doc: Bug 495211. Add timing views and viewers developer guide
[deliverable/tracecompass.git] / doc / org.eclipse.tracecompass.doc.dev / doc / Developer-Guide.mediawiki
1
2 = Table of Contents =
3
4 __TOC__
5
6 = Introduction =
7
8 The purpose of '''Trace Compass''' is to facilitate the integration of tracing
9 and monitoring tools into Eclipse, to provide out-of-the-box generic
10 functionalities/views and provide extension mechanisms of the base
11 functionalities for application specific purposes.
12
13 This guide goes over the internal components of the Trace Compass framework. It
14 should help developers trying to add new capabilities (support for new trace
15 type, new analysis or views, etc.) to the framework. End-users, using the RCP
16 for example, should not have to worry about the concepts explained here.
17
18 = Implementing a New Trace Type =
19
20 The framework can easily be extended to support more trace types. To make a new
21 trace type, one must define the following items:
22
23 * The event type
24 * The trace type
25 * The trace context
26 * The trace location
27 * The ''org.eclipse.linuxtools.tmf.core.tracetype'' plug-in extension point
28 * (Optional) The ''org.eclipse.linuxtools.tmf.ui.tracetypeui'' plug-in extension point
29
30 The '''event type''' must implement an ''ITmfEvent'' or extend a class that
31 implements an ''ITmfEvent''. Typically it will extend ''TmfEvent''. The event
32 type must contain all the data of an event.
33
34 The '''trace type''' must be of an ''ITmfTrace'' type. The ''TmfTrace'' class
35 will supply many background operations so that the reader only needs to
36 implement certain functions. This includes the ''event aspects'' for events of
37 this trace type. See the section below.
38
39 The '''trace context''' can be seen as the internals of an iterator. It is
40 required by the trace reader to parse events as it iterates the trace and to
41 keep track of its rank and location. It can have a timestamp, a rank, a file
42 position, or any other element, it should be considered to be ephemeral.
43
44 The '''trace location''' is an element that is cloned often to store
45 checkpoints, it is generally persistent. It is used to rebuild a context,
46 therefore, it needs to contain enough information to unambiguously point to one
47 and only one event. Finally the ''tracetype'' plug-in extension associates a
48 given trace, non-programmatically to a trace type for use in the UI.
49
50 == Event Aspects ==
51
52 In Trace Compass, an ''event aspect'' represents any type of information that
53 can be extracted from a trace event. The simple case is information that is
54 present directly in the event. For example, the timestamp of an event, a field
55 of an LTTng event, or the "payload" that is on the same line of a text trace
56 entry. But it could also be the result of an indirect operation, for example a
57 state system query at the timestamp of the given event (see the section
58 [[#Generic State System]]).
59
60 All aspects should implement the '''ITmfEventAspect''' interface. The important
61 method in there is ''resolve(ITmfEvent)'', which tells this aspect what to
62 output for a given event. The singleton pattern fits well for pre-defined aspect
63 classes, in general.
64
65 The aspects defined for a trace type determine the initial columns in the Event
66 Table, as well as the elements on which the trace can be filtered, among other
67 things.
68
69 === Base and custom aspects ===
70
71 Some base aspects are defined in '''TmfTrace#BASE_ASPECTS'''. They use generic
72 methods found in '''ITmfEvent''', so they should be applicable for any event
73 type defined in the framework. If one does not override
74 '''TmfTrace#getEventAspects''', then only the base aspects will be used with
75 this trace.
76
77 Overriding the method does not append to this list, it replaces it. So if you
78 wish to define additional aspects for a new trace type, do not forget to include
79 the BASE_ASPECTS you want to use, if any, within the list.
80
81 The order of the elements in the returned ''Iterable'' may matter to other
82 components. For instance, the initial ordering of the columns in the Events
83 Table will match it.
84
85 Defining additional aspects allows to expose more data from the trace events
86 without having to update all the views using the aspects API.
87
88 === Creating event aspects programmatically ===
89
90 Another advantage of event aspects is that they can be created programmatically,
91 without having to modify the base trace or event classes. A new analysis
92 applying to a pre-existing trace type may wish to define additional aspects to
93 make its job easier.
94
95 While the notion of event aspects should not be exposed to users directly, it is
96 possible to create new aspects based on user input. For example, an "event
97 field" dialog could ask the user to enter a field name, which would then create
98 an aspect that would look for the value of a field with this name in every
99 event. The user could then be able to display or filter on this aspect.
100
101 == Optional Trace Type Attributes ==
102
103 After defining the trace type as described in the previous chapters it is
104 possible to define optional attributes for the trace type.
105
106 === Default Editor ===
107
108 The '''defaultEditor''' attribute of the '''org.eclipse.linuxtools.tmf.ui.tracetypeui'''
109 extension point allows for configuring the editor to use for displaying the
110 events. If omitted, the ''TmfEventsEditor'' is used as default.
111
112 To configure an editor, first add the '''defaultEditor''' attribute to the trace
113 type in the extension definition. This can be done by selecting the trace type
114 in the plug-in manifest editor. Then click the right mouse button and select
115 '''New -> defaultEditor''' in the context sensitive menu. Then select the newly
116 added attribute. Now you can specify the editor id to use on the right side of
117 the manifest editor. For example, this attribute could be used to implement an
118 extension of the class ''org.eclipse.ui.part.MultiPageEditor''. The first page
119 could use the ''TmfEventsEditor''' to display the events in a table as usual and
120 other pages can display other aspects of the trace.
121
122 === Events Table Type ===
123
124 The '''eventsTableType''' attribute of the '''org.eclipse.linuxtools.tmf.ui.tracetypeui'''
125 extension point allows for configuring the events table class to use in the
126 default events editor. If omitted, the default events table will be used.
127
128 To configure a trace type specific events table, first add the
129 '''eventsTableType''' attribute to the trace type in the extension definition.
130 This can be done by selecting the trace type in the plug-in manifest editor.
131 Then click the right mouse button and select '''New -> eventsTableType''' in the
132 context sensitive menu. Then select the newly added attribute and click on
133 ''class'' on the right side of the manifest editor. The new class wizard will
134 open. The ''superclass'' field will be already filled with the class ''org.eclipse.tracecompass.tmf.ui.viewers.events.TmfEventsTable''.
135
136 By using this attribute, a table with different columns than the default columns
137 can be defined. See the class
138 ''org.eclipse.tracecompass.internal.gdbtrace.ui.views.events.GdbEventsTable''
139 for an example implementation.
140
141 == Other Considerations ==
142
143 Other views and components may provide additional features that are active only
144 when the event or trace type class implements certain additional interfaces.
145
146 === Collapsing of repetitive events ===
147
148 By implementing the interface
149 ''org.eclipse.tracecompass.tmf.core.event.collapse.ITmfCollapsibleEvent'' the
150 event table will allow to collapse repetitive events by selecting the menu item
151 '''Collapse Events''' after pressing the right mouse button in the table.
152
153 == Best Practices ==
154
155 * Do not load the whole trace in RAM, it will limit the size of the trace that can be read.
156 * Reuse as much code as possible, it makes the trace format much easier to maintain.
157 * Use Eclipse's editor instead of editing the XML directly.
158 * Do not forget Java supports only signed data types, there may be special care needed to handle unsigned data.
159 * If the support for your trace has custom UI elements (like icons, views, etc.), split the core and UI parts in separate plugins, named identically except for a ''.core'' or ''.ui'' suffix.
160 ** Implement the ''tmf.core.tracetype'' extension in the core plugin, and the ''tmf.ui.tracetypeui'' extension in the UI plugin if applicable.
161
162 == An Example: Nexus-lite parser ==
163
164 === Description of the file ===
165
166 This is a very small subset of the nexus trace format, with some changes to make
167 it easier to read. There is one file. This file starts with 64 Strings
168 containing the event names, then an arbitrarily large number of events. The
169 events are each 64 bits long. the first 32 are the timestamp in microseconds,
170 the second 32 are split into 6 bits for the event type, and 26 for the data
171 payload.
172
173 The trace type will be made of two parts, part 1 is the event description, it is
174 just 64 strings, comma separated and then a line feed.
175
176 <pre>
177 Startup,Stop,Load,Add, ... ,reserved\n
178 </pre>
179
180 Then there will be the events in this format
181
182 {| width= "85%"
183 |style="width: 50%; background-color: #ffffcc;"|timestamp (32 bits)
184 |style="width: 10%; background-color: #ffccff;"|type (6 bits)
185 |style="width: 40%; background-color: #ccffcc;"|payload (26 bits)
186 |-
187 |style="background-color: #ffcccc;" colspan="3"|64 bits total
188 |}
189
190 all events will be the same size (64 bits).
191
192 === NexusLite Plug-in ===
193
194 Create a '''New''', '''Project...''', '''Plug-in Project''', set the title to
195 '''com.example.nexuslite''', click '''Next >''' then click on '''Finish'''.
196
197 Now the structure for the Nexus trace Plug-in is set up.
198
199 Add a dependency to TMF core and UI by opening the '''MANIFEST.MF''' in
200 '''META-INF''', selecting the '''Dependencies''' tab and '''Add ...'''
201 '''org.eclipse.tracecompass.tmf.core''' and '''org.eclipse.tracecompass.tmf.ui'''.
202
203 [[Image:images/NTTAddDepend.png]]<br>
204 [[Image:images/NTTSelectProjects.png]]<br>
205
206 Now the project can access TMF classes.
207
208 === Trace Event ===
209
210 The '''TmfEvent''' class will work for this example. No code required.
211
212 === Trace Reader ===
213
214 The trace reader will extend a '''TmfTrace''' class.
215
216 It will need to implement:
217
218 * validate (is the trace format valid?)
219
220 * initTrace (called as the trace is opened
221
222 * seekEvent (go to a position in the trace and create a context)
223
224 * getNext (implemented in the base class)
225
226 * parseEvent (read the next element in the trace)
227
228 For reference, there is an example implementation of the Nexus Trace file in
229 org.eclipse.tracecompass.tracing.examples.core.trace.nexus.NexusTrace.java.
230
231 In this example, the '''validate''' function first checks if the file
232 exists, then makes sure that it is really a file, and not a directory. Then we
233 attempt to read the file header, to make sure that it is really a Nexus Trace.
234 If that check passes, we return a TraceValidationStatus with a confidence of 20.
235
236 Typically, TraceValidationStatus confidences should range from 1 to 100. 1 meaning
237 "there is a very small chance that this trace is of this type", and 100 meaning
238 "it is this type for sure, and cannot be anything else". At run-time, the
239 auto-detection will pick the type which returned the highest confidence. So
240 checks of the type "does the file exist?" should not return a too high
241 confidence. If confidence 0 is returned the auto-detection won't pick this type.
242
243 Here we used a confidence of 20, to leave "room" for more specific trace types
244 in the Nexus format that could be defined in TMF.
245
246 The '''initTrace''' function will read the event names, and find where the data
247 starts. After this, the number of events is known, and since each event is 8
248 bytes long according to the specs, the seek is then trivial.
249
250 The '''seek''' here will just reset the reader to the right location.
251
252 The '''parseEvent''' method needs to parse and return the current event and
253 store the current location.
254
255 The '''getNext''' method (in base class) will read the next event and update the
256 context. It calls the '''parseEvent''' method to read the event and update the
257 location. It does not need to be overridden and in this example it is not. The
258 sequence of actions necessary are parse the next event from the trace, create an
259 '''ITmfEvent''' with that data, update the current location, call
260 '''updateAttributes''', update the context then return the event.
261
262 Traces will typically implement an index, to make seeking faster. The index can
263 be rebuilt every time the trace is opened. Alternatively, it can be saved to
264 disk, to make future openings of the same trace quicker. To do so, the trace
265 object can implement the '''ITmfPersistentlyIndexable''' interface.
266
267 === Trace Context ===
268
269 The trace context will be a '''TmfContext'''
270
271 === Trace Location ===
272
273 The trace location will be a long, representing the rank in the file. The
274 '''TmfLongLocation''' will be the used, once again, no code is required.
275
276 === The ''org.eclipse.linuxtools.tmf.core.tracetype'' and ''org.eclipse.linuxtools.tmf.ui.tracetypeui'' plug-in extension points ===
277
278 One should use the ''tmf.core.tracetype'' extension point in their own plug-in.
279 In this example, the Nexus trace plug-in will be modified.
280
281 The '''plugin.xml''' file in the ui plug-in needs to be updated if one wants
282 users to access the given event type. It can be updated in the Eclipse plug-in
283 editor.
284
285 # In Extensions tab, add the '''org.eclipse.linuxtools.tmf.core.tracetype''' extension point.
286 [[Image:images/NTTExtension.png]]<br>
287 [[Image:images/NTTTraceType.png]]<br>
288 [[Image:images/NTTExtensionPoint.png]]<br>
289
290 # Add in the '''org.eclipse.linuxtools.tmf.ui.tracetype''' extension a new type. To do that, '''right click''' on the extension then in the context menu, go to '''New >''', '''type'''.
291
292 [[Image:images/NTTAddType.png]]<br>
293
294 The '''id''' is the unique identifier used to refer to the trace.
295
296 The '''name''' is the field that shall be displayed when a trace type is selected.
297
298 The '''trace type''' is the canonical path refering to the class of the trace.
299
300 The '''event type''' is the canonical path refering to the class of the events of a given trace.
301
302 The '''category''' (optional) is the container in which this trace type will be stored.
303
304 # (Optional) To also add UI-specific properties to your trace type, use the '''org.eclipse.linuxtools.tmf.ui.tracetypeui''' extension. To do that, '''right click''' on the extension then in the context menu, go to '''New >''', '''type'''.
305
306 The '''tracetype''' here is the '''id''' of the
307 ''org.eclipse.linuxtools.tmf.core.tracetype'' mentioned above.
308
309 The '''icon''' is the image to associate with that trace type.
310
311 In the end, the extension menu should look like this.
312
313 [[Image:images/NTTPluginxmlComplete.png]]<br>
314
315 = View Tutorial =
316
317 This tutorial describes how to create a simple view using the TMF framework and the SWTChart library. SWTChart is a library based on SWT that can draw several types of charts including a line chart which we will use in this tutorial. We will create a view containing a line chart that displays time stamps on the X axis and the corresponding event values on the Y axis.
318
319 This tutorial will cover concepts like:
320
321 * Extending TmfView
322 * Signal handling (@TmfSignalHandler)
323 * Data requests (TmfEventRequest)
324 * SWTChart integration
325
326 '''Note''': Trace Compass 0.1.0 provides base implementations for generating SWTChart viewers and views. For more details please refer to chapter [[#TMF Built-in Views and Viewers]].
327
328 === Prerequisites ===
329
330 The tutorial is based on Eclipse 4.4 (Eclipse Luna), Trace Compass 0.1.0 and SWTChart 0.7.0. If you are using TMF from the source repository, SWTChart is already included in the target definition file (see org.eclipse.tracecompass.target). You can also install it manually by using the Orbit update site. http://download.eclipse.org/tools/orbit/downloads/
331
332 === Creating an Eclipse UI Plug-in ===
333
334 To create a new project with name org.eclipse.tracecompass.tmf.sample.ui select '''File -> New -> Project -> Plug-in Development -> Plug-in Project'''. <br>
335 [[Image:images/Screenshot-NewPlug-inProject1.png]]<br>
336
337 [[Image:images/Screenshot-NewPlug-inProject2.png]]<br>
338
339 [[Image:images/Screenshot-NewPlug-inProject3.png]]<br>
340
341 === Creating a View ===
342
343 To open the plug-in manifest, double-click on the MANIFEST.MF file. <br>
344 [[Image:images/SelectManifest.png]]<br>
345
346 Change to the Dependencies tab and select '''Add...''' of the ''Required Plug-ins'' section. A new dialog box will open. Next find plug-in ''org.eclipse.tracecompass.tmf.core'' and press '''OK'''<br>
347 Following the same steps, add ''org.eclipse.tracecompass.tmf.ui'' and ''org.swtchart''.<br>
348 [[Image:images/AddDependencyTmfUi.png]]<br>
349
350 Change to the Extensions tab and select '''Add...''' of the ''All Extension'' section. A new dialog box will open. Find the view extension ''org.eclipse.ui.views'' and press '''Finish'''.<br>
351 [[Image:images/AddViewExtension1.png]]<br>
352
353 To create a view, click the right mouse button. Then select '''New -> view'''<br>
354 [[Image:images/AddViewExtension2.png]]<br>
355
356 A new view entry has been created. Fill in the fields ''id'' and ''name''. For ''class'' click on the '''class hyperlink''' and it will show the New Java Class dialog. Enter the name ''SampleView'', change the superclass to ''TmfView'' and click Finish. This will create the source file and fill the ''class'' field in the process. We use TmfView as the superclass because it provides extra functionality like getting the active trace, pinning and it has support for signal handling between components.<br>
357 [[Image:images/FillSampleViewExtension.png]]<br>
358
359 This will generate an empty class. Once the quick fixes are applied, the following code is obtained:
360
361 <pre>
362 package org.eclipse.tracecompass.tmf.sample.ui;
363
364 import org.eclipse.swt.widgets.Composite;
365 import org.eclipse.ui.part.ViewPart;
366
367 public class SampleView extends TmfView {
368
369 public SampleView(String viewName) {
370 super(viewName);
371 // TODO Auto-generated constructor stub
372 }
373
374 @Override
375 public void createPartControl(Composite parent) {
376 // TODO Auto-generated method stub
377
378 }
379
380 @Override
381 public void setFocus() {
382 // TODO Auto-generated method stub
383
384 }
385
386 }
387 </pre>
388
389 This creates an empty view, however the basic structure is now is place.
390
391 === Implementing a view ===
392
393 We will start by adding a empty chart then it will need to be populated with the trace data. Finally, we will make the chart more visually pleasing by adjusting the range and formating the time stamps.
394
395 ==== Adding an Empty Chart ====
396
397 First, we can add an empty chart to the view and initialize some of its components.
398
399 <pre>
400 private static final String SERIES_NAME = "Series";
401 private static final String Y_AXIS_TITLE = "Signal";
402 private static final String X_AXIS_TITLE = "Time";
403 private static final String FIELD = "value"; // The name of the field that we want to display on the Y axis
404 private static final String VIEW_ID = "org.eclipse.tracecompass.tmf.sample.ui.view";
405 private Chart chart;
406 private ITmfTrace currentTrace;
407
408 public SampleView() {
409 super(VIEW_ID);
410 }
411
412 @Override
413 public void createPartControl(Composite parent) {
414 chart = new Chart(parent, SWT.BORDER);
415 chart.getTitle().setVisible(false);
416 chart.getAxisSet().getXAxis(0).getTitle().setText(X_AXIS_TITLE);
417 chart.getAxisSet().getYAxis(0).getTitle().setText(Y_AXIS_TITLE);
418 chart.getSeriesSet().createSeries(SeriesType.LINE, SERIES_NAME);
419 chart.getLegend().setVisible(false);
420 }
421
422 @Override
423 public void setFocus() {
424 chart.setFocus();
425 }
426 </pre>
427
428 The view is prepared. Run the Example. To launch the an Eclipse Application select the ''Overview'' tab and click on '''Launch an Eclipse Application'''<br>
429 [[Image:images/RunEclipseApplication.png]]<br>
430
431 A new Eclipse application window will show. In the new window go to '''Windows -> Show View -> Other... -> Other -> Sample View'''.<br>
432 [[Image:images/ShowViewOther.png]]<br>
433
434 You should now see a view containing an empty chart<br>
435 [[Image:images/EmptySampleView.png]]<br>
436
437 ==== Signal Handling ====
438
439 We would like to populate the view when a trace is selected. To achieve this, we can use a signal hander which is specified with the '''@TmfSignalHandler''' annotation.
440
441 <pre>
442 @TmfSignalHandler
443 public void traceSelected(final TmfTraceSelectedSignal signal) {
444
445 }
446 </pre>
447
448 ==== Requesting Data ====
449
450 Then we need to actually gather data from the trace. This is done asynchronously using a ''TmfEventRequest''
451
452 <pre>
453 @TmfSignalHandler
454 public void traceSelected(final TmfTraceSelectedSignal signal) {
455 // Don't populate the view again if we're already showing this trace
456 if (currentTrace == signal.getTrace()) {
457 return;
458 }
459 currentTrace = signal.getTrace();
460
461 // Create the request to get data from the trace
462
463 TmfEventRequest req = new TmfEventRequest(TmfEvent.class,
464 TmfTimeRange.ETERNITY, 0, ITmfEventRequest.ALL_DATA,
465 ITmfEventRequest.ExecutionType.BACKGROUND) {
466
467 @Override
468 public void handleData(ITmfEvent data) {
469 // Called for each event
470 super.handleData(data);
471 }
472
473 @Override
474 public void handleSuccess() {
475 // Request successful, not more data available
476 super.handleSuccess();
477 }
478
479 @Override
480 public void handleFailure() {
481 // Request failed, not more data available
482 super.handleFailure();
483 }
484 };
485 ITmfTrace trace = signal.getTrace();
486 trace.sendRequest(req);
487 }
488 </pre>
489
490 ==== Transferring Data to the Chart ====
491
492 The chart expects an array of doubles for both the X and Y axis values. To provide that, we can accumulate each event's time and value in their respective list then convert the list to arrays when all events are processed.
493
494 <pre>
495 TmfEventRequest req = new TmfEventRequest(TmfEvent.class,
496 TmfTimeRange.ETERNITY, 0, ITmfEventRequest.ALL_DATA,
497 ITmfEventRequest.ExecutionType.BACKGROUND) {
498
499 ArrayList<Double> xValues = new ArrayList<Double>();
500 ArrayList<Double> yValues = new ArrayList<Double>();
501
502 @Override
503 public void handleData(ITmfEvent data) {
504 // Called for each event
505 super.handleData(data);
506 ITmfEventField field = data.getContent().getField(FIELD);
507 if (field != null) {
508 yValues.add((Double) field.getValue());
509 xValues.add((double) data.getTimestamp().getValue());
510 }
511 }
512
513 @Override
514 public void handleSuccess() {
515 // Request successful, not more data available
516 super.handleSuccess();
517
518 final double x[] = toArray(xValues);
519 final double y[] = toArray(yValues);
520
521 // This part needs to run on the UI thread since it updates the chart SWT control
522 Display.getDefault().asyncExec(new Runnable() {
523
524 @Override
525 public void run() {
526 chart.getSeriesSet().getSeries()[0].setXSeries(x);
527 chart.getSeriesSet().getSeries()[0].setYSeries(y);
528
529 chart.redraw();
530 }
531
532 });
533 }
534
535 /**
536 * Convert List<Double> to double[]
537 */
538 private double[] toArray(List<Double> list) {
539 double[] d = new double[list.size()];
540 for (int i = 0; i < list.size(); ++i) {
541 d[i] = list.get(i);
542 }
543
544 return d;
545 }
546 };
547 </pre>
548
549 ==== Adjusting the Range ====
550
551 The chart now contains values but they might be out of range and not visible. We can adjust the range of each axis by computing the minimum and maximum values as we add events.
552
553 <pre>
554
555 ArrayList<Double> xValues = new ArrayList<Double>();
556 ArrayList<Double> yValues = new ArrayList<Double>();
557 private double maxY = -Double.MAX_VALUE;
558 private double minY = Double.MAX_VALUE;
559 private double maxX = -Double.MAX_VALUE;
560 private double minX = Double.MAX_VALUE;
561
562 @Override
563 public void handleData(ITmfEvent data) {
564 super.handleData(data);
565 ITmfEventField field = data.getContent().getField(FIELD);
566 if (field != null) {
567 Double yValue = (Double) field.getValue();
568 minY = Math.min(minY, yValue);
569 maxY = Math.max(maxY, yValue);
570 yValues.add(yValue);
571
572 double xValue = (double) data.getTimestamp().getValue();
573 xValues.add(xValue);
574 minX = Math.min(minX, xValue);
575 maxX = Math.max(maxX, xValue);
576 }
577 }
578
579 @Override
580 public void handleSuccess() {
581 super.handleSuccess();
582 final double x[] = toArray(xValues);
583 final double y[] = toArray(yValues);
584
585 // This part needs to run on the UI thread since it updates the chart SWT control
586 Display.getDefault().asyncExec(new Runnable() {
587
588 @Override
589 public void run() {
590 chart.getSeriesSet().getSeries()[0].setXSeries(x);
591 chart.getSeriesSet().getSeries()[0].setYSeries(y);
592
593 // Set the new range
594 if (!xValues.isEmpty() && !yValues.isEmpty()) {
595 chart.getAxisSet().getXAxis(0).setRange(new Range(0, x[x.length - 1]));
596 chart.getAxisSet().getYAxis(0).setRange(new Range(minY, maxY));
597 } else {
598 chart.getAxisSet().getXAxis(0).setRange(new Range(0, 1));
599 chart.getAxisSet().getYAxis(0).setRange(new Range(0, 1));
600 }
601 chart.getAxisSet().adjustRange();
602
603 chart.redraw();
604 }
605 });
606 }
607 </pre>
608
609 ==== Formatting the Time Stamps ====
610
611 To display the time stamps on the X axis nicely, we need to specify a format or else the time stamps will be displayed as ''long''. We use TmfTimestampFormat to make it consistent with the other TMF views. We also need to handle the '''TmfTimestampFormatUpdateSignal''' to make sure that the time stamps update when the preferences change.
612
613 <pre>
614 @Override
615 public void createPartControl(Composite parent) {
616 ...
617
618 chart.getAxisSet().getXAxis(0).getTick().setFormat(new TmfChartTimeStampFormat());
619 }
620
621 public class TmfChartTimeStampFormat extends SimpleDateFormat {
622 private static final long serialVersionUID = 1L;
623 @Override
624 public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition fieldPosition) {
625 long time = date.getTime();
626 toAppendTo.append(TmfTimestampFormat.getDefaulTimeFormat().format(time));
627 return toAppendTo;
628 }
629 }
630
631 @TmfSignalHandler
632 public void timestampFormatUpdated(TmfTimestampFormatUpdateSignal signal) {
633 // Called when the time stamp preference is changed
634 chart.getAxisSet().getXAxis(0).getTick().setFormat(new TmfChartTimeStampFormat());
635 chart.redraw();
636 }
637 </pre>
638
639 We also need to populate the view when a trace is already selected and the view is opened. We can reuse the same code by having the view send the '''TmfTraceSelectedSignal''' to itself.
