netns: don't allocate an id for dead netns
[deliverable/linux.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24
25 /*
26 * Our network namespace constructor/destructor lists
27 */
28
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35
36 struct net init_net = {
37 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40
41 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
42
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44
45 static struct net_generic *net_alloc_generic(void)
46 {
47 struct net_generic *ng;
48 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49
50 ng = kzalloc(generic_size, GFP_KERNEL);
51 if (ng)
52 ng->len = max_gen_ptrs;
53
54 return ng;
55 }
56
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 struct net_generic *ng, *old_ng;
60
61 BUG_ON(!mutex_is_locked(&net_mutex));
62 BUG_ON(id == 0);
63
64 old_ng = rcu_dereference_protected(net->gen,
65 lockdep_is_held(&net_mutex));
66 ng = old_ng;
67 if (old_ng->len >= id)
68 goto assign;
69
70 ng = net_alloc_generic();
71 if (ng == NULL)
72 return -ENOMEM;
73
74 /*
75 * Some synchronisation notes:
76 *
77 * The net_generic explores the net->gen array inside rcu
78 * read section. Besides once set the net->gen->ptr[x]
79 * pointer never changes (see rules in netns/generic.h).
80 *
81 * That said, we simply duplicate this array and schedule
82 * the old copy for kfree after a grace period.
83 */
84
85 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86
87 rcu_assign_pointer(net->gen, ng);
88 kfree_rcu(old_ng, rcu);
89 assign:
90 ng->ptr[id - 1] = data;
91 return 0;
92 }
93
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 int err = -ENOMEM;
97 void *data = NULL;
98
99 if (ops->id && ops->size) {
100 data = kzalloc(ops->size, GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 err = net_assign_generic(net, *ops->id, data);
105 if (err)
106 goto cleanup;
107 }
108 err = 0;
109 if (ops->init)
110 err = ops->init(net);
111 if (!err)
112 return 0;
113
114 cleanup:
115 kfree(data);
116
117 out:
118 return err;
119 }
120
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 if (ops->id && ops->size) {
124 int id = *ops->id;
125 kfree(net_generic(net, id));
126 }
127 }
128
129 static void ops_exit_list(const struct pernet_operations *ops,
130 struct list_head *net_exit_list)
131 {
132 struct net *net;
133 if (ops->exit) {
134 list_for_each_entry(net, net_exit_list, exit_list)
135 ops->exit(net);
136 }
137 if (ops->exit_batch)
138 ops->exit_batch(net_exit_list);
139 }
140
141 static void ops_free_list(const struct pernet_operations *ops,
142 struct list_head *net_exit_list)
143 {
144 struct net *net;
145 if (ops->size && ops->id) {
146 list_for_each_entry(net, net_exit_list, exit_list)
147 ops_free(ops, net);
148 }
149 }
150
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 int min = 0, max = 0;
154
155 ASSERT_RTNL();
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
179 {
180 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
181
182 ASSERT_RTNL();
183
184 /* Magic value for id 0. */
185 if (id == NET_ID_ZERO)
186 return 0;
187 if (id > 0)
188 return id;
189
190 if (alloc)
191 return alloc_netid(net, peer, -1);
192
193 return -ENOENT;
194 }
195
196 /* This function returns the id of a peer netns. If no id is assigned, one will
197 * be allocated and returned.
198 */
199 int peernet2id(struct net *net, struct net *peer)
200 {
201 bool alloc = atomic_read(&peer->count) == 0 ? false : true;
202 int id;
203
204 id = __peernet2id(net, peer, alloc);
205 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
206 }
207 EXPORT_SYMBOL(peernet2id);
208
209 struct net *get_net_ns_by_id(struct net *net, int id)
210 {
211 struct net *peer;
212
213 if (id < 0)
214 return NULL;
215
216 rcu_read_lock();
217 peer = idr_find(&net->netns_ids, id);
218 if (peer)
219 get_net(peer);
220 rcu_read_unlock();
221
222 return peer;
223 }
224
225 /*
226 * setup_net runs the initializers for the network namespace object.
