ipv4: Pass struct net into ip_defrag and ip_check_defrag
[deliverable/linux.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
10 *
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
21 */
22
23 #define pr_fmt(fmt) "IPv4: " fmt
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 #include <net/l3mdev.h>
52
53 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
54 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
55 * as well. Or notify me, at least. --ANK
56 */
57
58 static int sysctl_ipfrag_max_dist __read_mostly = 64;
59 static const char ip_frag_cache_name[] = "ip4-frags";
60
61 struct ipfrag_skb_cb
62 {
63 struct inet_skb_parm h;
64 int offset;
65 };
66
67 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
68
69 /* Describe an entry in the "incomplete datagrams" queue. */
70 struct ipq {
71 struct inet_frag_queue q;
72
73 u32 user;
74 __be32 saddr;
75 __be32 daddr;
76 __be16 id;
77 u8 protocol;
78 u8 ecn; /* RFC3168 support */
79 u16 max_df_size; /* largest frag with DF set seen */
80 int iif;
81 int vif; /* L3 master device index */
82 unsigned int rid;
83 struct inet_peer *peer;
84 };
85
86 static u8 ip4_frag_ecn(u8 tos)
87 {
88 return 1 << (tos & INET_ECN_MASK);
89 }
90
91 static struct inet_frags ip4_frags;
92
93 int ip_frag_mem(struct net *net)
94 {
95 return sum_frag_mem_limit(&net->ipv4.frags);
96 }
97
98 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
99 struct net_device *dev);
100
101 struct ip4_create_arg {
102 struct iphdr *iph;
103 u32 user;
104 int vif;
105 };
106
107 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
108 {
109 net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
110 return jhash_3words((__force u32)id << 16 | prot,
111 (__force u32)saddr, (__force u32)daddr,
112 ip4_frags.rnd);
113 }
114
115 static unsigned int ip4_hashfn(const struct inet_frag_queue *q)
116 {
117 const struct ipq *ipq;
118
119 ipq = container_of(q, struct ipq, q);
120 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
121 }
122
123 static bool ip4_frag_match(const struct inet_frag_queue *q, const void *a)
124 {
125 const struct ipq *qp;
126 const struct ip4_create_arg *arg = a;
127
128 qp = container_of(q, struct ipq, q);
129 return qp->id == arg->iph->id &&
130 qp->saddr == arg->iph->saddr &&
131 qp->daddr == arg->iph->daddr &&
132 qp->protocol == arg->iph->protocol &&
133 qp->user == arg->user &&
134 qp->vif == arg->vif;
135 }
136
137 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
138 {
139 struct ipq *qp = container_of(q, struct ipq, q);
140 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
141 frags);
142 struct net *net = container_of(ipv4, struct net, ipv4);
143
144 const struct ip4_create_arg *arg = a;
145
146 qp->protocol = arg->iph->protocol;
147 qp->id = arg->iph->id;
148 qp->ecn = ip4_frag_ecn(arg->iph->tos);
149 qp->saddr = arg->iph->saddr;
150 qp->daddr = arg->iph->daddr;
151 qp->vif = arg->vif;
152 qp->user = arg->user;
153 qp->peer = sysctl_ipfrag_max_dist ?
154 inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, arg->vif, 1) :
155 NULL;
156 }
157
158 static void ip4_frag_free(struct inet_frag_queue *q)
159 {
160 struct ipq *qp;
161
162 qp = container_of(q, struct ipq, q);
163 if (qp->peer)
164 inet_putpeer(qp->peer);
165 }
166
167
168 /* Destruction primitives. */
169
170 static void ipq_put(struct ipq *ipq)
171 {
172 inet_frag_put(&ipq->q, &ip4_frags);
173 }
174
175 /* Kill ipq entry. It is not destroyed immediately,
176 * because caller (and someone more) holds reference count.
