef CONFIG_NET_FLOW_LIMIT
3280 struct sd_flow_limit *fl;
3281 struct softnet_data *sd;
3282 unsigned int old_flow, new_flow;
3283
3284 if (qlen < (netdev_max_backlog >> 1))
3285 return false;
3286
3287 sd = this_cpu_ptr(&softnet_data);
3288
3289 rcu_read_lock();
3290 fl = rcu_dereference(sd->flow_limit);
3291 if (fl) {
3292 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3293 old_flow = fl->history[fl->history_head];
3294 fl->history[fl->history_head] = new_flow;
3295
3296 fl->history_head++;
3297 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3298
3299 if (likely(fl->buckets[old_flow]))
3300 fl->buckets[old_flow]--;
3301
3302 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3303 fl->count++;
3304 rcu_read_unlock();
3305 return true;
3306 }
3307 }
3308 rcu_read_unlock();
3309 #endif
3310 return false;
3311 }
3312
3313 /*
3314 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3315 * queue (may be a remote CPU queue).
3316 */
3317 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3318 unsigned int *qtail)
3319 {
3320 struct softnet_data *sd;
3321 unsigned long flags;
3322 unsigned int qlen;
3323
3324 sd = &per_cpu(softnet_data, cpu);
3325
3326 local_irq_save(flags);
3327
3328 rps_lock(sd);
3329 qlen = skb_queue_len(&sd->input_pkt_queue);
3330 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3331 if (qlen) {
3332 enqueue:
3333 __skb_queue_tail(&sd->input_pkt_queue, skb);
3334 input_queue_tail_incr_save(sd, qtail);
3335 rps_unlock(sd);
3336 local_irq_restore(flags);
3337 return NET_RX_SUCCESS;
3338 }
3339
3340 /* Schedule NAPI for backlog device
3341 * We can use non atomic operation since we own the queue lock
3342 */
3343 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3344 if (!rps_ipi_queued(sd))
3345 ____napi_schedule(sd, &sd->backlog);
3346 }
3347 goto enqueue;
3348 }
3349
3350 sd->dropped++;
3351 rps_unlock(sd);
3352
3353 local_irq_restore(flags);
3354
3355 atomic_long_inc(&skb->dev->rx_dropped);
3356 kfree_skb(skb);
3357 return NET_RX_DROP;
3358 }
3359
3360 static int netif_rx_internal(struct sk_buff *skb)
3361 {
3362 int ret;
3363
3364 net_timestamp_check(netdev_tstamp_prequeue, skb);
3365
3366 trace_netif_rx(skb);
3367 #ifdef CONFIG_RPS
3368 if (static_key_false(&rps_needed)) {
3369 struct rps_dev_flow voidflow, *rflow = &voidflow;
3370 int cpu;
3371
3372 preempt_disable();
3373 rcu_read_lock();
3374
3375 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3376 if (cpu < 0)
3377 cpu = smp_processor_id();
3378
3379 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3380
3381 rcu_read_unlock();
3382 preempt_enable();
3383 } else
3384 #endif
3385 {
3386 unsigned int qtail;
3387 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3388 put_cpu();
3389 }
3390 return ret;
3391 }
3392
3393 /**
3394 * netif_rx - post buffer to the network code
3395 * @skb: buffer to post
3396 *
3397 * This function receives a packet from a device driver and queues it for
3398 * the upper (protocol) levels to process. It always succeeds. The buffer
3399 * may be dropped during processing for congestion control or by the
3400 * protocol layers.
3401 *
3402 * return values:
3403 * NET_RX_SUCCESS (no congestion)
3404 * NET_RX_DROP (packet was dropped)
3405 *
3406 */
3407
3408 int netif_rx(struct sk_buff *skb)
3409 {
3410 trace_netif_rx_entry(skb);
3411
3412 return netif_rx_internal(skb);
3413 }
3414 EXPORT_SYMBOL(netif_rx);
3415
3416 int netif_rx_ni(struct sk_buff *skb)
3417 {
3418 int err;
3419
3420 trace_netif_rx_ni_entry(skb);
3421
3422 preempt_disable();
3423 err = netif_rx_internal(skb);
3424 if (local_softirq_pending())
3425 do_softirq();
3426 preempt_enable();
3427
3428 return err;
3429 }
3430 EXPORT_SYMBOL(netif_rx_ni);
3431
3432 static void net_tx_action(struct softirq_action *h)
3433 {
3434 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3435
3436 if (sd->completion_queue) {
3437 struct sk_buff *clist;
3438
3439 local_irq_disable();
3440 clist = sd->completion_queue;
3441 sd->completion_queue = NULL;
3442 local_irq_enable();
3443
3444 while (clist) {
3445 struct sk_buff *skb = clist;
3446 clist = clist->next;
3447
3448 WARN_ON(atomic_read(&skb->users));
3449 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3450 trace_consume_skb(skb);
3451 else
3452 trace_kfree_skb(skb, net_tx_action);
3453 __kfree_skb(skb);
3454 }
3455 }
3456
3457 if (sd->output_queue) {
3458 struct Qdisc *head;
3459
3460 local_irq_disable();
3461 head = sd->output_queue;
3462 sd->output_queue = NULL;
3463 sd->output_queue_tailp = &sd->output_queue;
3464 local_irq_enable();
3465
3466 while (head) {
3467 struct Qdisc *q = head;
3468 spinlock_t *root_lock;
3469
3470 head = head->next_sched;
3471
3472 root_lock = qdisc_lock(q);
3473 if (spin_trylock(root_lock)) {
3474 smp_mb__before_atomic();
3475 clear_bit(__QDISC_STATE_SCHED,
3476 &q->state);
3477 qdisc_run(q);
3478 spin_unlock(root_lock);
3479 } else {
3480 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3481 &q->state)) {
3482 __netif_reschedule(q);
3483 } else {
3484 smp_mb__before_atomic();
3485 clear_bit(__QDISC_STATE_SCHED,
3486 &q->state);
3487 }
3488 }
3489 }
3490 }
3491 }
3492
3493 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3494 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3495 /* This hook is defined here for ATM LANE */
3496 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3497 unsigned char *addr) __read_mostly;
3498 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3499 #endif
3500
3501 #ifdef CONFIG_NET_CLS_ACT
3502 /* TODO: Maybe we should just force sch_ingress to be compiled in
3503 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3504 * a compare and 2 stores extra right now if we dont have it on
3505 * but have CONFIG_NET_CLS_ACT
3506 * NOTE: This doesn't stop any functionality; if you dont have
3507 * the ingress scheduler, you just can't add policies on ingress.
3508 *
3509 */
3510 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3511 {
3512 struct net_device *dev = skb->dev;
3513 u32 ttl = G_TC_RTTL(skb->tc_verd);
3514 int result = TC_ACT_OK;
3515 struct Qdisc *q;
3516
3517 if (unlikely(MAX_RED_LOOP < ttl++)) {
3518 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3519 skb->skb_iif, dev->ifindex);
3520 return TC_ACT_SHOT;
3521 }
3522
3523 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3524 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3525
3526 q = rcu_dereference(rxq->qdisc);
3527 if (q != &noop_qdisc) {
3528 spin_lock(qdisc_lock(q));
3529 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3530 result = qdisc_enqueue_root(skb, q);
3531 spin_unlock(qdisc_lock(q));
3532 }
3533
3534 return result;
3535 }
3536
3537 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3538 struct packet_type **pt_prev,
3539 int *ret, struct net_device *orig_dev)
3540 {
3541 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3542
3543 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3544 goto out;
3545
3546 if (*pt_prev) {
3547 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3548 *pt_prev = NULL;
3549 }
3550
3551 switch (ing_filter(skb, rxq)) {
3552 case TC_ACT_SHOT:
3553 case TC_ACT_STOLEN:
3554 kfree_skb(skb);
3555 return NULL;
3556 }
3557
3558 out:
3559 skb->tc_verd = 0;
3560 return skb;
3561 }
3562 #endif
3563
3564 /**
3565 * netdev_rx_handler_register - register receive handler
3566 * @dev: device to register a handler for
3567 * @rx_handler: receive handler to register
3568 * @rx_handler_data: data pointer that is used by rx handler
3569 *
3570 * Register a receive handler for a device. This handler will then be
3571 * called from __netif_receive_skb. A negative errno code is returned
3572 * on a failure.
3573 *
3574 * The caller must hold the rtnl_mutex.
3575 *
3576 * For a general description of rx_handler, see enum rx_handler_result.
3577 */
3578 int netdev_rx_handler_register(struct net_device *dev,
3579 rx_handler_func_t *rx_handler,
3580 void *rx_handler_data)
3581 {
3582 ASSERT_RTNL();
3583
3584 if (dev->rx_handler)
3585 return -EBUSY;
3586
3587 /* Note: rx_handler_data must be set before rx_handler */
3588 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3589 rcu_assign_pointer(dev->rx_handler, rx_handler);
3590
3591 return 0;
3592 }
3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3594
3595 /**
3596 * netdev_rx_handler_unregister - unregister receive handler
3597 * @dev: device to unregister a handler from
3598 *
3599 * Unregister a receive handler from a device.
3600 *
3601 * The caller must hold the rtnl_mutex.
3602 */
3603 void netdev_rx_handler_unregister(struct net_device *dev)
3604 {
3605
3606 ASSERT_RTNL();
3607 RCU_INIT_POINTER(dev->rx_handler, NULL);
3608 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3609 * section has a guarantee to see a non NULL rx_handler_data
3610 * as well.
3611 */
3612 synchronize_net();
3613 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3614 }
3615 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3616
3617 /*
3618 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3619 * the special handling of PFMEMALLOC skbs.
3620 */
3621 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3622 {
3623 switch (skb->protocol) {
3624 case htons(ETH_P_ARP):
3625 case htons(ETH_P_IP):
3626 case htons(ETH_P_IPV6):
3627 case htons(ETH_P_8021Q):
3628 case htons(ETH_P_8021AD):
3629 return true;
3630 default:
3631 return false;
3632 }
3633 }
3634
3635 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3636 {
3637 struct packet_type *ptype, *pt_prev;
3638 rx_handler_func_t *rx_handler;
3639 struct net_device *orig_dev;
3640 bool deliver_exact = false;
3641 int ret = NET_RX_DROP;
3642 __be16 type;
3643
3644 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3645
3646 trace_netif_receive_skb(skb);
3647
3648 orig_dev = skb->dev;
3649
3650 skb_reset_network_header(skb);
3651 if (!skb_transport_header_was_set(skb))
3652 skb_reset_transport_header(skb);
3653 skb_reset_mac_len(skb);
3654
3655 pt_prev = NULL;
3656
3657 rcu_read_lock();
3658
3659 another_round:
3660 skb->skb_iif = skb->dev->ifindex;
3661
3662 __this_cpu_inc(softnet_data.processed);
3663
3664 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3665 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3666 skb = skb_vlan_untag(skb);
3667 if (unlikely(!skb))
3668 goto unlock;
3669 }
3670
3671 #ifdef CONFIG_NET_CLS_ACT
3672 if (skb->tc_verd & TC_NCLS) {
3673 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3674 goto ncls;
3675 }
3676 #endif
3677
3678 if (pfmemalloc)
3679 goto skip_taps;
3680
3681 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3682 if (pt_prev)
3683 ret = deliver_skb(skb, pt_prev, orig_dev);
3684 pt_prev = ptype;
3685 }
3686
3687 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3688 if (pt_prev)
3689 ret = deliver_skb(skb, pt_prev, orig_dev);
3690 pt_prev = ptype;
3691 }
3692
3693 skip_taps:
3694 #ifdef CONFIG_NET_CLS_ACT
3695 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3696 if (!skb)
3697 goto unlock;
3698 ncls:
3699 #endif
3700
3701 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3702 goto drop;
3703
3704 if (skb_vlan_tag_present(skb)) {
3705 if (pt_prev) {
3706 ret = deliver_skb(skb, pt_prev, orig_dev);
3707 pt_prev = NULL;
3708 }
3709 if (vlan_do_receive(&skb))
3710 goto another_round;
3711 else if (unlikely(!skb))
3712 goto unlock;
3713 }
3714
3715 rx_handler = rcu_dereference(skb->dev->rx_handler);
3716 if (rx_handler) {
3717 if (pt_prev) {
3718 ret = deliver_skb(skb, pt_prev, orig_dev);
3719 pt_prev = NULL;
3720 }
3721 switch (rx_handler(&skb)) {
3722 case RX_HANDLER_CONSUMED:
3723 ret = NET_RX_SUCCESS;
3724 goto unlock;
3725 case RX_HANDLER_ANOTHER:
3726 goto another_round;
3727 case RX_HANDLER_EXACT:
3728 deliver_exact = true;
3729 case RX_HANDLER_PASS:
3730 break;
3731 default:
3732 BUG();
3733 }
3734 }
3735
3736 if (unlikely(skb_vlan_tag_present(skb))) {
3737 if (skb_vlan_tag_get_id(skb))
3738 skb->pkt_type = PACKET_OTHERHOST;
3739 /* Note: we might in the future use prio bits
3740 * and set skb->priority like in vlan_do_receive()
3741 * For the time being, just ignore Priority Code Point
3742 */
3743 skb->vlan_tci = 0;
3744 }
3745
3746 type = skb->protocol;
3747
3748 /* deliver only exact match when indicated */
3749 if (likely(!deliver_exact)) {
3750 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3751 &ptype_base[ntohs(type) &
3752 PTYPE_HASH_MASK]);
3753 }
3754
3755 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3756 &orig_dev->ptype_specific);
3757
3758 if (unlikely(skb->dev != orig_dev)) {
3759 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3760 &skb->dev->ptype_specific);
3761 }
3762
3763 if (pt_prev) {
3764 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3765 goto drop;
3766 else
3767 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3768 } else {
3769 drop:
3770 atomic_long_inc(&skb->dev->rx_dropped);
3771 kfree_skb(skb);
3772 /* Jamal, now you will not able to escape explaining
3773 * me how you were going to use this. :-)
3774 */
3775 ret = NET_RX_DROP;
3776 }
3777
3778 unlock:
3779 rcu_read_unlock();
3780 return ret;
3781 }
3782
3783 static int __netif_receive_skb(struct sk_buff *skb)
3784 {
3785 int ret;
3786
3787 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3788 unsigned long pflags = current->flags;
3789
3790 /*
3791 * PFMEMALLOC skbs are special, they should
3792 * - be delivered to SOCK_MEMALLOC sockets only
3793 * - stay away from userspace
3794 * - have bounded memory usage
3795 *
3796 * Use PF_MEMALLOC as this saves us from propagating the allocation
3797 * context down to all allocation sites.
3798 */
3799 current->flags |= PF_MEMALLOC;
3800 ret = __netif_receive_skb_core(skb, true);
3801 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3802 } else
3803 ret = __netif_receive_skb_core(skb, false);
3804
3805 return ret;
3806 }
3807
3808 static int netif_receive_skb_internal(struct sk_buff *skb)
3809 {
3810 net_timestamp_check(netdev_tstamp_prequeue, skb);
3811
3812 if (skb_defer_rx_timestamp(skb))
3813 return NET_RX_SUCCESS;
3814
3815 #ifdef CONFIG_RPS
3816 if (static_key_false(&rps_needed)) {
3817 struct rps_dev_flow voidflow, *rflow = &voidflow;
3818 int cpu, ret;
3819
3820 rcu_read_lock();
3821
3822 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3823
3824 if (cpu >= 0) {
3825 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3826 rcu_read_unlock();
3827 return ret;
3828 }
3829 rcu_read_unlock();
3830 }
3831 #endif
3832 return __netif_receive_skb(skb);
3833 }
3834
3835 /**
3836 * netif_receive_skb - process receive buffer from network
3837 * @skb: buffer to process
3838 *
3839 * netif_receive_skb() is the main receive data processing function.
