9c806ac569f9dd80b1cac0c0738408ba6413157e
[deliverable/linux.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
41
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43
44 static struct net_generic *net_alloc_generic(void)
45 {
46 struct net_generic *ng;
47 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48
49 ng = kzalloc(generic_size, GFP_KERNEL);
50 if (ng)
51 ng->len = max_gen_ptrs;
52
53 return ng;
54 }
55
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 struct net_generic *ng, *old_ng;
59
60 BUG_ON(!mutex_is_locked(&net_mutex));
61 BUG_ON(id == 0);
62
63 old_ng = rcu_dereference_protected(net->gen,
64 lockdep_is_held(&net_mutex));
65 ng = old_ng;
66 if (old_ng->len >= id)
67 goto assign;
68
69 ng = net_alloc_generic();
70 if (ng == NULL)
71 return -ENOMEM;
72
73 /*
74 * Some synchronisation notes:
75 *
76 * The net_generic explores the net->gen array inside rcu
77 * read section. Besides once set the net->gen->ptr[x]
78 * pointer never changes (see rules in netns/generic.h).
79 *
80 * That said, we simply duplicate this array and schedule
81 * the old copy for kfree after a grace period.
82 */
83
84 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85
86 rcu_assign_pointer(net->gen, ng);
87 kfree_rcu(old_ng, rcu);
88 assign:
89 ng->ptr[id - 1] = data;
90 return 0;
91 }
92
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 int err = -ENOMEM;
96 void *data = NULL;
97
98 if (ops->id && ops->size) {
99 data = kzalloc(ops->size, GFP_KERNEL);
100 if (!data)
101 goto out;
102
103 err = net_assign_generic(net, *ops->id, data);
104 if (err)
105 goto cleanup;
106 }
107 err = 0;
108 if (ops->init)
109 err = ops->init(net);
110 if (!err)
111 return 0;
112
113 cleanup:
114 kfree(data);
115
116 out:
117 return err;
118 }
119
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 if (ops->id && ops->size) {
123 int id = *ops->id;
124 kfree(net_generic(net, id));
125 }
126 }
127
128 static void ops_exit_list(const struct pernet_operations *ops,
129 struct list_head *net_exit_list)
130 {
131 struct net *net;
132 if (ops->exit) {
133 list_for_each_entry(net, net_exit_list, exit_list)
134 ops->exit(net);
135 }
136 if (ops->exit_batch)
137 ops->exit_batch(net_exit_list);
138 }
139
140 static void ops_free_list(const struct pernet_operations *ops,
141 struct list_head *net_exit_list)
142 {
143 struct net *net;
144 if (ops->size && ops->id) {
145 list_for_each_entry(net, net_exit_list, exit_list)
146 ops_free(ops, net);
147 }
148 }
149
150 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 int min = 0, max = 0, id;
154
155 ASSERT_RTNL();
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 if (id >= 0)
164 rtnl_net_notifyid(net, RTM_NEWNSID, id);
165
166 return id;
167 }
168
169 /* This function is used by idr_for_each(). If net is equal to peer, the
170 * function returns the id so that idr_for_each() stops. Because we cannot
171 * returns the id 0 (idr_for_each() will not stop), we return the magic value
172 * NET_ID_ZERO (-1) for it.
173 */
174 #define NET_ID_ZERO -1
175 static int net_eq_idr(int id, void *net, void *peer)
176 {
177 if (net_eq(net, peer))
178 return id ? : NET_ID_ZERO;
179 return 0;
180 }
181
182 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
183 {
184 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185
186 ASSERT_RTNL();
187
188 /* Magic value for id 0. */
189 if (id == NET_ID_ZERO)
190 return 0;
191 if (id > 0)
192 return id;
193
194 if (alloc) {
195 id = alloc_netid(net, peer, -1);
196 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 }
198
199 return NETNSA_NSID_NOT_ASSIGNED;
200 }
201
202 /* This function returns the id of a peer netns. If no id is assigned, one will
203 * be allocated and returned.
