ipv4: Cache net in ip_build_and_send_pkt and ip_queue_xmit
[deliverable/linux.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 unsigned int mtu,
89 int (*output)(struct net *, struct sock *, struct sk_buff *));
90
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
93 {
94 iph->check = 0;
95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 EXPORT_SYMBOL(ip_send_check);
98
99 int __ip_local_out(struct sock *sk, struct sk_buff *skb)
100 {
101 struct net *net = dev_net(skb_dst(skb)->dev);
102 struct iphdr *iph = ip_hdr(skb);
103
104 iph->tot_len = htons(skb->len);
105 ip_send_check(iph);
106 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
107 net, sk, skb, NULL, skb_dst(skb)->dev,
108 dst_output);
109 }
110
111 int ip_local_out(struct sock *sk, struct sk_buff *skb)
112 {
113 struct net *net = dev_net(skb_dst(skb)->dev);
114 int err;
115
116 err = __ip_local_out(sk, skb);
117 if (likely(err == 1))
118 err = dst_output(net, sk, skb);
119
120 return err;
121 }
122 EXPORT_SYMBOL_GPL(ip_local_out);
123
124 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
125 {
126 int ttl = inet->uc_ttl;
127
128 if (ttl < 0)
129 ttl = ip4_dst_hoplimit(dst);
130 return ttl;
131 }
132
133 /*
134 * Add an ip header to a skbuff and send it out.
135 *
136 */
137 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
138 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
139 {
140 struct inet_sock *inet = inet_sk(sk);
141 struct rtable *rt = skb_rtable(skb);
142 struct net *net = sock_net(sk);
143 struct iphdr *iph;
144
145 /* Build the IP header. */
146 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
147 skb_reset_network_header(skb);
148 iph = ip_hdr(skb);
149 iph->version = 4;
150 iph->ihl = 5;
151 iph->tos = inet->tos;
152 iph->ttl = ip_select_ttl(inet, &rt->dst);
153 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
154 iph->saddr = saddr;
155 iph->protocol = sk->sk_protocol;
156 if (ip_dont_fragment(sk, &rt->dst)) {
157 iph->frag_off = htons(IP_DF);
158 iph->id = 0;
159 } else {
160 iph->frag_off = 0;
161 __ip_select_ident(net, iph, 1);
162 }
163
164 if (opt && opt->opt.optlen) {
165 iph->ihl += opt->opt.optlen>>2;
166 ip_options_build(skb, &opt->opt, daddr, rt, 0);
167 }
168
169 skb->priority = sk->sk_priority;
170 skb->mark = sk->sk_mark;
171
172 /* Send it out. */
173 return ip_local_out(skb->sk, skb);
174 }
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176
177 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
178 {
179 struct dst_entry *dst = skb_dst(skb);
180 struct rtable *rt = (struct rtable *)dst;
181 struct net_device *dev = dst->dev;
182 unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 struct neighbour *neigh;
184 u32 nexthop;
185
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
190
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
194
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (!skb2) {
197 kfree_skb(skb);
198 return -ENOMEM;
199 }
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 consume_skb(skb);
203 skb = skb2;
204 }
205
206 rcu_read_lock_bh();
207 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
208 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
209 if (unlikely(!neigh))
210 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
211 if (!IS_ERR(neigh)) {
212 int res = dst_neigh_output(dst, neigh, skb);
213
214 rcu_read_unlock_bh();
215 return res;
216 }
217 rcu_read_unlock_bh();
218
219 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
220 __func__);
221 kfree_skb(skb);
222 return -EINVAL;
223 }
224
225 static int ip_finish_output_gso(struct net *net, struct sock *sk,
226 struct sk_buff *skb, unsigned int mtu)
227 {
228 netdev_features_t features;
229 struct sk_buff *segs;
230 int ret = 0;
231
232 /* common case: locally created skb or seglen is <= mtu */
233 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
234 skb_gso_network_seglen(skb) <= mtu)
235 return ip_finish_output2(net, sk, skb);
236
237 /* Slowpath - GSO segment length is exceeding the dst MTU.
238 *
239 * This can happen in two cases:
240 * 1) TCP GRO packet, DF bit not set
241 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
242 * from host network stack.
243 */
244 features = netif_skb_features(skb);
245 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
246 if (IS_ERR_OR_NULL(segs)) {
247 kfree_skb(skb);
248 return -ENOMEM;
249 }
250
251 consume_skb(skb);
252
253 do {
254 struct sk_buff *nskb = segs->next;
255 int err;
256
257 segs->next = NULL;
258 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
259
260 if (err && ret == 0)
261 ret = err;
262 segs = nskb;
263 } while (segs);
264
265 return ret;
266 }
267
268 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
269 {
270 unsigned int mtu;
271
272 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
273 /* Policy lookup after SNAT yielded a new policy */
274 if (skb_dst(skb)->xfrm) {
275 IPCB(skb)->flags |= IPSKB_REROUTED;
276 return dst_output(net, sk, skb);
277 }
278 #endif
279 mtu = ip_skb_dst_mtu(skb);
280 if (skb_is_gso(skb))
281 return ip_finish_output_gso(net, sk, skb, mtu);
282
283 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
284 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
285
286 return ip_finish_output2(net, sk, skb);
287 }
288
289 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
290 {
291 struct rtable *rt = skb_rtable(skb);
292 struct net_device *dev = rt->dst.dev;
293 struct net *net = dev_net(dev);
294
295 /*
296 * If the indicated interface is up and running, send the packet.