3840 * It always succeeds. The buffer may be dropped during processing
3841 * for congestion control or by the protocol layers.
3842 *
3843 * This function may only be called from softirq context and interrupts
3844 * should be enabled.
3845 *
3846 * Return values (usually ignored):
3847 * NET_RX_SUCCESS: no congestion
3848 * NET_RX_DROP: packet was dropped
3849 */
3850 int netif_receive_skb(struct sk_buff *skb)
3851 {
3852 trace_netif_receive_skb_entry(skb);
3853
3854 return netif_receive_skb_internal(skb);
3855 }
3856 EXPORT_SYMBOL(netif_receive_skb);
3857
3858 /* Network device is going away, flush any packets still pending
3859 * Called with irqs disabled.
3860 */
3861 static void flush_backlog(void *arg)
3862 {
3863 struct net_device *dev = arg;
3864 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3865 struct sk_buff *skb, *tmp;
3866
3867 rps_lock(sd);
3868 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3869 if (skb->dev == dev) {
3870 __skb_unlink(skb, &sd->input_pkt_queue);
3871 kfree_skb(skb);
3872 input_queue_head_incr(sd);
3873 }
3874 }
3875 rps_unlock(sd);
3876
3877 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3878 if (skb->dev == dev) {
3879 __skb_unlink(skb, &sd->process_queue);
3880 kfree_skb(skb);
3881 input_queue_head_incr(sd);
3882 }
3883 }
3884 }
3885
3886 static int napi_gro_complete(struct sk_buff *skb)
3887 {
3888 struct packet_offload *ptype;
3889 __be16 type = skb->protocol;
3890 struct list_head *head = &offload_base;
3891 int err = -ENOENT;
3892
3893 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3894
3895 if (NAPI_GRO_CB(skb)->count == 1) {
3896 skb_shinfo(skb)->gso_size = 0;
3897 goto out;
3898 }
3899
3900 rcu_read_lock();
3901 list_for_each_entry_rcu(ptype, head, list) {
3902 if (ptype->type != type || !ptype->callbacks.gro_complete)
3903 continue;
3904
3905 err = ptype->callbacks.gro_complete(skb, 0);
3906 break;
3907 }
3908 rcu_read_unlock();
3909
3910 if (err) {
3911 WARN_ON(&ptype->list == head);
3912 kfree_skb(skb);
3913 return NET_RX_SUCCESS;
3914 }
3915
3916 out:
3917 return netif_receive_skb_internal(skb);
3918 }
3919
3920 /* napi->gro_list contains packets ordered by age.
3921 * youngest packets at the head of it.
3922 * Complete skbs in reverse order to reduce latencies.
3923 */
3924 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3925 {
3926 struct sk_buff *skb, *prev = NULL;
3927
3928 /* scan list and build reverse chain */
3929 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3930 skb->prev = prev;
3931 prev = skb;
3932 }
3933
3934 for (skb = prev; skb; skb = prev) {
3935 skb->next = NULL;
3936
3937 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3938 return;
3939
3940 prev = skb->prev;
3941 napi_gro_complete(skb);
3942 napi->gro_count--;
3943 }
3944
3945 napi->gro_list = NULL;
3946 }
3947 EXPORT_SYMBOL(napi_gro_flush);
3948
3949 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3950 {
3951 struct sk_buff *p;
3952 unsigned int maclen = skb->dev->hard_header_len;
3953 u32 hash = skb_get_hash_raw(skb);
3954
3955 for (p = napi->gro_list; p; p = p->next) {
3956 unsigned long diffs;
3957
3958 NAPI_GRO_CB(p)->flush = 0;
3959
3960 if (hash != skb_get_hash_raw(p)) {
3961 NAPI_GRO_CB(p)->same_flow = 0;
3962 continue;
3963 }
3964
3965 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3966 diffs |= p->vlan_tci ^ skb->vlan_tci;
3967 if (maclen == ETH_HLEN)
3968 diffs |= compare_ether_header(skb_mac_header(p),
3969 skb_mac_header(skb));
3970 else if (!diffs)
3971 diffs = memcmp(skb_mac_header(p),
3972 skb_mac_header(skb),
3973 maclen);
3974 NAPI_GRO_CB(p)->same_flow = !diffs;
3975 }
3976 }
3977
3978 static void skb_gro_reset_offset(struct sk_buff *skb)
3979 {
3980 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3981 const skb_frag_t *frag0 = &pinfo->frags[0];
3982
3983 NAPI_GRO_CB(skb)->data_offset = 0;
3984 NAPI_GRO_CB(skb)->frag0 = NULL;
3985 NAPI_GRO_CB(skb)->frag0_len = 0;
3986
3987 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3988 pinfo->nr_frags &&
3989 !PageHighMem(skb_frag_page(frag0))) {
3990 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3991 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3992 }
3993 }
3994
3995 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3996 {
3997 struct skb_shared_info *pinfo = skb_shinfo(skb);
3998
3999 BUG_ON(skb->end - skb->tail < grow);
4000
4001 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4002
4003 skb->data_len -= grow;
4004 skb->tail += grow;
4005
4006 pinfo->frags[0].page_offset += grow;
4007 skb_frag_size_sub(&pinfo->frags[0], grow);
4008
4009 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4010 skb_frag_unref(skb, 0);
4011 memmove(pinfo->frags, pinfo->frags + 1,
4012 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4013 }
4014 }
4015
4016 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4017 {
4018 struct sk_buff **pp = NULL;
4019 struct packet_offload *ptype;
4020 __be16 type = skb->protocol;
4021 struct list_head *head = &offload_base;
4022 int same_flow;
4023 enum gro_result ret;
4024 int grow;
4025
4026 if (!(skb->dev->features & NETIF_F_GRO))
4027 goto normal;
4028
4029 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4030 goto normal;
4031
4032 gro_list_prepare(napi, skb);
4033
4034 rcu_read_lock();
4035 list_for_each_entry_rcu(ptype, head, list) {
4036 if (ptype->type != type || !ptype->callbacks.gro_receive)
4037 continue;
4038
4039 skb_set_network_header(skb, skb_gro_offset(skb));
4040 skb_reset_mac_len(skb);
4041 NAPI_GRO_CB(skb)->same_flow = 0;
4042 NAPI_GRO_CB(skb)->flush = 0;
4043 NAPI_GRO_CB(skb)->free = 0;
4044 NAPI_GRO_CB(skb)->udp_mark = 0;
4045 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4046
4047 /* Setup for GRO checksum validation */
4048 switch (skb->ip_summed) {
4049 case CHECKSUM_COMPLETE:
4050 NAPI_GRO_CB(skb)->csum = skb->csum;
4051 NAPI_GRO_CB(skb)->csum_valid = 1;
4052 NAPI_GRO_CB(skb)->csum_cnt = 0;
4053 break;
4054 case CHECKSUM_UNNECESSARY:
4055 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4056 NAPI_GRO_CB(skb)->csum_valid = 0;
4057 break;
4058 default:
4059 NAPI_GRO_CB(skb)->csum_cnt = 0;
4060 NAPI_GRO_CB(skb)->csum_valid = 0;
4061 }
4062
4063 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4064 break;
4065 }
4066 rcu_read_unlock();
4067
4068 if (&ptype->list == head)
4069 goto normal;
4070
4071 same_flow = NAPI_GRO_CB(skb)->same_flow;
4072 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4073
4074 if (pp) {
4075 struct sk_buff *nskb = *pp;
4076
4077 *pp = nskb->next;
4078 nskb->next = NULL;
4079 napi_gro_complete(nskb);
4080 napi->gro_count--;
4081 }
4082
4083 if (same_flow)
4084 goto ok;
4085
4086 if (NAPI_GRO_CB(skb)->flush)
4087 goto normal;
4088
4089 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4090 struct sk_buff *nskb = napi->gro_list;
4091
4092 /* locate the end of the list to select the 'oldest' flow */
4093 while (nskb->next) {
4094 pp = &nskb->next;
4095 nskb = *pp;
4096 }
4097 *pp = NULL;
4098 nskb->next = NULL;
4099 napi_gro_complete(nskb);
4100 } else {
4101 napi->gro_count++;
4102 }
4103 NAPI_GRO_CB(skb)->count = 1;
4104 NAPI_GRO_CB(skb)->age = jiffies;
4105 NAPI_GRO_CB(skb)->last = skb;
4106 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4107 skb->next = napi->gro_list;
4108 napi->gro_list = skb;
4109 ret = GRO_HELD;
4110
4111 pull:
4112 grow = skb_gro_offset(skb) - skb_headlen(skb);
4113 if (grow > 0)
4114 gro_pull_from_frag0(skb, grow);
4115 ok:
4116 return ret;
4117
4118 normal:
4119 ret = GRO_NORMAL;
4120 goto pull;
4121 }
4122
4123 struct packet_offload *gro_find_receive_by_type(__be16 type)
4124 {
4125 struct list_head *offload_head = &offload_base;
4126 struct packet_offload *ptype;
4127
4128 list_for_each_entry_rcu(ptype, offload_head, list) {
4129 if (ptype->type != type || !ptype->callbacks.gro_receive)
4130 continue;
4131 return ptype;
4132 }
4133 return NULL;
4134 }
4135 EXPORT_SYMBOL(gro_find_receive_by_type);
4136
4137 struct packet_offload *gro_find_complete_by_type(__be16 type)
4138 {
4139 struct list_head *offload_head = &offload_base;
4140 struct packet_offload *ptype;
4141
4142 list_for_each_entry_rcu(ptype, offload_head, list) {
4143 if (ptype->type != type || !ptype->callbacks.gro_complete)
4144 continue;
4145 return ptype;
4146 }
4147 return NULL;
4148 }
4149 EXPORT_SYMBOL(gro_find_complete_by_type);
4150
4151 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4152 {
4153 switch (ret) {
4154 case GRO_NORMAL:
4155 if (netif_receive_skb_internal(skb))
4156 ret = GRO_DROP;
4157 break;
4158
4159 case GRO_DROP:
4160 kfree_skb(skb);
4161 break;
4162
4163 case GRO_MERGED_FREE:
4164 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4165 kmem_cache_free(skbuff_head_cache, skb);
4166 else
4167 __kfree_skb(skb);
4168 break;
4169
4170 case GRO_HELD:
4171 case GRO_MERGED:
4172 break;
4173 }
4174
4175 return ret;
4176 }
4177
4178 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4179 {
4180 trace_napi_gro_receive_entry(skb);
4181
4182 skb_gro_reset_offset(skb);
4183
4184 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4185 }
4186 EXPORT_SYMBOL(napi_gro_receive);
4187
4188 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4189 {
4190 if (unlikely(skb->pfmemalloc)) {
4191 consume_skb(skb);
4192 return;
4193 }
4194 __skb_pull(skb, skb_headlen(skb));
4195 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4196 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4197 skb->vlan_tci = 0;
4198 skb->dev = napi->dev;
4199 skb->skb_iif = 0;
4200 skb->encapsulation = 0;
4201 skb_shinfo(skb)->gso_type = 0;
4202 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4203
4204 napi->skb = skb;
4205 }
4206
4207 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4208 {
4209 struct sk_buff *skb = napi->skb;
4210
4211 if (!skb) {
4212 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4213 napi->skb = skb;
4214 }
4215 return skb;
4216 }
4217 EXPORT_SYMBOL(napi_get_frags);
4218
4219 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4220 struct sk_buff *skb,
4221 gro_result_t ret)
4222 {
4223 switch (ret) {
4224 case GRO_NORMAL:
4225 case GRO_HELD:
4226 __skb_push(skb, ETH_HLEN);
4227 skb->protocol = eth_type_trans(skb, skb->dev);
4228 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4229 ret = GRO_DROP;
4230 break;
4231
4232 case GRO_DROP:
4233 case GRO_MERGED_FREE:
4234 napi_reuse_skb(napi, skb);
4235 break;
4236
4237 case GRO_MERGED:
4238 break;
4239 }
4240
4241 return ret;
4242 }
4243
4244 /* Upper GRO stack assumes network header starts at gro_offset=0
4245 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4246 * We copy ethernet header into skb->data to have a common layout.
4247 */
4248 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4249 {
4250 struct sk_buff *skb = napi->skb;
4251 const struct ethhdr *eth;
4252 unsigned int hlen = sizeof(*eth);
4253
4254 napi->skb = NULL;
4255
4256 skb_reset_mac_header(skb);
4257 skb_gro_reset_offset(skb);
4258
4259 eth = skb_gro_header_fast(skb, 0);
4260 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4261 eth = skb_gro_header_slow(skb, hlen, 0);
4262 if (unlikely(!eth)) {
4263 napi_reuse_skb(napi, skb);
4264 return NULL;
4265 }
4266 } else {
4267 gro_pull_from_frag0(skb, hlen);
4268 NAPI_GRO_CB(skb)->frag0 += hlen;
4269 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4270 }
4271 __skb_pull(skb, hlen);
4272
4273 /*
4274 * This works because the only protocols we care about don't require
4275 * special handling.
4276 * We'll fix it up properly in napi_frags_finish()
4277 */
4278 skb->protocol = eth->h_proto;
4279
4280 return skb;
4281 }
4282
4283 gro_result_t napi_gro_frags(struct napi_struct *napi)
4284 {
4285 struct sk_buff *skb = napi_frags_skb(napi);
4286
4287 if (!skb)
4288 return GRO_DROP;
4289
4290 trace_napi_gro_frags_entry(skb);
4291
4292 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4293 }
4294 EXPORT_SYMBOL(napi_gro_frags);
4295
4296 /* Compute the checksum from gro_offset and return the folded value
4297 * after adding in any pseudo checksum.
4298 */
4299 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4300 {
4301 __wsum wsum;
4302 __sum16 sum;
4303
4304 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4305
4306 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4307 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4308 if (likely(!sum)) {
4309 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4310 !skb->csum_complete_sw)
4311 netdev_rx_csum_fault(skb->dev);
4312 }
4313
4314 NAPI_GRO_CB(skb)->csum = wsum;
4315 NAPI_GRO_CB(skb)->csum_valid = 1;
4316
4317 return sum;
4318 }
4319 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4320
4321 /*
4322 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4323 * Note: called with local irq disabled, but exits with local irq enabled.
4324 */
4325 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4326 {
4327 #ifdef CONFIG_RPS
4328 struct softnet_data *remsd = sd->rps_ipi_list;
4329
4330 if (remsd) {
4331 sd->rps_ipi_list = NULL;
4332
4333 local_irq_enable();
4334
4335 /* Send pending IPI's to kick RPS processing on remote cpus. */
4336 while (remsd) {
4337 struct softnet_data *next = remsd->rps_ipi_next;
4338
4339 if (cpu_online(remsd->cpu))
4340 smp_call_function_single_async(remsd->cpu,
4341 &remsd->csd);
4342 remsd = next;
4343 }
4344 } else
4345 #endif
4346 local_irq_enable();
4347 }
4348
4349 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4350 {
4351 #ifdef CONFIG_RPS
4352 return sd->rps_ipi_list != NULL;
4353 #else
4354 return false;
4355 #endif
4356 }
4357
4358 static int process_backlog(struct napi_struct *napi, int quota)
4359 {
4360 int work = 0;
4361 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4362
4363 /* Check if we have pending ipi, its better to send them now,
4364 * not waiting net_rx_action() end.