640
641 <pre>
642 @Override
643 public void createPartControl(Composite parent) {
644 ...
645
646 ITmfTrace trace = getActiveTrace();
647 if (trace != null) {
648 traceSelected(new TmfTraceSelectedSignal(this, trace));
649 }
650 }
651 </pre>
652
653 The view is now ready but we need a proper trace to test it. For this example, a trace was generated using LTTng-UST so that it would produce a sine function.<br>
654
655 [[Image:images/SampleView.png]]<br>
656
657 In summary, we have implemented a simple TMF view using the SWTChart library. We made use of signals and requests to populate the view at the appropriate time and we formated the time stamps nicely. We also made sure that the time stamp format is updated when the preferences change.
658
659 == TMF Built-in Views and Viewers ==
660
661 TMF provides base implementations for several types of views and viewers for generating custom X-Y-Charts, Time Graphs, or Trees. They are well integrated with various TMF features such as reading traces and time synchronization with other views. They also handle mouse events for navigating the trace and view, zooming or presenting detailed information at mouse position. The code can be found in the TMF UI plug-in ''org.eclipse.tracecompass.tmf.ui''. See below for a list of relevant java packages:
662
663 * Generic
664 ** ''org.eclipse.tracecompass.tmf.ui.views'': Common TMF view base classes
665 * X-Y-Chart
666 ** ''org.eclipse.tracecompass.tmf.ui.viewers.xycharts'': Common base classes for X-Y-Chart viewers based on SWTChart
667 ** ''org.eclipse.tracecompass.tmf.ui.viewers.xycharts.barcharts'': Base classes for bar charts
668 ** ''org.eclipse.tracecompass.tmf.ui.viewers.xycharts.linecharts'': Base classes for line charts
669 * Time Graph View
670 ** ''org.eclipse.tracecompass.tmf.ui.widgets.timegraph'': Base classes for time graphs e.g. Gantt-charts
671 * Tree Viewer
672 ** ''org.eclipse.tracecompass.tmf.ui.viewers.tree'': Base classes for TMF specific tree viewers
673
674 Several features in TMF and the Eclipse LTTng integration are using this framework and can be used as example for further developments:
675 * X-Y- Chart
676 ** ''org.eclipse.tracecompass.internal.lttng2.ust.ui.views.memusage.MemUsageView.java''
677 ** ''org.eclipse.tracecompass.analysis.os.linux.ui.views.cpuusage.CpuUsageView.java''
678 ** ''org.eclipse.tracecompass.tracing.examples.ui.views.histogram.NewHistogramView.java''
679 * Time Graph View
680 ** ''org.eclipse.tracecompass.analysis.os.linux.ui.views.controlflow.ControlFlowView.java''
681 ** ''org.eclipse.tracecompass.analysis.os.linux.ui.views.resources.ResourcesView.java''
682 * Tree Viewer
683 ** ''org.eclipse.tracecompass.tmf.ui.views.statesystem.TmfStateSystemExplorer.java''
684 ** ''org.eclipse.tracecompass.analysis.os.linux.ui.views.cpuusage.CpuUsageComposite.java''
685
686 == Timing Analysis Views and Viewers ==
687
688 Trace Compass provides base implementations for timing views and viewers for generating Latency Tables, Scatter Charts, Density Graphs and Statistics Tables. They are well integrated with various Trace Compass features such as reading traces and time synchronization with other views. They also handle mouse events for navigating the trace and view, zooming or presenting detailed information at mouse position. The code can be found in the Analysis Timing plug-in ''org.eclipse.tracecompass.analysis.timing.ui''. See below for a list of relevant java packages:
689
690 * Latency Table
691 ** ''org.eclipse.tracecompass.analysis.timing.ui.views.segmentstore.table'': Base classes for Latency Tables
692 * Scatter Chart
693 ** ''org.eclipse.tracecompass.tmf.ui.views.tmfChartView.java'': Common base classes for X-Y-Chart viewers based on SWTChart
694 ** ''org.eclipse.tracecompass.analysis.timing.ui.views.segmentstore.scatter'': Base classes for Scatter Charts
695 * Density Graph
696 ** ''org.eclipse.tracecompass.analysis.timing.ui.views.segmentstore.density'': Base classes for Density Graphs
697 * Statistics Table
698 ** ''org.eclipse.tracecompass.analysis.timing.ui.views.segmentstore.statistics'': Base classes for Statistics Tables
699
700 Several features in Trace Compass are using this framework and can be used as example for further development:
701
702 * Latency Table
703 ** ''org.eclipse.tracecompass.internal.analysis.os.linux.ui.views.latency.SystemCallLatencyView.java''
704 ** ''org.eclipse.tracecompass.internal.tmf.analysis.xml.ui.views.latency.PatternLatencyTableView.java''
705 * Scatter Chart
706 ** ''org.eclipse.tracecompass.internal.analysis.os.linux.ui.views.latency.SystemCallLatencyScatterView.java''
707 ** ''org.eclipse.tracecompass.internal.tmf.analysis.xml.ui.views.latency.PatternScatterGraphView.java''
708 * Density Graph
709 ** ''org.eclipse.tracecompass.internal.analysis.os.linux.ui.views.latency.SystemCallLatencyDensityView.java''
710 ** ''org.eclipse.tracecompass.internal.tmf.analysis.xml.ui.views.latency.PatternDensityView.java''
711
712 * Statistics Table
713 ** ''org.eclipse.tracecompass.internal.analysis.os.linux.ui.views.latency.statistics.SystemCallLatencyStatisticsView.java''
714 ** ''org.eclipse.tracecompass.internal.tmf.analysis.xml.ui.views.latency.PatternStatisticsView.java''
715
716 = Component Interaction =
717
718 TMF provides a mechanism for different components to interact with each other using signals. The signals can carry information that is specific to each signal.
719
720 The TMF Signal Manager handles registration of components and the broadcasting of signals to their intended receivers.
721
722 Components can register as VIP receivers which will ensure they will receive the signal before non-VIP receivers.
723
724 == Sending Signals ==
725
726 In order to send a signal, an instance of the signal must be created and passed as argument to the signal manager to be dispatched. Every component that can handle the signal will receive it. The receivers do not need to be known by the sender.
727
728 <pre>
729 TmfExampleSignal signal = new TmfExampleSignal(this, ...);
730 TmfSignalManager.dispatchSignal(signal);
731 </pre>
732
733 If the sender is an instance of the class TmfComponent, the broadcast method can be used:
734
735 <pre>
736 TmfExampleSignal signal = new TmfExampleSignal(this, ...);
737 broadcast(signal);
738 </pre>
739
740 == Receiving Signals ==
741
742 In order to receive any signal, the receiver must first be registered with the signal manager. The receiver can register as a normal or VIP receiver.
743
744 <pre>
745 TmfSignalManager.register(this);
746 TmfSignalManager.registerVIP(this);
747 </pre>
748
749 If the receiver is an instance of the class TmfComponent, it is automatically registered as a normal receiver in the constructor.
750
751 When the receiver is destroyed or disposed, it should deregister itself from the signal manager.
752
753 <pre>
754 TmfSignalManager.deregister(this);
755 </pre>
756
757 To actually receive and handle any specific signal, the receiver must use the @TmfSignalHandler annotation and implement a method that will be called when the signal is broadcast. The name of the method is irrelevant.
758
759 <pre>
760 @TmfSignalHandler
761 public void example(TmfExampleSignal signal) {
762 ...
763 }
764 </pre>
765
766 The source of the signal can be used, if necessary, by a component to filter out and ignore a signal that was broadcast by itself when the component is also a receiver of the signal but only needs to handle it when it was sent by another component or another instance of the component.
767
768 == Signal Throttling ==
769
770 It is possible for a TmfComponent instance to buffer the dispatching of signals so that only the last signal queued after a specified delay without any other signal queued is sent to the receivers. All signals that are preempted by a newer signal within the delay are discarded.
771
772 The signal throttler must first be initialized:
773
774 <pre>
775 final int delay = 100; // in ms
776 TmfSignalThrottler throttler = new TmfSignalThrottler(this, delay);
777 </pre>
778
779 Then the sending of signals should be queued through the throttler:
780
781 <pre>
782 TmfExampleSignal signal = new TmfExampleSignal(this, ...);
783 throttler.queue(signal);
784 </pre>
785
786 When the throttler is no longer needed, it should be disposed:
787
788 <pre>
789 throttler.dispose();
790 </pre>
791
792 == Signal Reference ==
793
794 The following is a list of built-in signals defined in the framework.
795
796 === TmfStartSynchSignal ===
797
798 ''Purpose''
799
800 This signal is used to indicate the start of broadcasting of a signal. Internally, the data provider will not fire event requests until the corresponding TmfEndSynchSignal signal is received. This allows coalescing of requests triggered by multiple receivers of the broadcast signal.
801
802 ''Senders''
803
804 Sent by TmfSignalManager before dispatching a signal to all receivers.
805
806 ''Receivers''
807
808 Received by TmfDataProvider.
809
810 === TmfEndSynchSignal ===
811
812 ''Purpose''
813
814 This signal is used to indicate the end of broadcasting of a signal. Internally, the data provider fire all pending event requests that were received and buffered since the corresponding TmfStartSynchSignal signal was received. This allows coalescing of requests triggered by multiple receivers of the broadcast signal.
815
816 ''Senders''
817
818 Sent by TmfSignalManager after dispatching a signal to all receivers.
819
820 ''Receivers''
821
822 Received by TmfDataProvider.
823
824 === TmfTraceOpenedSignal ===
825
826 ''Purpose''
827
828 This signal is used to indicate that a trace has been opened in an editor.
829
830 ''Senders''
831
832 Sent by a TmfEventsEditor instance when it is created.
833
834 ''Receivers''
835
836 Received by TmfTrace, TmfExperiment, TmfTraceManager and every view that shows trace data. Components that show trace data should handle this signal.
837
838 === TmfTraceSelectedSignal ===
839
840 ''Purpose''
841
842 This signal is used to indicate that a trace has become the currently selected trace.
843
844 ''Senders''
845
846 Sent by a TmfEventsEditor instance when it receives focus. Components can send this signal to make a trace editor be brought to front.
847
848 ''Receivers''
849
850 Received by TmfTraceManager and every view that shows trace data. Components that show trace data should handle this signal.
851
852 === TmfTraceClosedSignal ===
853
854 ''Purpose''
855
856 This signal is used to indicate that a trace editor has been closed.
857
858 ''Senders''
859
860 Sent by a TmfEventsEditor instance when it is disposed.
861
862 ''Receivers''
863
864 Received by TmfTraceManager and every view that shows trace data. Components that show trace data should handle this signal.
865
866 === TmfTraceRangeUpdatedSignal ===
867
868 ''Purpose''
869
870 This signal is used to indicate that the valid time range of a trace has been updated. This triggers indexing of the trace up to the end of the range. In the context of streaming, this end time is considered a safe time up to which all events are guaranteed to have been completely received. For non-streaming traces, the end time is set to infinity indicating that all events can be read immediately. Any processing of trace events that wants to take advantage of request coalescing should be triggered by this signal.
871
872 ''Senders''
873
874 Sent by TmfExperiment and non-streaming TmfTrace. Streaming traces should send this signal in the TmfTrace subclass when a new safe time is determined by a specific implementation.
875
876 ''Receivers''
877
878 Received by TmfTrace, TmfExperiment and components that process trace events. Components that need to process trace events should handle this signal.
879
880 === TmfTraceUpdatedSignal ===
881
882 ''Purpose''
883
884 This signal is used to indicate that new events have been indexed for a trace.
885
886 ''Senders''
887
888 Sent by TmfCheckpointIndexer when new events have been indexed and the number of events has changed.
889
890 ''Receivers''
891
892 Received by components that need to be notified of a new trace event count.
893
894 === TmfSelectionRangeUpdatedSignal ===
895
896 ''Purpose''
897
898 This signal is used to indicate that a new time or time range has been
899 selected. It contains a begin and end time. If a single time is selected then
900 the begin and end time are the same.
901
902 ''Senders''
903
904 Sent by any component that allows the user to select a time or time range.
905
906 ''Receivers''
907
908 Received by any component that needs to be notified of the currently selected time or time range.
909
910 === TmfWindowRangeUpdatedSignal ===
911
912 ''Purpose''
913
914 This signal is used to indicate that a new time range window has been set.
915
916 ''Senders''
917
918 Sent by any component that allows the user to set a time range window.
919
920 ''Receivers''
921
922 Received by any component that needs to be notified of the current visible time range window.
923
924 === TmfEventFilterAppliedSignal ===
925
926 ''Purpose''
927
928 This signal is used to indicate that a filter has been applied to a trace.
929
930 ''Senders''
931
932 Sent by TmfEventsTable when a filter is applied.
933
934 ''Receivers''
935
936 Received by any component that shows trace data and needs to be notified of applied filters.
937
938 === TmfEventSearchAppliedSignal ===
939
940 ''Purpose''
941
942 This signal is used to indicate that a search has been applied to a trace.
943
944 ''Senders''
945
946 Sent by TmfEventsTable when a search is applied.
947
948 ''Receivers''
949
950 Received by any component that shows trace data and needs to be notified of applied searches.
951
952 === TmfTimestampFormatUpdateSignal ===
953
954 ''Purpose''
955
956 This signal is used to indicate that the timestamp format preference has been updated.
957
958 ''Senders''
959
960 Sent by TmfTimestampFormat when the default timestamp format preference is changed.
961
962 ''Receivers''
963
964 Received by any component that needs to refresh its display for the new timestamp format.
965
966 === TmfStatsUpdatedSignal ===
967
968 ''Purpose''
969
970 This signal is used to indicate that the statistics data model has been updated.
971
972 ''Senders''
973
974 Sent by statistic providers when new statistics data has been processed.
975
976 ''Receivers''
977
978 Received by statistics viewers and any component that needs to be notified of a statistics update.
979
980 === TmfPacketStreamSelected ===
981
982 ''Purpose''
983
984 This signal is used to indicate that the user has selected a packet stream to analyze.
985
986 ''Senders''
987
988 Sent by the Stream List View when the user selects a new packet stream.
989
990 ''Receivers''
991
992 Received by views that analyze packet streams.
993
994 == Debugging ==
995
996 TMF has built-in Eclipse tracing support for the debugging of signal interaction between components. To enable it, open the '''Run/Debug Configuration...''' dialog, select a configuration, click the '''Tracing''' tab, select the plug-in '''org.eclipse.tracecompass.tmf.core''', and check the '''signal''' item.
997
998 All signals sent and received will be logged to the file TmfTrace.log located in the Eclipse home directory.
999
1000 = Generic State System =
1001
1002 == Introduction ==
1003
1004 The Generic State System is a utility available in TMF to track different states
1005 over the duration of a trace. It works by first sending some or all events of
1006 the trace into a state provider, which defines the state changes for a given
1007 trace type. Once built, views and analysis modules can then query the resulting
1008 database of states (called "state history") to get information.
1009
1010 For example, let's suppose we have the following sequence of events in a kernel
1011 trace:
1012
1013 10 s, sys_open, fd = 5, file = /home/user/myfile
1014 ...
1015 15 s, sys_read, fd = 5, size=32
1016 ...
1017 20 s, sys_close, fd = 5
1018
1019 Now let's say we want to implement an analysis module which will track the
1020 amount of bytes read and written to each file. Here, of course the sys_read is
1021 interesting. However, by just looking at that event, we have no information on
1022 which file is being read, only its fd (5) is known. To get the match
1023 fd5 = /home/user/myfile, we have to go back to the sys_open event which happens
1024 5 seconds earlier.
1025
1026 But since we don't know exactly where this sys_open event is, we will have to go
1027 back to the very start of the trace, and look through events one by one! This is
1028 obviously not efficient, and will not scale well if we want to analyze many
1029 similar patterns, or for very large traces.
1030
1031 A solution in this case would be to use the state system to keep track of the
1032 amount of bytes read/written to every *filename* (instead of every file
1033 descriptor, like we get from the events). Then the module could ask the state
1034 system "what is the amount of bytes read for file "/home/user/myfile" at time
1035 16 s", and it would return the answer "32" (assuming there is no other read
1036 than the one shown).
1037
1038 == High-level components ==
1039
1040 The State System infrastructure is composed of 3 parts:
1041 * The state provider
1042 * The central state system
1043 * The storage backend
1044
1045 The state provider is the customizable part. This is where the mapping from
1046 trace events to state changes is done. This is what you want to implement for
1047 your specific trace type and analysis type. It's represented by the
1048 ITmfStateProvider interface (with a threaded implementation in
1049 AbstractTmfStateProvider, which you can extend).
1050
1051 The core of the state system is exposed through the ITmfStateSystem and
1052 ITmfStateSystemBuilder interfaces. The former allows only read-only access and
1053 is typically used for views doing queries. The latter also allows writing to the
1054 state history, and is typically used by the state provider.
1055
1056 Finally, each state system has its own separate backend. This determines how the
1057 intervals, or the "state history", are saved (in RAM, on disk, etc.) You can
1058 select the type of backend at construction time in the TmfStateSystemFactory.
1059
1060 == Definitions ==
1061
1062 Before we dig into how to use the state system, we should go over some useful
1063 definitions:
1064
1065 === Attribute ===
1066
1067 An attribute is the smallest element of the model that can be in any particular
1068 state. When we refer to the "full state", in fact it means we are interested in
1069 the state of every single attribute of the model.
1070
1071 === Attribute Tree ===
1072
1073 Attributes in the model can be placed in a tree-like structure, a bit like files
1074 and directories in a file system. However, note that an attribute can always
1075 have both a value and sub-attributes, so they are like files and directories at
1076 the same time. We are then able to refer to every single attribute with its
1077 path in the tree.
1078
1079 For example, in the attribute tree for Linux kernel traces, we use the following
1080 attributes, among others:
1081
1082 <pre>
1083 |- Processes
1084 | |- 1000
1085 | | |- PPID
1086 | | |- Exec_name
1087 | |- 1001
1088 | | |- PPID
1089 | | |- Exec_name
1090 | ...
1091 |- CPUs
1092 |- 0
1093 | |- Status
1094 | |- Current_pid
1095 ...
1096 </pre>
1097
1098 In this model, the attribute "Processes/1000/PPID" refers to the PPID of process
1099 with PID 1000. The attribute "CPUs/0/Status" represents the status (running,
1100 idle, etc.) of CPU 0. "Processes/1000/PPID" and "Processes/1001/PPID" are two
1101 different attribute, even though their base name is the same: the whole path is
1102 the unique identifier.
1103
1104 The value of each attribute can change over the duration of the trace,
1105 independently of the other ones, and independently of its position in the tree.
1106
1107 The tree-like organization is optional, all attributes could be at the same
1108 level. But it's possible to put them in a tree, and it helps make things
1109 clearer.
1110
1111 === Quark ===
1112
1113 In addition to a given path, each attribute also has a unique integer
1114 identifier, called the "quark". To continue with the file system analogy, this
1115 is like the inode number. When a new attribute is created, a new unique quark
1116 will be assigned automatically. They are assigned incrementally, so they will
1117 normally be equal to their order of creation, starting at 0.
1118
1119 Methods are offered to get the quark of an attribute from its path. The API
1120 methods for inserting state changes and doing queries normally use quarks
1121 instead of paths. This is to encourage users to cache the quarks and re-use
1122 them, which avoids re-walking the attribute tree over and over, which avoids
1123 unneeded hashing of strings.
1124
1125 === State value ===
1126
1127 The path and quark of an attribute will remain constant for the whole duration
1128 of the trace. However, the value carried by the attribute will change. The value
1129 of a specific attribute at a specific time is called the state value.
1130
1131 In the TMF implementation, state values can be integers, longs, doubles, or strings.
1132 There is also a "null value" type, which is used to indicate that no particular
1133 value is active for this attribute at this time, but without resorting to a
1134 'null' reference.
1135
1136 Any other type of value could be used, as long as the backend knows how to store
1137 it.
1138
1139 Note that the TMF implementation also forces every attribute to always carry the
1140 same type of state value. This is to make it simpler for views, so they can
1141 expect that an attribute will always use a given type, without having to check
1142 every single time. Null values are an exception, they are always allowed for all
1143 attributes, since they can safely be "unboxed" into all types.
1144
1145 === State change ===
1146
1147 A state change is the element that is inserted in the state system. It consists
1148 of:
1149 * a timestamp (the time at which the state change occurs)
1150 * an attribute (the attribute whose value will change)
1151 * a state value (the new value that the attribute will carry)
1152
1153 It's not an object per se in the TMF implementation (it's represented by a
1154 function call in the state provider). Typically, the state provider will insert
1155 zero, one or more state changes for every trace event, depending on its event
1156 type, payload, etc.
1157
1158 Note, we use "timestamp" here, but it's in fact a generic term that could be
1159 referred to as "index". For example, if a given trace type has no notion of
1160 timestamp, the event rank could be used.
1161
1162 In the TMF implementation, the timestamp is a long (64-bit integer).
1163
1164 === State interval ===
1165
1166 State changes are inserted into the state system, but state intervals are the
1167 objects that come out on the other side. Those are stocked in the storage
1168 backend. A state interval represents a "state" of an attribute we want to track.
1169 When doing queries on the state system, intervals are what is returned. The
1170 components of a state interval are:
1171 * Start time
1172 * End time
1173 * State value
1174 * Quark
1175
1176 The start and end times represent the time range of the state. The state value
1177 is the same as the state value in the state change that started this interval.
1178 The interval also keeps a reference to its quark, although you normally know
1179 your quark in advance when you do queries.
1180
1181 === State history ===
1182
1183 The state history is the name of the container for all the intervals created by
1184 the state system. The exact implementation (how the intervals are stored) is
1185 determined by the storage backend that is used.
1186
1187 Some backends will use a state history that is persistent on disk, others do not.
1188 When loading a trace, if a history file is available and the backend supports
1189 it, it will be loaded right away, skipping the need to go through another
1190 construction phase.
1191
1192 === Construction phase ===
1193
1194 Before we can query a state system, we need to build the state history first. To
1195 do so, trace events are sent one-by-one through the state provider, which in
1196 turn sends state changes to the central component, which then creates intervals
1197 and stores them in the backend. This is called the construction phase.
1198
1199 Note that the state system needs to receive its events into chronological order.
1200 This phase will end once the end of the trace is reached.
1201
1202 Also note that it is possible to query the state system while it is being build.
1203 Any timestamp between the start of the trace and the current end time of the
1204 state system (available with ITmfStateSystem#getCurrentEndTime()) is a valid
1205 timestamp that can be queried.
1206
1207 === Queries ===
1208
1209 As mentioned previously, when doing queries on the state system, the returned
1210 objects will be state intervals. In most cases it's the state *value* we are
1211 interested in, but since the backend has to instantiate the interval object
1212 anyway, there is no additional cost to return the interval instead. This way we
1213 also get the start and end times of the state "for free".
1214
1215 There are two types of queries that can be done on the state system:
1216
1217 ==== Full queries ====
1218
1219 A full query means that we want to retrieve the whole state of the model for one
1220 given timestamp. As we remember, this means "the state of every single attribute
1221 in the model". As parameter we only need to pass the timestamp (see the API
1222 methods below). The return value will be an array of intervals, where the offset
1223 in the array represents the quark of each attribute.
1224
1225 ==== Single queries ====
1226
1227 In other cases, we might only be interested in the state of one particular
1228 attribute at one given timestamp. For these cases it's better to use a
1229 single query. For a single query. we need to pass both a timestamp and a
1230 quark in parameter. The return value will be a single interval, representing
1231 the state that this particular attribute was at that time.
1232
1233 Single queries are typically faster than full queries (but once again, this
1234 depends on the backend that is used), but not by much. Even if you only want the
1235 state of say 10 attributes out of 200, it could be faster to use a full query
1236 and only read the ones you need. Single queries should be used for cases where
1237 you only want one attribute per timestamp (for example, if you follow the state
1238 of the same attribute over a time range).
1239
1240
1241 == Relevant interfaces/classes ==
1242
1243 This section will describe the public interface and classes that can be used if
1244 you want to use the state system.
1245
1246 === Main classes in org.eclipse.tracecompass.tmf.core.statesystem ===
1247
1248 ==== ITmfStateProvider / AbstractTmfStateProvider ====
1249
1250 ITmfStateProvider is the interface you have to implement to define your state
1251 provider. This is where most of the work has to be done to use a state system
1252 for a custom trace type or analysis type.
1253
1254 For first-time users, it's recommended to extend AbstractTmfStateProvider
1255 instead. This class takes care of all the initialization mumbo-jumbo, and also
1256 runs the event handler in a separate thread. You will only need to implement
1257 eventHandle, which is the call-back that will be called for every event in the
1258 trace.
1259
1260 For an example, you can look at StatsStateProvider in the TMF tree, or at the
1261 small example below.
1262
1263 ==== TmfStateSystemFactory ====
1264
1265 Once you have defined your state provider, you need to tell your trace type to
1266 build a state system with this provider during its initialization. This consists
1267 of overriding TmfTrace#buildStateSystems() and in there of calling the method in
1268 TmfStateSystemFactory that corresponds to the storage backend you want to use
1269 (see the section [[#Comparison of state system backends]]).
1270
1271 You will have to pass in parameter the state provider you want to use, which you
1272 should have defined already. Each backend can also ask for more configuration
1273 information.
1274
1275 You must then call registerStateSystem(id, statesystem) to make your state
1276 system visible to the trace objects and the views. The ID can be any string of
1277 your choosing. To access this particular state system, the views or modules will
1278 need to use this ID.
1279
1280 Also, don't forget to call super.buildStateSystems() in your implementation,
1281 unless you know for sure you want to skip the state providers built by the
1282 super-classes.
