tracing: extend sched_pi_setprio
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325 {
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329
330 static struct vfsmount *sock_mnt __read_mostly;
331
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336 };
337
338 /*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406 }
407
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417
418 /**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 struct fd f = fdget(fd);
452 struct socket *sock;
453
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
460 }
461 fdput(f);
462 }
463 return NULL;
464 }
465
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry, struct inode *inode,
470 const char *name, void *value, size_t size)
471 {
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491 out:
492 return error;
493 }
494
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497 {
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521 }
522
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526 };
527
528 /**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536 struct socket *sock_alloc(void)
537 {
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556 }
557 EXPORT_SYMBOL(sock_alloc);
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 this_cpu_sub(sockets_in_use, 1);
582 if (!sock->file) {
583 iput(SOCK_INODE(sock));
584 return;
585 }
586 sock->file = NULL;
587 }
588 EXPORT_SYMBOL(sock_release);
589
590 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
591 {
592 u8 flags = *tx_flags;
593
594 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 flags |= SKBTX_HW_TSTAMP;
596
597 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 flags |= SKBTX_SW_TSTAMP;
599
600 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 flags |= SKBTX_SCHED_TSTAMP;
602
603 *tx_flags = flags;
604 }
605 EXPORT_SYMBOL(__sock_tx_timestamp);
606
607 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
608 {
609 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
610 BUG_ON(ret == -EIOCBQUEUED);
611 return ret;
612 }
613
614 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
615 {
616 int err = security_socket_sendmsg(sock, msg,
617 msg_data_left(msg));
618
619 return err ?: sock_sendmsg_nosec(sock, msg);
620 }
621 EXPORT_SYMBOL(sock_sendmsg);
622
623 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
624 struct kvec *vec, size_t num, size_t size)
625 {
626 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
627 return sock_sendmsg(sock, msg);
628 }
629 EXPORT_SYMBOL(kernel_sendmsg);
630
631 /*
632 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
633 */
634 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
635 struct sk_buff *skb)
636 {
637 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
638 struct scm_timestamping tss;
639 int empty = 1;
640 struct skb_shared_hwtstamps *shhwtstamps =
641 skb_hwtstamps(skb);
642
643 /* Race occurred between timestamp enabling and packet
644 receiving. Fill in the current time for now. */
645 if (need_software_tstamp && skb->tstamp.tv64 == 0)
646 __net_timestamp(skb);
647
648 if (need_software_tstamp) {
649 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
650 struct timeval tv;
651 skb_get_timestamp(skb, &tv);
652 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
653 sizeof(tv), &tv);
654 } else {
655 struct timespec ts;
656 skb_get_timestampns(skb, &ts);
657 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 sizeof(ts), &ts);
659 }
660 }
661
662 memset(&tss, 0, sizeof(tss));
663 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
664 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
665 empty = 0;
666 if (shhwtstamps &&
667 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
668 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
669 empty = 0;
670 if (!empty)
671 put_cmsg(msg, SOL_SOCKET,
672 SCM_TIMESTAMPING, sizeof(tss), &tss);
673 }
674 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
675
676 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
677 struct sk_buff *skb)
678 {
679 int ack;
680
681 if (!sock_flag(sk, SOCK_WIFI_STATUS))
682 return;
683 if (!skb->wifi_acked_valid)
684 return;
685
686 ack = skb->wifi_acked;
687
688 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
689 }
690 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
691
692 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
693 struct sk_buff *skb)
694 {
695 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
696 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
697 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
698 }
699
700 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
701 struct sk_buff *skb)
702 {
703 sock_recv_timestamp(msg, sk, skb);
704 sock_recv_drops(msg, sk, skb);
705 }
706 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
707
708 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
709 int flags)
710 {
711 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
712 }
713
714 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
715 {
716 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
717
718 return err ?: sock_recvmsg_nosec(sock, msg, flags);
719 }
720 EXPORT_SYMBOL(sock_recvmsg);
721
722 /**
723 * kernel_recvmsg - Receive a message from a socket (kernel space)
724 * @sock: The socket to receive the message from
725 * @msg: Received message
726 * @vec: Input s/g array for message data
727 * @num: Size of input s/g array
728 * @size: Number of bytes to read
729 * @flags: Message flags (MSG_DONTWAIT, etc...)
730 *
731 * On return the msg structure contains the scatter/gather array passed in the
732 * vec argument. The array is modified so that it consists of the unfilled
733 * portion of the original array.
734 *
735 * The returned value is the total number of bytes received, or an error.
736 */
737 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
738 struct kvec *vec, size_t num, size_t size, int flags)
739 {
740 mm_segment_t oldfs = get_fs();
741 int result;
742
743 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
744 set_fs(KERNEL_DS);
745 result = sock_recvmsg(sock, msg, flags);
746 set_fs(oldfs);
747 return result;
748 }
749 EXPORT_SYMBOL(kernel_recvmsg);
750
751 static ssize_t sock_sendpage(struct file *file, struct page *page,
752 int offset, size_t size, loff_t *ppos, int more)
753 {
754 struct socket *sock;
755 int flags;
756
757 sock = file->private_data;
758
759 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
760 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
761 flags |= more;
762
763 return kernel_sendpage(sock, page, offset, size, flags);
764 }
765
766 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
767 struct pipe_inode_info *pipe, size_t len,
768 unsigned int flags)
769 {
770 struct socket *sock = file->private_data;
771
772 if (unlikely(!sock->ops->splice_read))
773 return -EINVAL;
774
775 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
776 }
777
778 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
779 {
780 struct file *file = iocb->ki_filp;
781 struct socket *sock = file->private_data;
782 struct msghdr msg = {.msg_iter = *to,
783 .msg_iocb = iocb};
784 ssize_t res;
785
786 if (file->f_flags & O_NONBLOCK)
787 msg.msg_flags = MSG_DONTWAIT;
788
789 if (iocb->ki_pos != 0)
790 return -ESPIPE;
791
792 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
793 return 0;
794
795 res = sock_recvmsg(sock, &msg, msg.msg_flags);
796 *to = msg.msg_iter;
797 return res;
798 }
799
800 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
801 {
802 struct file *file = iocb->ki_filp;
803 struct socket *sock = file->private_data;
804 struct msghdr msg = {.msg_iter = *from,
805 .msg_iocb = iocb};
806 ssize_t res;
807
808 if (iocb->ki_pos != 0)
809 return -ESPIPE;
810
811 if (file->f_flags & O_NONBLOCK)
812 msg.msg_flags = MSG_DONTWAIT;
813
814 if (sock->type == SOCK_SEQPACKET)
815 msg.msg_flags |= MSG_EOR;
816
817 res = sock_sendmsg(sock, &msg);
818 *from = msg.msg_iter;
819 return res;
820 }
821
822 /*
823 * Atomic setting of ioctl hooks to avoid race
824 * with module unload.
825 */
826
827 static DEFINE_MUTEX(br_ioctl_mutex);
828 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
829
830 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
831 {
832 mutex_lock(&br_ioctl_mutex);
833 br_ioctl_hook = hook;
834 mutex_unlock(&br_ioctl_mutex);
835 }
836 EXPORT_SYMBOL(brioctl_set);
837
838 static DEFINE_MUTEX(vlan_ioctl_mutex);
839 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
840
841 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
842 {
843 mutex_lock(&vlan_ioctl_mutex);
844 vlan_ioctl_hook = hook;
845 mutex_unlock(&vlan_ioctl_mutex);
846 }
847 EXPORT_SYMBOL(vlan_ioctl_set);
848
849 static DEFINE_MUTEX(dlci_ioctl_mutex);
850 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
851
852 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
853 {
854 mutex_lock(&dlci_ioctl_mutex);
855 dlci_ioctl_hook = hook;
856 mutex_unlock(&dlci_ioctl_mutex);
857 }
858 EXPORT_SYMBOL(dlci_ioctl_set);
859
860 static long sock_do_ioctl(struct net *net, struct socket *sock,
861 unsigned int cmd, unsigned long arg)
862 {
863 int err;
864 void __user *argp = (void __user *)arg;
865
866 err = sock->ops->ioctl(sock, cmd, arg);
867
868 /*
869 * If this ioctl is unknown try to hand it down
870 * to the NIC driver.
871 */
872 if (err == -ENOIOCTLCMD)
873 err = dev_ioctl(net, cmd, argp);
874
875 return err;
876 }
877
878 /*
879 * With an ioctl, arg may well be a user mode pointer, but we don't know
880 * what to do with it - that's up to the protocol still.
