net: tcp_memcontrol: simplify linkage between socket and page counter
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 icsk->icsk_ack.pingpong = 1;
177 }
178
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
181 {
182 tcp_dec_quickack_mode(sk, pkts);
183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 }
185
186
187 u32 tcp_default_init_rwnd(u32 mss)
188 {
189 /* Initial receive window should be twice of TCP_INIT_CWND to
190 * enable proper sending of new unsent data during fast recovery
191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 * limit when mss is larger than 1460.
193 */
194 u32 init_rwnd = TCP_INIT_CWND * 2;
195
196 if (mss > 1460)
197 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
198 return init_rwnd;
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
208 void tcp_select_initial_window(int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (65535 << 14);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = (space / mss) * mss;
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 (*rcv_wscale) = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window
240 * See RFC1323 for an explanation of the limit to 14
241 */
242 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
243 space = min_t(u32, space, *window_clamp);
244 while (space > 65535 && (*rcv_wscale) < 14) {
245 space >>= 1;
246 (*rcv_wscale)++;
247 }
248 }
249
250 if (mss > (1 << *rcv_wscale)) {
251 if (!init_rcv_wnd) /* Use default unless specified otherwise */
252 init_rcv_wnd = tcp_default_init_rwnd(mss);
253 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
254 }
255
256 /* Set the clamp no higher than max representable value */
257 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
258 }
259 EXPORT_SYMBOL(tcp_select_initial_window);
260
261 /* Chose a new window to advertise, update state in tcp_sock for the
262 * socket, and return result with RFC1323 scaling applied. The return
263 * value can be stuffed directly into th->window for an outgoing
264 * frame.
265 */
266 static u16 tcp_select_window(struct sock *sk)
267 {
268 struct tcp_sock *tp = tcp_sk(sk);
269 u32 old_win = tp->rcv_wnd;
270 u32 cur_win = tcp_receive_window(tp);
271 u32 new_win = __tcp_select_window(sk);
272
273 /* Never shrink the offered window */
274 if (new_win < cur_win) {
275 /* Danger Will Robinson!
276 * Don't update rcv_wup/rcv_wnd here or else
277 * we will not be able to advertise a zero
278 * window in time. --DaveM
279 *
280 * Relax Will Robinson.
281 */
282 if (new_win == 0)
283 NET_INC_STATS(sock_net(sk),
284 LINUX_MIB_TCPWANTZEROWINDOWADV);
285 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
286 }
287 tp->rcv_wnd = new_win;
288 tp->rcv_wup = tp->rcv_nxt;
289
290 /* Make sure we do not exceed the maximum possible
291 * scaled window.
292 */
293 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
294 new_win = min(new_win, MAX_TCP_WINDOW);
295 else
296 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
297
298 /* RFC1323 scaling applied */
299 new_win >>= tp->rx_opt.rcv_wscale;
300
301 /* If we advertise zero window, disable fast path. */
302 if (new_win == 0) {
303 tp->pred_flags = 0;
304 if (old_win)
305 NET_INC_STATS(sock_net(sk),
306 LINUX_MIB_TCPTOZEROWINDOWADV);
307 } else if (old_win == 0) {
308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
309 }
310
311 return new_win;
312 }
313
314 /* Packet ECN state for a SYN-ACK */
315 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
316 {
317 const struct tcp_sock *tp = tcp_sk(sk);
318
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
320 if (!(tp->ecn_flags & TCP_ECN_OK))
321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
322 else if (tcp_ca_needs_ecn(sk))
323 INET_ECN_xmit(sk);
324 }
325
326 /* Packet ECN state for a SYN. */
327 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
328 {
329 struct tcp_sock *tp = tcp_sk(sk);
330 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
331 tcp_ca_needs_ecn(sk);
332
333 if (!use_ecn) {
334 const struct dst_entry *dst = __sk_dst_get(sk);
335
336 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
337 use_ecn = true;
338 }
339
340 tp->ecn_flags = 0;
341
342 if (use_ecn) {
343 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
344 tp->ecn_flags = TCP_ECN_OK;
345 if (tcp_ca_needs_ecn(sk))
346 INET_ECN_xmit(sk);
347 }
348 }
349
350 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
351 {
352 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
353 /* tp->ecn_flags are cleared at a later point in time when
354 * SYN ACK is ultimatively being received.
355 */
356 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
357 }
358
359 static void
360 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
361 {
362 if (inet_rsk(req)->ecn_ok)
363 th->ece = 1;
364 }
365
366 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
367 * be sent.
368 */
369 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
370 int tcp_header_len)
371 {
372 struct tcp_sock *tp = tcp_sk(sk);
373
374 if (tp->ecn_flags & TCP_ECN_OK) {
375 /* Not-retransmitted data segment: set ECT and inject CWR. */
376 if (skb->len != tcp_header_len &&
377 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
378 INET_ECN_xmit(sk);
379 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
380 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
381 tcp_hdr(skb)->cwr = 1;
382 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
383 }
384 } else if (!tcp_ca_needs_ecn(sk)) {
385 /* ACK or retransmitted segment: clear ECT|CE */
386 INET_ECN_dontxmit(sk);
387 }
388 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
389 tcp_hdr(skb)->ece = 1;
390 }
391 }
392
393 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
394 * auto increment end seqno.
395 */
396 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
397 {
398 skb->ip_summed = CHECKSUM_PARTIAL;
399 skb->csum = 0;
400
401 TCP_SKB_CB(skb)->tcp_flags = flags;
402 TCP_SKB_CB(skb)->sacked = 0;
403
404 tcp_skb_pcount_set(skb, 1);
405
406 TCP_SKB_CB(skb)->seq = seq;
407 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
408 seq++;
409 TCP_SKB_CB(skb)->end_seq = seq;
410 }
411
412 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
413 {
414 return tp->snd_una != tp->snd_up;
415 }
416
417 #define OPTION_SACK_ADVERTISE (1 << 0)
418 #define OPTION_TS (1 << 1)
419 #define OPTION_MD5 (1 << 2)
420 #define OPTION_WSCALE (1 << 3)
421 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
422
423 struct tcp_out_options {
424 u16 options; /* bit field of OPTION_* */
425 u16 mss; /* 0 to disable */
426 u8 ws; /* window scale, 0 to disable */
427 u8 num_sack_blocks; /* number of SACK blocks to include */
428 u8 hash_size; /* bytes in hash_location */
429 __u8 *hash_location; /* temporary pointer, overloaded */
430 __u32 tsval, tsecr; /* need to include OPTION_TS */
431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
432 };
433
434 /* Write previously computed TCP options to the packet.
435 *
436 * Beware: Something in the Internet is very sensitive to the ordering of
437 * TCP options, we learned this through the hard way, so be careful here.
438 * Luckily we can at least blame others for their non-compliance but from
439 * inter-operability perspective it seems that we're somewhat stuck with
440 * the ordering which we have been using if we want to keep working with
441 * those broken things (not that it currently hurts anybody as there isn't
442 * particular reason why the ordering would need to be changed).
443 *
444 * At least SACK_PERM as the first option is known to lead to a disaster
445 * (but it may well be that other scenarios fail similarly).
446 */
447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
448 struct tcp_out_options *opts)
449 {
450 u16 options = opts->options; /* mungable copy */
451
452 if (unlikely(OPTION_MD5 & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
455 /* overload cookie hash location */
456 opts->hash_location = (__u8 *)ptr;
457 ptr += 4;
458 }
459
460 if (unlikely(opts->mss)) {
461 *ptr++ = htonl((TCPOPT_MSS << 24) |
462 (TCPOLEN_MSS << 16) |
463 opts->mss);
464 }
465
466 if (likely(OPTION_TS & options)) {
467 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
469 (TCPOLEN_SACK_PERM << 16) |
470 (TCPOPT_TIMESTAMP << 8) |
471 TCPOLEN_TIMESTAMP);
472 options &= ~OPTION_SACK_ADVERTISE;
473 } else {
474 *ptr++ = htonl((TCPOPT_NOP << 24) |
475 (TCPOPT_NOP << 16) |
476 (TCPOPT_TIMESTAMP << 8) |
477 TCPOLEN_TIMESTAMP);
478 }
479 *ptr++ = htonl(opts->tsval);
480 *ptr++ = htonl(opts->tsecr);
481 }
482
483 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
484 *ptr++ = htonl((TCPOPT_NOP << 24) |
485 (TCPOPT_NOP << 16) |
486 (TCPOPT_SACK_PERM << 8) |
487 TCPOLEN_SACK_PERM);
488 }
489
490 if (unlikely(OPTION_WSCALE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
492 (TCPOPT_WINDOW << 16) |
493 (TCPOLEN_WINDOW << 8) |
494 opts->ws);
495 }
496
497 if (unlikely(opts->num_sack_blocks)) {
498 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
499 tp->duplicate_sack : tp->selective_acks;
500 int this_sack;
501
502 *ptr++ = htonl((TCPOPT_NOP << 24) |
503 (TCPOPT_NOP << 16) |
504 (TCPOPT_SACK << 8) |
505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
506 TCPOLEN_SACK_PERBLOCK)));
507
508 for (this_sack = 0; this_sack < opts->num_sack_blocks;
509 ++this_sack) {
510 *ptr++ = htonl(sp[this_sack].start_seq);
511 *ptr++ = htonl(sp[this_sack].end_seq);
512 }
513
514 tp->rx_opt.dsack = 0;
515 }
516
517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
519 u8 *p = (u8 *)ptr;
520 u32 len; /* Fast Open option length */
521
522 if (foc->exp) {
523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
525 TCPOPT_FASTOPEN_MAGIC);
526 p += TCPOLEN_EXP_FASTOPEN_BASE;
527 } else {
528 len = TCPOLEN_FASTOPEN_BASE + foc->len;
529 *p++ = TCPOPT_FASTOPEN;
530 *p++ = len;
531 }
532
533 memcpy(p, foc->val, foc->len);
534 if ((len & 3) == 2) {
535 p[foc->len] = TCPOPT_NOP;
536 p[foc->len + 1] = TCPOPT_NOP;
537 }
538 ptr += (len + 3) >> 2;
539 }
540 }
541
542 /* Compute TCP options for SYN packets. This is not the final
543 * network wire format yet.
544 */
545 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
546 struct tcp_out_options *opts,
547 struct tcp_md5sig_key **md5)
548 {
549 struct tcp_sock *tp = tcp_sk(sk);
550 unsigned int remaining = MAX_TCP_OPTION_SPACE;
551 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
552
553 #ifdef CONFIG_TCP_MD5SIG
554 *md5 = tp->af_specific->md5_lookup(sk, sk);
555 if (*md5) {
556 opts->options |= OPTION_MD5;
557 remaining -= TCPOLEN_MD5SIG_ALIGNED;
558 }
559 #else
560 *md5 = NULL;
561 #endif
562
563 /* We always get an MSS option. The option bytes which will be seen in
564 * normal data packets should timestamps be used, must be in the MSS
565 * advertised. But we subtract them from tp->mss_cache so that
566 * calculations in tcp_sendmsg are simpler etc. So account for this
567 * fact here if necessary. If we don't do this correctly, as a
568 * receiver we won't recognize data packets as being full sized when we
569 * should, and thus we won't abide by the delayed ACK rules correctly.
570 * SACKs don't matter, we never delay an ACK when we have any of those
571 * going out. */
572 opts->mss = tcp_advertise_mss(sk);
573 remaining -= TCPOLEN_MSS_ALIGNED;
574
575 if (likely(sysctl_tcp_timestamps && !*md5)) {
576 opts->options |= OPTION_TS;
577 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
578 opts->tsecr = tp->rx_opt.ts_recent;
579 remaining -= TCPOLEN_TSTAMP_ALIGNED;
580 }
581 if (likely(sysctl_tcp_window_scaling)) {
582 opts->ws = tp->rx_opt.rcv_wscale;
583 opts->options |= OPTION_WSCALE;
584 remaining -= TCPOLEN_WSCALE_ALIGNED;
585 }
586 if (likely(sysctl_tcp_sack)) {
587 opts->options |= OPTION_SACK_ADVERTISE;
588 if (unlikely(!(OPTION_TS & opts->options)))
589 remaining -= TCPOLEN_SACKPERM_ALIGNED;
590 }
591
592 if (fastopen && fastopen->cookie.len >= 0) {
593 u32 need = fastopen->cookie.len;
594
595 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
596 TCPOLEN_FASTOPEN_BASE;
597 need = (need + 3) & ~3U; /* Align to 32 bits */
598 if (remaining >= need) {
599 opts->options |= OPTION_FAST_OPEN_COOKIE;
600 opts->fastopen_cookie = &fastopen->cookie;
601 remaining -= need;
602 tp->syn_fastopen = 1;
603 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
604 }
605 }
606
607 return MAX_TCP_OPTION_SPACE - remaining;
608 }
609
610 /* Set up TCP options for SYN-ACKs. */
611 static unsigned int tcp_synack_options(struct request_sock *req,
612 unsigned int mss, struct sk_buff *skb,
613 struct tcp_out_options *opts,
614 const struct tcp_md5sig_key *md5,
615 struct tcp_fastopen_cookie *foc)
616 {
617 struct inet_request_sock *ireq = inet_rsk(req);
618 unsigned int remaining = MAX_TCP_OPTION_SPACE;
619
620 #ifdef CONFIG_TCP_MD5SIG
621 if (md5) {
622 opts->options |= OPTION_MD5;
623 remaining -= TCPOLEN_MD5SIG_ALIGNED;
624
625 /* We can't fit any SACK blocks in a packet with MD5 + TS
626 * options. There was discussion about disabling SACK
627 * rather than TS in order to fit in better with old,
628 * buggy kernels, but that was deemed to be unnecessary.