227 */
228 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
229 {
230 /* Must be called with net_mutex held */
231 const struct pernet_operations *ops, *saved_ops;
232 int error = 0;
233 LIST_HEAD(net_exit_list);
234
235 atomic_set(&net->count, 1);
236 atomic_set(&net->passive, 1);
237 net->dev_base_seq = 1;
238 net->user_ns = user_ns;
239 idr_init(&net->netns_ids);
240
241 #ifdef NETNS_REFCNT_DEBUG
242 atomic_set(&net->use_count, 0);
243 #endif
244
245 list_for_each_entry(ops, &pernet_list, list) {
246 error = ops_init(ops, net);
247 if (error < 0)
248 goto out_undo;
249 }
250 out:
251 return error;
252
253 out_undo:
254 /* Walk through the list backwards calling the exit functions
255 * for the pernet modules whose init functions did not fail.
256 */
257 list_add(&net->exit_list, &net_exit_list);
258 saved_ops = ops;
259 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
260 ops_exit_list(ops, &net_exit_list);
261
262 ops = saved_ops;
263 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
264 ops_free_list(ops, &net_exit_list);
265
266 rcu_barrier();
267 goto out;
268 }
269
270
271 #ifdef CONFIG_NET_NS
272 static struct kmem_cache *net_cachep;
273 static struct workqueue_struct *netns_wq;
274
275 static struct net *net_alloc(void)
276 {
277 struct net *net = NULL;
278 struct net_generic *ng;
279
280 ng = net_alloc_generic();
281 if (!ng)
282 goto out;
283
284 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
285 if (!net)
286 goto out_free;
287
288 rcu_assign_pointer(net->gen, ng);
289 out:
290 return net;
291
292 out_free:
293 kfree(ng);
294 goto out;
295 }
296
297 static void net_free(struct net *net)
298 {
299 #ifdef NETNS_REFCNT_DEBUG
300 if (unlikely(atomic_read(&net->use_count) != 0)) {
301 pr_emerg("network namespace not free! Usage: %d\n",
302 atomic_read(&net->use_count));
303 return;
304 }
305 #endif
306 kfree(rcu_access_pointer(net->gen));
307 kmem_cache_free(net_cachep, net);
308 }
309
310 void net_drop_ns(void *p)
311 {
312 struct net *ns = p;
313 if (ns && atomic_dec_and_test(&ns->passive))
314 net_free(ns);
315 }
316
317 struct net *copy_net_ns(unsigned long flags,
318 struct user_namespace *user_ns, struct net *old_net)
319 {
320 struct net *net;
321 int rv;
322
323 if (!(flags & CLONE_NEWNET))
324 return get_net(old_net);
325
326 net = net_alloc();
327 if (!net)
328 return ERR_PTR(-ENOMEM);
329
330 get_user_ns(user_ns);
331
332 mutex_lock(&net_mutex);
333 rv = setup_net(net, user_ns);
334 if (rv == 0) {
335 rtnl_lock();
336 list_add_tail_rcu(&net->list, &net_namespace_list);
337 rtnl_unlock();
338 }
339 mutex_unlock(&net_mutex);
340 if (rv < 0) {
341 put_user_ns(user_ns);
342 net_drop_ns(net);
343 return ERR_PTR(rv);
344 }
345 return net;
346 }
347
348 static DEFINE_SPINLOCK(cleanup_list_lock);
349 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
350
351 static void cleanup_net(struct work_struct *work)
352 {
353 const struct pernet_operations *ops;
354 struct net *net, *tmp;
355 struct list_head net_kill_list;
356 LIST_HEAD(net_exit_list);
357
358 /* Atomically snapshot the list of namespaces to cleanup */
359 spin_lock_irq(&cleanup_list_lock);
360 list_replace_init(&cleanup_list, &net_kill_list);
361 spin_unlock_irq(&cleanup_list_lock);
362
363 mutex_lock(&net_mutex);
364
365 /* Don't let anyone else find us. */
366 rtnl_lock();
367 list_for_each_entry(net, &net_kill_list, cleanup_list) {
368 list_del_rcu(&net->list);
369 list_add_tail(&net->exit_list, &net_exit_list);
370 for_each_net(tmp) {
371 int id = __peernet2id(tmp, net, false);
372
373 if (id >= 0)
374 idr_remove(&tmp->netns_ids, id);
375 }
376 idr_destroy(&net->netns_ids);
377
378 }
379 rtnl_unlock();
380
381 /*
382 * Another CPU might be rcu-iterating the list, wait for it.