297 */
298 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
299
300 skb->dev = dev;
301 skb->protocol = htons(ETH_P_IP);
302
303 /*
304 * Multicasts are looped back for other local users
305 */
306
307 if (rt->rt_flags&RTCF_MULTICAST) {
308 if (sk_mc_loop(sk)
309 #ifdef CONFIG_IP_MROUTE
310 /* Small optimization: do not loopback not local frames,
311 which returned after forwarding; they will be dropped
312 by ip_mr_input in any case.
313 Note, that local frames are looped back to be delivered
314 to local recipients.
315
316 This check is duplicated in ip_mr_input at the moment.
317 */
318 &&
319 ((rt->rt_flags & RTCF_LOCAL) ||
320 !(IPCB(skb)->flags & IPSKB_FORWARDED))
321 #endif
322 ) {
323 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
324 if (newskb)
325 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
326 net, sk, newskb, NULL, newskb->dev,
327 dev_loopback_xmit);
328 }
329
330 /* Multicasts with ttl 0 must not go beyond the host */
331
332 if (ip_hdr(skb)->ttl == 0) {
333 kfree_skb(skb);
334 return 0;
335 }
336 }
337
338 if (rt->rt_flags&RTCF_BROADCAST) {
339 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
340 if (newskb)
341 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
342 net, sk, newskb, NULL, newskb->dev,
343 dev_loopback_xmit);
344 }
345
346 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
347 net, sk, skb, NULL, skb->dev,
348 ip_finish_output,
349 !(IPCB(skb)->flags & IPSKB_REROUTED));
350 }
351
352 int ip_output(struct sock *sk, struct sk_buff *skb)
353 {
354 struct net_device *dev = skb_dst(skb)->dev;
355 struct net *net = dev_net(dev);
356
357 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
358
359 skb->dev = dev;
360 skb->protocol = htons(ETH_P_IP);
361
362 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
363 net, sk, skb, NULL, dev,
364 ip_finish_output,
365 !(IPCB(skb)->flags & IPSKB_REROUTED));
366 }
367
368 /*
369 * copy saddr and daddr, possibly using 64bit load/stores
370 * Equivalent to :
371 * iph->saddr = fl4->saddr;
372 * iph->daddr = fl4->daddr;
373 */
374 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
375 {
376 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
377 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
378 memcpy(&iph->saddr, &fl4->saddr,
379 sizeof(fl4->saddr) + sizeof(fl4->daddr));
380 }
381
382 /* Note: skb->sk can be different from sk, in case of tunnels */
383 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
384 {
385 struct inet_sock *inet = inet_sk(sk);
386 struct net *net = sock_net(sk);
387 struct ip_options_rcu *inet_opt;
388 struct flowi4 *fl4;
389 struct rtable *rt;
390 struct iphdr *iph;
391 int res;
392
393 /* Skip all of this if the packet is already routed,
394 * f.e. by something like SCTP.
395 */
396 rcu_read_lock();
397 inet_opt = rcu_dereference(inet->inet_opt);
398 fl4 = &fl->u.ip4;
399 rt = skb_rtable(skb);
400 if (rt)
401 goto packet_routed;
402
403 /* Make sure we can route this packet. */
404 rt = (struct rtable *)__sk_dst_check(sk, 0);
405 if (!rt) {
406 __be32 daddr;
407
408 /* Use correct destination address if we have options. */
409 daddr = inet->inet_daddr;
410 if (inet_opt && inet_opt->opt.srr)
411 daddr = inet_opt->opt.faddr;
412
413 /* If this fails, retransmit mechanism of transport layer will
414 * keep trying until route appears or the connection times
415 * itself out.
416 */
417 rt = ip_route_output_ports(net, fl4, sk,
418 daddr, inet->inet_saddr,
419 inet->inet_dport,
420 inet->inet_sport,
421 sk->sk_protocol,
422 RT_CONN_FLAGS(sk),
423 sk->sk_bound_dev_if);
424 if (IS_ERR(rt))
425 goto no_route;
426 sk_setup_caps(sk, &rt->dst);
427 }
428 skb_dst_set_noref(skb, &rt->dst);
429
430 packet_routed:
431 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
432 goto no_route;
433
434 /* OK, we know where to send it, allocate and build IP header. */
435 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
436 skb_reset_network_header(skb);
437 iph = ip_hdr(skb);
438 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
439 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
440 iph->frag_off = htons(IP_DF);
441 else
442 iph->frag_off = 0;
443 iph->ttl = ip_select_ttl(inet, &rt->dst);
444 iph->protocol = sk->sk_protocol;
445 ip_copy_addrs(iph, fl4);
446
447 /* Transport layer set skb->h.foo itself. */
448
449 if (inet_opt && inet_opt->opt.optlen) {
450 iph->ihl += inet_opt->opt.optlen >> 2;
451 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
452 }
453
454 ip_select_ident_segs(net, skb, sk,
455 skb_shinfo(skb)->gso_segs ?: 1);
456
457 /* TODO : should we use skb->sk here instead of sk ? */
458 skb->priority = sk->sk_priority;
459 skb->mark = sk->sk_mark;
460
461 res = ip_local_out(sk, skb);
462 rcu_read_unlock();
463 return res;
464
465 no_route:
466 rcu_read_unlock();
467 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
468 kfree_skb(skb);
469 return -EHOSTUNREACH;
470 }
471 EXPORT_SYMBOL(ip_queue_xmit);
472
473 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
474 {
475 to->pkt_type = from->pkt_type;
476 to->priority = from->priority;
477 to->protocol = from->protocol;
478 skb_dst_drop(to);
479 skb_dst_copy(to, from);
480 to->dev = from->dev;
481 to->mark = from->mark;
482
483 /* Copy the flags to each fragment. */
484 IPCB(to)->flags = IPCB(from)->flags;
485
486 #ifdef CONFIG_NET_SCHED
487 to->tc_index = from->tc_index;
488 #endif
489 nf_copy(to, from);
490 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
491 to->ipvs_property = from->ipvs_property;
492 #endif
493 skb_copy_secmark(to, from);
494 }
495
496 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
497 unsigned int mtu,
498 int (*output)(struct net *, struct sock *, struct sk_buff *))
499 {
500 struct iphdr *iph = ip_hdr(skb);
501
502 if ((iph->frag_off & htons(IP_DF)) == 0)
503 return ip_do_fragment(net, sk, skb, output);
504
505 if (unlikely(!skb->ignore_df ||
506 (IPCB(skb)->frag_max_size &&
507 IPCB(skb)->frag_max_size > mtu))) {
508 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
509 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
510 htonl(mtu));
511 kfree_skb(skb);
512 return -EMSGSIZE;
513 }
514
515 return ip_do_fragment(net, sk, skb, output);
516 }
517
518 /*
519 * This IP datagram is too large to be sent in one piece. Break it up into
520 * smaller pieces (each of size equal to IP header plus
521 * a block of the data of the original IP data part) that will yet fit in a
522 * single device frame, and queue such a frame for sending.