204 */
205 int peernet2id_alloc(struct net *net, struct net *peer)
206 {
207 bool alloc = atomic_read(&peer->count) == 0 ? false : true;
208
209 return __peernet2id(net, peer, alloc);
210 }
211 EXPORT_SYMBOL(peernet2id_alloc);
212
213 struct net *get_net_ns_by_id(struct net *net, int id)
214 {
215 struct net *peer;
216
217 if (id < 0)
218 return NULL;
219
220 rcu_read_lock();
221 peer = idr_find(&net->netns_ids, id);
222 if (peer)
223 get_net(peer);
224 rcu_read_unlock();
225
226 return peer;
227 }
228
229 /*
230 * setup_net runs the initializers for the network namespace object.
231 */
232 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
233 {
234 /* Must be called with net_mutex held */
235 const struct pernet_operations *ops, *saved_ops;
236 int error = 0;
237 LIST_HEAD(net_exit_list);
238
239 atomic_set(&net->count, 1);
240 atomic_set(&net->passive, 1);
241 net->dev_base_seq = 1;
242 net->user_ns = user_ns;
243 idr_init(&net->netns_ids);
244
245 list_for_each_entry(ops, &pernet_list, list) {
246 error = ops_init(ops, net);
247 if (error < 0)
248 goto out_undo;
249 }
250 out:
251 return error;
252
253 out_undo:
254 /* Walk through the list backwards calling the exit functions
255 * for the pernet modules whose init functions did not fail.
256 */
257 list_add(&net->exit_list, &net_exit_list);
258 saved_ops = ops;
259 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
260 ops_exit_list(ops, &net_exit_list);
261
262 ops = saved_ops;
263 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
264 ops_free_list(ops, &net_exit_list);
265
266 rcu_barrier();
267 goto out;
268 }
269
270
271 #ifdef CONFIG_NET_NS
272 static struct kmem_cache *net_cachep;
273 static struct workqueue_struct *netns_wq;
274
275 static struct net *net_alloc(void)
276 {
277 struct net *net = NULL;
278 struct net_generic *ng;
279
280 ng = net_alloc_generic();
281 if (!ng)
282 goto out;
283
284 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
285 if (!net)
286 goto out_free;
287
288 rcu_assign_pointer(net->gen, ng);
289 out:
290 return net;
291
292 out_free:
293 kfree(ng);
294 goto out;
295 }
296
297 static void net_free(struct net *net)
298 {
299 kfree(rcu_access_pointer(net->gen));
300 kmem_cache_free(net_cachep, net);
301 }
302
303 void net_drop_ns(void *p)
304 {
305 struct net *ns = p;
306 if (ns && atomic_dec_and_test(&ns->passive))
307 net_free(ns);
308 }
309
310 struct net *copy_net_ns(unsigned long flags,
311 struct user_namespace *user_ns, struct net *old_net)
312 {
313 struct net *net;
314 int rv;
315
316 if (!(flags & CLONE_NEWNET))
317 return get_net(old_net);
318
319 net = net_alloc();
320 if (!net)
321 return ERR_PTR(-ENOMEM);
322
323 get_user_ns(user_ns);
324
325 mutex_lock(&net_mutex);
326 rv = setup_net(net, user_ns);
327 if (rv == 0) {
328 rtnl_lock();
329 list_add_tail_rcu(&net->list, &net_namespace_list);
330 rtnl_unlock();
331 }
332 mutex_unlock(&net_mutex);
333 if (rv < 0) {
334 put_user_ns(user_ns);
335 net_drop_ns(net);
336 return ERR_PTR(rv);
337 }
338 return net;
339 }
340
341 static DEFINE_SPINLOCK(cleanup_list_lock);
342 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
343
344 static void cleanup_net(struct work_struct *work)
345 {
346 const struct pernet_operations *ops;
347 struct net *net, *tmp;
348 struct list_head net_kill_list;
349 LIST_HEAD(net_exit_list);
350
351 /* Atomically snapshot the list of namespaces to cleanup */
352 spin_lock_irq(&cleanup_list_lock);
353 list_replace_init(&cleanup_list, &net_kill_list);
354 spin_unlock_irq(&cleanup_list_lock);
355
356 mutex_lock(&net_mutex);
357
358 /* Don't let anyone else find us. */
359 rtnl_lock();
360 list_for_each_entry(net, &net_kill_list, cleanup_list) {
361 list_del_rcu(&net->list);
362 list_add_tail(&net->exit_list, &net_exit_list);
363 for_each_net(tmp) {
364 int id = __peernet2id(tmp, net, false);
365
366 if (id >= 0) {
367 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
368 idr_remove(&tmp->netns_ids, id);
369 }
370 }
371 idr_destroy(&net->netns_ids);
372
373 }
374 rtnl_unlock();
375
376 /*
377 * Another CPU might be rcu-iterating the list, wait for it.