177 */
178 static void ipq_kill(struct ipq *ipq)
179 {
180 inet_frag_kill(&ipq->q, &ip4_frags);
181 }
182
183 static bool frag_expire_skip_icmp(u32 user)
184 {
185 return user == IP_DEFRAG_AF_PACKET ||
186 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
187 __IP_DEFRAG_CONNTRACK_IN_END) ||
188 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
189 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
190 }
191
192 /*
193 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
194 */
195 static void ip_expire(unsigned long arg)
196 {
197 struct ipq *qp;
198 struct net *net;
199
200 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
201 net = container_of(qp->q.net, struct net, ipv4.frags);
202
203 spin_lock(&qp->q.lock);
204
205 if (qp->q.flags & INET_FRAG_COMPLETE)
206 goto out;
207
208 ipq_kill(qp);
209 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
210
211 if (!inet_frag_evicting(&qp->q)) {
212 struct sk_buff *head = qp->q.fragments;
213 const struct iphdr *iph;
214 int err;
215
216 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
217
218 if (!(qp->q.flags & INET_FRAG_FIRST_IN) || !qp->q.fragments)
219 goto out;
220
221 rcu_read_lock();
222 head->dev = dev_get_by_index_rcu(net, qp->iif);
223 if (!head->dev)
224 goto out_rcu_unlock;
225
226 /* skb has no dst, perform route lookup again */
227 iph = ip_hdr(head);
228 err = ip_route_input_noref(head, iph->daddr, iph->saddr,
229 iph->tos, head->dev);
230 if (err)
231 goto out_rcu_unlock;
232
233 /* Only an end host needs to send an ICMP
234 * "Fragment Reassembly Timeout" message, per RFC792.
235 */
236 if (frag_expire_skip_icmp(qp->user) &&
237 (skb_rtable(head)->rt_type != RTN_LOCAL))
238 goto out_rcu_unlock;
239
240 /* Send an ICMP "Fragment Reassembly Timeout" message. */
241 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
242 out_rcu_unlock:
243 rcu_read_unlock();
244 }
245 out:
246 spin_unlock(&qp->q.lock);
247 ipq_put(qp);
248 }
249
250 /* Find the correct entry in the "incomplete datagrams" queue for
251 * this IP datagram, and create new one, if nothing is found.
252 */
253 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
254 u32 user, int vif)
255 {
256 struct inet_frag_queue *q;
257 struct ip4_create_arg arg;
258 unsigned int hash;
259
260 arg.iph = iph;
261 arg.user = user;
262 arg.vif = vif;
263
264 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
265
266 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
267 if (IS_ERR_OR_NULL(q)) {
268 inet_frag_maybe_warn_overflow(q, pr_fmt());
269 return NULL;
270 }
271 return container_of(q, struct ipq, q);
272 }
273
274 /* Is the fragment too far ahead to be part of ipq? */
275 static int ip_frag_too_far(struct ipq *qp)
276 {
277 struct inet_peer *peer = qp->peer;
278 unsigned int max = sysctl_ipfrag_max_dist;
279 unsigned int start, end;
280
281 int rc;
282
283 if (!peer || !max)
284 return 0;
285
286 start = qp->rid;
287 end = atomic_inc_return(&peer->rid);
288 qp->rid = end;
289
290 rc = qp->q.fragments && (end - start) > max;
291
292 if (rc) {
293 struct net *net;
294
295 net = container_of(qp->q.net, struct net, ipv4.frags);
296 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
297 }
298
299 return rc;
300 }
301
302 static int ip_frag_reinit(struct ipq *qp)
303 {
304 struct sk_buff *fp;
305 unsigned int sum_truesize = 0;
306
307 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
308 atomic_inc(&qp->q.refcnt);
309 return -ETIMEDOUT;
310 }
311
312 fp = qp->q.fragments;
313 do {
314 struct sk_buff *xp = fp->next;
315
316 sum_truesize += fp->truesize;
317 kfree_skb(fp);
318 fp = xp;
319 } while (fp);
320 sub_frag_mem_limit(qp->q.net, sum_truesize);
321
322 qp->q.flags = 0;
323 qp->q.len = 0;
324 qp->q.meat = 0;
325 qp->q.fragments = NULL;
326 qp->q.fragments_tail = NULL;
327 qp->iif = 0;
328 qp->ecn = 0;
329
330 return 0;
331 }
332
333 /* Add new segment to existing queue. */
334 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
335 {
336 struct sk_buff *prev, *next;
337 struct net_device *dev;
338 unsigned int fragsize;
339 int flags, offset;
340 int ihl, end;
341 int err = -ENOENT;
342 u8 ecn;
343
344 if (qp->q.flags & INET_FRAG_COMPLETE)
345 goto err;
346
347 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
348 unlikely(ip_frag_too_far(qp)) &&
349 unlikely(err = ip_frag_reinit(qp))) {
350 ipq_kill(qp);
351 goto err;
352 }
353
354 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
355 offset = ntohs(ip_hdr(skb)->frag_off);
356 flags = offset & ~IP_OFFSET;
357 offset &= IP_OFFSET;
358 offset <<= 3; /* offset is in 8-byte chunks */
359 ihl = ip_hdrlen(skb);
360
361 /* Determine the position of this fragment. */
362 end = offset + skb->len - skb_network_offset(skb) - ihl;
363 err = -EINVAL;
364
365 /* Is this the final fragment? */
366 if ((flags & IP_MF) == 0) {
367 /* If we already have some bits beyond end
368 * or have different end, the segment is corrupted.
