KVM: PPC: Move xics_debugfs_init out of create
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 int i, cpu, me;
170 cpumask_var_t cpus;
171 bool called = true;
172 struct kvm_vcpu *vcpu;
173
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176 me = get_cpu();
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
179 cpu = vcpu->cpu;
180
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
183
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
187 }
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
192 else
193 called = false;
194 put_cpu();
195 free_cpumask_var(cpus);
196 return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 /*
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
205 */
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208 /*
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 *
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 * barrier here.
218 */
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 struct page *page;
234 int r;
235
236 mutex_init(&vcpu->mutex);
237 vcpu->cpu = -1;
238 vcpu->kvm = kvm;
239 vcpu->vcpu_id = id;
240 vcpu->pid = NULL;
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
243
244 vcpu->pre_pcpu = -1;
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail;
251 }
252 vcpu->run = page_address(page);
253
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
257
258 r = kvm_arch_vcpu_init(vcpu);
259 if (r < 0)
260 goto fail_free_run;
261 return 0;
262
263 fail_free_run:
264 free_page((unsigned long)vcpu->run);
265 fail:
266 return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 put_pid(vcpu->pid);
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
287 {
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
290
291 /*
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * before returning.
300 *
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
303 *
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
308 */
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
315 if (need_tlb_flush)
316 kvm_flush_remote_tlbs(kvm);
317
318 spin_unlock(&kvm->mmu_lock);
319
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322 srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 int i;
500 struct kvm_memslots *slots;
501
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 if (!slots)
504 return NULL;
505
506 /*
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
509 */
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 for (i = 0; i < kvm_debugfs_num_entries; i++)
563 kfree(kvm->debugfs_stat_data[i]);
564 kfree(kvm->debugfs_stat_data);
565 }
566
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 char dir_name[ITOA_MAX_LEN * 2];
570 struct kvm_stat_data *stat_data;
571 struct kvm_stats_debugfs_item *p;
572
573 if (!debugfs_initialized())
574 return 0;
575
576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 kvm_debugfs_dir);
579 if (!kvm->debugfs_dentry)
580 return -ENOMEM;
581
582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 sizeof(*kvm->debugfs_stat_data),
584 GFP_KERNEL);
585 if (!kvm->debugfs_stat_data)
586 return -ENOMEM;
587
588 for (p = debugfs_entries; p->name; p++) {
589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 if (!stat_data)
591 return -ENOMEM;
592
593 stat_data->kvm = kvm;
594 stat_data->offset = p->offset;
595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 if (!debugfs_create_file(p->name, 0444,
597 kvm->debugfs_dentry,
598 stat_data,
599 stat_fops_per_vm[p->kind]))
600 return -ENOMEM;
601 }
602 return 0;
603 }
604
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 int r, i;
608 struct kvm *kvm = kvm_arch_alloc_vm();
609
610 if (!kvm)
611 return ERR_PTR(-ENOMEM);
612
613 spin_lock_init(&kvm->mmu_lock);
614 atomic_inc(&current->mm->mm_count);
615 kvm->mm = current->mm;
616 kvm_eventfd_init(kvm);
617 mutex_init(&kvm->lock);
618 mutex_init(&kvm->irq_lock);
619 mutex_init(&kvm->slots_lock);
620 atomic_set(&kvm->users_count, 1);
621 INIT_LIST_HEAD(&kvm->devices);
622
623 r = kvm_arch_init_vm(kvm, type);
624 if (r)
625 goto out_err_no_disable;
626
627 r = hardware_enable_all();
628 if (r)
629 goto out_err_no_disable;
630
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634
635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636
637 r = -ENOMEM;
638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 kvm->memslots[i] = kvm_alloc_memslots();
640 if (!kvm->memslots[i])
641 goto out_err_no_srcu;
642 }
643
644 if (init_srcu_struct(&kvm->srcu))
645 goto out_err_no_srcu;
646 if (init_srcu_struct(&kvm->irq_srcu))
647 goto out_err_no_irq_srcu;
648 for (i = 0; i < KVM_NR_BUSES; i++) {
649 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650 GFP_KERNEL);
651 if (!kvm->buses[i])
652 goto out_err;
653 }
654
655 r = kvm_init_mmu_notifier(kvm);
656 if (r)
657 goto out_err;
658
659 spin_lock(&kvm_lock);
660 list_add(&kvm->vm_list, &vm_list);
661 spin_unlock(&kvm_lock);
662
663 preempt_notifier_inc();
664
665 return kvm;
666
667 out_err:
668 cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670 cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672 hardware_disable_all();
673 out_err_no_disable:
674 for (i = 0; i < KVM_NR_BUSES; i++)
675 kfree(kvm->buses[i]);
676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 kvm_free_memslots(kvm, kvm->memslots[i]);
678 kvm_arch_free_vm(kvm);
679 mmdrop(current->mm);
680 return ERR_PTR(r);
681 }
682
683 /*
684 * Avoid using vmalloc for a small buffer.
685 * Should not be used when the size is statically known.
686 */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689 if (size > PAGE_SIZE)
690 return vzalloc(size);
691 else
692 return kzalloc(size, GFP_KERNEL);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 struct kvm_device *dev, *tmp;
698
699 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700 list_del(&dev->vm_node);
701 dev->ops->destroy(dev);
702 }
703 }
704
705 static void kvm_destroy_vm(struct kvm *kvm)
706 {
707 int i;
708 struct mm_struct *mm = kvm->mm;
709
710 kvm_destroy_vm_debugfs(kvm);
711 kvm_arch_sync_events(kvm);
712 spin_lock(&kvm_lock);
713 list_del(&kvm->vm_list);
714 spin_unlock(&kvm_lock);
715 kvm_free_irq_routing(kvm);
716 for (i = 0; i < KVM_NR_BUSES; i++)
717 kvm_io_bus_destroy(kvm->buses[i]);
718 kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
721 #else
722 kvm_arch_flush_shadow_all(kvm);
723 #endif
724 kvm_arch_destroy_vm(kvm);
725 kvm_destroy_devices(kvm);
726 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727 kvm_free_memslots(kvm, kvm->memslots[i]);
728 cleanup_srcu_struct(&kvm->irq_srcu);
729 cleanup_srcu_struct(&kvm->srcu);
730 kvm_arch_free_vm(kvm);
731 preempt_notifier_dec();
732 hardware_disable_all();
733 mmdrop(mm);
734 }
735
736 void kvm_get_kvm(struct kvm *kvm)
737 {
738 atomic_inc(&kvm->users_count);
739 }
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
741
742 void kvm_put_kvm(struct kvm *kvm)
743 {
744 if (atomic_dec_and_test(&kvm->users_count))
745 kvm_destroy_vm(kvm);
746 }
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
748
749
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
751 {
752 struct kvm *kvm = filp->private_data;
753
754 kvm_irqfd_release(kvm);
755
756 kvm_put_kvm(kvm);
757 return 0;
758 }
759
760 /*
761 * Allocation size is twice as large as the actual dirty bitmap size.
762 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
763 */
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
765 {
766 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
767
768 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769 if (!memslot->dirty_bitmap)
770 return -ENOMEM;
771
772 return 0;
773 }
774
775 /*
776 * Insert memslot and re-sort memslots based on their GFN,
777 * so binary search could be used to lookup GFN.
778 * Sorting algorithm takes advantage of having initially
779 * sorted array and known changed memslot position.
780 */
781 static void update_memslots(struct kvm_memslots *slots,
782 struct kvm_memory_slot *new)
783 {
784 int id = new->id;
785 int i = slots->id_to_index[id];
786 struct kvm_memory_slot *mslots = slots->memslots;
787
788 WARN_ON(mslots[i].id != id);
789 if (!new->npages) {
790 WARN_ON(!mslots[i].npages);
791 if (mslots[i].npages)
792 slots->used_slots--;
793 } else {
794 if (!mslots[i].npages)
795 slots->used_slots++;
796 }
797
798 while (i < KVM_MEM_SLOTS_NUM - 1 &&
799 new->base_gfn <= mslots[i + 1].base_gfn) {
800 if (!mslots[i + 1].npages)
801 break;
802 mslots[i] = mslots[i + 1];
803 slots->id_to_index[mslots[i].id] = i;
804 i++;
805 }
806
807 /*
808 * The ">=" is needed when creating a slot with base_gfn == 0,
809 * so that it moves before all those with base_gfn == npages == 0.
810 *
811 * On the other hand, if new->npages is zero, the above loop has
812 * already left i pointing to the beginning of the empty part of
813 * mslots, and the ">=" would move the hole backwards in this
814 * case---which is wrong. So skip the loop when deleting a slot.
815 */
816 if (new->npages) {
817 while (i > 0 &&
818 new->base_gfn >= mslots[i - 1].base_gfn) {
819 mslots[i] = mslots[i - 1];
820 slots->id_to_index[mslots[i].id] = i;
821 i--;
822 }
823 } else
824 WARN_ON_ONCE(i != slots->used_slots);
825
826 mslots[i] = *new;
827 slots->id_to_index[mslots[i].id] = i;
828 }
829
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
831 {
832 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
833
834 #ifdef __KVM_HAVE_READONLY_MEM
835 valid_flags |= KVM_MEM_READONLY;
836 #endif
837
838 if (mem->flags & ~valid_flags)
839 return -EINVAL;
840
841 return 0;
842 }
843
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845 int as_id, struct kvm_memslots *slots)
846 {
847 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
848
849 /*
850 * Set the low bit in the generation, which disables SPTE caching
851 * until the end of synchronize_srcu_expedited.
852 */
853 WARN_ON(old_memslots->generation & 1);
854 slots->generation = old_memslots->generation + 1;
855
856 rcu_assign_pointer(kvm->memslots[as_id], slots);
857 synchronize_srcu_expedited(&kvm->srcu);
858
859 /*
860 * Increment the new memslot generation a second time. This prevents
861 * vm exits that race with memslot updates from caching a memslot
862 * generation that will (potentially) be valid forever.
863 */
864 slots->generation++;
865
866 kvm_arch_memslots_updated(kvm, slots);
867
868 return old_memslots;
869 }
870
871 /*
872 * Allocate some memory and give it an address in the guest physical address
873 * space.
874 *
875 * Discontiguous memory is allowed, mostly for framebuffers.
876 *
877 * Must be called holding kvm->slots_lock for write.