523 */
524
525 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
526 int (*output)(struct net *, struct sock *, struct sk_buff *))
527 {
528 struct iphdr *iph;
529 int ptr;
530 struct net_device *dev;
531 struct sk_buff *skb2;
532 unsigned int mtu, hlen, left, len, ll_rs;
533 int offset;
534 __be16 not_last_frag;
535 struct rtable *rt = skb_rtable(skb);
536 int err = 0;
537
538 dev = rt->dst.dev;
539
540 /*
541 * Point into the IP datagram header.
542 */
543
544 iph = ip_hdr(skb);
545
546 mtu = ip_skb_dst_mtu(skb);
547 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
548 mtu = IPCB(skb)->frag_max_size;
549
550 /*
551 * Setup starting values.
552 */
553
554 hlen = iph->ihl * 4;
555 mtu = mtu - hlen; /* Size of data space */
556 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
557
558 /* When frag_list is given, use it. First, check its validity:
559 * some transformers could create wrong frag_list or break existing
560 * one, it is not prohibited. In this case fall back to copying.
561 *
562 * LATER: this step can be merged to real generation of fragments,
563 * we can switch to copy when see the first bad fragment.
564 */
565 if (skb_has_frag_list(skb)) {
566 struct sk_buff *frag, *frag2;
567 int first_len = skb_pagelen(skb);
568
569 if (first_len - hlen > mtu ||
570 ((first_len - hlen) & 7) ||
571 ip_is_fragment(iph) ||
572 skb_cloned(skb))
573 goto slow_path;
574
575 skb_walk_frags(skb, frag) {
576 /* Correct geometry. */
577 if (frag->len > mtu ||
578 ((frag->len & 7) && frag->next) ||
579 skb_headroom(frag) < hlen)
580 goto slow_path_clean;
581
582 /* Partially cloned skb? */
583 if (skb_shared(frag))
584 goto slow_path_clean;
585
586 BUG_ON(frag->sk);
587 if (skb->sk) {
588 frag->sk = skb->sk;
589 frag->destructor = sock_wfree;
590 }
591 skb->truesize -= frag->truesize;
592 }
593
594 /* Everything is OK. Generate! */
595
596 err = 0;
597 offset = 0;
598 frag = skb_shinfo(skb)->frag_list;
599 skb_frag_list_init(skb);
600 skb->data_len = first_len - skb_headlen(skb);
601 skb->len = first_len;
602 iph->tot_len = htons(first_len);
603 iph->frag_off = htons(IP_MF);
604 ip_send_check(iph);
605
606 for (;;) {
607 /* Prepare header of the next frame,
608 * before previous one went down. */
609 if (frag) {
610 frag->ip_summed = CHECKSUM_NONE;
611 skb_reset_transport_header(frag);
612 __skb_push(frag, hlen);
613 skb_reset_network_header(frag);
614 memcpy(skb_network_header(frag), iph, hlen);
615 iph = ip_hdr(frag);
616 iph->tot_len = htons(frag->len);
617 ip_copy_metadata(frag, skb);
618 if (offset == 0)
619 ip_options_fragment(frag);
620 offset += skb->len - hlen;
621 iph->frag_off = htons(offset>>3);
622 if (frag->next)
623 iph->frag_off |= htons(IP_MF);
624 /* Ready, complete checksum */
625 ip_send_check(iph);
626 }
627
628 err = output(net, sk, skb);
629
630 if (!err)
631 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
632 if (err || !frag)
633 break;
634
635 skb = frag;
636 frag = skb->next;
637 skb->next = NULL;
638 }
639
640 if (err == 0) {
641 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
642 return 0;
643 }
644
645 while (frag) {
646 skb = frag->next;
647 kfree_skb(frag);
648 frag = skb;
649 }
650 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
651 return err;
652
653 slow_path_clean:
654 skb_walk_frags(skb, frag2) {
655 if (frag2 == frag)
656 break;
657 frag2->sk = NULL;
658 frag2->destructor = NULL;
659 skb->truesize += frag2->truesize;
660 }
661 }
662
663 slow_path:
664 /* for offloaded checksums cleanup checksum before fragmentation */
665 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
666 goto fail;
667 iph = ip_hdr(skb);
668
669 left = skb->len - hlen; /* Space per frame */
670 ptr = hlen; /* Where to start from */
671
672 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
673
674 /*
675 * Fragment the datagram.
676 */
677
678 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
679 not_last_frag = iph->frag_off & htons(IP_MF);
680
681 /*
682 * Keep copying data until we run out.