629 */
630 ireq->tstamp_ok &= !ireq->sack_ok;
631 }
632 #endif
633
634 /* We always send an MSS option. */
635 opts->mss = mss;
636 remaining -= TCPOLEN_MSS_ALIGNED;
637
638 if (likely(ireq->wscale_ok)) {
639 opts->ws = ireq->rcv_wscale;
640 opts->options |= OPTION_WSCALE;
641 remaining -= TCPOLEN_WSCALE_ALIGNED;
642 }
643 if (likely(ireq->tstamp_ok)) {
644 opts->options |= OPTION_TS;
645 opts->tsval = tcp_skb_timestamp(skb);
646 opts->tsecr = req->ts_recent;
647 remaining -= TCPOLEN_TSTAMP_ALIGNED;
648 }
649 if (likely(ireq->sack_ok)) {
650 opts->options |= OPTION_SACK_ADVERTISE;
651 if (unlikely(!ireq->tstamp_ok))
652 remaining -= TCPOLEN_SACKPERM_ALIGNED;
653 }
654 if (foc != NULL && foc->len >= 0) {
655 u32 need = foc->len;
656
657 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
658 TCPOLEN_FASTOPEN_BASE;
659 need = (need + 3) & ~3U; /* Align to 32 bits */
660 if (remaining >= need) {
661 opts->options |= OPTION_FAST_OPEN_COOKIE;
662 opts->fastopen_cookie = foc;
663 remaining -= need;
664 }
665 }
666
667 return MAX_TCP_OPTION_SPACE - remaining;
668 }
669
670 /* Compute TCP options for ESTABLISHED sockets. This is not the
671 * final wire format yet.
672 */
673 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
674 struct tcp_out_options *opts,
675 struct tcp_md5sig_key **md5)
676 {
677 struct tcp_sock *tp = tcp_sk(sk);
678 unsigned int size = 0;
679 unsigned int eff_sacks;
680
681 opts->options = 0;
682
683 #ifdef CONFIG_TCP_MD5SIG
684 *md5 = tp->af_specific->md5_lookup(sk, sk);
685 if (unlikely(*md5)) {
686 opts->options |= OPTION_MD5;
687 size += TCPOLEN_MD5SIG_ALIGNED;
688 }
689 #else
690 *md5 = NULL;
691 #endif
692
693 if (likely(tp->rx_opt.tstamp_ok)) {
694 opts->options |= OPTION_TS;
695 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
696 opts->tsecr = tp->rx_opt.ts_recent;
697 size += TCPOLEN_TSTAMP_ALIGNED;
698 }
699
700 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
701 if (unlikely(eff_sacks)) {
702 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
703 opts->num_sack_blocks =
704 min_t(unsigned int, eff_sacks,
705 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
706 TCPOLEN_SACK_PERBLOCK);
707 size += TCPOLEN_SACK_BASE_ALIGNED +
708 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
709 }
710
711 return size;
712 }
713
714
715 /* TCP SMALL QUEUES (TSQ)
716 *
717 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
718 * to reduce RTT and bufferbloat.
719 * We do this using a special skb destructor (tcp_wfree).
720 *
721 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
722 * needs to be reallocated in a driver.
723 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
724 *
725 * Since transmit from skb destructor is forbidden, we use a tasklet
726 * to process all sockets that eventually need to send more skbs.
727 * We use one tasklet per cpu, with its own queue of sockets.
728 */
729 struct tsq_tasklet {
730 struct tasklet_struct tasklet;
731 struct list_head head; /* queue of tcp sockets */
732 };
733 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
734
735 static void tcp_tsq_handler(struct sock *sk)
736 {
737 if ((1 << sk->sk_state) &
738 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
739 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
740 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
741 0, GFP_ATOMIC);
742 }
743 /*
744 * One tasklet per cpu tries to send more skbs.
745 * We run in tasklet context but need to disable irqs when
746 * transferring tsq->head because tcp_wfree() might
747 * interrupt us (non NAPI drivers)
748 */
749 static void tcp_tasklet_func(unsigned long data)
750 {
751 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
752 LIST_HEAD(list);
753 unsigned long flags;
754 struct list_head *q, *n;
755 struct tcp_sock *tp;
756 struct sock *sk;
757
758 local_irq_save(flags);
759 list_splice_init(&tsq->head, &list);
760 local_irq_restore(flags);
761
762 list_for_each_safe(q, n, &list) {
763 tp = list_entry(q, struct tcp_sock, tsq_node);
764 list_del(&tp->tsq_node);
765
766 sk = (struct sock *)tp;
767 bh_lock_sock(sk);
768
769 if (!sock_owned_by_user(sk)) {
770 tcp_tsq_handler(sk);
771 } else {
772 /* defer the work to tcp_release_cb() */
773 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
774 }
775 bh_unlock_sock(sk);
776
777 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
778 sk_free(sk);
779 }
780 }
781
782 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
783 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
784 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
785 (1UL << TCP_MTU_REDUCED_DEFERRED))
786 /**
787 * tcp_release_cb - tcp release_sock() callback
788 * @sk: socket
789 *
790 * called from release_sock() to perform protocol dependent
791 * actions before socket release.
792 */
793 void tcp_release_cb(struct sock *sk)
794 {
795 struct tcp_sock *tp = tcp_sk(sk);
796 unsigned long flags, nflags;
797
798 /* perform an atomic operation only if at least one flag is set */
799 do {
800 flags = tp->tsq_flags;
801 if (!(flags & TCP_DEFERRED_ALL))
802 return;
803 nflags = flags & ~TCP_DEFERRED_ALL;
804 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
805
806 if (flags & (1UL << TCP_TSQ_DEFERRED))
807 tcp_tsq_handler(sk);
808
809 /* Here begins the tricky part :
810 * We are called from release_sock() with :
811 * 1) BH disabled
812 * 2) sk_lock.slock spinlock held
813 * 3) socket owned by us (sk->sk_lock.owned == 1)
814 *
815 * But following code is meant to be called from BH handlers,
816 * so we should keep BH disabled, but early release socket ownership
817 */
818 sock_release_ownership(sk);
819
820 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
821 tcp_write_timer_handler(sk);
822 __sock_put(sk);
823 }
824 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
825 tcp_delack_timer_handler(sk);
826 __sock_put(sk);
827 }
828 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
829 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
830 __sock_put(sk);
831 }
832 }
833 EXPORT_SYMBOL(tcp_release_cb);
834
835 void __init tcp_tasklet_init(void)
836 {
837 int i;
838
839 for_each_possible_cpu(i) {
840 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
841
842 INIT_LIST_HEAD(&tsq->head);
843 tasklet_init(&tsq->tasklet,
844 tcp_tasklet_func,
845 (unsigned long)tsq);
846 }
847 }
848
849 /*
850 * Write buffer destructor automatically called from kfree_skb.
851 * We can't xmit new skbs from this context, as we might already
852 * hold qdisc lock.
853 */
854 void tcp_wfree(struct sk_buff *skb)
855 {
856 struct sock *sk = skb->sk;
857 struct tcp_sock *tp = tcp_sk(sk);
858 int wmem;
859
860 /* Keep one reference on sk_wmem_alloc.
861 * Will be released by sk_free() from here or tcp_tasklet_func()
862 */
863 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
864
865 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
866 * Wait until our queues (qdisc + devices) are drained.
867 * This gives :
868 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
869 * - chance for incoming ACK (processed by another cpu maybe)
870 * to migrate this flow (skb->ooo_okay will be eventually set)
871 */
872 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
873 goto out;
874
875 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
876 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
877 unsigned long flags;
878 struct tsq_tasklet *tsq;
879
880 /* queue this socket to tasklet queue */
881 local_irq_save(flags);
882 tsq = this_cpu_ptr(&tsq_tasklet);
883 list_add(&tp->tsq_node, &tsq->head);
884 tasklet_schedule(&tsq->tasklet);
885 local_irq_restore(flags);
886 return;
887 }
888 out:
889 sk_free(sk);
890 }
891
892 /* This routine actually transmits TCP packets queued in by
893 * tcp_do_sendmsg(). This is used by both the initial
894 * transmission and possible later retransmissions.
895 * All SKB's seen here are completely headerless. It is our
896 * job to build the TCP header, and pass the packet down to
897 * IP so it can do the same plus pass the packet off to the
898 * device.
899 *
900 * We are working here with either a clone of the original
901 * SKB, or a fresh unique copy made by the retransmit engine.
902 */
903 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
904 gfp_t gfp_mask)
905 {
906 const struct inet_connection_sock *icsk = inet_csk(sk);
907 struct inet_sock *inet;
908 struct tcp_sock *tp;
909 struct tcp_skb_cb *tcb;
910 struct tcp_out_options opts;
911 unsigned int tcp_options_size, tcp_header_size;
912 struct tcp_md5sig_key *md5;
913 struct tcphdr *th;
914 int err;
915
916 BUG_ON(!skb || !tcp_skb_pcount(skb));
917
918 if (clone_it) {
919 skb_mstamp_get(&skb->skb_mstamp);
920
921 if (unlikely(skb_cloned(skb)))
922 skb = pskb_copy(skb, gfp_mask);
923 else
924 skb = skb_clone(skb, gfp_mask);
925 if (unlikely(!skb))
926 return -ENOBUFS;
927 }
928
929 inet = inet_sk(sk);
930 tp = tcp_sk(sk);
931 tcb = TCP_SKB_CB(skb);
932 memset(&opts, 0, sizeof(opts));
933
934 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
935 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
936 else
937 tcp_options_size = tcp_established_options(sk, skb, &opts,
938 &md5);
939 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
940
941 /* if no packet is in qdisc/device queue, then allow XPS to select
942 * another queue. We can be called from tcp_tsq_handler()
943 * which holds one reference to sk_wmem_alloc.
944 *
945 * TODO: Ideally, in-flight pure ACK packets should not matter here.
946 * One way to get this would be to set skb->truesize = 2 on them.
947 */
948 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
949
950 skb_push(skb, tcp_header_size);
951 skb_reset_transport_header(skb);
952
953 skb_orphan(skb);
954 skb->sk = sk;
955 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
956 skb_set_hash_from_sk(skb, sk);
957 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
958
959 /* Build TCP header and checksum it. */
960 th = tcp_hdr(skb);
961 th->source = inet->inet_sport;
962 th->dest = inet->inet_dport;
963 th->seq = htonl(tcb->seq);
964 th->ack_seq = htonl(tp->rcv_nxt);
965 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
966 tcb->tcp_flags);
967
968 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
969 /* RFC1323: The window in SYN & SYN/ACK segments
970 * is never scaled.
971 */
972 th->window = htons(min(tp->rcv_wnd, 65535U));
973 } else {
974 th->window = htons(tcp_select_window(sk));
975 }
976 th->check = 0;
977 th->urg_ptr = 0;
978
979 /* The urg_mode check is necessary during a below snd_una win probe */
980 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
981 if (before(tp->snd_up, tcb->seq + 0x10000)) {
982 th->urg_ptr = htons(tp->snd_up - tcb->seq);
983 th->urg = 1;
984 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
985 th->urg_ptr = htons(0xFFFF);
986 th->urg = 1;
987 }
988 }
989
990 tcp_options_write((__be32 *)(th + 1), tp, &opts);
991 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
992 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
993 tcp_ecn_send(sk, skb, tcp_header_size);
994
995 #ifdef CONFIG_TCP_MD5SIG
996 /* Calculate the MD5 hash, as we have all we need now */
997 if (md5) {
998 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
999 tp->af_specific->calc_md5_hash(opts.hash_location,
1000 md5, sk, skb);
1001 }
1002 #endif
1003
1004 icsk->icsk_af_ops->send_check(sk, skb);
1005
1006 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1007 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1008
1009 if (skb->len != tcp_header_size)
1010 tcp_event_data_sent(tp, sk);
1011
1012 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1013 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1014 tcp_skb_pcount(skb));
1015
1016 tp->segs_out += tcp_skb_pcount(skb);
1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1019 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1020
1021 /* Our usage of tstamp should remain private */
1022 skb->tstamp.tv64 = 0;
1023
1024 /* Cleanup our debris for IP stacks */
1025 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1026 sizeof(struct inet6_skb_parm)));
1027
1028 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1029
1030 if (likely(err <= 0))
1031 return err;
1032
1033 tcp_enter_cwr(sk);
1034
1035 return net_xmit_eval(err);
1036 }
1037
1038 /* This routine just queues the buffer for sending.