878 */
879 int __kvm_set_memory_region(struct kvm *kvm,
880 const struct kvm_userspace_memory_region *mem)
881 {
882 int r;
883 gfn_t base_gfn;
884 unsigned long npages;
885 struct kvm_memory_slot *slot;
886 struct kvm_memory_slot old, new;
887 struct kvm_memslots *slots = NULL, *old_memslots;
888 int as_id, id;
889 enum kvm_mr_change change;
890
891 r = check_memory_region_flags(mem);
892 if (r)
893 goto out;
894
895 r = -EINVAL;
896 as_id = mem->slot >> 16;
897 id = (u16)mem->slot;
898
899 /* General sanity checks */
900 if (mem->memory_size & (PAGE_SIZE - 1))
901 goto out;
902 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
903 goto out;
904 /* We can read the guest memory with __xxx_user() later on. */
905 if ((id < KVM_USER_MEM_SLOTS) &&
906 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907 !access_ok(VERIFY_WRITE,
908 (void __user *)(unsigned long)mem->userspace_addr,
909 mem->memory_size)))
910 goto out;
911 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
912 goto out;
913 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
914 goto out;
915
916 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918 npages = mem->memory_size >> PAGE_SHIFT;
919
920 if (npages > KVM_MEM_MAX_NR_PAGES)
921 goto out;
922
923 new = old = *slot;
924
925 new.id = id;
926 new.base_gfn = base_gfn;
927 new.npages = npages;
928 new.flags = mem->flags;
929
930 if (npages) {
931 if (!old.npages)
932 change = KVM_MR_CREATE;
933 else { /* Modify an existing slot. */
934 if ((mem->userspace_addr != old.userspace_addr) ||
935 (npages != old.npages) ||
936 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
937 goto out;
938
939 if (base_gfn != old.base_gfn)
940 change = KVM_MR_MOVE;
941 else if (new.flags != old.flags)
942 change = KVM_MR_FLAGS_ONLY;
943 else { /* Nothing to change. */
944 r = 0;
945 goto out;
946 }
947 }
948 } else {
949 if (!old.npages)
950 goto out;
951
952 change = KVM_MR_DELETE;
953 new.base_gfn = 0;
954 new.flags = 0;
955 }
956
957 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958 /* Check for overlaps */
959 r = -EEXIST;
960 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
962 (slot->id == id))
963 continue;
964 if (!((base_gfn + npages <= slot->base_gfn) ||
965 (base_gfn >= slot->base_gfn + slot->npages)))
966 goto out;
967 }
968 }
969
970 /* Free page dirty bitmap if unneeded */
971 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 new.dirty_bitmap = NULL;
973
974 r = -ENOMEM;
975 if (change == KVM_MR_CREATE) {
976 new.userspace_addr = mem->userspace_addr;
977
978 if (kvm_arch_create_memslot(kvm, &new, npages))
979 goto out_free;
980 }
981
982 /* Allocate page dirty bitmap if needed */
983 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984 if (kvm_create_dirty_bitmap(&new) < 0)
985 goto out_free;
986 }
987
988 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
989 if (!slots)
990 goto out_free;
991 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
992
993 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994 slot = id_to_memslot(slots, id);
995 slot->flags |= KVM_MEMSLOT_INVALID;
996
997 old_memslots = install_new_memslots(kvm, as_id, slots);
998
999 /* slot was deleted or moved, clear iommu mapping */
1000 kvm_iommu_unmap_pages(kvm, &old);
1001 /* From this point no new shadow pages pointing to a deleted,
1002 * or moved, memslot will be created.
1003 *
1004 * validation of sp->gfn happens in:
1005 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006 * - kvm_is_visible_gfn (mmu_check_roots)
1007 */
1008 kvm_arch_flush_shadow_memslot(kvm, slot);
1009
1010 /*
1011 * We can re-use the old_memslots from above, the only difference
1012 * from the currently installed memslots is the invalid flag. This
1013 * will get overwritten by update_memslots anyway.
1014 */
1015 slots = old_memslots;
1016 }
1017
1018 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1019 if (r)
1020 goto out_slots;
1021
1022 /* actual memory is freed via old in kvm_free_memslot below */
1023 if (change == KVM_MR_DELETE) {
1024 new.dirty_bitmap = NULL;
1025 memset(&new.arch, 0, sizeof(new.arch));
1026 }
1027
1028 update_memslots(slots, &new);
1029 old_memslots = install_new_memslots(kvm, as_id, slots);
1030
1031 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1032
1033 kvm_free_memslot(kvm, &old, &new);
1034 kvfree(old_memslots);
1035
1036 /*
1037 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1038 * un-mapped and re-mapped if their base changes. Since base change
1039 * unmapping is handled above with slot deletion, mapping alone is
1040 * needed here. Anything else the iommu might care about for existing
1041 * slots (size changes, userspace addr changes and read-only flag
1042 * changes) is disallowed above, so any other attribute changes getting
1043 * here can be skipped.
1044 */
1045 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 r = kvm_iommu_map_pages(kvm, &new);
1047 return r;
1048 }
1049
1050 return 0;
1051
1052 out_slots:
1053 kvfree(slots);
1054 out_free:
1055 kvm_free_memslot(kvm, &new, &old);
1056 out:
1057 return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 const struct kvm_userspace_memory_region *mem)
1063 {
1064 int r;
1065
1066 mutex_lock(&kvm->slots_lock);
1067 r = __kvm_set_memory_region(kvm, mem);
1068 mutex_unlock(&kvm->slots_lock);
1069 return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 struct kvm_userspace_memory_region *mem)
1075 {
1076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077 return -EINVAL;
1078
1079 return kvm_set_memory_region(kvm, mem);
1080 }
1081
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085 struct kvm_memslots *slots;
1086 struct kvm_memory_slot *memslot;
1087 int r, i, as_id, id;
1088 unsigned long n;
1089 unsigned long any = 0;
1090
1091 r = -EINVAL;
1092 as_id = log->slot >> 16;
1093 id = (u16)log->slot;
1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 goto out;
1096
1097 slots = __kvm_memslots(kvm, as_id);
1098 memslot = id_to_memslot(slots, id);
1099 r = -ENOENT;
1100 if (!memslot->dirty_bitmap)
1101 goto out;
1102
1103 n = kvm_dirty_bitmap_bytes(memslot);
1104
1105 for (i = 0; !any && i < n/sizeof(long); ++i)
1106 any = memslot->dirty_bitmap[i];
1107
1108 r = -EFAULT;
1109 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110 goto out;
1111
1112 if (any)
1113 *is_dirty = 1;
1114
1115 r = 0;
1116 out:
1117 return r;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1120
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1122 /**
1123 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124 * are dirty write protect them for next write.
1125 * @kvm: pointer to kvm instance
1126 * @log: slot id and address to which we copy the log
1127 * @is_dirty: flag set if any page is dirty
1128 *
1129 * We need to keep it in mind that VCPU threads can write to the bitmap
1130 * concurrently. So, to avoid losing track of dirty pages we keep the
1131 * following order:
1132 *
1133 * 1. Take a snapshot of the bit and clear it if needed.
1134 * 2. Write protect the corresponding page.
1135 * 3. Copy the snapshot to the userspace.
1136 * 4. Upon return caller flushes TLB's if needed.
1137 *
1138 * Between 2 and 4, the guest may write to the page using the remaining TLB
1139 * entry. This is not a problem because the page is reported dirty using
1140 * the snapshot taken before and step 4 ensures that writes done after
1141 * exiting to userspace will be logged for the next call.
1142 *
1143 */
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145 struct kvm_dirty_log *log, bool *is_dirty)
1146 {
1147 struct kvm_memslots *slots;
1148 struct kvm_memory_slot *memslot;
1149 int r, i, as_id, id;
1150 unsigned long n;
1151 unsigned long *dirty_bitmap;
1152 unsigned long *dirty_bitmap_buffer;
1153
1154 r = -EINVAL;
1155 as_id = log->slot >> 16;
1156 id = (u16)log->slot;
1157 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1158 goto out;
1159
1160 slots = __kvm_memslots(kvm, as_id);
1161 memslot = id_to_memslot(slots, id);
1162
1163 dirty_bitmap = memslot->dirty_bitmap;
1164 r = -ENOENT;
1165 if (!dirty_bitmap)
1166 goto out;
1167
1168 n = kvm_dirty_bitmap_bytes(memslot);
1169
1170 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171 memset(dirty_bitmap_buffer, 0, n);
1172
1173 spin_lock(&kvm->mmu_lock);
1174 *is_dirty = false;
1175 for (i = 0; i < n / sizeof(long); i++) {
1176 unsigned long mask;
1177 gfn_t offset;
1178
1179 if (!dirty_bitmap[i])
1180 continue;
1181
1182 *is_dirty = true;
1183
1184 mask = xchg(&dirty_bitmap[i], 0);
1185 dirty_bitmap_buffer[i] = mask;
1186
1187 if (mask) {
1188 offset = i * BITS_PER_LONG;
1189 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1190 offset, mask);
1191 }
1192 }
1193
1194 spin_unlock(&kvm->mmu_lock);
1195
1196 r = -EFAULT;
1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 goto out;
1199
1200 r = 0;
1201 out:
1202 return r;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206
1207 bool kvm_largepages_enabled(void)
1208 {
1209 return largepages_enabled;
1210 }
1211
1212 void kvm_disable_largepages(void)
1213 {
1214 largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232
1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 memslot->flags & KVM_MEMSLOT_INVALID)
1235 return false;
1236
1237 return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 struct vm_area_struct *vma;
1244 unsigned long addr, size;
1245
1246 size = PAGE_SIZE;
1247
1248 addr = gfn_to_hva(kvm, gfn);
1249 if (kvm_is_error_hva(addr))
1250 return PAGE_SIZE;
1251
1252 down_read(&current->mm->mmap_sem);
1253 vma = find_vma(current->mm, addr);
1254 if (!vma)
1255 goto out;
1256
1257 size = vma_kernel_pagesize(vma);
1258
1259 out:
1260 up_read(&current->mm->mmap_sem);
1261
1262 return size;
1263 }
1264
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 return slot->flags & KVM_MEM_READONLY;
1268 }
1269
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages, bool write)
1272 {
1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 return KVM_HVA_ERR_BAD;
1275
1276 if (memslot_is_readonly(slot) && write)
1277 return KVM_HVA_ERR_RO_BAD;
1278
1279 if (nr_pages)
1280 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1281
1282 return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 gfn_t *nr_pages)
1287 {
1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 gfn_t gfn)
1293 {
1294 return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309
1310 /*
1311 * If writable is set to false, the hva returned by this function is only
1312 * allowed to be read.
1313 */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 gfn_t gfn, bool *writable)
1316 {
1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318
1319 if (!kvm_is_error_hva(hva) && writable)
1320 *writable = !memslot_is_readonly(slot);
1321
1322 return hva;
1323 }
1324
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328
1329 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 struct page **page)
1341 {
1342 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1343
1344 if (write)
1345 flags |= FOLL_WRITE;
1346
1347 return __get_user_pages(current, current->mm, start, 1, flags, page,
1348 NULL, NULL);
1349 }
1350
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1352 {
1353 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1354
1355 rc = __get_user_pages(current, current->mm, addr, 1,
1356 flags, NULL, NULL, NULL);
1357 return rc == -EHWPOISON;
1358 }
1359
1360 /*
1361 * The atomic path to get the writable pfn which will be stored in @pfn,
1362 * true indicates success, otherwise false is returned.
1363 */
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1366 {
1367 struct page *page[1];
1368 int npages;
1369
1370 if (!(async || atomic))
1371 return false;
1372
1373 /*
1374 * Fast pin a writable pfn only if it is a write fault request
1375 * or the caller allows to map a writable pfn for a read fault
1376 * request.