1283
1284 You can look at how LttngKernelTrace does it for an example. It could also be
1285 possible to build a state system only under certain conditions (like only if the
1286 trace contains certain event types).
1287
1288
1289 ==== ITmfStateSystem ====
1290
1291 ITmfStateSystem is the main interface through which views or analysis modules
1292 will access the state system. It offers a read-only view of the state system,
1293 which means that no states can be inserted, and no attributes can be created.
1294 Calling TmfTrace#getStateSystems().get(id) will return you a ITmfStateSystem
1295 view of the requested state system. The main methods of interest are:
1296
1297 ===== getQuarkAbsolute()/getQuarkRelative() =====
1298
1299 Those are the basic quark-getting methods. The goal of the state system is to
1300 return the state values of given attributes at given timestamps. As we've seen
1301 earlier, attributes can be described with a file-system-like path. The goal of
1302 these methods is to convert from the path representation of the attribute to its
1303 quark.
1304
1305 Since quarks are created on-the-fly, there is no guarantee that the same
1306 attributes will have the same quark for two traces of the same type. The views
1307 should always query their quarks when dealing with a new trace or a new state
1308 provider. Beyond that however, quarks should be cached and reused as much as
1309 possible, to avoid potentially costly string re-hashing.
1310
1311 getQuarkAbsolute() takes a variable amount of Strings in parameter, which
1312 represent the full path to the attribute. Some of them can be constants, some
1313 can come programmatically, often from the event's fields.
1314
1315 getQuarkRelative() is to be used when you already know the quark of a certain
1316 attribute, and want to access on of its sub-attributes. Its first parameter is
1317 the origin quark, followed by a String varagrs which represent the relative path
1318 to the final attribute.
1319
1320 These two methods will throw an AttributeNotFoundException if trying to access
1321 an attribute that does not exist in the model.
1322
1323 These methods also imply that the view has the knowledge of how the attribute
1324 tree is organized. This should be a reasonable hypothesis, since the same
1325 analysis plugin will normally ship both the state provider and the view, and
1326 they will have been written by the same person. In other cases, it's possible to
1327 use getSubAttributes() to explore the organization of the attribute tree first.
1328
1329 ===== waitUntilBuilt() =====
1330
1331 This is a simple method used to block the caller until the construction phase of
1332 this state system is done. If the view prefers to wait until all information is
1333 available before starting to do queries (to get all known attributes right away,
1334 for example), this is the guy to call.
1335
1336 ===== queryFullState() =====
1337
1338 This is the method to do full queries. As mentioned earlier, you only need to
1339 pass a target timestamp in parameter. It will return a List of state intervals,
1340 in which the offset corresponds to the attribute quark. This will represent the
1341 complete state of the model at the requested time.
1342
1343 ===== querySingleState() =====
1344
1345 The method to do single queries. You pass in parameter both a timestamp and an
1346 attribute quark. This will return the single state matching this
1347 timestamp/attribute pair.
1348
1349 Other methods are available, you are encouraged to read their Javadoc and see if
1350 they can be potentially useful.
1351
1352 ==== ITmfStateSystemBuilder ====
1353
1354 ITmfStateSystemBuilder is the read-write interface to the state system. It
1355 extends ITmfStateSystem itself, so all its methods are available. It then adds
1356 methods that can be used to write to the state system, either by creating new
1357 attributes of inserting state changes.
1358
1359 It is normally reserved for the state provider and should not be visible to
1360 external components. However it will be available in AbstractTmfStateProvider,
1361 in the field 'ss'. That way you can call ss.modifyAttribute() etc. in your state
1362 provider to write to the state.
1363
1364 The main methods of interest are:
1365
1366 ===== getQuark*AndAdd() =====
1367
1368 getQuarkAbsoluteAndAdd() and getQuarkRelativeAndAdd() work exactly like their
1369 non-AndAdd counterparts in ITmfStateSystem. The difference is that the -AndAdd
1370 versions will not throw any exception: if the requested attribute path does not
1371 exist in the system, it will be created, and its newly-assigned quark will be
1372 returned.
1373
1374 When in a state provider, the -AndAdd version should normally be used (unless
1375 you know for sure the attribute already exist and don't want to create it
1376 otherwise). This means that there is no need to define the whole attribute tree
1377 in advance, the attributes will be created on-demand.
1378
1379 ===== modifyAttribute() =====
1380
1381 This is the main state-change-insertion method. As was explained before, a state
1382 change is defined by a timestamp, an attribute and a state value. Those three
1383 elements need to be passed to modifyAttribute as parameters.
1384
1385 Other state change insertion methods are available (increment-, push-, pop- and
1386 removeAttribute()), but those are simply convenience wrappers around
1387 modifyAttribute(). Check their Javadoc for more information.
1388
1389 ===== closeHistory() =====
1390
1391 When the construction phase is done, do not forget to call closeHistory() to
1392 tell the backend that no more intervals will be received. Depending on the
1393 backend type, it might have to save files, close descriptors, etc. This ensures
1394 that a persistent file can then be re-used when the trace is opened again.
1395
1396 If you use the AbstractTmfStateProvider, it will call closeHistory()
1397 automatically when it reaches the end of the trace.
1398
1399 === Other relevant interfaces ===
1400
1401 ==== ITmfStateValue ====
1402
1403 This is the interface used to represent state values. Those are used when
1404 inserting state changes in the provider, and is also part of the state intervals
1405 obtained when doing queries.
1406
1407 The abstract TmfStateValue class contains the factory methods to create new
1408 state values of either int, long, double or string types. To retrieve the real
1409 object inside the state value, one can use the .unbox* methods.
1410
1411 Note: Do not instantiate null values manually, use TmfStateValue.nullValue()
1412
1413 ==== ITmfStateInterval ====
1414
1415 This is the interface to represent the state intervals, which are stored in the
1416 state history backend, and are returned when doing state system queries. A very
1417 simple implementation is available in TmfStateInterval. Its methods should be
1418 self-descriptive.
1419
1420 === Exceptions ===
1421
1422 The following exceptions, found in o.e.t.statesystem.core.exceptions, are related to
1423 state system activities.
1424
1425 ==== AttributeNotFoundException ====
1426
1427 This is thrown by getQuarkRelative() and getQuarkAbsolute() (but not byt the
1428 -AndAdd versions!) when passing an attribute path that is not present in the
1429 state system. This is to ensure that no new attribute is created when using
1430 these versions of the methods.
1431
1432 Views can expect some attributes to be present, but they should handle these
1433 exceptions for when the attributes end up not being in the state system (perhaps
1434 this particular trace didn't have a certain type of events, etc.)
1435
1436 ==== StateValueTypeException ====
1437
1438 This exception will be thrown when trying to unbox a state value into a type
1439 different than its own. You should always check with ITmfStateValue#getType()
1440 beforehand if you are not sure about the type of a given state value.
1441
1442 ==== TimeRangeException ====
1443
1444 This exception is thrown when trying to do a query on the state system for a
1445 timestamp that is outside of its range. To be safe, you should check with
1446 ITmfStateSystem#getStartTime() and #getCurrentEndTime() for the current valid
1447 range of the state system. This is especially important when doing queries on
1448 a state system that is currently being built.
1449
1450 ==== StateSystemDisposedException ====
1451
1452 This exception is thrown when trying to access a state system that has been
1453 disposed, with its dispose() method. This can potentially happen at shutdown,
1454 since Eclipse is not always consistent with the order in which the components
1455 are closed.
1456
1457
1458 == Comparison of state system backends ==
1459
1460 As we have seen in section [[#High-level components]], the state system needs
1461 a storage backend to save the intervals. Different implementations are
1462 available when building your state system from TmfStateSystemFactory.
1463
1464 Do not confuse full/single queries with full/partial history! All backend types
1465 should be able to handle any type of queries defined in the ITmfStateSystem API,
1466 unless noted otherwise.
1467
1468 === Full history ===
1469
1470 Available with TmfStateSystemFactory#newFullHistory(). The full history uses a
1471 History Tree data structure, which is an optimized structure store state
1472 intervals on disk. Once built, it can respond to queries in a ''log(n)'' manner.
1473
1474 You need to specify a file at creation time, which will be the container for
1475 the history tree. Once it's completely built, it will remain on disk (until you
1476 delete the trace from the project). This way it can be reused from one session
1477 to another, which makes subsequent loading time much faster.
1478
1479 This the backend used by the LTTng kernel plugin. It offers good scalability and
1480 performance, even at extreme sizes (it's been tested with traces of sizes up to
1481 500 GB). Its main downside is the amount of disk space required: since every
1482 single interval is written to disk, the size of the history file can quite
1483 easily reach and even surpass the size of the trace itself.
1484
1485 === Null history ===
1486
1487 Available with TmfStateSystemFactory#newNullHistory(). As its name implies the
1488 null history is in fact an absence of state history. All its query methods will
1489 return null (see the Javadoc in NullBackend).
1490
1491 Obviously, no file is required, and almost no memory space is used.
1492
1493 It's meant to be used in cases where you are not interested in past states, but
1494 only in the "ongoing" one. It can also be useful for debugging and benchmarking.
1495
1496 === In-memory history ===
1497
1498 Available with TmfStateSystemFactory#newInMemHistory(). This is a simple wrapper
1499 using a TreeSet to store all state intervals in memory. The implementation at
1500 the moment is quite simple, it will perform a binary search on entries when
1501 doing queries to find the ones that match.
1502
1503 The advantage of this method is that it's very quick to build and query, since
1504 all the information resides in memory. However, you are limited to 2^31 entries
1505 (roughly 2 billions), and depending on your state provider and trace type, that
1506 can happen really fast!
1507
1508 There are no safeguards, so if you bust the limit you will end up with
1509 ArrayOutOfBoundsException's everywhere. If your trace or state history can be
1510 arbitrarily big, it's probably safer to use a Full History instead.
1511
1512 === Partial history ===
1513
1514 Available with TmfStateSystemFactory#newPartialHistory(). The partial history is
1515 a more advanced form of the full history. Instead of writing all state intervals
1516 to disk like with the full history, we only write a small fraction of them, and
1517 go back to read the trace to recreate the states in-between.
1518
1519 It has a big advantage over a full history in terms of disk space usage. It's
1520 very possible to reduce the history tree file size by a factor of 1000, while
1521 keeping query times within a factor of two. Its main downside comes from the
1522 fact that you cannot do efficient single queries with it (they are implemented
1523 by doing full queries underneath).
1524
1525 This makes it a poor choice for views like the Control Flow view, where you do
1526 a lot of range queries and single queries. However, it is a perfect fit for
1527 cases like statistics, where you usually do full queries already, and you store
1528 lots of small states which are very easy to "compress".
1529
1530 However, it can't really be used until bug 409630 is fixed.
1531
1532 == State System Operations ==
1533
1534 TmfStateSystemOperations is a static class that implements additional
1535 statistical operations that can be performed on attributes of the state system.
1536
1537 These operations require that the attribute be one of the numerical values
1538 (int, long or double).
1539
1540 The speed of these operations can be greatly improved for large data sets if
1541 the attribute was inserted in the state system as a mipmap attribute. Refer to
1542 the [[#Mipmap feature | Mipmap feature]] section.
1543
1544 ===== queryRangeMax() =====
1545
1546 This method returns the maximum numerical value of an attribute in the
1547 specified time range. The attribute must be of type int, long or double.
1548 Null values are ignored. The returned value will be of the same state value
1549 type as the base attribute, or a null value if there is no state interval
1550 stored in the given time range.
1551
1552 ===== queryRangeMin() =====
1553
1554 This method returns the minimum numerical value of an attribute in the
1555 specified time range. The attribute must be of type int, long or double.
1556 Null values are ignored. The returned value will be of the same state value
1557 type as the base attribute, or a null value if there is no state interval
1558 stored in the given time range.
1559
1560 ===== queryRangeAverage() =====
1561
1562 This method returns the average numerical value of an attribute in the
1563 specified time range. The attribute must be of type int, long or double.
1564 Each state interval value is weighted according to time. Null values are
1565 counted as zero. The returned value will be a double primitive, which will
1566 be zero if there is no state interval stored in the given time range.
1567
1568 == Code example ==
1569
1570 Here is a small example of code that will use the state system. For this
1571 example, let's assume we want to track the state of all the CPUs in a LTTng
1572 kernel trace. To do so, we will watch for the "sched_switch" event in the state
1573 provider, and will update an attribute indicating if the associated CPU should
1574 be set to "running" or "idle".
1575
1576 We will use an attribute tree that looks like this:
1577 <pre>
1578 CPUs
1579 |--0
1580 | |--Status
1581 |
1582 |--1
1583 | |--Status
1584 |
1585 | 2
1586 | |--Status
1587 ...
1588 </pre>
1589
1590 The second-level attributes will be named from the information available in the
1591 trace events. Only the "Status" attributes will carry a state value (this means
1592 we could have just used "1", "2", "3",... directly, but we'll do it in a tree
1593 for the example's sake).
1594
1595 Also, we will use integer state values to represent "running" or "idle", instead
1596 of saving the strings that would get repeated every time. This will help in
1597 reducing the size of the history file.
1598
1599 First we will define a state provider in MyStateProvider. Then, we define an
1600 analysis module that takes care of creating the state provider. The analysis
1601 module will also contain code that can query the state system.
1602
1603 === State Provider ===
1604
1605 <pre>
1606 import static org.eclipse.tracecompass.common.core.NonNullUtils.checkNotNull;
1607 import org.eclipse.jdt.annotation.NonNull;
1608 import org.eclipse.tracecompass.statesystem.core.exceptions.AttributeNotFoundException;
1609 import org.eclipse.tracecompass.statesystem.core.exceptions.StateValueTypeException;
1610 import org.eclipse.tracecompass.statesystem.core.exceptions.TimeRangeException;
1611 import org.eclipse.tracecompass.statesystem.core.statevalue.ITmfStateValue;
1612 import org.eclipse.tracecompass.statesystem.core.statevalue.TmfStateValue;
1613 import org.eclipse.tracecompass.tmf.core.event.ITmfEvent;
1614 import org.eclipse.tracecompass.tmf.core.statesystem.AbstractTmfStateProvider;
1615 import org.eclipse.tracecompass.tmf.core.trace.ITmfTrace;
1616 import org.eclipse.tracecompass.tmf.ctf.core.event.CtfTmfEvent;
1617
1618 /**
1619 * Example state system provider.
1620 *
1621 * @author Alexandre Montplaisir
1622 */
1623 public class MyStateProvider extends AbstractTmfStateProvider {
1624
1625 /** State value representing the idle state */
1626 public static ITmfStateValue IDLE = TmfStateValue.newValueInt(0);
1627
1628 /** State value representing the running state */
1629 public static ITmfStateValue RUNNING = TmfStateValue.newValueInt(1);
1630
1631 /**
1632 * Constructor
1633 *
1634 * @param trace
1635 * The trace to which this state provider is associated
1636 */
1637 public MyStateProvider(@NonNull ITmfTrace trace) {
1638 super(trace, "Example"); //$NON-NLS-1$
1639 /*
1640 * The second parameter here is not important, it's only used to name a
1641 * thread internally.
1642 */
1643 }
1644
1645 @Override
1646 public int getVersion() {
1647 /*
1648 * If the version of an existing file doesn't match the version supplied
1649 * in the provider, a rebuild of the history will be forced.
1650 */
1651 return 1;
1652 }
1653
1654 @Override
1655 public MyStateProvider getNewInstance() {
1656 return new MyStateProvider(getTrace());
1657 }
1658
1659 @Override
1660 protected void eventHandle(ITmfEvent ev) {
1661 /*
1662 * AbstractStateChangeInput should have already checked for the correct
1663 * class type.
1664 */
1665 CtfTmfEvent event = (CtfTmfEvent) ev;
1666
1667 final long ts = event.getTimestamp().getValue();
1668 Integer nextTid = ((Long) event.getContent().getField("next_tid").getValue()).intValue();
1669
1670 try {
1671
1672 if (event.getType().getName().equals("sched_switch")) {
1673 ITmfStateSystemBuilder ss = checkNotNull(getStateSystemBuilder());
1674 int quark = ss.getQuarkAbsoluteAndAdd("CPUs", String.valueOf(event.getCPU()), "Status");
1675 ITmfStateValue value;
1676 if (nextTid > 0) {
1677 value = RUNNING;
1678 } else {
1679 value = IDLE;
1680 }
1681 ss.modifyAttribute(ts, value, quark);
1682 }
1683
1684 } catch (TimeRangeException e) {
1685 /*
1686 * This should not happen, since the timestamp comes from a trace
1687 * event.
1688 */
1689 throw new IllegalStateException(e);
1690 } catch (AttributeNotFoundException e) {
1691 /*
1692 * This should not happen either, since we're only accessing a quark
1693 * we just created.
1694 */
1695 throw new IllegalStateException(e);
1696 } catch (StateValueTypeException e) {
1697 /*
1698 * This wouldn't happen here, but could potentially happen if we try
1699 * to insert mismatching state value types in the same attribute.
1700 */
1701 e.printStackTrace();
1702 }
1703
1704 }
1705
1706 }
1707 </pre>
1708
1709 === Analysis module definition ===
1710
1711 <pre>
1712 import static org.eclipse.tracecompass.common.core.NonNullUtils.checkNotNull;
1713
1714 import java.util.List;
1715
1716 import org.eclipse.tracecompass.statesystem.core.exceptions.AttributeNotFoundException;
1717 import org.eclipse.tracecompass.statesystem.core.exceptions.StateSystemDisposedException;
1718 import org.eclipse.tracecompass.statesystem.core.exceptions.TimeRangeException;
1719 import org.eclipse.tracecompass.statesystem.core.interval.ITmfStateInterval;
1720 import org.eclipse.tracecompass.statesystem.core.statevalue.ITmfStateValue;
1721 import org.eclipse.tracecompass.tmf.core.statesystem.ITmfStateProvider;
1722 import org.eclipse.tracecompass.tmf.core.statesystem.TmfStateSystemAnalysisModule;
1723 import org.eclipse.tracecompass.tmf.core.trace.ITmfTrace;
1724
1725 /**
1726 * Class showing examples of a StateSystemAnalysisModule with state system queries.
1727 *
1728 * @author Alexandre Montplaisir
1729 */
1730 public class MyStateSystemAnalysisModule extends TmfStateSystemAnalysisModule {
1731
1732 @Override
1733 protected ITmfStateProvider createStateProvider() {
1734 ITmfTrace trace = checkNotNull(getTrace());
1735 return new MyStateProvider(trace);
1736 }
1737
1738 @Override
1739 protected StateSystemBackendType getBackendType() {
1740 return StateSystemBackendType.FULL;
1741 }
1742
1743 /**
1744 * Example method of querying one attribute in the state system.
1745 *
1746 * We pass it a cpu and a timestamp, and it returns us if that cpu was
1747 * executing a process (true/false) at that time.
1748 *
1749 * @param cpu
1750 * The CPU to check
1751 * @param timestamp
1752 * The timestamp of the query
1753 * @return True if the CPU was running, false otherwise
1754 */
1755 public boolean cpuIsRunning(int cpu, long timestamp) {
1756 try {
1757 int quark = getStateSystem().getQuarkAbsolute("CPUs", String.valueOf(cpu), "Status");
1758 ITmfStateValue value = getStateSystem().querySingleState(timestamp, quark).getStateValue();
1759
1760 if (value.equals(MyStateProvider.RUNNING)) {
1761 return true;
1762 }
1763
1764 /*
1765 * Since at this level we have no guarantee on the contents of the state
1766 * system, it's important to handle these cases correctly.
1767 */
1768 } catch (AttributeNotFoundException e) {
1769 /*
1770 * Handle the case where the attribute does not exist in the state
1771 * system (no CPU with this number, etc.)
1772 */
1773 } catch (TimeRangeException e) {
1774 /*
1775 * Handle the case where 'timestamp' is outside of the range of the
1776 * history.
1777 */
1778 } catch (StateSystemDisposedException e) {
1779 /*
1780 * Handle the case where the state system is being disposed. If this
1781 * happens, it's normally when shutting down, so the view can just
1782 * return immediately and wait it out.
1783 */
1784 }
1785 return false;
1786 }
1787
1788
1789 /**
1790 * Example method of using a full query.
1791 *
1792 * We pass it a timestamp, and it returns us how many CPUs were executing a
1793 * process at that moment.
1794 *
1795 * @param timestamp
1796 * The target timestamp
1797 * @return The amount of CPUs that were running at that time
1798 */
1799 public int getNbRunningCpus(long timestamp) {
1800 int count = 0;
1801
1802 try {
1803 /* Get the list of the quarks we are interested in. */
1804 List<Integer> quarks = getStateSystem().getQuarks("CPUs", "*", "Status");
1805
1806 /*
1807 * Get the full state at our target timestamp (it's better than
1808 * doing an arbitrary number of single queries).
1809 */
1810 List<ITmfStateInterval> state = getStateSystem().queryFullState(timestamp);
1811
1812 /* Look at the value of the state for each quark */
1813 for (Integer quark : quarks) {
1814 ITmfStateValue value = state.get(quark).getStateValue();
1815 if (value.equals(MyStateProvider.RUNNING)) {
1816 count++;
1817 }
1818 }
1819
1820 } catch (TimeRangeException e) {
1821 /*
1822 * Handle the case where 'timestamp' is outside of the range of the
1823 * history.
1824 */
1825 } catch (StateSystemDisposedException e) {
1826 /* Handle the case where the state system is being disposed. */
1827 }
1828 return count;
1829 }
1830 }
1831 </pre>
1832
1833 == Mipmap feature ==
1834
1835 The mipmap feature allows attributes to be inserted into the state system with
1836 additional computations performed to automatically store sub-attributes that
1837 can later be used for statistical operations. The mipmap has a resolution which
1838 represents the number of state attribute changes that are used to compute the
1839 value at the next mipmap level.
1840
1841 The supported mipmap features are: max, min, and average. Each one of these
1842 features requires that the base attribute be a numerical state value (int, long
1843 or double). An attribute can be mipmapped for one or more of the features at
1844 the same time.
1845
1846 To use a mipmapped attribute in queries, call the corresponding methods of the
1847 static class [[#State System Operations | TmfStateSystemOperations]].
1848
1849 === AbstractTmfMipmapStateProvider ===
1850
1851 AbstractTmfMipmapStateProvider is an abstract provider class that allows adding
1852 features to a specific attribute into a mipmap tree. It extends AbstractTmfStateProvider.
1853
1854 If a provider wants to add mipmapped attributes to its tree, it must extend
1855 AbstractTmfMipmapStateProvider and call modifyMipmapAttribute() in the event
1856 handler, specifying one or more mipmap features to compute. Then the structure
1857 of the attribute tree will be :
1858
1859 <pre>
1860 |- <attribute>
1861 | |- <mipmapFeature> (min/max/avg)
1862 | | |- 1
1863 | | |- 2
1864 | | |- 3
1865 | | ...
1866 | | |- n (maximum mipmap level)
1867 | |- <mipmapFeature> (min/max/avg)
1868 | | |- 1
1869 | | |- 2
1870 | | |- 3
1871 | | ...
1872 | | |- n (maximum mipmap level)
1873 | ...
1874 </pre>
1875
1876 = UML2 Sequence Diagram Framework =
1877
1878 The purpose of the UML2 Sequence Diagram Framework of TMF is to provide a framework for generation of UML2 sequence diagrams. It provides
1879 *UML2 Sequence diagram drawing capabilities (i.e. lifelines, messages, activations, object creation and deletion)
1880 *a generic, re-usable Sequence Diagram View
1881 *Eclipse Extension Point for the creation of sequence diagrams
1882 *callback hooks for searching and filtering within the Sequence Diagram View
1883 *scalability<br>
1884 The following chapters describe the Sequence Diagram Framework as well as a reference implementation and its usage.
1885
1886 == TMF UML2 Sequence Diagram Extensions ==
1887
1888 In the UML2 Sequence Diagram Framework an Eclipse extension point is defined so that other plug-ins can contribute code to create sequence diagram.
1889
1890 '''Identifier''': org.eclipse.linuxtools.tmf.ui.uml2SDLoader<br>
1891 '''Description''': This extension point aims to list and connect any UML2 Sequence Diagram loader.<br>
1892 '''Configuration Markup''':<br>
1893
1894 <pre>
1895 <!ELEMENT extension (uml2SDLoader)+>
1896 <!ATTLIST extension
1897 point CDATA #REQUIRED
1898 id CDATA #IMPLIED
1899 name CDATA #IMPLIED
1900 >
1901 </pre>
1902
1903 *point - A fully qualified identifier of the target extension point.
1904 *id - An optional identifier of the extension instance.
1905 *name - An optional name of the extension instance.
1906
1907 <pre>
1908 <!ELEMENT uml2SDLoader EMPTY>
1909 <!ATTLIST uml2SDLoader
1910 id CDATA #REQUIRED
1911 name CDATA #REQUIRED
1912 class CDATA #REQUIRED
1913 view CDATA #REQUIRED
1914 default (true | false)
1915 </pre>
1916
1917 *id - A unique identifier for this uml2SDLoader. This is not mandatory as long as the id attribute cannot be retrieved by the provider plug-in. The class attribute is the one on which the underlying algorithm relies.
1918 *name - An name of the extension instance.
1919 *class - The implementation of this UML2 SD viewer loader. The class must implement org.eclipse.tracecompass.tmf.ui.views.uml2sd.load.IUml2SDLoader.
1920 *view - The view ID of the view that this loader aims to populate. Either org.eclipse.tracecompass.tmf.ui.views.uml2sd.SDView itself or a extension of org.eclipse.tracecompass.tmf.ui.views.uml2sd.SDView.
1921 *default - Set to true to make this loader the default one for the view; in case of several default loaders, first one coming from extensions list is taken.