683 */
684
685 while (left > 0) {
686 len = left;
687 /* IF: it doesn't fit, use 'mtu' - the data space left */
688 if (len > mtu)
689 len = mtu;
690 /* IF: we are not sending up to and including the packet end
691 then align the next start on an eight byte boundary */
692 if (len < left) {
693 len &= ~7;
694 }
695
696 /* Allocate buffer */
697 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
698 if (!skb2) {
699 err = -ENOMEM;
700 goto fail;
701 }
702
703 /*
704 * Set up data on packet
705 */
706
707 ip_copy_metadata(skb2, skb);
708 skb_reserve(skb2, ll_rs);
709 skb_put(skb2, len + hlen);
710 skb_reset_network_header(skb2);
711 skb2->transport_header = skb2->network_header + hlen;
712
713 /*
714 * Charge the memory for the fragment to any owner
715 * it might possess
716 */
717
718 if (skb->sk)
719 skb_set_owner_w(skb2, skb->sk);
720
721 /*
722 * Copy the packet header into the new buffer.
723 */
724
725 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
726
727 /*
728 * Copy a block of the IP datagram.
729 */
730 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
731 BUG();
732 left -= len;
733
734 /*
735 * Fill in the new header fields.
736 */
737 iph = ip_hdr(skb2);
738 iph->frag_off = htons((offset >> 3));
739
740 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
741 iph->frag_off |= htons(IP_DF);
742
743 /* ANK: dirty, but effective trick. Upgrade options only if
744 * the segment to be fragmented was THE FIRST (otherwise,
745 * options are already fixed) and make it ONCE
746 * on the initial skb, so that all the following fragments
747 * will inherit fixed options.
748 */
749 if (offset == 0)
750 ip_options_fragment(skb);
751
752 /*
753 * Added AC : If we are fragmenting a fragment that's not the
754 * last fragment then keep MF on each bit
755 */
756 if (left > 0 || not_last_frag)
757 iph->frag_off |= htons(IP_MF);
758 ptr += len;
759 offset += len;
760
761 /*
762 * Put this fragment into the sending queue.
763 */
764 iph->tot_len = htons(len + hlen);
765
766 ip_send_check(iph);
767
768 err = output(net, sk, skb2);
769 if (err)
770 goto fail;
771
772 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
773 }
774 consume_skb(skb);
775 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
776 return err;
777
778 fail:
779 kfree_skb(skb);
780 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
781 return err;
782 }
783 EXPORT_SYMBOL(ip_do_fragment);
784
785 int
786 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
787 {
788 struct msghdr *msg = from;
789
790 if (skb->ip_summed == CHECKSUM_PARTIAL) {
791 if (copy_from_iter(to, len, &msg->msg_iter) != len)
792 return -EFAULT;
793 } else {
794 __wsum csum = 0;
795 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
796 return -EFAULT;
797 skb->csum = csum_block_add(skb->csum, csum, odd);
798 }
799 return 0;
800 }
801 EXPORT_SYMBOL(ip_generic_getfrag);
802
803 static inline __wsum
804 csum_page(struct page *page, int offset, int copy)
805 {
806 char *kaddr;
807 __wsum csum;
808 kaddr = kmap(page);
809 csum = csum_partial(kaddr + offset, copy, 0);
810 kunmap(page);
811 return csum;
812 }
813
814 static inline int ip_ufo_append_data(struct sock *sk,
815 struct sk_buff_head *queue,
816 int getfrag(void *from, char *to, int offset, int len,
817 int odd, struct sk_buff *skb),
818 void *from, int length, int hh_len, int fragheaderlen,
819 int transhdrlen, int maxfraglen, unsigned int flags)
820 {
821 struct sk_buff *skb;
822 int err;
823
824 /* There is support for UDP fragmentation offload by network
825 * device, so create one single skb packet containing complete
826 * udp datagram
827 */
828 skb = skb_peek_tail(queue);
829 if (!skb) {
830 skb = sock_alloc_send_skb(sk,
831 hh_len + fragheaderlen + transhdrlen + 20,
832 (flags & MSG_DONTWAIT), &err);
833
834 if (!skb)
835 return err;
836
837 /* reserve space for Hardware header */
838 skb_reserve(skb, hh_len);
839
840 /* create space for UDP/IP header */
841 skb_put(skb, fragheaderlen + transhdrlen);
842
843 /* initialize network header pointer */
844 skb_reset_network_header(skb);
845
846 /* initialize protocol header pointer */
847 skb->transport_header = skb->network_header + fragheaderlen;
848
849 skb->csum = 0;
850
851 __skb_queue_tail(queue, skb);
852 } else if (skb_is_gso(skb)) {
853 goto append;
854 }
855
856 skb->ip_summed = CHECKSUM_PARTIAL;
857 /* specify the length of each IP datagram fragment */
858 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
859 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
860
861 append:
862 return skb_append_datato_frags(sk, skb, getfrag, from,
863 (length - transhdrlen));
864 }
865
866 static int __ip_append_data(struct sock *sk,
867 struct flowi4 *fl4,
868 struct sk_buff_head *queue,
869 struct inet_cork *cork,
870 struct page_frag *pfrag,
871 int getfrag(void *from, char *to, int offset,
872 int len, int odd, struct sk_buff *skb),
873 void *from, int length, int transhdrlen,
874 unsigned int flags)
875 {
876 struct inet_sock *inet = inet_sk(sk);
877 struct sk_buff *skb;
878
879 struct ip_options *opt = cork->opt;
880 int hh_len;
881 int exthdrlen;
882 int mtu;
883 int copy;
884 int err;
885 int offset = 0;
886 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
887 int csummode = CHECKSUM_NONE;
888 struct rtable *rt = (struct rtable *)cork->dst;
889 u32 tskey = 0;
890
891 skb = skb_peek_tail(queue);
892
893 exthdrlen = !skb ? rt->dst.header_len : 0;
894 mtu = cork->fragsize;
895 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
896 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
897 tskey = sk->sk_tskey++;
898
899 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
900
901 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
902 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
903 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
904
905 if (cork->length + length > maxnonfragsize - fragheaderlen) {
906 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
907 mtu - (opt ? opt->optlen : 0));
908 return -EMSGSIZE;
909 }
910
911 /*
912 * transhdrlen > 0 means that this is the first fragment and we wish
913 * it won't be fragmented in the future.