1377 */
1378 if (!(write_fault || writable))
1379 return false;
1380
1381 npages = __get_user_pages_fast(addr, 1, 1, page);
1382 if (npages == 1) {
1383 *pfn = page_to_pfn(page[0]);
1384
1385 if (writable)
1386 *writable = true;
1387 return true;
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * The slow path to get the pfn of the specified host virtual address,
1395 * 1 indicates success, -errno is returned if error is detected.
1396 */
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398 bool *writable, kvm_pfn_t *pfn)
1399 {
1400 struct page *page[1];
1401 int npages = 0;
1402
1403 might_sleep();
1404
1405 if (writable)
1406 *writable = write_fault;
1407
1408 if (async) {
1409 down_read(&current->mm->mmap_sem);
1410 npages = get_user_page_nowait(addr, write_fault, page);
1411 up_read(&current->mm->mmap_sem);
1412 } else
1413 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414 write_fault, 0, page,
1415 FOLL_TOUCH|FOLL_HWPOISON);
1416 if (npages != 1)
1417 return npages;
1418
1419 /* map read fault as writable if possible */
1420 if (unlikely(!write_fault) && writable) {
1421 struct page *wpage[1];
1422
1423 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424 if (npages == 1) {
1425 *writable = true;
1426 put_page(page[0]);
1427 page[0] = wpage[0];
1428 }
1429
1430 npages = 1;
1431 }
1432 *pfn = page_to_pfn(page[0]);
1433 return npages;
1434 }
1435
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438 if (unlikely(!(vma->vm_flags & VM_READ)))
1439 return false;
1440
1441 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442 return false;
1443
1444 return true;
1445 }
1446
1447 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1448 unsigned long addr, bool *async,
1449 bool write_fault, kvm_pfn_t *p_pfn)
1450 {
1451 unsigned long pfn;
1452 int r;
1453
1454 r = follow_pfn(vma, addr, &pfn);
1455 if (r) {
1456 /*
1457 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1458 * not call the fault handler, so do it here.
1459 */
1460 bool unlocked = false;
1461 r = fixup_user_fault(current, current->mm, addr,
1462 (write_fault ? FAULT_FLAG_WRITE : 0),
1463 &unlocked);
1464 if (unlocked)
1465 return -EAGAIN;
1466 if (r)
1467 return r;
1468
1469 r = follow_pfn(vma, addr, &pfn);
1470 if (r)
1471 return r;
1472
1473 }
1474
1475
1476 /*
1477 * Get a reference here because callers of *hva_to_pfn* and
1478 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1479 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1480 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1481 * simply do nothing for reserved pfns.
1482 *
1483 * Whoever called remap_pfn_range is also going to call e.g.
1484 * unmap_mapping_range before the underlying pages are freed,
1485 * causing a call to our MMU notifier.
1486 */
1487 kvm_get_pfn(pfn);
1488
1489 *p_pfn = pfn;
1490 return 0;
1491 }
1492
1493 /*
1494 * Pin guest page in memory and return its pfn.
1495 * @addr: host virtual address which maps memory to the guest
1496 * @atomic: whether this function can sleep
1497 * @async: whether this function need to wait IO complete if the
1498 * host page is not in the memory
1499 * @write_fault: whether we should get a writable host page
1500 * @writable: whether it allows to map a writable host page for !@write_fault
1501 *
1502 * The function will map a writable host page for these two cases:
1503 * 1): @write_fault = true
1504 * 2): @write_fault = false && @writable, @writable will tell the caller
1505 * whether the mapping is writable.
1506 */
1507 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1508 bool write_fault, bool *writable)
1509 {
1510 struct vm_area_struct *vma;
1511 kvm_pfn_t pfn = 0;
1512 int npages, r;
1513
1514 /* we can do it either atomically or asynchronously, not both */
1515 BUG_ON(atomic && async);
1516
1517 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1518 return pfn;
1519
1520 if (atomic)
1521 return KVM_PFN_ERR_FAULT;
1522
1523 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1524 if (npages == 1)
1525 return pfn;
1526
1527 down_read(&current->mm->mmap_sem);
1528 if (npages == -EHWPOISON ||
1529 (!async && check_user_page_hwpoison(addr))) {
1530 pfn = KVM_PFN_ERR_HWPOISON;
1531 goto exit;
1532 }
1533
1534 retry:
1535 vma = find_vma_intersection(current->mm, addr, addr + 1);
1536
1537 if (vma == NULL)
1538 pfn = KVM_PFN_ERR_FAULT;
1539 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1540 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1541 if (r == -EAGAIN)
1542 goto retry;
1543 if (r < 0)
1544 pfn = KVM_PFN_ERR_FAULT;
1545 } else {
1546 if (async && vma_is_valid(vma, write_fault))
1547 *async = true;
1548 pfn = KVM_PFN_ERR_FAULT;
1549 }
1550 exit:
1551 up_read(&current->mm->mmap_sem);
1552 return pfn;
1553 }
1554
1555 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1556 bool atomic, bool *async, bool write_fault,
1557 bool *writable)
1558 {
1559 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1560
1561 if (addr == KVM_HVA_ERR_RO_BAD) {
1562 if (writable)
1563 *writable = false;
1564 return KVM_PFN_ERR_RO_FAULT;
1565 }
1566
1567 if (kvm_is_error_hva(addr)) {
1568 if (writable)
1569 *writable = false;
1570 return KVM_PFN_NOSLOT;
1571 }
1572
1573 /* Do not map writable pfn in the readonly memslot. */
1574 if (writable && memslot_is_readonly(slot)) {
1575 *writable = false;
1576 writable = NULL;
1577 }
1578
1579 return hva_to_pfn(addr, atomic, async, write_fault,
1580 writable);
1581 }
1582 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1583
1584 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1585 bool *writable)
1586 {
1587 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1588 write_fault, writable);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1591
1592 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1593 {
1594 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1597
1598 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1599 {
1600 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1603
1604 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1605 {
1606 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1609
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1627
1628 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1629 struct page **pages, int nr_pages)
1630 {
1631 unsigned long addr;
1632 gfn_t entry;
1633
1634 addr = gfn_to_hva_many(slot, gfn, &entry);
1635 if (kvm_is_error_hva(addr))
1636 return -1;
1637
1638 if (entry < nr_pages)
1639 return 0;
1640
1641 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1642 }
1643 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1644
1645 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1646 {
1647 if (is_error_noslot_pfn(pfn))
1648 return KVM_ERR_PTR_BAD_PAGE;
1649
1650 if (kvm_is_reserved_pfn(pfn)) {
1651 WARN_ON(1);
1652 return KVM_ERR_PTR_BAD_PAGE;
1653 }
1654
1655 return pfn_to_page(pfn);
1656 }
1657
1658 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1659 {
1660 kvm_pfn_t pfn;
1661
1662 pfn = gfn_to_pfn(kvm, gfn);
1663
1664 return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_page);
1667
1668 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1669 {
1670 kvm_pfn_t pfn;
1671
1672 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1673
1674 return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1677
1678 void kvm_release_page_clean(struct page *page)
1679 {
1680 WARN_ON(is_error_page(page));
1681
1682 kvm_release_pfn_clean(page_to_pfn(page));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1685
1686 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1687 {
1688 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1689 put_page(pfn_to_page(pfn));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1692
1693 void kvm_release_page_dirty(struct page *page)
1694 {
1695 WARN_ON(is_error_page(page));
1696
1697 kvm_release_pfn_dirty(page_to_pfn(page));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1700
1701 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 kvm_set_pfn_dirty(pfn);
1704 kvm_release_pfn_clean(pfn);
1705 }
1706
1707 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1708 {
1709 if (!kvm_is_reserved_pfn(pfn)) {
1710 struct page *page = pfn_to_page(pfn);
1711
1712 if (!PageReserved(page))
1713 SetPageDirty(page);
1714 }
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1717
1718 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1719 {
1720 if (!kvm_is_reserved_pfn(pfn))
1721 mark_page_accessed(pfn_to_page(pfn));
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1724
1725 void kvm_get_pfn(kvm_pfn_t pfn)
1726 {
1727 if (!kvm_is_reserved_pfn(pfn))
1728 get_page(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1731
1732 static int next_segment(unsigned long len, int offset)
1733 {
1734 if (len > PAGE_SIZE - offset)
1735 return PAGE_SIZE - offset;
1736 else
1737 return len;
1738 }
1739
1740 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1741 void *data, int offset, int len)
1742 {
1743 int r;
1744 unsigned long addr;
1745
1746 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1747 if (kvm_is_error_hva(addr))
1748 return -EFAULT;
1749 r = __copy_from_user(data, (void __user *)addr + offset, len);
1750 if (r)
1751 return -EFAULT;
1752 return 0;
1753 }
1754
1755 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1756 int len)
1757 {
1758 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1759
1760 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1763
1764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1765 int offset, int len)
1766 {
1767 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1768
1769 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1772
1773 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1774 {
1775 gfn_t gfn = gpa >> PAGE_SHIFT;
1776 int seg;
1777 int offset = offset_in_page(gpa);
1778 int ret;
1779
1780 while ((seg = next_segment(len, offset)) != 0) {
1781 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1782 if (ret < 0)
1783 return ret;
1784 offset = 0;
1785 len -= seg;
1786 data += seg;
1787 ++gfn;
1788 }
1789 return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_read_guest);
1792
1793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1794 {
1795 gfn_t gfn = gpa >> PAGE_SHIFT;
1796 int seg;
1797 int offset = offset_in_page(gpa);
1798 int ret;
1799
1800 while ((seg = next_segment(len, offset)) != 0) {
1801 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1802 if (ret < 0)
1803 return ret;
1804 offset = 0;
1805 len -= seg;
1806 data += seg;
1807 ++gfn;
1808 }
1809 return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1812
1813 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1814 void *data, int offset, unsigned long len)
1815 {
1816 int r;
1817 unsigned long addr;
1818
1819 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1820 if (kvm_is_error_hva(addr))
1821 return -EFAULT;
1822 pagefault_disable();
1823 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1824 pagefault_enable();
1825 if (r)
1826 return -EFAULT;
1827 return 0;
1828 }
1829
1830 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1831 unsigned long len)
1832 {
1833 gfn_t gfn = gpa >> PAGE_SHIFT;
1834 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835 int offset = offset_in_page(gpa);
1836
1837 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1840
1841 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1842 void *data, unsigned long len)
1843 {
1844 gfn_t gfn = gpa >> PAGE_SHIFT;
1845 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846 int offset = offset_in_page(gpa);
1847
1848 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1851
1852 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1853 const void *data, int offset, int len)
1854 {
1855 int r;
1856 unsigned long addr;
1857
1858 addr = gfn_to_hva_memslot(memslot, gfn);
1859 if (kvm_is_error_hva(addr))
1860 return -EFAULT;
1861 r = __copy_to_user((void __user *)addr + offset, data, len);
1862 if (r)
1863 return -EFAULT;
1864 mark_page_dirty_in_slot(memslot, gfn);
1865 return 0;
1866 }
1867
1868 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1869 const void *data, int offset, int len)
1870 {
1871 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1872
1873 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1876
1877 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1878 const void *data, int offset, int len)
1879 {
1880 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1881
1882 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1885
1886 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1887 unsigned long len)
1888 {
1889 gfn_t gfn = gpa >> PAGE_SHIFT;
1890 int seg;
1891 int offset = offset_in_page(gpa);
1892 int ret;
1893
1894 while ((seg = next_segment(len, offset)) != 0) {
1895 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1896 if (ret < 0)
1897 return ret;
1898 offset = 0;
1899 len -= seg;
1900 data += seg;
1901 ++gfn;
1902 }
1903 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_write_guest);
1906
1907 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1908 unsigned long len)
1909 {
1910 gfn_t gfn = gpa >> PAGE_SHIFT;
1911 int seg;
1912 int offset = offset_in_page(gpa);
1913 int ret;
1914
1915 while ((seg = next_segment(len, offset)) != 0) {
1916 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1917 if (ret < 0)
1918 return ret;
1919 offset = 0;
1920 len -= seg;
1921 data += seg;
1922 ++gfn;
1923 }
1924 return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1927
1928 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1929 gpa_t gpa, unsigned long len)
1930 {
1931 struct kvm_memslots *slots = kvm_memslots(kvm);
1932 int offset = offset_in_page(gpa);
1933 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1934 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1935 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1936 gfn_t nr_pages_avail;
1937
1938 ghc->gpa = gpa;
1939 ghc->generation = slots->generation;
1940 ghc->len = len;
1941 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1942 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1943 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1944 ghc->hva += offset;
1945 } else {
1946 /*
1947 * If the requested region crosses two memslots, we still
1948 * verify that the entire region is valid here.