881 */
882
883 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
884 {
885 struct socket *sock;
886 struct sock *sk;
887 void __user *argp = (void __user *)arg;
888 int pid, err;
889 struct net *net;
890
891 sock = file->private_data;
892 sk = sock->sk;
893 net = sock_net(sk);
894 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
895 err = dev_ioctl(net, cmd, argp);
896 } else
897 #ifdef CONFIG_WEXT_CORE
898 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
899 err = dev_ioctl(net, cmd, argp);
900 } else
901 #endif
902 switch (cmd) {
903 case FIOSETOWN:
904 case SIOCSPGRP:
905 err = -EFAULT;
906 if (get_user(pid, (int __user *)argp))
907 break;
908 f_setown(sock->file, pid, 1);
909 err = 0;
910 break;
911 case FIOGETOWN:
912 case SIOCGPGRP:
913 err = put_user(f_getown(sock->file),
914 (int __user *)argp);
915 break;
916 case SIOCGIFBR:
917 case SIOCSIFBR:
918 case SIOCBRADDBR:
919 case SIOCBRDELBR:
920 err = -ENOPKG;
921 if (!br_ioctl_hook)
922 request_module("bridge");
923
924 mutex_lock(&br_ioctl_mutex);
925 if (br_ioctl_hook)
926 err = br_ioctl_hook(net, cmd, argp);
927 mutex_unlock(&br_ioctl_mutex);
928 break;
929 case SIOCGIFVLAN:
930 case SIOCSIFVLAN:
931 err = -ENOPKG;
932 if (!vlan_ioctl_hook)
933 request_module("8021q");
934
935 mutex_lock(&vlan_ioctl_mutex);
936 if (vlan_ioctl_hook)
937 err = vlan_ioctl_hook(net, argp);
938 mutex_unlock(&vlan_ioctl_mutex);
939 break;
940 case SIOCADDDLCI:
941 case SIOCDELDLCI:
942 err = -ENOPKG;
943 if (!dlci_ioctl_hook)
944 request_module("dlci");
945
946 mutex_lock(&dlci_ioctl_mutex);
947 if (dlci_ioctl_hook)
948 err = dlci_ioctl_hook(cmd, argp);
949 mutex_unlock(&dlci_ioctl_mutex);
950 break;
951 default:
952 err = sock_do_ioctl(net, sock, cmd, arg);
953 break;
954 }
955 return err;
956 }
957
958 int sock_create_lite(int family, int type, int protocol, struct socket **res)
959 {
960 int err;
961 struct socket *sock = NULL;
962
963 err = security_socket_create(family, type, protocol, 1);
964 if (err)
965 goto out;
966
967 sock = sock_alloc();
968 if (!sock) {
969 err = -ENOMEM;
970 goto out;
971 }
972
973 sock->type = type;
974 err = security_socket_post_create(sock, family, type, protocol, 1);
975 if (err)
976 goto out_release;
977
978 out:
979 *res = sock;
980 return err;
981 out_release:
982 sock_release(sock);
983 sock = NULL;
984 goto out;
985 }
986 EXPORT_SYMBOL(sock_create_lite);
987
988 /* No kernel lock held - perfect */
989 static unsigned int sock_poll(struct file *file, poll_table *wait)
990 {
991 unsigned int busy_flag = 0;
992 struct socket *sock;
993
994 /*
995 * We can't return errors to poll, so it's either yes or no.
996 */
997 sock = file->private_data;
998
999 if (sk_can_busy_loop(sock->sk)) {
1000 /* this socket can poll_ll so tell the system call */
1001 busy_flag = POLL_BUSY_LOOP;
1002
1003 /* once, only if requested by syscall */
1004 if (wait && (wait->_key & POLL_BUSY_LOOP))
1005 sk_busy_loop(sock->sk, 1);
1006 }
1007
1008 return busy_flag | sock->ops->poll(file, sock, wait);
1009 }
1010
1011 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1012 {
1013 struct socket *sock = file->private_data;
1014
1015 return sock->ops->mmap(file, sock, vma);
1016 }
1017
1018 static int sock_close(struct inode *inode, struct file *filp)
1019 {
1020 sock_release(SOCKET_I(inode));
1021 return 0;
1022 }
1023
1024 /*
1025 * Update the socket async list
1026 *
1027 * Fasync_list locking strategy.
1028 *
1029 * 1. fasync_list is modified only under process context socket lock
1030 * i.e. under semaphore.
1031 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1032 * or under socket lock
1033 */
1034
1035 static int sock_fasync(int fd, struct file *filp, int on)
1036 {
1037 struct socket *sock = filp->private_data;
1038 struct sock *sk = sock->sk;
1039 struct socket_wq *wq;
1040
1041 if (sk == NULL)
1042 return -EINVAL;
1043
1044 lock_sock(sk);
1045 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1046 fasync_helper(fd, filp, on, &wq->fasync_list);
1047
1048 if (!wq->fasync_list)
1049 sock_reset_flag(sk, SOCK_FASYNC);
1050 else
1051 sock_set_flag(sk, SOCK_FASYNC);
1052
1053 release_sock(sk);
1054 return 0;
1055 }
1056
1057 /* This function may be called only under rcu_lock */
1058
1059 int sock_wake_async(struct socket_wq *wq, int how, int band)
1060 {
1061 if (!wq || !wq->fasync_list)
1062 return -1;
1063
1064 switch (how) {
1065 case SOCK_WAKE_WAITD:
1066 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1067 break;
1068 goto call_kill;
1069 case SOCK_WAKE_SPACE:
1070 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1071 break;
1072 /* fall through */
1073 case SOCK_WAKE_IO:
1074 call_kill:
1075 kill_fasync(&wq->fasync_list, SIGIO, band);
1076 break;
1077 case SOCK_WAKE_URG:
1078 kill_fasync(&wq->fasync_list, SIGURG, band);
1079 }
1080
1081 return 0;
1082 }
1083 EXPORT_SYMBOL(sock_wake_async);
1084
1085 int __sock_create(struct net *net, int family, int type, int protocol,
1086 struct socket **res, int kern)
1087 {
1088 int err;
1089 struct socket *sock;
1090 const struct net_proto_family *pf;
1091
1092 /*
1093 * Check protocol is in range
1094 */
1095 if (family < 0 || family >= NPROTO)
1096 return -EAFNOSUPPORT;
1097 if (type < 0 || type >= SOCK_MAX)
1098 return -EINVAL;
1099
1100 /* Compatibility.
1101
1102 This uglymoron is moved from INET layer to here to avoid
1103 deadlock in module load.
1104 */
1105 if (family == PF_INET && type == SOCK_PACKET) {
1106 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1107 current->comm);
1108 family = PF_PACKET;
1109 }
1110
1111 err = security_socket_create(family, type, protocol, kern);
1112 if (err)
1113 return err;
1114
1115 /*
1116 * Allocate the socket and allow the family to set things up. if
1117 * the protocol is 0, the family is instructed to select an appropriate
1118 * default.
1119 */
1120 sock = sock_alloc();
1121 if (!sock) {
1122 net_warn_ratelimited("socket: no more sockets\n");
1123 return -ENFILE; /* Not exactly a match, but its the
1124 closest posix thing */
1125 }
1126
1127 sock->type = type;
1128
1129 #ifdef CONFIG_MODULES
1130 /* Attempt to load a protocol module if the find failed.
1131 *
1132 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1133 * requested real, full-featured networking support upon configuration.
1134 * Otherwise module support will break!
1135 */
1136 if (rcu_access_pointer(net_families[family]) == NULL)
1137 request_module("net-pf-%d", family);
1138 #endif
1139
1140 rcu_read_lock();
1141 pf = rcu_dereference(net_families[family]);
1142 err = -EAFNOSUPPORT;
1143 if (!pf)
1144 goto out_release;
1145
1146 /*
1147 * We will call the ->create function, that possibly is in a loadable
1148 * module, so we have to bump that loadable module refcnt first.
1149 */
1150 if (!try_module_get(pf->owner))
1151 goto out_release;
1152
1153 /* Now protected by module ref count */
1154 rcu_read_unlock();
1155
1156 err = pf->create(net, sock, protocol, kern);
1157 if (err < 0)
1158 goto out_module_put;
1159
1160 /*
1161 * Now to bump the refcnt of the [loadable] module that owns this
1162 * socket at sock_release time we decrement its refcnt.
1163 */
1164 if (!try_module_get(sock->ops->owner))
1165 goto out_module_busy;
1166
1167 /*
1168 * Now that we're done with the ->create function, the [loadable]
1169 * module can have its refcnt decremented
1170 */
1171 module_put(pf->owner);
1172 err = security_socket_post_create(sock, family, type, protocol, kern);
1173 if (err)
1174 goto out_sock_release;
1175 *res = sock;
1176
1177 return 0;
1178
1179 out_module_busy:
1180 err = -EAFNOSUPPORT;
1181 out_module_put:
1182 sock->ops = NULL;
1183 module_put(pf->owner);
1184 out_sock_release:
1185 sock_release(sock);
1186 return err;
1187
1188 out_release:
1189 rcu_read_unlock();
1190 goto out_sock_release;
1191 }
1192 EXPORT_SYMBOL(__sock_create);
1193
1194 int sock_create(int family, int type, int protocol, struct socket **res)
1195 {
1196 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1197 }
1198 EXPORT_SYMBOL(sock_create);
1199
1200 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1201 {
1202 return __sock_create(net, family, type, protocol, res, 1);
1203 }
1204 EXPORT_SYMBOL(sock_create_kern);
1205
1206 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1207 {
1208 int retval;
1209 struct socket *sock;
1210 int flags;
1211
1212 /* Check the SOCK_* constants for consistency. */
1213 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1214 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1215 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1216 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1217
1218 flags = type & ~SOCK_TYPE_MASK;
1219 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1220 return -EINVAL;
1221 type &= SOCK_TYPE_MASK;
1222
1223 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1224 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1225
1226 retval = sock_create(family, type, protocol, &sock);
1227 if (retval < 0)
1228 goto out;
1229
1230 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1231 if (retval < 0)
1232 goto out_release;
1233
1234 out:
1235 /* It may be already another descriptor 8) Not kernel problem. */
1236 return retval;
1237
1238 out_release:
1239 sock_release(sock);
1240 return retval;
1241 }
1242
1243 /*
1244 * Create a pair of connected sockets.