383 * This needs to be before calling the exit() notifiers, so
384 * the rcu_barrier() below isn't sufficient alone.
385 */
386 synchronize_rcu();
387
388 /* Run all of the network namespace exit methods */
389 list_for_each_entry_reverse(ops, &pernet_list, list)
390 ops_exit_list(ops, &net_exit_list);
391
392 /* Free the net generic variables */
393 list_for_each_entry_reverse(ops, &pernet_list, list)
394 ops_free_list(ops, &net_exit_list);
395
396 mutex_unlock(&net_mutex);
397
398 /* Ensure there are no outstanding rcu callbacks using this
399 * network namespace.
400 */
401 rcu_barrier();
402
403 /* Finally it is safe to free my network namespace structure */
404 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
405 list_del_init(&net->exit_list);
406 put_user_ns(net->user_ns);
407 net_drop_ns(net);
408 }
409 }
410 static DECLARE_WORK(net_cleanup_work, cleanup_net);
411
412 void __put_net(struct net *net)
413 {
414 /* Cleanup the network namespace in process context */
415 unsigned long flags;
416
417 spin_lock_irqsave(&cleanup_list_lock, flags);
418 list_add(&net->cleanup_list, &cleanup_list);
419 spin_unlock_irqrestore(&cleanup_list_lock, flags);
420
421 queue_work(netns_wq, &net_cleanup_work);
422 }
423 EXPORT_SYMBOL_GPL(__put_net);
424
425 struct net *get_net_ns_by_fd(int fd)
426 {
427 struct file *file;
428 struct ns_common *ns;
429 struct net *net;
430
431 file = proc_ns_fget(fd);
432 if (IS_ERR(file))
433 return ERR_CAST(file);
434
435 ns = get_proc_ns(file_inode(file));
436 if (ns->ops == &netns_operations)
437 net = get_net(container_of(ns, struct net, ns));
438 else
439 net = ERR_PTR(-EINVAL);
440
441 fput(file);
442 return net;
443 }
444
445 #else
446 struct net *get_net_ns_by_fd(int fd)
447 {
448 return ERR_PTR(-EINVAL);
449 }
450 #endif
451 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
452
453 struct net *get_net_ns_by_pid(pid_t pid)
454 {
455 struct task_struct *tsk;
456 struct net *net;
457
458 /* Lookup the network namespace */
459 net = ERR_PTR(-ESRCH);
460 rcu_read_lock();
461 tsk = find_task_by_vpid(pid);
462 if (tsk) {
463 struct nsproxy *nsproxy;
464 task_lock(tsk);
465 nsproxy = tsk->nsproxy;
466 if (nsproxy)
467 net = get_net(nsproxy->net_ns);
468 task_unlock(tsk);
469 }
470 rcu_read_unlock();
471 return net;
472 }
473 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
474
475 static __net_init int net_ns_net_init(struct net *net)
476 {
477 #ifdef CONFIG_NET_NS
478 net->ns.ops = &netns_operations;
479 #endif
480 return ns_alloc_inum(&net->ns);
481 }
482
483 static __net_exit void net_ns_net_exit(struct net *net)
484 {
485 ns_free_inum(&net->ns);
486 }
487
488 static struct pernet_operations __net_initdata net_ns_ops = {
489 .init = net_ns_net_init,
490 .exit = net_ns_net_exit,
491 };
492
493 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
494 [NETNSA_NONE] = { .type = NLA_UNSPEC },
495 [NETNSA_NSID] = { .type = NLA_S32 },
496 [NETNSA_PID] = { .type = NLA_U32 },
497 [NETNSA_FD] = { .type = NLA_U32 },
498 };
499
500 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
501 {
502 struct net *net = sock_net(skb->sk);
503 struct nlattr *tb[NETNSA_MAX + 1];
504 struct net *peer;
505 int nsid, err;
506
507 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
508 rtnl_net_policy);