1949 */
1950 while (start_gfn <= end_gfn) {
1951 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1953 &nr_pages_avail);
1954 if (kvm_is_error_hva(ghc->hva))
1955 return -EFAULT;
1956 start_gfn += nr_pages_avail;
1957 }
1958 /* Use the slow path for cross page reads and writes. */
1959 ghc->memslot = NULL;
1960 }
1961 return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1964
1965 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1966 void *data, unsigned long len)
1967 {
1968 struct kvm_memslots *slots = kvm_memslots(kvm);
1969 int r;
1970
1971 BUG_ON(len > ghc->len);
1972
1973 if (slots->generation != ghc->generation)
1974 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1975
1976 if (unlikely(!ghc->memslot))
1977 return kvm_write_guest(kvm, ghc->gpa, data, len);
1978
1979 if (kvm_is_error_hva(ghc->hva))
1980 return -EFAULT;
1981
1982 r = __copy_to_user((void __user *)ghc->hva, data, len);
1983 if (r)
1984 return -EFAULT;
1985 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1986
1987 return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1990
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 void *data, unsigned long len)
1993 {
1994 struct kvm_memslots *slots = kvm_memslots(kvm);
1995 int r;
1996
1997 BUG_ON(len > ghc->len);
1998
1999 if (slots->generation != ghc->generation)
2000 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2001
2002 if (unlikely(!ghc->memslot))
2003 return kvm_read_guest(kvm, ghc->gpa, data, len);
2004
2005 if (kvm_is_error_hva(ghc->hva))
2006 return -EFAULT;
2007
2008 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009 if (r)
2010 return -EFAULT;
2011
2012 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2015
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2017 {
2018 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2019
2020 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2023
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2025 {
2026 gfn_t gfn = gpa >> PAGE_SHIFT;
2027 int seg;
2028 int offset = offset_in_page(gpa);
2029 int ret;
2030
2031 while ((seg = next_segment(len, offset)) != 0) {
2032 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033 if (ret < 0)
2034 return ret;
2035 offset = 0;
2036 len -= seg;
2037 ++gfn;
2038 }
2039 return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2042
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044 gfn_t gfn)
2045 {
2046 if (memslot && memslot->dirty_bitmap) {
2047 unsigned long rel_gfn = gfn - memslot->base_gfn;
2048
2049 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050 }
2051 }
2052
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2054 {
2055 struct kvm_memory_slot *memslot;
2056
2057 memslot = gfn_to_memslot(kvm, gfn);
2058 mark_page_dirty_in_slot(memslot, gfn);
2059 }
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2061
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 {
2064 struct kvm_memory_slot *memslot;
2065
2066 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067 mark_page_dirty_in_slot(memslot, gfn);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2070
2071 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2072 {
2073 unsigned int old, val, grow;
2074
2075 old = val = vcpu->halt_poll_ns;
2076 grow = READ_ONCE(halt_poll_ns_grow);
2077 /* 10us base */
2078 if (val == 0 && grow)
2079 val = 10000;
2080 else
2081 val *= grow;
2082
2083 if (val > halt_poll_ns)
2084 val = halt_poll_ns;
2085
2086 vcpu->halt_poll_ns = val;
2087 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2088 }
2089
2090 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2091 {
2092 unsigned int old, val, shrink;
2093
2094 old = val = vcpu->halt_poll_ns;
2095 shrink = READ_ONCE(halt_poll_ns_shrink);
2096 if (shrink == 0)
2097 val = 0;
2098 else
2099 val /= shrink;
2100
2101 vcpu->halt_poll_ns = val;
2102 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2103 }
2104
2105 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2106 {
2107 if (kvm_arch_vcpu_runnable(vcpu)) {
2108 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2109 return -EINTR;
2110 }
2111 if (kvm_cpu_has_pending_timer(vcpu))
2112 return -EINTR;
2113 if (signal_pending(current))
2114 return -EINTR;
2115
2116 return 0;
2117 }
2118
2119 /*
2120 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2121 */
2122 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2123 {
2124 ktime_t start, cur;
2125 DECLARE_SWAITQUEUE(wait);
2126 bool waited = false;
2127 u64 block_ns;
2128
2129 start = cur = ktime_get();
2130 if (vcpu->halt_poll_ns) {
2131 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2132
2133 ++vcpu->stat.halt_attempted_poll;
2134 do {
2135 /*
2136 * This sets KVM_REQ_UNHALT if an interrupt
2137 * arrives.
2138 */
2139 if (kvm_vcpu_check_block(vcpu) < 0) {
2140 ++vcpu->stat.halt_successful_poll;
2141 if (!vcpu_valid_wakeup(vcpu))
2142 ++vcpu->stat.halt_poll_invalid;
2143 goto out;
2144 }
2145 cur = ktime_get();
2146 } while (single_task_running() && ktime_before(cur, stop));
2147 }
2148
2149 kvm_arch_vcpu_blocking(vcpu);
2150
2151 for (;;) {
2152 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2153
2154 if (kvm_vcpu_check_block(vcpu) < 0)
2155 break;
2156
2157 waited = true;
2158 schedule();
2159 }
2160
2161 finish_swait(&vcpu->wq, &wait);
2162 cur = ktime_get();
2163
2164 kvm_arch_vcpu_unblocking(vcpu);
2165 out:
2166 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2167
2168 if (!vcpu_valid_wakeup(vcpu))
2169 shrink_halt_poll_ns(vcpu);
2170 else if (halt_poll_ns) {
2171 if (block_ns <= vcpu->halt_poll_ns)
2172 ;
2173 /* we had a long block, shrink polling */
2174 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2175 shrink_halt_poll_ns(vcpu);
2176 /* we had a short halt and our poll time is too small */
2177 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2178 block_ns < halt_poll_ns)
2179 grow_halt_poll_ns(vcpu);
2180 } else
2181 vcpu->halt_poll_ns = 0;
2182
2183 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2184 kvm_arch_vcpu_block_finish(vcpu);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2187
2188 #ifndef CONFIG_S390
2189 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2190 {
2191 struct swait_queue_head *wqp;
2192
2193 wqp = kvm_arch_vcpu_wq(vcpu);
2194 if (swait_active(wqp)) {
2195 swake_up(wqp);
2196 ++vcpu->stat.halt_wakeup;
2197 }
2198
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2201
2202 /*
2203 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2204 */
2205 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2206 {
2207 int me;
2208 int cpu = vcpu->cpu;
2209
2210 kvm_vcpu_wake_up(vcpu);
2211 me = get_cpu();
2212 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213 if (kvm_arch_vcpu_should_kick(vcpu))
2214 smp_send_reschedule(cpu);
2215 put_cpu();
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2219
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2221 {
2222 struct pid *pid;
2223 struct task_struct *task = NULL;
2224 int ret = 0;
2225
2226 rcu_read_lock();
2227 pid = rcu_dereference(target->pid);
2228 if (pid)
2229 task = get_pid_task(pid, PIDTYPE_PID);
2230 rcu_read_unlock();
2231 if (!task)
2232 return ret;
2233 ret = yield_to(task, 1);
2234 put_task_struct(task);
2235
2236 return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2239
2240 /*
2241 * Helper that checks whether a VCPU is eligible for directed yield.
2242 * Most eligible candidate to yield is decided by following heuristics:
2243 *
2244 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245 * (preempted lock holder), indicated by @in_spin_loop.
2246 * Set at the beiginning and cleared at the end of interception/PLE handler.
2247 *
2248 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249 * chance last time (mostly it has become eligible now since we have probably
2250 * yielded to lockholder in last iteration. This is done by toggling
2251 * @dy_eligible each time a VCPU checked for eligibility.)
2252 *
2253 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254 * to preempted lock-holder could result in wrong VCPU selection and CPU
2255 * burning. Giving priority for a potential lock-holder increases lock
2256 * progress.
2257 *
2258 * Since algorithm is based on heuristics, accessing another VCPU data without
2259 * locking does not harm. It may result in trying to yield to same VCPU, fail
2260 * and continue with next VCPU and so on.
2261 */
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2263 {
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2265 bool eligible;
2266
2267 eligible = !vcpu->spin_loop.in_spin_loop ||
2268 vcpu->spin_loop.dy_eligible;
2269
2270 if (vcpu->spin_loop.in_spin_loop)
2271 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2272
2273 return eligible;
2274 #else
2275 return true;
2276 #endif
2277 }
2278
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2280 {
2281 struct kvm *kvm = me->kvm;
2282 struct kvm_vcpu *vcpu;
2283 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2284 int yielded = 0;
2285 int try = 3;
2286 int pass;
2287 int i;
2288
2289 kvm_vcpu_set_in_spin_loop(me, true);
2290 /*
2291 * We boost the priority of a VCPU that is runnable but not
2292 * currently running, because it got preempted by something
2293 * else and called schedule in __vcpu_run. Hopefully that
2294 * VCPU is holding the lock that we need and will release it.
2295 * We approximate round-robin by starting at the last boosted VCPU.