1039 *
1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041 * otherwise socket can stall.
1042 */
1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 struct tcp_sock *tp = tcp_sk(sk);
1046
1047 /* Advance write_seq and place onto the write_queue. */
1048 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1049 __skb_header_release(skb);
1050 tcp_add_write_queue_tail(sk, skb);
1051 sk->sk_wmem_queued += skb->truesize;
1052 sk_mem_charge(sk, skb->truesize);
1053 }
1054
1055 /* Initialize TSO segments for a packet. */
1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1057 {
1058 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1059 /* Avoid the costly divide in the normal
1060 * non-TSO case.
1061 */
1062 tcp_skb_pcount_set(skb, 1);
1063 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1064 } else {
1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067 }
1068 }
1069
1070 /* When a modification to fackets out becomes necessary, we need to check
1071 * skb is counted to fackets_out or not.
1072 */
1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1074 int decr)
1075 {
1076 struct tcp_sock *tp = tcp_sk(sk);
1077
1078 if (!tp->sacked_out || tcp_is_reno(tp))
1079 return;
1080
1081 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1082 tp->fackets_out -= decr;
1083 }
1084
1085 /* Pcount in the middle of the write queue got changed, we need to do various
1086 * tweaks to fix counters
1087 */
1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1089 {
1090 struct tcp_sock *tp = tcp_sk(sk);
1091
1092 tp->packets_out -= decr;
1093
1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1095 tp->sacked_out -= decr;
1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1097 tp->retrans_out -= decr;
1098 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1099 tp->lost_out -= decr;
1100
1101 /* Reno case is special. Sigh... */
1102 if (tcp_is_reno(tp) && decr > 0)
1103 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1104
1105 tcp_adjust_fackets_out(sk, skb, decr);
1106
1107 if (tp->lost_skb_hint &&
1108 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1109 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1110 tp->lost_cnt_hint -= decr;
1111
1112 tcp_verify_left_out(tp);
1113 }
1114
1115 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1116 {
1117 struct skb_shared_info *shinfo = skb_shinfo(skb);
1118
1119 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1120 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1121 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1122 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1123
1124 shinfo->tx_flags &= ~tsflags;
1125 shinfo2->tx_flags |= tsflags;
1126 swap(shinfo->tskey, shinfo2->tskey);
1127 }
1128 }
1129
1130 /* Function to create two new TCP segments. Shrinks the given segment
1131 * to the specified size and appends a new segment with the rest of the
1132 * packet to the list. This won't be called frequently, I hope.
1133 * Remember, these are still headerless SKBs at this point.
1134 */
1135 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1136 unsigned int mss_now, gfp_t gfp)
1137 {
1138 struct tcp_sock *tp = tcp_sk(sk);
1139 struct sk_buff *buff;
1140 int nsize, old_factor;
1141 int nlen;
1142 u8 flags;
1143
1144 if (WARN_ON(len > skb->len))
1145 return -EINVAL;
1146
1147 nsize = skb_headlen(skb) - len;
1148 if (nsize < 0)
1149 nsize = 0;
1150
1151 if (skb_unclone(skb, gfp))
1152 return -ENOMEM;
1153
1154 /* Get a new skb... force flag on. */
1155 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1156 if (!buff)
1157 return -ENOMEM; /* We'll just try again later. */
1158
1159 sk->sk_wmem_queued += buff->truesize;
1160 sk_mem_charge(sk, buff->truesize);
1161 nlen = skb->len - len - nsize;
1162 buff->truesize += nlen;
1163 skb->truesize -= nlen;
1164
1165 /* Correct the sequence numbers. */
1166 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1167 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1168 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1169
1170 /* PSH and FIN should only be set in the second packet. */
1171 flags = TCP_SKB_CB(skb)->tcp_flags;
1172 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1173 TCP_SKB_CB(buff)->tcp_flags = flags;
1174 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1175
1176 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1177 /* Copy and checksum data tail into the new buffer. */
1178 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1179 skb_put(buff, nsize),
1180 nsize, 0);
1181
1182 skb_trim(skb, len);
1183
1184 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1185 } else {
1186 skb->ip_summed = CHECKSUM_PARTIAL;
1187 skb_split(skb, buff, len);
1188 }
1189
1190 buff->ip_summed = skb->ip_summed;
1191
1192 buff->tstamp = skb->tstamp;
1193 tcp_fragment_tstamp(skb, buff);
1194
1195 old_factor = tcp_skb_pcount(skb);
1196
1197 /* Fix up tso_factor for both original and new SKB. */
1198 tcp_set_skb_tso_segs(skb, mss_now);
1199 tcp_set_skb_tso_segs(buff, mss_now);
1200
1201 /* If this packet has been sent out already, we must
1202 * adjust the various packet counters.
1203 */
1204 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1205 int diff = old_factor - tcp_skb_pcount(skb) -
1206 tcp_skb_pcount(buff);
1207
1208 if (diff)
1209 tcp_adjust_pcount(sk, skb, diff);
1210 }
1211
1212 /* Link BUFF into the send queue. */
1213 __skb_header_release(buff);
1214 tcp_insert_write_queue_after(skb, buff, sk);
1215
1216 return 0;
1217 }
1218
1219 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1220 * eventually). The difference is that pulled data not copied, but
1221 * immediately discarded.
1222 */
1223 static void __pskb_trim_head(struct sk_buff *skb, int len)
1224 {
1225 struct skb_shared_info *shinfo;
1226 int i, k, eat;
1227
1228 eat = min_t(int, len, skb_headlen(skb));
1229 if (eat) {
1230 __skb_pull(skb, eat);
1231 len -= eat;
1232 if (!len)
1233 return;
1234 }
1235 eat = len;
1236 k = 0;
1237 shinfo = skb_shinfo(skb);
1238 for (i = 0; i < shinfo->nr_frags; i++) {
1239 int size = skb_frag_size(&shinfo->frags[i]);
1240
1241 if (size <= eat) {
1242 skb_frag_unref(skb, i);
1243 eat -= size;
1244 } else {
1245 shinfo->frags[k] = shinfo->frags[i];
1246 if (eat) {
1247 shinfo->frags[k].page_offset += eat;
1248 skb_frag_size_sub(&shinfo->frags[k], eat);
1249 eat = 0;
1250 }
1251 k++;
1252 }
1253 }
1254 shinfo->nr_frags = k;
1255
1256 skb_reset_tail_pointer(skb);
1257 skb->data_len -= len;
1258 skb->len = skb->data_len;
1259 }
1260
1261 /* Remove acked data from a packet in the transmit queue. */
1262 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1263 {
1264 if (skb_unclone(skb, GFP_ATOMIC))
1265 return -ENOMEM;
1266
1267 __pskb_trim_head(skb, len);
1268
1269 TCP_SKB_CB(skb)->seq += len;
1270 skb->ip_summed = CHECKSUM_PARTIAL;
1271
1272 skb->truesize -= len;
1273 sk->sk_wmem_queued -= len;
1274 sk_mem_uncharge(sk, len);
1275 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1276
1277 /* Any change of skb->len requires recalculation of tso factor. */
1278 if (tcp_skb_pcount(skb) > 1)
1279 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1280
1281 return 0;
1282 }
1283
1284 /* Calculate MSS not accounting any TCP options. */
1285 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1286 {
1287 const struct tcp_sock *tp = tcp_sk(sk);
1288 const struct inet_connection_sock *icsk = inet_csk(sk);
1289 int mss_now;
1290
1291 /* Calculate base mss without TCP options:
1292 It is MMS_S - sizeof(tcphdr) of rfc1122
1293 */
1294 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1295
1296 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1297 if (icsk->icsk_af_ops->net_frag_header_len) {
1298 const struct dst_entry *dst = __sk_dst_get(sk);
1299
1300 if (dst && dst_allfrag(dst))
1301 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1302 }
1303
1304 /* Clamp it (mss_clamp does not include tcp options) */
1305 if (mss_now > tp->rx_opt.mss_clamp)
1306 mss_now = tp->rx_opt.mss_clamp;
1307
1308 /* Now subtract optional transport overhead */
1309 mss_now -= icsk->icsk_ext_hdr_len;
1310
1311 /* Then reserve room for full set of TCP options and 8 bytes of data */
1312 if (mss_now < 48)
1313 mss_now = 48;
1314 return mss_now;
1315 }
1316
1317 /* Calculate MSS. Not accounting for SACKs here. */
1318 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1319 {
1320 /* Subtract TCP options size, not including SACKs */
1321 return __tcp_mtu_to_mss(sk, pmtu) -
1322 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1323 }
1324
1325 /* Inverse of above */
1326 int tcp_mss_to_mtu(struct sock *sk, int mss)
1327 {
1328 const struct tcp_sock *tp = tcp_sk(sk);
1329 const struct inet_connection_sock *icsk = inet_csk(sk);
1330 int mtu;
1331
1332 mtu = mss +
1333 tp->tcp_header_len +
1334 icsk->icsk_ext_hdr_len +
1335 icsk->icsk_af_ops->net_header_len;
1336
1337 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1338 if (icsk->icsk_af_ops->net_frag_header_len) {
1339 const struct dst_entry *dst = __sk_dst_get(sk);
1340
1341 if (dst && dst_allfrag(dst))
1342 mtu += icsk->icsk_af_ops->net_frag_header_len;
1343 }
1344 return mtu;
1345 }
1346
1347 /* MTU probing init per socket */
1348 void tcp_mtup_init(struct sock *sk)
1349 {
1350 struct tcp_sock *tp = tcp_sk(sk);
1351 struct inet_connection_sock *icsk = inet_csk(sk);
1352 struct net *net = sock_net(sk);
1353
1354 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1355 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1356 icsk->icsk_af_ops->net_header_len;
1357 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1358 icsk->icsk_mtup.probe_size = 0;
1359 if (icsk->icsk_mtup.enabled)
1360 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1361 }
1362 EXPORT_SYMBOL(tcp_mtup_init);
1363
1364 /* This function synchronize snd mss to current pmtu/exthdr set.
1365
1366 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1367 for TCP options, but includes only bare TCP header.
1368
1369 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1370 It is minimum of user_mss and mss received with SYN.
1371 It also does not include TCP options.
1372
1373 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1374
1375 tp->mss_cache is current effective sending mss, including
1376 all tcp options except for SACKs. It is evaluated,
1377 taking into account current pmtu, but never exceeds
1378 tp->rx_opt.mss_clamp.
1379
1380 NOTE1. rfc1122 clearly states that advertised MSS
1381 DOES NOT include either tcp or ip options.
1382
1383 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1384 are READ ONLY outside this function. --ANK (980731)
1385 */
1386 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct inet_connection_sock *icsk = inet_csk(sk);
1390 int mss_now;
1391
1392 if (icsk->icsk_mtup.search_high > pmtu)
1393 icsk->icsk_mtup.search_high = pmtu;
1394
1395 mss_now = tcp_mtu_to_mss(sk, pmtu);
1396 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1397
1398 /* And store cached results */
1399 icsk->icsk_pmtu_cookie = pmtu;
1400 if (icsk->icsk_mtup.enabled)
1401 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1402 tp->mss_cache = mss_now;
1403
1404 return mss_now;
1405 }
1406 EXPORT_SYMBOL(tcp_sync_mss);
1407
1408 /* Compute the current effective MSS, taking SACKs and IP options,
1409 * and even PMTU discovery events into account.
1410 */
1411 unsigned int tcp_current_mss(struct sock *sk)
1412 {
1413 const struct tcp_sock *tp = tcp_sk(sk);
1414 const struct dst_entry *dst = __sk_dst_get(sk);
1415 u32 mss_now;
1416 unsigned int header_len;
1417 struct tcp_out_options opts;
1418 struct tcp_md5sig_key *md5;
1419
1420 mss_now = tp->mss_cache;
1421
1422 if (dst) {
1423 u32 mtu = dst_mtu(dst);
1424 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1425 mss_now = tcp_sync_mss(sk, mtu);
1426 }
1427
1428 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1429 sizeof(struct tcphdr);
1430 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1431 * some common options. If this is an odd packet (because we have SACK
1432 * blocks etc) then our calculated header_len will be different, and
1433 * we have to adjust mss_now correspondingly */
1434 if (header_len != tp->tcp_header_len) {
1435 int delta = (int) header_len - tp->tcp_header_len;
1436 mss_now -= delta;
1437 }
1438
1439 return mss_now;
1440 }
1441
1442 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1443 * As additional protections, we do not touch cwnd in retransmission phases,
1444 * and if application hit its sndbuf limit recently.