1922
1923
1924 == Management of the Extension Point ==
1925
1926 The TMF UI plug-in is responsible for evaluating each contribution to the extension point.
1927 <br>
1928 <br>
1929 With this extension point, a loader class is associated with a Sequence Diagram View. Multiple loaders can be associated to a single Sequence Diagram View. However, additional means have to be implemented to specify which loader should be used when opening the view. For example, an eclipse action or command could be used for that. This additional code is not necessary if there is only one loader for a given Sequence Diagram View associated and this loader has the attribute "default" set to "true". (see also [[#Using one Sequence Diagram View with Multiple Loaders | Using one Sequence Diagram View with Multiple Loaders]])
1930
1931 == Sequence Diagram View ==
1932
1933 For this extension point a Sequence Diagram View has to be defined as well. The Sequence Diagram View class implementation is provided by the plug-in ''org.eclipse.tracecompass.tmf.ui'' (''org.eclipse.tracecompass.tmf.ui.views.uml2sd.SDView'') and can be used as is or can also be sub-classed. For that, a view extension has to be added to the ''plugin.xml''.
1934
1935 === Supported Widgets ===
1936
1937 The loader class provides a frame containing all the UML2 widgets to be displayed. The following widgets exist:
1938
1939 *Lifeline
1940 *Activation
1941 *Synchronous Message
1942 *Asynchronous Message
1943 *Synchronous Message Return
1944 *Asynchronous Message Return
1945 *Stop
1946
1947 For a lifeline, a category can be defined. The lifeline category defines icons, which are displayed in the lifeline header.
1948
1949 === Zooming ===
1950
1951 The Sequence Diagram View allows the user to zoom in, zoom out and reset the zoom factor.
1952
1953 === Printing ===
1954
1955 It is possible to print the whole sequence diagram as well as part of it.
1956
1957 === Key Bindings ===
1958
1959 *SHIFT+ALT+ARROW-DOWN - to scroll down within sequence diagram one view page at a time
1960 *SHIFT+ALT+ARROW-UP - to scroll up within sequence diagram one view page at a time
1961 *SHIFT+ALT+ARROW-RIGHT - to scroll right within sequence diagram one view page at a time
1962 *SHIFT+ALT+ARROW-LEFT - to scroll left within sequence diagram one view page at a time
1963 *SHIFT+ALT+ARROW-HOME - to jump to the beginning of the selected message if not already visible in page
1964 *SHIFT+ALT+ARROW-END - to jump to the end of the selected message if not already visible in page
1965 *CTRL+F - to open find dialog if either the basic or extended find provider is defined (see [[#Using the Find Provider Interface | Using the Find Provider Interface]])
1966 *CTRL+P - to open print dialog
1967
1968 === Preferences ===
1969
1970 The UML2 Sequence Diagram Framework provides preferences to customize the appearance of the Sequence Diagram View. The color of all widgets and text as well as the fonts of the text of all widget can be adjust. Amongst others the default lifeline width can be alternated. To change preferences select '''Windows->Preferences->Tracing->UML2 Sequence Diagrams'''. The following preference page will show:<br>
1971 [[Image:images/SeqDiagramPref.png]] <br>
1972 After changing the preferences select '''OK'''.
1973
1974 === Callback hooks ===
1975
1976 The Sequence Diagram View provides several callback hooks so that extension can provide application specific functionality. The following interfaces can be provided:
1977 * Basic find provider or extended find Provider<br> For finding within the sequence diagram
1978 * Basic filter provider and extended Filter Provider<br> For filtering within the sequnce diagram.
1979 * Basic paging provider or advanced paging provider<br> For scalability reasons, used to limit number of displayed messages
1980 * Properies provider<br> To provide properties of selected elements
1981 * Collapse provider <br> To collapse areas of the sequence diagram
1982
1983 == Tutorial ==
1984
1985 This tutorial describes how to create a UML2 Sequence Diagram Loader extension and use this loader in the in Eclipse.
1986
1987 === Prerequisites ===
1988
1989 The tutorial is based on Eclipse 4.4 (Eclipse Luna) and TMF 3.0.0.
1990
1991 === Creating an Eclipse UI Plug-in ===
1992
1993 To create a new project with name org.eclipse.tracecompass.tmf.sample.ui select '''File -> New -> Project -> Plug-in Development -> Plug-in Project'''. <br>
1994 [[Image:images/Screenshot-NewPlug-inProject1.png]]<br>
1995
1996 [[Image:images/Screenshot-NewPlug-inProject2.png]]<br>
1997
1998 [[Image:images/Screenshot-NewPlug-inProject3.png]]<br>
1999
2000 === Creating a Sequence Diagram View ===
2001
2002 To open the plug-in manifest, double-click on the MANIFEST.MF file. <br>
2003 [[Image:images/SelectManifest.png]]<br>
2004
2005 Change to the Dependencies tab and select '''Add...''' of the ''Required Plug-ins'' section. A new dialog box will open. Next find plug-ins ''org.eclipse.tracecompass.tmf.ui'' and ''org.eclipse.tracecompass.tmf.core'' and then press '''OK'''<br>
2006 [[Image:images/AddDependencyTmfUi.png]]<br>
2007
2008 Change to the Extensions tab and select '''Add...''' of the ''All Extension'' section. A new dialog box will open. Find the view extension ''org.eclipse.ui.views'' and press '''Finish'''.<br>
2009 [[Image:images/AddViewExtension1.png]]<br>
2010
2011 To create a Sequence Diagram View, click the right mouse button. Then select '''New -> view'''<br>
2012 [[Image:images/AddViewExtension2.png]]<br>
2013
2014 A new view entry has been created. Fill in the fields ''id'', ''name'' and ''class''. Note that for ''class'' the SD view implementation (''org.eclipse.tracecompass.tmf.ui.views.SDView'') of the TMF UI plug-in is used.<br>
2015 [[Image:images/FillSampleSeqDiagram.png]]<br>
2016
2017 The view is prepared. Run the Example. To launch the an Eclipse Application select the ''Overview'' tab and click on '''Launch an Eclipse Application'''<br>
2018 [[Image:images/RunEclipseApplication.png]]<br>
2019
2020 A new Eclipse application window will show. In the new window go to '''Windows -> Show View -> Other... -> Other -> Sample Sequence Diagram'''.<br>
2021 [[Image:images/ShowViewOther.png]]<br>
2022
2023 The Sequence Diagram View will open with an blank page.<br>
2024 [[Image:images/BlankSampleSeqDiagram.png]]<br>
2025
2026 Close the Example Application.
2027
2028 === Defining the uml2SDLoader Extension ===
2029
2030 After defining the Sequence Diagram View it's time to create the ''uml2SDLoader'' Extension. <br>
2031
2032 To create the loader extension, change to the Extensions tab and select '''Add...''' of the ''All Extension'' section. A new dialog box will open. Find the extension ''org.eclipse.linuxtools.tmf.ui.uml2SDLoader'' and press '''Finish'''.<br>
2033 [[Image:images/AddTmfUml2SDLoader.png]]<br>
2034
2035 A new 'uml2SDLoader'' extension has been created. Fill in fields ''id'', ''name'', ''class'', ''view'' and ''default''. Use ''default'' equal true for this example. For the view add the id of the Sequence Diagram View of chapter [[#Creating a Sequence Diagram View | Creating a Sequence Diagram View]]. <br>
2036 [[Image:images/FillSampleLoader.png]]<br>
2037
2038 Then click on ''class'' (see above) to open the new class dialog box. Fill in the relevant fields and select '''Finish'''. <br>
2039 [[Image:images/NewSampleLoaderClass.png]]<br>
2040
2041 A new Java class will be created which implements the interface ''org.eclipse.tracecompass.tmf.ui.views.uml2sd.load.IUml2SDLoader''.<br>
2042
2043 <pre>
2044 package org.eclipse.tracecompass.tmf.sample.ui;
2045
2046 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.SDView;
2047 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.load.IUml2SDLoader;
2048
2049 public class SampleLoader implements IUml2SDLoader {
2050
2051 public SampleLoader() {
2052 // TODO Auto-generated constructor stub
2053 }
2054
2055 @Override
2056 public void dispose() {
2057 // TODO Auto-generated method stub
2058
2059 }
2060
2061 @Override
2062 public String getTitleString() {
2063 // TODO Auto-generated method stub
2064 return null;
2065 }
2066
2067 @Override
2068 public void setViewer(SDView arg0) {
2069 // TODO Auto-generated method stub
2070
2071 }
2072 </pre>
2073
2074 === Implementing the Loader Class ===
2075
2076 Next is to implement the methods of the IUml2SDLoader interface method. The following code snippet shows how to create the major sequence diagram elements. Please note that no time information is stored.<br>
2077
2078 <pre>
2079 package org.eclipse.tracecompass.tmf.sample.ui;
2080
2081 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.SDView;
2082 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.AsyncMessage;
2083 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.AsyncMessageReturn;
2084 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.EllipsisMessage;
2085 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.ExecutionOccurrence;
2086 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.Frame;
2087 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.Lifeline;
2088 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.Stop;
2089 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.SyncMessage;
2090 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.core.SyncMessageReturn;
2091 import org.eclipse.tracecompass.tmf.ui.views.uml2sd.load.IUml2SDLoader;
2092
2093 public class SampleLoader implements IUml2SDLoader {
2094
2095 private SDView fSdView;
2096
2097 public SampleLoader() {
2098 }
2099
2100 @Override
2101 public void dispose() {
2102 }
2103
2104 @Override
2105 public String getTitleString() {
2106 return "Sample Diagram";
2107 }
2108
2109 @Override
2110 public void setViewer(SDView arg0) {
2111 fSdView = arg0;
2112 createFrame();
2113 }
2114
2115 private void createFrame() {
2116
2117 Frame testFrame = new Frame();
2118 testFrame.setName("Sample Frame");
2119
2120 /*
2121 * Create lifelines
2122 */
2123
2124 Lifeline lifeLine1 = new Lifeline();
2125 lifeLine1.setName("Object1");
2126 testFrame.addLifeLine(lifeLine1);
2127
2128 Lifeline lifeLine2 = new Lifeline();
2129 lifeLine2.setName("Object2");
2130 testFrame.addLifeLine(lifeLine2);
2131
2132
2133 /*
2134 * Create Sync Message
2135 */
2136 // Get new occurrence on lifelines
2137 lifeLine1.getNewEventOccurrence();
2138
2139 // Get Sync message instances
2140 SyncMessage start = new SyncMessage();
2141 start.setName("Start");
2142 start.setEndLifeline(lifeLine1);
2143 testFrame.addMessage(start);
2144
2145 /*
2146 * Create Sync Message
2147 */
2148 // Get new occurrence on lifelines
2149 lifeLine1.getNewEventOccurrence();
2150 lifeLine2.getNewEventOccurrence();
2151
2152 // Get Sync message instances
2153 SyncMessage syn1 = new SyncMessage();
2154 syn1.setName("Sync Message 1");
2155 syn1.setStartLifeline(lifeLine1);
2156 syn1.setEndLifeline(lifeLine2);
2157 testFrame.addMessage(syn1);
2158
2159 /*
2160 * Create corresponding Sync Message Return
2161 */
2162
2163 // Get new occurrence on lifelines
2164 lifeLine1.getNewEventOccurrence();
2165 lifeLine2.getNewEventOccurrence();
2166
2167 SyncMessageReturn synReturn1 = new SyncMessageReturn();
2168 synReturn1.setName("Sync Message Return 1");
2169 synReturn1.setStartLifeline(lifeLine2);
2170 synReturn1.setEndLifeline(lifeLine1);
2171 synReturn1.setMessage(syn1);
2172 testFrame.addMessage(synReturn1);
2173
2174 /*
2175 * Create Activations (Execution Occurrence)
2176 */
2177 ExecutionOccurrence occ1 = new ExecutionOccurrence();
2178 occ1.setStartOccurrence(start.getEventOccurrence());
2179 occ1.setEndOccurrence(synReturn1.getEventOccurrence());
2180 lifeLine1.addExecution(occ1);
2181 occ1.setName("Activation 1");
2182
2183 ExecutionOccurrence occ2 = new ExecutionOccurrence();
2184 occ2.setStartOccurrence(syn1.getEventOccurrence());
2185 occ2.setEndOccurrence(synReturn1.getEventOccurrence());
2186 lifeLine2.addExecution(occ2);
2187 occ2.setName("Activation 2");
2188
2189 /*
2190 * Create Sync Message
2191 */
2192 // Get new occurrence on lifelines
2193 lifeLine1.getNewEventOccurrence();
2194 lifeLine2.getNewEventOccurrence();
2195
2196 // Get Sync message instances
2197 AsyncMessage asyn1 = new AsyncMessage();
2198 asyn1.setName("Async Message 1");
2199 asyn1.setStartLifeline(lifeLine1);
2200 asyn1.setEndLifeline(lifeLine2);
2201 testFrame.addMessage(asyn1);
2202
2203 /*
2204 * Create corresponding Sync Message Return
2205 */
2206
2207 // Get new occurrence on lifelines
2208 lifeLine1.getNewEventOccurrence();
2209 lifeLine2.getNewEventOccurrence();
2210
2211 AsyncMessageReturn asynReturn1 = new AsyncMessageReturn();
2212 asynReturn1.setName("Async Message Return 1");
2213 asynReturn1.setStartLifeline(lifeLine2);
2214 asynReturn1.setEndLifeline(lifeLine1);
2215 asynReturn1.setMessage(asyn1);
2216 testFrame.addMessage(asynReturn1);
2217
2218 /*
2219 * Create a note
2220 */
2221
2222 // Get new occurrence on lifelines
2223 lifeLine1.getNewEventOccurrence();
2224
2225 EllipsisMessage info = new EllipsisMessage();
2226 info.setName("Object deletion");
2227 info.setStartLifeline(lifeLine2);
2228 testFrame.addNode(info);
2229
2230 /*
2231 * Create a Stop
2232 */
2233 Stop stop = new Stop();
2234 stop.setLifeline(lifeLine2);
2235 stop.setEventOccurrence(lifeLine2.getNewEventOccurrence());
2236 lifeLine2.addNode(stop);
2237
2238 fSdView.setFrame(testFrame);
2239 }
2240 }
2241 </pre>
2242
2243 Now it's time to run the example application. To launch the Example Application select the ''Overview'' tab and click on '''Launch an Eclipse Application'''<br>
2244 [[Image:images/SampleDiagram1.png]] <br>
2245
2246 === Adding time information ===
2247
2248 To add time information in sequence diagram the timestamp has to be set for each message. The sequence diagram framework uses the ''TmfTimestamp'' class of plug-in ''org.eclipse.tracecompass.tmf.core''. Use ''setTime()'' on each message ''SyncMessage'' since start and end time are the same. For each ''AsyncMessage'' set start and end time separately by using methods ''setStartTime'' and ''setEndTime''. For example: <br>
2249
2250 <pre>
2251 private void createFrame() {
2252 //...
2253 start.setTime(TmfTimestamp.create(1000, -3));
2254 syn1.setTime(TmfTimestamp.create(1005, -3));
2255 synReturn1.setTime(TmfTimestamp.create(1050, -3));
2256 asyn1.setStartTime(TmfTimestamp.create(1060, -3));
2257 asyn1.setEndTime(TmfTimestamp.create(1070, -3));
2258 asynReturn1.setStartTime(TmfTimestamp.create(1060, -3));
2259 asynReturn1.setEndTime(TmfTimestamp.create(1070, -3));
2260 //...
2261 }
2262 </pre>
2263
2264 When running the example application, a time compression bar on the left appears which indicates the time elapsed between consecutive events. The time compression scale shows where the time falls between the minimum and maximum delta times. The intensity of the color is used to indicate the length of time, namely, the deeper the intensity, the higher the delta time. The minimum and maximum delta times are configurable through the collbar menu ''Configure Min Max''. The time compression bar and scale may provide an indication about which events consumes the most time. By hovering over the time compression bar a tooltip appears containing more information. <br>
2265
2266 [[Image:images/SampleDiagramTimeComp.png]] <br>
2267
2268 By hovering over a message it will show the time information in the appearing tooltip. For each ''SyncMessage'' it shows its time occurrence and for each ''AsyncMessage'' it shows the start and end time.
2269
2270 [[Image:images/SampleDiagramSyncMessage.png]] <br>
2271 [[Image:images/SampleDiagramAsyncMessage.png]] <br>
2272
2273 To see the time elapsed between 2 messages, select one message and hover over a second message. A tooltip will show with the delta in time. Note if the second message is before the first then a negative delta is displayed. Note that for ''AsyncMessage'' the end time is used for the delta calculation.<br>
2274 [[Image:images/SampleDiagramMessageDelta.png]] <br>
2275
2276 === Default Coolbar and Menu Items ===
2277
2278 The Sequence Diagram View comes with default coolbar and menu items. By default, each sequence diagram shows the following actions:
2279 * Zoom in
2280 * Zoom out
2281 * Reset Zoom Factor
2282 * Selection
2283 * Configure Min Max (drop-down menu only)
2284 * Navigation -> Show the node end (drop-down menu only)
2285 * Navigation -> Show the node start (drop-down menu only)
2286
2287 [[Image:images/DefaultCoolbarMenu.png]]<br>
2288
2289 === Implementing Optional Callbacks ===
2290
2291 The following chapters describe how to use all supported provider interfaces.
2292
2293 ==== Using the Paging Provider Interface ====
2294
2295 For scalability reasons, the paging provider interfaces exists to limit the number of messages displayed in the Sequence Diagram View at a time. For that, two interfaces exist, the basic paging provider and the advanced paging provider. When using the basic paging interface, actions for traversing page by page through the sequence diagram of a trace will be provided.
2296 <br>
2297 To use the basic paging provider, first the interface methods of the ''ISDPagingProvider'' have to be implemented by a class. (i.e. ''hasNextPage()'', ''hasPrevPage()'', ''nextPage()'', ''prevPage()'', ''firstPage()'' and ''endPage()''. Typically, this is implemented in the loader class. Secondly, the provider has to be set in the Sequence Diagram View. This will be done in the ''setViewer()'' method of the loader class. Lastly, the paging provider has to be removed from the view, when the ''dispose()'' method of the loader class is called.
2298
2299 <pre>
2300 public class SampleLoader implements IUml2SDLoader, ISDPagingProvider {
2301 //...
2302 private int page = 0;
2303
2304 @Override
2305 public void dispose() {
2306 if (fSdView != null) {
2307 fSdView.resetProviders();
2308 }
2309 }
2310
2311 @Override
2312 public void setViewer(SDView arg0) {
2313 fSdView = arg0;
2314 fSdView.setSDPagingProvider(this);
2315 createFrame();
2316 }
2317
2318 private void createSecondFrame() {
2319 Frame testFrame = new Frame();
2320 testFrame.setName("SecondFrame");
2321 Lifeline lifeline = new Lifeline();
2322 lifeline.setName("LifeLine 0");
2323 testFrame.addLifeLine(lifeline);
2324 lifeline = new Lifeline();
2325 lifeline.setName("LifeLine 1");
2326 testFrame.addLifeLine(lifeline);
2327 for (int i = 1; i < 5; i++) {
2328 SyncMessage message = new SyncMessage();
2329 message.autoSetStartLifeline(testFrame.getLifeline(0));
2330 message.autoSetEndLifeline(testFrame.getLifeline(0));
2331 message.setName((new StringBuilder("Message ")).append(i).toString());
2332 testFrame.addMessage(message);
2333
2334 SyncMessageReturn messageReturn = new SyncMessageReturn();
2335 messageReturn.autoSetStartLifeline(testFrame.getLifeline(0));
2336 messageReturn.autoSetEndLifeline(testFrame.getLifeline(0));
2337
2338 testFrame.addMessage(messageReturn);
2339 messageReturn.setName((new StringBuilder("Message return ")).append(i).toString());
2340 ExecutionOccurrence occ = new ExecutionOccurrence();
2341 occ.setStartOccurrence(testFrame.getSyncMessage(i - 1).getEventOccurrence());
2342 occ.setEndOccurrence(testFrame.getSyncMessageReturn(i - 1).getEventOccurrence());
2343 testFrame.getLifeline(0).addExecution(occ);
2344 }
2345 fSdView.setFrame(testFrame);
2346 }
2347
2348 @Override
2349 public boolean hasNextPage() {
2350 return page == 0;
2351 }
2352
2353 @Override
2354 public boolean hasPrevPage() {
2355 return page == 1;
2356 }
2357
2358 @Override
2359 public void nextPage() {
2360 page = 1;
2361 createSecondFrame();
2362 }
2363
2364 @Override
2365 public void prevPage() {
2366 page = 0;
2367 createFrame();
2368 }
2369
2370 @Override
2371 public void firstPage() {
2372 page = 0;
2373 createFrame();
2374 }
2375
2376 @Override
2377 public void lastPage() {
2378 page = 1;
2379 createSecondFrame();
2380 }
2381 //...
2382 }
2383
2384 </pre>
2385
2386 When running the example application, new actions will be shown in the coolbar and the coolbar menu. <br>
2387
2388 [[Image:images/PageProviderAdded.png]]
2389
2390 <br><br>
2391 To use the advanced paging provider, the interface ''ISDAdvancePagingProvider'' has to be implemented. It extends the basic paging provider. The methods ''currentPage()'', ''pagesCount()'' and ''pageNumberChanged()'' have to be added.
2392 <br>
2393
2394 ==== Using the Find Provider Interface ====
2395
2396 For finding nodes in a sequence diagram two interfaces exists. One for basic finding and one for extended finding. The basic find comes with a dialog box for entering find criteria as regular expressions. This find criteria can be used to execute the find. Find criteria a persisted in the Eclipse workspace.
2397 <br>
2398 For the extended find provider interface a ''org.eclipse.jface.action.Action'' class has to be provided. The actual find handling has to be implemented and triggered by the action.
2399 <br>
2400 Only on at a time can be active. If the extended find provder is defined it obsoletes the basic find provider.
2401 <br>
2402 To use the basic find provider, first the interface methods of the ''ISDFindProvider'' have to be implemented by a class. Typically, this is implemented in the loader class. Add the ISDFindProvider to the list of implemented interfaces, implement the methods ''find()'' and ''cancel()'' and set the provider in the ''setViewer()'' method as well as remove the provider in the ''dispose()'' method of the loader class. Please note that the ''ISDFindProvider'' extends the interface ''ISDGraphNodeSupporter'' which methods (''isNodeSupported()'' and ''getNodeName()'') have to be implemented, too. The following shows an example implementation. Please note that only search for lifelines and SynchMessage are supported. The find itself will always find only the first occurrence the pattern to match.
2403
2404 <pre>
2405 public class SampleLoader implements IUml2SDLoader, ISDPagingProvider, ISDFindProvider {
2406
2407 //...
2408 @Override
2409 public void dispose() {
2410 if (fSdView != null) {
2411 fSdView.resetProviders();
2412 }
2413 }
2414
2415 @Override
2416 public void setViewer(SDView arg0) {
2417 fSdView = arg0;
2418 fSdView.setSDPagingProvider(this);
2419 fSdView.setSDFindProvider(this);
2420 createFrame();
2421 }
2422
2423 @Override
2424 public boolean isNodeSupported(int nodeType) {
2425 switch (nodeType) {
2426 case ISDGraphNodeSupporter.LIFELINE:
2427 case ISDGraphNodeSupporter.SYNCMESSAGE:
2428 return true;
2429
2430 default:
2431 break;
2432 }
2433 return false;
2434 }
2435
2436 @Override
2437 public String getNodeName(int nodeType, String loaderClassName) {
2438 switch (nodeType) {
2439 case ISDGraphNodeSupporter.LIFELINE:
2440 return "Lifeline";
2441 case ISDGraphNodeSupporter.SYNCMESSAGE:
2442 return "Sync Message";
2443 }
2444 return "";
2445 }
2446
2447 @Override
2448 public boolean find(Criteria criteria) {
2449 Frame frame = fSdView.getFrame();
2450 if (criteria.isLifeLineSelected()) {
2451 for (int i = 0; i < frame.lifeLinesCount(); i++) {
2452 if (criteria.matches(frame.getLifeline(i).getName())) {
2453 fSdView.getSDWidget().moveTo(frame.getLifeline(i));
2454 return true;
2455 }
2456 }
2457 }
2458 if (criteria.isSyncMessageSelected()) {
2459 for (int i = 0; i < frame.syncMessageCount(); i++) {
2460 if (criteria.matches(frame.getSyncMessage(i).getName())) {
2461 fSdView.getSDWidget().moveTo(frame.getSyncMessage(i));
2462 return true;
2463 }
2464 }
2465 }
2466 return false;
2467 }
2468
2469 @Override
2470 public void cancel() {
2471 // reset find parameters
2472 }
2473 //...
2474 }
2475 </pre>
2476
2477 When running the example application, the find action will be shown in the coolbar and the coolbar menu. <br>
2478 [[Image:images/FindProviderAdded.png]]
2479
2480 To find a sequence diagram node press on the find button of the coolbar (see above). A new dialog box will open. Enter a regular expression in the ''Matching String'' text box, select the node types (e.g. Sync Message) and press '''Find'''. If found the corresponding node will be selected. If not found the dialog box will indicate not found. <br>
2481 [[Image:images/FindDialog.png]]<br>
2482
2483 Note that the find dialog will be opened by typing the key shortcut CRTL+F.
2484
2485 ==== Using the Filter Provider Interface ====
2486
2487 For filtering of sequence diagram elements two interfaces exist. One basic for filtering and one for extended filtering. The basic filtering comes with two dialog for entering filter criteria as regular expressions and one for selecting the filter to be used. Multiple filters can be active at a time. Filter criteria are persisted in the Eclipse workspace.
2488 <br>
2489 To use the basic filter provider, first the interface method of the ''ISDFilterProvider'' has to be implemented by a class. Typically, this is implemented in the loader class. Add the ''ISDFilterProvider'' to the list of implemented interfaces, implement the method ''filter()''and set the provider in the ''setViewer()'' method as well as remove the provider in the ''dispose()'' method of the loader class. Please note that the ''ISDFindProvider'' extends the interface ''ISDGraphNodeSupporter'' which methods (''isNodeSupported()'' and ''getNodeName()'') have to be implemented, too. <br>
2490 Note that no example implementation of ''filter()'' is provided.
2491 <br>
2492
2493 <pre>
2494 public class SampleLoader implements IUml2SDLoader, ISDPagingProvider, ISDFindProvider, ISDFilterProvider {
2495
2496 //...
