Merge tag 'imx-clk-fixes-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/shawng...
[deliverable/linux.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71 #ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75
76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78 static u16 key_to_nfproto(const struct sw_flow_key *key)
79 {
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88 }
89
90 /* Map SKB connection state into the values used by flow definition. */
91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92 {
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121 }
122
123 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124 {
125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127 #else
128 return 0;
129 #endif
130 }
131
132 static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134 {
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = cl->words * sizeof(long);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148 }
149
150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153 {
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158 }
159
160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165 static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169 {
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201 }
202
203 /* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 ovs_ct_update_key(skb, NULL, key, false, false);
209 }
210
211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212 {
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230 }
231
232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234 {
235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253 #else
254 return -ENOTSUPP;
255 #endif
256 }
257
258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261 {
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287 }
288
289 /* 'skb' should already be pulled to nh_ofs. */
290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291 {
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346 }
347
348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351 static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353 {
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
371 err = nf_ct_frag6_gather(net, skb, user);
372 if (err)
373 return err;
374
375 key->ip.proto = ipv6_hdr(skb)->nexthdr;
376 ovs_cb.mru = IP6CB(skb)->frag_max_size;
377 #endif
378 } else {
379 kfree_skb(skb);
380 return -EPFNOSUPPORT;
381 }
382
383 key->ip.frag = OVS_FRAG_TYPE_NONE;
384 skb_clear_hash(skb);
385 skb->ignore_df = 1;
386 *OVS_CB(skb) = ovs_cb;
387
388 return 0;
389 }
390
391 static struct nf_conntrack_expect *
392 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
393 u16 proto, const struct sk_buff *skb)
394 {
395 struct nf_conntrack_tuple tuple;
396
397 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
398 return NULL;
399 return __nf_ct_expect_find(net, zone, &tuple);
400 }
401
402 /* This replicates logic from nf_conntrack_core.c that is not exported. */
403 static enum ip_conntrack_info
404 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
405 {
406 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
407
408 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
409 return IP_CT_ESTABLISHED_REPLY;
410 /* Once we've had two way comms, always ESTABLISHED. */
411 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
412 return IP_CT_ESTABLISHED;
413 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
414 return IP_CT_RELATED;
415 return IP_CT_NEW;
416 }
417
418 /* Find an existing connection which this packet belongs to without
419 * re-attributing statistics or modifying the connection state. This allows an
420 * skb->nfct lost due to an upcall to be recovered during actions execution.
421 *
422 * Must be called with rcu_read_lock.
423 *
424 * On success, populates skb->nfct and skb->nfctinfo, and returns the
425 * connection. Returns NULL if there is no existing entry.
426 */
427 static struct nf_conn *
428 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
429 u8 l3num, struct sk_buff *skb)
430 {
431 struct nf_conntrack_l3proto *l3proto;
432 struct nf_conntrack_l4proto *l4proto;
433 struct nf_conntrack_tuple tuple;
434 struct nf_conntrack_tuple_hash *h;
435 enum ip_conntrack_info ctinfo;
436 struct nf_conn *ct;
437 unsigned int dataoff;
438 u8 protonum;
439
440 l3proto = __nf_ct_l3proto_find(l3num);
441 if (!l3proto) {
442 pr_debug("ovs_ct_find_existing: Can't get l3proto\n");
443 return NULL;
444 }
445 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
446 &protonum) <= 0) {
447 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
448 return NULL;
449 }
450 l4proto = __nf_ct_l4proto_find(l3num, protonum);
451 if (!l4proto) {
452 pr_debug("ovs_ct_find_existing: Can't get l4proto\n");
453 return NULL;
454 }
455 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
456 protonum, net, &tuple, l3proto, l4proto)) {
457 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
458 return NULL;
459 }
460
461 /* look for tuple match */
462 h = nf_conntrack_find_get(net, zone, &tuple);
463 if (!h)
464 return NULL; /* Not found. */
465
466 ct = nf_ct_tuplehash_to_ctrack(h);
467
468 ctinfo = ovs_ct_get_info(h);
469 if (ctinfo == IP_CT_NEW) {
470 /* This should not happen. */
471 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct);
472 }
473 skb->nfct = &ct->ct_general;
474 skb->nfctinfo = ctinfo;
475 return ct;
476 }
477
478 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
479 static bool skb_nfct_cached(struct net *net,
480 const struct sw_flow_key *key,
481 const struct ovs_conntrack_info *info,
482 struct sk_buff *skb)
483 {
484 enum ip_conntrack_info ctinfo;
485 struct nf_conn *ct;
486
487 ct = nf_ct_get(skb, &ctinfo);
488 /* If no ct, check if we have evidence that an existing conntrack entry
489 * might be found for this skb. This happens when we lose a skb->nfct
490 * due to an upcall. If the connection was not confirmed, it is not
491 * cached and needs to be run through conntrack again.