4365 */
4366 if (sd_has_rps_ipi_waiting(sd)) {
4367 local_irq_disable();
4368 net_rps_action_and_irq_enable(sd);
4369 }
4370
4371 napi->weight = weight_p;
4372 local_irq_disable();
4373 while (1) {
4374 struct sk_buff *skb;
4375
4376 while ((skb = __skb_dequeue(&sd->process_queue))) {
4377 local_irq_enable();
4378 __netif_receive_skb(skb);
4379 local_irq_disable();
4380 input_queue_head_incr(sd);
4381 if (++work >= quota) {
4382 local_irq_enable();
4383 return work;
4384 }
4385 }
4386
4387 rps_lock(sd);
4388 if (skb_queue_empty(&sd->input_pkt_queue)) {
4389 /*
4390 * Inline a custom version of __napi_complete().
4391 * only current cpu owns and manipulates this napi,
4392 * and NAPI_STATE_SCHED is the only possible flag set
4393 * on backlog.
4394 * We can use a plain write instead of clear_bit(),
4395 * and we dont need an smp_mb() memory barrier.
4396 */
4397 napi->state = 0;
4398 rps_unlock(sd);
4399
4400 break;
4401 }
4402
4403 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4404 &sd->process_queue);
4405 rps_unlock(sd);
4406 }
4407 local_irq_enable();
4408
4409 return work;
4410 }
4411
4412 /**
4413 * __napi_schedule - schedule for receive
4414 * @n: entry to schedule
4415 *
4416 * The entry's receive function will be scheduled to run.
4417 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4418 */
4419 void __napi_schedule(struct napi_struct *n)
4420 {
4421 unsigned long flags;
4422
4423 local_irq_save(flags);
4424 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4425 local_irq_restore(flags);
4426 }
4427 EXPORT_SYMBOL(__napi_schedule);
4428
4429 /**
4430 * __napi_schedule_irqoff - schedule for receive
4431 * @n: entry to schedule
4432 *
4433 * Variant of __napi_schedule() assuming hard irqs are masked
4434 */
4435 void __napi_schedule_irqoff(struct napi_struct *n)
4436 {
4437 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4438 }
4439 EXPORT_SYMBOL(__napi_schedule_irqoff);
4440
4441 void __napi_complete(struct napi_struct *n)
4442 {
4443 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4444
4445 list_del_init(&n->poll_list);
4446 smp_mb__before_atomic();
4447 clear_bit(NAPI_STATE_SCHED, &n->state);
4448 }
4449 EXPORT_SYMBOL(__napi_complete);
4450
4451 void napi_complete_done(struct napi_struct *n, int work_done)
4452 {
4453 unsigned long flags;
4454
4455 /*
4456 * don't let napi dequeue from the cpu poll list
4457 * just in case its running on a different cpu
4458 */
4459 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4460 return;
4461
4462 if (n->gro_list) {
4463 unsigned long timeout = 0;
4464
4465 if (work_done)
4466 timeout = n->dev->gro_flush_timeout;
4467
4468 if (timeout)
4469 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4470 HRTIMER_MODE_REL_PINNED);
4471 else
4472 napi_gro_flush(n, false);
4473 }
4474 if (likely(list_empty(&n->poll_list))) {
4475 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4476 } else {
4477 /* If n->poll_list is not empty, we need to mask irqs */
4478 local_irq_save(flags);
4479 __napi_complete(n);
4480 local_irq_restore(flags);
4481 }
4482 }
4483 EXPORT_SYMBOL(napi_complete_done);
4484
4485 /* must be called under rcu_read_lock(), as we dont take a reference */
4486 struct napi_struct *napi_by_id(unsigned int napi_id)
4487 {
4488 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4489 struct napi_struct *napi;
4490
4491 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4492 if (napi->napi_id == napi_id)
4493 return napi;
4494
4495 return NULL;
4496 }
4497 EXPORT_SYMBOL_GPL(napi_by_id);
4498
4499 void napi_hash_add(struct napi_struct *napi)
4500 {
4501 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4502
4503 spin_lock(&napi_hash_lock);
4504
4505 /* 0 is not a valid id, we also skip an id that is taken
4506 * we expect both events to be extremely rare
4507 */
4508 napi->napi_id = 0;
4509 while (!napi->napi_id) {
4510 napi->napi_id = ++napi_gen_id;
4511 if (napi_by_id(napi->napi_id))
4512 napi->napi_id = 0;
4513 }
4514
4515 hlist_add_head_rcu(&napi->napi_hash_node,
4516 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4517
4518 spin_unlock(&napi_hash_lock);
4519 }
4520 }
4521 EXPORT_SYMBOL_GPL(napi_hash_add);
4522
4523 /* Warning : caller is responsible to make sure rcu grace period
4524 * is respected before freeing memory containing @napi
4525 */
4526 void napi_hash_del(struct napi_struct *napi)
4527 {
4528 spin_lock(&napi_hash_lock);
4529
4530 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4531 hlist_del_rcu(&napi->napi_hash_node);
4532
4533 spin_unlock(&napi_hash_lock);
4534 }
4535 EXPORT_SYMBOL_GPL(napi_hash_del);
4536
4537 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4538 {
4539 struct napi_struct *napi;
4540
4541 napi = container_of(timer, struct napi_struct, timer);
4542 if (napi->gro_list)
4543 napi_schedule(napi);
4544
4545 return HRTIMER_NORESTART;
4546 }
4547
4548 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4549 int (*poll)(struct napi_struct *, int), int weight)
4550 {
4551 INIT_LIST_HEAD(&napi->poll_list);
4552 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4553 napi->timer.function = napi_watchdog;
4554 napi->gro_count = 0;
4555 napi->gro_list = NULL;
4556 napi->skb = NULL;
4557 napi->poll = poll;
4558 if (weight > NAPI_POLL_WEIGHT)
4559 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4560 weight, dev->name);
4561 napi->weight = weight;
4562 list_add(&napi->dev_list, &dev->napi_list);
4563 napi->dev = dev;
4564 #ifdef CONFIG_NETPOLL
4565 spin_lock_init(&napi->poll_lock);
4566 napi->poll_owner = -1;
4567 #endif
4568 set_bit(NAPI_STATE_SCHED, &napi->state);
4569 }
4570 EXPORT_SYMBOL(netif_napi_add);
4571
4572 void napi_disable(struct napi_struct *n)
4573 {
4574 might_sleep();
4575 set_bit(NAPI_STATE_DISABLE, &n->state);
4576
4577 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4578 msleep(1);
4579
4580 hrtimer_cancel(&n->timer);
4581
4582 clear_bit(NAPI_STATE_DISABLE, &n->state);
4583 }
4584 EXPORT_SYMBOL(napi_disable);
4585
4586 void netif_napi_del(struct napi_struct *napi)
4587 {
4588 list_del_init(&napi->dev_list);
4589 napi_free_frags(napi);
4590
4591 kfree_skb_list(napi->gro_list);
4592 napi->gro_list = NULL;
4593 napi->gro_count = 0;
4594 }
4595 EXPORT_SYMBOL(netif_napi_del);
4596
4597 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4598 {
4599 void *have;
4600 int work, weight;
4601
4602 list_del_init(&n->poll_list);
4603
4604 have = netpoll_poll_lock(n);
4605
4606 weight = n->weight;
4607
4608 /* This NAPI_STATE_SCHED test is for avoiding a race
4609 * with netpoll's poll_napi(). Only the entity which
4610 * obtains the lock and sees NAPI_STATE_SCHED set will
4611 * actually make the ->poll() call. Therefore we avoid
4612 * accidentally calling ->poll() when NAPI is not scheduled.
4613 */
4614 work = 0;
4615 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4616 work = n->poll(n, weight);
4617 trace_napi_poll(n);
4618 }
4619
4620 WARN_ON_ONCE(work > weight);
4621
4622 if (likely(work < weight))
4623 goto out_unlock;
4624
4625 /* Drivers must not modify the NAPI state if they
4626 * consume the entire weight. In such cases this code
4627 * still "owns" the NAPI instance and therefore can
4628 * move the instance around on the list at-will.
4629 */
4630 if (unlikely(napi_disable_pending(n))) {
4631 napi_complete(n);
4632 goto out_unlock;
4633 }
4634
4635 if (n->gro_list) {
4636 /* flush too old packets
4637 * If HZ < 1000, flush all packets.
4638 */
4639 napi_gro_flush(n, HZ >= 1000);
4640 }
4641
4642 /* Some drivers may have called napi_schedule
4643 * prior to exhausting their budget.
4644 */
4645 if (unlikely(!list_empty(&n->poll_list))) {
4646 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4647 n->dev ? n->dev->name : "backlog");
4648 goto out_unlock;
4649 }
4650
4651 list_add_tail(&n->poll_list, repoll);
4652
4653 out_unlock:
4654 netpoll_poll_unlock(have);
4655
4656 return work;
4657 }
4658
4659 static void net_rx_action(struct softirq_action *h)
4660 {
4661 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4662 unsigned long time_limit = jiffies + 2;
4663 int budget = netdev_budget;
4664 LIST_HEAD(list);
4665 LIST_HEAD(repoll);
4666
4667 local_irq_disable();
4668 list_splice_init(&sd->poll_list, &list);
4669 local_irq_enable();
4670
4671 for (;;) {
4672 struct napi_struct *n;
4673
4674 if (list_empty(&list)) {
4675 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4676 return;
4677 break;
4678 }
4679
4680 n = list_first_entry(&list, struct napi_struct, poll_list);
4681 budget -= napi_poll(n, &repoll);
4682
4683 /* If softirq window is exhausted then punt.
4684 * Allow this to run for 2 jiffies since which will allow
4685 * an average latency of 1.5/HZ.
4686 */
4687 if (unlikely(budget <= 0 ||
4688 time_after_eq(jiffies, time_limit))) {
4689 sd->time_squeeze++;
4690 break;
4691 }
4692 }
4693
4694 local_irq_disable();
4695
4696 list_splice_tail_init(&sd->poll_list, &list);
4697 list_splice_tail(&repoll, &list);
4698 list_splice(&list, &sd->poll_list);
4699 if (!list_empty(&sd->poll_list))
4700 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4701
4702 net_rps_action_and_irq_enable(sd);
4703 }
4704
4705 struct netdev_adjacent {
4706 struct net_device *dev;
4707
4708 /* upper master flag, there can only be one master device per list */
4709 bool master;
4710
4711 /* counter for the number of times this device was added to us */
4712 u16 ref_nr;
4713
4714 /* private field for the users */
4715 void *private;
4716
4717 struct list_head list;
4718 struct rcu_head rcu;
4719 };
4720
4721 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4722 struct net_device *adj_dev,
4723 struct list_head *adj_list)
4724 {
4725 struct netdev_adjacent *adj;
4726
4727 list_for_each_entry(adj, adj_list, list) {
4728 if (adj->dev == adj_dev)
4729 return adj;
4730 }
4731 return NULL;
4732 }
4733
4734 /**
4735 * netdev_has_upper_dev - Check if device is linked to an upper device
4736 * @dev: device
4737 * @upper_dev: upper device to check
4738 *
4739 * Find out if a device is linked to specified upper device and return true
4740 * in case it is. Note that this checks only immediate upper device,
4741 * not through a complete stack of devices. The caller must hold the RTNL lock.
4742 */
4743 bool netdev_has_upper_dev(struct net_device *dev,
4744 struct net_device *upper_dev)
4745 {
4746 ASSERT_RTNL();
4747
4748 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4749 }
4750 EXPORT_SYMBOL(netdev_has_upper_dev);
4751
4752 /**
4753 * netdev_has_any_upper_dev - Check if device is linked to some device
4754 * @dev: device
4755 *
4756 * Find out if a device is linked to an upper device and return true in case
4757 * it is. The caller must hold the RTNL lock.
4758 */
4759 static bool netdev_has_any_upper_dev(struct net_device *dev)
4760 {
4761 ASSERT_RTNL();
4762
4763 return !list_empty(&dev->all_adj_list.upper);
4764 }
4765
4766 /**
4767 * netdev_master_upper_dev_get - Get master upper device
4768 * @dev: device
4769 *
4770 * Find a master upper device and return pointer to it or NULL in case
4771 * it's not there. The caller must hold the RTNL lock.
4772 */
4773 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4774 {
4775 struct netdev_adjacent *upper;
4776
4777 ASSERT_RTNL();
4778
4779 if (list_empty(&dev->adj_list.upper))
4780 return NULL;
4781
4782 upper = list_first_entry(&dev->adj_list.upper,
4783 struct netdev_adjacent, list);
4784 if (likely(upper->master))
4785 return upper->dev;
4786 return NULL;
4787 }
4788 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4789
4790 void *netdev_adjacent_get_private(struct list_head *adj_list)
4791 {
4792 struct netdev_adjacent *adj;
4793
4794 adj = list_entry(adj_list, struct netdev_adjacent, list);
4795
4796 return adj->private;
4797 }
4798 EXPORT_SYMBOL(netdev_adjacent_get_private);
4799
4800 /**
4801 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4802 * @dev: device
4803 * @iter: list_head ** of the current position
4804 *
4805 * Gets the next device from the dev's upper list, starting from iter
4806 * position. The caller must hold RCU read lock.
4807 */
4808 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4809 struct list_head **iter)
4810 {
4811 struct netdev_adjacent *upper;
4812
4813 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4814
4815 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4816
4817 if (&upper->list == &dev->adj_list.upper)
4818 return NULL;
4819
4820 *iter = &upper->list;
4821
4822 return upper->dev;
4823 }
4824 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4825
4826 /**
4827 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4828 * @dev: device
4829 * @iter: list_head ** of the current position
4830 *
4831 * Gets the next device from the dev's upper list, starting from iter
4832 * position. The caller must hold RCU read lock.
4833 */
4834 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4835 struct list_head **iter)
4836 {
4837 struct netdev_adjacent *upper;
4838
4839 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4840
4841 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4842
4843 if (&upper->list == &dev->all_adj_list.upper)
4844 return NULL;
4845
4846 *iter = &upper->list;
4847
4848 return upper->dev;
4849 }
4850 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4851
4852 /**
4853 * netdev_lower_get_next_private - Get the next ->private from the
4854 * lower neighbour list
4855 * @dev: device
4856 * @iter: list_head ** of the current position
4857 *
4858 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4859 * list, starting from iter position. The caller must hold either hold the
4860 * RTNL lock or its own locking that guarantees that the neighbour lower
4861 * list will remain unchainged.
4862 */
4863 void *netdev_lower_get_next_private(struct net_device *dev,
4864 struct list_head **iter)
4865 {
4866 struct netdev_adjacent *lower;
4867
4868 lower = list_entry(*iter, struct netdev_adjacent, list);
4869
4870 if (&lower->list == &dev->adj_list.lower)
4871 return NULL;
4872
4873 *iter = lower->list.next;
4874
4875 return lower->private;
4876 }
4877 EXPORT_SYMBOL(netdev_lower_get_next_private);
4878
4879 /**
4880 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4881 * lower neighbour list, RCU
4882 * variant
4883 * @dev: device
4884 * @iter: list_head ** of the current position
4885 *
4886 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4887 * list, starting from iter position. The caller must hold RCU read lock.