378 * This needs to be before calling the exit() notifiers, so
379 * the rcu_barrier() below isn't sufficient alone.
380 */
381 synchronize_rcu();
382
383 /* Run all of the network namespace exit methods */
384 list_for_each_entry_reverse(ops, &pernet_list, list)
385 ops_exit_list(ops, &net_exit_list);
386
387 /* Free the net generic variables */
388 list_for_each_entry_reverse(ops, &pernet_list, list)
389 ops_free_list(ops, &net_exit_list);
390
391 mutex_unlock(&net_mutex);
392
393 /* Ensure there are no outstanding rcu callbacks using this
394 * network namespace.
395 */
396 rcu_barrier();
397
398 /* Finally it is safe to free my network namespace structure */
399 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
400 list_del_init(&net->exit_list);
401 put_user_ns(net->user_ns);
402 net_drop_ns(net);
403 }
404 }
405 static DECLARE_WORK(net_cleanup_work, cleanup_net);
406
407 void __put_net(struct net *net)
408 {
409 /* Cleanup the network namespace in process context */
410 unsigned long flags;
411
412 spin_lock_irqsave(&cleanup_list_lock, flags);
413 list_add(&net->cleanup_list, &cleanup_list);
414 spin_unlock_irqrestore(&cleanup_list_lock, flags);
415
416 queue_work(netns_wq, &net_cleanup_work);
417 }
418 EXPORT_SYMBOL_GPL(__put_net);
419
420 struct net *get_net_ns_by_fd(int fd)
421 {
422 struct file *file;
423 struct ns_common *ns;
424 struct net *net;
425
426 file = proc_ns_fget(fd);
427 if (IS_ERR(file))
428 return ERR_CAST(file);
429
430 ns = get_proc_ns(file_inode(file));
431 if (ns->ops == &netns_operations)
432 net = get_net(container_of(ns, struct net, ns));
433 else
434 net = ERR_PTR(-EINVAL);
435
436 fput(file);
437 return net;
438 }
439
440 #else
441 struct net *get_net_ns_by_fd(int fd)
442 {
443 return ERR_PTR(-EINVAL);
444 }
445 #endif
446 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
447
448 struct net *get_net_ns_by_pid(pid_t pid)
449 {
450 struct task_struct *tsk;
451 struct net *net;
452
453 /* Lookup the network namespace */
454 net = ERR_PTR(-ESRCH);
455 rcu_read_lock();
456 tsk = find_task_by_vpid(pid);
457 if (tsk) {
458 struct nsproxy *nsproxy;
459 task_lock(tsk);
460 nsproxy = tsk->nsproxy;
461 if (nsproxy)
462 net = get_net(nsproxy->net_ns);
463 task_unlock(tsk);
464 }
465 rcu_read_unlock();
466 return net;
467 }
468 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
469
470 static __net_init int net_ns_net_init(struct net *net)
471 {
472 #ifdef CONFIG_NET_NS
473 net->ns.ops = &netns_operations;
474 #endif
475 return ns_alloc_inum(&net->ns);
476 }
477
478 static __net_exit void net_ns_net_exit(struct net *net)
479 {
480 ns_free_inum(&net->ns);
481 }
482
483 static struct pernet_operations __net_initdata net_ns_ops = {
484 .init = net_ns_net_init,
485 .exit = net_ns_net_exit,
486 };
487
488 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
489 [NETNSA_NONE] = { .type = NLA_UNSPEC },
490 [NETNSA_NSID] = { .type = NLA_S32 },
491 [NETNSA_PID] = { .type = NLA_U32 },
492 [NETNSA_FD] = { .type = NLA_U32 },
493 };
494
495 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
496 {
497 struct net *net = sock_net(skb->sk);
498 struct nlattr *tb[NETNSA_MAX + 1];
499 struct net *peer;
500 int nsid, err;
501
502 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
503 rtnl_net_policy);
504 if (err < 0)
505 return err;
506 if (!tb[NETNSA_NSID])
507 return -EINVAL;
508 nsid = nla_get_s32(tb[NETNSA_NSID]);
509
510 if (tb[NETNSA_PID])
511 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
512 else if (tb[NETNSA_FD])
513 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
514 else
515 return -EINVAL;
516 if (IS_ERR(peer))
517 return PTR_ERR(peer);