492 */
493 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
494 !(key->ct.state & OVS_CS_F_INVALID) &&
495 key->ct.zone == info->zone.id)
496 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
497 if (!ct)
498 return false;
499 if (!net_eq(net, read_pnet(&ct->ct_net)))
500 return false;
501 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
502 return false;
503 if (info->helper) {
504 struct nf_conn_help *help;
505
506 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
507 if (help && rcu_access_pointer(help->helper) != info->helper)
508 return false;
509 }
510
511 return true;
512 }
513
514 #ifdef CONFIG_NF_NAT_NEEDED
515 /* Modelled after nf_nat_ipv[46]_fn().
516 * range is only used for new, uninitialized NAT state.
517 * Returns either NF_ACCEPT or NF_DROP.
518 */
519 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
520 enum ip_conntrack_info ctinfo,
521 const struct nf_nat_range *range,
522 enum nf_nat_manip_type maniptype)
523 {
524 int hooknum, nh_off, err = NF_ACCEPT;
525
526 nh_off = skb_network_offset(skb);
527 skb_pull(skb, nh_off);
528
529 /* See HOOK2MANIP(). */
530 if (maniptype == NF_NAT_MANIP_SRC)
531 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
532 else
533 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
534
535 switch (ctinfo) {
536 case IP_CT_RELATED:
537 case IP_CT_RELATED_REPLY:
538 if (skb->protocol == htons(ETH_P_IP) &&
539 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
540 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
541 hooknum))
542 err = NF_DROP;
543 goto push;
544 #if IS_ENABLED(CONFIG_NF_NAT_IPV6)
545 } else if (skb->protocol == htons(ETH_P_IPV6)) {
546 __be16 frag_off;
547 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
548 int hdrlen = ipv6_skip_exthdr(skb,
549 sizeof(struct ipv6hdr),
550 &nexthdr, &frag_off);
551
552 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
553 if (!nf_nat_icmpv6_reply_translation(skb, ct,
554 ctinfo,
555 hooknum,
556 hdrlen))
557 err = NF_DROP;
558 goto push;
559 }
560 #endif
561 }
562 /* Non-ICMP, fall thru to initialize if needed. */
563 case IP_CT_NEW:
564 /* Seen it before? This can happen for loopback, retrans,
565 * or local packets.
566 */
567 if (!nf_nat_initialized(ct, maniptype)) {
568 /* Initialize according to the NAT action. */
569 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
570 /* Action is set up to establish a new
571 * mapping.
572 */
573 ? nf_nat_setup_info(ct, range, maniptype)
574 : nf_nat_alloc_null_binding(ct, hooknum);
575 if (err != NF_ACCEPT)
576 goto push;
577 }
578 break;
579
580 case IP_CT_ESTABLISHED:
581 case IP_CT_ESTABLISHED_REPLY:
582 break;
583
584 default:
585 err = NF_DROP;
586 goto push;
587 }
588
589 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
590 push:
591 skb_push(skb, nh_off);
592
593 return err;
594 }
595
596 static void ovs_nat_update_key(struct sw_flow_key *key,
597 const struct sk_buff *skb,
598 enum nf_nat_manip_type maniptype)
599 {
600 if (maniptype == NF_NAT_MANIP_SRC) {
601 __be16 src;
602
603 key->ct.state |= OVS_CS_F_SRC_NAT;
604 if (key->eth.type == htons(ETH_P_IP))
605 key->ipv4.addr.src = ip_hdr(skb)->saddr;
606 else if (key->eth.type == htons(ETH_P_IPV6))
607 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
608 sizeof(key->ipv6.addr.src));
609 else
610 return;
611
612 if (key->ip.proto == IPPROTO_UDP)
613 src = udp_hdr(skb)->source;
614 else if (key->ip.proto == IPPROTO_TCP)
615 src = tcp_hdr(skb)->source;
616 else if (key->ip.proto == IPPROTO_SCTP)
617 src = sctp_hdr(skb)->source;
618 else
619 return;
620
621 key->tp.src = src;
622 } else {
623 __be16 dst;
624
625 key->ct.state |= OVS_CS_F_DST_NAT;
626 if (key->eth.type == htons(ETH_P_IP))
627 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
628 else if (key->eth.type == htons(ETH_P_IPV6))
629 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
630 sizeof(key->ipv6.addr.dst));