1445 */
1446 static void tcp_cwnd_application_limited(struct sock *sk)
1447 {
1448 struct tcp_sock *tp = tcp_sk(sk);
1449
1450 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1451 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1452 /* Limited by application or receiver window. */
1453 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1454 u32 win_used = max(tp->snd_cwnd_used, init_win);
1455 if (win_used < tp->snd_cwnd) {
1456 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1457 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1458 }
1459 tp->snd_cwnd_used = 0;
1460 }
1461 tp->snd_cwnd_stamp = tcp_time_stamp;
1462 }
1463
1464 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1465 {
1466 struct tcp_sock *tp = tcp_sk(sk);
1467
1468 /* Track the maximum number of outstanding packets in each
1469 * window, and remember whether we were cwnd-limited then.
1470 */
1471 if (!before(tp->snd_una, tp->max_packets_seq) ||
1472 tp->packets_out > tp->max_packets_out) {
1473 tp->max_packets_out = tp->packets_out;
1474 tp->max_packets_seq = tp->snd_nxt;
1475 tp->is_cwnd_limited = is_cwnd_limited;
1476 }
1477
1478 if (tcp_is_cwnd_limited(sk)) {
1479 /* Network is feed fully. */
1480 tp->snd_cwnd_used = 0;
1481 tp->snd_cwnd_stamp = tcp_time_stamp;
1482 } else {
1483 /* Network starves. */
1484 if (tp->packets_out > tp->snd_cwnd_used)
1485 tp->snd_cwnd_used = tp->packets_out;
1486
1487 if (sysctl_tcp_slow_start_after_idle &&
1488 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1489 tcp_cwnd_application_limited(sk);
1490 }
1491 }
1492
1493 /* Minshall's variant of the Nagle send check. */
1494 static bool tcp_minshall_check(const struct tcp_sock *tp)
1495 {
1496 return after(tp->snd_sml, tp->snd_una) &&
1497 !after(tp->snd_sml, tp->snd_nxt);
1498 }
1499
1500 /* Update snd_sml if this skb is under mss
1501 * Note that a TSO packet might end with a sub-mss segment
1502 * The test is really :
1503 * if ((skb->len % mss) != 0)
1504 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1505 * But we can avoid doing the divide again given we already have
1506 * skb_pcount = skb->len / mss_now
1507 */
1508 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1509 const struct sk_buff *skb)
1510 {
1511 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1512 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1513 }
1514
1515 /* Return false, if packet can be sent now without violation Nagle's rules:
1516 * 1. It is full sized. (provided by caller in %partial bool)
1517 * 2. Or it contains FIN. (already checked by caller)
1518 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1519 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1520 * With Minshall's modification: all sent small packets are ACKed.
1521 */
1522 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1523 int nonagle)
1524 {
1525 return partial &&
1526 ((nonagle & TCP_NAGLE_CORK) ||
1527 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1528 }
1529
1530 /* Return how many segs we'd like on a TSO packet,
1531 * to send one TSO packet per ms
1532 */
1533 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1534 {
1535 u32 bytes, segs;
1536
1537 bytes = min(sk->sk_pacing_rate >> 10,
1538 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1539
1540 /* Goal is to send at least one packet per ms,
1541 * not one big TSO packet every 100 ms.
1542 * This preserves ACK clocking and is consistent
1543 * with tcp_tso_should_defer() heuristic.
1544 */
1545 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1546
1547 return min_t(u32, segs, sk->sk_gso_max_segs);
1548 }
1549
1550 /* Returns the portion of skb which can be sent right away */
1551 static unsigned int tcp_mss_split_point(const struct sock *sk,
1552 const struct sk_buff *skb,
1553 unsigned int mss_now,
1554 unsigned int max_segs,
1555 int nonagle)
1556 {
1557 const struct tcp_sock *tp = tcp_sk(sk);
1558 u32 partial, needed, window, max_len;
1559
1560 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1561 max_len = mss_now * max_segs;
1562
1563 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1564 return max_len;
1565
1566 needed = min(skb->len, window);
1567
1568 if (max_len <= needed)
1569 return max_len;
1570
1571 partial = needed % mss_now;
1572 /* If last segment is not a full MSS, check if Nagle rules allow us
1573 * to include this last segment in this skb.
1574 * Otherwise, we'll split the skb at last MSS boundary
1575 */
1576 if (tcp_nagle_check(partial != 0, tp, nonagle))
1577 return needed - partial;
1578
1579 return needed;
1580 }
1581
1582 /* Can at least one segment of SKB be sent right now, according to the
1583 * congestion window rules? If so, return how many segments are allowed.
1584 */
1585 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1586 const struct sk_buff *skb)
1587 {
1588 u32 in_flight, cwnd, halfcwnd;
1589
1590 /* Don't be strict about the congestion window for the final FIN. */
1591 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1592 tcp_skb_pcount(skb) == 1)
1593 return 1;
1594
1595 in_flight = tcp_packets_in_flight(tp);
1596 cwnd = tp->snd_cwnd;
1597 if (in_flight >= cwnd)
1598 return 0;
1599
1600 /* For better scheduling, ensure we have at least
1601 * 2 GSO packets in flight.
1602 */
1603 halfcwnd = max(cwnd >> 1, 1U);
1604 return min(halfcwnd, cwnd - in_flight);
1605 }
1606
1607 /* Initialize TSO state of a skb.
1608 * This must be invoked the first time we consider transmitting
1609 * SKB onto the wire.
1610 */
1611 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1612 {
1613 int tso_segs = tcp_skb_pcount(skb);
1614
1615 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1616 tcp_set_skb_tso_segs(skb, mss_now);
1617 tso_segs = tcp_skb_pcount(skb);
1618 }
1619 return tso_segs;
1620 }
1621
1622
1623 /* Return true if the Nagle test allows this packet to be
1624 * sent now.
1625 */
1626 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1627 unsigned int cur_mss, int nonagle)
1628 {
1629 /* Nagle rule does not apply to frames, which sit in the middle of the
1630 * write_queue (they have no chances to get new data).
1631 *
1632 * This is implemented in the callers, where they modify the 'nonagle'
1633 * argument based upon the location of SKB in the send queue.
1634 */
1635 if (nonagle & TCP_NAGLE_PUSH)
1636 return true;
1637
1638 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1639 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1640 return true;
1641
1642 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1643 return true;
1644
1645 return false;
1646 }
1647
1648 /* Does at least the first segment of SKB fit into the send window? */
1649 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1650 const struct sk_buff *skb,
1651 unsigned int cur_mss)
1652 {
1653 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1654
1655 if (skb->len > cur_mss)
1656 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1657
1658 return !after(end_seq, tcp_wnd_end(tp));
1659 }
1660
1661 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1662 * should be put on the wire right now. If so, it returns the number of
1663 * packets allowed by the congestion window.
1664 */
1665 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1666 unsigned int cur_mss, int nonagle)
1667 {
1668 const struct tcp_sock *tp = tcp_sk(sk);
1669 unsigned int cwnd_quota;
1670
1671 tcp_init_tso_segs(skb, cur_mss);
1672
1673 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1674 return 0;
1675
1676 cwnd_quota = tcp_cwnd_test(tp, skb);
1677 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1678 cwnd_quota = 0;
1679
1680 return cwnd_quota;
1681 }
1682
1683 /* Test if sending is allowed right now. */
1684 bool tcp_may_send_now(struct sock *sk)
1685 {
1686 const struct tcp_sock *tp = tcp_sk(sk);
1687 struct sk_buff *skb = tcp_send_head(sk);
1688
1689 return skb &&
1690 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1691 (tcp_skb_is_last(sk, skb) ?
1692 tp->nonagle : TCP_NAGLE_PUSH));
1693 }
1694
1695 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1696 * which is put after SKB on the list. It is very much like
1697 * tcp_fragment() except that it may make several kinds of assumptions
1698 * in order to speed up the splitting operation. In particular, we
1699 * know that all the data is in scatter-gather pages, and that the
1700 * packet has never been sent out before (and thus is not cloned).
1701 */
1702 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1703 unsigned int mss_now, gfp_t gfp)
1704 {
1705 struct sk_buff *buff;
1706 int nlen = skb->len - len;
1707 u8 flags;
1708
1709 /* All of a TSO frame must be composed of paged data. */
1710 if (skb->len != skb->data_len)
1711 return tcp_fragment(sk, skb, len, mss_now, gfp);
1712
1713 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1714 if (unlikely(!buff))
1715 return -ENOMEM;
1716
1717 sk->sk_wmem_queued += buff->truesize;
1718 sk_mem_charge(sk, buff->truesize);
1719 buff->truesize += nlen;
1720 skb->truesize -= nlen;
1721
1722 /* Correct the sequence numbers. */
1723 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1724 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1725 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1726
1727 /* PSH and FIN should only be set in the second packet. */
1728 flags = TCP_SKB_CB(skb)->tcp_flags;
1729 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1730 TCP_SKB_CB(buff)->tcp_flags = flags;
1731
1732 /* This packet was never sent out yet, so no SACK bits. */
1733 TCP_SKB_CB(buff)->sacked = 0;
1734
1735 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1736 skb_split(skb, buff, len);
1737 tcp_fragment_tstamp(skb, buff);
1738
1739 /* Fix up tso_factor for both original and new SKB. */
1740 tcp_set_skb_tso_segs(skb, mss_now);
1741 tcp_set_skb_tso_segs(buff, mss_now);
1742
1743 /* Link BUFF into the send queue. */
1744 __skb_header_release(buff);
1745 tcp_insert_write_queue_after(skb, buff, sk);
1746
1747 return 0;
1748 }
1749
1750 /* Try to defer sending, if possible, in order to minimize the amount
1751 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1752 *
1753 * This algorithm is from John Heffner.
1754 */
1755 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1756 bool *is_cwnd_limited, u32 max_segs)
1757 {
1758 const struct inet_connection_sock *icsk = inet_csk(sk);
1759 u32 age, send_win, cong_win, limit, in_flight;
1760 struct tcp_sock *tp = tcp_sk(sk);
1761 struct skb_mstamp now;
1762 struct sk_buff *head;
1763 int win_divisor;
1764
1765 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1766 goto send_now;
1767
1768 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1769 goto send_now;
1770
1771 /* Avoid bursty behavior by allowing defer
1772 * only if the last write was recent.
1773 */
1774 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1775 goto send_now;
1776
1777 in_flight = tcp_packets_in_flight(tp);
1778
1779 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1780
1781 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1782
1783 /* From in_flight test above, we know that cwnd > in_flight. */
1784 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1785
1786 limit = min(send_win, cong_win);
1787
1788 /* If a full-sized TSO skb can be sent, do it. */
1789 if (limit >= max_segs * tp->mss_cache)
1790 goto send_now;
1791
1792 /* Middle in queue won't get any more data, full sendable already? */
1793 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1794 goto send_now;
1795
1796 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1797 if (win_divisor) {
1798 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1799
1800 /* If at least some fraction of a window is available,
1801 * just use it.
1802 */
1803 chunk /= win_divisor;
1804 if (limit >= chunk)
1805 goto send_now;
1806 } else {
1807 /* Different approach, try not to defer past a single
1808 * ACK. Receiver should ACK every other full sized
1809 * frame, so if we have space for more than 3 frames
1810 * then send now.
1811 */
1812 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1813 goto send_now;
1814 }
1815
1816 head = tcp_write_queue_head(sk);
1817 skb_mstamp_get(&now);
1818 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1819 /* If next ACK is likely to come too late (half srtt), do not defer */
1820 if (age < (tp->srtt_us >> 4))
1821 goto send_now;
1822
1823 /* Ok, it looks like it is advisable to defer. */
1824
1825 if (cong_win < send_win && cong_win <= skb->len)
1826 *is_cwnd_limited = true;
1827
1828 return true;
1829
1830 send_now:
1831 return false;
1832 }
1833
1834 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1835 {
1836 struct inet_connection_sock *icsk = inet_csk(sk);
1837 struct tcp_sock *tp = tcp_sk(sk);
1838 struct net *net = sock_net(sk);
1839 u32 interval;
1840 s32 delta;
1841
1842 interval = net->ipv4.sysctl_tcp_probe_interval;
1843 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1844 if (unlikely(delta >= interval * HZ)) {
1845 int mss = tcp_current_mss(sk);
1846
1847 /* Update current search range */
1848 icsk->icsk_mtup.probe_size = 0;
1849 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1850 sizeof(struct tcphdr) +
1851 icsk->icsk_af_ops->net_header_len;
1852 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1853
1854 /* Update probe time stamp */
1855 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1856 }
1857 }
1858
1859 /* Create a new MTU probe if we are ready.
1860 * MTU probe is regularly attempting to increase the path MTU by
1861 * deliberately sending larger packets. This discovers routing
1862 * changes resulting in larger path MTUs.