4888 */
4889 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4890 struct list_head **iter)
4891 {
4892 struct netdev_adjacent *lower;
4893
4894 WARN_ON_ONCE(!rcu_read_lock_held());
4895
4896 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4897
4898 if (&lower->list == &dev->adj_list.lower)
4899 return NULL;
4900
4901 *iter = &lower->list;
4902
4903 return lower->private;
4904 }
4905 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4906
4907 /**
4908 * netdev_lower_get_next - Get the next device from the lower neighbour
4909 * list
4910 * @dev: device
4911 * @iter: list_head ** of the current position
4912 *
4913 * Gets the next netdev_adjacent from the dev's lower neighbour
4914 * list, starting from iter position. The caller must hold RTNL lock or
4915 * its own locking that guarantees that the neighbour lower
4916 * list will remain unchainged.
4917 */
4918 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4919 {
4920 struct netdev_adjacent *lower;
4921
4922 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4923
4924 if (&lower->list == &dev->adj_list.lower)
4925 return NULL;
4926
4927 *iter = &lower->list;
4928
4929 return lower->dev;
4930 }
4931 EXPORT_SYMBOL(netdev_lower_get_next);
4932
4933 /**
4934 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4935 * lower neighbour list, RCU
4936 * variant
4937 * @dev: device
4938 *
4939 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4940 * list. The caller must hold RCU read lock.
4941 */
4942 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4943 {
4944 struct netdev_adjacent *lower;
4945
4946 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4947 struct netdev_adjacent, list);
4948 if (lower)
4949 return lower->private;
4950 return NULL;
4951 }
4952 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4953
4954 /**
4955 * netdev_master_upper_dev_get_rcu - Get master upper device
4956 * @dev: device
4957 *
4958 * Find a master upper device and return pointer to it or NULL in case
4959 * it's not there. The caller must hold the RCU read lock.
4960 */
4961 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4962 {
4963 struct netdev_adjacent *upper;
4964
4965 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4966 struct netdev_adjacent, list);
4967 if (upper && likely(upper->master))
4968 return upper->dev;
4969 return NULL;
4970 }
4971 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4972
4973 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4974 struct net_device *adj_dev,
4975 struct list_head *dev_list)
4976 {
4977 char linkname[IFNAMSIZ+7];
4978 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4979 "upper_%s" : "lower_%s", adj_dev->name);
4980 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4981 linkname);
4982 }
4983 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4984 char *name,
4985 struct list_head *dev_list)
4986 {
4987 char linkname[IFNAMSIZ+7];
4988 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4989 "upper_%s" : "lower_%s", name);
4990 sysfs_remove_link(&(dev->dev.kobj), linkname);
4991 }
4992
4993 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4994 struct net_device *adj_dev,
4995 struct list_head *dev_list)
4996 {
4997 return (dev_list == &dev->adj_list.upper ||
4998 dev_list == &dev->adj_list.lower) &&
4999 net_eq(dev_net(dev), dev_net(adj_dev));
5000 }
5001
5002 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5003 struct net_device *adj_dev,
5004 struct list_head *dev_list,
5005 void *private, bool master)
5006 {
5007 struct netdev_adjacent *adj;
5008 int ret;
5009
5010 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5011
5012 if (adj) {
5013 adj->ref_nr++;
5014 return 0;
5015 }
5016
5017 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5018 if (!adj)
5019 return -ENOMEM;
5020
5021 adj->dev = adj_dev;
5022 adj->master = master;
5023 adj->ref_nr = 1;
5024 adj->private = private;
5025 dev_hold(adj_dev);
5026
5027 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5028 adj_dev->name, dev->name, adj_dev->name);
5029
5030 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5031 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5032 if (ret)
5033 goto free_adj;
5034 }
5035
5036 /* Ensure that master link is always the first item in list. */
5037 if (master) {
5038 ret = sysfs_create_link(&(dev->dev.kobj),
5039 &(adj_dev->dev.kobj), "master");
5040 if (ret)
5041 goto remove_symlinks;
5042
5043 list_add_rcu(&adj->list, dev_list);
5044 } else {
5045 list_add_tail_rcu(&adj->list, dev_list);
5046 }
5047
5048 return 0;
5049
5050 remove_symlinks:
5051 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5052 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5053 free_adj:
5054 kfree(adj);
5055 dev_put(adj_dev);
5056
5057 return ret;
5058 }
5059
5060 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5061 struct net_device *adj_dev,
5062 struct list_head *dev_list)
5063 {
5064 struct netdev_adjacent *adj;
5065
5066 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5067
5068 if (!adj) {
5069 pr_err("tried to remove device %s from %s\n",
5070 dev->name, adj_dev->name);
5071 BUG();
5072 }
5073
5074 if (adj->ref_nr > 1) {
5075 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5076 adj->ref_nr-1);
5077 adj->ref_nr--;
5078 return;
5079 }
5080
5081 if (adj->master)
5082 sysfs_remove_link(&(dev->dev.kobj), "master");
5083
5084 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5085 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5086
5087 list_del_rcu(&adj->list);
5088 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5089 adj_dev->name, dev->name, adj_dev->name);
5090 dev_put(adj_dev);
5091 kfree_rcu(adj, rcu);
5092 }
5093
5094 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5095 struct net_device *upper_dev,
5096 struct list_head *up_list,
5097 struct list_head *down_list,
5098 void *private, bool master)
5099 {
5100 int ret;
5101
5102 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5103 master);
5104 if (ret)
5105 return ret;
5106
5107 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5108 false);
5109 if (ret) {
5110 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5111 return ret;
5112 }
5113
5114 return 0;
5115 }
5116
5117 static int __netdev_adjacent_dev_link(struct net_device *dev,
5118 struct net_device *upper_dev)
5119 {
5120 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5121 &dev->all_adj_list.upper,
5122 &upper_dev->all_adj_list.lower,
5123 NULL, false);
5124 }
5125
5126 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5127 struct net_device *upper_dev,
5128 struct list_head *up_list,
5129 struct list_head *down_list)
5130 {
5131 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5132 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5133 }
5134
5135 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5136 struct net_device *upper_dev)
5137 {
5138 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5139 &dev->all_adj_list.upper,
5140 &upper_dev->all_adj_list.lower);
5141 }
5142
5143 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5144 struct net_device *upper_dev,
5145 void *private, bool master)
5146 {
5147 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5148
5149 if (ret)
5150 return ret;
5151
5152 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5153 &dev->adj_list.upper,
5154 &upper_dev->adj_list.lower,
5155 private, master);
5156 if (ret) {
5157 __netdev_adjacent_dev_unlink(dev, upper_dev);
5158 return ret;
5159 }
5160
5161 return 0;
5162 }
5163
5164 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5165 struct net_device *upper_dev)
5166 {
5167 __netdev_adjacent_dev_unlink(dev, upper_dev);
5168 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5169 &dev->adj_list.upper,
5170 &upper_dev->adj_list.lower);
5171 }
5172
5173 static int __netdev_upper_dev_link(struct net_device *dev,
5174 struct net_device *upper_dev, bool master,
5175 void *private)
5176 {
5177 struct netdev_adjacent *i, *j, *to_i, *to_j;
5178 int ret = 0;
5179
5180 ASSERT_RTNL();
5181
5182 if (dev == upper_dev)
5183 return -EBUSY;
5184
5185 /* To prevent loops, check if dev is not upper device to upper_dev. */
5186 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5187 return -EBUSY;
5188
5189 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5190 return -EEXIST;
5191
5192 if (master && netdev_master_upper_dev_get(dev))
5193 return -EBUSY;
5194
5195 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5196 master);
5197 if (ret)
5198 return ret;
5199
5200 /* Now that we linked these devs, make all the upper_dev's
5201 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5202 * versa, and don't forget the devices itself. All of these
5203 * links are non-neighbours.
5204 */
5205 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5206 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5207 pr_debug("Interlinking %s with %s, non-neighbour\n",
5208 i->dev->name, j->dev->name);
5209 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5210 if (ret)
5211 goto rollback_mesh;
5212 }
5213 }
5214
5215 /* add dev to every upper_dev's upper device */
5216 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5217 pr_debug("linking %s's upper device %s with %s\n",
5218 upper_dev->name, i->dev->name, dev->name);
5219 ret = __netdev_adjacent_dev_link(dev, i->dev);
5220 if (ret)
5221 goto rollback_upper_mesh;
5222 }
5223
5224 /* add upper_dev to every dev's lower device */
5225 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5226 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5227 i->dev->name, upper_dev->name);
5228 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5229 if (ret)
5230 goto rollback_lower_mesh;
5231 }
5232
5233 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5234 return 0;
5235
5236 rollback_lower_mesh:
5237 to_i = i;
5238 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5239 if (i == to_i)
5240 break;
5241 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5242 }
5243
5244 i = NULL;
5245
5246 rollback_upper_mesh:
5247 to_i = i;
5248 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5249 if (i == to_i)
5250 break;
5251 __netdev_adjacent_dev_unlink(dev, i->dev);
5252 }
5253
5254 i = j = NULL;
5255
5256 rollback_mesh:
5257 to_i = i;
5258 to_j = j;
5259 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5260 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5261 if (i == to_i && j == to_j)
5262 break;
5263 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5264 }
5265 if (i == to_i)
5266 break;
5267 }
5268
5269 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5270
5271 return ret;
5272 }
5273
5274 /**
5275 * netdev_upper_dev_link - Add a link to the upper device
5276 * @dev: device
5277 * @upper_dev: new upper device
5278 *
5279 * Adds a link to device which is upper to this one. The caller must hold
5280 * the RTNL lock. On a failure a negative errno code is returned.
5281 * On success the reference counts are adjusted and the function
5282 * returns zero.
5283 */
5284 int netdev_upper_dev_link(struct net_device *dev,
5285 struct net_device *upper_dev)
5286 {
5287 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5288 }
5289 EXPORT_SYMBOL(netdev_upper_dev_link);
5290
5291 /**
5292 * netdev_master_upper_dev_link - Add a master link to the upper device
5293 * @dev: device
5294 * @upper_dev: new upper device
5295 *
5296 * Adds a link to device which is upper to this one. In this case, only
5297 * one master upper device can be linked, although other non-master devices
5298 * might be linked as well. The caller must hold the RTNL lock.
5299 * On a failure a negative errno code is returned. On success the reference
5300 * counts are adjusted and the function returns zero.
5301 */
5302 int netdev_master_upper_dev_link(struct net_device *dev,
5303 struct net_device *upper_dev)
5304 {
5305 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5306 }
5307 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5308
5309 int netdev_master_upper_dev_link_private(struct net_device *dev,
5310 struct net_device *upper_dev,
5311 void *private)
5312 {
5313 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5314 }
5315 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5316
5317 /**
5318 * netdev_upper_dev_unlink - Removes a link to upper device
5319 * @dev: device
5320 * @upper_dev: new upper device
5321 *
5322 * Removes a link to device which is upper to this one. The caller must hold
5323 * the RTNL lock.
5324 */
5325 void netdev_upper_dev_unlink(struct net_device *dev,
5326 struct net_device *upper_dev)
5327 {
5328 struct netdev_adjacent *i, *j;
5329 ASSERT_RTNL();
5330
5331 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5332
5333 /* Here is the tricky part. We must remove all dev's lower
5334 * devices from all upper_dev's upper devices and vice
5335 * versa, to maintain the graph relationship.
5336 */
5337 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5338 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5339 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5340
5341 /* remove also the devices itself from lower/upper device
5342 * list
5343 */
5344 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5345 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5346
5347 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5348 __netdev_adjacent_dev_unlink(dev, i->dev);
5349
5350 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5351 }
5352 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5353
5354 /**
5355 * netdev_bonding_info_change - Dispatch event about slave change
5356 * @dev: device
5357 * @bonding_info: info to dispatch
5358 *
5359 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5360 * The caller must hold the RTNL lock.
5361 */
5362 void netdev_bonding_info_change(struct net_device *dev,
5363 struct netdev_bonding_info *bonding_info)
5364 {
5365 struct netdev_notifier_bonding_info info;
5366
5367 memcpy(&info.bonding_info, bonding_info,
5368 sizeof(struct netdev_bonding_info));
5369 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5370 &info.info);
5371 }
5372 EXPORT_SYMBOL(netdev_bonding_info_change);
5373
5374 static void netdev_adjacent_add_links(struct net_device *dev)
5375 {
5376 struct netdev_adjacent *iter;
5377
5378 struct net *net = dev_net(dev);
5379
5380 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5381 if (!net_eq(net,dev_net(iter->dev)))
5382 continue;
5383 netdev_adjacent_sysfs_add(iter->dev, dev,
5384 &iter->dev->adj_list.lower);
5385 netdev_adjacent_sysfs_add(dev, iter->dev,
5386 &dev->adj_list.upper);
5387 }
5388
5389 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5390 if (!net_eq(net,dev_net(iter->dev)))
5391 continue;
5392 netdev_adjacent_sysfs_add(iter->dev, dev,
5393 &iter->dev->adj_list.upper);
5394 netdev_adjacent_sysfs_add(dev, iter->dev,
5395 &dev->adj_list.lower);
5396 }
5397 }
5398
5399 static void netdev_adjacent_del_links(struct net_device *dev)
5400 {
5401 struct netdev_adjacent *iter;
5402
5403 struct net *net = dev_net(dev);
5404
5405 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5406 if (!net_eq(net,dev_net(iter->dev)))
5407 continue;
5408 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5409 &iter->dev->adj_list.lower);
5410 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5411 &dev->adj_list.upper);
5412 }
5413
5414 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5415 if (!net_eq(net,dev_net(iter->dev)))
5416 continue;
5417 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5418 &iter->dev->adj_list.upper);
5419 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5420 &dev->adj_list.lower);
5421 }
5422 }
5423
5424 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5425 {
5426 struct netdev_adjacent *iter;
5427
5428 struct net *net = dev_net(dev);
5429
5430 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5431 if (!net_eq(net,dev_net(iter->dev)))
5432 continue;
5433 netdev_adjacent_sysfs_del(iter->dev, oldname,
5434 &iter->dev->adj_list.lower);
5435 netdev_adjacent_sysfs_add(iter->dev, dev,
5436 &iter->dev->adj_list.lower);
5437 }
5438
5439 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5440 if (!net_eq(net,dev_net(iter->dev)))
5441 continue;
5442 netdev_adjacent_sysfs_del(iter->dev, oldname,
5443 &iter->dev->adj_list.upper);
5444 netdev_adjacent_sysfs_add(iter->dev, dev,
5445 &iter->dev->adj_list.upper);
5446 }
5447 }
5448
5449 void *netdev_lower_dev_get_private(struct net_device *dev,
5450 struct net_device *lower_dev)
5451 {
5452 struct netdev_adjacent *lower;
5453
5454 if (!lower_dev)
5455 return NULL;
5456 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5457 if (!lower)
5458 return NULL;
5459
5460 return lower->private;
5461 }
5462 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5463
5464
5465 int dev_get_nest_level(struct net_device *dev,
5466 bool (*type_check)(struct net_device *dev))
5467 {
5468 struct net_device *lower = NULL;
5469 struct list_head *iter;
5470 int max_nest = -1;
5471 int nest;
5472
5473 ASSERT_RTNL();
5474
5475 netdev_for_each_lower_dev(dev, lower, iter) {
5476 nest = dev_get_nest_level(lower, type_check);
5477 if (max_nest < nest)
5478 max_nest = nest;
5479 }
5480
5481 if (type_check(dev))
5482 max_nest++;
5483
5484 return max_nest;
5485 }
5486 EXPORT_SYMBOL(dev_get_nest_level);
5487
5488 static void dev_change_rx_flags(struct net_device *dev, int flags)
5489 {
5490 const struct net_device_ops *ops = dev->netdev_ops;
5491
5492 if (ops->ndo_change_rx_flags)
5493 ops->ndo_change_rx_flags(dev, flags);
5494 }
5495
5496 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5497 {
5498 unsigned int old_flags = dev->flags;
5499 kuid_t uid;
5500 kgid_t gid;
5501
5502 ASSERT_RTNL();
5503
5504 dev->flags |= IFF_PROMISC;
5505 dev->promiscuity += inc;
5506 if (dev->promiscuity == 0) {
5507 /*
5508 * Avoid overflow.