2497 @Override
2498 public void dispose() {
2499 if (fSdView != null) {
2500 fSdView.resetProviders();
2501 }
2502 }
2503
2504 @Override
2505 public void setViewer(SDView arg0) {
2506 fSdView = arg0;
2507 fSdView.setSDPagingProvider(this);
2508 fSdView.setSDFindProvider(this);
2509 fSdView.setSDFilterProvider(this);
2510 createFrame();
2511 }
2512
2513 @Override
2514 public boolean filter(List<FilterCriteria> list) {
2515 return false;
2516 }
2517 //...
2518 }
2519 </pre>
2520
2521 When running the example application, the filter action will be shown in the coolbar menu. <br>
2522 [[Image:images/HidePatternsMenuItem.png]]
2523
2524 To filter select the '''Hide Patterns...''' of the coolbar menu. A new dialog box will open. <br>
2525 [[Image:images/DialogHidePatterns.png]]
2526
2527 To Add a new filter press '''Add...'''. A new dialog box will open. Enter a regular expression in the ''Matching String'' text box, select the node types (e.g. Sync Message) and press '''Create''''. <br>
2528 [[Image:images/DialogHidePatterns.png]] <br>
2529
2530 Now back at the Hide Pattern dialog. Select one or more filter and select '''OK'''.
2531
2532 To use the extended filter provider, the interface ''ISDExtendedFilterProvider'' has to be implemented. It will provide a ''org.eclipse.jface.action.Action'' class containing the actual filter handling and filter algorithm.
2533
2534 ==== Using the Extended Action Bar Provider Interface ====
2535
2536 The extended action bar provider can be used to add customized actions to the Sequence Diagram View.
2537 To use the extended action bar provider, first the interface method of the interface ''ISDExtendedActionBarProvider'' has to be implemented by a class. Typically, this is implemented in the loader class. Add the ''ISDExtendedActionBarProvider'' to the list of implemented interfaces, implement the method ''supplementCoolbarContent()'' and set the provider in the ''setViewer()'' method as well as remove the provider in the ''dispose()'' method of the loader class. <br>
2538
2539 <pre>
2540 public class SampleLoader implements IUml2SDLoader, ISDPagingProvider, ISDFindProvider, ISDFilterProvider, ISDExtendedActionBarProvider {
2541 //...
2542
2543 @Override
2544 public void dispose() {
2545 if (fSdView != null) {
2546 fSdView.resetProviders();
2547 }
2548 }
2549
2550 @Override
2551 public void setViewer(SDView arg0) {
2552 fSdView = arg0;
2553 fSdView.setSDPagingProvider(this);
2554 fSdView.setSDFindProvider(this);
2555 fSdView.setSDFilterProvider(this);
2556 fSdView.setSDExtendedActionBarProvider(this);
2557 createFrame();
2558 }
2559
2560 @Override
2561 public void supplementCoolbarContent(IActionBars iactionbars) {
2562 Action action = new Action("Refresh") {
2563 @Override
2564 public void run() {
2565 System.out.println("Refreshing...");
2566 }
2567 };
2568 iactionbars.getMenuManager().add(action);
2569 iactionbars.getToolBarManager().add(action);
2570 }
2571 //...
2572 }
2573 </pre>
2574
2575 When running the example application, all new actions will be added to the coolbar and coolbar menu according to the implementation of ''supplementCoolbarContent()''<br>.
2576 For the example above the coolbar and coolbar menu will look as follows.
2577
2578 [[Image:images/SupplCoolbar.png]]
2579
2580 ==== Using the Properties Provider Interface====
2581
2582 This interface can be used to provide property information. A property provider which returns an ''IPropertyPageSheet'' (see ''org.eclipse.ui.views'') has to be implemented and set in the Sequence Diagram View. <br>
2583
2584 To use the property provider, first the interface method of the ''ISDPropertiesProvider'' has to be implemented by a class. Typically, this is implemented in the loader class. Add the ''ISDPropertiesProvider'' to the list of implemented interfaces, implement the method ''getPropertySheetEntry()'' and set the provider in the ''setViewer()'' method as well as remove the provider in the ''dispose()'' method of the loader class. Please note that no example is provided here.
2585
2586 Please refer to the following Eclipse articles for more information about properties and tabed properties.
2587 *[http://www.eclipse.org/articles/Article-Properties-View/properties-view.html | Take control of your properties]
2588 *[http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html | The Eclipse Tabbed Properties View]
2589
2590 ==== Using the Collapse Provider Interface ====
2591
2592 This interface can be used to define a provider which responsibility is to collapse two selected lifelines. This can be used to hide a pair of lifelines.
2593
2594 To use the collapse provider, first the interface method of the ''ISDCollapseProvider'' has to be implemented by a class. Typically, this is implemented in the loader class. Add the ISDCollapseProvider to the list of implemented interfaces, implement the method ''collapseTwoLifelines()'' and set the provider in the ''setViewer()'' method as well as remove the provider in the ''dispose()'' method of the loader class. Please note that no example is provided here.
2595
2596 ==== Using the Selection Provider Service ====
2597
2598 The Sequence Diagram View comes with a build in selection provider service. To this service listeners can be added. To use the selection provider service, the interface ''ISelectionListener'' of plug-in ''org.eclipse.ui'' has to implemented. Typically this is implemented in loader class. Firstly, add the ''ISelectionListener'' interface to the list of implemented interfaces, implement the method ''selectionChanged()'' and set the listener in method ''setViewer()'' as well as remove the listener in the ''dispose()'' method of the loader class.
2599
2600 <pre>
2601 public class SampleLoader implements IUml2SDLoader, ISDPagingProvider, ISDFindProvider, ISDFilterProvider, ISDExtendedActionBarProvider, ISelectionListener {
2602
2603 //...
2604 @Override
2605 public void dispose() {
2606 if (fSdView != null) {
2607 PlatformUI.getWorkbench().getActiveWorkbenchWindow().getSelectionService().removePostSelectionListener(this);
2608 fSdView.resetProviders();
2609 }
2610 }
2611
2612 @Override
2613 public String getTitleString() {
2614 return "Sample Diagram";
2615 }
2616
2617 @Override
2618 public void setViewer(SDView arg0) {
2619 fSdView = arg0;
2620 PlatformUI.getWorkbench().getActiveWorkbenchWindow().getSelectionService().addPostSelectionListener(this);
2621 fSdView.setSDPagingProvider(this);
2622 fSdView.setSDFindProvider(this);
2623 fSdView.setSDFilterProvider(this);
2624 fSdView.setSDExtendedActionBarProvider(this);
2625
2626 createFrame();
2627 }
2628
2629 @Override
2630 public void selectionChanged(IWorkbenchPart part, ISelection selection) {
2631 ISelection sel = PlatformUI.getWorkbench().getActiveWorkbenchWindow().getSelectionService().getSelection();
2632 if (sel != null && (sel instanceof StructuredSelection)) {
2633 StructuredSelection stSel = (StructuredSelection) sel;
2634 if (stSel.getFirstElement() instanceof BaseMessage) {
2635 BaseMessage syncMsg = ((BaseMessage) stSel.getFirstElement());
2636 System.out.println("Message '" + syncMsg.getName() + "' selected.");
2637 }
2638 }
2639 }
2640
2641 //...
2642 }
2643 </pre>
2644
2645 === Printing a Sequence Diagram ===
2646
2647 To print a the whole sequence diagram or only parts of it, select the Sequence Diagram View and select '''File -> Print...''' or type the key combination ''CTRL+P''. A new print dialog will open. <br>
2648
2649 [[Image:images/PrintDialog.png]] <br>
2650
2651 Fill in all the relevant information, select '''Printer...''' to choose the printer and the press '''OK'''.
2652
2653 === Using one Sequence Diagram View with Multiple Loaders ===
2654
2655 A Sequence Diagram View definition can be used with multiple sequence diagram loaders. However, the active loader to be used when opening the view has to be set. For this define an Eclipse action or command and assign the current loader to the view. Here is a code snippet for that:
2656
2657 <pre>
2658 public class OpenSDView extends AbstractHandler {
2659 @Override
2660 public Object execute(ExecutionEvent event) throws ExecutionException {
2661 try {
2662 IWorkbenchPage persp = TmfUiPlugin.getDefault().getWorkbench().getActiveWorkbenchWindow().getActivePage();
2663 SDView view = (SDView) persp.showView("org.eclipse.linuxtools.ust.examples.ui.componentinteraction");
2664 LoadersManager.getLoadersManager().createLoader("org.eclipse.tracecompass.tmf.ui.views.uml2sd.impl.TmfUml2SDSyncLoader", view);
2665 } catch (PartInitException e) {
2666 throw new ExecutionException("PartInitException caught: ", e);
2667 }
2668 return null;
2669 }
2670 }
2671 </pre>
2672
2673 === Downloading the Tutorial ===
2674
2675 Use the following link to download the source code of the tutorial [https://wiki.eclipse.org/images/7/79/SamplePluginTC.zip Plug-in of Tutorial].
2676
2677 == Integration of Tracing and Monitoring Framework with Sequence Diagram Framework ==
2678
2679 In the previous sections the Sequence Diagram Framework has been described and a tutorial was provided. In the following sections the integration of the Sequence Diagram Framework with other features of TMF will be described. Together it is a powerful framework to analyze and visualize content of traces. The integration is explained using the reference implementation of a UML2 sequence diagram loader which part of the TMF UI delivery. The reference implementation can be used as is, can be sub-classed or simply be an example for other sequence diagram loaders to be implemented.
2680
2681 === Reference Implementation ===
2682
2683 A Sequence Diagram View Extension is defined in the plug-in TMF UI as well as a uml2SDLoader Extension with the reference loader.
2684
2685 [[Image:images/ReferenceExtensions.png]]
2686
2687 === Used Sequence Diagram Features ===
2688
2689 Besides the default features of the Sequence Diagram Framework, the reference implementation uses the following additional features:
2690 *Advanced paging
2691 *Basic finding
2692 *Basic filtering
2693 *Selection Service
2694
2695 ==== Advanced paging ====
2696
2697 The reference loader implements the interface ''ISDAdvancedPagingProvider'' interface. Please refer to section [[#Using the Paging Provider Interface | Using the Paging Provider Interface]] for more details about the advanced paging feature.
2698
2699 ==== Basic finding ====
2700
2701 The reference loader implements the interface ''ISDFindProvider'' interface. The user can search for ''Lifelines'' and ''Interactions''. The find is done across pages. If the expression to match is not on the current page a new thread is started to search on other pages. If expression is found the corresponding page is shown as well as the searched item is displayed. If not found then a message is displayed in the ''Progress View'' of Eclipse. Please refer to section [[#Using the Find Provider Interface | Using the Find Provider Interface]] for more details about the basic find feature.
2702
2703 ==== Basic filtering ====
2704
2705 The reference loader implements the interface ''ISDFilterProvider'' interface. The user can filter on ''Lifelines'' and ''Interactions''. Please refer to section [[#Using the Filter Provider Interface | Using the Filter Provider Interface]] for more details about the basic filter feature.
2706
2707 ==== Selection Service ====
2708
2709 The reference loader implements the interface ''ISelectionListener'' interface. When an interaction is selected a ''TmfTimeSynchSignal'' is broadcast (see [[#TMF Signal Framework | TMF Signal Framework]]). Please also refer to section [[#Using the Selection Provider Service | Using the Selection Provider Service]] for more details about the selection service and .
2710
2711 === Used TMF Features ===
2712
2713 The reference implementation uses the following features of TMF:
2714 *TMF Experiment and Trace for accessing traces
2715 *Event Request Framework to request TMF events from the experiment and respective traces
2716 *Signal Framework for broadcasting and receiving TMF signals for synchronization purposes
2717
2718 ==== TMF Experiment and Trace for accessing traces ====
2719
2720 The reference loader uses TMF Experiments to access traces and to request data from the traces.
2721
2722 ==== TMF Event Request Framework ====
2723
2724 The reference loader use the TMF Event Request Framework to request events from the experiment and its traces.
2725
2726 When opening a trace (which is triggered by signal ''TmfTraceSelectedSignal'') or when opening the Sequence Diagram View after a trace had been opened previously, a TMF background request is initiated to index the trace and to fill in the first page of the sequence diagram. The purpose of the indexing is to store time ranges for pages with 10000 messages per page. This allows quickly to move to certain pages in a trace without having to re-parse from the beginning. The request is called indexing request.
2727
2728 When switching pages, the a TMF foreground event request is initiated to retrieve the corresponding events from the experiment. It uses the time range stored in the index for the respective page.
2729
2730 A third type of event request is issued for finding specific data across pages.
2731
2732 ==== TMF Signal Framework ====
2733
2734 The reference loader extends the class ''TmfComponent''. By doing that the loader is registered as a TMF signal handler for sending and receiving TMF signals. The loader implements signal handlers for the following TMF signals:
2735 *''TmfTraceSelectedSignal''
2736 This signal indicates that a trace or experiment was selected. When receiving this signal the indexing request is initiated and the first page is displayed after receiving the relevant information.
2737 *''TmfTraceClosedSignal''
2738 This signal indicates that a trace or experiment was closed. When receiving this signal the loader resets its data and a blank page is loaded in the Sequence Diagram View.
2739 *''TmfTimeSynchSignal''
2740 This signal is used to indicate that a new time or time range has been selected. It contains a begin and end time. If a single time is selected then the begin and end time are the same. When receiving this signal the corresponding message matching the begin time is selected in the Sequence Diagram View. If necessary, the page is changed.
2741 *''TmfRangeSynchSignal''
2742 This signal indicates that a new time range is in focus. When receiving this signal the loader loads the page which corresponds to the start time of the time range signal. The message with the start time will be in focus.
2743
2744 Besides acting on receiving signals, the reference loader is also sending signals. A ''TmfTimeSynchSignal'' is broadcasted with the timestamp of the message which was selected in the Sequence Diagram View. ''TmfRangeSynchSignal'' is sent when a page is changed in the Sequence Diagram View. The start timestamp of the time range sent is the timestamp of the first message. The end timestamp sent is the timestamp of the first message plus the current time range window. The current time range window is the time window that was indicated in the last received ''TmfRangeSynchSignal''.
2745
2746 === Supported Traces ===
2747
2748 The reference implementation is able to analyze traces from a single component that traces the interaction with other components. For example, a server node could have trace information about its interaction with client nodes. The server node could be traced and then analyzed using TMF and the Sequence Diagram Framework of TMF could used to visualize the interactions with the client nodes.<br>
2749
2750 Note that combined traces of multiple components, that contain the trace information about the same interactions are not supported in the reference implementation!
2751
2752 === Trace Format ===
2753
2754 The reference implementation in class ''TmfUml2SDSyncLoader'' in package ''org.eclipse.tracecompass.tmf.ui.views.uml2sd.impl'' analyzes events from type ''ITmfEvent'' and creates events type ''ITmfSyncSequenceDiagramEvent'' if the ''ITmfEvent'' contains all relevant information information. The parsing algorithm looks like as follows:
2755
2756 <pre>
2757 /**
2758 * @param tmfEvent Event to parse for sequence diagram event details
2759 * @return sequence diagram event if details are available else null
2760 */
2761 protected ITmfSyncSequenceDiagramEvent getSequenceDiagramEvent(ITmfEvent tmfEvent){
2762 //type = .*RECEIVE.* or .*SEND.*
2763 //content = sender:<sender name>:receiver:<receiver name>,signal:<signal name>
2764 String eventType = tmfEvent.getType().toString();
2765 if (eventType.contains(Messages.TmfUml2SDSyncLoader_EventTypeSend) || eventType.contains(Messages.TmfUml2SDSyncLoader_EventTypeReceive)) {
2766 Object sender = tmfEvent.getContent().getField(Messages.TmfUml2SDSyncLoader_FieldSender);
2767 Object receiver = tmfEvent.getContent().getField(Messages.TmfUml2SDSyncLoader_FieldReceiver);
2768 Object name = tmfEvent.getContent().getField(Messages.TmfUml2SDSyncLoader_FieldSignal);
2769 if ((sender instanceof ITmfEventField) && (receiver instanceof ITmfEventField) && (name instanceof ITmfEventField)) {
2770 ITmfSyncSequenceDiagramEvent sdEvent = new TmfSyncSequenceDiagramEvent(tmfEvent,
2771 ((ITmfEventField) sender).getValue().toString(),
2772 ((ITmfEventField) receiver).getValue().toString(),
2773 ((ITmfEventField) name).getValue().toString());
2774
2775 return sdEvent;
2776 }
2777 }
2778 return null;
2779 }
2780 </pre>
2781
2782 The analysis looks for event type Strings containing ''SEND'' and ''RECEIVE''. If event type matches these key words, the analyzer will look for strings ''sender'', ''receiver'' and ''signal'' in the event fields of type ''ITmfEventField''. If all the data is found a sequence diagram event can be created using this information. Note that Sync Messages are assumed, which means start and end time are the same.
2783
2784 === How to use the Reference Implementation ===
2785
2786 An example CTF (Common Trace Format) trace is provided that contains trace events with sequence diagram information. To download the reference trace, use the following link: [https://wiki.eclipse.org/images/3/35/ReferenceTrace.zip Reference Trace].
2787
2788 Run an Eclipse application with Trace Compass 0.1.0 or later installed. To open the Reference Sequence Diagram View, select '''Windows -> Show View -> Other... -> Tracing -> Sequence Diagram''' <br>
2789 [[Image:images/ShowTmfSDView.png]]<br>
2790
2791 A blank Sequence Diagram View will open.
2792
2793 Then import the reference trace to the '''Project Explorer''' using the '''Import Trace Package...''' menu option.<br>
2794 [[Image:images/ImportTracePackage.png]]
2795
2796 Next, open the trace by double-clicking on the trace element in the '''Project Explorer'''. The trace will be opened and the Sequence Diagram view will be filled.
2797 [[Image:images/ReferenceSeqDiagram.png]]<br>
2798
2799 Now the reference implementation can be explored. To demonstrate the view features try the following things:
2800 *Select a message in the Sequence diagram. As result the corresponding event will be selected in the Events View.
2801 *Select an event in the Events View. As result the corresponding message in the Sequence Diagram View will be selected. If necessary, the page will be changed.
2802 *In the Events View, press key ''End''. As result, the Sequence Diagram view will jump to the last page.
2803 *In the Events View, press key ''Home''. As result, the Sequence Diagram view will jump to the first page.
2804 *In the Sequence Diagram View select the find button. Enter the expression '''REGISTER.*''', select '''Search for Interaction''' and press '''Find'''. As result the corresponding message will be selected in the Sequence Diagram and the corresponding event in the Events View will be selected. Select again '''Find''' the next occurrence of will be selected. Since the second occurrence is on a different page than the first, the corresponding page will be loaded.
2805 * In the Sequence Diagram View, select menu item '''Hide Patterns...'''. Add the filter '''BALL.*''' for '''Interaction''' only and select '''OK'''. As result all messages with name ''BALL_REQUEST'' and ''BALL_REPLY'' will be hidden. To remove the filter, select menu item '''Hide Patterns...''', deselect the corresponding filter and press '''OK'''. All the messages will be shown again.<br>
2806
2807 === Extending the Reference Loader ===
2808
2809 In some case it might be necessary to change the implementation of the analysis of each ''TmfEvent'' for the generation of ''Sequence Diagram Events''. For that just extend the class ''TmfUml2SDSyncLoader'' and overwrite the method ''protected ITmfSyncSequenceDiagramEvent getSequenceDiagramEvent(ITmfEvent tmfEvent)'' with your own implementation.
2810
2811 = CTF Parser =
2812
2813 == CTF Format ==
2814 CTF is a format used to store traces. It is self defining, binary and made to be easy to write to.
2815 Before going further, the full specification of the CTF file format can be found at http://www.efficios.com/ .
2816
2817 For the purpose of the reader some basic description will be given. A CTF trace typically is made of several files all in the same folder.
2818
2819 These files can be split into two types :
2820 * Metadata
2821 * Event streams
2822
2823 === Metadata ===
2824 The metadata is either raw text or packetized text. It is TSDL encoded. it contains a description of the type of data in the event streams. It can grow over time if new events are added to a trace but it will never overwrite what is already there.
2825
2826 === Event Streams ===
2827 The event streams are a file per stream per cpu. These streams are binary and packet based. The streams store events and event information (ie lost events) The event data is stored in headers and field payloads.
2828
2829 So if you have two streams (channels) "channel1" and "channel2" and 4 cores, you will have the following files in your trace directory: "channel1_0" , "channel1_1" , "channel1_2" , "channel1_3" , "channel2_0" , "channel2_1" , "channel2_2" & "channel2_3"
2830
2831 == Reading a trace ==
2832 In order to read a CTF trace, two steps must be done.
2833 * The metadata must be read to know how to read the events.
2834 * the events must be read.
2835
2836 The metadata is a written in a subset of the C language called TSDL. To read it, first it is depacketized (if it is not in plain text) then the raw text is parsed by an antlr grammar. The parsing is done in two phases. There is a lexer (CTFLexer.g) which separated the metatdata text into tokens. The tokens are then pattern matched using the parser (CTFParser.g) to form an AST. This AST is walked through using "IOStructGen.java" to populate streams and traces in trace parent object.
2837
2838 When the metadata is loaded and read, the trace object will be populated with 3 items:
2839 * the event definitions available per stream: a definition is a description of the datatype.
2840 * the event declarations available per stream: this will save declaration creation on a per event basis. They will all be created in advance, just not populated.
2841 * the beginning of a packet index.
2842
2843 Now all the trace readers for the event streams have everything they need to read a trace. They will each point to one file, and read the file from packet to packet. Every time the trace reader changes packet, the index is updated with the new packet's information. The readers are in a priority queue and sorted by timestamp. This ensures that the events are read in a sequential order. They are also sorted by file name so that in the eventuality that two events occur at the same time, they stay in the same order.
2844
2845 == Seeking in a trace ==
2846 The reason for maintaining an index is to speed up seeks. In the case that a user wishes to seek to a certain timestamp, they just have to find the index entry that contains the timestamp, and go there to iterate in that packet until the proper event is found. this will reduce the searches time by an order of 8000 for a 256k packet size (kernel default).
2847
2848 == Interfacing to TMF ==
2849 The trace can be read easily now but the data is still awkward to extract.
2850
2851 === CtfLocation ===
2852 A location in a given trace, it is currently the timestamp of a trace and the index of the event. The index shows for a given timestamp if it is the first second or nth element.
2853
2854 === CtfTmfTrace ===
2855 The CtfTmfTrace is a wrapper for the standard CTF trace that allows it to perform the following actions:
2856 * '''initTrace()''' create a trace
2857 * '''validateTrace()''' is the trace a CTF trace?
2858 * '''getLocationRatio()''' how far in the trace is my location?
2859 * '''seekEvent()''' sets the cursor to a certain point in a trace.
2860 * '''readNextEvent()''' reads the next event and then advances the cursor
2861 * '''getTraceProperties()''' gets the 'env' structures of the metadata
2862
2863 === CtfIterator ===
2864 The CtfIterator is a wrapper to the CTF file reader. It behaves like an iterator on a trace. However, it contains a file pointer and thus cannot be duplicated too often or the system will run out of file handles. To alleviate the situation, a pool of iterators is created at the very beginning and stored in the CtfTmfTrace. They can be retried by calling the GetIterator() method.
2865
2866 === CtfIteratorManager ===
2867 Since each CtfIterator will have a file reader, the OS will run out of handles if too many iterators are spawned. The solution is to use the iterator manager. This will allow the user to get an iterator. If there is a context at the requested position, the manager will return that one, if not, a context will be selected at random and set to the correct location. Using random replacement minimizes contention as it will settle quickly at a new balance point.
2868
2869 === CtfTmfContext ===
2870 The CtfTmfContext implements the ITmfContext type. It is the CTF equivalent of TmfContext. It has a CtfLocation and points to an iterator in the CtfTmfTrace iterator pool as well as the parent trace. it is made to be cloned easily and not affect system resources much. Contexts behave much like C file pointers (FILE*) but they can be copied until one runs out of RAM.
2871
2872 === CtfTmfTimestamp ===
2873 The CtfTmfTimestamp take a CTF time (normally a long int) and outputs the time formats it as a TmfTimestamp, allowing it to be compared to other timestamps. The time is stored with the UTC offset already applied. It also features a simple toString() function that allows it to output the time in more Human readable ways: "yyyy/mm/dd/hh:mm:ss.nnnnnnnnn ns" for example. An additional feature is the getDelta() function that allows two timestamps to be substracted, showing the time difference between A and B.
2874
2875 === CtfTmfEvent ===
2876 The CtfTmfEvent is an ITmfEvent that is used to wrap event declarations and event definitions from the CTF side into easier to read and parse chunks of information. It is a final class with final fields made to be newed very often without incurring performance costs. Most of the information is already available. It should be noted that one type of event can appear called "lost event" these are synthetic events that do not exist in the trace. They will not appear in other trace readers such as babeltrace.
2877
2878 === Other ===
2879 There are other helper files that format given events for views, they are simpler and the architecture does not depend on them.
2880
2881 === Limitations ===
2882 For the moment live CTF trace reading is not supported.
2883
2884 = Event matching and trace synchronization =
2885
2886 Event matching consists in taking an event from a trace and linking it to another event in a possibly different trace. The example that comes to mind is matching network packets sent from one traced machine to another traced machine. These matches can be used to synchronize traces.
2887
2888 Trace synchronization consists in taking traces, taken on different machines, with a different time reference, and finding the formula to transform the timestamps of some of the traces, so that they all have the same time reference.