1245 */
1246
1247 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1248 int __user *, usockvec)
1249 {
1250 struct socket *sock1, *sock2;
1251 int fd1, fd2, err;
1252 struct file *newfile1, *newfile2;
1253 int flags;
1254
1255 flags = type & ~SOCK_TYPE_MASK;
1256 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1257 return -EINVAL;
1258 type &= SOCK_TYPE_MASK;
1259
1260 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1261 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1262
1263 /*
1264 * Obtain the first socket and check if the underlying protocol
1265 * supports the socketpair call.
1266 */
1267
1268 err = sock_create(family, type, protocol, &sock1);
1269 if (err < 0)
1270 goto out;
1271
1272 err = sock_create(family, type, protocol, &sock2);
1273 if (err < 0)
1274 goto out_release_1;
1275
1276 err = sock1->ops->socketpair(sock1, sock2);
1277 if (err < 0)
1278 goto out_release_both;
1279
1280 fd1 = get_unused_fd_flags(flags);
1281 if (unlikely(fd1 < 0)) {
1282 err = fd1;
1283 goto out_release_both;
1284 }
1285
1286 fd2 = get_unused_fd_flags(flags);
1287 if (unlikely(fd2 < 0)) {
1288 err = fd2;
1289 goto out_put_unused_1;
1290 }
1291
1292 newfile1 = sock_alloc_file(sock1, flags, NULL);
1293 if (IS_ERR(newfile1)) {
1294 err = PTR_ERR(newfile1);
1295 goto out_put_unused_both;
1296 }
1297
1298 newfile2 = sock_alloc_file(sock2, flags, NULL);
1299 if (IS_ERR(newfile2)) {
1300 err = PTR_ERR(newfile2);
1301 goto out_fput_1;
1302 }
1303
1304 err = put_user(fd1, &usockvec[0]);
1305 if (err)
1306 goto out_fput_both;
1307
1308 err = put_user(fd2, &usockvec[1]);
1309 if (err)
1310 goto out_fput_both;
1311
1312 audit_fd_pair(fd1, fd2);
1313
1314 fd_install(fd1, newfile1);
1315 fd_install(fd2, newfile2);
1316 /* fd1 and fd2 may be already another descriptors.
1317 * Not kernel problem.
1318 */
1319
1320 return 0;
1321
1322 out_fput_both:
1323 fput(newfile2);
1324 fput(newfile1);
1325 put_unused_fd(fd2);
1326 put_unused_fd(fd1);
1327 goto out;
1328
1329 out_fput_1:
1330 fput(newfile1);
1331 put_unused_fd(fd2);
1332 put_unused_fd(fd1);
1333 sock_release(sock2);
1334 goto out;
1335
1336 out_put_unused_both:
1337 put_unused_fd(fd2);
1338 out_put_unused_1:
1339 put_unused_fd(fd1);
1340 out_release_both:
1341 sock_release(sock2);
1342 out_release_1:
1343 sock_release(sock1);
1344 out:
1345 return err;
1346 }
1347
1348 /*
1349 * Bind a name to a socket. Nothing much to do here since it's
1350 * the protocol's responsibility to handle the local address.
1351 *
1352 * We move the socket address to kernel space before we call
1353 * the protocol layer (having also checked the address is ok).
1354 */
1355
1356 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1357 {
1358 struct socket *sock;
1359 struct sockaddr_storage address;
1360 int err, fput_needed;
1361
1362 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1363 if (sock) {
1364 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1365 if (err >= 0) {
1366 err = security_socket_bind(sock,
1367 (struct sockaddr *)&address,
1368 addrlen);
1369 if (!err)
1370 err = sock->ops->bind(sock,
1371 (struct sockaddr *)
1372 &address, addrlen);
1373 }
1374 fput_light(sock->file, fput_needed);
1375 }
1376 return err;
1377 }
1378
1379 /*
1380 * Perform a listen. Basically, we allow the protocol to do anything
1381 * necessary for a listen, and if that works, we mark the socket as
1382 * ready for listening.
1383 */
1384
1385 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1386 {
1387 struct socket *sock;
1388 int err, fput_needed;
1389 int somaxconn;
1390
1391 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1392 if (sock) {
1393 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1394 if ((unsigned int)backlog > somaxconn)
1395 backlog = somaxconn;
1396
1397 err = security_socket_listen(sock, backlog);
1398 if (!err)
1399 err = sock->ops->listen(sock, backlog);
1400
1401 fput_light(sock->file, fput_needed);
1402 }
1403 return err;
1404 }
1405
1406 /*
1407 * For accept, we attempt to create a new socket, set up the link
1408 * with the client, wake up the client, then return the new
1409 * connected fd. We collect the address of the connector in kernel
1410 * space and move it to user at the very end. This is unclean because
1411 * we open the socket then return an error.
1412 *
1413 * 1003.1g adds the ability to recvmsg() to query connection pending
1414 * status to recvmsg. We need to add that support in a way thats
1415 * clean when we restucture accept also.
1416 */
1417
1418 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1419 int __user *, upeer_addrlen, int, flags)
1420 {
1421 struct socket *sock, *newsock;
1422 struct file *newfile;
1423 int err, len, newfd, fput_needed;
1424 struct sockaddr_storage address;
1425
1426 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1427 return -EINVAL;
1428
1429 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431
1432 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 if (!sock)
1434 goto out;
1435
1436 err = -ENFILE;
1437 newsock = sock_alloc();
1438 if (!newsock)
1439 goto out_put;
1440
1441 newsock->type = sock->type;
1442 newsock->ops = sock->ops;
1443
1444 /*
1445 * We don't need try_module_get here, as the listening socket (sock)
1446 * has the protocol module (sock->ops->owner) held.
1447 */
1448 __module_get(newsock->ops->owner);
1449
1450 newfd = get_unused_fd_flags(flags);
1451 if (unlikely(newfd < 0)) {
1452 err = newfd;
1453 sock_release(newsock);
1454 goto out_put;
1455 }
1456 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1457 if (IS_ERR(newfile)) {
1458 err = PTR_ERR(newfile);
1459 put_unused_fd(newfd);
1460 sock_release(newsock);
1461 goto out_put;
1462 }
1463
1464 err = security_socket_accept(sock, newsock);
1465 if (err)
1466 goto out_fd;
1467
1468 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1469 if (err < 0)
1470 goto out_fd;
1471
1472 if (upeer_sockaddr) {
1473 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1474 &len, 2) < 0) {
1475 err = -ECONNABORTED;
1476 goto out_fd;
1477 }
1478 err = move_addr_to_user(&address,
1479 len, upeer_sockaddr, upeer_addrlen);
1480 if (err < 0)
1481 goto out_fd;
1482 }
1483
1484 /* File flags are not inherited via accept() unlike another OSes. */
1485
1486 fd_install(newfd, newfile);
1487 err = newfd;
1488
1489 out_put:
1490 fput_light(sock->file, fput_needed);
1491 out:
1492 return err;
1493 out_fd:
1494 fput(newfile);
1495 put_unused_fd(newfd);
1496 goto out_put;
1497 }
1498
1499 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1500 int __user *, upeer_addrlen)
1501 {
1502 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1503 }
1504
1505 /*
1506 * Attempt to connect to a socket with the server address. The address
1507 * is in user space so we verify it is OK and move it to kernel space.
1508 *
1509 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1510 * break bindings
1511 *
1512 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1513 * other SEQPACKET protocols that take time to connect() as it doesn't
1514 * include the -EINPROGRESS status for such sockets.
1515 */
1516
1517 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1518 int, addrlen)
1519 {
1520 struct socket *sock;
1521 struct sockaddr_storage address;
1522 int err, fput_needed;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1528 if (err < 0)
1529 goto out_put;
1530
1531 err =
1532 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1533 if (err)
1534 goto out_put;
1535
1536 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1537 sock->file->f_flags);
1538 out_put:
1539 fput_light(sock->file, fput_needed);
1540 out:
1541 return err;
1542 }
1543
1544 /*
1545 * Get the local address ('name') of a socket object. Move the obtained
1546 * name to user space.
1547 */
1548
1549 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1550 int __user *, usockaddr_len)
1551 {
1552 struct socket *sock;
1553 struct sockaddr_storage address;
1554 int len, err, fput_needed;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559
1560 err = security_socket_getsockname(sock);
1561 if (err)
1562 goto out_put;
1563
1564 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1565 if (err)
1566 goto out_put;
1567 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1568
1569 out_put:
1570 fput_light(sock->file, fput_needed);
1571 out:
1572 return err;
1573 }
1574
1575 /*
1576 * Get the remote address ('name') of a socket object. Move the obtained
1577 * name to user space.
1578 */
1579
1580 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1581 int __user *, usockaddr_len)
1582 {
1583 struct socket *sock;
1584 struct sockaddr_storage address;
1585 int len, err, fput_needed;
1586
1587 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 if (sock != NULL) {
1589 err = security_socket_getpeername(sock);
1590 if (err) {
1591 fput_light(sock->file, fput_needed);
1592 return err;
1593 }
1594
1595 err =
1596 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1597 1);
1598 if (!err)
1599 err = move_addr_to_user(&address, len, usockaddr,
1600 usockaddr_len);
1601 fput_light(sock->file, fput_needed);
1602 }
1603 return err;
1604 }
1605
1606 /*
1607 * Send a datagram to a given address. We move the address into kernel
1608 * space and check the user space data area is readable before invoking
1609 * the protocol.