369 */
370 if (end < qp->q.len ||
371 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
372 goto err;
373 qp->q.flags |= INET_FRAG_LAST_IN;
374 qp->q.len = end;
375 } else {
376 if (end&7) {
377 end &= ~7;
378 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
379 skb->ip_summed = CHECKSUM_NONE;
380 }
381 if (end > qp->q.len) {
382 /* Some bits beyond end -> corruption. */
383 if (qp->q.flags & INET_FRAG_LAST_IN)
384 goto err;
385 qp->q.len = end;
386 }
387 }
388 if (end == offset)
389 goto err;
390
391 err = -ENOMEM;
392 if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
393 goto err;
394
395 err = pskb_trim_rcsum(skb, end - offset);
396 if (err)
397 goto err;
398
399 /* Find out which fragments are in front and at the back of us
400 * in the chain of fragments so far. We must know where to put
401 * this fragment, right?
402 */
403 prev = qp->q.fragments_tail;
404 if (!prev || FRAG_CB(prev)->offset < offset) {
405 next = NULL;
406 goto found;
407 }
408 prev = NULL;
409 for (next = qp->q.fragments; next != NULL; next = next->next) {
410 if (FRAG_CB(next)->offset >= offset)
411 break; /* bingo! */
412 prev = next;
413 }
414
415 found:
416 /* We found where to put this one. Check for overlap with
417 * preceding fragment, and, if needed, align things so that
418 * any overlaps are eliminated.
419 */
420 if (prev) {
421 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
422
423 if (i > 0) {
424 offset += i;
425 err = -EINVAL;
426 if (end <= offset)
427 goto err;
428 err = -ENOMEM;
429 if (!pskb_pull(skb, i))
430 goto err;
431 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
432 skb->ip_summed = CHECKSUM_NONE;
433 }
434 }
435
436 err = -ENOMEM;
437
438 while (next && FRAG_CB(next)->offset < end) {
439 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
440
441 if (i < next->len) {
442 /* Eat head of the next overlapped fragment
443 * and leave the loop. The next ones cannot overlap.
444 */
445 if (!pskb_pull(next, i))
446 goto err;
447 FRAG_CB(next)->offset += i;
448 qp->q.meat -= i;
449 if (next->ip_summed != CHECKSUM_UNNECESSARY)
450 next->ip_summed = CHECKSUM_NONE;
451 break;
452 } else {
453 struct sk_buff *free_it = next;
454
455 /* Old fragment is completely overridden with
456 * new one drop it.