518
519 if (__peernet2id(net, peer, false) >= 0) {
520 err = -EEXIST;
521 goto out;
522 }
523
524 err = alloc_netid(net, peer, nsid);
525 if (err > 0)
526 err = 0;
527 out:
528 put_net(peer);
529 return err;
530 }
531
532 static int rtnl_net_get_size(void)
533 {
534 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
535 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
536 ;
537 }
538
539 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
540 int cmd, struct net *net, int nsid)
541 {
542 struct nlmsghdr *nlh;
543 struct rtgenmsg *rth;
544
545 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
546 if (!nlh)
547 return -EMSGSIZE;
548
549 rth = nlmsg_data(nlh);
550 rth->rtgen_family = AF_UNSPEC;
551
552 if (nla_put_s32(skb, NETNSA_NSID, nsid))
553 goto nla_put_failure;
554
555 nlmsg_end(skb, nlh);
556 return 0;
557
558 nla_put_failure:
559 nlmsg_cancel(skb, nlh);
560 return -EMSGSIZE;
561 }
562
563 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
564 {
565 struct net *net = sock_net(skb->sk);
566 struct nlattr *tb[NETNSA_MAX + 1];
567 struct sk_buff *msg;
568 struct net *peer;
569 int err, id;
570
571 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
572 rtnl_net_policy);
573 if (err < 0)
574 return err;
575 if (tb[NETNSA_PID])
576 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
577 else if (tb[NETNSA_FD])
578 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
579 else
580 return -EINVAL;
581
582 if (IS_ERR(peer))
583 return PTR_ERR(peer);
584
585 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
586 if (!msg) {
587 err = -ENOMEM;
588 goto out;
589 }
590
591 id = __peernet2id(net, peer, false);
592 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
593 RTM_GETNSID, net, id);
594 if (err < 0)
595 goto err_out;
596
597 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
598 goto out;
599
600 err_out:
601 nlmsg_free(msg);
602 out:
603 put_net(peer);
604 return err;
605 }
606
607 struct rtnl_net_dump_cb {
608 struct net *net;
609 struct sk_buff *skb;
610 struct netlink_callback *cb;
611 int idx;
612 int s_idx;
613 };
614
615 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
616 {
617 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
618 int ret;
619
620 if (net_cb->idx < net_cb->s_idx)
621 goto cont;
622
623 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
624 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
625 RTM_NEWNSID, net_cb->net, id);
626 if (ret < 0)
627 return ret;
628
629 cont:
630 net_cb->idx++;
631 return 0;
632 }
633
634 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
635 {
636 struct net *net = sock_net(skb->sk);
637 struct rtnl_net_dump_cb net_cb = {
638 .net = net,
639 .skb = skb,
640 .cb = cb,
641 .idx = 0,
642 .s_idx = cb->args[0],
643 };
644
645 ASSERT_RTNL();
646
647 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
648
649 cb->args[0] = net_cb.idx;
650 return skb->len;
651 }
652
653 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
654 {
655 struct sk_buff *msg;
656 int err = -ENOMEM;
657
658 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
659 if (!msg)
660 goto out;
661
662 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
663 if (err < 0)
664 goto err_out;
665
666 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
667 return;
668
669 err_out:
670 nlmsg_free(msg);
671 out:
672 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
673 }
674
675 static int __init net_ns_init(void)
676 {
677 struct net_generic *ng;
678
679 #ifdef CONFIG_NET_NS
680 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
681 SMP_CACHE_BYTES,
682 SLAB_PANIC, NULL);
683