5509 * If inc causes overflow, untouch promisc and return error.
5510 */
5511 if (inc < 0)
5512 dev->flags &= ~IFF_PROMISC;
5513 else {
5514 dev->promiscuity -= inc;
5515 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5516 dev->name);
5517 return -EOVERFLOW;
5518 }
5519 }
5520 if (dev->flags != old_flags) {
5521 pr_info("device %s %s promiscuous mode\n",
5522 dev->name,
5523 dev->flags & IFF_PROMISC ? "entered" : "left");
5524 if (audit_enabled) {
5525 current_uid_gid(&uid, &gid);
5526 audit_log(current->audit_context, GFP_ATOMIC,
5527 AUDIT_ANOM_PROMISCUOUS,
5528 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5529 dev->name, (dev->flags & IFF_PROMISC),
5530 (old_flags & IFF_PROMISC),
5531 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5532 from_kuid(&init_user_ns, uid),
5533 from_kgid(&init_user_ns, gid),
5534 audit_get_sessionid(current));
5535 }
5536
5537 dev_change_rx_flags(dev, IFF_PROMISC);
5538 }
5539 if (notify)
5540 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5541 return 0;
5542 }
5543
5544 /**
5545 * dev_set_promiscuity - update promiscuity count on a device
5546 * @dev: device
5547 * @inc: modifier
5548 *
5549 * Add or remove promiscuity from a device. While the count in the device
5550 * remains above zero the interface remains promiscuous. Once it hits zero
5551 * the device reverts back to normal filtering operation. A negative inc
5552 * value is used to drop promiscuity on the device.
5553 * Return 0 if successful or a negative errno code on error.
5554 */
5555 int dev_set_promiscuity(struct net_device *dev, int inc)
5556 {
5557 unsigned int old_flags = dev->flags;
5558 int err;
5559
5560 err = __dev_set_promiscuity(dev, inc, true);
5561 if (err < 0)
5562 return err;
5563 if (dev->flags != old_flags)
5564 dev_set_rx_mode(dev);
5565 return err;
5566 }
5567 EXPORT_SYMBOL(dev_set_promiscuity);
5568
5569 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5570 {
5571 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5572
5573 ASSERT_RTNL();
5574
5575 dev->flags |= IFF_ALLMULTI;
5576 dev->allmulti += inc;
5577 if (dev->allmulti == 0) {
5578 /*
5579 * Avoid overflow.
5580 * If inc causes overflow, untouch allmulti and return error.
5581 */
5582 if (inc < 0)
5583 dev->flags &= ~IFF_ALLMULTI;
5584 else {
5585 dev->allmulti -= inc;
5586 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5587 dev->name);
5588 return -EOVERFLOW;
5589 }
5590 }
5591 if (dev->flags ^ old_flags) {
5592 dev_change_rx_flags(dev, IFF_ALLMULTI);
5593 dev_set_rx_mode(dev);
5594 if (notify)
5595 __dev_notify_flags(dev, old_flags,
5596 dev->gflags ^ old_gflags);
5597 }
5598 return 0;
5599 }
5600
5601 /**
5602 * dev_set_allmulti - update allmulti count on a device
5603 * @dev: device
5604 * @inc: modifier
5605 *
5606 * Add or remove reception of all multicast frames to a device. While the
5607 * count in the device remains above zero the interface remains listening
5608 * to all interfaces. Once it hits zero the device reverts back to normal
5609 * filtering operation. A negative @inc value is used to drop the counter
5610 * when releasing a resource needing all multicasts.
5611 * Return 0 if successful or a negative errno code on error.
5612 */
5613
5614 int dev_set_allmulti(struct net_device *dev, int inc)
5615 {
5616 return __dev_set_allmulti(dev, inc, true);
5617 }
5618 EXPORT_SYMBOL(dev_set_allmulti);
5619
5620 /*
5621 * Upload unicast and multicast address lists to device and
5622 * configure RX filtering. When the device doesn't support unicast
5623 * filtering it is put in promiscuous mode while unicast addresses
5624 * are present.
5625 */
5626 void __dev_set_rx_mode(struct net_device *dev)
5627 {
5628 const struct net_device_ops *ops = dev->netdev_ops;
5629
5630 /* dev_open will call this function so the list will stay sane. */
5631 if (!(dev->flags&IFF_UP))
5632 return;
5633
5634 if (!netif_device_present(dev))
5635 return;
5636
5637 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5638 /* Unicast addresses changes may only happen under the rtnl,
5639 * therefore calling __dev_set_promiscuity here is safe.
5640 */
5641 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5642 __dev_set_promiscuity(dev, 1, false);
5643 dev->uc_promisc = true;
5644 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5645 __dev_set_promiscuity(dev, -1, false);
5646 dev->uc_promisc = false;
5647 }
5648 }
5649
5650 if (ops->ndo_set_rx_mode)
5651 ops->ndo_set_rx_mode(dev);
5652 }
5653
5654 void dev_set_rx_mode(struct net_device *dev)
5655 {
5656 netif_addr_lock_bh(dev);
5657 __dev_set_rx_mode(dev);
5658 netif_addr_unlock_bh(dev);
5659 }
5660
5661 /**
5662 * dev_get_flags - get flags reported to userspace
5663 * @dev: device
5664 *
5665 * Get the combination of flag bits exported through APIs to userspace.
5666 */
5667 unsigned int dev_get_flags(const struct net_device *dev)
5668 {
5669 unsigned int flags;
5670
5671 flags = (dev->flags & ~(IFF_PROMISC |
5672 IFF_ALLMULTI |
5673 IFF_RUNNING |
5674 IFF_LOWER_UP |
5675 IFF_DORMANT)) |
5676 (dev->gflags & (IFF_PROMISC |
5677 IFF_ALLMULTI));
5678
5679 if (netif_running(dev)) {
5680 if (netif_oper_up(dev))
5681 flags |= IFF_RUNNING;
5682 if (netif_carrier_ok(dev))
5683 flags |= IFF_LOWER_UP;
5684 if (netif_dormant(dev))
5685 flags |= IFF_DORMANT;
5686 }
5687
5688 return flags;
5689 }
5690 EXPORT_SYMBOL(dev_get_flags);
5691
5692 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5693 {
5694 unsigned int old_flags = dev->flags;
5695 int ret;
5696
5697 ASSERT_RTNL();
5698
5699 /*
5700 * Set the flags on our device.
5701 */
5702
5703 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5704 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5705 IFF_AUTOMEDIA)) |
5706 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5707 IFF_ALLMULTI));
5708
5709 /*
5710 * Load in the correct multicast list now the flags have changed.
5711 */
5712
5713 if ((old_flags ^ flags) & IFF_MULTICAST)
5714 dev_change_rx_flags(dev, IFF_MULTICAST);
5715
5716 dev_set_rx_mode(dev);
5717
5718 /*
5719 * Have we downed the interface. We handle IFF_UP ourselves
5720 * according to user attempts to set it, rather than blindly
5721 * setting it.
5722 */
5723
5724 ret = 0;
5725 if ((old_flags ^ flags) & IFF_UP)
5726 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5727
5728 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5729 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5730 unsigned int old_flags = dev->flags;
5731
5732 dev->gflags ^= IFF_PROMISC;
5733
5734 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5735 if (dev->flags != old_flags)
5736 dev_set_rx_mode(dev);
5737 }
5738
5739 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5740 is important. Some (broken) drivers set IFF_PROMISC, when
5741 IFF_ALLMULTI is requested not asking us and not reporting.
5742 */
5743 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5744 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5745
5746 dev->gflags ^= IFF_ALLMULTI;
5747 __dev_set_allmulti(dev, inc, false);
5748 }
5749
5750 return ret;
5751 }
5752
5753 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5754 unsigned int gchanges)
5755 {
5756 unsigned int changes = dev->flags ^ old_flags;
5757
5758 if (gchanges)
5759 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5760
5761 if (changes & IFF_UP) {
5762 if (dev->flags & IFF_UP)
5763 call_netdevice_notifiers(NETDEV_UP, dev);
5764 else
5765 call_netdevice_notifiers(NETDEV_DOWN, dev);
5766 }
5767
5768 if (dev->flags & IFF_UP &&
5769 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5770 struct netdev_notifier_change_info change_info;
5771
5772 change_info.flags_changed = changes;
5773 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5774 &change_info.info);
5775 }
5776 }
5777
5778 /**
5779 * dev_change_flags - change device settings
5780 * @dev: device
5781 * @flags: device state flags
5782 *
5783 * Change settings on device based state flags. The flags are
5784 * in the userspace exported format.
5785 */
5786 int dev_change_flags(struct net_device *dev, unsigned int flags)
5787 {
5788 int ret;
5789 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5790
5791 ret = __dev_change_flags(dev, flags);
5792 if (ret < 0)
5793 return ret;
5794
5795 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5796 __dev_notify_flags(dev, old_flags, changes);
5797 return ret;
5798 }
5799 EXPORT_SYMBOL(dev_change_flags);
5800
5801 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5802 {
5803 const struct net_device_ops *ops = dev->netdev_ops;
5804
5805 if (ops->ndo_change_mtu)
5806 return ops->ndo_change_mtu(dev, new_mtu);
5807
5808 dev->mtu = new_mtu;
5809 return 0;
5810 }
5811
5812 /**
5813 * dev_set_mtu - Change maximum transfer unit
5814 * @dev: device
5815 * @new_mtu: new transfer unit
5816 *
5817 * Change the maximum transfer size of the network device.
5818 */
5819 int dev_set_mtu(struct net_device *dev, int new_mtu)
5820 {
5821 int err, orig_mtu;
5822
5823 if (new_mtu == dev->mtu)
5824 return 0;
5825
5826 /* MTU must be positive. */
5827 if (new_mtu < 0)
5828 return -EINVAL;
5829
5830 if (!netif_device_present(dev))
5831 return -ENODEV;
5832
5833 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5834 err = notifier_to_errno(err);
5835 if (err)
5836 return err;
5837
5838 orig_mtu = dev->mtu;
5839 err = __dev_set_mtu(dev, new_mtu);
5840
5841 if (!err) {
5842 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5843 err = notifier_to_errno(err);
5844 if (err) {
5845 /* setting mtu back and notifying everyone again,
5846 * so that they have a chance to revert changes.
5847 */
5848 __dev_set_mtu(dev, orig_mtu);
5849 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5850 }
5851 }
5852 return err;
5853 }
5854 EXPORT_SYMBOL(dev_set_mtu);
5855
5856 /**
5857 * dev_set_group - Change group this device belongs to
5858 * @dev: device
5859 * @new_group: group this device should belong to
5860 */
5861 void dev_set_group(struct net_device *dev, int new_group)
5862 {
5863 dev->group = new_group;
5864 }
5865 EXPORT_SYMBOL(dev_set_group);
5866
5867 /**
5868 * dev_set_mac_address - Change Media Access Control Address
5869 * @dev: device
5870 * @sa: new address
5871 *
5872 * Change the hardware (MAC) address of the device
5873 */
5874 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5875 {
5876 const struct net_device_ops *ops = dev->netdev_ops;
5877 int err;
5878
5879 if (!ops->ndo_set_mac_address)
5880 return -EOPNOTSUPP;
5881 if (sa->sa_family != dev->type)
5882 return -EINVAL;
5883 if (!netif_device_present(dev))
5884 return -ENODEV;
5885 err = ops->ndo_set_mac_address(dev, sa);
5886 if (err)
5887 return err;
5888 dev->addr_assign_type = NET_ADDR_SET;
5889 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5890 add_device_randomness(dev->dev_addr, dev->addr_len);
5891 return 0;
5892 }
5893 EXPORT_SYMBOL(dev_set_mac_address);
5894
5895 /**
5896 * dev_change_carrier - Change device carrier
5897 * @dev: device
5898 * @new_carrier: new value
5899 *
5900 * Change device carrier
5901 */
5902 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5903 {
5904 const struct net_device_ops *ops = dev->netdev_ops;
5905
5906 if (!ops->ndo_change_carrier)
5907 return -EOPNOTSUPP;
5908 if (!netif_device_present(dev))
5909 return -ENODEV;
5910 return ops->ndo_change_carrier(dev, new_carrier);
5911 }
5912 EXPORT_SYMBOL(dev_change_carrier);
5913
5914 /**
5915 * dev_get_phys_port_id - Get device physical port ID
5916 * @dev: device
5917 * @ppid: port ID
5918 *
5919 * Get device physical port ID
5920 */
5921 int dev_get_phys_port_id(struct net_device *dev,
5922 struct netdev_phys_item_id *ppid)
5923 {
5924 const struct net_device_ops *ops = dev->netdev_ops;
5925
5926 if (!ops->ndo_get_phys_port_id)
5927 return -EOPNOTSUPP;
5928 return ops->ndo_get_phys_port_id(dev, ppid);
5929 }
5930 EXPORT_SYMBOL(dev_get_phys_port_id);
5931
5932 /**
5933 * dev_get_phys_port_name - Get device physical port name
5934 * @dev: device
5935 * @name: port name
5936 *
5937 * Get device physical port name
5938 */
5939 int dev_get_phys_port_name(struct net_device *dev,
5940 char *name, size_t len)
5941 {
5942 const struct net_device_ops *ops = dev->netdev_ops;
5943
5944 if (!ops->ndo_get_phys_port_name)
5945 return -EOPNOTSUPP;
5946 return ops->ndo_get_phys_port_name(dev, name, len);
5947 }
5948 EXPORT_SYMBOL(dev_get_phys_port_name);
5949
5950 /**
5951 * dev_new_index - allocate an ifindex
5952 * @net: the applicable net namespace
5953 *
5954 * Returns a suitable unique value for a new device interface
5955 * number. The caller must hold the rtnl semaphore or the
5956 * dev_base_lock to be sure it remains unique.
5957 */
5958 static int dev_new_index(struct net *net)
5959 {
5960 int ifindex = net->ifindex;
5961 for (;;) {
5962 if (++ifindex <= 0)
5963 ifindex = 1;
5964 if (!__dev_get_by_index(net, ifindex))
5965 return net->ifindex = ifindex;
5966 }
5967 }
5968
5969 /* Delayed registration/unregisteration */
5970 static LIST_HEAD(net_todo_list);
5971 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5972
5973 static void net_set_todo(struct net_device *dev)
5974 {
5975 list_add_tail(&dev->todo_list, &net_todo_list);
5976 dev_net(dev)->dev_unreg_count++;
5977 }
5978
5979 static void rollback_registered_many(struct list_head *head)
5980 {
5981 struct net_device *dev, *tmp;
5982 LIST_HEAD(close_head);
5983
5984 BUG_ON(dev_boot_phase);
5985 ASSERT_RTNL();
5986
5987 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5988 /* Some devices call without registering
5989 * for initialization unwind. Remove those
5990 * devices and proceed with the remaining.