2889
2890 == Event matching interfaces ==
2891
2892 Here's a description of the major parts involved in event matching. These classes are all in the ''org.eclipse.tracecompass.tmf.core.event.matching'' package:
2893
2894 * '''ITmfEventMatching''': Controls the event matching process
2895 * '''ITmfMatchEventDefinition''': Describes how events are matched
2896 * '''IMatchProcessingUnit''': Processes the matched events
2897
2898 == Implementation details and how to extend it ==
2899
2900 === ITmfEventMatching interface and derived classes ===
2901
2902 This interface and its default abstract implementation '''TmfEventMatching''' control the event matching itself. Their only public method is ''matchEvents''. The class needs to manage how to setup the traces, and any initialization or finalization procedures.
2903
2904 The abstract class generates an event request for each trace from which events are matched and waits for the request to complete before calling the one from another trace. The ''handleData'' method from the request calls the ''matchEvent'' method that needs to be implemented in children classes.
2905
2906 Class '''TmfNetworkEventMatching''' is a concrete implementation of this interface. It applies to all use cases where a ''in'' event can be matched with a ''out' event (''in'' and ''out'' can be the same event, with different data). It creates a '''TmfEventDependency''' between the source and destination events. The dependency is added to the processing unit.
2907
2908 To match events requiring other mechanisms (for instance, a series of events can be matched with another series of events), one would need to implement another class either extending '''TmfEventMatching''' or implementing '''ITmfEventMatching'''. It would most probably also require a new '''ITmfMatchEventDefinition''' implementation.
2909
2910 === ITmfMatchEventDefinition interface and its derived classes ===
2911
2912 These are the classes that describe how to actually match specific events together.
2913
2914 The '''canMatchTrace''' method will tell if a definition is compatible with a given trace.
2915
2916 The '''getEventKey''' method will return a key for an event that uniquely identifies this event and will match the key from another event.
2917
2918 Typically, there would be a match definition abstract class/interface per event matching type.
2919
2920 The interface '''ITmfNetworkMatchDefinition''' adds the ''getDirection'' method to indicate whether this event is a ''in'' or ''out'' event to be matched with one from the opposite direction.
2921
2922 As examples, two concrete network match definitions have been implemented in the ''org.eclipse.tracecompass.internal.lttng2.kernel.core.event.matching'' package for two compatible methods of matching TCP packets (See the Trace Compass User Guide on ''trace synchronization'' for information on those matching methods). Each one tells which events need to be present in the metadata of a CTF trace for this matching method to be applicable. It also returns the field values from each event that will uniquely match 2 events together.
2923
2924 === IMatchProcessingUnit interface and derived classes ===
2925
2926 While matching events is an exercise in itself, it's what to do with the match that really makes this functionality interesting. This is the job of the '''IMatchProcessingUnit''' interface.
2927
2928 '''TmfEventMatches''' provides a default implementation that only stores the matches to count them. When a new match is obtained, the ''addMatch'' is called with the match and the processing unit can do whatever needs to be done with it.
2929
2930 A match processing unit can be an analysis in itself. For example, trace synchronization is done through such a processing unit. One just needs to set the processing unit in the TmfEventMatching constructor.
2931
2932 == Code examples ==
2933
2934 === Using network packets matching in an analysis ===
2935
2936 This example shows how one can create a processing unit inline to create a link between two events. In this example, the code already uses an event request, so there is no need here to call the ''matchEvents'' method, that will only create another request.
2937
2938 <pre>
2939 class MyAnalysis extends TmfAbstractAnalysisModule {
2940
2941 private TmfNetworkEventMatching tcpMatching;
2942
2943 ...
2944
2945 protected void executeAnalysis() {
2946
2947 IMatchProcessingUnit matchProcessing = new IMatchProcessingUnit() {
2948 @Override
2949 public void matchingEnded() {
2950 }
2951
2952 @Override
2953 public void init(ITmfTrace[] fTraces) {
2954 }
2955
2956 @Override
2957 public int countMatches() {
2958 return 0;
2959 }
2960
2961 @Override
2962 public void addMatch(TmfEventDependency match) {
2963 log.debug("we got a tcp match! " + match.getSourceEvent().getContent() + " " + match.getDestinationEvent().getContent());
2964 TmfEvent source = match.getSourceEvent();
2965 TmfEvent destination = match.getDestinationEvent();
2966 /* Create a link between the two events */
2967 }
2968 };
2969
2970 ITmfTrace[] traces = { getTrace() };
2971 tcpMatching = new TmfNetworkEventMatching(traces, matchProcessing);
2972 tcpMatching.initMatching();
2973
2974 MyEventRequest request = new MyEventRequest(this, i);
2975 getTrace().sendRequest(request);
2976 }
2977
2978 public void analyzeEvent(TmfEvent event) {
2979 ...
2980 tcpMatching.matchEvent(event, 0);
2981 ...
2982 }
2983
2984 ...
2985
2986 }
2987
2988 class MyEventRequest extends TmfEventRequest {
2989
2990 private final MyAnalysis analysis;
2991
2992 MyEventRequest(MyAnalysis analysis, int traceno) {
2993 super(CtfTmfEvent.class,
2994 TmfTimeRange.ETERNITY,
2995 0,
2996 TmfDataRequest.ALL_DATA,
2997 ITmfDataRequest.ExecutionType.FOREGROUND);
2998 this.analysis = analysis;
2999 }
3000
3001 @Override
3002 public void handleData(final ITmfEvent event) {
3003 super.handleData(event);
3004 if (event != null) {
3005 analysis.analyzeEvent(event);
3006 }
3007 }
3008 }
3009 </pre>
3010
3011 === Match network events from UST traces ===
3012
3013 Suppose a client-server application is instrumented using LTTng-UST. Traces are collected on the server and some clients on different machines. The traces can be synchronized using network event matching.
3014
3015 The following metadata describes the events:
3016
3017 <pre>
3018 event {
3019 name = "myapp:send";
3020 id = 0;
3021 stream_id = 0;
3022 loglevel = 13;
3023 fields := struct {
3024 integer { size = 32; align = 8; signed = 1; encoding = none; base = 10; } _sendto;
3025 integer { size = 64; align = 8; signed = 1; encoding = none; base = 10; } _messageid;
3026 integer { size = 64; align = 8; signed = 1; encoding = none; base = 10; } _data;
3027 };
3028 };
3029
3030 event {
3031 name = "myapp:receive";
3032 id = 1;
3033 stream_id = 0;
3034 loglevel = 13;
3035 fields := struct {
3036 integer { size = 32; align = 8; signed = 1; encoding = none; base = 10; } _from;
3037 integer { size = 64; align = 8; signed = 1; encoding = none; base = 10; } _messageid;
3038 integer { size = 64; align = 8; signed = 1; encoding = none; base = 10; } _data;
3039 };
3040 };
3041 </pre>
3042
3043 One would need to write an event match definition for those 2 events as follows:
3044
3045 <pre>
3046 public class MyAppUstEventMatching implements ITmfNetworkMatchDefinition {
3047
3048 @Override
3049 public Direction getDirection(ITmfEvent event) {
3050 String evname = event.getType().getName();
3051 if (evname.equals("myapp:receive")) {
3052 return Direction.IN;
3053 } else if (evname.equals("myapp:send")) {
3054 return Direction.OUT;
3055 }
3056 return null;
3057 }
3058
3059 @Override
3060 public IEventMatchingKey getEventKey(ITmfEvent event) {
3061 IEventMatchingKey key;
3062
3063 if (evname.equals("myapp:receive")) {
3064 key = new MyEventMatchingKey(event.getContent().getField("from").getValue(),
3065 event.getContent().getField("messageid").getValue());
3066 } else {
3067 key = new MyEventMatchingKey(event.getContent().getField("sendto").getValue(),
3068 event.getContent().getField("messageid").getValue());
3069 }
3070
3071 return key;
3072 }
3073
3074 @Override
3075 public boolean canMatchTrace(ITmfTrace trace) {
3076 if (!(trace instanceof CtfTmfTrace)) {
3077 return false;
3078 }
3079 CtfTmfTrace ktrace = (CtfTmfTrace) trace;
3080 String[] events = { "myapp:receive", "myapp:send" };
3081 return ktrace.hasAtLeastOneOfEvents(events);
3082 }
3083
3084 @Override
3085 public MatchingType[] getApplicableMatchingTypes() {
3086 MatchingType[] types = { MatchingType.NETWORK };
3087 return types;
3088 }
3089
3090 }
3091 </pre>
3092
3093 Somewhere in code that will be executed at the start of the plugin (like in the Activator), the following code will have to be run:
3094
3095 <pre>
3096 TmfEventMatching.registerMatchObject(new MyAppUstEventMatching());
3097 </pre>
3098
3099 Now, only adding the traces in an experiment and clicking the '''Synchronize traces''' menu element would synchronize the traces using the new definition for event matching.
3100
3101 == Trace synchronization ==
3102
3103 Trace synchronization classes and interfaces are located in the ''org.eclipse.tracecompass.tmf.core.synchronization'' package.
3104
3105 === Synchronization algorithm ===
3106
3107 Synchronization algorithms are used to synchronize traces from events matched between traces. After synchronization, traces taken on different machines with different time references see their timestamps modified such that they all use the same time reference (typically, the time of at least one of the traces). With traces from different machines, it is impossible to have perfect synchronization, so the result is a best approximation that takes network latency into account.
3108
3109 The abstract class '''SynchronizationAlgorithm''' is a processing unit for matches. New synchronization algorithms must extend this one, it already contains the functions to get the timestamp transforms for different traces.
3110
3111 The ''fully incremental convex hull'' synchronization algorithm is the default synchronization algorithm.
3112
3113 While the synchronization system provisions for more synchronization algorithms, there is not yet a way to select one, the experiment's trace synchronization uses the default algorithm. To test a new synchronization algorithm, the synchronization should be called directly like this:
3114
3115 <pre>
3116 SynchronizationAlgorithm syncAlgo = new MyNewSynchronizationAlgorithm();
3117 syncAlgo = SynchronizationManager.synchronizeTraces(syncFile, traces, syncAlgo, true);
3118 </pre>
3119
3120 === Timestamp transforms ===
3121
3122 Timestamp transforms are the formulae used to transform the timestamps from a trace into the reference time. The '''ITmfTimestampTransform''' is the interface to implement to add a new transform.
3123
3124 The following classes implement this interface:
3125
3126 * '''TmfTimestampTransform''': default transform. It cannot be instantiated, it has a single static object TmfTimestampTransform.IDENTITY, which returns the original timestamp.
3127 * '''TmfTimestampTransformLinear''': transforms the timestamp using a linear formula: ''f(t) = at + b'', where ''a'' and ''b'' are computed by the synchronization algorithm.
3128
3129 One could extend the interface for other timestamp transforms, for instance to have a transform where the formula would change over the course of the trace.
3130
3131 == Todo ==
3132
3133 Here's a list of features not yet implemented that would enhance trace synchronization and event matching:
3134
3135 * Ability to select a synchronization algorithm
3136 * Implement a better way to select the reference trace instead of arbitrarily taking the first in alphabetical order (for instance, the minimum spanning tree algorithm by Masoume Jabbarifar (article on the subject not published yet))
3137 * Ability to join traces from the same host so that even if one of the traces is not synchronized with the reference trace, it will take the same timestamp transform as the one on the same machine.
3138 * Instead of having the timestamp transforms per trace, have the timestamp transform as part of an experiment context, so that the trace's specific analysis, like the state system, are in the original trace, but are transformed only when needed for an experiment analysis.
3139 * Add more views to display the synchronization information (only textual statistics are available for now)
3140
3141 = Analysis Framework =
3142
3143 Analysis modules are useful to tell the user exactly what can be done with a trace. The analysis framework provides an easy way to access and execute the modules and open the various outputs available.
3144
3145 Analyses can have parameters they can use in their code. They also have outputs registered to them to display the results from their execution.
3146
3147 == Creating a new module ==
3148
3149 All analysis modules must implement the '''IAnalysisModule''' interface from the o.e.l.tmf.core project. An abstract class, '''TmfAbstractAnalysisModule''', provides a good base implementation. It is strongly suggested to use it as a superclass of any new analysis.
3150
3151 === Example ===
3152
3153 This example shows how to add a simple analysis module for an LTTng kernel trace with two parameters. It also specifies two mandatory events by overriding '''getAnalysisRequirements'''. The analysis requirements are further explained in the section [[#Providing requirements to analyses]].
3154
3155 <pre>
3156 public class MyLttngKernelAnalysis extends TmfAbstractAnalysisModule {
3157
3158 public static final String PARAM1 = "myparam";
3159 public static final String PARAM2 = "myotherparam";
3160
3161 @Override
3162 public Iterable<TmfAnalysisRequirement> getAnalysisRequirements() {
3163
3164 // initialize the requirement: events
3165 Set<@NonNull String> requiredEvents = ImmutableSet.of("sched_switch", "sched_wakeup");
3166 TmfAbstractAnalysisRequirement eventsReq = new TmfAnalysisEventRequirement(requiredEvents, PriorityLevel.MANDATORY);
3167
3168 return ImmutableList.of(eventsReq);
3169 }
3170
3171 @Override
3172 protected void canceling() {
3173 /* The job I am running in is being cancelled, let's clean up */
3174 }
3175
3176 @Override
3177 protected boolean executeAnalysis(final IProgressMonitor monitor) {
3178 /*
3179 * I am running in an Eclipse job, and I already know I can execute
3180 * on a given trace.
3181 *
3182 * In the end, I will return true if I was successfully completed or
3183 * false if I was either interrupted or something wrong occurred.
3184 */
3185 Object param1 = getParameter(PARAM1);
3186 int param2 = (Integer) getParameter(PARAM2);
3187 }
3188
3189 @Override
3190 public Object getParameter(String name) {
3191 Object value = super.getParameter(name);
3192 /* Make sure the value of param2 is of the right type. For sake of
3193 simplicity, the full parameter format validation is not presented
3194 here */
3195 if ((value != null) && name.equals(PARAM2) && (value instanceof String)) {
3196 return Integer.parseInt((String) value);
3197 }
3198 return value;
3199 }
3200
3201 }
3202 </pre>
3203
3204 === Available base analysis classes and interfaces ===
3205
3206 The following are available as base classes for analysis modules. They also extend the abstract '''TmfAbstractAnalysisModule'''
3207
3208 * '''TmfStateSystemAnalysisModule''': A base analysis module that builds one state system. A module extending this class only needs to provide a state provider and the type of state system backend to use. All state systems should now use this base class as it also contains all the methods to actually create the state sytem with a given backend.
3209
3210 The following interfaces can optionally be implemented by analysis modules if they use their functionalities. For instance, some utility views, like the State System Explorer, may have access to the module's data through these interfaces.
3211
3212 * '''ITmfAnalysisModuleWithStateSystems''': Modules implementing this have one or more state systems included in them. For example, a module may "hide" 2 state system modules for its internal workings. By implementing this interface, it tells that it has state systems and can return them if required.
3213
3214 === How it works ===
3215
3216 Analyses are managed through the '''TmfAnalysisManager'''. The analysis manager is a singleton in the application and keeps track of all available analysis modules, with the help of '''IAnalysisModuleHelper'''. It can be queried to get the available analysis modules, either all of them or only those for a given tracetype. The helpers contain the non-trace specific information on an analysis module: its id, its name, the tracetypes it applies to, etc.
3217
3218 When a trace is opened, the helpers for the applicable analysis create new instances of the analysis modules. The analysis are then kept in a field of the trace and can be executed automatically or on demand.
3219
3220 The analysis is executed by calling the '''IAnalysisModule#schedule()''' method. This method makes sure the analysis is executed only once and, if it is already running, it won't start again. The analysis itself is run inside an Eclipse job that can be cancelled by the user or the application. The developer must consider the progress monitor that comes as a parameter of the '''executeAnalysis()''' method, to handle the proper cancellation of the processing. The '''IAnalysisModule#waitForCompletion()''' method will block the calling thread until the analysis is completed. The method will return whether the analysis was successfully completed or if it was cancelled.
3221
3222 A running analysis can be cancelled by calling the '''IAnalysisModule#cancel()''' method. This will set the analysis as done, so it cannot start again unless it is explicitly reset. This is done by calling the protected method '''resetAnalysis'''.
3223
3224 == Telling TMF about the analysis module ==
3225
3226 Now that the analysis module class exists, it is time to hook it to the rest of TMF so that it appears under the traces in the project explorer. The way to do so is to add an extension of type ''org.eclipse.linuxtools.tmf.core.analysis'' to a plugin, either through the ''Extensions'' tab of the Plug-in Manifest Editor or by editing directly the plugin.xml file.
3227
3228 The following code shows what the resulting plugin.xml file should look like.
3229
3230 <pre>
3231 <extension
3232 point="org.eclipse.linuxtools.tmf.core.analysis">
3233 <module
3234 id="my.lttng.kernel.analysis.id"
3235 name="My LTTng Kernel Analysis"
3236 analysis_module="my.plugin.package.MyLttngKernelAnalysis"
3237 automatic="true">
3238 <parameter
3239 name="myparam">
3240 </parameter>
3241 <parameter
3242 default_value="3"
3243 name="myotherparam">
3244 <tracetype
3245 class="org.eclipse.tracecompass.lttng2.kernel.core.trace.LttngKernelTrace">
3246 </tracetype>
3247 </module>
3248 </extension>
3249 </pre>
3250
3251 This defines an analysis module where the ''analysis_module'' attribute corresponds to the module class and must implement IAnalysisModule. This module has 2 parameters: ''myparam'' and ''myotherparam'' which has default value of 3. The ''tracetype'' element tells which tracetypes this analysis applies to. There can be many tracetypes. Also, the ''automatic'' attribute of the module indicates whether this analysis should be run when the trace is opened, or wait for the user's explicit request.
3252
3253 Note that with these extension points, it is possible to use the same module class for more than one analysis (with different ids and names). That is a desirable behavior. For instance, a third party plugin may add a new tracetype different from the one the module is meant for, but on which the analysis can run. Also, different analyses could provide different results with the same module class but with different default values of parameters.
3254
3255 == Attaching outputs and views to the analysis module ==
3256
3257 Analyses will typically produce outputs the user can examine. Outputs can be a text dump, a .dot file, an XML file, a view, etc. All output types must implement the '''IAnalysisOutput''' interface.
3258
3259 An output can be registered to an analysis module at any moment by calling the '''IAnalysisModule#registerOutput()''' method. Analyses themselves may know what outputs are available and may register them in the analysis constructor or after analysis completion.
3260
3261 The various concrete output types are:
3262
3263 * '''TmfAnalysisViewOutput''': It takes a view ID as parameter and, when selected, opens the view.
3264
3265 === Using the extension point to add outputs ===
3266
3267 Analysis outputs can also be hooked to an analysis using the same extension point ''org.eclipse.linuxtools.tmf.core.analysis'' in the plugin.xml file. Outputs can be matched either to a specific analysis identified by an ID, or to all analysis modules extending or implementing a given class or interface.
3268
3269 The following code shows how to add a view output to the analysis defined above directly in the plugin.xml file. This extension does not have to be in the same plugin as the extension defining the analysis. Typically, an analysis module can be defined in a core plugin, along with some outputs that do not require UI elements. Other outputs, like views, who need UI elements, will be defined in a ui plugin.
3270
3271 <pre>
3272 <extension
3273 point="org.eclipse.linuxtools.tmf.core.analysis">
3274 <output
3275 class="org.eclipse.tracecompass.tmf.ui.analysis.TmfAnalysisViewOutput"
3276 id="my.plugin.package.ui.views.myView">
3277 <analysisId
3278 id="my.lttng.kernel.analysis.id">
3279 </analysisId>
3280 </output>
3281 <output
3282 class="org.eclipse.tracecompass.tmf.ui.analysis.TmfAnalysisViewOutput"
3283 id="my.plugin.package.ui.views.myMoreGenericView">
3284 <analysisModuleClass
3285 class="my.plugin.package.core.MyAnalysisModuleClass">
3286 </analysisModuleClass>
3287 </output>
3288 </extension>
3289 </pre>
3290
3291 == Providing help for the module ==
3292
3293 For now, the only way to provide a meaningful help message to the user is by overriding the '''IAnalysisModule#getHelpText()''' method and return a string that will be displayed in a message box.
3294
3295 What still needs to be implemented is for a way to add a full user/developer documentation with mediawiki text file for each module and automatically add it to Eclipse Help. Clicking on the Help menu item of an analysis module would open the corresponding page in the help.
3296
3297 == Using analysis parameter providers ==
3298
3299 An analysis may have parameters that can be used during its execution. Default values can be set when describing the analysis module in the plugin.xml file, or they can use the '''IAnalysisParameterProvider''' interface to provide values for parameters. '''TmfAbstractAnalysisParamProvider''' provides an abstract implementation of this interface, that automatically notifies the module of a parameter change.
3300
3301 === Example parameter provider ===
3302
3303 The following example shows how to have a parameter provider listen to a selection in the LTTng kernel Control Flow view and send the thread id to the analysis.
3304
3305 <pre>
3306 public class MyLttngKernelParameterProvider extends TmfAbstractAnalysisParamProvider {
3307
3308 private ControlFlowEntry fCurrentEntry = null;
3309
3310 private static final String NAME = "My Lttng kernel parameter provider"; //$NON-NLS-1$
3311
3312 private ISelectionListener selListener = new ISelectionListener() {
3313 @Override
3314 public void selectionChanged(IWorkbenchPart part, ISelection selection) {
3315 if (selection instanceof IStructuredSelection) {
3316 Object element = ((IStructuredSelection) selection).getFirstElement();
3317 if (element instanceof ControlFlowEntry) {
3318 ControlFlowEntry entry = (ControlFlowEntry) element;
3319 setCurrentThreadEntry(entry);
3320 }
3321 }
3322 }
3323 };
3324
3325 /*
3326 * Constructor
3327 */
3328 public MyLttngKernelParameterProvider() {
3329 super();
3330 registerListener();
3331 }
3332
3333 @Override
3334 public String getName() {
3335 return NAME;
3336 }
3337
3338 @Override
3339 public Object getParameter(String name) {
3340 if (fCurrentEntry == null) {
3341 return null;
3342 }
3343 if (name.equals(MyLttngKernelAnalysis.PARAM1)) {
3344 return fCurrentEntry.getThreadId();
3345 }
3346 return null;
3347 }
3348
3349 @Override
3350 public boolean appliesToTrace(ITmfTrace trace) {
3351 return (trace instanceof LttngKernelTrace);
3352 }
3353
3354 private void setCurrentThreadEntry(ControlFlowEntry entry) {
3355 if (!entry.equals(fCurrentEntry)) {
3356 fCurrentEntry = entry;
3357 this.notifyParameterChanged(MyLttngKernelAnalysis.PARAM1);
3358 }
3359 }
3360
3361 private void registerListener() {
3362 final IWorkbench wb = PlatformUI.getWorkbench();
3363
3364 final IWorkbenchPage activePage = wb.getActiveWorkbenchWindow().getActivePage();
3365
3366 /* Add the listener to the control flow view */
3367 view = activePage.findView(ControlFlowView.ID);
3368 if (view != null) {
3369 view.getSite().getWorkbenchWindow().getSelectionService().addPostSelectionListener(selListener);
3370 view.getSite().getWorkbenchWindow().getPartService().addPartListener(partListener);
3371 }
3372 }
3373
3374 }
3375 </pre>
3376
3377 === Register the parameter provider to the analysis ===
3378
3379 To have the parameter provider class register to analysis modules, it must first register through the analysis manager. It can be done in a plugin's activator as follows:
3380
3381 <pre>
3382 @Override
3383 public void start(BundleContext context) throws Exception {
3384 /* ... */
3385 TmfAnalysisManager.registerParameterProvider("my.lttng.kernel.analysis.id", MyLttngKernelParameterProvider.class)
3386 }
3387 </pre>
3388
3389 where '''MyLttngKernelParameterProvider''' will be registered to analysis ''"my.lttng.kernel.analysis.id"''. When the analysis module is created, the new module will register automatically to the singleton parameter provider instance. Only one module is registered to a parameter provider at a given time, the one corresponding to the currently selected trace.
3390
3391 == Providing requirements to analyses ==
3392
3393 === Analysis requirement provider API ===
3394
3395 A requirement defines the needs of an analysis. For example, an analysis could need an event named ''"sched_switch"'' in order to be properly executed. The requirements are represented by extending the class '''TmfAbstractAnalysisRequirement'''. Since '''IAnalysisModule''' extends the '''IAnalysisRequirementProvider''' interface, all analysis modules must provide their requirements. If the analysis module extends '''TmfAbstractAnalysisModule''', it has the choice between overriding the requirements getter ('''IAnalysisRequirementProvider#getAnalysisRequirements()''') or not, since the abstract class returns an empty collection by default (no requirements).
3396
3397 === Requirement values ===
3398
3399 Each concrete analysis requirement class will define how a requirement is verified on a given trace.
3400 When creating a requirement, the developer will specify a set of values for that class.
3401 With an 'event' type requirement, a trace generator like the LTTng Control could automatically
3402 enable the required events.
3403 Another point we have to take into consideration is the priority level when creating a requirement object.
3404 The enum '''TmfAbstractAnalysisRequirement#PriorityLevel''' gives the choice
3405 between '''PriorityLevel#OPTIONAL''', '''PriorityLevel#ALL_OR_NOTHING''',
3406 '''PriorityLevel#AT_LEAST_ONE''' or '''PriorityLevel#MANDATORY'''. That way, we
3407 can tell if an analysis can run without a value or not.
3408
3409
3410 To create a requirement one has the choice to extend the abstract class
3411 '''TmfAbstractAnalysisRequirement''' or use the existing implementations:
3412 '''TmfAnalysisEventRequirement''' (will verify the presence of events identified by name),
3413 '''TmfAnalysisEventFieldRequirement''' (will verify the presence of fields for some or all events) or
3414 '''TmfCompositeAnalysisRequirement''' (join requirements together with one of the priority levels).
3415
3416 Moreover, information can be added to requirements. That way, the developer can explicitly give help details at the requirement level instead of at the analysis level (which would just be a general help text). To add information to a requirement, the method '''TmfAnalysisRequirement#addInformation()''' must be called. Adding information is not mandatory.