457 */
458 next = next->next;
459
460 if (prev)
461 prev->next = next;
462 else
463 qp->q.fragments = next;
464
465 qp->q.meat -= free_it->len;
466 sub_frag_mem_limit(qp->q.net, free_it->truesize);
467 kfree_skb(free_it);
468 }
469 }
470
471 FRAG_CB(skb)->offset = offset;
472
473 /* Insert this fragment in the chain of fragments. */
474 skb->next = next;
475 if (!next)
476 qp->q.fragments_tail = skb;
477 if (prev)
478 prev->next = skb;
479 else
480 qp->q.fragments = skb;
481
482 dev = skb->dev;
483 if (dev) {
484 qp->iif = dev->ifindex;
485 skb->dev = NULL;
486 }
487 qp->q.stamp = skb->tstamp;
488 qp->q.meat += skb->len;
489 qp->ecn |= ecn;
490 add_frag_mem_limit(qp->q.net, skb->truesize);
491 if (offset == 0)
492 qp->q.flags |= INET_FRAG_FIRST_IN;
493
494 fragsize = skb->len + ihl;
495
496 if (fragsize > qp->q.max_size)
497 qp->q.max_size = fragsize;
498
499 if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
500 fragsize > qp->max_df_size)
501 qp->max_df_size = fragsize;
502
503 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
504 qp->q.meat == qp->q.len) {
505 unsigned long orefdst = skb->_skb_refdst;
506
507 skb->_skb_refdst = 0UL;
508 err = ip_frag_reasm(qp, prev, dev);
509 skb->_skb_refdst = orefdst;
510 return err;
511 }
512
513 skb_dst_drop(skb);
514 return -EINPROGRESS;
515
516 err:
517 kfree_skb(skb);
518 return err;
519 }
520
521
522 /* Build a new IP datagram from all its fragments. */
523
524 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
525 struct net_device *dev)
526 {
527 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
528 struct iphdr *iph;
529 struct sk_buff *fp, *head = qp->q.fragments;
530 int len;
531 int ihlen;
532 int err;
533 u8 ecn;
534
535 ipq_kill(qp);
536
537 ecn = ip_frag_ecn_table[qp->ecn];
538 if (unlikely(ecn == 0xff)) {
539 err = -EINVAL;
540 goto out_fail;
541 }
542 /* Make the one we just received the head. */
543 if (prev) {
544 head = prev->next;
545 fp = skb_clone(head, GFP_ATOMIC);
546 if (!fp)
547 goto out_nomem;
548
549 fp->next = head->next;
550 if (!fp->next)
551 qp->q.fragments_tail = fp;
552 prev->next = fp;
553
554 skb_morph(head, qp->q.fragments);
555 head->next = qp->q.fragments->next;
556
557 consume_skb(qp->q.fragments);
558 qp->q.fragments = head;
559 }
560
561 WARN_ON(!head);
562 WARN_ON(FRAG_CB(head)->offset != 0);
563
564 /* Allocate a new buffer for the datagram. */
565 ihlen = ip_hdrlen(head);
566 len = ihlen + qp->q.len;
567
568 err = -E2BIG;
569 if (len > 65535)
570 goto out_oversize;
571
572 /* Head of list must not be cloned. */
573 if (skb_unclone(head, GFP_ATOMIC))
574 goto out_nomem;
575
576 /* If the first fragment is fragmented itself, we split
577 * it to two chunks: the first with data and paged part
578 * and the second, holding only fragments. */
579 if (skb_has_frag_list(head)) {
580 struct sk_buff *clone;
581 int i, plen = 0;
582
583 clone = alloc_skb(0, GFP_ATOMIC);
584 if (!clone)
585 goto out_nomem;
586 clone->next = head->next;
587 head->next = clone;
588 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
589 skb_frag_list_init(head);
590 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
591 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
592 clone->len = clone->data_len = head->data_len - plen;
593 head->data_len -= clone->len;
594 head->len -= clone->len;
595 clone->csum = 0;
596 clone->ip_summed = head->ip_summed;
597 add_frag_mem_limit(qp->q.net, clone->truesize);
598 }
599
600 skb_shinfo(head)->frag_list = head->next;
601 skb_push(head, head->data - skb_network_header(head));
602
603 for (fp=head->next; fp; fp = fp->next) {
604 head->data_len += fp->len;
605 head->len += fp->len;
606 if (head->ip_summed != fp->ip_summed)
607 head->ip_summed = CHECKSUM_NONE;
608 else if (head->ip_summed == CHECKSUM_COMPLETE)
609 head->csum = csum_add(head->csum, fp->csum);
610 head->truesize += fp->truesize;
611 }
612 sub_frag_mem_limit(qp->q.net, head->truesize);
613
614 head->next = NULL;
615 head->dev = dev;
616 head->tstamp = qp->q.stamp;
617 IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
618
619 iph = ip_hdr(head);
620 iph->tot_len = htons(len);
621 iph->tos |= ecn;
622
623 /* When we set IP_DF on a refragmented skb we must also force a
624 * call to ip_fragment to avoid forwarding a DF-skb of size s while
625 * original sender only sent fragments of size f (where f < s).