1610 */
1611
1612 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1613 unsigned int, flags, struct sockaddr __user *, addr,
1614 int, addr_len)
1615 {
1616 struct socket *sock;
1617 struct sockaddr_storage address;
1618 int err;
1619 struct msghdr msg;
1620 struct iovec iov;
1621 int fput_needed;
1622
1623 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1624 if (unlikely(err))
1625 return err;
1626 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 if (!sock)
1628 goto out;
1629
1630 msg.msg_name = NULL;
1631 msg.msg_control = NULL;
1632 msg.msg_controllen = 0;
1633 msg.msg_namelen = 0;
1634 if (addr) {
1635 err = move_addr_to_kernel(addr, addr_len, &address);
1636 if (err < 0)
1637 goto out_put;
1638 msg.msg_name = (struct sockaddr *)&address;
1639 msg.msg_namelen = addr_len;
1640 }
1641 if (sock->file->f_flags & O_NONBLOCK)
1642 flags |= MSG_DONTWAIT;
1643 msg.msg_flags = flags;
1644 err = sock_sendmsg(sock, &msg);
1645
1646 out_put:
1647 fput_light(sock->file, fput_needed);
1648 out:
1649 return err;
1650 }
1651
1652 /*
1653 * Send a datagram down a socket.
1654 */
1655
1656 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1657 unsigned int, flags)
1658 {
1659 return sys_sendto(fd, buff, len, flags, NULL, 0);
1660 }
1661
1662 /*
1663 * Receive a frame from the socket and optionally record the address of the
1664 * sender. We verify the buffers are writable and if needed move the
1665 * sender address from kernel to user space.
1666 */
1667
1668 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1669 unsigned int, flags, struct sockaddr __user *, addr,
1670 int __user *, addr_len)
1671 {
1672 struct socket *sock;
1673 struct iovec iov;
1674 struct msghdr msg;
1675 struct sockaddr_storage address;
1676 int err, err2;
1677 int fput_needed;
1678
1679 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1680 if (unlikely(err))
1681 return err;
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 if (!sock)
1684 goto out;
1685
1686 msg.msg_control = NULL;
1687 msg.msg_controllen = 0;
1688 /* Save some cycles and don't copy the address if not needed */
1689 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1690 /* We assume all kernel code knows the size of sockaddr_storage */
1691 msg.msg_namelen = 0;
1692 msg.msg_iocb = NULL;
1693 if (sock->file->f_flags & O_NONBLOCK)
1694 flags |= MSG_DONTWAIT;
1695 err = sock_recvmsg(sock, &msg, flags);
1696
1697 if (err >= 0 && addr != NULL) {
1698 err2 = move_addr_to_user(&address,
1699 msg.msg_namelen, addr, addr_len);
1700 if (err2 < 0)
1701 err = err2;
1702 }
1703
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1707 }
1708
1709 /*
1710 * Receive a datagram from a socket.
1711 */
1712
1713 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1714 unsigned int, flags)
1715 {
1716 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1717 }
1718
1719 /*
1720 * Set a socket option. Because we don't know the option lengths we have
1721 * to pass the user mode parameter for the protocols to sort out.
1722 */
1723
1724 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1725 char __user *, optval, int, optlen)
1726 {
1727 int err, fput_needed;
1728 struct socket *sock;
1729
1730 if (optlen < 0)
1731 return -EINVAL;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (sock != NULL) {
1735 err = security_socket_setsockopt(sock, level, optname);
1736 if (err)
1737 goto out_put;
1738
1739 if (level == SOL_SOCKET)
1740 err =
1741 sock_setsockopt(sock, level, optname, optval,
1742 optlen);
1743 else
1744 err =
1745 sock->ops->setsockopt(sock, level, optname, optval,
1746 optlen);
1747 out_put:
1748 fput_light(sock->file, fput_needed);
1749 }
1750 return err;
1751 }
1752
1753 /*
1754 * Get a socket option. Because we don't know the option lengths we have
1755 * to pass a user mode parameter for the protocols to sort out.
1756 */
1757
1758 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1759 char __user *, optval, int __user *, optlen)
1760 {
1761 int err, fput_needed;
1762 struct socket *sock;
1763
1764 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 if (sock != NULL) {
1766 err = security_socket_getsockopt(sock, level, optname);
1767 if (err)
1768 goto out_put;
1769
1770 if (level == SOL_SOCKET)
1771 err =
1772 sock_getsockopt(sock, level, optname, optval,
1773 optlen);
1774 else
1775 err =
1776 sock->ops->getsockopt(sock, level, optname, optval,
1777 optlen);
1778 out_put:
1779 fput_light(sock->file, fput_needed);
1780 }
1781 return err;
1782 }
1783
1784 /*
1785 * Shutdown a socket.
1786 */
1787
1788 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1789 {
1790 int err, fput_needed;
1791 struct socket *sock;
1792
1793 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 if (sock != NULL) {
1795 err = security_socket_shutdown(sock, how);
1796 if (!err)
1797 err = sock->ops->shutdown(sock, how);
1798 fput_light(sock->file, fput_needed);
1799 }
1800 return err;
1801 }
1802
1803 /* A couple of helpful macros for getting the address of the 32/64 bit
1804 * fields which are the same type (int / unsigned) on our platforms.
1805 */
1806 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1807 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1808 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1809
1810 struct used_address {
1811 struct sockaddr_storage name;
1812 unsigned int name_len;
1813 };
1814
1815 static int copy_msghdr_from_user(struct msghdr *kmsg,
1816 struct user_msghdr __user *umsg,
1817 struct sockaddr __user **save_addr,
1818 struct iovec **iov)
1819 {
1820 struct sockaddr __user *uaddr;
1821 struct iovec __user *uiov;
1822 size_t nr_segs;
1823 ssize_t err;
1824
1825 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1826 __get_user(uaddr, &umsg->msg_name) ||
1827 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1828 __get_user(uiov, &umsg->msg_iov) ||
1829 __get_user(nr_segs, &umsg->msg_iovlen) ||
1830 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1831 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1832 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1833 return -EFAULT;
1834
1835 if (!uaddr)
1836 kmsg->msg_namelen = 0;
1837
1838 if (kmsg->msg_namelen < 0)
1839 return -EINVAL;
1840
1841 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1842 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1843
1844 if (save_addr)
1845 *save_addr = uaddr;
1846
1847 if (uaddr && kmsg->msg_namelen) {
1848 if (!save_addr) {
1849 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1850 kmsg->msg_name);
1851 if (err < 0)
1852 return err;
1853 }
1854 } else {
1855 kmsg->msg_name = NULL;
1856 kmsg->msg_namelen = 0;
1857 }
1858
1859 if (nr_segs > UIO_MAXIOV)
1860 return -EMSGSIZE;
1861
1862 kmsg->msg_iocb = NULL;
1863
1864 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1865 UIO_FASTIOV, iov, &kmsg->msg_iter);
1866 }
1867
1868 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1869 struct msghdr *msg_sys, unsigned int flags,
1870 struct used_address *used_address,
1871 unsigned int allowed_msghdr_flags)
1872 {
1873 struct compat_msghdr __user *msg_compat =
1874 (struct compat_msghdr __user *)msg;
1875 struct sockaddr_storage address;
1876 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879 /* 20 is size of ipv6_pktinfo */
1880 unsigned char *ctl_buf = ctl;
1881 int ctl_len;
1882 ssize_t err;
1883
1884 msg_sys->msg_name = &address;
1885
1886 if (MSG_CMSG_COMPAT & flags)
1887 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1888 else
1889 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1890 if (err < 0)
1891 return err;
1892
1893 err = -ENOBUFS;
1894
1895 if (msg_sys->msg_controllen > INT_MAX)
1896 goto out_freeiov;
1897 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1898 ctl_len = msg_sys->msg_controllen;
1899 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1900 err =
1901 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1902 sizeof(ctl));
1903 if (err)
1904 goto out_freeiov;
1905 ctl_buf = msg_sys->msg_control;
1906 ctl_len = msg_sys->msg_controllen;
1907 } else if (ctl_len) {
1908 if (ctl_len > sizeof(ctl)) {
1909 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1910 if (ctl_buf == NULL)
1911 goto out_freeiov;
1912 }
1913 err = -EFAULT;
1914 /*
1915 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1916 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1917 * checking falls down on this.
1918 */
1919 if (copy_from_user(ctl_buf,
1920 (void __user __force *)msg_sys->msg_control,
1921 ctl_len))
1922 goto out_freectl;
1923 msg_sys->msg_control = ctl_buf;
1924 }
1925 msg_sys->msg_flags = flags;
1926
1927 if (sock->file->f_flags & O_NONBLOCK)
1928 msg_sys->msg_flags |= MSG_DONTWAIT;
1929 /*
1930 * If this is sendmmsg() and current destination address is same as
1931 * previously succeeded address, omit asking LSM's decision.
1932 * used_address->name_len is initialized to UINT_MAX so that the first
1933 * destination address never matches.
1934 */
1935 if (used_address && msg_sys->msg_name &&
1936 used_address->name_len == msg_sys->msg_namelen &&
1937 !memcmp(&used_address->name, msg_sys->msg_name,
1938 used_address->name_len)) {
1939 err = sock_sendmsg_nosec(sock, msg_sys);
1940 goto out_freectl;
1941 }
1942 err = sock_sendmsg(sock, msg_sys);
1943 /*
1944 * If this is sendmmsg() and sending to current destination address was
1945 * successful, remember it.