631 else
632 return;
633
634 if (key->ip.proto == IPPROTO_UDP)
635 dst = udp_hdr(skb)->dest;
636 else if (key->ip.proto == IPPROTO_TCP)
637 dst = tcp_hdr(skb)->dest;
638 else if (key->ip.proto == IPPROTO_SCTP)
639 dst = sctp_hdr(skb)->dest;
640 else
641 return;
642
643 key->tp.dst = dst;
644 }
645 }
646
647 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
648 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
649 const struct ovs_conntrack_info *info,
650 struct sk_buff *skb, struct nf_conn *ct,
651 enum ip_conntrack_info ctinfo)
652 {
653 enum nf_nat_manip_type maniptype;
654 int err;
655
656 if (nf_ct_is_untracked(ct)) {
657 /* A NAT action may only be performed on tracked packets. */
658 return NF_ACCEPT;
659 }
660
661 /* Add NAT extension if not confirmed yet. */
662 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
663 return NF_ACCEPT; /* Can't NAT. */
664
665 /* Determine NAT type.
666 * Check if the NAT type can be deduced from the tracked connection.
667 * Make sure expected traffic is NATted only when committing.
668 */
669 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
670 ct->status & IPS_NAT_MASK &&
671 (!(ct->status & IPS_EXPECTED_BIT) || info->commit)) {
672 /* NAT an established or related connection like before. */
673 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
674 /* This is the REPLY direction for a connection
675 * for which NAT was applied in the forward
676 * direction. Do the reverse NAT.
677 */
678 maniptype = ct->status & IPS_SRC_NAT
679 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
680 else
681 maniptype = ct->status & IPS_SRC_NAT
682 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
683 } else if (info->nat & OVS_CT_SRC_NAT) {
684 maniptype = NF_NAT_MANIP_SRC;
685 } else if (info->nat & OVS_CT_DST_NAT) {
686 maniptype = NF_NAT_MANIP_DST;
687 } else {
688 return NF_ACCEPT; /* Connection is not NATed. */
689 }
690 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
691
692 /* Mark NAT done if successful and update the flow key. */
693 if (err == NF_ACCEPT)
694 ovs_nat_update_key(key, skb, maniptype);
695
696 return err;
697 }
698 #else /* !CONFIG_NF_NAT_NEEDED */
699 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
700 const struct ovs_conntrack_info *info,
701 struct sk_buff *skb, struct nf_conn *ct,
702 enum ip_conntrack_info ctinfo)
703 {
704 return NF_ACCEPT;
705 }
706 #endif
707
708 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
709 * not done already. Update key with new CT state after passing the packet
710 * through conntrack.
711 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
712 * set to NULL and 0 will be returned.
713 */
714 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
715 const struct ovs_conntrack_info *info,
716 struct sk_buff *skb)
717 {
718 /* If we are recirculating packets to match on conntrack fields and
719 * committing with a separate conntrack action, then we don't need to
720 * actually run the packet through conntrack twice unless it's for a
721 * different zone.
722 */
723 bool cached = skb_nfct_cached(net, key, info, skb);
724 enum ip_conntrack_info ctinfo;
725 struct nf_conn *ct;
726
727 if (!cached) {
728 struct nf_conn *tmpl = info->ct;
729 int err;
730
731 /* Associate skb with specified zone. */
732 if (tmpl) {
733 if (skb->nfct)
734 nf_conntrack_put(skb->nfct);
735 nf_conntrack_get(&tmpl->ct_general);
736 skb->nfct = &tmpl->ct_general;
737 skb->nfctinfo = IP_CT_NEW;
738 }
739
740 /* Repeat if requested, see nf_iterate(). */
741 do {
742 err = nf_conntrack_in(net, info->family,
743 NF_INET_PRE_ROUTING, skb);
744 } while (err == NF_REPEAT);
745
746 if (err != NF_ACCEPT)
747 return -ENOENT;
748
749 /* Clear CT state NAT flags to mark that we have not yet done
750 * NAT after the nf_conntrack_in() call. We can actually clear
751 * the whole state, as it will be re-initialized below.