509 if (err < 0)
510 return err;
511 if (!tb[NETNSA_NSID])
512 return -EINVAL;
513 nsid = nla_get_s32(tb[NETNSA_NSID]);
514
515 if (tb[NETNSA_PID])
516 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
517 else if (tb[NETNSA_FD])
518 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
519 else
520 return -EINVAL;
521 if (IS_ERR(peer))
522 return PTR_ERR(peer);
523
524 if (__peernet2id(net, peer, false) >= 0) {
525 err = -EEXIST;
526 goto out;
527 }
528
529 err = alloc_netid(net, peer, nsid);
530 if (err > 0)
531 err = 0;
532 out:
533 put_net(peer);
534 return err;
535 }
536
537 static int rtnl_net_get_size(void)
538 {
539 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
540 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
541 ;
542 }
543
544 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
545 int cmd, struct net *net, struct net *peer)
546 {
547 struct nlmsghdr *nlh;
548 struct rtgenmsg *rth;
549 int id;
550
551 ASSERT_RTNL();
552
553 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
554 if (!nlh)
555 return -EMSGSIZE;
556
557 rth = nlmsg_data(nlh);
558 rth->rtgen_family = AF_UNSPEC;
559
560 id = __peernet2id(net, peer, false);
561 if (id < 0)
562 id = NETNSA_NSID_NOT_ASSIGNED;
563 if (nla_put_s32(skb, NETNSA_NSID, id))
564 goto nla_put_failure;
565
566 nlmsg_end(skb, nlh);
567 return 0;
568
569 nla_put_failure:
570 nlmsg_cancel(skb, nlh);
571 return -EMSGSIZE;
572 }
573
574 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
575 {
576 struct net *net = sock_net(skb->sk);
577 struct nlattr *tb[NETNSA_MAX + 1];
578 struct sk_buff *msg;
579 int err = -ENOBUFS;
580 struct net *peer;
581
582 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
583 rtnl_net_policy);
584 if (err < 0)
585 return err;
586 if (tb[NETNSA_PID])
587 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
588 else if (tb[NETNSA_FD])
589 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
590 else
591 return -EINVAL;
592
593 if (IS_ERR(peer))
594 return PTR_ERR(peer);
595
596 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
597 if (!msg) {
598 err = -ENOMEM;
599 goto out;
600 }
601
602 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
603 RTM_GETNSID, net, peer);
604 if (err < 0)
605 goto err_out;
606
607 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
608 goto out;
609
610 err_out:
611 nlmsg_free(msg);
612 out:
613 put_net(peer);
614 return err;
615 }
616
617 static int __init net_ns_init(void)
618 {
619 struct net_generic *ng;
620
621 #ifdef CONFIG_NET_NS
622 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
623 SMP_CACHE_BYTES,
624 SLAB_PANIC, NULL);
625
626 /* Create workqueue for cleanup */
627 netns_wq = create_singlethread_workqueue("netns");
628 if (!netns_wq)
629 panic("Could not create netns workq");
630 #endif
631
632 ng = net_alloc_generic();
633 if (!ng)
634 panic("Could not allocate generic netns");
635
636 rcu_assign_pointer(init_net.gen, ng);
637
638 mutex_lock(&net_mutex);
639 if (setup_net(&init_net, &init_user_ns))
640 panic("Could not setup the initial network namespace");
641
642 rtnl_lock();
643 list_add_tail_rcu(&init_net.list, &net_namespace_list);
644 rtnl_unlock();
645
646 mutex_unlock(&net_mutex);
647
648 register_pernet_subsys(&net_ns_ops);
649
650 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