2296 */
2297 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298 kvm_for_each_vcpu(i, vcpu, kvm) {
2299 if (!pass && i <= last_boosted_vcpu) {
2300 i = last_boosted_vcpu;
2301 continue;
2302 } else if (pass && i > last_boosted_vcpu)
2303 break;
2304 if (!ACCESS_ONCE(vcpu->preempted))
2305 continue;
2306 if (vcpu == me)
2307 continue;
2308 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2309 continue;
2310 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2311 continue;
2312
2313 yielded = kvm_vcpu_yield_to(vcpu);
2314 if (yielded > 0) {
2315 kvm->last_boosted_vcpu = i;
2316 break;
2317 } else if (yielded < 0) {
2318 try--;
2319 if (!try)
2320 break;
2321 }
2322 }
2323 }
2324 kvm_vcpu_set_in_spin_loop(me, false);
2325
2326 /* Ensure vcpu is not eligible during next spinloop */
2327 kvm_vcpu_set_dy_eligible(me, false);
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2330
2331 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2332 {
2333 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2334 struct page *page;
2335
2336 if (vmf->pgoff == 0)
2337 page = virt_to_page(vcpu->run);
2338 #ifdef CONFIG_X86
2339 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2340 page = virt_to_page(vcpu->arch.pio_data);
2341 #endif
2342 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2343 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2344 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2345 #endif
2346 else
2347 return kvm_arch_vcpu_fault(vcpu, vmf);
2348 get_page(page);
2349 vmf->page = page;
2350 return 0;
2351 }
2352
2353 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2354 .fault = kvm_vcpu_fault,
2355 };
2356
2357 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2358 {
2359 vma->vm_ops = &kvm_vcpu_vm_ops;
2360 return 0;
2361 }
2362
2363 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2364 {
2365 struct kvm_vcpu *vcpu = filp->private_data;
2366
2367 kvm_put_kvm(vcpu->kvm);
2368 return 0;
2369 }
2370
2371 static struct file_operations kvm_vcpu_fops = {
2372 .release = kvm_vcpu_release,
2373 .unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375 .compat_ioctl = kvm_vcpu_compat_ioctl,
2376 #endif
2377 .mmap = kvm_vcpu_mmap,
2378 .llseek = noop_llseek,
2379 };
2380
2381 /*
2382 * Allocates an inode for the vcpu.
2383 */
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385 {
2386 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387 }
2388
2389 /*
2390 * Creates some virtual cpus. Good luck creating more than one.
2391 */
2392 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2393 {
2394 int r;
2395 struct kvm_vcpu *vcpu;
2396
2397 if (id >= KVM_MAX_VCPU_ID)
2398 return -EINVAL;
2399
2400 mutex_lock(&kvm->lock);
2401 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2402 mutex_unlock(&kvm->lock);
2403 return -EINVAL;
2404 }
2405
2406 kvm->created_vcpus++;
2407 mutex_unlock(&kvm->lock);
2408
2409 vcpu = kvm_arch_vcpu_create(kvm, id);
2410 if (IS_ERR(vcpu)) {
2411 r = PTR_ERR(vcpu);
2412 goto vcpu_decrement;
2413 }
2414
2415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2416
2417 r = kvm_arch_vcpu_setup(vcpu);
2418 if (r)
2419 goto vcpu_destroy;
2420
2421 mutex_lock(&kvm->lock);
2422 if (kvm_get_vcpu_by_id(kvm, id)) {
2423 r = -EEXIST;
2424 goto unlock_vcpu_destroy;
2425 }
2426
2427 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2428
2429 /* Now it's all set up, let userspace reach it */
2430 kvm_get_kvm(kvm);
2431 r = create_vcpu_fd(vcpu);
2432 if (r < 0) {
2433 kvm_put_kvm(kvm);
2434 goto unlock_vcpu_destroy;
2435 }
2436
2437 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2438
2439 /*
2440 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2441 * before kvm->online_vcpu's incremented value.
2442 */
2443 smp_wmb();
2444 atomic_inc(&kvm->online_vcpus);
2445
2446 mutex_unlock(&kvm->lock);
2447 kvm_arch_vcpu_postcreate(vcpu);
2448 return r;
2449
2450 unlock_vcpu_destroy:
2451 mutex_unlock(&kvm->lock);
2452 vcpu_destroy:
2453 kvm_arch_vcpu_destroy(vcpu);
2454 vcpu_decrement:
2455 mutex_lock(&kvm->lock);
2456 kvm->created_vcpus--;
2457 mutex_unlock(&kvm->lock);
2458 return r;
2459 }
2460
2461 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2462 {
2463 if (sigset) {
2464 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2465 vcpu->sigset_active = 1;
2466 vcpu->sigset = *sigset;
2467 } else
2468 vcpu->sigset_active = 0;
2469 return 0;
2470 }
2471
2472 static long kvm_vcpu_ioctl(struct file *filp,
2473 unsigned int ioctl, unsigned long arg)
2474 {
2475 struct kvm_vcpu *vcpu = filp->private_data;
2476 void __user *argp = (void __user *)arg;
2477 int r;
2478 struct kvm_fpu *fpu = NULL;
2479 struct kvm_sregs *kvm_sregs = NULL;
2480
2481 if (vcpu->kvm->mm != current->mm)
2482 return -EIO;
2483
2484 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2485 return -EINVAL;
2486
2487 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2488 /*
2489 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2490 * so vcpu_load() would break it.
2491 */
2492 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2493 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2494 #endif
2495
2496
2497 r = vcpu_load(vcpu);
2498 if (r)
2499 return r;
2500 switch (ioctl) {
2501 case KVM_RUN:
2502 r = -EINVAL;
2503 if (arg)
2504 goto out;
2505 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2506 /* The thread running this VCPU changed. */
2507 struct pid *oldpid = vcpu->pid;
2508 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2509
2510 rcu_assign_pointer(vcpu->pid, newpid);
2511 if (oldpid)
2512 synchronize_rcu();
2513 put_pid(oldpid);
2514 }
2515 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2516 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2517 break;
2518 case KVM_GET_REGS: {
2519 struct kvm_regs *kvm_regs;
2520
2521 r = -ENOMEM;
2522 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2523 if (!kvm_regs)
2524 goto out;
2525 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2526 if (r)
2527 goto out_free1;
2528 r = -EFAULT;
2529 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2530 goto out_free1;
2531 r = 0;
2532 out_free1:
2533 kfree(kvm_regs);
2534 break;
2535 }
2536 case KVM_SET_REGS: {
2537 struct kvm_regs *kvm_regs;
2538
2539 r = -ENOMEM;
2540 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2541 if (IS_ERR(kvm_regs)) {
2542 r = PTR_ERR(kvm_regs);
2543 goto out;
2544 }
2545 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2546 kfree(kvm_regs);
2547 break;
2548 }
2549 case KVM_GET_SREGS: {
2550 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2551 r = -ENOMEM;
2552 if (!kvm_sregs)
2553 goto out;
2554 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2555 if (r)
2556 goto out;
2557 r = -EFAULT;
2558 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2559 goto out;
2560 r = 0;
2561 break;
2562 }
2563 case KVM_SET_SREGS: {
2564 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2565 if (IS_ERR(kvm_sregs)) {
2566 r = PTR_ERR(kvm_sregs);
2567 kvm_sregs = NULL;
2568 goto out;
2569 }
2570 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2571 break;
2572 }
2573 case KVM_GET_MP_STATE: {
2574 struct kvm_mp_state mp_state;
2575
2576 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2577 if (r)
2578 goto out;
2579 r = -EFAULT;
2580 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2581 goto out;
2582 r = 0;
2583 break;
2584 }
2585 case KVM_SET_MP_STATE: {
2586 struct kvm_mp_state mp_state;
2587
2588 r = -EFAULT;
2589 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2590 goto out;
2591 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2592 break;
2593 }
2594 case KVM_TRANSLATE: {
2595 struct kvm_translation tr;
2596
2597 r = -EFAULT;
2598 if (copy_from_user(&tr, argp, sizeof(tr)))
2599 goto out;
2600 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2601 if (r)
2602 goto out;
2603 r = -EFAULT;
2604 if (copy_to_user(argp, &tr, sizeof(tr)))
2605 goto out;
2606 r = 0;
2607 break;
2608 }
2609 case KVM_SET_GUEST_DEBUG: {
2610 struct kvm_guest_debug dbg;
2611
2612 r = -EFAULT;
2613 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2614 goto out;
2615 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2616 break;
2617 }
2618 case KVM_SET_SIGNAL_MASK: {
2619 struct kvm_signal_mask __user *sigmask_arg = argp;
2620 struct kvm_signal_mask kvm_sigmask;
2621 sigset_t sigset, *p;
2622
2623 p = NULL;
2624 if (argp) {
2625 r = -EFAULT;
2626 if (copy_from_user(&kvm_sigmask, argp,
2627 sizeof(kvm_sigmask)))
2628 goto out;
2629 r = -EINVAL;
2630 if (kvm_sigmask.len != sizeof(sigset))
2631 goto out;
2632 r = -EFAULT;
2633 if (copy_from_user(&sigset, sigmask_arg->sigset,
2634 sizeof(sigset)))
2635 goto out;
2636 p = &sigset;
2637 }
2638 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2639 break;
2640 }
2641 case KVM_GET_FPU: {
2642 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2643 r = -ENOMEM;
2644 if (!fpu)
2645 goto out;
2646 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2647 if (r)
2648 goto out;
2649 r = -EFAULT;
2650 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2651 goto out;
2652 r = 0;
2653 break;
2654 }
2655 case KVM_SET_FPU: {
2656 fpu = memdup_user(argp, sizeof(*fpu));
2657 if (IS_ERR(fpu)) {
2658 r = PTR_ERR(fpu);
2659 fpu = NULL;
2660 goto out;
2661 }
2662 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2663 break;
2664 }
2665 default:
2666 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2667 }
2668 out:
2669 vcpu_put(vcpu);
2670 kfree(fpu);
2671 kfree(kvm_sregs);
2672 return r;
2673 }
2674
2675 #ifdef CONFIG_KVM_COMPAT