752 */
753 key->ct.state = 0;
754
755 /* Update the key, but keep the NAT flags. */
756 ovs_ct_update_key(skb, info, key, true, true);
757 }
758
759 ct = nf_ct_get(skb, &ctinfo);
760 if (ct) {
761 /* Packets starting a new connection must be NATted before the
762 * helper, so that the helper knows about the NAT. We enforce
763 * this by delaying both NAT and helper calls for unconfirmed
764 * connections until the committing CT action. For later
765 * packets NAT and Helper may be called in either order.
766 *
767 * NAT will be done only if the CT action has NAT, and only
768 * once per packet (per zone), as guarded by the NAT bits in
769 * the key->ct.state.
770 */
771 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
772 (nf_ct_is_confirmed(ct) || info->commit) &&
773 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
774 return -EINVAL;
775 }
776
777 /* Call the helper only if:
778 * - nf_conntrack_in() was executed above ("!cached") for a
779 * confirmed connection, or
780 * - When committing an unconfirmed connection.
781 */
782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
784 return -EINVAL;
785 }
786 }
787
788 return 0;
789 }
790
791 /* Lookup connection and read fields into key. */
792 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
793 const struct ovs_conntrack_info *info,
794 struct sk_buff *skb)
795 {
796 struct nf_conntrack_expect *exp;
797
798 /* If we pass an expected packet through nf_conntrack_in() the
799 * expectation is typically removed, but the packet could still be
800 * lost in upcall processing. To prevent this from happening we
801 * perform an explicit expectation lookup. Expected connections are
802 * always new, and will be passed through conntrack only when they are
803 * committed, as it is OK to remove the expectation at that time.
804 */
805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
806 if (exp) {
807 u8 state;
808
809 /* NOTE: New connections are NATted and Helped only when
810 * committed, so we are not calling into NAT here.
811 */
812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
813 __ovs_ct_update_key(key, state, &info->zone, exp->master);
814 } else
815 return __ovs_ct_lookup(net, key, info, skb);
816
817 return 0;
818 }
819
820 /* Lookup connection and confirm if unconfirmed. */
821 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
822 const struct ovs_conntrack_info *info,
823 struct sk_buff *skb)
824 {
825 int err;
826
827 err = __ovs_ct_lookup(net, key, info, skb);
828 if (err)
829 return err;
830 /* This is a no-op if the connection has already been confirmed. */
831 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
832 return -EINVAL;
833
834 return 0;
835 }
836
837 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
838 {
839 size_t i;
840
841 for (i = 0; i < sizeof(*labels); i++)
842 if (labels->ct_labels[i])
843 return true;
844
845 return false;
846 }
847
848 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
849 * value if 'skb' is freed.
850 */
851 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
852 struct sw_flow_key *key,
853 const struct ovs_conntrack_info *info)
854 {
855 int nh_ofs;
856 int err;
857
858 /* The conntrack module expects to be working at L3. */
859 nh_ofs = skb_network_offset(skb);
860 skb_pull(skb, nh_ofs);
861
862 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
863 err = handle_fragments(net, key, info->zone.id, skb);
864 if (err)
865 return err;
866 }
867
868 if (info->commit)
869 err = ovs_ct_commit(net, key, info, skb);
870 else
871 err = ovs_ct_lookup(net, key, info, skb);
872 if (err)
873 goto err;
874
875 if (info->mark.mask) {
876 err = ovs_ct_set_mark(skb, key, info->mark.value,
877 info->mark.mask);
878 if (err)
879 goto err;
880 }
881 if (labels_nonzero(&info->labels.mask))
882 err = ovs_ct_set_labels(skb, key, &info->labels.value,
883 &info->labels.mask);
884 err:
885 skb_push(skb, nh_ofs);
886 if (err)
887 kfree_skb(skb);
888 return err;
889 }
890
891 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
892 const struct sw_flow_key *key, bool log)
893 {
894 struct nf_conntrack_helper *helper;
895 struct nf_conn_help *help;
896
897 helper = nf_conntrack_helper_try_module_get(name, info->family,
898 key->ip.proto);
899 if (!helper) {
900 OVS_NLERR(log, "Unknown helper \"%s\"", name);
901 return -EINVAL;
902 }
903