651 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL);
652
653 return 0;
654 }
655
656 pure_initcall(net_ns_init);
657
658 #ifdef CONFIG_NET_NS
659 static int __register_pernet_operations(struct list_head *list,
660 struct pernet_operations *ops)
661 {
662 struct net *net;
663 int error;
664 LIST_HEAD(net_exit_list);
665
666 list_add_tail(&ops->list, list);
667 if (ops->init || (ops->id && ops->size)) {
668 for_each_net(net) {
669 error = ops_init(ops, net);
670 if (error)
671 goto out_undo;
672 list_add_tail(&net->exit_list, &net_exit_list);
673 }
674 }
675 return 0;
676
677 out_undo:
678 /* If I have an error cleanup all namespaces I initialized */
679 list_del(&ops->list);
680 ops_exit_list(ops, &net_exit_list);
681 ops_free_list(ops, &net_exit_list);
682 return error;
683 }
684
685 static void __unregister_pernet_operations(struct pernet_operations *ops)
686 {
687 struct net *net;
688 LIST_HEAD(net_exit_list);
689
690 list_del(&ops->list);
691 for_each_net(net)
692 list_add_tail(&net->exit_list, &net_exit_list);
693 ops_exit_list(ops, &net_exit_list);
694 ops_free_list(ops, &net_exit_list);
695 }
696
697 #else
698
699 static int __register_pernet_operations(struct list_head *list,
700 struct pernet_operations *ops)
701 {
702 return ops_init(ops, &init_net);
703 }
704
705 static void __unregister_pernet_operations(struct pernet_operations *ops)
706 {
707 LIST_HEAD(net_exit_list);
708 list_add(&init_net.exit_list, &net_exit_list);
709 ops_exit_list(ops, &net_exit_list);
710 ops_free_list(ops, &net_exit_list);
711 }
712
713 #endif /* CONFIG_NET_NS */
714
715 static DEFINE_IDA(net_generic_ids);
716
717 static int register_pernet_operations(struct list_head *list,
718 struct pernet_operations *ops)
719 {
720 int error;
721
722 if (ops->id) {
723 again:
724 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
725 if (error < 0) {
726 if (error == -EAGAIN) {
727 ida_pre_get(&net_generic_ids, GFP_KERNEL);
728 goto again;
729 }
730 return error;
731 }
732 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
733 }
734 error = __register_pernet_operations(list, ops);
735 if (error) {
736 rcu_barrier();
737 if (ops->id)
738 ida_remove(&net_generic_ids, *ops->id);
739 }
740
741 return error;
742 }
743
744 static void unregister_pernet_operations(struct pernet_operations *ops)
745 {
746
747 __unregister_pernet_operations(ops);
748 rcu_barrier();
749 if (ops->id)
750 ida_remove(&net_generic_ids, *ops->id);
751 }
752
753 /**
754 * register_pernet_subsys - register a network namespace subsystem
755 * @ops: pernet operations structure for the subsystem
756 *
757 * Register a subsystem which has init and exit functions
758 * that are called when network namespaces are created and
759 * destroyed respectively.
760 *
761 * When registered all network namespace init functions are
762 * called for every existing network namespace. Allowing kernel
763 * modules to have a race free view of the set of network namespaces.
764 *
765 * When a new network namespace is created all of the init
766 * methods are called in the order in which they were registered.
767 *
768 * When a network namespace is destroyed all of the exit methods
769 * are called in the reverse of the order with which they were
770 * registered.