626 *
627 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
628 * frag seen to avoid sending tiny DF-fragments in case skb was built
629 * from one very small df-fragment and one large non-df frag.
630 */
631 if (qp->max_df_size == qp->q.max_size) {
632 IPCB(head)->flags |= IPSKB_FRAG_PMTU;
633 iph->frag_off = htons(IP_DF);
634 } else {
635 iph->frag_off = 0;
636 }
637
638 ip_send_check(iph);
639
640 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
641 qp->q.fragments = NULL;
642 qp->q.fragments_tail = NULL;
643 return 0;
644
645 out_nomem:
646 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
647 err = -ENOMEM;
648 goto out_fail;
649 out_oversize:
650 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
651 out_fail:
652 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
653 return err;
654 }
655
656 /* Process an incoming IP datagram fragment. */
657 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
658 {
659 struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
660 int vif = l3mdev_master_ifindex_rcu(dev);
661 struct ipq *qp;
662
663 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
664
665 /* Lookup (or create) queue header */
666 qp = ip_find(net, ip_hdr(skb), user, vif);
667 if (qp) {
668 int ret;
669
670 spin_lock(&qp->q.lock);
671
672 ret = ip_frag_queue(qp, skb);
673
674 spin_unlock(&qp->q.lock);
675 ipq_put(qp);
676 return ret;
677 }
678
679 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
680 kfree_skb(skb);
681 return -ENOMEM;
682 }
683 EXPORT_SYMBOL(ip_defrag);
684
685 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
686 {
687 struct iphdr iph;
688 int netoff;
689 u32 len;
690
691 if (skb->protocol != htons(ETH_P_IP))
692 return skb;
693
694 netoff = skb_network_offset(skb);
695
696 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
697 return skb;
698
699 if (iph.ihl < 5 || iph.version != 4)
700 return skb;
701
702 len = ntohs(iph.tot_len);
703 if (skb->len < netoff + len || len < (iph.ihl * 4))
704 return skb;
705
706 if (ip_is_fragment(&iph)) {
707 skb = skb_share_check(skb, GFP_ATOMIC);
708 if (skb) {
709 if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
710 return skb;
711 if (pskb_trim_rcsum(skb, netoff + len))
712 return skb;
713 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
714 if (ip_defrag(net, skb, user))
715 return NULL;
716 skb_clear_hash(skb);
717 }
718 }
719 return skb;
720 }
721 EXPORT_SYMBOL(ip_check_defrag);
722
723 #ifdef CONFIG_SYSCTL
724 static int zero;
725
726 static struct ctl_table ip4_frags_ns_ctl_table[] = {
727 {
728 .procname = "ipfrag_high_thresh",
729 .data = &init_net.ipv4.frags.high_thresh,
730 .maxlen = sizeof(int),
731 .mode = 0644,
732 .proc_handler = proc_dointvec_minmax,
733 .extra1 = &init_net.ipv4.frags.low_thresh
734 },
735 {
736 .procname = "ipfrag_low_thresh",
737 .data = &init_net.ipv4.frags.low_thresh,
738 .maxlen = sizeof(int),
739 .mode = 0644,
740 .proc_handler = proc_dointvec_minmax,
741 .extra1 = &zero,
742 .extra2 = &init_net.ipv4.frags.high_thresh
743 },
744 {
745 .procname = "ipfrag_time",
746 .data = &init_net.ipv4.frags.timeout,
747 .maxlen = sizeof(int),
748 .mode = 0644,
749 .proc_handler = proc_dointvec_jiffies,
750 },
751 { }
752 };
753
754 /* secret interval has been deprecated */
755 static int ip4_frags_secret_interval_unused;
756 static struct ctl_table ip4_frags_ctl_table[] = {
757 {
758 .procname = "ipfrag_secret_interval",
759 .data = &ip4_frags_secret_interval_unused,
760 .maxlen = sizeof(int),
761 .mode = 0644,
762 .proc_handler = proc_dointvec_jiffies,
763 },
764 {
765 .procname = "ipfrag_max_dist",
766 .data = &sysctl_ipfrag_max_dist,
767 .maxlen = sizeof(int),