914 */
915 if (transhdrlen &&
916 length + fragheaderlen <= mtu &&
917 rt->dst.dev->features & NETIF_F_V4_CSUM &&
918 !exthdrlen)
919 csummode = CHECKSUM_PARTIAL;
920
921 cork->length += length;
922 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
923 (sk->sk_protocol == IPPROTO_UDP) &&
924 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
925 (sk->sk_type == SOCK_DGRAM)) {
926 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
927 hh_len, fragheaderlen, transhdrlen,
928 maxfraglen, flags);
929 if (err)
930 goto error;
931 return 0;
932 }
933
934 /* So, what's going on in the loop below?
935 *
936 * We use calculated fragment length to generate chained skb,
937 * each of segments is IP fragment ready for sending to network after
938 * adding appropriate IP header.
939 */
940
941 if (!skb)
942 goto alloc_new_skb;
943
944 while (length > 0) {
945 /* Check if the remaining data fits into current packet. */
946 copy = mtu - skb->len;
947 if (copy < length)
948 copy = maxfraglen - skb->len;
949 if (copy <= 0) {
950 char *data;
951 unsigned int datalen;
952 unsigned int fraglen;
953 unsigned int fraggap;
954 unsigned int alloclen;
955 struct sk_buff *skb_prev;
956 alloc_new_skb:
957 skb_prev = skb;
958 if (skb_prev)
959 fraggap = skb_prev->len - maxfraglen;
960 else
961 fraggap = 0;
962
963 /*
964 * If remaining data exceeds the mtu,
965 * we know we need more fragment(s).
966 */
967 datalen = length + fraggap;
968 if (datalen > mtu - fragheaderlen)
969 datalen = maxfraglen - fragheaderlen;
970 fraglen = datalen + fragheaderlen;
971
972 if ((flags & MSG_MORE) &&
973 !(rt->dst.dev->features&NETIF_F_SG))
974 alloclen = mtu;
975 else
976 alloclen = fraglen;
977
978 alloclen += exthdrlen;
979
980 /* The last fragment gets additional space at tail.
981 * Note, with MSG_MORE we overallocate on fragments,
982 * because we have no idea what fragment will be
983 * the last.
984 */
985 if (datalen == length + fraggap)
986 alloclen += rt->dst.trailer_len;
987
988 if (transhdrlen) {
989 skb = sock_alloc_send_skb(sk,
990 alloclen + hh_len + 15,
991 (flags & MSG_DONTWAIT), &err);
992 } else {
993 skb = NULL;
994 if (atomic_read(&sk->sk_wmem_alloc) <=
995 2 * sk->sk_sndbuf)
996 skb = sock_wmalloc(sk,
997 alloclen + hh_len + 15, 1,
998 sk->sk_allocation);
999 if (unlikely(!skb))
1000 err = -ENOBUFS;
1001 }
1002 if (!skb)
1003 goto error;
1004
1005 /*
1006 * Fill in the control structures
1007 */
1008 skb->ip_summed = csummode;
1009 skb->csum = 0;
1010 skb_reserve(skb, hh_len);
1011
1012 /* only the initial fragment is time stamped */
1013 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1014 cork->tx_flags = 0;
1015 skb_shinfo(skb)->tskey = tskey;
1016 tskey = 0;
1017
1018 /*
1019 * Find where to start putting bytes.
1020 */
1021 data = skb_put(skb, fraglen + exthdrlen);
1022 skb_set_network_header(skb, exthdrlen);
1023 skb->transport_header = (skb->network_header +
1024 fragheaderlen);
1025 data += fragheaderlen + exthdrlen;
1026
1027 if (fraggap) {
1028 skb->csum = skb_copy_and_csum_bits(
1029 skb_prev, maxfraglen,
1030 data + transhdrlen, fraggap, 0);
1031 skb_prev->csum = csum_sub(skb_prev->csum,
1032 skb->csum);
1033 data += fraggap;
1034 pskb_trim_unique(skb_prev, maxfraglen);
1035 }
1036
1037 copy = datalen - transhdrlen - fraggap;
1038 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1039 err = -EFAULT;
1040 kfree_skb(skb);
1041 goto error;
1042 }
1043
1044 offset += copy;
1045 length -= datalen - fraggap;
1046 transhdrlen = 0;
1047 exthdrlen = 0;
1048 csummode = CHECKSUM_NONE;
1049
1050 /*
1051 * Put the packet on the pending queue.