3417
3418 === Example of providing requirements ===
3419
3420 In this example, we will implement a method that initializes a requirement object
3421 and return it in the '''IAnalysisRequirementProvider#getAnalysisRequirements()'''
3422 getter. The example method will return a set with three requirements.
3423 The first one will indicate a mandatory event needed by a specific analysis,
3424 the second one will tell an optional event name and the third will indicate
3425 mandatory event fields for the given event type.
3426
3427 Note that in LTTng event contexts are considered as event fields. Using the
3428 '''TmfAnalysisEventFieldRequirement''' it's possible to define requirements
3429 on event contexts (see 3rd requirement in example below).
3430
3431 <pre>
3432 @Override
3433 public @NonNull Iterable<@NonNull TmfAbstractAnalysisRequirement> getAnalysisRequirements() {
3434
3435 /* Requirement on event name */
3436 Set<@NonNull String> requiredEvents = ImmutableSet.of("sched_wakeup");
3437 TmfAbstractAnalysisRequirement eventsReq1 = new TmfAnalysisEventRequirement(requiredEvents, PriorityLevel.MANDATORY);
3438
3439 requiredEvents = ImmutableSet.of("sched_switch");
3440 TmfAbstractAnalysisRequirement eventsReq2 = new TmfAnalysisEventRequirement(requiredEvents, PriorityLevel.OPTIONAL);
3441
3442 /* An information about the events */
3443 eventsReq2.addInformation("The event sched_wakeup is optional because it's not properly handled by this analysis yet.");
3444
3445 /* Requirement on event fields */
3446 Set<@NonNull String> requiredEventFields = ImmutableSet.of("context._procname", "context._ip");
3447 TmfAbstractAnalysisRequirement eventFieldRequirement = new TmfAnalysisEventFieldRequirement(
3448 "event name",
3449 requiredEventFields,
3450 PriorityLevel.MANDATORY);
3451
3452 Set<TmfAbstractAnalysisRequirement> requirements = ImmutableSet.of(eventsReq1, eventsReq2, eventFieldRequirement);
3453 return requirements;
3454 }
3455 </pre>
3456
3457
3458 == TODO ==
3459
3460 Here's a list of features not yet implemented that would improve the analysis module user experience:
3461
3462 * Implement help using the Eclipse Help facility (without forgetting an eventual command line request)
3463 * The abstract class '''TmfAbstractAnalysisModule''' executes an analysis as a job, but nothing compels a developer to do so for an analysis implementing the '''IAnalysisModule''' interface. We should force the execution of the analysis as a job, either from the trace itself or using the TmfAnalysisManager or by some other mean.
3464 * Views and outputs are often registered by the analysis themselves (forcing them often to be in the .ui packages because of the views), because there is no other easy way to do so. We should extend the analysis extension point so that .ui plugins or other third-party plugins can add outputs to a given analysis that resides in the core.
3465 * Improve the user experience with the analysis:
3466 ** Allow the user to select which analyses should be available, per trace or per project.
3467 ** Allow the user to view all available analyses even though he has no imported traces.
3468 ** Allow the user to generate traces for a given analysis, or generate a template to generate the trace that can be sent as parameter to the tracer.
3469 ** Give the user a visual status of the analysis: not executed, in progress, completed, error.
3470 ** Give a small screenshot of the output as icon for it.
3471 ** Allow to specify parameter values from the GUI.
3472 * Add the possibility for an analysis requirement to be composed of another requirement.
3473 * Generate a trace session from analysis requirements.
3474
3475 = TMF Remote API =
3476 The TMF remote API is based on the remote services implementation of the Eclipse PTP project. It comes with a built-in SSH implementation based JSch as well as with support for a local connection. The purpose of this API is to provide a programming interface to the PTP remote services implementation for connection handling, command-line execution and file transfer handling. It provides utility functions to simplify repetitive tasks.
3477
3478 The TMF Remote API can be used for remote trace control, fetching of traces from a remote host into the Eclipse Tracing project or uploading files to the remote host. For example, the LTTng tracer control feature uses the TMF remote API to control an LTTng host remotely and to download corresponding traces.
3479
3480 In the following chapters the relevant classes and features of the TMF remote API is described.
3481
3482 == Prerequisites ==
3483
3484 To use the TMF remote API one has to add the relevant plug-in dependencies to a plug-in project. To create a plug-in project see chapter [[#Creating an Eclipse UI Plug-in]].
3485
3486 To add plug-in dependencies double-click on the MANIFEST.MF file. Change to the Dependencies tab and select '''Add...''' of the ''Required Plug-ins'' section. A new dialog box will open. Next find plug-in ''org.eclipse.tracecompass.tmf.remote.core'' and press '''OK'''. Follow the same steps, add ''org.eclipse.remote.core''. If UI elements are needed in the plug-in also add ''org.eclipse.tracecompass.tmf.remote.ui'' and ''org.eclipse.remote.ui''.
3487
3488 == TmfRemoteConnectionFactory ==
3489 This class is a utility class for creating ''IRemoteConnection'' instances of PTP programatically. It also provides access methods to the OSGI remote services of PTP.
3490
3491 === Accessing the remote services manager (OSGI service) ===
3492 The main entry point into the PTP remote services system is the ''IRemoteServicesManager'' OSGI service. It provides a list of connection types and the global list of all connections.
3493
3494 To access an OSGI service, use the method '''getService()''' of the '''TmfRemoteConnectionFactory''' class:
3495
3496 <pre>
3497 IRemoteServicesManager manager = TmfRemoteConnectionFactory.getService(IRemoteServicesManager.class);
3498 </pre>
3499
3500 === Obtaining a IRemoteConnection ===
3501 To obtain an '''IRemoteConnection''' instance use the method '''TmfRemoteConnectionFactory.getRemoteConnection(String remoteServicesId, String name)''', where ''remoteServicesId'' is the ID of service ID for the connection, and ''name'' the name of the connection. For built-in SSH the ''remoteServicesId'' is "org.eclipse.remote.JSch".
3502
3503 <pre>
3504 IRemoteConnection connection = TmfRemoteConnectionFactory.getRemoteConnection("org.eclipse.remote.JSch", "My Connection");
3505 </pre>
3506
3507 Note that the connection needs to be created beforehand using the Remote Connection wizard implementation ('''Window -> Preferences -> Remote Development -> Remote Connection''') in the Eclipse application that executes this plug-in. For more information about creating connections using the Remote Connections feature of PTP refer to [http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.ptp.doc.user%2Fhtml%2FremoteTools.html&anchor=remote link]. Alternatively it can be created programmatically using the corresponding API of TMF ([[#Creating an IRemoteConnection instance]]).
3508
3509 To obtain an '''IRemoteConnection''' instance use method '''TmfRemoteConnectionFactory.getLocalConnection()'''.
3510 <pre>
3511 IRemoteConnection connection = TmfRemoteConnectionFactory.getLocalConnection();
3512 </pre>
3513
3514 === Creating an IRemoteConnection instance ===
3515 It is possible to create an '''IRemoteConnection''' instance programmatically using the '''TmfRemoteConnectionFactory'''. Right now only build-in SSH or Local connection is supported.
3516
3517 To create an '''IRemoteConnection''' instance use the method '''createConnection(URI hostURI, String name)''' of class '''TmfRemoteConnectionFactory''', where ''hostURI'' is the URI of the remote connection, and ''name'' the name of the connection. For a built-in SSH use:
3518 <pre>
3519 import org.eclipse.remote.core.IRemoteConnection;
3520 ...
3521 try {
3522 URI hostUri = URIUtil.fromString("ssh://userID@127.0.0.1:22");
3523 IRemoteConnection connection = TmfRemoteConnectionFactory.createConnection(hostUri, "MyHost");
3524 } catch (URISyntaxException e) {
3525 return new Status(IStatus.ERROR, "my.plugin.id", "URI syntax error", e);
3526 } catch (RemoteConnectionException e) {
3527 return new Status(IStatus.ERROR, "my.plugin.id", "Connection cannot be created", e);
3528 }
3529 ...
3530 </pre>
3531
3532 Note that if a connection already exists with the given name then this connection will be returned.
3533
3534 === Providing a connection factory ===
3535 Right now only build-in SSH or Local connection of PTP is supported. If one wants to provide another connection factory with a different remote service implementation use the interface '''IConnectionFactory''' to implement a new connection factory class. Then, register the new factory to '''TmfRemoteConnectionFactory''' using method '''registerConnectionFactory(String connectionTypeId, IConnectionFactory factory)''', where ''connectionTypeId'' is a unique ID and ''factory'' is the corresponding connection factory implementation.
3536
3537 == RemoteSystemProxy ==
3538 The purpose of the RemoteSystemProxy is to handle the connection state of '''IRemoteConnection''' (connect/disconnect). Before opening a connection it checks if the connection had been open previously. If it was open, disconnecting the proxy will not close the connection. This is useful if multiple components using the same connection at the same time for different features (e.g. Tracer Control and remote fetching of traces) without impacting each other.
3539
3540 === Creating a RemoteSystemProxy ===
3541 Once one has an '''IRemoteConnection''' instance a '''RemoteSystemProxy''' can be constructed by:
3542 <pre>
3543 // Get local connection (for example)
3544 IRemoteConnection connection = TmfRemoteConnectionFactory.getLocalConnection();
3545 RemoteSystemProxy proxy = new RemoteSystemProxy(connection);
3546 </pre>
3547
3548 === Opening the remote connection ===
3549 To open the connection call method '''connect()''':
3550 <pre>
3551 proxy.connect();
3552 </pre>
3553
3554 This will open the connection. If the connection has been previously opened then it will immediately return.
3555
3556 === Closing the remote connection ===
3557 To close the connection call method '''disconnect()''':
3558 <pre>
3559 proxy.disconnect();
3560 </pre>
3561
3562 Note: This will close the connection if the connection was opened by this proxy. Otherwise it will stay open.
3563
3564 === Disposing the remote connection ===
3565 If a remote system proxy is not needed anymore the proxy instance needs to be disposed by calling method '''dispose()'''. This may close the connection if the connection was opened by this proxy. Otherwise it will stay open.
3566
3567 <pre>
3568 proxy.dispose();
3569 </pre>
3570
3571 === Checking the connection state ===
3572
3573 To check the connection state use method '''isConnected()''' of the '''RemoteSystemProxy''' class.
3574
3575 <pre>
3576 if (proxy.isConnected()) {
3577 // do something
3578 }
3579 </pre>
3580
3581
3582 === Retrieving the IRemoteConnection instance ===
3583 To retrieve the '''IRemoteConnection''' instance use the '''getRemoteConnection()''' method of the '''RemoteSystemProxy''' class. Using this instance relevant features of the remote connection implementation can be accessed, for example remote file service ('''IRemoteFileService''') or remote process service ('''IRemoteProcessService''').
3584
3585 <pre>
3586 import org.eclipse.remote.core.IRemoteConnection;
3587 import org.eclipse.remote.core.IRemoteFileService;
3588 ...
3589 IRemoteRemoteConnection connection = proxy.getRemoteConnection();
3590 IRemoteFileService fileService = connection.getService(IRemoteFileService.class);
3591 if (fileService != null) {
3592 // do something (e.g. download or upload a file)
3593 }
3594 </pre>
3595
3596 <pre>
3597 import org.eclipse.remote.core.IRemoteConnection;
3598 import org.eclipse.remote.core.IRemoteFileService;
3599 ...
3600 IRemoteRemoteConnection connection = proxy.getRemoteConnection();
3601 IRemoteFileService processService = connection.getService(IRemoteProcessService.class);
3602 if (processService != null) {
3603 // do something (e.g. execute command)
3604 }
3605 </pre>
3606
3607 === Obtaining a command shell ===
3608 The TMF remote API provides a Command shell implementation to execute remote command-line commands. To obtain a command-line shell use the RemoteSystemProxy.
3609
3610 <pre>
3611 import org.eclipse.remote.core.IRemoteConnection;
3612 import org.eclipse.remote.core.IRemoteFileService;
3613 import org.eclipse.tracecompass.tmf.remote.core.shell.ICommandShell
3614 ...
3615 ICommandShell shell = proxy.createCommandShell();
3616 ICommandInput command = fCommandShell.createCommand();
3617 command.add("ls");
3618 command.add("-l");
3619 ICommandResult result = shell.executeCommand(command, new NullProgressMonitor);
3620 System.out.println("Return value: " result.getResult());
3621 for (String line : result.getOutput()) {
3622 System.out.println(line);
3623 }
3624 for (String line : result.getErrorOutput()) {
3625 System.err.println(line);
3626 }
3627 shell.dispose();
3628 </pre>
3629
3630 Note that the shell needs to be disposed if not needed anymore.
3631
3632 Note for creating a command with parameters using the '''CommandInput''' class, add the command and each parameter separately instead of using one single String.
3633
3634 = Performance Tests =
3635
3636 Performance testing allows to calculate some metrics (CPU time, Memory Usage, etc) that some part of the code takes during its execution. These metrics can then be used as is for information on the system's execution, or they can be compared either with other execution scenarios, or previous runs of the same scenario, for instance, after some optimization has been done on the code.
3637
3638 For automatic performance metric computation, we use the ''org.eclipse.test.performance'' plugin, provided by the Eclipse Test Feature.
3639
3640 == Add performance tests ==
3641
3642 === Where ===
3643
3644 Performance tests are unit tests and they are added to the corresponding unit tests plugin. To separate performance tests from unit tests, a separate source folder, typically named ''perf'', is added to the plug-in.
3645
3646 Tests are to be added to a package under the ''perf'' directory, the package name would typically match the name of the package it is testing. For each package, a class named '''AllPerfTests''' would list all the performance tests classes inside this package. And like for unit tests, a class named '''AllPerfTests''' for the plug-in would list all the packages' '''AllPerfTests''' classes.
3647
3648 When adding performance tests for the first time in a plug-in, the plug-in's '''AllPerfTests''' class should be added to the global list of performance tests, found in package ''org.eclipse.tracecompass.alltests'', in class '''RunAllPerfTests'''. This will ensure that performance tests for the plug-in are run along with the other performance tests
3649
3650 === How ===
3651
3652 TMF is using the org.eclipse.test.performance framework for performance tests. Using this, performance metrics are automatically taken and, if many runs of the tests are run, average and standard deviation are automatically computed. Results can optionally be stored to a database for later use.
3653
3654 Here is an example of how to use the test framework in a performance test:
3655
3656 <pre>
3657 public class AnalysisBenchmark {
3658
3659 private static final String TEST_ID = "org.eclipse.linuxtools#LTTng kernel analysis";
3660 private static final CtfTmfTestTrace testTrace = CtfTmfTestTrace.TRACE2;
3661 private static final int LOOP_COUNT = 10;
3662
3663 /**
3664 * Performance test
3665 */
3666 @Test
3667 public void testTrace() {
3668 assumeTrue(testTrace.exists());
3669
3670 /** Create a new performance meter for this scenario */
3671 Performance perf = Performance.getDefault();
3672 PerformanceMeter pm = perf.createPerformanceMeter(TEST_ID);
3673
3674 /** Optionally, tag this test for summary or global summary on a given dimension */
3675 perf.tagAsSummary(pm, "LTTng Kernel Analysis", Dimension.CPU_TIME);
3676 perf.tagAsGlobalSummary(pm, "LTTng Kernel Analysis", Dimension.CPU_TIME);
3677
3678 /** The test will be run LOOP_COUNT times */
3679 for (int i = 0; i < LOOP_COUNT; i++) {
3680
3681 /** Start each run of the test with new objects to avoid different code paths */
3682 try (IAnalysisModule module = new KernelAnalysis();
3683 LttngKernelTrace trace = new LttngKernelTrace()) {
3684 module.setId("test");
3685 trace.initTrace(null, testTrace.getPath(), CtfTmfEvent.class);
3686 module.setTrace(trace);
3687
3688 /** The analysis execution is being tested, so performance metrics
3689 * are taken before and after the execution */
3690 pm.start();
3691 TmfTestHelper.executeAnalysis(module);
3692 pm.stop();
3693
3694 /*
3695 * Delete the supplementary files, so next iteration rebuilds
3696 * the state system.
3697 */
3698 File suppDir = new File(TmfTraceManager.getSupplementaryFileDir(trace));
3699 for (File file : suppDir.listFiles()) {
3700 file.delete();
3701 }
3702
3703 } catch (TmfAnalysisException | TmfTraceException e) {
3704 fail(e.getMessage());
3705 }
3706 }
3707
3708 /** Once the test has been run many times, committing the results will
3709 * calculate average, standard deviation, and, if configured, save the
3710 * data to a database */
3711 pm.commit();
3712 }
3713 }
3714
3715 </pre>
3716
3717 For more information, see [http://wiki.eclipse.org/Performance/Automated_Tests The Eclipse Performance Test How-to]
3718
3719 Some rules to help write performance tests are explained in section [[#ABC of performance testing | ABC of performance testing]].
3720
3721 === Run a performance test ===
3722
3723 Performance tests are unit tests, so, just like unit tests, they can be run by right-clicking on a performance test class and selecting ''Run As'' -> ''Junit Plug-in Test''.
3724
3725 By default, if no database has been configured, results will be displayed in the Console at the end of the test.
3726
3727 Here is the sample output from the test described in the previous section. It shows all the metrics that have been calculated during the test.
3728
3729 <pre>
3730 Scenario 'org.eclipse.linuxtools#LTTng kernel analysis' (average over 10 samples):
3731 System Time: 3.04s (95% in [2.77s, 3.3s]) Measurable effect: 464ms (1.3 SDs) (required sample size for an effect of 5% of mean: 94)
3732 Used Java Heap: -1.43M (95% in [-33.67M, 30.81M]) Measurable effect: 57.01M (1.3 SDs) (required sample size for an effect of 5% of stdev: 6401)
3733 Working Set: 14.43M (95% in [-966.01K, 29.81M]) Measurable effect: 27.19M (1.3 SDs) (required sample size for an effect of 5% of stdev: 6400)
3734 Elapsed Process: 3.04s (95% in [2.77s, 3.3s]) Measurable effect: 464ms (1.3 SDs) (required sample size for an effect of 5% of mean: 94)
3735 Kernel time: 621ms (95% in [586ms, 655ms]) Measurable effect: 60ms (1.3 SDs) (required sample size for an effect of 5% of mean: 39)
3736 CPU Time: 6.06s (95% in [5.02s, 7.09s]) Measurable effect: 1.83s (1.3 SDs) (required sample size for an effect of 5% of mean: 365)
3737 Hard Page Faults: 0 (95% in [0, 0]) Measurable effect: 0 (1.3 SDs) (required sample size for an effect of 5% of stdev: 6400)
3738 Soft Page Faults: 9.27K (95% in [3.28K, 15.27K]) Measurable effect: 10.6K (1.3 SDs) (required sample size for an effect of 5% of mean: 5224)
3739 Text Size: 0 (95% in [0, 0])
3740 Data Size: 0 (95% in [0, 0])
3741 Library Size: 32.5M (95% in [-12.69M, 77.69M]) Measurable effect: 79.91M (1.3 SDs) (required sample size for an effect of 5% of stdev: 6401)
3742 </pre>
3743
3744 Results from performance tests can be saved automatically to a derby database. Derby can be run either in embedded mode, locally on a machine, or on a server. More information on setting up derby for performance tests can be found here: [http://wiki.eclipse.org/Performance/Automated_Tests The Eclipse Performance Test How-to]. The following documentation will show how to configure an Eclipse run configuration to store results on a derby database located on a server.
3745
3746 Note that to store results in a derby database, the ''org.apache.derby'' plug-in must be available within your Eclipse. Since it is an optional dependency, it is not included in the target definition. It can be installed via the '''Orbit''' repository, in ''Help'' -> ''Install new software...''. If the '''Orbit''' repository is not listed, click on the latest one from [http://download.eclipse.org/tools/orbit/downloads/] and copy the link under ''Orbit Build Repository''.
3747
3748 To store the data to a database, it needs to be configured in the run configuration. In ''Run'' -> ''Run configurations..'', under ''Junit Plug-in Test'', find the run configuration that corresponds to the test you wish to run, or create one if it is not present yet.
3749
3750 In the ''Arguments'' tab, in the box under ''VM Arguments'', add on separate lines the following information
3751
3752 <pre>
3753 -Declipse.perf.dbloc=//javaderby.dorsal.polymtl.ca
3754 -Declipse.perf.config=build=mybuild;host=myhost;config=linux;jvm=1.7
3755 </pre>
3756
3757 The ''eclipse.perf.dbloc'' parameter is the url (or filename) of the derby database. The database is by default named ''perfDB'', with username and password ''guest''/''guest''. If the database does not exist, it will be created, initialized and populated.
3758
3759 The ''eclipse.perf.config'' parameter identifies a '''variation''': It typically identifies the build on which is it run (commitId and/or build date, etc), the machine (host) on which it is run, the configuration of the system (for example Linux or Windows), the jvm etc. That parameter is a list of ';' separated key-value pairs. To be backward-compatible with the Eclipse Performance Tests Framework, the 4 keys mentioned above are mandatory, but any key-value pairs can be used.
3760
3761 == ABC of performance testing ==
3762
3763 Here follow some rules to help design good and meaningful performance tests.
3764
3765 === Determine what to test ===
3766
3767 For tests to be significant, it is important to choose what exactly is to be tested and make sure it is reproducible every run. To limit the amount of noise caused by the TMF framework, the performance test code should be tweaked so that only the method under test is run. For instance, a trace should not be "opened" (by calling the ''traceOpened()'' method) to test an analysis, since the ''traceOpened'' method will also trigger the indexing and the execution of all applicable automatic analysis.
3768
3769 For each code path to test, multiple scenarios can be defined. For instance, an analysis could be run on different traces, with different sizes. The results will show how the system scales and/or varies depending on the objects it is executed on.
3770
3771 The number of '''samples''' used to compute the results is also important. The code to test will typically be inside a '''for''' loop that runs exactly the same code each time for a given number of times. All objects used for the test must start in the same state at each iteration of the loop. For instance, any trace used during an execution should be disposed of at the end of the loop, and any supplementary file that may have been generated in the run should be deleted.
3772
3773 Before submitting a performance test to the code review, you should run it a few times (with results in the Console) and see if the standard deviation is not too large and if the results are reproducible.
3774
3775 === Metrics descriptions and considerations ===
3776
3777 CPU time: CPU time represent the total time spent on CPU by the current process, for the time of the test execution. It is the sum of the time spent by all threads. On one hand, it is more significant than the elapsed time, since it should be the same no matter how many CPU cores the computer has. But since it calculates the time of every thread, one has to make sure that only threads related to what is being tested are executed during that time, or else the results will include the times of those other threads. For an application like TMF, it is hard to control all the threads, and empirically, it is found to vary a lot more than the system time from one run to the other.
3778
3779 System time (Elapsed time): The time between the start and the end of the execution. It will vary depending on the parallelization of the threads and the load of the machine.
3780
3781 Kernel time: Time spent in kernel mode
3782
3783 Used Java Heap: It is the difference between the memory used at the beginning of the execution and at the end. This metric may be useful to calculate the overall size occupied by the data generated by the test run, by forcing a garbage collection before taking the metrics at the beginning and at the end of the execution. But it will not show the memory used throughout the execution. There can be a large standard deviation. The reason for this is that when benchmarking methods that trigger tasks in different threads, like signals and/or analysis, these other threads might be in various states at each run of the test, which will impact the memory usage calculated. When using this metric, either make sure the method to test does not trigger external threads or make sure you wait for them to finish.
3784
3785 = Network Tracing =
3786
3787 == Adding a protocol ==
3788
3789 Supporting a new network protocol in TMF is straightforward. Minimal effort is required to support new protocols. In this tutorial, the UDP protocol will be added to the list of supported protocols.
3790
3791 === Architecture ===
3792
3793 All the TMF pcap-related code is divided in three projects (not considering the tests plugins):
3794 * '''org.eclipse.tracecompass.pcap.core''', which contains the parser that will read pcap files and constructs the different packets from a ByteBuffer. It also contains means to build packet streams, which are conversation (list of packets) between two endpoints. To add a protocol, almost all of the work will be in that project.
3795 * '''org.eclipse.tracecompass.tmf.pcap.core''', which contains TMF-specific concepts and act as a wrapper between TMF and the pcap parsing library. It only depends on org.eclipse.tracecompass.tmf.core and org.eclipse.tracecompass.pcap.core. To add a protocol, one file must be edited in this project.
3796 * '''org.eclipse.tracecompass.tmf.pcap.ui''', which contains all TMF pcap UI-specific concepts, such as the views and perspectives. No work is needed in that project.
3797
3798 === UDP Packet Structure ===
3799
3800 The UDP is a transport-layer protocol that does not guarantee message delivery nor in-order message reception. A UDP packet (datagram) has the following [http://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure structure]:
3801
3802 {| class="wikitable" style="margin: 0 auto; text-align: center;"
3803 |-
3804 ! style="border-bottom:none; border-right:none;"| ''Offsets''
3805 ! style="border-left:none;"| Octet
3806 ! colspan="8" | 0
3807 ! colspan="8" | 1
3808 ! colspan="8" | 2
3809 ! colspan="8" | 3
3810 |-
3811 ! style="border-top: none" | Octet
3812 ! <tt>Bit</tt>!!<tt>&nbsp;0</tt>!!<tt>&nbsp;1</tt>!!<tt>&nbsp;2</tt>!!<tt>&nbsp;3</tt>!!<tt>&nbsp;4</tt>!!<tt>&nbsp;5</tt>!!<tt>&nbsp;6</tt>!!<tt>&nbsp;7</tt>!!<tt>&nbsp;8</tt>!!<tt>&nbsp;9</tt>!!<tt>10</tt>!!<tt>11</tt>!!<tt>12</tt>!!<tt>13</tt>!!<tt>14</tt>!!<tt>15</tt>!!<tt>16</tt>!!<tt>17</tt>!!<tt>18</tt>!!<tt>19</tt>!!<tt>20</tt>!!<tt>21</tt>!!<tt>22</tt>!!<tt>23</tt>!!<tt>24</tt>!!<tt>25</tt>!!<tt>26</tt>!!<tt>27</tt>!!<tt>28</tt>!!<tt>29</tt>!!<tt>30</tt>!!<tt>31</tt>
3813 |-
3814 ! 0
3815 !<tt> 0</tt>
3816 | colspan="16" style="background:#fdd;"| Source port || colspan="16"| Destination port
3817 |-
3818 ! 4
3819 !<tt>32</tt>
3820 | colspan="16"| Length || colspan="16" style="background:#fdd;"| Checksum
3821 |}
3822
3823 Knowing that, we can define an UDPPacket class that contains those fields.
3824
3825 === Creating the UDPPacket ===
3826
3827 First, in org.eclipse.tracecompass.pcap.core, create a new package named '''org.eclipse.tracecompass.pcap.core.protocol.name''' with name being the name of the new protocol. In our case name is udp so we create the package '''org.eclipse.tracecompass.pcap.core.protocol.udp'''. All our work is going in this package.