904 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
905 if (!help) {
906 module_put(helper->me);
907 return -ENOMEM;
908 }
909
910 rcu_assign_pointer(help->helper, helper);
911 info->helper = helper;
912 return 0;
913 }
914
915 #ifdef CONFIG_NF_NAT_NEEDED
916 static int parse_nat(const struct nlattr *attr,
917 struct ovs_conntrack_info *info, bool log)
918 {
919 struct nlattr *a;
920 int rem;
921 bool have_ip_max = false;
922 bool have_proto_max = false;
923 bool ip_vers = (info->family == NFPROTO_IPV6);
924
925 nla_for_each_nested(a, attr, rem) {
926 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
927 [OVS_NAT_ATTR_SRC] = {0, 0},
928 [OVS_NAT_ATTR_DST] = {0, 0},
929 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
930 sizeof(struct in6_addr)},
931 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
932 sizeof(struct in6_addr)},
933 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
934 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
935 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
936 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
937 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
938 };
939 int type = nla_type(a);
940
941 if (type > OVS_NAT_ATTR_MAX) {
942 OVS_NLERR(log,
943 "Unknown NAT attribute (type=%d, max=%d).\n",
944 type, OVS_NAT_ATTR_MAX);
945 return -EINVAL;
946 }
947
948 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
949 OVS_NLERR(log,
950 "NAT attribute type %d has unexpected length (%d != %d).\n",
951 type, nla_len(a),
952 ovs_nat_attr_lens[type][ip_vers]);
953 return -EINVAL;
954 }
955
956 switch (type) {
957 case OVS_NAT_ATTR_SRC:
958 case OVS_NAT_ATTR_DST:
959 if (info->nat) {
960 OVS_NLERR(log,
961 "Only one type of NAT may be specified.\n"
962 );
963 return -ERANGE;
964 }
965 info->nat |= OVS_CT_NAT;
966 info->nat |= ((type == OVS_NAT_ATTR_SRC)
967 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
968 break;
969
970 case OVS_NAT_ATTR_IP_MIN:
971 nla_memcpy(&info->range.min_addr, a, nla_len(a));
972 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
973 break;
974
975 case OVS_NAT_ATTR_IP_MAX:
976 have_ip_max = true;
977 nla_memcpy(&info->range.max_addr, a,
978 sizeof(info->range.max_addr));
979 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
980 break;
981
982 case OVS_NAT_ATTR_PROTO_MIN:
983 info->range.min_proto.all = htons(nla_get_u16(a));
984 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
985 break;
986
987 case OVS_NAT_ATTR_PROTO_MAX:
988 have_proto_max = true;
989 info->range.max_proto.all = htons(nla_get_u16(a));
990 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
991 break;
992
993 case OVS_NAT_ATTR_PERSISTENT:
994 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
995 break;
996
997 case OVS_NAT_ATTR_PROTO_HASH:
998 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
999 break;
1000
1001 case OVS_NAT_ATTR_PROTO_RANDOM:
1002 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1003 break;
1004
1005 default:
1006 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1007 return -EINVAL;
1008 }
1009 }
1010
1011 if (rem > 0) {
1012 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1013 return -EINVAL;
1014 }
1015 if (!info->nat) {
1016 /* Do not allow flags if no type is given. */
1017 if (info->range.flags) {
1018 OVS_NLERR(log,
1019 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1020 );
1021 return -EINVAL;
1022 }
1023 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1024 } else if (!info->commit) {
1025 OVS_NLERR(log,
1026 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1027 );
1028 return -EINVAL;
1029 }
1030 /* Allow missing IP_MAX. */
1031 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1032 memcpy(&info->range.max_addr, &info->range.min_addr,
1033 sizeof(info->range.max_addr));
1034 }
1035 /* Allow missing PROTO_MAX. */
1036 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1037 !have_proto_max) {
1038 info->range.max_proto.all = info->range.min_proto.all;
1039 }
1040 return 0;
1041 }
1042 #endif
1043
1044 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1045 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1046 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1047 .maxlen = sizeof(u16) },
1048 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1049 .maxlen = sizeof(struct md_mark) },