1052 */
1053 __skb_queue_tail(queue, skb);
1054 continue;
1055 }
1056
1057 if (copy > length)
1058 copy = length;
1059
1060 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1061 unsigned int off;
1062
1063 off = skb->len;
1064 if (getfrag(from, skb_put(skb, copy),
1065 offset, copy, off, skb) < 0) {
1066 __skb_trim(skb, off);
1067 err = -EFAULT;
1068 goto error;
1069 }
1070 } else {
1071 int i = skb_shinfo(skb)->nr_frags;
1072
1073 err = -ENOMEM;
1074 if (!sk_page_frag_refill(sk, pfrag))
1075 goto error;
1076
1077 if (!skb_can_coalesce(skb, i, pfrag->page,
1078 pfrag->offset)) {
1079 err = -EMSGSIZE;
1080 if (i == MAX_SKB_FRAGS)
1081 goto error;
1082
1083 __skb_fill_page_desc(skb, i, pfrag->page,
1084 pfrag->offset, 0);
1085 skb_shinfo(skb)->nr_frags = ++i;
1086 get_page(pfrag->page);
1087 }
1088 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1089 if (getfrag(from,
1090 page_address(pfrag->page) + pfrag->offset,
1091 offset, copy, skb->len, skb) < 0)
1092 goto error_efault;
1093
1094 pfrag->offset += copy;
1095 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1096 skb->len += copy;
1097 skb->data_len += copy;
1098 skb->truesize += copy;
1099 atomic_add(copy, &sk->sk_wmem_alloc);
1100 }
1101 offset += copy;
1102 length -= copy;
1103 }
1104
1105 return 0;
1106
1107 error_efault:
1108 err = -EFAULT;
1109 error:
1110 cork->length -= length;
1111 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1112 return err;
1113 }
1114
1115 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1116 struct ipcm_cookie *ipc, struct rtable **rtp)
1117 {
1118 struct ip_options_rcu *opt;
1119 struct rtable *rt;
1120
1121 /*
1122 * setup for corking.
1123 */
1124 opt = ipc->opt;
1125 if (opt) {
1126 if (!cork->opt) {
1127 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1128 sk->sk_allocation);
1129 if (unlikely(!cork->opt))
1130 return -ENOBUFS;
1131 }
1132 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1133 cork->flags |= IPCORK_OPT;
1134 cork->addr = ipc->addr;
1135 }
1136 rt = *rtp;
1137 if (unlikely(!rt))
1138 return -EFAULT;
1139 /*
1140 * We steal reference to this route, caller should not release it
1141 */
1142 *rtp = NULL;
1143 cork->fragsize = ip_sk_use_pmtu(sk) ?
1144 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1145 cork->dst = &rt->dst;
1146 cork->length = 0;
1147 cork->ttl = ipc->ttl;
1148 cork->tos = ipc->tos;
1149 cork->priority = ipc->priority;
1150 cork->tx_flags = ipc->tx_flags;
1151
1152 return 0;
1153 }
1154
1155 /*
1156 * ip_append_data() and ip_append_page() can make one large IP datagram
1157 * from many pieces of data. Each pieces will be holded on the socket
1158 * until ip_push_pending_frames() is called. Each piece can be a page
1159 * or non-page data.
1160 *
1161 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1162 * this interface potentially.
1163 *
1164 * LATER: length must be adjusted by pad at tail, when it is required.
1165 */
1166 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1167 int getfrag(void *from, char *to, int offset, int len,
1168 int odd, struct sk_buff *skb),
1169 void *from, int length, int transhdrlen,
1170 struct ipcm_cookie *ipc, struct rtable **rtp,
1171 unsigned int flags)
1172 {
1173 struct inet_sock *inet = inet_sk(sk);
1174 int err;
1175
1176 if (flags&MSG_PROBE)
1177 return 0;
1178
1179 if (skb_queue_empty(&sk->sk_write_queue)) {
1180 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1181 if (err)
1182 return err;
1183 } else {
1184 transhdrlen = 0;
1185 }
1186
1187 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1188 sk_page_frag(sk), getfrag,
1189 from, length, transhdrlen, flags);
1190 }
1191
1192 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1193 int offset, size_t size, int flags)
1194 {
1195 struct inet_sock *inet = inet_sk(sk);
1196 struct sk_buff *skb;
1197 struct rtable *rt;
1198 struct ip_options *opt = NULL;
1199 struct inet_cork *cork;
1200 int hh_len;
1201 int mtu;
1202 int len;
1203 int err;
1204 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1205
1206 if (inet->hdrincl)
1207 return -EPERM;
1208
1209 if (flags&MSG_PROBE)
1210 return 0;
1211
1212 if (skb_queue_empty(&sk->sk_write_queue))
1213 return -EINVAL;
1214
1215 cork = &inet->cork.base;
1216 rt = (struct rtable *)cork->dst;
1217 if (cork->flags & IPCORK_OPT)
1218 opt = cork->opt;
1219
1220 if (!(rt->dst.dev->features&NETIF_F_SG))
1221 return -EOPNOTSUPP;
1222
1223 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1224 mtu = cork->fragsize;
1225
1226 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1227 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1228 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1229
1230 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1231 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1232 mtu - (opt ? opt->optlen : 0));
1233 return -EMSGSIZE;
1234 }
1235
1236 skb = skb_peek_tail(&sk->sk_write_queue);
1237 if (!skb)
1238 return -EINVAL;
1239
1240 cork->length += size;
1241 if ((size + skb->len > mtu) &&
1242 (sk->sk_protocol == IPPROTO_UDP) &&
1243 (rt->dst.dev->features & NETIF_F_UFO)) {
1244 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1245 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1246 }
1247
1248 while (size > 0) {
1249 if (skb_is_gso(skb)) {
1250 len = size;
1251 } else {
1252
1253 /* Check if the remaining data fits into current packet. */
1254 len = mtu - skb->len;
1255 if (len < size)
1256 len = maxfraglen - skb->len;
1257 }
1258 if (len <= 0) {
1259 struct sk_buff *skb_prev;
1260 int alloclen;
1261
1262 skb_prev = skb;
1263 fraggap = skb_prev->len - maxfraglen;
1264
1265 alloclen = fragheaderlen + hh_len + fraggap + 15;
1266 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1267 if (unlikely(!skb)) {
1268 err = -ENOBUFS;
1269 goto error;
1270 }
1271
1272 /*
1273 * Fill in the control structures
1274 */
1275 skb->ip_summed = CHECKSUM_NONE;
1276 skb->csum = 0;
1277 skb_reserve(skb, hh_len);
1278
1279 /*
1280 * Find where to start putting bytes.