1946 */
1947 if (used_address && err >= 0) {
1948 used_address->name_len = msg_sys->msg_namelen;
1949 if (msg_sys->msg_name)
1950 memcpy(&used_address->name, msg_sys->msg_name,
1951 used_address->name_len);
1952 }
1953
1954 out_freectl:
1955 if (ctl_buf != ctl)
1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 kfree(iov);
1959 return err;
1960 }
1961
1962 /*
1963 * BSD sendmsg interface
1964 */
1965
1966 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1967 {
1968 int fput_needed, err;
1969 struct msghdr msg_sys;
1970 struct socket *sock;
1971
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (!sock)
1974 goto out;
1975
1976 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1977
1978 fput_light(sock->file, fput_needed);
1979 out:
1980 return err;
1981 }
1982
1983 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1984 {
1985 if (flags & MSG_CMSG_COMPAT)
1986 return -EINVAL;
1987 return __sys_sendmsg(fd, msg, flags);
1988 }
1989
1990 /*
1991 * Linux sendmmsg interface
1992 */
1993
1994 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1995 unsigned int flags)
1996 {
1997 int fput_needed, err, datagrams;
1998 struct socket *sock;
1999 struct mmsghdr __user *entry;
2000 struct compat_mmsghdr __user *compat_entry;
2001 struct msghdr msg_sys;
2002 struct used_address used_address;
2003 unsigned int oflags = flags;
2004
2005 if (vlen > UIO_MAXIOV)
2006 vlen = UIO_MAXIOV;
2007
2008 datagrams = 0;
2009
2010 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 if (!sock)
2012 return err;
2013
2014 used_address.name_len = UINT_MAX;
2015 entry = mmsg;
2016 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2017 err = 0;
2018 flags |= MSG_BATCH;
2019
2020 while (datagrams < vlen) {
2021 if (datagrams == vlen - 1)
2022 flags = oflags;
2023
2024 if (MSG_CMSG_COMPAT & flags) {
2025 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 &msg_sys, flags, &used_address, MSG_EOR);
2027 if (err < 0)
2028 break;
2029 err = __put_user(err, &compat_entry->msg_len);
2030 ++compat_entry;
2031 } else {
2032 err = ___sys_sendmsg(sock,
2033 (struct user_msghdr __user *)entry,
2034 &msg_sys, flags, &used_address, MSG_EOR);
2035 if (err < 0)
2036 break;
2037 err = put_user(err, &entry->msg_len);
2038 ++entry;
2039 }
2040
2041 if (err)
2042 break;
2043 ++datagrams;
2044 cond_resched();
2045 }
2046
2047 fput_light(sock->file, fput_needed);
2048
2049 /* We only return an error if no datagrams were able to be sent */
2050 if (datagrams != 0)
2051 return datagrams;
2052
2053 return err;
2054 }
2055
2056 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057 unsigned int, vlen, unsigned int, flags)
2058 {
2059 if (flags & MSG_CMSG_COMPAT)
2060 return -EINVAL;
2061 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062 }
2063
2064 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065 struct msghdr *msg_sys, unsigned int flags, int nosec)
2066 {
2067 struct compat_msghdr __user *msg_compat =
2068 (struct compat_msghdr __user *)msg;
2069 struct iovec iovstack[UIO_FASTIOV];
2070 struct iovec *iov = iovstack;
2071 unsigned long cmsg_ptr;
2072 int len;
2073 ssize_t err;
2074
2075 /* kernel mode address */
2076 struct sockaddr_storage addr;
2077
2078 /* user mode address pointers */
2079 struct sockaddr __user *uaddr;
2080 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081
2082 msg_sys->msg_name = &addr;
2083
2084 if (MSG_CMSG_COMPAT & flags)
2085 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086 else
2087 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088 if (err < 0)
2089 return err;
2090
2091 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2092 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2093
2094 /* We assume all kernel code knows the size of sockaddr_storage */
2095 msg_sys->msg_namelen = 0;
2096
2097 if (sock->file->f_flags & O_NONBLOCK)
2098 flags |= MSG_DONTWAIT;
2099 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2100 if (err < 0)
2101 goto out_freeiov;
2102 len = err;
2103
2104 if (uaddr != NULL) {
2105 err = move_addr_to_user(&addr,
2106 msg_sys->msg_namelen, uaddr,
2107 uaddr_len);
2108 if (err < 0)
2109 goto out_freeiov;
2110 }
2111 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2112 COMPAT_FLAGS(msg));
2113 if (err)
2114 goto out_freeiov;
2115 if (MSG_CMSG_COMPAT & flags)
2116 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2117 &msg_compat->msg_controllen);
2118 else
2119 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2120 &msg->msg_controllen);
2121 if (err)
2122 goto out_freeiov;
2123 err = len;
2124
2125 out_freeiov:
2126 kfree(iov);
2127 return err;
2128 }
2129
2130 /*
2131 * BSD recvmsg interface
2132 */
2133
2134 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2135 {
2136 int fput_needed, err;
2137 struct msghdr msg_sys;
2138 struct socket *sock;
2139
2140 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 if (!sock)
2142 goto out;
2143
2144 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2145
2146 fput_light(sock->file, fput_needed);
2147 out:
2148 return err;
2149 }
2150
2151 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2152 unsigned int, flags)
2153 {
2154 if (flags & MSG_CMSG_COMPAT)
2155 return -EINVAL;
2156 return __sys_recvmsg(fd, msg, flags);
2157 }
2158
2159 /*
2160 * Linux recvmmsg interface
2161 */
2162
2163 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2164 unsigned int flags, struct timespec *timeout)
2165 {
2166 int fput_needed, err, datagrams;
2167 struct socket *sock;
2168 struct mmsghdr __user *entry;
2169 struct compat_mmsghdr __user *compat_entry;
2170 struct msghdr msg_sys;
2171 struct timespec64 end_time;
2172 struct timespec64 timeout64;
2173
2174 if (timeout &&
2175 poll_select_set_timeout(&end_time, timeout->tv_sec,
2176 timeout->tv_nsec))
2177 return -EINVAL;
2178
2179 datagrams = 0;
2180
2181 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 if (!sock)
2183 return err;
2184
2185 err = sock_error(sock->sk);
2186 if (err)
2187 goto out_put;
2188
2189 entry = mmsg;
2190 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2191
2192 while (datagrams < vlen) {
2193 /*
2194 * No need to ask LSM for more than the first datagram.
2195 */
2196 if (MSG_CMSG_COMPAT & flags) {
2197 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2198 &msg_sys, flags & ~MSG_WAITFORONE,
2199 datagrams);
2200 if (err < 0)
2201 break;
2202 err = __put_user(err, &compat_entry->msg_len);
2203 ++compat_entry;
2204 } else {
2205 err = ___sys_recvmsg(sock,
2206 (struct user_msghdr __user *)entry,
2207 &msg_sys, flags & ~MSG_WAITFORONE,
2208 datagrams);
2209 if (err < 0)
2210 break;
2211 err = put_user(err, &entry->msg_len);
2212 ++entry;
2213 }
2214
2215 if (err)
2216 break;
2217 ++datagrams;
2218
2219 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2220 if (flags & MSG_WAITFORONE)
2221 flags |= MSG_DONTWAIT;
2222
2223 if (timeout) {
2224 ktime_get_ts64(&timeout64);
2225 *timeout = timespec64_to_timespec(
2226 timespec64_sub(end_time, timeout64));
2227 if (timeout->tv_sec < 0) {
2228 timeout->tv_sec = timeout->tv_nsec = 0;
2229 break;
2230 }
2231
2232 /* Timeout, return less than vlen datagrams */
2233 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2234 break;
2235 }
2236
2237 /* Out of band data, return right away */
2238 if (msg_sys.msg_flags & MSG_OOB)
2239 break;
2240 cond_resched();
2241 }
2242
2243 if (err == 0)
2244 goto out_put;
2245
2246 if (datagrams == 0) {
2247 datagrams = err;
2248 goto out_put;
2249 }
2250
2251 /*
2252 * We may return less entries than requested (vlen) if the
2253 * sock is non block and there aren't enough datagrams...
2254 */
2255 if (err != -EAGAIN) {
2256 /*
2257 * ... or if recvmsg returns an error after we
2258 * received some datagrams, where we record the
2259 * error to return on the next call or if the
2260 * app asks about it using getsockopt(SO_ERROR).
2261 */
2262 sock->sk->sk_err = -err;
2263 }
2264 out_put:
2265 fput_light(sock->file, fput_needed);
2266
2267 return datagrams;
2268 }
2269
2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 unsigned int, vlen, unsigned int, flags,
2272 struct timespec __user *, timeout)
2273 {
2274 int datagrams;
2275 struct timespec timeout_sys;
2276
2277 if (flags & MSG_CMSG_COMPAT)
2278 return -EINVAL;
2279
2280 if (!timeout)
2281 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282
2283 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284 return -EFAULT;
2285
2286 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287
2288 if (datagrams > 0 &&
2289 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290 datagrams = -EFAULT;
2291
2292 return datagrams;
2293 }
2294
2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2296 /* Argument list sizes for sys_socketcall */
2297 #define AL(x) ((x) * sizeof(unsigned long))
2298 static const unsigned char nargs[21] = {
2299 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302 AL(4), AL(5), AL(4)
2303 };
2304
2305 #undef AL
2306
2307 /*
2308 * System call vectors.
2309 *
2310 * Argument checking cleaned up. Saved 20% in size.
2311 * This function doesn't need to set the kernel lock because
2312 * it is set by the callees.