768 .mode = 0644,
769 .proc_handler = proc_dointvec_minmax,
770 .extra1 = &zero
771 },
772 { }
773 };
774
775 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
776 {
777 struct ctl_table *table;
778 struct ctl_table_header *hdr;
779
780 table = ip4_frags_ns_ctl_table;
781 if (!net_eq(net, &init_net)) {
782 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
783 if (!table)
784 goto err_alloc;
785
786 table[0].data = &net->ipv4.frags.high_thresh;
787 table[0].extra1 = &net->ipv4.frags.low_thresh;
788 table[0].extra2 = &init_net.ipv4.frags.high_thresh;
789 table[1].data = &net->ipv4.frags.low_thresh;
790 table[1].extra2 = &net->ipv4.frags.high_thresh;
791 table[2].data = &net->ipv4.frags.timeout;
792
793 /* Don't export sysctls to unprivileged users */
794 if (net->user_ns != &init_user_ns)
795 table[0].procname = NULL;
796 }
797
798 hdr = register_net_sysctl(net, "net/ipv4", table);
799 if (!hdr)
800 goto err_reg;
801
802 net->ipv4.frags_hdr = hdr;
803 return 0;
804
805 err_reg:
806 if (!net_eq(net, &init_net))
807 kfree(table);
808 err_alloc:
809 return -ENOMEM;
810 }
811
812 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
813 {
814 struct ctl_table *table;
815
816 table = net->ipv4.frags_hdr->ctl_table_arg;
817 unregister_net_sysctl_table(net->ipv4.frags_hdr);
818 kfree(table);
819 }
820
821 static void __init ip4_frags_ctl_register(void)
822 {
823 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
824 }
825 #else
826 static int ip4_frags_ns_ctl_register(struct net *net)
827 {
828 return 0;
829 }
830
831 static void ip4_frags_ns_ctl_unregister(struct net *net)
832 {
833 }
834
835 static void __init ip4_frags_ctl_register(void)
836 {
837 }
838 #endif
839
840 static int __net_init ipv4_frags_init_net(struct net *net)
841 {
842 /* Fragment cache limits.
843 *
844 * The fragment memory accounting code, (tries to) account for
845 * the real memory usage, by measuring both the size of frag
846 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
847 * and the SKB's truesize.
848 *
849 * A 64K fragment consumes 129736 bytes (44*2944)+200
850 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
851 *
852 * We will commit 4MB at one time. Should we cross that limit
853 * we will prune down to 3MB, making room for approx 8 big 64K
854 * fragments 8x128k.
855 */
856 net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
857 net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
858 /*
859 * Important NOTE! Fragment queue must be destroyed before MSL expires.
860 * RFC791 is wrong proposing to prolongate timer each fragment arrival
861 * by TTL.
862 */
863 net->ipv4.frags.timeout = IP_FRAG_TIME;
864
865 inet_frags_init_net(&net->ipv4.frags);
866
867 return ip4_frags_ns_ctl_register(net);
868 }
869
870 static void __net_exit ipv4_frags_exit_net(struct net *net)
871 {
872 ip4_frags_ns_ctl_unregister(net);
873 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
874 }
875
876 static struct pernet_operations ip4_frags_ops = {
877 .init = ipv4_frags_init_net,
878 .exit = ipv4_frags_exit_net,
879 };
880
881 void __init ipfrag_init(void)
882 {
883 ip4_frags_ctl_register();
884 register_pernet_subsys(&ip4_frags_ops);
885 ip4_frags.hashfn = ip4_hashfn;
886 ip4_frags.constructor = ip4_frag_init;
887 ip4_frags.destructor = ip4_frag_free;
888 ip4_frags.skb_free = NULL;
889 ip4_frags.qsize = sizeof(struct ipq);
890 ip4_frags.match = ip4_frag_match;
891 ip4_frags.frag_expire = ip_expire;
892 ip4_frags.frags_cache_name = ip_frag_cache_name;
893 if (inet_frags_init(&ip4_frags))
894 panic("IP: failed to allocate ip4_frags cache\n");
895 }
This page took 0.050048 seconds and 5 git commands to generate.