1050 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1051 .maxlen = sizeof(struct md_labels) },
1052 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1053 .maxlen = NF_CT_HELPER_NAME_LEN },
1054 #ifdef CONFIG_NF_NAT_NEEDED
1055 /* NAT length is checked when parsing the nested attributes. */
1056 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1057 #endif
1058 };
1059
1060 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1061 const char **helper, bool log)
1062 {
1063 struct nlattr *a;
1064 int rem;
1065
1066 nla_for_each_nested(a, attr, rem) {
1067 int type = nla_type(a);
1068 int maxlen = ovs_ct_attr_lens[type].maxlen;
1069 int minlen = ovs_ct_attr_lens[type].minlen;
1070
1071 if (type > OVS_CT_ATTR_MAX) {
1072 OVS_NLERR(log,
1073 "Unknown conntrack attr (type=%d, max=%d)",
1074 type, OVS_CT_ATTR_MAX);
1075 return -EINVAL;
1076 }
1077 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1078 OVS_NLERR(log,
1079 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1080 type, nla_len(a), maxlen);
1081 return -EINVAL;
1082 }
1083
1084 switch (type) {
1085 case OVS_CT_ATTR_COMMIT:
1086 info->commit = true;
1087 break;
1088 #ifdef CONFIG_NF_CONNTRACK_ZONES
1089 case OVS_CT_ATTR_ZONE:
1090 info->zone.id = nla_get_u16(a);
1091 break;
1092 #endif
1093 #ifdef CONFIG_NF_CONNTRACK_MARK
1094 case OVS_CT_ATTR_MARK: {
1095 struct md_mark *mark = nla_data(a);
1096
1097 if (!mark->mask) {
1098 OVS_NLERR(log, "ct_mark mask cannot be 0");
1099 return -EINVAL;
1100 }
1101 info->mark = *mark;
1102 break;
1103 }
1104 #endif
1105 #ifdef CONFIG_NF_CONNTRACK_LABELS
1106 case OVS_CT_ATTR_LABELS: {
1107 struct md_labels *labels = nla_data(a);
1108
1109 if (!labels_nonzero(&labels->mask)) {
1110 OVS_NLERR(log, "ct_labels mask cannot be 0");
1111 return -EINVAL;
1112 }
1113 info->labels = *labels;
1114 break;
1115 }
1116 #endif
1117 case OVS_CT_ATTR_HELPER:
1118 *helper = nla_data(a);
1119 if (!memchr(*helper, '\0', nla_len(a))) {
1120 OVS_NLERR(log, "Invalid conntrack helper");
1121 return -EINVAL;
1122 }
1123 break;
1124 #ifdef CONFIG_NF_NAT_NEEDED
1125 case OVS_CT_ATTR_NAT: {
1126 int err = parse_nat(a, info, log);
1127
1128 if (err)
1129 return err;
1130 break;
1131 }
1132 #endif
1133 default:
1134 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1135 type);
1136 return -EINVAL;
1137 }
1138 }
1139
1140 if (rem > 0) {
1141 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1142 return -EINVAL;
1143 }
1144
1145 return 0;
1146 }
1147
1148 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1149 {
1150 if (attr == OVS_KEY_ATTR_CT_STATE)
1151 return true;
1152 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1153 attr == OVS_KEY_ATTR_CT_ZONE)
1154 return true;
1155 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1156 attr == OVS_KEY_ATTR_CT_MARK)
1157 return true;
1158 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1159 attr == OVS_KEY_ATTR_CT_LABELS) {
1160 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1161
1162 return ovs_net->xt_label;
1163 }
1164
1165 return false;
1166 }
1167
1168 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1169 const struct sw_flow_key *key,
1170 struct sw_flow_actions **sfa, bool log)
1171 {
1172 struct ovs_conntrack_info ct_info;
1173 const char *helper = NULL;
1174 u16 family;
1175 int err;
1176
1177 family = key_to_nfproto(key);
1178 if (family == NFPROTO_UNSPEC) {
1179 OVS_NLERR(log, "ct family unspecified");
1180 return -EINVAL;
1181 }
1182
1183 memset(&ct_info, 0, sizeof(ct_info));
1184 ct_info.family = family;
1185
1186 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1187 NF_CT_DEFAULT_ZONE_DIR, 0);
1188
1189 err = parse_ct(attr, &ct_info, &helper, log);
1190 if (err)
1191 return err;
1192
1193 /* Set up template for tracking connections in specific zones. */
1194 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1195 if (!ct_info.ct) {
1196 OVS_NLERR(log, "Failed to allocate conntrack template");
1197 return -ENOMEM;
1198 }
1199
1200 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1201 nf_conntrack_get(&ct_info.ct->ct_general);
1202
1203 if (helper) {
1204 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1205 if (err)
1206 goto err_free_ct;
1207 }
1208
1209 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1210 sizeof(ct_info), log);
1211 if (err)
1212 goto err_free_ct;
1213
1214 return 0;
1215 err_free_ct:
1216 __ovs_ct_free_action(&ct_info);