2676 static long kvm_vcpu_compat_ioctl(struct file *filp,
2677 unsigned int ioctl, unsigned long arg)
2678 {
2679 struct kvm_vcpu *vcpu = filp->private_data;
2680 void __user *argp = compat_ptr(arg);
2681 int r;
2682
2683 if (vcpu->kvm->mm != current->mm)
2684 return -EIO;
2685
2686 switch (ioctl) {
2687 case KVM_SET_SIGNAL_MASK: {
2688 struct kvm_signal_mask __user *sigmask_arg = argp;
2689 struct kvm_signal_mask kvm_sigmask;
2690 compat_sigset_t csigset;
2691 sigset_t sigset;
2692
2693 if (argp) {
2694 r = -EFAULT;
2695 if (copy_from_user(&kvm_sigmask, argp,
2696 sizeof(kvm_sigmask)))
2697 goto out;
2698 r = -EINVAL;
2699 if (kvm_sigmask.len != sizeof(csigset))
2700 goto out;
2701 r = -EFAULT;
2702 if (copy_from_user(&csigset, sigmask_arg->sigset,
2703 sizeof(csigset)))
2704 goto out;
2705 sigset_from_compat(&sigset, &csigset);
2706 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2707 } else
2708 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2709 break;
2710 }
2711 default:
2712 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2713 }
2714
2715 out:
2716 return r;
2717 }
2718 #endif
2719
2720 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2721 int (*accessor)(struct kvm_device *dev,
2722 struct kvm_device_attr *attr),
2723 unsigned long arg)
2724 {
2725 struct kvm_device_attr attr;
2726
2727 if (!accessor)
2728 return -EPERM;
2729
2730 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2731 return -EFAULT;
2732
2733 return accessor(dev, &attr);
2734 }
2735
2736 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2737 unsigned long arg)
2738 {
2739 struct kvm_device *dev = filp->private_data;
2740
2741 switch (ioctl) {
2742 case KVM_SET_DEVICE_ATTR:
2743 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2744 case KVM_GET_DEVICE_ATTR:
2745 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2746 case KVM_HAS_DEVICE_ATTR:
2747 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2748 default:
2749 if (dev->ops->ioctl)
2750 return dev->ops->ioctl(dev, ioctl, arg);
2751
2752 return -ENOTTY;
2753 }
2754 }
2755
2756 static int kvm_device_release(struct inode *inode, struct file *filp)
2757 {
2758 struct kvm_device *dev = filp->private_data;
2759 struct kvm *kvm = dev->kvm;
2760
2761 kvm_put_kvm(kvm);
2762 return 0;
2763 }
2764
2765 static const struct file_operations kvm_device_fops = {
2766 .unlocked_ioctl = kvm_device_ioctl,
2767 #ifdef CONFIG_KVM_COMPAT
2768 .compat_ioctl = kvm_device_ioctl,
2769 #endif
2770 .release = kvm_device_release,
2771 };
2772
2773 struct kvm_device *kvm_device_from_filp(struct file *filp)
2774 {
2775 if (filp->f_op != &kvm_device_fops)
2776 return NULL;
2777
2778 return filp->private_data;
2779 }
2780
2781 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2782 #ifdef CONFIG_KVM_MPIC
2783 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2784 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2785 #endif
2786
2787 #ifdef CONFIG_KVM_XICS
2788 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2789 #endif
2790 };
2791
2792 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2793 {
2794 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2795 return -ENOSPC;
2796
2797 if (kvm_device_ops_table[type] != NULL)
2798 return -EEXIST;
2799
2800 kvm_device_ops_table[type] = ops;
2801 return 0;
2802 }
2803
2804 void kvm_unregister_device_ops(u32 type)
2805 {
2806 if (kvm_device_ops_table[type] != NULL)
2807 kvm_device_ops_table[type] = NULL;
2808 }
2809
2810 static int kvm_ioctl_create_device(struct kvm *kvm,
2811 struct kvm_create_device *cd)
2812 {
2813 struct kvm_device_ops *ops = NULL;
2814 struct kvm_device *dev;
2815 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2816 int ret;
2817
2818 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2819 return -ENODEV;
2820
2821 ops = kvm_device_ops_table[cd->type];
2822 if (ops == NULL)
2823 return -ENODEV;
2824
2825 if (test)
2826 return 0;
2827
2828 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829 if (!dev)
2830 return -ENOMEM;
2831
2832 dev->ops = ops;
2833 dev->kvm = kvm;
2834
2835 ret = ops->create(dev, cd->type);
2836 if (ret < 0) {
2837 kfree(dev);
2838 return ret;
2839 }
2840
2841 if (ops->init)
2842 ops->init(dev);
2843
2844 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2845 if (ret < 0) {
2846 ops->destroy(dev);
2847 return ret;
2848 }
2849
2850 list_add(&dev->vm_node, &kvm->devices);
2851 kvm_get_kvm(kvm);
2852 cd->fd = ret;
2853 return 0;
2854 }
2855
2856 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2857 {
2858 switch (arg) {
2859 case KVM_CAP_USER_MEMORY:
2860 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2861 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2862 case KVM_CAP_INTERNAL_ERROR_DATA:
2863 #ifdef CONFIG_HAVE_KVM_MSI
2864 case KVM_CAP_SIGNAL_MSI:
2865 #endif
2866 #ifdef CONFIG_HAVE_KVM_IRQFD
2867 case KVM_CAP_IRQFD:
2868 case KVM_CAP_IRQFD_RESAMPLE:
2869 #endif
2870 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2871 case KVM_CAP_CHECK_EXTENSION_VM:
2872 return 1;
2873 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2874 case KVM_CAP_IRQ_ROUTING:
2875 return KVM_MAX_IRQ_ROUTES;
2876 #endif
2877 #if KVM_ADDRESS_SPACE_NUM > 1
2878 case KVM_CAP_MULTI_ADDRESS_SPACE:
2879 return KVM_ADDRESS_SPACE_NUM;
2880 #endif
2881 case KVM_CAP_MAX_VCPU_ID:
2882 return KVM_MAX_VCPU_ID;
2883 default:
2884 break;
2885 }
2886 return kvm_vm_ioctl_check_extension(kvm, arg);
2887 }
2888
2889 static long kvm_vm_ioctl(struct file *filp,
2890 unsigned int ioctl, unsigned long arg)
2891 {
2892 struct kvm *kvm = filp->private_data;
2893 void __user *argp = (void __user *)arg;
2894 int r;
2895
2896 if (kvm->mm != current->mm)
2897 return -EIO;
2898 switch (ioctl) {
2899 case KVM_CREATE_VCPU:
2900 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2901 break;
2902 case KVM_SET_USER_MEMORY_REGION: {
2903 struct kvm_userspace_memory_region kvm_userspace_mem;
2904
2905 r = -EFAULT;
2906 if (copy_from_user(&kvm_userspace_mem, argp,
2907 sizeof(kvm_userspace_mem)))
2908 goto out;
2909
2910 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2911 break;
2912 }
2913 case KVM_GET_DIRTY_LOG: {
2914 struct kvm_dirty_log log;
2915
2916 r = -EFAULT;
2917 if (copy_from_user(&log, argp, sizeof(log)))
2918 goto out;
2919 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2920 break;
2921 }
2922 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2923 case KVM_REGISTER_COALESCED_MMIO: {
2924 struct kvm_coalesced_mmio_zone zone;
2925
2926 r = -EFAULT;
2927 if (copy_from_user(&zone, argp, sizeof(zone)))
2928 goto out;
2929 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2930 break;
2931 }
2932 case KVM_UNREGISTER_COALESCED_MMIO: {
2933 struct kvm_coalesced_mmio_zone zone;
2934
2935 r = -EFAULT;
2936 if (copy_from_user(&zone, argp, sizeof(zone)))
2937 goto out;
2938 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2939 break;
2940 }
2941 #endif
2942 case KVM_IRQFD: {
2943 struct kvm_irqfd data;
2944
2945 r = -EFAULT;
2946 if (copy_from_user(&data, argp, sizeof(data)))
2947 goto out;
2948 r = kvm_irqfd(kvm, &data);
2949 break;
2950 }
2951 case KVM_IOEVENTFD: {
2952 struct kvm_ioeventfd data;
2953
2954 r = -EFAULT;
2955 if (copy_from_user(&data, argp, sizeof(data)))
2956 goto out;
2957 r = kvm_ioeventfd(kvm, &data);
2958 break;
2959 }
2960 #ifdef CONFIG_HAVE_KVM_MSI
2961 case KVM_SIGNAL_MSI: {
2962 struct kvm_msi msi;
2963
2964 r = -EFAULT;
2965 if (copy_from_user(&msi, argp, sizeof(msi)))
2966 goto out;
2967 r = kvm_send_userspace_msi(kvm, &msi);
2968 break;
2969 }
2970 #endif
2971 #ifdef __KVM_HAVE_IRQ_LINE
2972 case KVM_IRQ_LINE_STATUS:
2973 case KVM_IRQ_LINE: {
2974 struct kvm_irq_level irq_event;
2975
2976 r = -EFAULT;
2977 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2978 goto out;
2979
2980 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2981 ioctl == KVM_IRQ_LINE_STATUS);
2982 if (r)
2983 goto out;
2984
2985 r = -EFAULT;
2986 if (ioctl == KVM_IRQ_LINE_STATUS) {
2987 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2988 goto out;
2989 }
2990
2991 r = 0;
2992 break;
2993 }
2994 #endif
2995 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2996 case KVM_SET_GSI_ROUTING: {
2997 struct kvm_irq_routing routing;
2998 struct kvm_irq_routing __user *urouting;
2999 struct kvm_irq_routing_entry *entries = NULL;
3000
3001 r = -EFAULT;
3002 if (copy_from_user(&routing, argp, sizeof(routing)))
3003 goto out;
3004 r = -EINVAL;
3005 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3006 goto out;
3007 if (routing.flags)
3008 goto out;
3009 if (routing.nr) {
3010 r = -ENOMEM;
3011 entries = vmalloc(routing.nr * sizeof(*entries));
3012 if (!entries)
3013 goto out;
3014 r = -EFAULT;
3015 urouting = argp;
3016 if (copy_from_user(entries, urouting->entries,
3017 routing.nr * sizeof(*entries)))
3018 goto out_free_irq_routing;
3019 }
3020 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3021 routing.flags);
3022 out_free_irq_routing:
3023 vfree(entries);
3024 break;
3025 }
3026 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3027 case KVM_CREATE_DEVICE: {
3028 struct kvm_create_device cd;
3029
3030 r = -EFAULT;
3031 if (copy_from_user(&cd, argp, sizeof(cd)))
3032 goto out;
3033
3034 r = kvm_ioctl_create_device(kvm, &cd);
3035 if (r)
3036 goto out;
3037
3038 r = -EFAULT;
3039 if (copy_to_user(argp, &cd, sizeof(cd)))
3040 goto out;
3041
3042 r = 0;
3043 break;
3044 }
3045 case KVM_CHECK_EXTENSION:
3046 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3047 break;
3048 default:
3049 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3050 }
3051 out:
3052 return r;