1281 */
1282 skb_put(skb, fragheaderlen + fraggap);
1283 skb_reset_network_header(skb);
1284 skb->transport_header = (skb->network_header +
1285 fragheaderlen);
1286 if (fraggap) {
1287 skb->csum = skb_copy_and_csum_bits(skb_prev,
1288 maxfraglen,
1289 skb_transport_header(skb),
1290 fraggap, 0);
1291 skb_prev->csum = csum_sub(skb_prev->csum,
1292 skb->csum);
1293 pskb_trim_unique(skb_prev, maxfraglen);
1294 }
1295
1296 /*
1297 * Put the packet on the pending queue.
1298 */
1299 __skb_queue_tail(&sk->sk_write_queue, skb);
1300 continue;
1301 }
1302
1303 if (len > size)
1304 len = size;
1305
1306 if (skb_append_pagefrags(skb, page, offset, len)) {
1307 err = -EMSGSIZE;
1308 goto error;
1309 }
1310
1311 if (skb->ip_summed == CHECKSUM_NONE) {
1312 __wsum csum;
1313 csum = csum_page(page, offset, len);
1314 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1315 }
1316
1317 skb->len += len;
1318 skb->data_len += len;
1319 skb->truesize += len;
1320 atomic_add(len, &sk->sk_wmem_alloc);
1321 offset += len;
1322 size -= len;
1323 }
1324 return 0;
1325
1326 error:
1327 cork->length -= size;
1328 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1329 return err;
1330 }
1331
1332 static void ip_cork_release(struct inet_cork *cork)
1333 {
1334 cork->flags &= ~IPCORK_OPT;
1335 kfree(cork->opt);
1336 cork->opt = NULL;
1337 dst_release(cork->dst);
1338 cork->dst = NULL;
1339 }
1340
1341 /*
1342 * Combined all pending IP fragments on the socket as one IP datagram
1343 * and push them out.
1344 */
1345 struct sk_buff *__ip_make_skb(struct sock *sk,
1346 struct flowi4 *fl4,
1347 struct sk_buff_head *queue,
1348 struct inet_cork *cork)
1349 {
1350 struct sk_buff *skb, *tmp_skb;
1351 struct sk_buff **tail_skb;
1352 struct inet_sock *inet = inet_sk(sk);
1353 struct net *net = sock_net(sk);
1354 struct ip_options *opt = NULL;
1355 struct rtable *rt = (struct rtable *)cork->dst;
1356 struct iphdr *iph;
1357 __be16 df = 0;
1358 __u8 ttl;
1359
1360 skb = __skb_dequeue(queue);
1361 if (!skb)
1362 goto out;
1363 tail_skb = &(skb_shinfo(skb)->frag_list);
1364
1365 /* move skb->data to ip header from ext header */
1366 if (skb->data < skb_network_header(skb))
1367 __skb_pull(skb, skb_network_offset(skb));
1368 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1369 __skb_pull(tmp_skb, skb_network_header_len(skb));
1370 *tail_skb = tmp_skb;
1371 tail_skb = &(tmp_skb->next);
1372 skb->len += tmp_skb->len;
1373 skb->data_len += tmp_skb->len;
1374 skb->truesize += tmp_skb->truesize;
1375 tmp_skb->destructor = NULL;
1376 tmp_skb->sk = NULL;
1377 }
1378
1379 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1380 * to fragment the frame generated here. No matter, what transforms
1381 * how transforms change size of the packet, it will come out.
1382 */
1383 skb->ignore_df = ip_sk_ignore_df(sk);
1384
1385 /* DF bit is set when we want to see DF on outgoing frames.
1386 * If ignore_df is set too, we still allow to fragment this frame
1387 * locally. */
1388 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1389 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1390 (skb->len <= dst_mtu(&rt->dst) &&
1391 ip_dont_fragment(sk, &rt->dst)))
1392 df = htons(IP_DF);
1393
1394 if (cork->flags & IPCORK_OPT)
1395 opt = cork->opt;
1396
1397 if (cork->ttl != 0)
1398 ttl = cork->ttl;
1399 else if (rt->rt_type == RTN_MULTICAST)
1400 ttl = inet->mc_ttl;
1401 else
1402 ttl = ip_select_ttl(inet, &rt->dst);
1403
1404 iph = ip_hdr(skb);
1405 iph->version = 4;
1406 iph->ihl = 5;
1407 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1408 iph->frag_off = df;
1409 iph->ttl = ttl;
1410 iph->protocol = sk->sk_protocol;
1411 ip_copy_addrs(iph, fl4);
1412 ip_select_ident(net, skb, sk);
1413
1414 if (opt) {
1415 iph->ihl += opt->optlen>>2;
1416 ip_options_build(skb, opt, cork->addr, rt, 0);
1417 }
1418
1419 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1420 skb->mark = sk->sk_mark;
1421 /*
1422 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1423 * on dst refcount
1424 */
1425 cork->dst = NULL;
1426 skb_dst_set(skb, &rt->dst);
1427
1428 if (iph->protocol == IPPROTO_ICMP)
1429 icmp_out_count(net, ((struct icmphdr *)
1430 skb_transport_header(skb))->type);
1431
1432 ip_cork_release(cork);
1433 out:
1434 return skb;
1435 }
1436
1437 int ip_send_skb(struct net *net, struct sk_buff *skb)
1438 {
1439 int err;
1440
1441 err = ip_local_out(skb->sk, skb);
1442 if (err) {
1443 if (err > 0)
1444 err = net_xmit_errno(err);
1445 if (err)
1446 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1447 }
1448
1449 return err;
1450 }
1451
1452 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1453 {
1454 struct sk_buff *skb;
1455
1456 skb = ip_finish_skb(sk, fl4);
1457 if (!skb)
1458 return 0;
1459
1460 /* Netfilter gets whole the not fragmented skb. */
1461 return ip_send_skb(sock_net(sk), skb);
1462 }
1463
1464 /*
1465 * Throw away all pending data on the socket.