1217 return err;
1218 }
1219
1220 #ifdef CONFIG_NF_NAT_NEEDED
1221 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1222 struct sk_buff *skb)
1223 {
1224 struct nlattr *start;
1225
1226 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1227 if (!start)
1228 return false;
1229
1230 if (info->nat & OVS_CT_SRC_NAT) {
1231 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1232 return false;
1233 } else if (info->nat & OVS_CT_DST_NAT) {
1234 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1235 return false;
1236 } else {
1237 goto out;
1238 }
1239
1240 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1241 if (info->family == NFPROTO_IPV4) {
1242 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1243 info->range.min_addr.ip) ||
1244 (info->range.max_addr.ip
1245 != info->range.min_addr.ip &&
1246 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1247 info->range.max_addr.ip))))
1248 return false;
1249 #if IS_ENABLED(CONFIG_NF_NAT_IPV6)
1250 } else if (info->family == NFPROTO_IPV6) {
1251 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1252 &info->range.min_addr.in6) ||
1253 (memcmp(&info->range.max_addr.in6,
1254 &info->range.min_addr.in6,
1255 sizeof(info->range.max_addr.in6)) &&
1256 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1257 &info->range.max_addr.in6))))
1258 return false;
1259 #endif
1260 } else {
1261 return false;
1262 }
1263 }
1264 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1265 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1266 ntohs(info->range.min_proto.all)) ||
1267 (info->range.max_proto.all != info->range.min_proto.all &&
1268 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1269 ntohs(info->range.max_proto.all)))))
1270 return false;
1271
1272 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1273 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1274 return false;
1275 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1276 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1277 return false;
1278 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1279 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1280 return false;
1281 out:
1282 nla_nest_end(skb, start);
1283
1284 return true;
1285 }
1286 #endif
1287
1288 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1289 struct sk_buff *skb)
1290 {
1291 struct nlattr *start;
1292
1293 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1294 if (!start)
1295 return -EMSGSIZE;
1296
1297 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1298 return -EMSGSIZE;
1299 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1300 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1301 return -EMSGSIZE;
1302 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1303 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1304 &ct_info->mark))
1305 return -EMSGSIZE;
1306 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1307 labels_nonzero(&ct_info->labels.mask) &&
1308 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1309 &ct_info->labels))
1310 return -EMSGSIZE;
1311 if (ct_info->helper) {
1312 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1313 ct_info->helper->name))
1314 return -EMSGSIZE;
1315 }
1316 #ifdef CONFIG_NF_NAT_NEEDED
1317 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1318 return -EMSGSIZE;
1319 #endif
1320 nla_nest_end(skb, start);
1321
1322 return 0;
1323 }
1324
1325 void ovs_ct_free_action(const struct nlattr *a)
1326 {
1327 struct ovs_conntrack_info *ct_info = nla_data(a);
1328
1329 __ovs_ct_free_action(ct_info);
1330 }
1331
1332 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1333 {
1334 if (ct_info->helper)
1335 module_put(ct_info->helper->me);
1336 if (ct_info->ct)
1337 nf_ct_put(ct_info->ct);
1338 }
1339
1340 void ovs_ct_init(struct net *net)
1341 {
1342 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1343 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1344
1345 if (nf_connlabels_get(net, n_bits)) {
1346 ovs_net->xt_label = false;
1347 OVS_NLERR(true, "Failed to set connlabel length");
1348 } else {
1349 ovs_net->xt_label = true;
1350 }
1351 }
1352
1353 void ovs_ct_exit(struct net *net)
1354 {
1355 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1356
1357 if (ovs_net->xt_label)
1358 nf_connlabels_put(net);
1359 }
This page took 0.057554 seconds and 5 git commands to generate.