5991 */
5992 if (dev->reg_state == NETREG_UNINITIALIZED) {
5993 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5994 dev->name, dev);
5995
5996 WARN_ON(1);
5997 list_del(&dev->unreg_list);
5998 continue;
5999 }
6000 dev->dismantle = true;
6001 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6002 }
6003
6004 /* If device is running, close it first. */
6005 list_for_each_entry(dev, head, unreg_list)
6006 list_add_tail(&dev->close_list, &close_head);
6007 dev_close_many(&close_head, true);
6008
6009 list_for_each_entry(dev, head, unreg_list) {
6010 /* And unlink it from device chain. */
6011 unlist_netdevice(dev);
6012
6013 dev->reg_state = NETREG_UNREGISTERING;
6014 }
6015
6016 synchronize_net();
6017
6018 list_for_each_entry(dev, head, unreg_list) {
6019 struct sk_buff *skb = NULL;
6020
6021 /* Shutdown queueing discipline. */
6022 dev_shutdown(dev);
6023
6024
6025 /* Notify protocols, that we are about to destroy
6026 this device. They should clean all the things.
6027 */
6028 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6029
6030 if (!dev->rtnl_link_ops ||
6031 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6032 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6033 GFP_KERNEL);
6034
6035 /*
6036 * Flush the unicast and multicast chains
6037 */
6038 dev_uc_flush(dev);
6039 dev_mc_flush(dev);
6040
6041 if (dev->netdev_ops->ndo_uninit)
6042 dev->netdev_ops->ndo_uninit(dev);
6043
6044 if (skb)
6045 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6046
6047 /* Notifier chain MUST detach us all upper devices. */
6048 WARN_ON(netdev_has_any_upper_dev(dev));
6049
6050 /* Remove entries from kobject tree */
6051 netdev_unregister_kobject(dev);
6052 #ifdef CONFIG_XPS
6053 /* Remove XPS queueing entries */
6054 netif_reset_xps_queues_gt(dev, 0);
6055 #endif
6056 }
6057
6058 synchronize_net();
6059
6060 list_for_each_entry(dev, head, unreg_list)
6061 dev_put(dev);
6062 }
6063
6064 static void rollback_registered(struct net_device *dev)
6065 {
6066 LIST_HEAD(single);
6067
6068 list_add(&dev->unreg_list, &single);
6069 rollback_registered_many(&single);
6070 list_del(&single);
6071 }
6072
6073 static netdev_features_t netdev_fix_features(struct net_device *dev,
6074 netdev_features_t features)
6075 {
6076 /* Fix illegal checksum combinations */
6077 if ((features & NETIF_F_HW_CSUM) &&
6078 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6079 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6080 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6081 }
6082
6083 /* TSO requires that SG is present as well. */
6084 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6085 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6086 features &= ~NETIF_F_ALL_TSO;
6087 }
6088
6089 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6090 !(features & NETIF_F_IP_CSUM)) {
6091 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6092 features &= ~NETIF_F_TSO;
6093 features &= ~NETIF_F_TSO_ECN;
6094 }
6095
6096 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6097 !(features & NETIF_F_IPV6_CSUM)) {
6098 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6099 features &= ~NETIF_F_TSO6;
6100 }
6101
6102 /* TSO ECN requires that TSO is present as well. */
6103 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6104 features &= ~NETIF_F_TSO_ECN;
6105
6106 /* Software GSO depends on SG. */
6107 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6108 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6109 features &= ~NETIF_F_GSO;
6110 }
6111
6112 /* UFO needs SG and checksumming */
6113 if (features & NETIF_F_UFO) {
6114 /* maybe split UFO into V4 and V6? */
6115 if (!((features & NETIF_F_GEN_CSUM) ||
6116 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6117 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6118 netdev_dbg(dev,
6119 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6120 features &= ~NETIF_F_UFO;
6121 }
6122
6123 if (!(features & NETIF_F_SG)) {
6124 netdev_dbg(dev,
6125 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6126 features &= ~NETIF_F_UFO;
6127 }
6128 }
6129
6130 #ifdef CONFIG_NET_RX_BUSY_POLL
6131 if (dev->netdev_ops->ndo_busy_poll)
6132 features |= NETIF_F_BUSY_POLL;
6133 else
6134 #endif
6135 features &= ~NETIF_F_BUSY_POLL;
6136
6137 return features;
6138 }
6139
6140 int __netdev_update_features(struct net_device *dev)
6141 {
6142 netdev_features_t features;
6143 int err = 0;
6144
6145 ASSERT_RTNL();
6146
6147 features = netdev_get_wanted_features(dev);
6148
6149 if (dev->netdev_ops->ndo_fix_features)
6150 features = dev->netdev_ops->ndo_fix_features(dev, features);
6151
6152 /* driver might be less strict about feature dependencies */
6153 features = netdev_fix_features(dev, features);
6154
6155 if (dev->features == features)
6156 return 0;
6157
6158 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6159 &dev->features, &features);
6160
6161 if (dev->netdev_ops->ndo_set_features)
6162 err = dev->netdev_ops->ndo_set_features(dev, features);
6163
6164 if (unlikely(err < 0)) {
6165 netdev_err(dev,
6166 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6167 err, &features, &dev->features);
6168 return -1;
6169 }
6170
6171 if (!err)
6172 dev->features = features;
6173
6174 return 1;
6175 }
6176
6177 /**
6178 * netdev_update_features - recalculate device features
6179 * @dev: the device to check
6180 *
6181 * Recalculate dev->features set and send notifications if it
6182 * has changed. Should be called after driver or hardware dependent
6183 * conditions might have changed that influence the features.
6184 */
6185 void netdev_update_features(struct net_device *dev)
6186 {
6187 if (__netdev_update_features(dev))
6188 netdev_features_change(dev);
6189 }
6190 EXPORT_SYMBOL(netdev_update_features);
6191
6192 /**
6193 * netdev_change_features - recalculate device features
6194 * @dev: the device to check
6195 *
6196 * Recalculate dev->features set and send notifications even
6197 * if they have not changed. Should be called instead of
6198 * netdev_update_features() if also dev->vlan_features might
6199 * have changed to allow the changes to be propagated to stacked
6200 * VLAN devices.
6201 */
6202 void netdev_change_features(struct net_device *dev)
6203 {
6204 __netdev_update_features(dev);
6205 netdev_features_change(dev);
6206 }
6207 EXPORT_SYMBOL(netdev_change_features);
6208
6209 /**
6210 * netif_stacked_transfer_operstate - transfer operstate
6211 * @rootdev: the root or lower level device to transfer state from
6212 * @dev: the device to transfer operstate to
6213 *
6214 * Transfer operational state from root to device. This is normally
6215 * called when a stacking relationship exists between the root
6216 * device and the device(a leaf device).
6217 */
6218 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6219 struct net_device *dev)
6220 {
6221 if (rootdev->operstate == IF_OPER_DORMANT)
6222 netif_dormant_on(dev);
6223 else
6224 netif_dormant_off(dev);
6225
6226 if (netif_carrier_ok(rootdev)) {
6227 if (!netif_carrier_ok(dev))
6228 netif_carrier_on(dev);
6229 } else {
6230 if (netif_carrier_ok(dev))
6231 netif_carrier_off(dev);
6232 }
6233 }
6234 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6235
6236 #ifdef CONFIG_SYSFS
6237 static int netif_alloc_rx_queues(struct net_device *dev)
6238 {
6239 unsigned int i, count = dev->num_rx_queues;
6240 struct netdev_rx_queue *rx;
6241 size_t sz = count * sizeof(*rx);
6242
6243 BUG_ON(count < 1);
6244
6245 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6246 if (!rx) {
6247 rx = vzalloc(sz);
6248 if (!rx)
6249 return -ENOMEM;
6250 }
6251 dev->_rx = rx;
6252
6253 for (i = 0; i < count; i++)
6254 rx[i].dev = dev;
6255 return 0;
6256 }
6257 #endif
6258
6259 static void netdev_init_one_queue(struct net_device *dev,
6260 struct netdev_queue *queue, void *_unused)
6261 {
6262 /* Initialize queue lock */
6263 spin_lock_init(&queue->_xmit_lock);
6264 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6265 queue->xmit_lock_owner = -1;
6266 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6267 queue->dev = dev;
6268 #ifdef CONFIG_BQL
6269 dql_init(&queue->dql, HZ);
6270 #endif
6271 }
6272
6273 static void netif_free_tx_queues(struct net_device *dev)
6274 {
6275 kvfree(dev->_tx);
6276 }
6277
6278 static int netif_alloc_netdev_queues(struct net_device *dev)
6279 {
6280 unsigned int count = dev->num_tx_queues;
6281 struct netdev_queue *tx;
6282 size_t sz = count * sizeof(*tx);
6283
6284 BUG_ON(count < 1 || count > 0xffff);
6285
6286 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6287 if (!tx) {
6288 tx = vzalloc(sz);
6289 if (!tx)
6290 return -ENOMEM;
6291 }
6292 dev->_tx = tx;
6293
6294 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6295 spin_lock_init(&dev->tx_global_lock);
6296
6297 return 0;
6298 }
6299
6300 /**
6301 * register_netdevice - register a network device
6302 * @dev: device to register
6303 *
6304 * Take a completed network device structure and add it to the kernel
6305 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6306 * chain. 0 is returned on success. A negative errno code is returned
6307 * on a failure to set up the device, or if the name is a duplicate.
6308 *
6309 * Callers must hold the rtnl semaphore. You may want
6310 * register_netdev() instead of this.
6311 *
6312 * BUGS:
6313 * The locking appears insufficient to guarantee two parallel registers
6314 * will not get the same name.
6315 */
6316
6317 int register_netdevice(struct net_device *dev)
6318 {
6319 int ret;
6320 struct net *net = dev_net(dev);
6321
6322 BUG_ON(dev_boot_phase);
6323 ASSERT_RTNL();
6324
6325 might_sleep();
6326
6327 /* When net_device's are persistent, this will be fatal. */
6328 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6329 BUG_ON(!net);
6330
6331 spin_lock_init(&dev->addr_list_lock);
6332 netdev_set_addr_lockdep_class(dev);
6333
6334 ret = dev_get_valid_name(net, dev, dev->name);
6335 if (ret < 0)
6336 goto out;
6337
6338 /* Init, if this function is available */
6339 if (dev->netdev_ops->ndo_init) {
6340 ret = dev->netdev_ops->ndo_init(dev);
6341 if (ret) {
6342 if (ret > 0)
6343 ret = -EIO;
6344 goto out;
6345 }
6346 }
6347
6348 if (((dev->hw_features | dev->features) &
6349 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6350 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6351 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6352 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6353 ret = -EINVAL;
6354 goto err_uninit;
6355 }
6356
6357 ret = -EBUSY;
6358 if (!dev->ifindex)
6359 dev->ifindex = dev_new_index(net);
6360 else if (__dev_get_by_index(net, dev->ifindex))
6361 goto err_uninit;
6362
6363 /* Transfer changeable features to wanted_features and enable
6364 * software offloads (GSO and GRO).
6365 */
6366 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6367 dev->features |= NETIF_F_SOFT_FEATURES;
6368 dev->wanted_features = dev->features & dev->hw_features;
6369
6370 if (!(dev->flags & IFF_LOOPBACK)) {
6371 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6372 }
6373
6374 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6375 */
6376 dev->vlan_features |= NETIF_F_HIGHDMA;
6377
6378 /* Make NETIF_F_SG inheritable to tunnel devices.
6379 */
6380 dev->hw_enc_features |= NETIF_F_SG;
6381
6382 /* Make NETIF_F_SG inheritable to MPLS.
6383 */
6384 dev->mpls_features |= NETIF_F_SG;
6385
6386 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6387 ret = notifier_to_errno(ret);
6388 if (ret)
6389 goto err_uninit;
6390
6391 ret = netdev_register_kobject(dev);
6392 if (ret)
6393 goto err_uninit;
6394 dev->reg_state = NETREG_REGISTERED;
6395
6396 __netdev_update_features(dev);
6397
6398 /*
6399 * Default initial state at registry is that the
6400 * device is present.
6401 */
6402
6403 set_bit(__LINK_STATE_PRESENT, &dev->state);
6404
6405 linkwatch_init_dev(dev);
6406
6407 dev_init_scheduler(dev);
6408 dev_hold(dev);
6409 list_netdevice(dev);
6410 add_device_randomness(dev->dev_addr, dev->addr_len);
6411
6412 /* If the device has permanent device address, driver should
6413 * set dev_addr and also addr_assign_type should be set to
6414 * NET_ADDR_PERM (default value).
6415 */
6416 if (dev->addr_assign_type == NET_ADDR_PERM)
6417 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6418
6419 /* Notify protocols, that a new device appeared. */
6420 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6421 ret = notifier_to_errno(ret);
6422 if (ret) {
6423 rollback_registered(dev);
6424 dev->reg_state = NETREG_UNREGISTERED;
6425 }
6426 /*
6427 * Prevent userspace races by waiting until the network
6428 * device is fully setup before sending notifications.
6429 */
6430 if (!dev->rtnl_link_ops ||
6431 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6432 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6433
6434 out:
6435 return ret;
6436
6437 err_uninit:
6438 if (dev->netdev_ops->ndo_uninit)
6439 dev->netdev_ops->ndo_uninit(dev);
6440 goto out;
6441 }
6442 EXPORT_SYMBOL(register_netdevice);
6443
6444 /**
6445 * init_dummy_netdev - init a dummy network device for NAPI
6446 * @dev: device to init
6447 *
6448 * This takes a network device structure and initialize the minimum
6449 * amount of fields so it can be used to schedule NAPI polls without
6450 * registering a full blown interface. This is to be used by drivers
6451 * that need to tie several hardware interfaces to a single NAPI
6452 * poll scheduler due to HW limitations.
6453 */
6454 int init_dummy_netdev(struct net_device *dev)
6455 {
6456 /* Clear everything. Note we don't initialize spinlocks
6457 * are they aren't supposed to be taken by any of the
6458 * NAPI code and this dummy netdev is supposed to be
6459 * only ever used for NAPI polls
6460 */
6461 memset(dev, 0, sizeof(struct net_device));
6462
6463 /* make sure we BUG if trying to hit standard
6464 * register/unregister code path
6465 */
6466 dev->reg_state = NETREG_DUMMY;
6467
6468 /* NAPI wants this */
6469 INIT_LIST_HEAD(&dev->napi_list);
6470
6471 /* a dummy interface is started by default */
6472 set_bit(__LINK_STATE_PRESENT, &dev->state);
6473 set_bit(__LINK_STATE_START, &dev->state);
6474
6475 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6476 * because users of this 'device' dont need to change
6477 * its refcount.
6478 */
6479
6480 return 0;
6481 }
6482 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6483
6484
6485 /**
6486 * register_netdev - register a network device
6487 * @dev: device to register
6488 *
6489 * Take a completed network device structure and add it to the kernel
6490 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6491 * chain. 0 is returned on success. A negative errno code is returned
6492 * on a failure to set up the device, or if the name is a duplicate.
6493 *
6494 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6495 * and expands the device name if you passed a format string to
6496 * alloc_netdev.