771 */
772 int register_pernet_subsys(struct pernet_operations *ops)
773 {
774 int error;
775 mutex_lock(&net_mutex);
776 error = register_pernet_operations(first_device, ops);
777 mutex_unlock(&net_mutex);
778 return error;
779 }
780 EXPORT_SYMBOL_GPL(register_pernet_subsys);
781
782 /**
783 * unregister_pernet_subsys - unregister a network namespace subsystem
784 * @ops: pernet operations structure to manipulate
785 *
786 * Remove the pernet operations structure from the list to be
787 * used when network namespaces are created or destroyed. In
788 * addition run the exit method for all existing network
789 * namespaces.
790 */
791 void unregister_pernet_subsys(struct pernet_operations *ops)
792 {
793 mutex_lock(&net_mutex);
794 unregister_pernet_operations(ops);
795 mutex_unlock(&net_mutex);
796 }
797 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
798
799 /**
800 * register_pernet_device - register a network namespace device
801 * @ops: pernet operations structure for the subsystem
802 *
803 * Register a device which has init and exit functions
804 * that are called when network namespaces are created and
805 * destroyed respectively.
806 *
807 * When registered all network namespace init functions are
808 * called for every existing network namespace. Allowing kernel
809 * modules to have a race free view of the set of network namespaces.
810 *
811 * When a new network namespace is created all of the init
812 * methods are called in the order in which they were registered.
813 *
814 * When a network namespace is destroyed all of the exit methods
815 * are called in the reverse of the order with which they were
816 * registered.
817 */
818 int register_pernet_device(struct pernet_operations *ops)
819 {
820 int error;
821 mutex_lock(&net_mutex);
822 error = register_pernet_operations(&pernet_list, ops);
823 if (!error && (first_device == &pernet_list))
824 first_device = &ops->list;
825 mutex_unlock(&net_mutex);
826 return error;
827 }
828 EXPORT_SYMBOL_GPL(register_pernet_device);
829
830 /**
831 * unregister_pernet_device - unregister a network namespace netdevice
832 * @ops: pernet operations structure to manipulate
833 *
834 * Remove the pernet operations structure from the list to be
835 * used when network namespaces are created or destroyed. In
836 * addition run the exit method for all existing network
837 * namespaces.
838 */
839 void unregister_pernet_device(struct pernet_operations *ops)
840 {
841 mutex_lock(&net_mutex);
842 if (&ops->list == first_device)
843 first_device = first_device->next;
844 unregister_pernet_operations(ops);
845 mutex_unlock(&net_mutex);
846 }
847 EXPORT_SYMBOL_GPL(unregister_pernet_device);
848
849 #ifdef CONFIG_NET_NS
850 static struct ns_common *netns_get(struct task_struct *task)
851 {
852 struct net *net = NULL;
853 struct nsproxy *nsproxy;
854
855 task_lock(task);
856 nsproxy = task->nsproxy;
857 if (nsproxy)
858 net = get_net(nsproxy->net_ns);
859 task_unlock(task);
860
861 return net ? &net->ns : NULL;
862 }
863
864 static inline struct net *to_net_ns(struct ns_common *ns)
865 {
866 return container_of(ns, struct net, ns);
867 }
868
869 static void netns_put(struct ns_common *ns)
870 {
871 put_net(to_net_ns(ns));
872 }
873
874 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
875 {
876 struct net *net = to_net_ns(ns);
877
878 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
879 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
880 return -EPERM;
881
882 put_net(nsproxy->net_ns);
883 nsproxy->net_ns = get_net(net);
884 return 0;
885 }
886
887 const struct proc_ns_operations netns_operations = {
888 .name = "net",
889 .type = CLONE_NEWNET,
890 .get = netns_get,
891 .put = netns_put,
892 .install = netns_install,
893 };
894 #endif
This page took 0.048259 seconds and 5 git commands to generate.