1863 *
1864 * Returns 0 if we should wait to probe (no cwnd available),
1865 * 1 if a probe was sent,
1866 * -1 otherwise
1867 */
1868 static int tcp_mtu_probe(struct sock *sk)
1869 {
1870 struct tcp_sock *tp = tcp_sk(sk);
1871 struct inet_connection_sock *icsk = inet_csk(sk);
1872 struct sk_buff *skb, *nskb, *next;
1873 struct net *net = sock_net(sk);
1874 int len;
1875 int probe_size;
1876 int size_needed;
1877 int copy;
1878 int mss_now;
1879 int interval;
1880
1881 /* Not currently probing/verifying,
1882 * not in recovery,
1883 * have enough cwnd, and
1884 * not SACKing (the variable headers throw things off) */
1885 if (!icsk->icsk_mtup.enabled ||
1886 icsk->icsk_mtup.probe_size ||
1887 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1888 tp->snd_cwnd < 11 ||
1889 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1890 return -1;
1891
1892 /* Use binary search for probe_size between tcp_mss_base,
1893 * and current mss_clamp. if (search_high - search_low)
1894 * smaller than a threshold, backoff from probing.
1895 */
1896 mss_now = tcp_current_mss(sk);
1897 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1898 icsk->icsk_mtup.search_low) >> 1);
1899 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1900 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1901 /* When misfortune happens, we are reprobing actively,
1902 * and then reprobe timer has expired. We stick with current
1903 * probing process by not resetting search range to its orignal.
1904 */
1905 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1906 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1907 /* Check whether enough time has elaplased for
1908 * another round of probing.
1909 */
1910 tcp_mtu_check_reprobe(sk);
1911 return -1;
1912 }
1913
1914 /* Have enough data in the send queue to probe? */
1915 if (tp->write_seq - tp->snd_nxt < size_needed)
1916 return -1;
1917
1918 if (tp->snd_wnd < size_needed)
1919 return -1;
1920 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1921 return 0;
1922
1923 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1924 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1925 if (!tcp_packets_in_flight(tp))
1926 return -1;
1927 else
1928 return 0;
1929 }
1930
1931 /* We're allowed to probe. Build it now. */
1932 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1933 if (!nskb)
1934 return -1;
1935 sk->sk_wmem_queued += nskb->truesize;
1936 sk_mem_charge(sk, nskb->truesize);
1937
1938 skb = tcp_send_head(sk);
1939
1940 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1941 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1942 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1943 TCP_SKB_CB(nskb)->sacked = 0;
1944 nskb->csum = 0;
1945 nskb->ip_summed = skb->ip_summed;
1946
1947 tcp_insert_write_queue_before(nskb, skb, sk);
1948
1949 len = 0;
1950 tcp_for_write_queue_from_safe(skb, next, sk) {
1951 copy = min_t(int, skb->len, probe_size - len);
1952 if (nskb->ip_summed)
1953 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1954 else
1955 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1956 skb_put(nskb, copy),
1957 copy, nskb->csum);
1958
1959 if (skb->len <= copy) {
1960 /* We've eaten all the data from this skb.
1961 * Throw it away. */
1962 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1963 tcp_unlink_write_queue(skb, sk);
1964 sk_wmem_free_skb(sk, skb);
1965 } else {
1966 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1967 ~(TCPHDR_FIN|TCPHDR_PSH);
1968 if (!skb_shinfo(skb)->nr_frags) {
1969 skb_pull(skb, copy);
1970 if (skb->ip_summed != CHECKSUM_PARTIAL)
1971 skb->csum = csum_partial(skb->data,
1972 skb->len, 0);
1973 } else {
1974 __pskb_trim_head(skb, copy);
1975 tcp_set_skb_tso_segs(skb, mss_now);
1976 }
1977 TCP_SKB_CB(skb)->seq += copy;
1978 }
1979
1980 len += copy;
1981
1982 if (len >= probe_size)
1983 break;
1984 }
1985 tcp_init_tso_segs(nskb, nskb->len);
1986
1987 /* We're ready to send. If this fails, the probe will
1988 * be resegmented into mss-sized pieces by tcp_write_xmit().
1989 */
1990 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1991 /* Decrement cwnd here because we are sending
1992 * effectively two packets. */
1993 tp->snd_cwnd--;
1994 tcp_event_new_data_sent(sk, nskb);
1995
1996 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1997 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1998 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1999
2000 return 1;
2001 }
2002
2003 return -1;
2004 }
2005
2006 /* This routine writes packets to the network. It advances the
2007 * send_head. This happens as incoming acks open up the remote
2008 * window for us.
2009 *
2010 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2011 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2012 * account rare use of URG, this is not a big flaw.
2013 *
2014 * Send at most one packet when push_one > 0. Temporarily ignore
2015 * cwnd limit to force at most one packet out when push_one == 2.
2016
2017 * Returns true, if no segments are in flight and we have queued segments,
2018 * but cannot send anything now because of SWS or another problem.
2019 */
2020 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2021 int push_one, gfp_t gfp)
2022 {
2023 struct tcp_sock *tp = tcp_sk(sk);
2024 struct sk_buff *skb;
2025 unsigned int tso_segs, sent_pkts;
2026 int cwnd_quota;
2027 int result;
2028 bool is_cwnd_limited = false;
2029 u32 max_segs;
2030
2031 sent_pkts = 0;
2032
2033 if (!push_one) {
2034 /* Do MTU probing. */
2035 result = tcp_mtu_probe(sk);
2036 if (!result) {
2037 return false;
2038 } else if (result > 0) {
2039 sent_pkts = 1;
2040 }
2041 }
2042
2043 max_segs = tcp_tso_autosize(sk, mss_now);
2044 while ((skb = tcp_send_head(sk))) {
2045 unsigned int limit;
2046
2047 tso_segs = tcp_init_tso_segs(skb, mss_now);
2048 BUG_ON(!tso_segs);
2049
2050 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2051 /* "skb_mstamp" is used as a start point for the retransmit timer */
2052 skb_mstamp_get(&skb->skb_mstamp);
2053 goto repair; /* Skip network transmission */
2054 }
2055
2056 cwnd_quota = tcp_cwnd_test(tp, skb);
2057 if (!cwnd_quota) {
2058 if (push_one == 2)
2059 /* Force out a loss probe pkt. */
2060 cwnd_quota = 1;
2061 else
2062 break;
2063 }
2064
2065 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2066 break;
2067
2068 if (tso_segs == 1) {
2069 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2070 (tcp_skb_is_last(sk, skb) ?
2071 nonagle : TCP_NAGLE_PUSH))))
2072 break;
2073 } else {
2074 if (!push_one &&
2075 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2076 max_segs))
2077 break;
2078 }
2079
2080 limit = mss_now;
2081 if (tso_segs > 1 && !tcp_urg_mode(tp))
2082 limit = tcp_mss_split_point(sk, skb, mss_now,
2083 min_t(unsigned int,
2084 cwnd_quota,
2085 max_segs),
2086 nonagle);
2087
2088 if (skb->len > limit &&
2089 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2090 break;
2091
2092 /* TCP Small Queues :
2093 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2094 * This allows for :
2095 * - better RTT estimation and ACK scheduling
2096 * - faster recovery
2097 * - high rates
2098 * Alas, some drivers / subsystems require a fair amount
2099 * of queued bytes to ensure line rate.
2100 * One example is wifi aggregation (802.11 AMPDU)
2101 */
2102 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2103 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2104
2105 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2106 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2107 /* It is possible TX completion already happened
2108 * before we set TSQ_THROTTLED, so we must
2109 * test again the condition.
2110 */
2111 smp_mb__after_atomic();
2112 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2113 break;
2114 }
2115
2116 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2117 break;
2118
2119 repair:
2120 /* Advance the send_head. This one is sent out.
2121 * This call will increment packets_out.
2122 */
2123 tcp_event_new_data_sent(sk, skb);
2124
2125 tcp_minshall_update(tp, mss_now, skb);
2126 sent_pkts += tcp_skb_pcount(skb);
2127
2128 if (push_one)
2129 break;
2130 }
2131
2132 if (likely(sent_pkts)) {
2133 if (tcp_in_cwnd_reduction(sk))
2134 tp->prr_out += sent_pkts;
2135
2136 /* Send one loss probe per tail loss episode. */
2137 if (push_one != 2)
2138 tcp_schedule_loss_probe(sk);
2139 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2140 tcp_cwnd_validate(sk, is_cwnd_limited);
2141 return false;
2142 }
2143 return !tp->packets_out && tcp_send_head(sk);
2144 }
2145
2146 bool tcp_schedule_loss_probe(struct sock *sk)
2147 {
2148 struct inet_connection_sock *icsk = inet_csk(sk);
2149 struct tcp_sock *tp = tcp_sk(sk);
2150 u32 timeout, tlp_time_stamp, rto_time_stamp;
2151 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2152
2153 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2154 return false;
2155 /* No consecutive loss probes. */
2156 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2157 tcp_rearm_rto(sk);
2158 return false;
2159 }
2160 /* Don't do any loss probe on a Fast Open connection before 3WHS
2161 * finishes.
2162 */
2163 if (tp->fastopen_rsk)
2164 return false;
2165
2166 /* TLP is only scheduled when next timer event is RTO. */
2167 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2168 return false;
2169
2170 /* Schedule a loss probe in 2*RTT for SACK capable connections
2171 * in Open state, that are either limited by cwnd or application.
2172 */
2173 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2174 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2175 return false;
2176
2177 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2178 tcp_send_head(sk))
2179 return false;
2180
2181 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2182 * for delayed ack when there's one outstanding packet. If no RTT
2183 * sample is available then probe after TCP_TIMEOUT_INIT.
2184 */
2185 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2186 if (tp->packets_out == 1)
2187 timeout = max_t(u32, timeout,
2188 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2189 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2190
2191 /* If RTO is shorter, just schedule TLP in its place. */
2192 tlp_time_stamp = tcp_time_stamp + timeout;
2193 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2194 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2195 s32 delta = rto_time_stamp - tcp_time_stamp;
2196 if (delta > 0)
2197 timeout = delta;
2198 }
2199
2200 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2201 TCP_RTO_MAX);
2202 return true;
2203 }
2204
2205 /* Thanks to skb fast clones, we can detect if a prior transmit of
2206 * a packet is still in a qdisc or driver queue.
2207 * In this case, there is very little point doing a retransmit !
2208 * Note: This is called from BH context only.
2209 */
2210 static bool skb_still_in_host_queue(const struct sock *sk,
2211 const struct sk_buff *skb)
2212 {
2213 if (unlikely(skb_fclone_busy(sk, skb))) {
2214 NET_INC_STATS_BH(sock_net(sk),
2215 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2216 return true;
2217 }
2218 return false;
2219 }
2220
2221 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2222 * retransmit the last segment.
2223 */
2224 void tcp_send_loss_probe(struct sock *sk)
2225 {
2226 struct tcp_sock *tp = tcp_sk(sk);
2227 struct sk_buff *skb;
2228 int pcount;
2229 int mss = tcp_current_mss(sk);
2230
2231 skb = tcp_send_head(sk);
2232 if (skb) {
2233 if (tcp_snd_wnd_test(tp, skb, mss)) {
2234 pcount = tp->packets_out;
2235 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2236 if (tp->packets_out > pcount)
2237 goto probe_sent;
2238 goto rearm_timer;
2239 }
2240 skb = tcp_write_queue_prev(sk, skb);
2241 } else {
2242 skb = tcp_write_queue_tail(sk);
2243 }
2244
2245 /* At most one outstanding TLP retransmission. */
2246 if (tp->tlp_high_seq)
2247 goto rearm_timer;
2248
2249 /* Retransmit last segment. */
2250 if (WARN_ON(!skb))
2251 goto rearm_timer;
2252
2253 if (skb_still_in_host_queue(sk, skb))
2254 goto rearm_timer;
2255
2256 pcount = tcp_skb_pcount(skb);
2257 if (WARN_ON(!pcount))
2258 goto rearm_timer;
2259
2260 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2261 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2262 GFP_ATOMIC)))
2263 goto rearm_timer;
2264 skb = tcp_write_queue_next(sk, skb);
2265 }
2266
2267 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2268 goto rearm_timer;
2269
2270 if (__tcp_retransmit_skb(sk, skb))
2271 goto rearm_timer;
2272
2273 /* Record snd_nxt for loss detection. */
2274 tp->tlp_high_seq = tp->snd_nxt;
2275
2276 probe_sent:
2277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2278 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2279 inet_csk(sk)->icsk_pending = 0;
2280 rearm_timer:
2281 tcp_rearm_rto(sk);
2282 }
2283
2284 /* Push out any pending frames which were held back due to
2285 * TCP_CORK or attempt at coalescing tiny packets.
2286 * The socket must be locked by the caller.
2287 */
2288 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2289 int nonagle)
2290 {
2291 /* If we are closed, the bytes will have to remain here.
2292 * In time closedown will finish, we empty the write queue and
2293 * all will be happy.