6497 */
6498 int register_netdev(struct net_device *dev)
6499 {
6500 int err;
6501
6502 rtnl_lock();
6503 err = register_netdevice(dev);
6504 rtnl_unlock();
6505 return err;
6506 }
6507 EXPORT_SYMBOL(register_netdev);
6508
6509 int netdev_refcnt_read(const struct net_device *dev)
6510 {
6511 int i, refcnt = 0;
6512
6513 for_each_possible_cpu(i)
6514 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6515 return refcnt;
6516 }
6517 EXPORT_SYMBOL(netdev_refcnt_read);
6518
6519 /**
6520 * netdev_wait_allrefs - wait until all references are gone.
6521 * @dev: target net_device
6522 *
6523 * This is called when unregistering network devices.
6524 *
6525 * Any protocol or device that holds a reference should register
6526 * for netdevice notification, and cleanup and put back the
6527 * reference if they receive an UNREGISTER event.
6528 * We can get stuck here if buggy protocols don't correctly
6529 * call dev_put.
6530 */
6531 static void netdev_wait_allrefs(struct net_device *dev)
6532 {
6533 unsigned long rebroadcast_time, warning_time;
6534 int refcnt;
6535
6536 linkwatch_forget_dev(dev);
6537
6538 rebroadcast_time = warning_time = jiffies;
6539 refcnt = netdev_refcnt_read(dev);
6540
6541 while (refcnt != 0) {
6542 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6543 rtnl_lock();
6544
6545 /* Rebroadcast unregister notification */
6546 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6547
6548 __rtnl_unlock();
6549 rcu_barrier();
6550 rtnl_lock();
6551
6552 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6553 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6554 &dev->state)) {
6555 /* We must not have linkwatch events
6556 * pending on unregister. If this
6557 * happens, we simply run the queue
6558 * unscheduled, resulting in a noop
6559 * for this device.
6560 */
6561 linkwatch_run_queue();
6562 }
6563
6564 __rtnl_unlock();
6565
6566 rebroadcast_time = jiffies;
6567 }
6568
6569 msleep(250);
6570
6571 refcnt = netdev_refcnt_read(dev);
6572
6573 if (time_after(jiffies, warning_time + 10 * HZ)) {
6574 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6575 dev->name, refcnt);
6576 warning_time = jiffies;
6577 }
6578 }
6579 }
6580
6581 /* The sequence is:
6582 *
6583 * rtnl_lock();
6584 * ...
6585 * register_netdevice(x1);
6586 * register_netdevice(x2);
6587 * ...
6588 * unregister_netdevice(y1);
6589 * unregister_netdevice(y2);
6590 * ...
6591 * rtnl_unlock();
6592 * free_netdev(y1);
6593 * free_netdev(y2);
6594 *
6595 * We are invoked by rtnl_unlock().
6596 * This allows us to deal with problems:
6597 * 1) We can delete sysfs objects which invoke hotplug
6598 * without deadlocking with linkwatch via keventd.
6599 * 2) Since we run with the RTNL semaphore not held, we can sleep
6600 * safely in order to wait for the netdev refcnt to drop to zero.
6601 *
6602 * We must not return until all unregister events added during
6603 * the interval the lock was held have been completed.
6604 */
6605 void netdev_run_todo(void)
6606 {
6607 struct list_head list;
6608
6609 /* Snapshot list, allow later requests */
6610 list_replace_init(&net_todo_list, &list);
6611
6612 __rtnl_unlock();
6613
6614
6615 /* Wait for rcu callbacks to finish before next phase */
6616 if (!list_empty(&list))
6617 rcu_barrier();
6618
6619 while (!list_empty(&list)) {
6620 struct net_device *dev
6621 = list_first_entry(&list, struct net_device, todo_list);
6622 list_del(&dev->todo_list);
6623
6624 rtnl_lock();
6625 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6626 __rtnl_unlock();
6627
6628 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6629 pr_err("network todo '%s' but state %d\n",
6630 dev->name, dev->reg_state);
6631 dump_stack();
6632 continue;
6633 }
6634
6635 dev->reg_state = NETREG_UNREGISTERED;
6636
6637 on_each_cpu(flush_backlog, dev, 1);
6638
6639 netdev_wait_allrefs(dev);
6640
6641 /* paranoia */
6642 BUG_ON(netdev_refcnt_read(dev));
6643 BUG_ON(!list_empty(&dev->ptype_all));
6644 BUG_ON(!list_empty(&dev->ptype_specific));
6645 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6646 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6647 WARN_ON(dev->dn_ptr);
6648
6649 if (dev->destructor)
6650 dev->destructor(dev);
6651
6652 /* Report a network device has been unregistered */
6653 rtnl_lock();
6654 dev_net(dev)->dev_unreg_count--;
6655 __rtnl_unlock();
6656 wake_up(&netdev_unregistering_wq);
6657
6658 /* Free network device */
6659 kobject_put(&dev->dev.kobj);
6660 }
6661 }
6662
6663 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6664 * fields in the same order, with only the type differing.
6665 */
6666 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6667 const struct net_device_stats *netdev_stats)
6668 {
6669 #if BITS_PER_LONG == 64
6670 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6671 memcpy(stats64, netdev_stats, sizeof(*stats64));
6672 #else
6673 size_t i, n = sizeof(*stats64) / sizeof(u64);
6674 const unsigned long *src = (const unsigned long *)netdev_stats;
6675 u64 *dst = (u64 *)stats64;
6676
6677 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6678 sizeof(*stats64) / sizeof(u64));
6679 for (i = 0; i < n; i++)
6680 dst[i] = src[i];
6681 #endif
6682 }
6683 EXPORT_SYMBOL(netdev_stats_to_stats64);
6684
6685 /**
6686 * dev_get_stats - get network device statistics
6687 * @dev: device to get statistics from
6688 * @storage: place to store stats
6689 *
6690 * Get network statistics from device. Return @storage.
6691 * The device driver may provide its own method by setting
6692 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6693 * otherwise the internal statistics structure is used.
6694 */
6695 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6696 struct rtnl_link_stats64 *storage)
6697 {
6698 const struct net_device_ops *ops = dev->netdev_ops;
6699
6700 if (ops->ndo_get_stats64) {
6701 memset(storage, 0, sizeof(*storage));
6702 ops->ndo_get_stats64(dev, storage);
6703 } else if (ops->ndo_get_stats) {
6704 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6705 } else {
6706 netdev_stats_to_stats64(storage, &dev->stats);
6707 }
6708 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6709 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6710 return storage;
6711 }
6712 EXPORT_SYMBOL(dev_get_stats);
6713
6714 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6715 {
6716 struct netdev_queue *queue = dev_ingress_queue(dev);
6717
6718 #ifdef CONFIG_NET_CLS_ACT
6719 if (queue)
6720 return queue;
6721 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6722 if (!queue)
6723 return NULL;
6724 netdev_init_one_queue(dev, queue, NULL);
6725 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6726 queue->qdisc_sleeping = &noop_qdisc;
6727 rcu_assign_pointer(dev->ingress_queue, queue);
6728 #endif
6729 return queue;
6730 }
6731
6732 static const struct ethtool_ops default_ethtool_ops;
6733
6734 void netdev_set_default_ethtool_ops(struct net_device *dev,
6735 const struct ethtool_ops *ops)
6736 {
6737 if (dev->ethtool_ops == &default_ethtool_ops)
6738 dev->ethtool_ops = ops;
6739 }
6740 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6741
6742 void netdev_freemem(struct net_device *dev)
6743 {
6744 char *addr = (char *)dev - dev->padded;
6745
6746 kvfree(addr);
6747 }
6748
6749 /**
6750 * alloc_netdev_mqs - allocate network device
6751 * @sizeof_priv: size of private data to allocate space for
6752 * @name: device name format string
6753 * @name_assign_type: origin of device name
6754 * @setup: callback to initialize device
6755 * @txqs: the number of TX subqueues to allocate
6756 * @rxqs: the number of RX subqueues to allocate
6757 *
6758 * Allocates a struct net_device with private data area for driver use
6759 * and performs basic initialization. Also allocates subqueue structs
6760 * for each queue on the device.
6761 */
6762 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6763 unsigned char name_assign_type,
6764 void (*setup)(struct net_device *),
6765 unsigned int txqs, unsigned int rxqs)
6766 {
6767 struct net_device *dev;
6768 size_t alloc_size;
6769 struct net_device *p;
6770
6771 BUG_ON(strlen(name) >= sizeof(dev->name));
6772
6773 if (txqs < 1) {
6774 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6775 return NULL;
6776 }
6777
6778 #ifdef CONFIG_SYSFS
6779 if (rxqs < 1) {
6780 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6781 return NULL;
6782 }
6783 #endif
6784
6785 alloc_size = sizeof(struct net_device);
6786 if (sizeof_priv) {
6787 /* ensure 32-byte alignment of private area */
6788 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6789 alloc_size += sizeof_priv;
6790 }
6791 /* ensure 32-byte alignment of whole construct */
6792 alloc_size += NETDEV_ALIGN - 1;
6793
6794 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6795 if (!p)
6796 p = vzalloc(alloc_size);
6797 if (!p)
6798 return NULL;
6799
6800 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6801 dev->padded = (char *)dev - (char *)p;
6802
6803 dev->pcpu_refcnt = alloc_percpu(int);
6804 if (!dev->pcpu_refcnt)
6805 goto free_dev;
6806
6807 if (dev_addr_init(dev))
6808 goto free_pcpu;
6809
6810 dev_mc_init(dev);
6811 dev_uc_init(dev);
6812
6813 dev_net_set(dev, &init_net);
6814
6815 dev->gso_max_size = GSO_MAX_SIZE;
6816 dev->gso_max_segs = GSO_MAX_SEGS;
6817 dev->gso_min_segs = 0;
6818
6819 INIT_LIST_HEAD(&dev->napi_list);
6820 INIT_LIST_HEAD(&dev->unreg_list);
6821 INIT_LIST_HEAD(&dev->close_list);
6822 INIT_LIST_HEAD(&dev->link_watch_list);
6823 INIT_LIST_HEAD(&dev->adj_list.upper);
6824 INIT_LIST_HEAD(&dev->adj_list.lower);
6825 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6826 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6827 INIT_LIST_HEAD(&dev->ptype_all);
6828 INIT_LIST_HEAD(&dev->ptype_specific);
6829 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6830 setup(dev);
6831
6832 dev->num_tx_queues = txqs;
6833 dev->real_num_tx_queues = txqs;
6834 if (netif_alloc_netdev_queues(dev))
6835 goto free_all;
6836
6837 #ifdef CONFIG_SYSFS
6838 dev->num_rx_queues = rxqs;
6839 dev->real_num_rx_queues = rxqs;
6840 if (netif_alloc_rx_queues(dev))
6841 goto free_all;
6842 #endif
6843
6844 strcpy(dev->name, name);
6845 dev->name_assign_type = name_assign_type;
6846 dev->group = INIT_NETDEV_GROUP;
6847 if (!dev->ethtool_ops)
6848 dev->ethtool_ops = &default_ethtool_ops;
6849 return dev;
6850
6851 free_all:
6852 free_netdev(dev);
6853 return NULL;
6854
6855 free_pcpu:
6856 free_percpu(dev->pcpu_refcnt);
6857 free_dev:
6858 netdev_freemem(dev);
6859 return NULL;
6860 }
6861 EXPORT_SYMBOL(alloc_netdev_mqs);
6862
6863 /**
6864 * free_netdev - free network device
6865 * @dev: device
6866 *
6867 * This function does the last stage of destroying an allocated device
6868 * interface. The reference to the device object is released.
6869 * If this is the last reference then it will be freed.
6870 */
6871 void free_netdev(struct net_device *dev)
6872 {
6873 struct napi_struct *p, *n;
6874
6875 netif_free_tx_queues(dev);
6876 #ifdef CONFIG_SYSFS
6877 kvfree(dev->_rx);
6878 #endif
6879
6880 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6881
6882 /* Flush device addresses */
6883 dev_addr_flush(dev);
6884
6885 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6886 netif_napi_del(p);
6887
6888 free_percpu(dev->pcpu_refcnt);
6889 dev->pcpu_refcnt = NULL;
6890
6891 /* Compatibility with error handling in drivers */
6892 if (dev->reg_state == NETREG_UNINITIALIZED) {
6893 netdev_freemem(dev);
6894 return;
6895 }
6896
6897 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6898 dev->reg_state = NETREG_RELEASED;
6899
6900 /* will free via device release */
6901 put_device(&dev->dev);
6902 }
6903 EXPORT_SYMBOL(free_netdev);
6904
6905 /**
6906 * synchronize_net - Synchronize with packet receive processing
6907 *
6908 * Wait for packets currently being received to be done.
6909 * Does not block later packets from starting.
6910 */
6911 void synchronize_net(void)
6912 {
6913 might_sleep();
6914 if (rtnl_is_locked())
6915 synchronize_rcu_expedited();
6916 else
6917 synchronize_rcu();
6918 }
6919 EXPORT_SYMBOL(synchronize_net);
6920
6921 /**
6922 * unregister_netdevice_queue - remove device from the kernel
6923 * @dev: device
6924 * @head: list
6925 *
6926 * This function shuts down a device interface and removes it
6927 * from the kernel tables.
6928 * If head not NULL, device is queued to be unregistered later.
6929 *
6930 * Callers must hold the rtnl semaphore. You may want
6931 * unregister_netdev() instead of this.
6932 */
6933
6934 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6935 {
6936 ASSERT_RTNL();
6937
6938 if (head) {
6939 list_move_tail(&dev->unreg_list, head);
6940 } else {
6941 rollback_registered(dev);
6942 /* Finish processing unregister after unlock */
6943 net_set_todo(dev);
6944 }
6945 }
6946 EXPORT_SYMBOL(unregister_netdevice_queue);
6947
6948 /**
6949 * unregister_netdevice_many - unregister many devices
6950 * @head: list of devices
6951 *
6952 * Note: As most callers use a stack allocated list_head,
6953 * we force a list_del() to make sure stack wont be corrupted later.
6954 */
6955 void unregister_netdevice_many(struct list_head *head)
6956 {
6957 struct net_device *dev;
6958
6959 if (!list_empty(head)) {
6960 rollback_registered_many(head);
6961 list_for_each_entry(dev, head, unreg_list)
6962 net_set_todo(dev);
6963 list_del(head);
6964 }
6965 }
6966 EXPORT_SYMBOL(unregister_netdevice_many);
6967
6968 /**
6969 * unregister_netdev - remove device from the kernel
6970 * @dev: device
6971 *
6972 * This function shuts down a device interface and removes it
6973 * from the kernel tables.
6974 *
6975 * This is just a wrapper for unregister_netdevice that takes
6976 * the rtnl semaphore. In general you want to use this and not
6977 * unregister_netdevice.
6978 */
6979 void unregister_netdev(struct net_device *dev)
6980 {
6981 rtnl_lock();
6982 unregister_netdevice(dev);
6983 rtnl_unlock();
6984 }
6985 EXPORT_SYMBOL(unregister_netdev);
6986
6987 /**
6988 * dev_change_net_namespace - move device to different nethost namespace
6989 * @dev: device
6990 * @net: network namespace
6991 * @pat: If not NULL name pattern to try if the current device name
6992 * is already taken in the destination network namespace.
6993 *
6994 * This function shuts down a device interface and moves it
6995 * to a new network namespace. On success 0 is returned, on
6996 * a failure a netagive errno code is returned.
6997 *
6998 * Callers must hold the rtnl semaphore.