3053 }
3054
3055 #ifdef CONFIG_KVM_COMPAT
3056 struct compat_kvm_dirty_log {
3057 __u32 slot;
3058 __u32 padding1;
3059 union {
3060 compat_uptr_t dirty_bitmap; /* one bit per page */
3061 __u64 padding2;
3062 };
3063 };
3064
3065 static long kvm_vm_compat_ioctl(struct file *filp,
3066 unsigned int ioctl, unsigned long arg)
3067 {
3068 struct kvm *kvm = filp->private_data;
3069 int r;
3070
3071 if (kvm->mm != current->mm)
3072 return -EIO;
3073 switch (ioctl) {
3074 case KVM_GET_DIRTY_LOG: {
3075 struct compat_kvm_dirty_log compat_log;
3076 struct kvm_dirty_log log;
3077
3078 r = -EFAULT;
3079 if (copy_from_user(&compat_log, (void __user *)arg,
3080 sizeof(compat_log)))
3081 goto out;
3082 log.slot = compat_log.slot;
3083 log.padding1 = compat_log.padding1;
3084 log.padding2 = compat_log.padding2;
3085 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3086
3087 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3088 break;
3089 }
3090 default:
3091 r = kvm_vm_ioctl(filp, ioctl, arg);
3092 }
3093
3094 out:
3095 return r;
3096 }
3097 #endif
3098
3099 static struct file_operations kvm_vm_fops = {
3100 .release = kvm_vm_release,
3101 .unlocked_ioctl = kvm_vm_ioctl,
3102 #ifdef CONFIG_KVM_COMPAT
3103 .compat_ioctl = kvm_vm_compat_ioctl,
3104 #endif
3105 .llseek = noop_llseek,
3106 };
3107
3108 static int kvm_dev_ioctl_create_vm(unsigned long type)
3109 {
3110 int r;
3111 struct kvm *kvm;
3112 struct file *file;
3113
3114 kvm = kvm_create_vm(type);
3115 if (IS_ERR(kvm))
3116 return PTR_ERR(kvm);
3117 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3118 r = kvm_coalesced_mmio_init(kvm);
3119 if (r < 0) {
3120 kvm_put_kvm(kvm);
3121 return r;
3122 }
3123 #endif
3124 r = get_unused_fd_flags(O_CLOEXEC);
3125 if (r < 0) {
3126 kvm_put_kvm(kvm);
3127 return r;
3128 }
3129 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3130 if (IS_ERR(file)) {
3131 put_unused_fd(r);
3132 kvm_put_kvm(kvm);
3133 return PTR_ERR(file);
3134 }
3135
3136 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3137 put_unused_fd(r);
3138 fput(file);
3139 return -ENOMEM;
3140 }
3141
3142 fd_install(r, file);
3143 return r;
3144 }
3145
3146 static long kvm_dev_ioctl(struct file *filp,
3147 unsigned int ioctl, unsigned long arg)
3148 {
3149 long r = -EINVAL;
3150
3151 switch (ioctl) {
3152 case KVM_GET_API_VERSION:
3153 if (arg)
3154 goto out;
3155 r = KVM_API_VERSION;
3156 break;
3157 case KVM_CREATE_VM:
3158 r = kvm_dev_ioctl_create_vm(arg);
3159 break;
3160 case KVM_CHECK_EXTENSION:
3161 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3162 break;
3163 case KVM_GET_VCPU_MMAP_SIZE:
3164 if (arg)
3165 goto out;
3166 r = PAGE_SIZE; /* struct kvm_run */
3167 #ifdef CONFIG_X86
3168 r += PAGE_SIZE; /* pio data page */
3169 #endif
3170 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3171 r += PAGE_SIZE; /* coalesced mmio ring page */
3172 #endif
3173 break;
3174 case KVM_TRACE_ENABLE:
3175 case KVM_TRACE_PAUSE:
3176 case KVM_TRACE_DISABLE:
3177 r = -EOPNOTSUPP;
3178 break;
3179 default:
3180 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3181 }
3182 out:
3183 return r;
3184 }
3185
3186 static struct file_operations kvm_chardev_ops = {
3187 .unlocked_ioctl = kvm_dev_ioctl,
3188 .compat_ioctl = kvm_dev_ioctl,
3189 .llseek = noop_llseek,
3190 };
3191
3192 static struct miscdevice kvm_dev = {
3193 KVM_MINOR,
3194 "kvm",
3195 &kvm_chardev_ops,
3196 };
3197
3198 static void hardware_enable_nolock(void *junk)
3199 {
3200 int cpu = raw_smp_processor_id();
3201 int r;
3202
3203 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3204 return;
3205
3206 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3207
3208 r = kvm_arch_hardware_enable();
3209
3210 if (r) {
3211 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3212 atomic_inc(&hardware_enable_failed);
3213 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3214 }
3215 }
3216
3217 static int kvm_starting_cpu(unsigned int cpu)
3218 {
3219 raw_spin_lock(&kvm_count_lock);
3220 if (kvm_usage_count)
3221 hardware_enable_nolock(NULL);
3222 raw_spin_unlock(&kvm_count_lock);
3223 return 0;
3224 }
3225
3226 static void hardware_disable_nolock(void *junk)
3227 {
3228 int cpu = raw_smp_processor_id();
3229
3230 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3231 return;
3232 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3233 kvm_arch_hardware_disable();
3234 }
3235
3236 static int kvm_dying_cpu(unsigned int cpu)
3237 {
3238 raw_spin_lock(&kvm_count_lock);
3239 if (kvm_usage_count)
3240 hardware_disable_nolock(NULL);
3241 raw_spin_unlock(&kvm_count_lock);
3242 return 0;
3243 }
3244
3245 static void hardware_disable_all_nolock(void)
3246 {
3247 BUG_ON(!kvm_usage_count);
3248
3249 kvm_usage_count--;
3250 if (!kvm_usage_count)
3251 on_each_cpu(hardware_disable_nolock, NULL, 1);
3252 }
3253
3254 static void hardware_disable_all(void)
3255 {
3256 raw_spin_lock(&kvm_count_lock);
3257 hardware_disable_all_nolock();
3258 raw_spin_unlock(&kvm_count_lock);
3259 }
3260
3261 static int hardware_enable_all(void)
3262 {
3263 int r = 0;
3264
3265 raw_spin_lock(&kvm_count_lock);
3266
3267 kvm_usage_count++;
3268 if (kvm_usage_count == 1) {
3269 atomic_set(&hardware_enable_failed, 0);
3270 on_each_cpu(hardware_enable_nolock, NULL, 1);
3271
3272 if (atomic_read(&hardware_enable_failed)) {
3273 hardware_disable_all_nolock();
3274 r = -EBUSY;
3275 }
3276 }
3277
3278 raw_spin_unlock(&kvm_count_lock);
3279
3280 return r;
3281 }
3282
3283 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3284 void *v)
3285 {
3286 /*
3287 * Some (well, at least mine) BIOSes hang on reboot if
3288 * in vmx root mode.
3289 *
3290 * And Intel TXT required VMX off for all cpu when system shutdown.
3291 */
3292 pr_info("kvm: exiting hardware virtualization\n");
3293 kvm_rebooting = true;
3294 on_each_cpu(hardware_disable_nolock, NULL, 1);
3295 return NOTIFY_OK;
3296 }
3297
3298 static struct notifier_block kvm_reboot_notifier = {
3299 .notifier_call = kvm_reboot,
3300 .priority = 0,
3301 };
3302
3303 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3304 {
3305 int i;
3306
3307 for (i = 0; i < bus->dev_count; i++) {
3308 struct kvm_io_device *pos = bus->range[i].dev;
3309
3310 kvm_iodevice_destructor(pos);
3311 }
3312 kfree(bus);
3313 }
3314
3315 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3316 const struct kvm_io_range *r2)
3317 {
3318 gpa_t addr1 = r1->addr;
3319 gpa_t addr2 = r2->addr;
3320
3321 if (addr1 < addr2)
3322 return -1;
3323
3324 /* If r2->len == 0, match the exact address. If r2->len != 0,
3325 * accept any overlapping write. Any order is acceptable for
3326 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3327 * we process all of them.
3328 */
3329 if (r2->len) {
3330 addr1 += r1->len;
3331 addr2 += r2->len;
3332 }
3333
3334 if (addr1 > addr2)
3335 return 1;
3336
3337 return 0;
3338 }
3339
3340 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3341 {
3342 return kvm_io_bus_cmp(p1, p2);
3343 }
3344
3345 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3346 gpa_t addr, int len)
3347 {
3348 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3349 .addr = addr,
3350 .len = len,
3351 .dev = dev,
3352 };
3353
3354 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3355 kvm_io_bus_sort_cmp, NULL);
3356
3357 return 0;
3358 }
3359
3360 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3361 gpa_t addr, int len)
3362 {
3363 struct kvm_io_range *range, key;
3364 int off;
3365
3366 key = (struct kvm_io_range) {
3367 .addr = addr,
3368 .len = len,
3369 };
3370
3371 range = bsearch(&key, bus->range, bus->dev_count,
3372 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3373 if (range == NULL)
3374 return -ENOENT;
3375
3376 off = range - bus->range;
3377
3378 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3379 off--;
3380
3381 return off;
3382 }
3383
3384 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3385 struct kvm_io_range *range, const void *val)
3386 {
3387 int idx;
3388
3389 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3390 if (idx < 0)
3391 return -EOPNOTSUPP;
3392
3393 while (idx < bus->dev_count &&
3394 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3395 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3396 range->len, val))
3397 return idx;
3398 idx++;
3399 }
3400
3401 return -EOPNOTSUPP;
3402 }
3403
3404 /* kvm_io_bus_write - called under kvm->slots_lock */
3405 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3406 int len, const void *val)
3407 {
3408 struct kvm_io_bus *bus;
3409 struct kvm_io_range range;
3410 int r;
3411
3412 range = (struct kvm_io_range) {
3413 .addr = addr,
3414 .len = len,
3415 };
3416
3417 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3418 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3419 return r < 0 ? r : 0;
3420 }
3421
3422 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3423 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3424 gpa_t addr, int len, const void *val, long cookie)
3425 {
3426 struct kvm_io_bus *bus;
3427 struct kvm_io_range range;
3428
3429 range = (struct kvm_io_range) {
3430 .addr = addr,
3431 .len = len,
3432 };
3433
3434 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3435
3436 /* First try the device referenced by cookie. */
3437 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3438 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3439 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3440 val))
3441 return cookie;
3442
3443 /*
3444 * cookie contained garbage; fall back to search and return the
3445 * correct cookie value.