2294 */
2295 if (unlikely(sk->sk_state == TCP_CLOSE))
2296 return;
2297
2298 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2299 sk_gfp_mask(sk, GFP_ATOMIC)))
2300 tcp_check_probe_timer(sk);
2301 }
2302
2303 /* Send _single_ skb sitting at the send head. This function requires
2304 * true push pending frames to setup probe timer etc.
2305 */
2306 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2307 {
2308 struct sk_buff *skb = tcp_send_head(sk);
2309
2310 BUG_ON(!skb || skb->len < mss_now);
2311
2312 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2313 }
2314
2315 /* This function returns the amount that we can raise the
2316 * usable window based on the following constraints
2317 *
2318 * 1. The window can never be shrunk once it is offered (RFC 793)
2319 * 2. We limit memory per socket
2320 *
2321 * RFC 1122:
2322 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2323 * RECV.NEXT + RCV.WIN fixed until:
2324 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2325 *
2326 * i.e. don't raise the right edge of the window until you can raise
2327 * it at least MSS bytes.
2328 *
2329 * Unfortunately, the recommended algorithm breaks header prediction,
2330 * since header prediction assumes th->window stays fixed.
2331 *
2332 * Strictly speaking, keeping th->window fixed violates the receiver
2333 * side SWS prevention criteria. The problem is that under this rule
2334 * a stream of single byte packets will cause the right side of the
2335 * window to always advance by a single byte.
2336 *
2337 * Of course, if the sender implements sender side SWS prevention
2338 * then this will not be a problem.
2339 *
2340 * BSD seems to make the following compromise:
2341 *
2342 * If the free space is less than the 1/4 of the maximum
2343 * space available and the free space is less than 1/2 mss,
2344 * then set the window to 0.
2345 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2346 * Otherwise, just prevent the window from shrinking
2347 * and from being larger than the largest representable value.
2348 *
2349 * This prevents incremental opening of the window in the regime
2350 * where TCP is limited by the speed of the reader side taking
2351 * data out of the TCP receive queue. It does nothing about
2352 * those cases where the window is constrained on the sender side
2353 * because the pipeline is full.
2354 *
2355 * BSD also seems to "accidentally" limit itself to windows that are a
2356 * multiple of MSS, at least until the free space gets quite small.
2357 * This would appear to be a side effect of the mbuf implementation.
2358 * Combining these two algorithms results in the observed behavior
2359 * of having a fixed window size at almost all times.
2360 *
2361 * Below we obtain similar behavior by forcing the offered window to
2362 * a multiple of the mss when it is feasible to do so.
2363 *
2364 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2365 * Regular options like TIMESTAMP are taken into account.
2366 */
2367 u32 __tcp_select_window(struct sock *sk)
2368 {
2369 struct inet_connection_sock *icsk = inet_csk(sk);
2370 struct tcp_sock *tp = tcp_sk(sk);
2371 /* MSS for the peer's data. Previous versions used mss_clamp
2372 * here. I don't know if the value based on our guesses
2373 * of peer's MSS is better for the performance. It's more correct
2374 * but may be worse for the performance because of rcv_mss
2375 * fluctuations. --SAW 1998/11/1
2376 */
2377 int mss = icsk->icsk_ack.rcv_mss;
2378 int free_space = tcp_space(sk);
2379 int allowed_space = tcp_full_space(sk);
2380 int full_space = min_t(int, tp->window_clamp, allowed_space);
2381 int window;
2382
2383 if (mss > full_space)
2384 mss = full_space;
2385
2386 if (free_space < (full_space >> 1)) {
2387 icsk->icsk_ack.quick = 0;
2388
2389 if (tcp_under_memory_pressure(sk))
2390 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2391 4U * tp->advmss);
2392
2393 /* free_space might become our new window, make sure we don't
2394 * increase it due to wscale.
2395 */
2396 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2397
2398 /* if free space is less than mss estimate, or is below 1/16th
2399 * of the maximum allowed, try to move to zero-window, else
2400 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2401 * new incoming data is dropped due to memory limits.
2402 * With large window, mss test triggers way too late in order
2403 * to announce zero window in time before rmem limit kicks in.
2404 */
2405 if (free_space < (allowed_space >> 4) || free_space < mss)
2406 return 0;
2407 }
2408
2409 if (free_space > tp->rcv_ssthresh)
2410 free_space = tp->rcv_ssthresh;
2411
2412 /* Don't do rounding if we are using window scaling, since the
2413 * scaled window will not line up with the MSS boundary anyway.
2414 */
2415 window = tp->rcv_wnd;
2416 if (tp->rx_opt.rcv_wscale) {
2417 window = free_space;
2418
2419 /* Advertise enough space so that it won't get scaled away.
2420 * Import case: prevent zero window announcement if
2421 * 1<<rcv_wscale > mss.
2422 */
2423 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2424 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2425 << tp->rx_opt.rcv_wscale);
2426 } else {
2427 /* Get the largest window that is a nice multiple of mss.
2428 * Window clamp already applied above.
2429 * If our current window offering is within 1 mss of the
2430 * free space we just keep it. This prevents the divide
2431 * and multiply from happening most of the time.
2432 * We also don't do any window rounding when the free space
2433 * is too small.
2434 */
2435 if (window <= free_space - mss || window > free_space)
2436 window = (free_space / mss) * mss;
2437 else if (mss == full_space &&
2438 free_space > window + (full_space >> 1))
2439 window = free_space;
2440 }
2441
2442 return window;
2443 }
2444
2445 /* Collapses two adjacent SKB's during retransmission. */
2446 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2447 {
2448 struct tcp_sock *tp = tcp_sk(sk);
2449 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2450 int skb_size, next_skb_size;
2451
2452 skb_size = skb->len;
2453 next_skb_size = next_skb->len;
2454
2455 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2456
2457 tcp_highest_sack_combine(sk, next_skb, skb);
2458
2459 tcp_unlink_write_queue(next_skb, sk);
2460
2461 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2462 next_skb_size);
2463
2464 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2465 skb->ip_summed = CHECKSUM_PARTIAL;
2466
2467 if (skb->ip_summed != CHECKSUM_PARTIAL)
2468 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2469
2470 /* Update sequence range on original skb. */
2471 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2472
2473 /* Merge over control information. This moves PSH/FIN etc. over */
2474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2475
2476 /* All done, get rid of second SKB and account for it so
2477 * packet counting does not break.
2478 */
2479 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2480
2481 /* changed transmit queue under us so clear hints */
2482 tcp_clear_retrans_hints_partial(tp);
2483 if (next_skb == tp->retransmit_skb_hint)
2484 tp->retransmit_skb_hint = skb;
2485
2486 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2487
2488 sk_wmem_free_skb(sk, next_skb);
2489 }
2490
2491 /* Check if coalescing SKBs is legal. */
2492 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2493 {
2494 if (tcp_skb_pcount(skb) > 1)
2495 return false;
2496 /* TODO: SACK collapsing could be used to remove this condition */
2497 if (skb_shinfo(skb)->nr_frags != 0)
2498 return false;
2499 if (skb_cloned(skb))
2500 return false;
2501 if (skb == tcp_send_head(sk))
2502 return false;
2503 /* Some heurestics for collapsing over SACK'd could be invented */
2504 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2505 return false;
2506
2507 return true;
2508 }
2509
2510 /* Collapse packets in the retransmit queue to make to create
2511 * less packets on the wire. This is only done on retransmission.
2512 */
2513 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2514 int space)
2515 {
2516 struct tcp_sock *tp = tcp_sk(sk);
2517 struct sk_buff *skb = to, *tmp;
2518 bool first = true;
2519
2520 if (!sysctl_tcp_retrans_collapse)
2521 return;
2522 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2523 return;
2524
2525 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2526 if (!tcp_can_collapse(sk, skb))
2527 break;
2528
2529 space -= skb->len;
2530
2531 if (first) {
2532 first = false;
2533 continue;
2534 }
2535
2536 if (space < 0)
2537 break;
2538 /* Punt if not enough space exists in the first SKB for
2539 * the data in the second
2540 */
2541 if (skb->len > skb_availroom(to))
2542 break;
2543
2544 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2545 break;
2546
2547 tcp_collapse_retrans(sk, to);
2548 }
2549 }
2550
2551 /* This retransmits one SKB. Policy decisions and retransmit queue
2552 * state updates are done by the caller. Returns non-zero if an
2553 * error occurred which prevented the send.
2554 */
2555 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2556 {
2557 struct tcp_sock *tp = tcp_sk(sk);
2558 struct inet_connection_sock *icsk = inet_csk(sk);
2559 unsigned int cur_mss;
2560 int err;
2561
2562 /* Inconslusive MTU probe */
2563 if (icsk->icsk_mtup.probe_size) {
2564 icsk->icsk_mtup.probe_size = 0;
2565 }
2566
2567 /* Do not sent more than we queued. 1/4 is reserved for possible
2568 * copying overhead: fragmentation, tunneling, mangling etc.
2569 */
2570 if (atomic_read(&sk->sk_wmem_alloc) >
2571 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2572 return -EAGAIN;
2573
2574 if (skb_still_in_host_queue(sk, skb))
2575 return -EBUSY;
2576
2577 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2578 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2579 BUG();
2580 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2581 return -ENOMEM;
2582 }
2583
2584 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2585 return -EHOSTUNREACH; /* Routing failure or similar. */
2586
2587 cur_mss = tcp_current_mss(sk);
2588
2589 /* If receiver has shrunk his window, and skb is out of
2590 * new window, do not retransmit it. The exception is the
2591 * case, when window is shrunk to zero. In this case
2592 * our retransmit serves as a zero window probe.
2593 */
2594 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2595 TCP_SKB_CB(skb)->seq != tp->snd_una)
2596 return -EAGAIN;
2597
2598 if (skb->len > cur_mss) {
2599 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2600 return -ENOMEM; /* We'll try again later. */
2601 } else {
2602 int oldpcount = tcp_skb_pcount(skb);
2603
2604 if (unlikely(oldpcount > 1)) {
2605 if (skb_unclone(skb, GFP_ATOMIC))
2606 return -ENOMEM;
2607 tcp_init_tso_segs(skb, cur_mss);
2608 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2609 }
2610 }
2611
2612 /* RFC3168, section 6.1.1.1. ECN fallback */
2613 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2614 tcp_ecn_clear_syn(sk, skb);
2615
2616 tcp_retrans_try_collapse(sk, skb, cur_mss);
2617
2618 /* Make a copy, if the first transmission SKB clone we made
2619 * is still in somebody's hands, else make a clone.
2620 */
2621
2622 /* make sure skb->data is aligned on arches that require it
2623 * and check if ack-trimming & collapsing extended the headroom
2624 * beyond what csum_start can cover.
2625 */
2626 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2627 skb_headroom(skb) >= 0xFFFF)) {
2628 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2629 GFP_ATOMIC);
2630 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2631 -ENOBUFS;
2632 } else {
2633 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2634 }
2635
2636 if (likely(!err)) {
2637 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2638 /* Update global TCP statistics. */
2639 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2640 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2641 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2642 tp->total_retrans++;
2643 }
2644 return err;
2645 }
2646
2647 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2648 {
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 int err = __tcp_retransmit_skb(sk, skb);
2651
2652 if (err == 0) {
2653 #if FASTRETRANS_DEBUG > 0
2654 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2655 net_dbg_ratelimited("retrans_out leaked\n");
2656 }
2657 #endif
2658 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2659 tp->retrans_out += tcp_skb_pcount(skb);
2660
2661 /* Save stamp of the first retransmit. */
2662 if (!tp->retrans_stamp)
2663 tp->retrans_stamp = tcp_skb_timestamp(skb);
2664
2665 } else if (err != -EBUSY) {
2666 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2667 }
2668
2669 if (tp->undo_retrans < 0)
2670 tp->undo_retrans = 0;
2671 tp->undo_retrans += tcp_skb_pcount(skb);
2672 return err;
2673 }
2674
2675 /* Check if we forward retransmits are possible in the current
2676 * window/congestion state.
2677 */
2678 static bool tcp_can_forward_retransmit(struct sock *sk)
2679 {
2680 const struct inet_connection_sock *icsk = inet_csk(sk);
2681 const struct tcp_sock *tp = tcp_sk(sk);
2682
2683 /* Forward retransmissions are possible only during Recovery. */
2684 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2685 return false;
2686
2687 /* No forward retransmissions in Reno are possible. */
2688 if (tcp_is_reno(tp))
2689 return false;
2690
2691 /* Yeah, we have to make difficult choice between forward transmission
2692 * and retransmission... Both ways have their merits...
2693 *
2694 * For now we do not retransmit anything, while we have some new
2695 * segments to send. In the other cases, follow rule 3 for
2696 * NextSeg() specified in RFC3517.
2697 */
2698
2699 if (tcp_may_send_now(sk))
2700 return false;
2701
2702 return true;
2703 }
2704
2705 /* This gets called after a retransmit timeout, and the initially
2706 * retransmitted data is acknowledged. It tries to continue
2707 * resending the rest of the retransmit queue, until either
2708 * we've sent it all or the congestion window limit is reached.