2313 */
2314
2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316 {
2317 unsigned long a[AUDITSC_ARGS];
2318 unsigned long a0, a1;
2319 int err;
2320 unsigned int len;
2321
2322 if (call < 1 || call > SYS_SENDMMSG)
2323 return -EINVAL;
2324
2325 len = nargs[call];
2326 if (len > sizeof(a))
2327 return -EINVAL;
2328
2329 /* copy_from_user should be SMP safe. */
2330 if (copy_from_user(a, args, len))
2331 return -EFAULT;
2332
2333 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334 if (err)
2335 return err;
2336
2337 a0 = a[0];
2338 a1 = a[1];
2339
2340 switch (call) {
2341 case SYS_SOCKET:
2342 err = sys_socket(a0, a1, a[2]);
2343 break;
2344 case SYS_BIND:
2345 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346 break;
2347 case SYS_CONNECT:
2348 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349 break;
2350 case SYS_LISTEN:
2351 err = sys_listen(a0, a1);
2352 break;
2353 case SYS_ACCEPT:
2354 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355 (int __user *)a[2], 0);
2356 break;
2357 case SYS_GETSOCKNAME:
2358 err =
2359 sys_getsockname(a0, (struct sockaddr __user *)a1,
2360 (int __user *)a[2]);
2361 break;
2362 case SYS_GETPEERNAME:
2363 err =
2364 sys_getpeername(a0, (struct sockaddr __user *)a1,
2365 (int __user *)a[2]);
2366 break;
2367 case SYS_SOCKETPAIR:
2368 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369 break;
2370 case SYS_SEND:
2371 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372 break;
2373 case SYS_SENDTO:
2374 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375 (struct sockaddr __user *)a[4], a[5]);
2376 break;
2377 case SYS_RECV:
2378 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379 break;
2380 case SYS_RECVFROM:
2381 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382 (struct sockaddr __user *)a[4],
2383 (int __user *)a[5]);
2384 break;
2385 case SYS_SHUTDOWN:
2386 err = sys_shutdown(a0, a1);
2387 break;
2388 case SYS_SETSOCKOPT:
2389 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390 break;
2391 case SYS_GETSOCKOPT:
2392 err =
2393 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394 (int __user *)a[4]);
2395 break;
2396 case SYS_SENDMSG:
2397 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398 break;
2399 case SYS_SENDMMSG:
2400 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401 break;
2402 case SYS_RECVMSG:
2403 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 break;
2405 case SYS_RECVMMSG:
2406 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407 (struct timespec __user *)a[4]);
2408 break;
2409 case SYS_ACCEPT4:
2410 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411 (int __user *)a[2], a[3]);
2412 break;
2413 default:
2414 err = -EINVAL;
2415 break;
2416 }
2417 return err;
2418 }
2419
2420 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2421
2422 /**
2423 * sock_register - add a socket protocol handler
2424 * @ops: description of protocol
2425 *
2426 * This function is called by a protocol handler that wants to
2427 * advertise its address family, and have it linked into the
2428 * socket interface. The value ops->family corresponds to the
2429 * socket system call protocol family.
2430 */
2431 int sock_register(const struct net_proto_family *ops)
2432 {
2433 int err;
2434
2435 if (ops->family >= NPROTO) {
2436 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437 return -ENOBUFS;
2438 }
2439
2440 spin_lock(&net_family_lock);
2441 if (rcu_dereference_protected(net_families[ops->family],
2442 lockdep_is_held(&net_family_lock)))
2443 err = -EEXIST;
2444 else {
2445 rcu_assign_pointer(net_families[ops->family], ops);
2446 err = 0;
2447 }
2448 spin_unlock(&net_family_lock);
2449
2450 pr_info("NET: Registered protocol family %d\n", ops->family);
2451 return err;
2452 }
2453 EXPORT_SYMBOL(sock_register);
2454
2455 /**
2456 * sock_unregister - remove a protocol handler
2457 * @family: protocol family to remove
2458 *
2459 * This function is called by a protocol handler that wants to
2460 * remove its address family, and have it unlinked from the
2461 * new socket creation.
2462 *
2463 * If protocol handler is a module, then it can use module reference
2464 * counts to protect against new references. If protocol handler is not
2465 * a module then it needs to provide its own protection in
2466 * the ops->create routine.
2467 */
2468 void sock_unregister(int family)
2469 {
2470 BUG_ON(family < 0 || family >= NPROTO);
2471
2472 spin_lock(&net_family_lock);
2473 RCU_INIT_POINTER(net_families[family], NULL);
2474 spin_unlock(&net_family_lock);
2475
2476 synchronize_rcu();
2477
2478 pr_info("NET: Unregistered protocol family %d\n", family);
2479 }
2480 EXPORT_SYMBOL(sock_unregister);
2481
2482 static int __init sock_init(void)
2483 {
2484 int err;
2485 /*
2486 * Initialize the network sysctl infrastructure.
2487 */
2488 err = net_sysctl_init();
2489 if (err)
2490 goto out;
2491
2492 /*
2493 * Initialize skbuff SLAB cache
2494 */
2495 skb_init();
2496
2497 /*
2498 * Initialize the protocols module.
2499 */
2500
2501 init_inodecache();
2502
2503 err = register_filesystem(&sock_fs_type);
2504 if (err)
2505 goto out_fs;
2506 sock_mnt = kern_mount(&sock_fs_type);
2507 if (IS_ERR(sock_mnt)) {
2508 err = PTR_ERR(sock_mnt);
2509 goto out_mount;
2510 }
2511
2512 /* The real protocol initialization is performed in later initcalls.
2513 */
2514
2515 #ifdef CONFIG_NETFILTER
2516 err = netfilter_init();
2517 if (err)
2518 goto out;
2519 #endif
2520
2521 ptp_classifier_init();
2522
2523 out:
2524 return err;
2525
2526 out_mount:
2527 unregister_filesystem(&sock_fs_type);
2528 out_fs:
2529 goto out;
2530 }
2531
2532 core_initcall(sock_init); /* early initcall */
2533
2534 #ifdef CONFIG_PROC_FS
2535 void socket_seq_show(struct seq_file *seq)
2536 {
2537 int cpu;
2538 int counter = 0;
2539
2540 for_each_possible_cpu(cpu)
2541 counter += per_cpu(sockets_in_use, cpu);
2542
2543 /* It can be negative, by the way. 8) */
2544 if (counter < 0)
2545 counter = 0;
2546
2547 seq_printf(seq, "sockets: used %d\n", counter);
2548 }
2549 #endif /* CONFIG_PROC_FS */
2550
2551 #ifdef CONFIG_COMPAT
2552 static int do_siocgstamp(struct net *net, struct socket *sock,
2553 unsigned int cmd, void __user *up)
2554 {
2555 mm_segment_t old_fs = get_fs();
2556 struct timeval ktv;
2557 int err;
2558
2559 set_fs(KERNEL_DS);
2560 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2561 set_fs(old_fs);
2562 if (!err)
2563 err = compat_put_timeval(&ktv, up);
2564
2565 return err;
2566 }
2567
2568 static int do_siocgstampns(struct net *net, struct socket *sock,
2569 unsigned int cmd, void __user *up)
2570 {
2571 mm_segment_t old_fs = get_fs();
2572 struct timespec kts;
2573 int err;
2574
2575 set_fs(KERNEL_DS);
2576 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2577 set_fs(old_fs);
2578 if (!err)
2579 err = compat_put_timespec(&kts, up);
2580
2581 return err;
2582 }
2583
2584 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2585 {
2586 struct ifreq __user *uifr;
2587 int err;
2588
2589 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2590 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2591 return -EFAULT;
2592
2593 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2594 if (err)
2595 return err;
2596
2597 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2598 return -EFAULT;
2599
2600 return 0;
2601 }
2602
2603 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2604 {
2605 struct compat_ifconf ifc32;
2606 struct ifconf ifc;
2607 struct ifconf __user *uifc;
2608 struct compat_ifreq __user *ifr32;
2609 struct ifreq __user *ifr;
2610 unsigned int i, j;
2611 int err;
2612
2613 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2614 return -EFAULT;
2615
2616 memset(&ifc, 0, sizeof(ifc));
2617 if (ifc32.ifcbuf == 0) {
2618 ifc32.ifc_len = 0;
2619 ifc.ifc_len = 0;
2620 ifc.ifc_req = NULL;
2621 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2622 } else {
2623 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2624 sizeof(struct ifreq);
2625 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2626 ifc.ifc_len = len;
2627 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2628 ifr32 = compat_ptr(ifc32.ifcbuf);
2629 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2630 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2631 return -EFAULT;
2632 ifr++;
2633 ifr32++;
2634 }
2635 }
2636 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2637 return -EFAULT;
2638
2639 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2640 if (err)
2641 return err;
2642
2643 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2644 return -EFAULT;
2645
2646 ifr = ifc.ifc_req;
2647 ifr32 = compat_ptr(ifc32.ifcbuf);
2648 for (i = 0, j = 0;
2649 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2650 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2651 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2652 return -EFAULT;
2653 ifr32++;
2654 ifr++;
2655 }
2656
2657 if (ifc32.ifcbuf == 0) {
2658 /* Translate from 64-bit structure multiple to
2659 * a 32-bit one.