684 /* Create workqueue for cleanup */
685 netns_wq = create_singlethread_workqueue("netns");
686 if (!netns_wq)
687 panic("Could not create netns workq");
688 #endif
689
690 ng = net_alloc_generic();
691 if (!ng)
692 panic("Could not allocate generic netns");
693
694 rcu_assign_pointer(init_net.gen, ng);
695
696 mutex_lock(&net_mutex);
697 if (setup_net(&init_net, &init_user_ns))
698 panic("Could not setup the initial network namespace");
699
700 rtnl_lock();
701 list_add_tail_rcu(&init_net.list, &net_namespace_list);
702 rtnl_unlock();
703
704 mutex_unlock(&net_mutex);
705
706 register_pernet_subsys(&net_ns_ops);
707
708 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
709 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
710 NULL);
711
712 return 0;
713 }
714
715 pure_initcall(net_ns_init);
716
717 #ifdef CONFIG_NET_NS
718 static int __register_pernet_operations(struct list_head *list,
719 struct pernet_operations *ops)
720 {
721 struct net *net;
722 int error;
723 LIST_HEAD(net_exit_list);
724
725 list_add_tail(&ops->list, list);
726 if (ops->init || (ops->id && ops->size)) {
727 for_each_net(net) {
728 error = ops_init(ops, net);
729 if (error)
730 goto out_undo;
731 list_add_tail(&net->exit_list, &net_exit_list);
732 }
733 }
734 return 0;
735
736 out_undo:
737 /* If I have an error cleanup all namespaces I initialized */
738 list_del(&ops->list);
739 ops_exit_list(ops, &net_exit_list);
740 ops_free_list(ops, &net_exit_list);
741 return error;
742 }
743
744 static void __unregister_pernet_operations(struct pernet_operations *ops)
745 {
746 struct net *net;
747 LIST_HEAD(net_exit_list);
748
749 list_del(&ops->list);
750 for_each_net(net)
751 list_add_tail(&net->exit_list, &net_exit_list);
752 ops_exit_list(ops, &net_exit_list);
753 ops_free_list(ops, &net_exit_list);
754 }
755
756 #else
757
758 static int __register_pernet_operations(struct list_head *list,
759 struct pernet_operations *ops)
760 {
761 return ops_init(ops, &init_net);
762 }
763
764 static void __unregister_pernet_operations(struct pernet_operations *ops)
765 {
766 LIST_HEAD(net_exit_list);
767 list_add(&init_net.exit_list, &net_exit_list);
768 ops_exit_list(ops, &net_exit_list);
769 ops_free_list(ops, &net_exit_list);
770 }
771
772 #endif /* CONFIG_NET_NS */
773
774 static DEFINE_IDA(net_generic_ids);
775
776 static int register_pernet_operations(struct list_head *list,
777 struct pernet_operations *ops)
778 {
779 int error;
780
781 if (ops->id) {
782 again:
783 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
784 if (error < 0) {
785 if (error == -EAGAIN) {
786 ida_pre_get(&net_generic_ids, GFP_KERNEL);
787 goto again;
788 }
789 return error;
790 }
791 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
792 }
793 error = __register_pernet_operations(list, ops);
794 if (error) {
795 rcu_barrier();
796 if (ops->id)
797 ida_remove(&net_generic_ids, *ops->id);
798 }
799
800 return error;
801 }
802
803 static void unregister_pernet_operations(struct pernet_operations *ops)
804 {
805
806 __unregister_pernet_operations(ops);
807 rcu_barrier();
808 if (ops->id)
809 ida_remove(&net_generic_ids, *ops->id);
810 }
811
812 /**
813 * register_pernet_subsys - register a network namespace subsystem
814 * @ops: pernet operations structure for the subsystem
815 *
816 * Register a subsystem which has init and exit functions
817 * that are called when network namespaces are created and
818 * destroyed respectively.
819 *
820 * When registered all network namespace init functions are
821 * called for every existing network namespace. Allowing kernel
822 * modules to have a race free view of the set of network namespaces.