2709 * If doing SACK, the first ACK which comes back for a timeout
2710 * based retransmit packet might feed us FACK information again.
2711 * If so, we use it to avoid unnecessarily retransmissions.
2712 */
2713 void tcp_xmit_retransmit_queue(struct sock *sk)
2714 {
2715 const struct inet_connection_sock *icsk = inet_csk(sk);
2716 struct tcp_sock *tp = tcp_sk(sk);
2717 struct sk_buff *skb;
2718 struct sk_buff *hole = NULL;
2719 u32 last_lost;
2720 int mib_idx;
2721 int fwd_rexmitting = 0;
2722
2723 if (!tp->packets_out)
2724 return;
2725
2726 if (!tp->lost_out)
2727 tp->retransmit_high = tp->snd_una;
2728
2729 if (tp->retransmit_skb_hint) {
2730 skb = tp->retransmit_skb_hint;
2731 last_lost = TCP_SKB_CB(skb)->end_seq;
2732 if (after(last_lost, tp->retransmit_high))
2733 last_lost = tp->retransmit_high;
2734 } else {
2735 skb = tcp_write_queue_head(sk);
2736 last_lost = tp->snd_una;
2737 }
2738
2739 tcp_for_write_queue_from(skb, sk) {
2740 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2741
2742 if (skb == tcp_send_head(sk))
2743 break;
2744 /* we could do better than to assign each time */
2745 if (!hole)
2746 tp->retransmit_skb_hint = skb;
2747
2748 /* Assume this retransmit will generate
2749 * only one packet for congestion window
2750 * calculation purposes. This works because
2751 * tcp_retransmit_skb() will chop up the
2752 * packet to be MSS sized and all the
2753 * packet counting works out.
2754 */
2755 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2756 return;
2757
2758 if (fwd_rexmitting) {
2759 begin_fwd:
2760 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2761 break;
2762 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2763
2764 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2765 tp->retransmit_high = last_lost;
2766 if (!tcp_can_forward_retransmit(sk))
2767 break;
2768 /* Backtrack if necessary to non-L'ed skb */
2769 if (hole) {
2770 skb = hole;
2771 hole = NULL;
2772 }
2773 fwd_rexmitting = 1;
2774 goto begin_fwd;
2775
2776 } else if (!(sacked & TCPCB_LOST)) {
2777 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2778 hole = skb;
2779 continue;
2780
2781 } else {
2782 last_lost = TCP_SKB_CB(skb)->end_seq;
2783 if (icsk->icsk_ca_state != TCP_CA_Loss)
2784 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2785 else
2786 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2787 }
2788
2789 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2790 continue;
2791
2792 if (tcp_retransmit_skb(sk, skb))
2793 return;
2794
2795 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2796
2797 if (tcp_in_cwnd_reduction(sk))
2798 tp->prr_out += tcp_skb_pcount(skb);
2799
2800 if (skb == tcp_write_queue_head(sk))
2801 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2802 inet_csk(sk)->icsk_rto,
2803 TCP_RTO_MAX);
2804 }
2805 }
2806
2807 /* We allow to exceed memory limits for FIN packets to expedite
2808 * connection tear down and (memory) recovery.
2809 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2810 * or even be forced to close flow without any FIN.
2811 * In general, we want to allow one skb per socket to avoid hangs
2812 * with edge trigger epoll()
2813 */
2814 void sk_forced_mem_schedule(struct sock *sk, int size)
2815 {
2816 int amt;
2817
2818 if (size <= sk->sk_forward_alloc)
2819 return;
2820 amt = sk_mem_pages(size);
2821 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2822 sk_memory_allocated_add(sk, amt);
2823
2824 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2825 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2826 }
2827
2828 /* Send a FIN. The caller locks the socket for us.
2829 * We should try to send a FIN packet really hard, but eventually give up.
2830 */
2831 void tcp_send_fin(struct sock *sk)
2832 {
2833 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2834 struct tcp_sock *tp = tcp_sk(sk);
2835
2836 /* Optimization, tack on the FIN if we have one skb in write queue and
2837 * this skb was not yet sent, or we are under memory pressure.
2838 * Note: in the latter case, FIN packet will be sent after a timeout,
2839 * as TCP stack thinks it has already been transmitted.
2840 */
2841 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2842 coalesce:
2843 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2844 TCP_SKB_CB(tskb)->end_seq++;
2845 tp->write_seq++;
2846 if (!tcp_send_head(sk)) {
2847 /* This means tskb was already sent.
2848 * Pretend we included the FIN on previous transmit.
2849 * We need to set tp->snd_nxt to the value it would have
2850 * if FIN had been sent. This is because retransmit path
2851 * does not change tp->snd_nxt.
2852 */
2853 tp->snd_nxt++;
2854 return;
2855 }
2856 } else {
2857 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2858 if (unlikely(!skb)) {
2859 if (tskb)
2860 goto coalesce;
2861 return;
2862 }
2863 skb_reserve(skb, MAX_TCP_HEADER);
2864 sk_forced_mem_schedule(sk, skb->truesize);
2865 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2866 tcp_init_nondata_skb(skb, tp->write_seq,
2867 TCPHDR_ACK | TCPHDR_FIN);
2868 tcp_queue_skb(sk, skb);
2869 }
2870 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2871 }
2872
2873 /* We get here when a process closes a file descriptor (either due to
2874 * an explicit close() or as a byproduct of exit()'ing) and there
2875 * was unread data in the receive queue. This behavior is recommended
2876 * by RFC 2525, section 2.17. -DaveM
2877 */
2878 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2879 {
2880 struct sk_buff *skb;
2881
2882 /* NOTE: No TCP options attached and we never retransmit this. */
2883 skb = alloc_skb(MAX_TCP_HEADER, priority);
2884 if (!skb) {
2885 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2886 return;
2887 }
2888
2889 /* Reserve space for headers and prepare control bits. */
2890 skb_reserve(skb, MAX_TCP_HEADER);
2891 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2892 TCPHDR_ACK | TCPHDR_RST);
2893 skb_mstamp_get(&skb->skb_mstamp);
2894 /* Send it off. */
2895 if (tcp_transmit_skb(sk, skb, 0, priority))
2896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2897
2898 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2899 }
2900
2901 /* Send a crossed SYN-ACK during socket establishment.
2902 * WARNING: This routine must only be called when we have already sent
2903 * a SYN packet that crossed the incoming SYN that caused this routine
2904 * to get called. If this assumption fails then the initial rcv_wnd
2905 * and rcv_wscale values will not be correct.
2906 */
2907 int tcp_send_synack(struct sock *sk)
2908 {
2909 struct sk_buff *skb;
2910
2911 skb = tcp_write_queue_head(sk);
2912 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2913 pr_debug("%s: wrong queue state\n", __func__);
2914 return -EFAULT;
2915 }
2916 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2917 if (skb_cloned(skb)) {
2918 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2919 if (!nskb)
2920 return -ENOMEM;
2921 tcp_unlink_write_queue(skb, sk);
2922 __skb_header_release(nskb);
2923 __tcp_add_write_queue_head(sk, nskb);
2924 sk_wmem_free_skb(sk, skb);
2925 sk->sk_wmem_queued += nskb->truesize;
2926 sk_mem_charge(sk, nskb->truesize);
2927 skb = nskb;
2928 }
2929
2930 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2931 tcp_ecn_send_synack(sk, skb);
2932 }
2933 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2934 }
2935
2936 /**
2937 * tcp_make_synack - Prepare a SYN-ACK.
2938 * sk: listener socket
2939 * dst: dst entry attached to the SYNACK
2940 * req: request_sock pointer
2941 *
2942 * Allocate one skb and build a SYNACK packet.
2943 * @dst is consumed : Caller should not use it again.
2944 */
2945 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2946 struct request_sock *req,
2947 struct tcp_fastopen_cookie *foc,
2948 bool attach_req)
2949 {
2950 struct inet_request_sock *ireq = inet_rsk(req);
2951 const struct tcp_sock *tp = tcp_sk(sk);
2952 struct tcp_md5sig_key *md5 = NULL;
2953 struct tcp_out_options opts;
2954 struct sk_buff *skb;
2955 int tcp_header_size;
2956 struct tcphdr *th;
2957 u16 user_mss;
2958 int mss;
2959
2960 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2961 if (unlikely(!skb)) {
2962 dst_release(dst);
2963 return NULL;
2964 }
2965 /* Reserve space for headers. */
2966 skb_reserve(skb, MAX_TCP_HEADER);
2967
2968 if (attach_req) {
2969 skb_set_owner_w(skb, req_to_sk(req));
2970 } else {
2971 /* sk is a const pointer, because we want to express multiple
2972 * cpu might call us concurrently.
2973 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2974 */
2975 skb_set_owner_w(skb, (struct sock *)sk);
2976 }
2977 skb_dst_set(skb, dst);
2978
2979 mss = dst_metric_advmss(dst);
2980 user_mss = READ_ONCE(tp->rx_opt.user_mss);
2981 if (user_mss && user_mss < mss)
2982 mss = user_mss;
2983
2984 memset(&opts, 0, sizeof(opts));
2985 #ifdef CONFIG_SYN_COOKIES
2986 if (unlikely(req->cookie_ts))
2987 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2988 else
2989 #endif
2990 skb_mstamp_get(&skb->skb_mstamp);
2991
2992 #ifdef CONFIG_TCP_MD5SIG
2993 rcu_read_lock();
2994 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2995 #endif
2996 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
2997 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
2998 sizeof(*th);
2999
3000 skb_push(skb, tcp_header_size);
3001 skb_reset_transport_header(skb);
3002
3003 th = tcp_hdr(skb);
3004 memset(th, 0, sizeof(struct tcphdr));
3005 th->syn = 1;
3006 th->ack = 1;
3007 tcp_ecn_make_synack(req, th);
3008 th->source = htons(ireq->ir_num);
3009 th->dest = ireq->ir_rmt_port;
3010 /* Setting of flags are superfluous here for callers (and ECE is
3011 * not even correctly set)
3012 */
3013 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3014 TCPHDR_SYN | TCPHDR_ACK);
3015
3016 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3017 /* XXX data is queued and acked as is. No buffer/window check */
3018 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3019
3020 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3021 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3022 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3023 th->doff = (tcp_header_size >> 2);
3024 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3025
3026 #ifdef CONFIG_TCP_MD5SIG
3027 /* Okay, we have all we need - do the md5 hash if needed */
3028 if (md5)
3029 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3030 md5, req_to_sk(req), skb);
3031 rcu_read_unlock();
3032 #endif
3033
3034 /* Do not fool tcpdump (if any), clean our debris */
3035 skb->tstamp.tv64 = 0;
3036 return skb;
3037 }
3038 EXPORT_SYMBOL(tcp_make_synack);
3039
3040 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3041 {
3042 struct inet_connection_sock *icsk = inet_csk(sk);
3043 const struct tcp_congestion_ops *ca;
3044 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3045
3046 if (ca_key == TCP_CA_UNSPEC)
3047 return;
3048
3049 rcu_read_lock();
3050 ca = tcp_ca_find_key(ca_key);
3051 if (likely(ca && try_module_get(ca->owner))) {
3052 module_put(icsk->icsk_ca_ops->owner);
3053 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3054 icsk->icsk_ca_ops = ca;
3055 }
3056 rcu_read_unlock();
3057 }
3058
3059 /* Do all connect socket setups that can be done AF independent. */
3060 static void tcp_connect_init(struct sock *sk)
3061 {
3062 const struct dst_entry *dst = __sk_dst_get(sk);
3063 struct tcp_sock *tp = tcp_sk(sk);
3064 __u8 rcv_wscale;
3065
3066 /* We'll fix this up when we get a response from the other end.