3446 */
3447 return __kvm_io_bus_write(vcpu, bus, &range, val);
3448 }
3449
3450 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3451 struct kvm_io_range *range, void *val)
3452 {
3453 int idx;
3454
3455 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3456 if (idx < 0)
3457 return -EOPNOTSUPP;
3458
3459 while (idx < bus->dev_count &&
3460 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3461 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3462 range->len, val))
3463 return idx;
3464 idx++;
3465 }
3466
3467 return -EOPNOTSUPP;
3468 }
3469 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3470
3471 /* kvm_io_bus_read - called under kvm->slots_lock */
3472 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3473 int len, void *val)
3474 {
3475 struct kvm_io_bus *bus;
3476 struct kvm_io_range range;
3477 int r;
3478
3479 range = (struct kvm_io_range) {
3480 .addr = addr,
3481 .len = len,
3482 };
3483
3484 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3485 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3486 return r < 0 ? r : 0;
3487 }
3488
3489
3490 /* Caller must hold slots_lock. */
3491 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3492 int len, struct kvm_io_device *dev)
3493 {
3494 struct kvm_io_bus *new_bus, *bus;
3495
3496 bus = kvm->buses[bus_idx];
3497 /* exclude ioeventfd which is limited by maximum fd */
3498 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3499 return -ENOSPC;
3500
3501 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3502 sizeof(struct kvm_io_range)), GFP_KERNEL);
3503 if (!new_bus)
3504 return -ENOMEM;
3505 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3506 sizeof(struct kvm_io_range)));
3507 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3508 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3509 synchronize_srcu_expedited(&kvm->srcu);
3510 kfree(bus);
3511
3512 return 0;
3513 }
3514
3515 /* Caller must hold slots_lock. */
3516 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3517 struct kvm_io_device *dev)
3518 {
3519 int i, r;
3520 struct kvm_io_bus *new_bus, *bus;
3521
3522 bus = kvm->buses[bus_idx];
3523 r = -ENOENT;
3524 for (i = 0; i < bus->dev_count; i++)
3525 if (bus->range[i].dev == dev) {
3526 r = 0;
3527 break;
3528 }
3529
3530 if (r)
3531 return r;
3532
3533 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3534 sizeof(struct kvm_io_range)), GFP_KERNEL);
3535 if (!new_bus)
3536 return -ENOMEM;
3537
3538 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3539 new_bus->dev_count--;
3540 memcpy(new_bus->range + i, bus->range + i + 1,
3541 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3542
3543 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3544 synchronize_srcu_expedited(&kvm->srcu);
3545 kfree(bus);
3546 return r;
3547 }
3548
3549 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3550 gpa_t addr)
3551 {
3552 struct kvm_io_bus *bus;
3553 int dev_idx, srcu_idx;
3554 struct kvm_io_device *iodev = NULL;
3555
3556 srcu_idx = srcu_read_lock(&kvm->srcu);
3557
3558 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3559
3560 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3561 if (dev_idx < 0)
3562 goto out_unlock;
3563
3564 iodev = bus->range[dev_idx].dev;
3565
3566 out_unlock:
3567 srcu_read_unlock(&kvm->srcu, srcu_idx);
3568
3569 return iodev;
3570 }
3571 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3572
3573 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3574 int (*get)(void *, u64 *), int (*set)(void *, u64),
3575 const char *fmt)
3576 {
3577 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3578 inode->i_private;
3579
3580 /* The debugfs files are a reference to the kvm struct which
3581 * is still valid when kvm_destroy_vm is called.
3582 * To avoid the race between open and the removal of the debugfs
3583 * directory we test against the users count.
3584 */
3585 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3586 return -ENOENT;
3587
3588 if (simple_attr_open(inode, file, get, set, fmt)) {
3589 kvm_put_kvm(stat_data->kvm);
3590 return -ENOMEM;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3597 {
3598 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3599 inode->i_private;
3600
3601 simple_attr_release(inode, file);
3602 kvm_put_kvm(stat_data->kvm);
3603
3604 return 0;
3605 }
3606
3607 static int vm_stat_get_per_vm(void *data, u64 *val)
3608 {
3609 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3610
3611 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3612
3613 return 0;
3614 }
3615
3616 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3617 {
3618 __simple_attr_check_format("%llu\n", 0ull);
3619 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3620 NULL, "%llu\n");
3621 }
3622
3623 static const struct file_operations vm_stat_get_per_vm_fops = {
3624 .owner = THIS_MODULE,
3625 .open = vm_stat_get_per_vm_open,
3626 .release = kvm_debugfs_release,
3627 .read = simple_attr_read,
3628 .write = simple_attr_write,
3629 .llseek = generic_file_llseek,
3630 };
3631
3632 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3633 {
3634 int i;
3635 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3636 struct kvm_vcpu *vcpu;
3637
3638 *val = 0;
3639
3640 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3641 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3642
3643 return 0;
3644 }
3645
3646 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3647 {
3648 __simple_attr_check_format("%llu\n", 0ull);
3649 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3650 NULL, "%llu\n");
3651 }
3652
3653 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3654 .owner = THIS_MODULE,
3655 .open = vcpu_stat_get_per_vm_open,
3656 .release = kvm_debugfs_release,
3657 .read = simple_attr_read,
3658 .write = simple_attr_write,
3659 .llseek = generic_file_llseek,
3660 };
3661
3662 static const struct file_operations *stat_fops_per_vm[] = {
3663 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3664 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3665 };
3666
3667 static int vm_stat_get(void *_offset, u64 *val)
3668 {
3669 unsigned offset = (long)_offset;
3670 struct kvm *kvm;
3671 struct kvm_stat_data stat_tmp = {.offset = offset};
3672 u64 tmp_val;
3673
3674 *val = 0;
3675 spin_lock(&kvm_lock);
3676 list_for_each_entry(kvm, &vm_list, vm_list) {
3677 stat_tmp.kvm = kvm;
3678 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3679 *val += tmp_val;
3680 }
3681 spin_unlock(&kvm_lock);
3682 return 0;
3683 }
3684
3685 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3686
3687 static int vcpu_stat_get(void *_offset, u64 *val)
3688 {
3689 unsigned offset = (long)_offset;
3690 struct kvm *kvm;
3691 struct kvm_stat_data stat_tmp = {.offset = offset};
3692 u64 tmp_val;
3693
3694 *val = 0;
3695 spin_lock(&kvm_lock);
3696 list_for_each_entry(kvm, &vm_list, vm_list) {
3697 stat_tmp.kvm = kvm;
3698 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3699 *val += tmp_val;
3700 }
3701 spin_unlock(&kvm_lock);
3702 return 0;
3703 }
3704
3705 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3706
3707 static const struct file_operations *stat_fops[] = {
3708 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3709 [KVM_STAT_VM] = &vm_stat_fops,
3710 };
3711
3712 static int kvm_init_debug(void)
3713 {
3714 int r = -EEXIST;
3715 struct kvm_stats_debugfs_item *p;
3716
3717 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3718 if (kvm_debugfs_dir == NULL)
3719 goto out;
3720
3721 kvm_debugfs_num_entries = 0;
3722 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3723 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3724 (void *)(long)p->offset,
3725 stat_fops[p->kind]))
3726 goto out_dir;
3727 }
3728
3729 return 0;
3730
3731 out_dir:
3732 debugfs_remove_recursive(kvm_debugfs_dir);
3733 out:
3734 return r;
3735 }
3736
3737 static int kvm_suspend(void)
3738 {
3739 if (kvm_usage_count)
3740 hardware_disable_nolock(NULL);
3741 return 0;
3742 }
3743
3744 static void kvm_resume(void)
3745 {
3746 if (kvm_usage_count) {
3747 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3748 hardware_enable_nolock(NULL);
3749 }
3750 }
3751
3752 static struct syscore_ops kvm_syscore_ops = {
3753 .suspend = kvm_suspend,
3754 .resume = kvm_resume,
3755 };
3756
3757 static inline
3758 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3759 {
3760 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3761 }
3762
3763 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3764 {
3765 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3766
3767 if (vcpu->preempted)
3768 vcpu->preempted = false;
3769
3770 kvm_arch_sched_in(vcpu, cpu);
3771
3772 kvm_arch_vcpu_load(vcpu, cpu);
3773 }
3774
3775 static void kvm_sched_out(struct preempt_notifier *pn,
3776 struct task_struct *next)
3777 {
3778 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3779
3780 if (current->state == TASK_RUNNING)
3781 vcpu->preempted = true;
3782 kvm_arch_vcpu_put(vcpu);
3783 }
3784
3785 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3786 struct module *module)
3787 {
3788 int r;
3789 int cpu;
3790
3791 r = kvm_arch_init(opaque);
3792 if (r)
3793 goto out_fail;
3794
3795 /*
3796 * kvm_arch_init makes sure there's at most one caller
3797 * for architectures that support multiple implementations,
3798 * like intel and amd on x86.
3799 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3800 * conflicts in case kvm is already setup for another implementation.
3801 */
3802 r = kvm_irqfd_init();
3803 if (r)
3804 goto out_irqfd;
3805
3806 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3807 r = -ENOMEM;
3808 goto out_free_0;
3809 }
3810
3811 r = kvm_arch_hardware_setup();
3812 if (r < 0)
3813 goto out_free_0a;
3814
3815 for_each_online_cpu(cpu) {
3816 smp_call_function_single(cpu,
3817 kvm_arch_check_processor_compat,
3818 &r, 1);
3819 if (r < 0)
3820 goto out_free_1;
3821 }
3822
3823 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3824 kvm_starting_cpu, kvm_dying_cpu);
3825 if (r)
3826 goto out_free_2;
3827 register_reboot_notifier(&kvm_reboot_notifier);
3828
3829 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3830 if (!vcpu_align)
3831 vcpu_align = __alignof__(struct kvm_vcpu);
3832 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3833 0, NULL);
3834 if (!kvm_vcpu_cache) {
3835 r = -ENOMEM;
3836 goto out_free_3;
3837 }
3838
3839 r = kvm_async_pf_init();
3840 if (r)
3841 goto out_free;
3842
3843 kvm_chardev_ops.owner = module;
3844 kvm_vm_fops.owner = module;
3845 kvm_vcpu_fops.owner = module;
3846
3847 r = misc_register(&kvm_dev);
3848 if (r) {
3849 pr_err("kvm: misc device register failed\n");
3850 goto out_unreg;
3851 }
3852
3853 register_syscore_ops(&kvm_syscore_ops);
3854
3855 kvm_preempt_ops.sched_in = kvm_sched_in;
3856 kvm_preempt_ops.sched_out = kvm_sched_out;
3857
3858 r = kvm_init_debug();
3859 if (r) {
3860 pr_err("kvm: create debugfs files failed\n");
3861 goto out_undebugfs;
3862 }
3863
3864 r = kvm_vfio_ops_init();
3865 WARN_ON(r);
3866
3867 return 0;
3868
3869 out_undebugfs:
3870 unregister_syscore_ops(&kvm_syscore_ops);
3871 misc_deregister(&kvm_dev);
3872 out_unreg:
3873 kvm_async_pf_deinit();
3874 out_free:
3875 kmem_cache_destroy(kvm_vcpu_cache);
3876 out_free_3:
3877 unregister_reboot_notifier(&kvm_reboot_notifier);
3878 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3879 out_free_2:
3880 out_free_1:
3881 kvm_arch_hardware_unsetup();
3882 out_free_0a:
3883 free_cpumask_var(cpus_hardware_enabled);
3884 out_free_0:
3885 kvm_irqfd_exit();
3886 out_irqfd:
3887 kvm_arch_exit();
3888 out_fail:
3889 return r;
3890 }
3891 EXPORT_SYMBOL_GPL(kvm_init);
3892
3893 void kvm_exit(void)
3894 {
3895 debugfs_remove_recursive(kvm_debugfs_dir);
3896 misc_deregister(&kvm_dev);
3897 kmem_cache_destroy(kvm_vcpu_cache);
3898 kvm_async_pf_deinit();
3899 unregister_syscore_ops(&kvm_syscore_ops);
3900 unregister_reboot_notifier(&kvm_reboot_notifier);
3901 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3902 on_each_cpu(hardware_disable_nolock, NULL, 1);
3903 kvm_arch_hardware_unsetup();
3904 kvm_arch_exit();
3905 kvm_irqfd_exit();
3906 free_cpumask_var(cpus_hardware_enabled);
3907 kvm_vfio_ops_exit();
3908 }
3909 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.112636 seconds and 5 git commands to generate.