2660 */
2661 i = ifc.ifc_len;
2662 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2663 ifc32.ifc_len = i;
2664 } else {
2665 ifc32.ifc_len = i;
2666 }
2667 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2668 return -EFAULT;
2669
2670 return 0;
2671 }
2672
2673 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2674 {
2675 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2676 bool convert_in = false, convert_out = false;
2677 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2678 struct ethtool_rxnfc __user *rxnfc;
2679 struct ifreq __user *ifr;
2680 u32 rule_cnt = 0, actual_rule_cnt;
2681 u32 ethcmd;
2682 u32 data;
2683 int ret;
2684
2685 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 return -EFAULT;
2687
2688 compat_rxnfc = compat_ptr(data);
2689
2690 if (get_user(ethcmd, &compat_rxnfc->cmd))
2691 return -EFAULT;
2692
2693 /* Most ethtool structures are defined without padding.
2694 * Unfortunately struct ethtool_rxnfc is an exception.
2695 */
2696 switch (ethcmd) {
2697 default:
2698 break;
2699 case ETHTOOL_GRXCLSRLALL:
2700 /* Buffer size is variable */
2701 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2702 return -EFAULT;
2703 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2704 return -ENOMEM;
2705 buf_size += rule_cnt * sizeof(u32);
2706 /* fall through */
2707 case ETHTOOL_GRXRINGS:
2708 case ETHTOOL_GRXCLSRLCNT:
2709 case ETHTOOL_GRXCLSRULE:
2710 case ETHTOOL_SRXCLSRLINS:
2711 convert_out = true;
2712 /* fall through */
2713 case ETHTOOL_SRXCLSRLDEL:
2714 buf_size += sizeof(struct ethtool_rxnfc);
2715 convert_in = true;
2716 break;
2717 }
2718
2719 ifr = compat_alloc_user_space(buf_size);
2720 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2721
2722 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2723 return -EFAULT;
2724
2725 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2726 &ifr->ifr_ifru.ifru_data))
2727 return -EFAULT;
2728
2729 if (convert_in) {
2730 /* We expect there to be holes between fs.m_ext and
2731 * fs.ring_cookie and at the end of fs, but nowhere else.
2732 */
2733 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2734 sizeof(compat_rxnfc->fs.m_ext) !=
2735 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2736 sizeof(rxnfc->fs.m_ext));
2737 BUILD_BUG_ON(
2738 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2739 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2740 offsetof(struct ethtool_rxnfc, fs.location) -
2741 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2742
2743 if (copy_in_user(rxnfc, compat_rxnfc,
2744 (void __user *)(&rxnfc->fs.m_ext + 1) -
2745 (void __user *)rxnfc) ||
2746 copy_in_user(&rxnfc->fs.ring_cookie,
2747 &compat_rxnfc->fs.ring_cookie,
2748 (void __user *)(&rxnfc->fs.location + 1) -
2749 (void __user *)&rxnfc->fs.ring_cookie) ||
2750 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2751 sizeof(rxnfc->rule_cnt)))
2752 return -EFAULT;
2753 }
2754
2755 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2756 if (ret)
2757 return ret;
2758
2759 if (convert_out) {
2760 if (copy_in_user(compat_rxnfc, rxnfc,
2761 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2762 (const void __user *)rxnfc) ||
2763 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2764 &rxnfc->fs.ring_cookie,
2765 (const void __user *)(&rxnfc->fs.location + 1) -
2766 (const void __user *)&rxnfc->fs.ring_cookie) ||
2767 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2768 sizeof(rxnfc->rule_cnt)))
2769 return -EFAULT;
2770
2771 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2772 /* As an optimisation, we only copy the actual
2773 * number of rules that the underlying
2774 * function returned. Since Mallory might
2775 * change the rule count in user memory, we
2776 * check that it is less than the rule count
2777 * originally given (as the user buffer size),
2778 * which has been range-checked.
2779 */
2780 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2781 return -EFAULT;
2782 if (actual_rule_cnt < rule_cnt)
2783 rule_cnt = actual_rule_cnt;
2784 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2785 &rxnfc->rule_locs[0],
2786 rule_cnt * sizeof(u32)))
2787 return -EFAULT;
2788 }
2789 }
2790
2791 return 0;
2792 }
2793
2794 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2795 {
2796 void __user *uptr;
2797 compat_uptr_t uptr32;
2798 struct ifreq __user *uifr;
2799
2800 uifr = compat_alloc_user_space(sizeof(*uifr));
2801 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2802 return -EFAULT;
2803
2804 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2805 return -EFAULT;
2806
2807 uptr = compat_ptr(uptr32);
2808
2809 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2810 return -EFAULT;
2811
2812 return dev_ioctl(net, SIOCWANDEV, uifr);
2813 }
2814
2815 static int bond_ioctl(struct net *net, unsigned int cmd,
2816 struct compat_ifreq __user *ifr32)
2817 {
2818 struct ifreq kifr;
2819 mm_segment_t old_fs;
2820 int err;
2821
2822 switch (cmd) {
2823 case SIOCBONDENSLAVE:
2824 case SIOCBONDRELEASE:
2825 case SIOCBONDSETHWADDR:
2826 case SIOCBONDCHANGEACTIVE:
2827 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2828 return -EFAULT;
2829
2830 old_fs = get_fs();
2831 set_fs(KERNEL_DS);
2832 err = dev_ioctl(net, cmd,
2833 (struct ifreq __user __force *) &kifr);
2834 set_fs(old_fs);
2835
2836 return err;
2837 default:
2838 return -ENOIOCTLCMD;
2839 }
2840 }
2841
2842 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2843 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2844 struct compat_ifreq __user *u_ifreq32)
2845 {
2846 struct ifreq __user *u_ifreq64;
2847 char tmp_buf[IFNAMSIZ];
2848 void __user *data64;
2849 u32 data32;
2850
2851 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2852 IFNAMSIZ))
2853 return -EFAULT;
2854 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2855 return -EFAULT;
2856 data64 = compat_ptr(data32);
2857
2858 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2859
2860 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2861 IFNAMSIZ))
2862 return -EFAULT;
2863 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2864 return -EFAULT;
2865
2866 return dev_ioctl(net, cmd, u_ifreq64);
2867 }
2868
2869 static int dev_ifsioc(struct net *net, struct socket *sock,
2870 unsigned int cmd, struct compat_ifreq __user *uifr32)
2871 {
2872 struct ifreq __user *uifr;
2873 int err;
2874
2875 uifr = compat_alloc_user_space(sizeof(*uifr));
2876 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2877 return -EFAULT;
2878
2879 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2880
2881 if (!err) {
2882 switch (cmd) {
2883 case SIOCGIFFLAGS:
2884 case SIOCGIFMETRIC:
2885 case SIOCGIFMTU:
2886 case SIOCGIFMEM:
2887 case SIOCGIFHWADDR:
2888 case SIOCGIFINDEX:
2889 case SIOCGIFADDR:
2890 case SIOCGIFBRDADDR:
2891 case SIOCGIFDSTADDR:
2892 case SIOCGIFNETMASK:
2893 case SIOCGIFPFLAGS:
2894 case SIOCGIFTXQLEN:
2895 case SIOCGMIIPHY:
2896 case SIOCGMIIREG:
2897 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2898 err = -EFAULT;
2899 break;
2900 }
2901 }
2902 return err;
2903 }
2904
2905 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2906 struct compat_ifreq __user *uifr32)
2907 {
2908 struct ifreq ifr;
2909 struct compat_ifmap __user *uifmap32;
2910 mm_segment_t old_fs;
2911 int err;
2912
2913 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2914 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2915 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2916 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2917 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2918 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2919 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2920 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2921 if (err)
2922 return -EFAULT;
2923
2924 old_fs = get_fs();
2925 set_fs(KERNEL_DS);
2926 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2927 set_fs(old_fs);
2928
2929 if (cmd == SIOCGIFMAP && !err) {
2930 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2931 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2935 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2936 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2937 if (err)
2938 err = -EFAULT;
2939 }
2940 return err;
2941 }
2942
2943 struct rtentry32 {
2944 u32 rt_pad1;
2945 struct sockaddr rt_dst; /* target address */
2946 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2947 struct sockaddr rt_genmask; /* target network mask (IP) */
2948 unsigned short rt_flags;
2949 short rt_pad2;
2950 u32 rt_pad3;
2951 unsigned char rt_tos;
2952 unsigned char rt_class;
2953 short rt_pad4;
2954 short rt_metric; /* +1 for binary compatibility! */
2955 /* char * */ u32 rt_dev; /* forcing the device at add */
2956 u32 rt_mtu; /* per route MTU/Window */
2957 u32 rt_window; /* Window clamping */
2958 unsigned short rt_irtt; /* Initial RTT */
2959 };
2960
2961 struct in6_rtmsg32 {
2962 struct in6_addr rtmsg_dst;
2963 struct in6_addr rtmsg_src;
2964 struct in6_addr rtmsg_gateway;
2965 u32 rtmsg_type;