823 *
824 * When a new network namespace is created all of the init
825 * methods are called in the order in which they were registered.
826 *
827 * When a network namespace is destroyed all of the exit methods
828 * are called in the reverse of the order with which they were
829 * registered.
830 */
831 int register_pernet_subsys(struct pernet_operations *ops)
832 {
833 int error;
834 mutex_lock(&net_mutex);
835 error = register_pernet_operations(first_device, ops);
836 mutex_unlock(&net_mutex);
837 return error;
838 }
839 EXPORT_SYMBOL_GPL(register_pernet_subsys);
840
841 /**
842 * unregister_pernet_subsys - unregister a network namespace subsystem
843 * @ops: pernet operations structure to manipulate
844 *
845 * Remove the pernet operations structure from the list to be
846 * used when network namespaces are created or destroyed. In
847 * addition run the exit method for all existing network
848 * namespaces.
849 */
850 void unregister_pernet_subsys(struct pernet_operations *ops)
851 {
852 mutex_lock(&net_mutex);
853 unregister_pernet_operations(ops);
854 mutex_unlock(&net_mutex);
855 }
856 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
857
858 /**
859 * register_pernet_device - register a network namespace device
860 * @ops: pernet operations structure for the subsystem
861 *
862 * Register a device which has init and exit functions
863 * that are called when network namespaces are created and
864 * destroyed respectively.
865 *
866 * When registered all network namespace init functions are
867 * called for every existing network namespace. Allowing kernel
868 * modules to have a race free view of the set of network namespaces.
869 *
870 * When a new network namespace is created all of the init
871 * methods are called in the order in which they were registered.
872 *
873 * When a network namespace is destroyed all of the exit methods
874 * are called in the reverse of the order with which they were
875 * registered.
876 */
877 int register_pernet_device(struct pernet_operations *ops)
878 {
879 int error;
880 mutex_lock(&net_mutex);
881 error = register_pernet_operations(&pernet_list, ops);
882 if (!error && (first_device == &pernet_list))
883 first_device = &ops->list;
884 mutex_unlock(&net_mutex);
885 return error;
886 }
887 EXPORT_SYMBOL_GPL(register_pernet_device);
888
889 /**
890 * unregister_pernet_device - unregister a network namespace netdevice
891 * @ops: pernet operations structure to manipulate
892 *
893 * Remove the pernet operations structure from the list to be
894 * used when network namespaces are created or destroyed. In
895 * addition run the exit method for all existing network
896 * namespaces.
897 */
898 void unregister_pernet_device(struct pernet_operations *ops)
899 {
900 mutex_lock(&net_mutex);
901 if (&ops->list == first_device)
902 first_device = first_device->next;
903 unregister_pernet_operations(ops);
904 mutex_unlock(&net_mutex);
905 }
906 EXPORT_SYMBOL_GPL(unregister_pernet_device);
907
908 #ifdef CONFIG_NET_NS
909 static struct ns_common *netns_get(struct task_struct *task)
910 {
911 struct net *net = NULL;
912 struct nsproxy *nsproxy;
913
914 task_lock(task);
915 nsproxy = task->nsproxy;
916 if (nsproxy)
917 net = get_net(nsproxy->net_ns);
918 task_unlock(task);
919
920 return net ? &net->ns : NULL;
921 }
922
923 static inline struct net *to_net_ns(struct ns_common *ns)
924 {
925 return container_of(ns, struct net, ns);
926 }
927
928 static void netns_put(struct ns_common *ns)
929 {
930 put_net(to_net_ns(ns));
931 }
932
933 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
934 {
935 struct net *net = to_net_ns(ns);
936
937 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
938 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
939 return -EPERM;
940
941 put_net(nsproxy->net_ns);
942 nsproxy->net_ns = get_net(net);
943 return 0;
944 }
945
946 const struct proc_ns_operations netns_operations = {
947 .name = "net",
948 .type = CLONE_NEWNET,
949 .get = netns_get,
950 .put = netns_put,
951 .install = netns_install,
952 };
953 #endif
This page took 0.048825 seconds and 4 git commands to generate.