3067 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3068 */
3069 tp->tcp_header_len = sizeof(struct tcphdr) +
3070 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3071
3072 #ifdef CONFIG_TCP_MD5SIG
3073 if (tp->af_specific->md5_lookup(sk, sk))
3074 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3075 #endif
3076
3077 /* If user gave his TCP_MAXSEG, record it to clamp */
3078 if (tp->rx_opt.user_mss)
3079 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3080 tp->max_window = 0;
3081 tcp_mtup_init(sk);
3082 tcp_sync_mss(sk, dst_mtu(dst));
3083
3084 tcp_ca_dst_init(sk, dst);
3085
3086 if (!tp->window_clamp)
3087 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3088 tp->advmss = dst_metric_advmss(dst);
3089 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3090 tp->advmss = tp->rx_opt.user_mss;
3091
3092 tcp_initialize_rcv_mss(sk);
3093
3094 /* limit the window selection if the user enforce a smaller rx buffer */
3095 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3096 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3097 tp->window_clamp = tcp_full_space(sk);
3098
3099 tcp_select_initial_window(tcp_full_space(sk),
3100 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3101 &tp->rcv_wnd,
3102 &tp->window_clamp,
3103 sysctl_tcp_window_scaling,
3104 &rcv_wscale,
3105 dst_metric(dst, RTAX_INITRWND));
3106
3107 tp->rx_opt.rcv_wscale = rcv_wscale;
3108 tp->rcv_ssthresh = tp->rcv_wnd;
3109
3110 sk->sk_err = 0;
3111 sock_reset_flag(sk, SOCK_DONE);
3112 tp->snd_wnd = 0;
3113 tcp_init_wl(tp, 0);
3114 tp->snd_una = tp->write_seq;
3115 tp->snd_sml = tp->write_seq;
3116 tp->snd_up = tp->write_seq;
3117 tp->snd_nxt = tp->write_seq;
3118
3119 if (likely(!tp->repair))
3120 tp->rcv_nxt = 0;
3121 else
3122 tp->rcv_tstamp = tcp_time_stamp;
3123 tp->rcv_wup = tp->rcv_nxt;
3124 tp->copied_seq = tp->rcv_nxt;
3125
3126 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3127 inet_csk(sk)->icsk_retransmits = 0;
3128 tcp_clear_retrans(tp);
3129 }
3130
3131 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3132 {
3133 struct tcp_sock *tp = tcp_sk(sk);
3134 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3135
3136 tcb->end_seq += skb->len;
3137 __skb_header_release(skb);
3138 __tcp_add_write_queue_tail(sk, skb);
3139 sk->sk_wmem_queued += skb->truesize;
3140 sk_mem_charge(sk, skb->truesize);
3141 tp->write_seq = tcb->end_seq;
3142 tp->packets_out += tcp_skb_pcount(skb);
3143 }
3144
3145 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3146 * queue a data-only packet after the regular SYN, such that regular SYNs
3147 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3148 * only the SYN sequence, the data are retransmitted in the first ACK.
3149 * If cookie is not cached or other error occurs, falls back to send a
3150 * regular SYN with Fast Open cookie request option.
3151 */
3152 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3153 {
3154 struct tcp_sock *tp = tcp_sk(sk);
3155 struct tcp_fastopen_request *fo = tp->fastopen_req;
3156 int syn_loss = 0, space, err = 0;
3157 unsigned long last_syn_loss = 0;
3158 struct sk_buff *syn_data;
3159
3160 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3161 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3162 &syn_loss, &last_syn_loss);
3163 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3164 if (syn_loss > 1 &&
3165 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3166 fo->cookie.len = -1;
3167 goto fallback;
3168 }
3169
3170 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3171 fo->cookie.len = -1;
3172 else if (fo->cookie.len <= 0)
3173 goto fallback;
3174
3175 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3176 * user-MSS. Reserve maximum option space for middleboxes that add
3177 * private TCP options. The cost is reduced data space in SYN :(
3178 */
3179 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3180 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3181 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3182 MAX_TCP_OPTION_SPACE;
3183
3184 space = min_t(size_t, space, fo->size);
3185
3186 /* limit to order-0 allocations */
3187 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3188
3189 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3190 if (!syn_data)
3191 goto fallback;
3192 syn_data->ip_summed = CHECKSUM_PARTIAL;
3193 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3194 if (space) {
3195 int copied = copy_from_iter(skb_put(syn_data, space), space,
3196 &fo->data->msg_iter);
3197 if (unlikely(!copied)) {
3198 kfree_skb(syn_data);
3199 goto fallback;
3200 }
3201 if (copied != space) {
3202 skb_trim(syn_data, copied);
3203 space = copied;
3204 }
3205 }
3206 /* No more data pending in inet_wait_for_connect() */
3207 if (space == fo->size)
3208 fo->data = NULL;
3209 fo->copied = space;
3210
3211 tcp_connect_queue_skb(sk, syn_data);
3212
3213 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3214
3215 syn->skb_mstamp = syn_data->skb_mstamp;
3216
3217 /* Now full SYN+DATA was cloned and sent (or not),
3218 * remove the SYN from the original skb (syn_data)
3219 * we keep in write queue in case of a retransmit, as we
3220 * also have the SYN packet (with no data) in the same queue.
3221 */
3222 TCP_SKB_CB(syn_data)->seq++;
3223 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3224 if (!err) {
3225 tp->syn_data = (fo->copied > 0);
3226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3227 goto done;
3228 }
3229
3230 fallback:
3231 /* Send a regular SYN with Fast Open cookie request option */
3232 if (fo->cookie.len > 0)
3233 fo->cookie.len = 0;
3234 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3235 if (err)
3236 tp->syn_fastopen = 0;
3237 done:
3238 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3239 return err;
3240 }
3241
3242 /* Build a SYN and send it off. */
3243 int tcp_connect(struct sock *sk)
3244 {
3245 struct tcp_sock *tp = tcp_sk(sk);
3246 struct sk_buff *buff;
3247 int err;
3248
3249 tcp_connect_init(sk);
3250
3251 if (unlikely(tp->repair)) {
3252 tcp_finish_connect(sk, NULL);
3253 return 0;
3254 }
3255
3256 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3257 if (unlikely(!buff))
3258 return -ENOBUFS;
3259
3260 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3261 tp->retrans_stamp = tcp_time_stamp;
3262 tcp_connect_queue_skb(sk, buff);
3263 tcp_ecn_send_syn(sk, buff);
3264
3265 /* Send off SYN; include data in Fast Open. */
3266 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3267 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3268 if (err == -ECONNREFUSED)
3269 return err;
3270
3271 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3272 * in order to make this packet get counted in tcpOutSegs.
3273 */
3274 tp->snd_nxt = tp->write_seq;
3275 tp->pushed_seq = tp->write_seq;
3276 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3277
3278 /* Timer for repeating the SYN until an answer. */
3279 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3280 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3281 return 0;
3282 }
3283 EXPORT_SYMBOL(tcp_connect);
3284
3285 /* Send out a delayed ack, the caller does the policy checking
3286 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3287 * for details.
3288 */
3289 void tcp_send_delayed_ack(struct sock *sk)
3290 {
3291 struct inet_connection_sock *icsk = inet_csk(sk);
3292 int ato = icsk->icsk_ack.ato;
3293 unsigned long timeout;
3294
3295 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3296
3297 if (ato > TCP_DELACK_MIN) {
3298 const struct tcp_sock *tp = tcp_sk(sk);
3299 int max_ato = HZ / 2;
3300
3301 if (icsk->icsk_ack.pingpong ||
3302 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3303 max_ato = TCP_DELACK_MAX;
3304
3305 /* Slow path, intersegment interval is "high". */
3306
3307 /* If some rtt estimate is known, use it to bound delayed ack.
3308 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3309 * directly.
3310 */
3311 if (tp->srtt_us) {
3312 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3313 TCP_DELACK_MIN);
3314
3315 if (rtt < max_ato)
3316 max_ato = rtt;
3317 }
3318
3319 ato = min(ato, max_ato);
3320 }
3321
3322 /* Stay within the limit we were given */
3323 timeout = jiffies + ato;
3324
3325 /* Use new timeout only if there wasn't a older one earlier. */
3326 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3327 /* If delack timer was blocked or is about to expire,
3328 * send ACK now.
3329 */
3330 if (icsk->icsk_ack.blocked ||
3331 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3332 tcp_send_ack(sk);
3333 return;
3334 }
3335
3336 if (!time_before(timeout, icsk->icsk_ack.timeout))
3337 timeout = icsk->icsk_ack.timeout;
3338 }
3339 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3340 icsk->icsk_ack.timeout = timeout;
3341 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3342 }
3343
3344 /* This routine sends an ack and also updates the window. */
3345 void tcp_send_ack(struct sock *sk)
3346 {
3347 struct sk_buff *buff;
3348
3349 /* If we have been reset, we may not send again. */
3350 if (sk->sk_state == TCP_CLOSE)
3351 return;
3352
3353 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3354
3355 /* We are not putting this on the write queue, so
3356 * tcp_transmit_skb() will set the ownership to this
3357 * sock.
3358 */
3359 buff = alloc_skb(MAX_TCP_HEADER,
3360 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3361 if (unlikely(!buff)) {
3362 inet_csk_schedule_ack(sk);
3363 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3364 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3365 TCP_DELACK_MAX, TCP_RTO_MAX);
3366 return;
3367 }
3368
3369 /* Reserve space for headers and prepare control bits. */
3370 skb_reserve(buff, MAX_TCP_HEADER);
3371 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3372
3373 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3374 * too much.
3375 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3376 * We also avoid tcp_wfree() overhead (cache line miss accessing
3377 * tp->tsq_flags) by using regular sock_wfree()
3378 */
3379 skb_set_tcp_pure_ack(buff);
3380
3381 /* Send it off, this clears delayed acks for us. */
3382 skb_mstamp_get(&buff->skb_mstamp);
3383 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3384 }
3385 EXPORT_SYMBOL_GPL(tcp_send_ack);
3386
3387 /* This routine sends a packet with an out of date sequence
3388 * number. It assumes the other end will try to ack it.
3389 *
3390 * Question: what should we make while urgent mode?
3391 * 4.4BSD forces sending single byte of data. We cannot send
3392 * out of window data, because we have SND.NXT==SND.MAX...
3393 *
3394 * Current solution: to send TWO zero-length segments in urgent mode:
3395 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3396 * out-of-date with SND.UNA-1 to probe window.
3397 */
3398 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3399 {
3400 struct tcp_sock *tp = tcp_sk(sk);
3401 struct sk_buff *skb;
3402
3403 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3404 skb = alloc_skb(MAX_TCP_HEADER,
3405 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3406 if (!skb)
3407 return -1;
3408
3409 /* Reserve space for headers and set control bits. */
3410 skb_reserve(skb, MAX_TCP_HEADER);
3411 /* Use a previous sequence. This should cause the other
3412 * end to send an ack. Don't queue or clone SKB, just
3413 * send it.
3414 */
3415 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3416 skb_mstamp_get(&skb->skb_mstamp);
3417 NET_INC_STATS(sock_net(sk), mib);
3418 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3419 }
3420
3421 void tcp_send_window_probe(struct sock *sk)
3422 {
3423 if (sk->sk_state == TCP_ESTABLISHED) {
3424 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3425 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3426 }
3427 }
3428
3429 /* Initiate keepalive or window probe from timer. */
3430 int tcp_write_wakeup(struct sock *sk, int mib)
3431 {
3432 struct tcp_sock *tp = tcp_sk(sk);
3433 struct sk_buff *skb;
3434
3435 if (sk->sk_state == TCP_CLOSE)
3436 return -1;
3437
3438 skb = tcp_send_head(sk);
3439 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3440 int err;
3441 unsigned int mss = tcp_current_mss(sk);
3442 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3443
3444 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3445 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3446
3447 /* We are probing the opening of a window
3448 * but the window size is != 0
3449 * must have been a result SWS avoidance ( sender )
3450 */
3451 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3452 skb->len > mss) {
3453 seg_size = min(seg_size, mss);
3454 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3455 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3456 return -1;
3457 } else if (!tcp_skb_pcount(skb))
3458 tcp_set_skb_tso_segs(skb, mss);
3459
3460 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3461 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3462 if (!err)
3463 tcp_event_new_data_sent(sk, skb);
3464 return err;
3465 } else {
3466 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3467 tcp_xmit_probe_skb(sk, 1, mib);
3468 return tcp_xmit_probe_skb(sk, 0, mib);
3469 }
3470 }
3471
3472 /* A window probe timeout has occurred. If window is not closed send
3473 * a partial packet else a zero probe.
3474 */
3475 void tcp_send_probe0(struct sock *sk)
3476 {
3477 struct inet_connection_sock *icsk = inet_csk(sk);
3478 struct tcp_sock *tp = tcp_sk(sk);
3479 unsigned long probe_max;
3480 int err;
3481
3482 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3483
3484 if (tp->packets_out || !tcp_send_head(sk)) {
3485 /* Cancel probe timer, if it is not required. */
3486 icsk->icsk_probes_out = 0;
3487 icsk->icsk_backoff = 0;
3488 return;
3489 }
3490
3491 if (err <= 0) {
3492 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3493 icsk->icsk_backoff++;
3494 icsk->icsk_probes_out++;
3495 probe_max = TCP_RTO_MAX;
3496 } else {
3497 /* If packet was not sent due to local congestion,
3498 * do not backoff and do not remember icsk_probes_out.
3499 * Let local senders to fight for local resources.
3500 *
3501 * Use accumulated backoff yet.
3502 */
3503 if (!icsk->icsk_probes_out)
3504 icsk->icsk_probes_out = 1;
3505 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3506 }
3507 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3508 tcp_probe0_when(sk, probe_max),
3509 TCP_RTO_MAX);
3510 }
3511
3512 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3513 {
3514 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3515 struct flowi fl;
3516 int res;
3517
3518 tcp_rsk(req)->txhash = net_tx_rndhash();
3519 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3520 if (!res) {
3521 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3523 }
3524 return res;
3525 }
3526 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.102136 seconds and 5 git commands to generate.