2966 u16 rtmsg_dst_len;
2967 u16 rtmsg_src_len;
2968 u32 rtmsg_metric;
2969 u32 rtmsg_info;
2970 u32 rtmsg_flags;
2971 s32 rtmsg_ifindex;
2972 };
2973
2974 static int routing_ioctl(struct net *net, struct socket *sock,
2975 unsigned int cmd, void __user *argp)
2976 {
2977 int ret;
2978 void *r = NULL;
2979 struct in6_rtmsg r6;
2980 struct rtentry r4;
2981 char devname[16];
2982 u32 rtdev;
2983 mm_segment_t old_fs = get_fs();
2984
2985 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2986 struct in6_rtmsg32 __user *ur6 = argp;
2987 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2988 3 * sizeof(struct in6_addr));
2989 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2990 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2991 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2992 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2993 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2994 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2995 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2996
2997 r = (void *) &r6;
2998 } else { /* ipv4 */
2999 struct rtentry32 __user *ur4 = argp;
3000 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3001 3 * sizeof(struct sockaddr));
3002 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3003 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3004 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3005 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3006 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3007 ret |= get_user(rtdev, &(ur4->rt_dev));
3008 if (rtdev) {
3009 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3010 r4.rt_dev = (char __user __force *)devname;
3011 devname[15] = 0;
3012 } else
3013 r4.rt_dev = NULL;
3014
3015 r = (void *) &r4;
3016 }
3017
3018 if (ret) {
3019 ret = -EFAULT;
3020 goto out;
3021 }
3022
3023 set_fs(KERNEL_DS);
3024 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3025 set_fs(old_fs);
3026
3027 out:
3028 return ret;
3029 }
3030
3031 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3032 * for some operations; this forces use of the newer bridge-utils that
3033 * use compatible ioctls
3034 */
3035 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3036 {
3037 compat_ulong_t tmp;
3038
3039 if (get_user(tmp, argp))
3040 return -EFAULT;
3041 if (tmp == BRCTL_GET_VERSION)
3042 return BRCTL_VERSION + 1;
3043 return -EINVAL;
3044 }
3045
3046 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3047 unsigned int cmd, unsigned long arg)
3048 {
3049 void __user *argp = compat_ptr(arg);
3050 struct sock *sk = sock->sk;
3051 struct net *net = sock_net(sk);
3052
3053 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3054 return compat_ifr_data_ioctl(net, cmd, argp);
3055
3056 switch (cmd) {
3057 case SIOCSIFBR:
3058 case SIOCGIFBR:
3059 return old_bridge_ioctl(argp);
3060 case SIOCGIFNAME:
3061 return dev_ifname32(net, argp);
3062 case SIOCGIFCONF:
3063 return dev_ifconf(net, argp);
3064 case SIOCETHTOOL:
3065 return ethtool_ioctl(net, argp);
3066 case SIOCWANDEV:
3067 return compat_siocwandev(net, argp);
3068 case SIOCGIFMAP:
3069 case SIOCSIFMAP:
3070 return compat_sioc_ifmap(net, cmd, argp);
3071 case SIOCBONDENSLAVE:
3072 case SIOCBONDRELEASE:
3073 case SIOCBONDSETHWADDR:
3074 case SIOCBONDCHANGEACTIVE:
3075 return bond_ioctl(net, cmd, argp);
3076 case SIOCADDRT:
3077 case SIOCDELRT:
3078 return routing_ioctl(net, sock, cmd, argp);
3079 case SIOCGSTAMP:
3080 return do_siocgstamp(net, sock, cmd, argp);
3081 case SIOCGSTAMPNS:
3082 return do_siocgstampns(net, sock, cmd, argp);
3083 case SIOCBONDSLAVEINFOQUERY:
3084 case SIOCBONDINFOQUERY:
3085 case SIOCSHWTSTAMP:
3086 case SIOCGHWTSTAMP:
3087 return compat_ifr_data_ioctl(net, cmd, argp);
3088
3089 case FIOSETOWN:
3090 case SIOCSPGRP:
3091 case FIOGETOWN:
3092 case SIOCGPGRP:
3093 case SIOCBRADDBR:
3094 case SIOCBRDELBR:
3095 case SIOCGIFVLAN:
3096 case SIOCSIFVLAN:
3097 case SIOCADDDLCI:
3098 case SIOCDELDLCI:
3099 return sock_ioctl(file, cmd, arg);
3100
3101 case SIOCGIFFLAGS:
3102 case SIOCSIFFLAGS:
3103 case SIOCGIFMETRIC:
3104 case SIOCSIFMETRIC:
3105 case SIOCGIFMTU:
3106 case SIOCSIFMTU:
3107 case SIOCGIFMEM:
3108 case SIOCSIFMEM:
3109 case SIOCGIFHWADDR:
3110 case SIOCSIFHWADDR:
3111 case SIOCADDMULTI:
3112 case SIOCDELMULTI:
3113 case SIOCGIFINDEX:
3114 case SIOCGIFADDR:
3115 case SIOCSIFADDR:
3116 case SIOCSIFHWBROADCAST:
3117 case SIOCDIFADDR:
3118 case SIOCGIFBRDADDR:
3119 case SIOCSIFBRDADDR:
3120 case SIOCGIFDSTADDR:
3121 case SIOCSIFDSTADDR:
3122 case SIOCGIFNETMASK:
3123 case SIOCSIFNETMASK:
3124 case SIOCSIFPFLAGS:
3125 case SIOCGIFPFLAGS:
3126 case SIOCGIFTXQLEN:
3127 case SIOCSIFTXQLEN:
3128 case SIOCBRADDIF:
3129 case SIOCBRDELIF:
3130 case SIOCSIFNAME:
3131 case SIOCGMIIPHY:
3132 case SIOCGMIIREG:
3133 case SIOCSMIIREG:
3134 return dev_ifsioc(net, sock, cmd, argp);
3135
3136 case SIOCSARP:
3137 case SIOCGARP:
3138 case SIOCDARP:
3139 case SIOCATMARK:
3140 return sock_do_ioctl(net, sock, cmd, arg);
3141 }
3142
3143 return -ENOIOCTLCMD;
3144 }
3145
3146 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3147 unsigned long arg)
3148 {
3149 struct socket *sock = file->private_data;
3150 int ret = -ENOIOCTLCMD;
3151 struct sock *sk;
3152 struct net *net;
3153
3154 sk = sock->sk;
3155 net = sock_net(sk);
3156
3157 if (sock->ops->compat_ioctl)
3158 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3159
3160 if (ret == -ENOIOCTLCMD &&
3161 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3162 ret = compat_wext_handle_ioctl(net, cmd, arg);
3163
3164 if (ret == -ENOIOCTLCMD)
3165 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3166
3167 return ret;
3168 }
3169 #endif
3170
3171 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3172 {
3173 return sock->ops->bind(sock, addr, addrlen);
3174 }
3175 EXPORT_SYMBOL(kernel_bind);
3176
3177 int kernel_listen(struct socket *sock, int backlog)
3178 {
3179 return sock->ops->listen(sock, backlog);
3180 }
3181 EXPORT_SYMBOL(kernel_listen);
3182
3183 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3184 {
3185 struct sock *sk = sock->sk;
3186 int err;
3187
3188 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3189 newsock);
3190 if (err < 0)
3191 goto done;
3192
3193 err = sock->ops->accept(sock, *newsock, flags);
3194 if (err < 0) {
3195 sock_release(*newsock);
3196 *newsock = NULL;
3197 goto done;
3198 }
3199
3200 (*newsock)->ops = sock->ops;
3201 __module_get((*newsock)->ops->owner);
3202
3203 done:
3204 return err;
3205 }
3206 EXPORT_SYMBOL(kernel_accept);
3207
3208 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3209 int flags)
3210 {
3211 return sock->ops->connect(sock, addr, addrlen, flags);
3212 }
3213 EXPORT_SYMBOL(kernel_connect);
3214
3215 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3216 int *addrlen)
3217 {
3218 return sock->ops->getname(sock, addr, addrlen, 0);
3219 }
3220 EXPORT_SYMBOL(kernel_getsockname);
3221
3222 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3223 int *addrlen)
3224 {
3225 return sock->ops->getname(sock, addr, addrlen, 1);
3226 }
3227 EXPORT_SYMBOL(kernel_getpeername);
3228
3229 int kernel_getsockopt(struct socket *sock, int level, int optname,
3230 char *optval, int *optlen)
3231 {
3232 mm_segment_t oldfs = get_fs();
3233 char __user *uoptval;
3234 int __user *uoptlen;
3235 int err;
3236
3237 uoptval = (char __user __force *) optval;
3238 uoptlen = (int __user __force *) optlen;
3239
3240 set_fs(KERNEL_DS);
3241 if (level == SOL_SOCKET)
3242 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3243 else
3244 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3245 uoptlen);
3246 set_fs(oldfs);
3247 return err;
3248 }
3249 EXPORT_SYMBOL(kernel_getsockopt);
3250
3251 int kernel_setsockopt(struct socket *sock, int level, int optname,
3252 char *optval, unsigned int optlen)
3253 {
3254 mm_segment_t oldfs = get_fs();
3255 char __user *uoptval;
3256 int err;
3257
3258 uoptval = (char __user __force *) optval;
3259
3260 set_fs(KERNEL_DS);
3261 if (level == SOL_SOCKET)
3262 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3263 else
3264 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3265 optlen);
3266 set_fs(oldfs);
3267 return err;
3268 }
3269 EXPORT_SYMBOL(kernel_setsockopt);
3270
3271 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3272 size_t size, int flags)
3273 {
3274 if (sock->ops->sendpage)
3275 return sock->ops->sendpage(sock, page, offset, size, flags);
3276
3277 return sock_no_sendpage(sock, page, offset, size, flags);
3278 }
3279 EXPORT_SYMBOL(kernel_sendpage);
3280
3281 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3282 {
3283 mm_segment_t oldfs = get_fs();
3284 int err;
3285
3286 set_fs(KERNEL_DS);
3287 err = sock->ops->ioctl(sock, cmd, arg);
3288 set_fs(oldfs);
3289
3290 return err;
3291 }
3292 EXPORT_SYMBOL(kernel_sock_ioctl);
3293
3294 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3295 {
3296 return sock->ops->shutdown(sock, how);
3297 }
3298 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.10267 seconds and 5 git commands to generate.