1466 */
1467 static void __ip_flush_pending_frames(struct sock *sk,
1468 struct sk_buff_head *queue,
1469 struct inet_cork *cork)
1470 {
1471 struct sk_buff *skb;
1472
1473 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1474 kfree_skb(skb);
1475
1476 ip_cork_release(cork);
1477 }
1478
1479 void ip_flush_pending_frames(struct sock *sk)
1480 {
1481 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1482 }
1483
1484 struct sk_buff *ip_make_skb(struct sock *sk,
1485 struct flowi4 *fl4,
1486 int getfrag(void *from, char *to, int offset,
1487 int len, int odd, struct sk_buff *skb),
1488 void *from, int length, int transhdrlen,
1489 struct ipcm_cookie *ipc, struct rtable **rtp,
1490 unsigned int flags)
1491 {
1492 struct inet_cork cork;
1493 struct sk_buff_head queue;
1494 int err;
1495
1496 if (flags & MSG_PROBE)
1497 return NULL;
1498
1499 __skb_queue_head_init(&queue);
1500
1501 cork.flags = 0;
1502 cork.addr = 0;
1503 cork.opt = NULL;
1504 err = ip_setup_cork(sk, &cork, ipc, rtp);
1505 if (err)
1506 return ERR_PTR(err);
1507
1508 err = __ip_append_data(sk, fl4, &queue, &cork,
1509 &current->task_frag, getfrag,
1510 from, length, transhdrlen, flags);
1511 if (err) {
1512 __ip_flush_pending_frames(sk, &queue, &cork);
1513 return ERR_PTR(err);
1514 }
1515
1516 return __ip_make_skb(sk, fl4, &queue, &cork);
1517 }
1518
1519 /*
1520 * Fetch data from kernel space and fill in checksum if needed.
1521 */
1522 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1523 int len, int odd, struct sk_buff *skb)
1524 {
1525 __wsum csum;
1526
1527 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1528 skb->csum = csum_block_add(skb->csum, csum, odd);
1529 return 0;
1530 }
1531
1532 /*
1533 * Generic function to send a packet as reply to another packet.
1534 * Used to send some TCP resets/acks so far.
1535 */
1536 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1537 const struct ip_options *sopt,
1538 __be32 daddr, __be32 saddr,
1539 const struct ip_reply_arg *arg,
1540 unsigned int len)
1541 {
1542 struct ip_options_data replyopts;
1543 struct ipcm_cookie ipc;
1544 struct flowi4 fl4;
1545 struct rtable *rt = skb_rtable(skb);
1546 struct net *net = sock_net(sk);
1547 struct sk_buff *nskb;
1548 int err;
1549 int oif;
1550
1551 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1552 return;
1553
1554 ipc.addr = daddr;
1555 ipc.opt = NULL;
1556 ipc.tx_flags = 0;
1557 ipc.ttl = 0;
1558 ipc.tos = -1;
1559
1560 if (replyopts.opt.opt.optlen) {
1561 ipc.opt = &replyopts.opt;
1562
1563 if (replyopts.opt.opt.srr)
1564 daddr = replyopts.opt.opt.faddr;
1565 }
1566
1567 oif = arg->bound_dev_if;
1568 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1569 oif = skb->skb_iif;
1570
1571 flowi4_init_output(&fl4, oif,
1572 IP4_REPLY_MARK(net, skb->mark),
1573 RT_TOS(arg->tos),
1574 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1575 ip_reply_arg_flowi_flags(arg),
1576 daddr, saddr,
1577 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1578 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1579 rt = ip_route_output_key(net, &fl4);
1580 if (IS_ERR(rt))
1581 return;
1582
1583 inet_sk(sk)->tos = arg->tos;
1584
1585 sk->sk_priority = skb->priority;
1586 sk->sk_protocol = ip_hdr(skb)->protocol;
1587 sk->sk_bound_dev_if = arg->bound_dev_if;
1588 sk->sk_sndbuf = sysctl_wmem_default;
1589 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1590 len, 0, &ipc, &rt, MSG_DONTWAIT);
1591 if (unlikely(err)) {
1592 ip_flush_pending_frames(sk);
1593 goto out;
1594 }
1595
1596 nskb = skb_peek(&sk->sk_write_queue);
1597 if (nskb) {
1598 if (arg->csumoffset >= 0)
1599 *((__sum16 *)skb_transport_header(nskb) +
1600 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1601 arg->csum));
1602 nskb->ip_summed = CHECKSUM_NONE;
1603 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1604 ip_push_pending_frames(sk, &fl4);
1605 }
1606 out:
1607 ip_rt_put(rt);
1608 }
1609
1610 void __init ip_init(void)
1611 {
1612 ip_rt_init();
1613 inet_initpeers();
1614
1615 #if defined(CONFIG_IP_MULTICAST)
1616 igmp_mc_init();
1617 #endif
1618 }
This page took 0.064193 seconds and 5 git commands to generate.