6999 */
7000
7001 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7002 {
7003 int err;
7004
7005 ASSERT_RTNL();
7006
7007 /* Don't allow namespace local devices to be moved. */
7008 err = -EINVAL;
7009 if (dev->features & NETIF_F_NETNS_LOCAL)
7010 goto out;
7011
7012 /* Ensure the device has been registrered */
7013 if (dev->reg_state != NETREG_REGISTERED)
7014 goto out;
7015
7016 /* Get out if there is nothing todo */
7017 err = 0;
7018 if (net_eq(dev_net(dev), net))
7019 goto out;
7020
7021 /* Pick the destination device name, and ensure
7022 * we can use it in the destination network namespace.
7023 */
7024 err = -EEXIST;
7025 if (__dev_get_by_name(net, dev->name)) {
7026 /* We get here if we can't use the current device name */
7027 if (!pat)
7028 goto out;
7029 if (dev_get_valid_name(net, dev, pat) < 0)
7030 goto out;
7031 }
7032
7033 /*
7034 * And now a mini version of register_netdevice unregister_netdevice.
7035 */
7036
7037 /* If device is running close it first. */
7038 dev_close(dev);
7039
7040 /* And unlink it from device chain */
7041 err = -ENODEV;
7042 unlist_netdevice(dev);
7043
7044 synchronize_net();
7045
7046 /* Shutdown queueing discipline. */
7047 dev_shutdown(dev);
7048
7049 /* Notify protocols, that we are about to destroy
7050 this device. They should clean all the things.
7051
7052 Note that dev->reg_state stays at NETREG_REGISTERED.
7053 This is wanted because this way 8021q and macvlan know
7054 the device is just moving and can keep their slaves up.
7055 */
7056 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7057 rcu_barrier();
7058 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7059 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7060
7061 /*
7062 * Flush the unicast and multicast chains
7063 */
7064 dev_uc_flush(dev);
7065 dev_mc_flush(dev);
7066
7067 /* Send a netdev-removed uevent to the old namespace */
7068 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7069 netdev_adjacent_del_links(dev);
7070
7071 /* Actually switch the network namespace */
7072 dev_net_set(dev, net);
7073
7074 /* If there is an ifindex conflict assign a new one */
7075 if (__dev_get_by_index(net, dev->ifindex))
7076 dev->ifindex = dev_new_index(net);
7077
7078 /* Send a netdev-add uevent to the new namespace */
7079 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7080 netdev_adjacent_add_links(dev);
7081
7082 /* Fixup kobjects */
7083 err = device_rename(&dev->dev, dev->name);
7084 WARN_ON(err);
7085
7086 /* Add the device back in the hashes */
7087 list_netdevice(dev);
7088
7089 /* Notify protocols, that a new device appeared. */
7090 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7091
7092 /*
7093 * Prevent userspace races by waiting until the network
7094 * device is fully setup before sending notifications.
7095 */
7096 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7097
7098 synchronize_net();
7099 err = 0;
7100 out:
7101 return err;
7102 }
7103 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7104
7105 static int dev_cpu_callback(struct notifier_block *nfb,
7106 unsigned long action,
7107 void *ocpu)
7108 {
7109 struct sk_buff **list_skb;
7110 struct sk_buff *skb;
7111 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7112 struct softnet_data *sd, *oldsd;
7113
7114 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7115 return NOTIFY_OK;
7116
7117 local_irq_disable();
7118 cpu = smp_processor_id();
7119 sd = &per_cpu(softnet_data, cpu);
7120 oldsd = &per_cpu(softnet_data, oldcpu);
7121
7122 /* Find end of our completion_queue. */
7123 list_skb = &sd->completion_queue;
7124 while (*list_skb)
7125 list_skb = &(*list_skb)->next;
7126 /* Append completion queue from offline CPU. */
7127 *list_skb = oldsd->completion_queue;
7128 oldsd->completion_queue = NULL;
7129
7130 /* Append output queue from offline CPU. */
7131 if (oldsd->output_queue) {
7132 *sd->output_queue_tailp = oldsd->output_queue;
7133 sd->output_queue_tailp = oldsd->output_queue_tailp;
7134 oldsd->output_queue = NULL;
7135 oldsd->output_queue_tailp = &oldsd->output_queue;
7136 }
7137 /* Append NAPI poll list from offline CPU, with one exception :
7138 * process_backlog() must be called by cpu owning percpu backlog.
7139 * We properly handle process_queue & input_pkt_queue later.
7140 */
7141 while (!list_empty(&oldsd->poll_list)) {
7142 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7143 struct napi_struct,
7144 poll_list);
7145
7146 list_del_init(&napi->poll_list);
7147 if (napi->poll == process_backlog)
7148 napi->state = 0;
7149 else
7150 ____napi_schedule(sd, napi);
7151 }
7152
7153 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7154 local_irq_enable();
7155
7156 /* Process offline CPU's input_pkt_queue */
7157 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7158 netif_rx_ni(skb);
7159 input_queue_head_incr(oldsd);
7160 }
7161 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7162 netif_rx_ni(skb);
7163 input_queue_head_incr(oldsd);
7164 }
7165
7166 return NOTIFY_OK;
7167 }
7168
7169
7170 /**
7171 * netdev_increment_features - increment feature set by one
7172 * @all: current feature set
7173 * @one: new feature set
7174 * @mask: mask feature set
7175 *
7176 * Computes a new feature set after adding a device with feature set
7177 * @one to the master device with current feature set @all. Will not
7178 * enable anything that is off in @mask. Returns the new feature set.
7179 */
7180 netdev_features_t netdev_increment_features(netdev_features_t all,
7181 netdev_features_t one, netdev_features_t mask)
7182 {
7183 if (mask & NETIF_F_GEN_CSUM)
7184 mask |= NETIF_F_ALL_CSUM;
7185 mask |= NETIF_F_VLAN_CHALLENGED;
7186
7187 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7188 all &= one | ~NETIF_F_ALL_FOR_ALL;
7189
7190 /* If one device supports hw checksumming, set for all. */
7191 if (all & NETIF_F_GEN_CSUM)
7192 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7193
7194 return all;
7195 }
7196 EXPORT_SYMBOL(netdev_increment_features);
7197
7198 static struct hlist_head * __net_init netdev_create_hash(void)
7199 {
7200 int i;
7201 struct hlist_head *hash;
7202
7203 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7204 if (hash != NULL)
7205 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7206 INIT_HLIST_HEAD(&hash[i]);
7207
7208 return hash;
7209 }
7210
7211 /* Initialize per network namespace state */
7212 static int __net_init netdev_init(struct net *net)
7213 {
7214 if (net != &init_net)
7215 INIT_LIST_HEAD(&net->dev_base_head);
7216
7217 net->dev_name_head = netdev_create_hash();
7218 if (net->dev_name_head == NULL)
7219 goto err_name;
7220
7221 net->dev_index_head = netdev_create_hash();
7222 if (net->dev_index_head == NULL)
7223 goto err_idx;
7224
7225 return 0;
7226
7227 err_idx:
7228 kfree(net->dev_name_head);
7229 err_name:
7230 return -ENOMEM;
7231 }
7232
7233 /**
7234 * netdev_drivername - network driver for the device
7235 * @dev: network device
7236 *
7237 * Determine network driver for device.
7238 */
7239 const char *netdev_drivername(const struct net_device *dev)
7240 {
7241 const struct device_driver *driver;
7242 const struct device *parent;
7243 const char *empty = "";
7244
7245 parent = dev->dev.parent;
7246 if (!parent)
7247 return empty;
7248
7249 driver = parent->driver;
7250 if (driver && driver->name)
7251 return driver->name;
7252 return empty;
7253 }
7254
7255 static void __netdev_printk(const char *level, const struct net_device *dev,
7256 struct va_format *vaf)
7257 {
7258 if (dev && dev->dev.parent) {
7259 dev_printk_emit(level[1] - '0',
7260 dev->dev.parent,
7261 "%s %s %s%s: %pV",
7262 dev_driver_string(dev->dev.parent),
7263 dev_name(dev->dev.parent),
7264 netdev_name(dev), netdev_reg_state(dev),
7265 vaf);
7266 } else if (dev) {
7267 printk("%s%s%s: %pV",
7268 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7269 } else {
7270 printk("%s(NULL net_device): %pV", level, vaf);
7271 }
7272 }
7273
7274 void netdev_printk(const char *level, const struct net_device *dev,
7275 const char *format, ...)
7276 {
7277 struct va_format vaf;
7278 va_list args;
7279
7280 va_start(args, format);
7281
7282 vaf.fmt = format;
7283 vaf.va = &args;
7284
7285 __netdev_printk(level, dev, &vaf);
7286
7287 va_end(args);
7288 }
7289 EXPORT_SYMBOL(netdev_printk);
7290
7291 #define define_netdev_printk_level(func, level) \
7292 void func(const struct net_device *dev, const char *fmt, ...) \
7293 { \
7294 struct va_format vaf; \
7295 va_list args; \
7296 \
7297 va_start(args, fmt); \
7298 \
7299 vaf.fmt = fmt; \
7300 vaf.va = &args; \
7301 \
7302 __netdev_printk(level, dev, &vaf); \
7303 \
7304 va_end(args); \
7305 } \
7306 EXPORT_SYMBOL(func);
7307
7308 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7309 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7310 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7311 define_netdev_printk_level(netdev_err, KERN_ERR);
7312 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7313 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7314 define_netdev_printk_level(netdev_info, KERN_INFO);
7315
7316 static void __net_exit netdev_exit(struct net *net)
7317 {
7318 kfree(net->dev_name_head);
7319 kfree(net->dev_index_head);
7320 }
7321
7322 static struct pernet_operations __net_initdata netdev_net_ops = {
7323 .init = netdev_init,
7324 .exit = netdev_exit,
7325 };
7326
7327 static void __net_exit default_device_exit(struct net *net)
7328 {
7329 struct net_device *dev, *aux;
7330 /*
7331 * Push all migratable network devices back to the
7332 * initial network namespace
7333 */
7334 rtnl_lock();
7335 for_each_netdev_safe(net, dev, aux) {
7336 int err;
7337 char fb_name[IFNAMSIZ];
7338
7339 /* Ignore unmoveable devices (i.e. loopback) */
7340 if (dev->features & NETIF_F_NETNS_LOCAL)
7341 continue;
7342
7343 /* Leave virtual devices for the generic cleanup */
7344 if (dev->rtnl_link_ops)
7345 continue;
7346
7347 /* Push remaining network devices to init_net */
7348 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7349 err = dev_change_net_namespace(dev, &init_net, fb_name);
7350 if (err) {
7351 pr_emerg("%s: failed to move %s to init_net: %d\n",
7352 __func__, dev->name, err);
7353 BUG();
7354 }
7355 }
7356 rtnl_unlock();
7357 }
7358
7359 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7360 {
7361 /* Return with the rtnl_lock held when there are no network
7362 * devices unregistering in any network namespace in net_list.
7363 */
7364 struct net *net;
7365 bool unregistering;
7366 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7367
7368 add_wait_queue(&netdev_unregistering_wq, &wait);
7369 for (;;) {
7370 unregistering = false;
7371 rtnl_lock();
7372 list_for_each_entry(net, net_list, exit_list) {
7373 if (net->dev_unreg_count > 0) {
7374 unregistering = true;
7375 break;
7376 }
7377 }
7378 if (!unregistering)
7379 break;
7380 __rtnl_unlock();
7381
7382 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7383 }
7384 remove_wait_queue(&netdev_unregistering_wq, &wait);
7385 }
7386
7387 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7388 {
7389 /* At exit all network devices most be removed from a network
7390 * namespace. Do this in the reverse order of registration.
7391 * Do this across as many network namespaces as possible to
7392 * improve batching efficiency.
7393 */
7394 struct net_device *dev;
7395 struct net *net;
7396 LIST_HEAD(dev_kill_list);
7397
7398 /* To prevent network device cleanup code from dereferencing
7399 * loopback devices or network devices that have been freed
7400 * wait here for all pending unregistrations to complete,
7401 * before unregistring the loopback device and allowing the
7402 * network namespace be freed.
7403 *
7404 * The netdev todo list containing all network devices
7405 * unregistrations that happen in default_device_exit_batch
7406 * will run in the rtnl_unlock() at the end of
7407 * default_device_exit_batch.
7408 */
7409 rtnl_lock_unregistering(net_list);
7410 list_for_each_entry(net, net_list, exit_list) {
7411 for_each_netdev_reverse(net, dev) {
7412 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7413 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7414 else
7415 unregister_netdevice_queue(dev, &dev_kill_list);
7416 }
7417 }
7418 unregister_netdevice_many(&dev_kill_list);
7419 rtnl_unlock();
7420 }
7421
7422 static struct pernet_operations __net_initdata default_device_ops = {
7423 .exit = default_device_exit,
7424 .exit_batch = default_device_exit_batch,
7425 };
7426
7427 /*
7428 * Initialize the DEV module. At boot time this walks the device list and
7429 * unhooks any devices that fail to initialise (normally hardware not
7430 * present) and leaves us with a valid list of present and active devices.
7431 *
7432 */
7433
7434 /*
7435 * This is called single threaded during boot, so no need
7436 * to take the rtnl semaphore.
7437 */
7438 static int __init net_dev_init(void)
7439 {
7440 int i, rc = -ENOMEM;
7441
7442 BUG_ON(!dev_boot_phase);
7443
7444 if (dev_proc_init())
7445 goto out;
7446
7447 if (netdev_kobject_init())
7448 goto out;
7449
7450 INIT_LIST_HEAD(&ptype_all);
7451 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7452 INIT_LIST_HEAD(&ptype_base[i]);
7453
7454 INIT_LIST_HEAD(&offload_base);
7455
7456 if (register_pernet_subsys(&netdev_net_ops))
7457 goto out;
7458
7459 /*
7460 * Initialise the packet receive queues.
7461 */
7462
7463 for_each_possible_cpu(i) {
7464 struct softnet_data *sd = &per_cpu(softnet_data, i);
7465
7466 skb_queue_head_init(&sd->input_pkt_queue);
7467 skb_queue_head_init(&sd->process_queue);
7468 INIT_LIST_HEAD(&sd->poll_list);
7469 sd->output_queue_tailp = &sd->output_queue;
7470 #ifdef CONFIG_RPS
7471 sd->csd.func = rps_trigger_softirq;
7472 sd->csd.info = sd;
7473 sd->cpu = i;
7474 #endif
7475
7476 sd->backlog.poll = process_backlog;
7477 sd->backlog.weight = weight_p;
7478 }
7479
7480 dev_boot_phase = 0;
7481
7482 /* The loopback device is special if any other network devices
7483 * is present in a network namespace the loopback device must
7484 * be present. Since we now dynamically allocate and free the
7485 * loopback device ensure this invariant is maintained by
7486 * keeping the loopback device as the first device on the
7487 * list of network devices. Ensuring the loopback devices
7488 * is the first device that appears and the last network device
7489 * that disappears.
7490 */
7491 if (register_pernet_device(&loopback_net_ops))
7492 goto out;
7493
7494 if (register_pernet_device(&default_device_ops))
7495 goto out;
7496
7497 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7498 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7499
7500 hotcpu_notifier(dev_cpu_callback, 0);
7501 dst_init();
7502 rc = 0;
7503 out:
7504 return rc;
7505 }
7506
7507 subsys_initcall(net_dev_init);
This page took 0.180306 seconds and 5 git commands to generate.