3828
3829 In this package, we create a new class named UDPPacket that extends Packet. All new protocol must define a packet type that extends the abstract class Packet. We also add different fields:
3830 * ''Packet'' '''fChildPacket''', which is the packet encapsulated by this UDP packet, if it exists. This field will be initialized by findChildPacket().
3831 * ''ByteBuffer'' '''fPayload''', which is the payload of this packet. Basically, it is the UDP packet without its header.
3832 * ''int'' '''fSourcePort''', which is an unsigned 16-bits field, that contains the source port of the packet (see packet structure).
3833 * ''int'' '''fDestinationPort''', which is an unsigned 16-bits field, that contains the destination port of the packet (see packet structure).
3834 * ''int'' '''fTotalLength''', which is an unsigned 16-bits field, that contains the total length (header + payload) of the packet.
3835 * ''int'' '''fChecksum''', which is an unsigned 16-bits field, that contains a checksum to verify the integrity of the data.
3836 * ''UDPEndpoint'' '''fSourceEndpoint''', which contains the source endpoint of the UDPPacket. The UDPEndpoint class will be created later in this tutorial.
3837 * ''UDPEndpoint'' '''fDestinationEndpoint''', which contains the destination endpoint of the UDPPacket.
3838 * ''ImmutableMap<String, String>'' '''fFields''', which is a map that contains all the packet fields (see in data structure) which assign a field name with its value. Those values will be displayed on the UI.
3839
3840 We also create the UDPPacket(PcapFile file, @Nullable Packet parent, ByteBuffer packet) constructor. The parameters are:
3841 * ''PcapFile'' '''file''', which is the pcap file to which this packet belongs.
3842 * ''Packet'' '''parent''', which is the packet encasulating this UDPPacket
3843 * ''ByteBuffer'' '''packet''', which is a ByteBuffer that contains all the data necessary to initialize the fields of this UDPPacket. We will retrieve bytes from it during object construction.
3844
3845 The following class is obtained:
3846
3847 <pre>
3848 package org.eclipse.tracecompass.pcap.core.protocol.udp;
3849
3850 import java.nio.ByteBuffer;
3851 import java.util.Map;
3852
3853 import org.eclipse.tracecompass.internal.pcap.core.endpoint.ProtocolEndpoint;
3854 import org.eclipse.tracecompass.internal.pcap.core.packet.BadPacketException;
3855 import org.eclipse.tracecompass.internal.pcap.core.packet.Packet;
3856
3857 public class UDPPacket extends Packet {
3858
3859 private final @Nullable Packet fChildPacket;
3860 private final @Nullable ByteBuffer fPayload;
3861
3862 private final int fSourcePort;
3863 private final int fDestinationPort;
3864 private final int fTotalLength;
3865 private final int fChecksum;
3866
3867 private @Nullable UDPEndpoint fSourceEndpoint;
3868 private @Nullable UDPEndpoint fDestinationEndpoint;
3869
3870 private @Nullable ImmutableMap<String, String> fFields;
3871
3872 /**
3873 * Constructor of the UDP Packet class.
3874 *
3875 * @param file
3876 * The file that contains this packet.
3877 * @param parent
3878 * The parent packet of this packet (the encapsulating packet).
3879 * @param packet
3880 * The entire packet (header and payload).
3881 * @throws BadPacketException
3882 * Thrown when the packet is erroneous.
3883 */
3884 public UDPPacket(PcapFile file, @Nullable Packet parent, ByteBuffer packet) throws BadPacketException {
3885 super(file, parent, PcapProtocol.UDP);
3886 // TODO Auto-generated constructor stub
3887 }
3888
3889
3890 @Override
3891 public Packet getChildPacket() {
3892 // TODO Auto-generated method stub
3893 return null;
3894 }
3895
3896 @Override
3897 public ByteBuffer getPayload() {
3898 // TODO Auto-generated method stub
3899 return null;
3900 }
3901
3902 @Override
3903 public boolean validate() {
3904 // TODO Auto-generated method stub
3905 return false;
3906 }
3907
3908 @Override
3909 protected Packet findChildPacket() throws BadPacketException {
3910 // TODO Auto-generated method stub
3911 return null;
3912 }
3913
3914 @Override
3915 public ProtocolEndpoint getSourceEndpoint() {
3916 // TODO Auto-generated method stub
3917 return null;
3918 }
3919
3920 @Override
3921 public ProtocolEndpoint getDestinationEndpoint() {
3922 // TODO Auto-generated method stub
3923 return null;
3924 }
3925
3926 @Override
3927 public Map<String, String> getFields() {
3928 // TODO Auto-generated method stub
3929 return null;
3930 }
3931
3932 @Override
3933 public String getLocalSummaryString() {
3934 // TODO Auto-generated method stub
3935 return null;
3936 }
3937
3938 @Override
3939 protected String getSignificationString() {
3940 // TODO Auto-generated method stub
3941 return null;
3942 }
3943
3944 @Override
3945 public boolean equals(Object obj) {
3946 // TODO Auto-generated method stub
3947 return false;
3948 }
3949
3950 @Override
3951 public int hashCode() {
3952 // TODO Auto-generated method stub
3953 return 0;
3954 }
3955
3956 }
3957 </pre>
3958
3959 Now, we implement the constructor. It is done in four steps:
3960 * We initialize fSourceEndpoint, fDestinationEndpoint and fFields to null, since those are lazy-loaded. This allows faster construction of the packet and thus faster parsing.
3961 * We initialize fSourcePort, fDestinationPort, fTotalLength, fChecksum using ByteBuffer packet. Thanks to the packet data structure, we can simply retrieve packet.getShort() to get the value. Since there is no unsigned in Java, special care is taken to avoid negative number. We use the utility method ConversionHelper.unsignedShortToInt() to convert it to an integer, and initialize the fields.
3962 * Now that the header is parsed, we take the rest of the ByteBuffer packet to initialize the payload, if there is one. To do this, we simply generate a new ByteBuffer starting from the current position.
3963 * We initialize the field fChildPacket using the method findChildPacket()
3964
3965 The following constructor is obtained:
3966 <pre>
3967 public UDPPacket(PcapFile file, @Nullable Packet parent, ByteBuffer packet) throws BadPacketException {
3968 super(file, parent, Protocol.UDP);
3969
3970 // The endpoints and fFields are lazy loaded. They are defined in the get*Endpoint()
3971 // methods.
3972 fSourceEndpoint = null;
3973 fDestinationEndpoint = null;
3974 fFields = null;
3975
3976 // Initialize the fields from the ByteBuffer
3977 packet.order(ByteOrder.BIG_ENDIAN);
3978 packet.position(0);
3979
3980 fSourcePort = ConversionHelper.unsignedShortToInt(packet.getShort());
3981 fDestinationPort = ConversionHelper.unsignedShortToInt(packet.getShort());
3982 fTotalLength = ConversionHelper.unsignedShortToInt(packet.getShort());
3983 fChecksum = ConversionHelper.unsignedShortToInt(packet.getShort());
3984
3985 // Initialize the payload
3986 if (packet.array().length - packet.position() > 0) {
3987 byte[] array = new byte[packet.array().length - packet.position()];
3988 packet.get(array);
3989
3990 ByteBuffer payload = ByteBuffer.wrap(array);
3991 payload.order(ByteOrder.BIG_ENDIAN);
3992 payload.position(0);
3993 fPayload = payload;
3994 } else {
3995 fPayload = null;
3996 }
3997
3998 // Find child
3999 fChildPacket = findChildPacket();
4000
4001 }
4002 </pre>
4003
4004 Then, we implement the following methods:
4005 * ''public Packet'' '''getChildPacket()''': simple getter of fChildPacket
4006 * ''public ByteBuffer'' '''getPayload()''': simple getter of fPayload
4007 * ''public boolean'' '''validate()''': method that checks if the packet is valid. In our case, the packet is valid if the retrieved checksum fChecksum and the real checksum (that we can compute using the fields and payload of UDPPacket) are the same.
4008 * ''protected Packet'' '''findChildPacket()''': method that create a new packet if a encapsulated protocol is found. For instance, based on the fDestinationPort, it could determine what the encapsulated protocol is and creates a new packet object.
4009 * ''public ProtocolEndpoint'' '''getSourceEndpoint()''': method that initializes and returns the source endpoint.
4010 * ''public ProtocolEndpoint'' '''getDestinationEndpoint()''': method that initializes and returns the destination endpoint.
4011 * ''public Map<String, String>'' '''getFields()''': method that initializes and returns the map containing the fields matched to their value.
4012 * ''public String'' '''getLocalSummaryString()''': method that returns a string summarizing the most important fields of the packet. There is no need to list all the fields, just the most important one. This will be displayed on UI.
4013 * ''protected String'' '''getSignificationString()''': method that returns a string describing the meaning of the packet. If there is no particular meaning, it is possible to return getLocalSummaryString().
4014 * public boolean'' '''equals(Object obj)''': Object's equals method.
4015 * public int'' '''hashCode()''': Object's hashCode method.
4016
4017 We get the following code:
4018 <pre>
4019 @Override
4020 public @Nullable Packet getChildPacket() {
4021 return fChildPacket;
4022 }
4023
4024 @Override
4025 public @Nullable ByteBuffer getPayload() {
4026 return fPayload;
4027 }
4028
4029 /**
4030 * Getter method that returns the UDP Source Port.
4031 *
4032 * @return The source Port.
4033 */
4034 public int getSourcePort() {
4035 return fSourcePort;
4036 }
4037
4038 /**
4039 * Getter method that returns the UDP Destination Port.
4040 *
4041 * @return The destination Port.
4042 */
4043 public int getDestinationPort() {
4044 return fDestinationPort;
4045 }
4046
4047 /**
4048 * {@inheritDoc}
4049 *
4050 * See http://www.iana.org/assignments/service-names-port-numbers/service-
4051 * names-port-numbers.xhtml or
4052 * http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
4053 */
4054 @Override
4055 protected @Nullable Packet findChildPacket() throws BadPacketException {
4056 // When more protocols are implemented, we can simply do a switch on the fDestinationPort field to find the child packet.
4057 // For instance, if the destination port is 80, then chances are the HTTP protocol is encapsulated. We can create a new HTTP
4058 // packet (after some verification that it is indeed the HTTP protocol).
4059 ByteBuffer payload = fPayload;
4060 if (payload == null) {
4061 return null;
4062 }
4063
4064 return new UnknownPacket(getPcapFile(), this, payload);
4065 }
4066
4067 @Override
4068 public boolean validate() {
4069 // Not yet implemented. ATM, we consider that all packets are valid.
4070 // TODO Implement it. We can compute the real checksum and compare it to fChecksum.
4071 return true;
4072 }
4073
4074 @Override
4075 public UDPEndpoint getSourceEndpoint() {
4076 @Nullable
4077 UDPEndpoint endpoint = fSourceEndpoint;
4078 if (endpoint == null) {
4079 endpoint = new UDPEndpoint(this, true);
4080 }
4081 fSourceEndpoint = endpoint;
4082 return fSourceEndpoint;
4083 }
4084
4085 @Override
4086 public UDPEndpoint getDestinationEndpoint() {
4087 @Nullable UDPEndpoint endpoint = fDestinationEndpoint;
4088 if (endpoint == null) {
4089 endpoint = new UDPEndpoint(this, false);
4090 }
4091 fDestinationEndpoint = endpoint;
4092 return fDestinationEndpoint;
4093 }
4094
4095 @Override
4096 public Map<String, String> getFields() {
4097 ImmutableMap<String, String> map = fFields;
4098 if (map == null) {
4099 @SuppressWarnings("null")
4100 @NonNull ImmutableMap<String, String> newMap = ImmutableMap.<String, String> builder()
4101 .put("Source Port", String.valueOf(fSourcePort)) //$NON-NLS-1$
4102 .put("Destination Port", String.valueOf(fDestinationPort)) //$NON-NLS-1$
4103 .put("Length", String.valueOf(fTotalLength) + " bytes") //$NON-NLS-1$ //$NON-NLS-2$
4104 .put("Checksum", String.format("%s%04x", "0x", fChecksum)) //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$
4105 .build();
4106 fFields = newMap;
4107 return newMap;
4108 }
4109 return map;
4110 }
4111
4112 @Override
4113 public String getLocalSummaryString() {
4114 return "Src Port: " + fSourcePort + ", Dst Port: " + fDestinationPort; //$NON-NLS-1$ //$NON-NLS-2$
4115 }
4116
4117 @Override
4118 protected String getSignificationString() {
4119 return "Source Port: " + fSourcePort + ", Destination Port: " + fDestinationPort; //$NON-NLS-1$ //$NON-NLS-2$
4120 }
4121
4122 @Override
4123 public int hashCode() {
4124 final int prime = 31;
4125 int result = 1;
4126 result = prime * result + fChecksum;
4127 final Packet child = fChildPacket;
4128 if (child != null) {
4129 result = prime * result + child.hashCode();
4130 } else {
4131 result = prime * result;
4132 }
4133 result = prime * result + fDestinationPort;
4134 final ByteBuffer payload = fPayload;
4135 if (payload != null) {
4136 result = prime * result + payload.hashCode();
4137 } else {
4138 result = prime * result;
4139 }
4140 result = prime * result + fSourcePort;
4141 result = prime * result + fTotalLength;
4142 return result;
4143 }
4144
4145 @Override
4146 public boolean equals(@Nullable Object obj) {
4147 if (this == obj) {
4148 return true;
4149 }
4150 if (obj == null) {
4151 return false;
4152 }
4153 if (getClass() != obj.getClass()) {
4154 return false;
4155 }
4156 UDPPacket other = (UDPPacket) obj;
4157 if (fChecksum != other.fChecksum) {
4158 return false;
4159 }
4160 final Packet child = fChildPacket;
4161 if (child != null) {
4162 if (!child.equals(other.fChildPacket)) {
4163 return false;
4164 }
4165 } else {
4166 if (other.fChildPacket != null) {
4167 return false;
4168 }
4169 }
4170 if (fDestinationPort != other.fDestinationPort) {
4171 return false;
4172 }
4173 final ByteBuffer payload = fPayload;
4174 if (payload != null) {
4175 if (!payload.equals(other.fPayload)) {
4176 return false;
4177 }
4178 } else {
4179 if (other.fPayload != null) {
4180 return false;
4181 }
4182 }
4183 if (fSourcePort != other.fSourcePort) {
4184 return false;
4185 }
4186 if (fTotalLength != other.fTotalLength) {
4187 return false;
4188 }
4189 return true;
4190 }
4191 </pre>
4192
4193 The UDPPacket class is implemented. We now have the define the UDPEndpoint.
4194
4195 === Creating the UDPEndpoint ===
4196
4197 For the UDP protocol, an endpoint will be its source or its destination port, depending if it is the source endpoint or destination endpoint. Knowing that, we can create our UDPEndpoint class.
4198
4199 We create in our package a new class named UDPEndpoint that extends ProtocolEndpoint. We also add a field: fPort, which contains the source or destination port. We finally add a constructor public ExampleEndpoint(Packet packet, boolean isSourceEndpoint):
4200 * ''Packet'' '''packet''': the packet to build the endpoint from.
4201 * ''boolean'' '''isSourceEndpoint''': whether the endpoint is the source endpoint or destination endpoint.
4202
4203 We obtain the following unimplemented class:
4204
4205 <pre>
4206 package org.eclipse.tracecompass.pcap.core.protocol.udp;
4207
4208 import org.eclipse.tracecompass.internal.pcap.core.endpoint.ProtocolEndpoint;
4209 import org.eclipse.tracecompass.internal.pcap.core.packet.Packet;
4210
4211 public class UDPEndpoint extends ProtocolEndpoint {
4212
4213 private final int fPort;
4214
4215 public UDPEndpoint(Packet packet, boolean isSourceEndpoint) {
4216 super(packet, isSourceEndpoint);
4217 // TODO Auto-generated constructor stub
4218 }
4219
4220 @Override
4221 public int hashCode() {
4222 // TODO Auto-generated method stub
4223 return 0;
4224 }
4225
4226 @Override
4227 public boolean equals(Object obj) {
4228 // TODO Auto-generated method stub
4229 return false;
4230 }
4231
4232 @Override
4233 public String toString() {
4234 // TODO Auto-generated method stub
4235 return null;
4236 }
4237
4238 }
4239 </pre>
4240
4241 For the constructor, we simply initialize fPort. If isSourceEndpoint is true, then we take packet.getSourcePort(), else we take packet.getDestinationPort().
4242
4243 <pre>
4244 /**
4245 * Constructor of the {@link UDPEndpoint} class. It takes a packet to get
4246 * its endpoint. Since every packet has two endpoints (source and
4247 * destination), the isSourceEndpoint parameter is used to specify which
4248 * endpoint to take.
4249 *
4250 * @param packet
4251 * The packet that contains the endpoints.
4252 * @param isSourceEndpoint
4253 * Whether to take the source or the destination endpoint of the
4254 * packet.
4255 */
4256 public UDPEndpoint(UDPPacket packet, boolean isSourceEndpoint) {
4257 super(packet, isSourceEndpoint);
4258 fPort = isSourceEndpoint ? packet.getSourcePort() : packet.getDestinationPort();
4259 }
4260 </pre>
4261
4262 Then we implement the methods:
4263 * ''public int'' '''hashCode()''': method that returns an integer based on the fields value. In our case, it will return an integer depending on fPort, and the parent endpoint that we can retrieve with getParentEndpoint().
4264 * ''public boolean'' '''equals(Object obj)''': method that returns true if two objects are equals. In our case, two UDPEndpoints are equal if they both have the same fPort and have the same parent endpoint that we can retrieve with getParentEndpoint().
4265 * ''public String'' '''toString()''': method that returns a description of the UDPEndpoint as a string. In our case, it will be a concatenation of the string of the parent endpoint and fPort as a string.
4266
4267 <pre>
4268 @Override
4269 public int hashCode() {
4270 final int prime = 31;
4271 int result = 1;
4272 ProtocolEndpoint endpoint = getParentEndpoint();
4273 if (endpoint == null) {
4274 result = 0;
4275 } else {
4276 result = endpoint.hashCode();
4277 }
4278 result = prime * result + fPort;
4279 return result;
4280 }
4281
4282 @Override
4283 public boolean equals(@Nullable Object obj) {
4284 if (this == obj) {
4285 return true;
4286 }
4287 if (!(obj instanceof UDPEndpoint)) {
4288 return false;
4289 }
4290
4291 UDPEndpoint other = (UDPEndpoint) obj;
4292
4293 // Check on layer
4294 boolean localEquals = (fPort == other.fPort);
4295 if (!localEquals) {
4296 return false;
4297 }
4298
4299 // Check above layers.
4300 ProtocolEndpoint endpoint = getParentEndpoint();
4301 if (endpoint != null) {
4302 return endpoint.equals(other.getParentEndpoint());
4303 }
4304 return true;
4305 }
4306
4307 @Override
4308 public String toString() {
4309 ProtocolEndpoint endpoint = getParentEndpoint();
4310 if (endpoint == null) {
4311 @SuppressWarnings("null")
4312 @NonNull String ret = String.valueOf(fPort);
4313 return ret;
4314 }
4315 return endpoint.toString() + '/' + fPort;
4316 }
4317 </pre>
4318
4319 === Registering the UDP protocol ===
4320
4321 The last step is to register the new protocol. There are three places where the protocol has to be registered. First, the parser has to know that a new protocol has been added. This is defined in the enum org.eclipse.tracecompass.internal.pcap.core.protocol.PcapProtocol. Simply add the protocol name here, along with a few arguments:
4322 * ''String'' '''longname''', which is the long version of name of the protocol. In our case, it is "User Datagram Protocol".
4323 * ''String'' '''shortName''', which is the shortened name of the protocol. In our case, it is "UDP".
4324 * ''Layer'' '''layer''', which is the layer to which the protocol belongs in the OSI model. In our case, this is the layer 4.
4325 * ''boolean'' '''supportsStream''', which defines whether or not the protocol supports packet streams. In our case, this is set to true.
4326
4327 Thus, the following line is added in the PcapProtocol enum:
4328 <pre>
4329 UDP("User Datagram Protocol", "udp", Layer.LAYER_4, true),
4330 </pre>
4331
4332 Also, TMF has to know about the new protocol. This is defined in org.eclipse.tracecompass.internal.tmf.pcap.core.protocol.TmfPcapProtocol. We simply add it, with a reference to the corresponding protocol in PcapProtocol. Thus, the following line is added in the TmfPcapProtocol enum:
4333 <pre>
4334 UDP(PcapProtocol.UDP),
4335 </pre>
4336
4337 You will also have to update the ''ProtocolConversion'' class to register the protocol in the switch statements. Thus, for UDP, we add:
4338 <pre>
4339 case UDP:
4340 return TmfPcapProtocol.UDP;
4341 </pre>
4342 and
4343 <pre>
4344 case UDP:
4345 return PcapProtocol.UDP;
4346 </pre>
4347
4348 Finally, all the protocols that could be the parent of the new protocol (in our case, IPv4 and IPv6) have to be notified of the new protocol. This is done by modifying the findChildPacket() method of the packet class of those protocols. For instance, in IPv4Packet, we add a case in the switch statement of findChildPacket, if the Protocol number matches UDP's protocol number at the network layer:
4349 <pre>
4350 @Override
4351 protected @Nullable Packet findChildPacket() throws BadPacketException {
4352 ByteBuffer payload = fPayload;
4353 if (payload == null) {
4354 return null;
4355 }
4356
4357 switch (fIpDatagramProtocol) {
4358 case IPProtocolNumberHelper.PROTOCOL_NUMBER_TCP:
4359 return new TCPPacket(getPcapFile(), this, payload);
4360 case IPProtocolNumberHelper.PROTOCOL_NUMBER_UDP:
4361 return new UDPPacket(getPcapFile(), this, payload);
4362 default:
4363 return new UnknownPacket(getPcapFile(), this, payload);
4364 }
4365 }
4366 </pre>
4367
4368 The new protocol has been added. Running TMF should work just fine, and the new protocol is now recognized.
4369
4370 == Adding stream-based views ==
4371
4372 To add a stream-based View, simply monitor the TmfPacketStreamSelectedSignal in your view. It contains the new stream that you can retrieve with signal.getStream(). You must then make an event request to the current trace to get the events, and use the stream to filter the events of interest. Therefore, you must also monitor TmfTraceOpenedSignal, TmfTraceClosedSignal and TmfTraceSelectedSignal. Examples of stream-based views include a view that represents the packets as a sequence diagram, or that shows the TCP connection state based on the packets SYN/ACK/FIN/RST flags. A (very very very early) draft of such a view can be found at https://git.eclipse.org/r/#/c/31054/.
4373
4374 == TODO ==
4375
4376 * Add more protocols. At the moment, only four protocols are supported. The following protocols would need to be implemented: ARP, SLL, WLAN, USB, IPv6, ICMP, ICMPv6, IGMP, IGMPv6, SCTP, DNS, FTP, HTTP, RTP, SIP, SSH and Telnet. Other VoIP protocols would be nice.
4377 * Add a network graph view. It would be useful to produce graphs that are meaningful to network engineers, and that they could use (for presentation purpose, for instance). We could use the XML-based analysis to do that!
4378 * Add a Stream Diagram view. This view would represent a stream as a Sequence Diagram. It would be updated when a TmfNewPacketStreamSignal is thrown. It would be easy to see the packet exchange and the time delta between each packet. Also, when a packet is selected in the Stream Diagram, it should be selected in the event table and its content should be shown in the Properties View. See https://git.eclipse.org/r/#/c/31054/ for a draft of such a view.
4379 * Make adding protocol more "plugin-ish", via extension points for instance. This would make it easier to support new protocols, without modifying the source code.
4380 * Control dumpcap directly from eclipse, similar to how LTTng is controlled in the Control View.
4381 * Support pcapng. See: http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html for the file format.
4382 * Add SWTBOT tests to org.eclipse.tracecompass.tmf.pcap.ui
4383 * Add a Raw Viewer, similar to Wireshark. We could use the “Show Raw” in the event editor to do that.
4384 * Externalize strings in org.eclipse.tracecompass.pcap.core. At the moment, all the strings are hardcoded. It would be good to externalize them all.
4385
4386 = Markers =
4387
4388 Markers are annotations that are defined with a time range, a color, a category and an optional label. The markers are displayed in the time graph of any view that extends ''AbstractTimeGraphView''. The markers are drawn as a line or a region (in case the time range duration is not zero) of the given color, which can have an alpha value to use transparency. The markers can be drawn in the foreground (above time graph states) or in the background (below time graph states). An optional label can be drawn in the the time scale area.
4389
4390 The developer can add trace-specific markers and/or view-specific markers.
4391
4392 == Trace-specific markers ==
4393
4394 Trace-specific markers can be added by registering an ''IAdapterFactory'' with the TmfTraceAdapterManager. The adapter factory must provide adapters of the ''IMarkerEventSource'' class for a given ''ITmfTrace'' object. The adapter factory can be registered for traces of a certain class (which will include sub-classes of the given class) or it can be registered for traces of a certain trace type id (as defined in the ''org.eclipse.linuxtools.tmf.core.tracetype'' extension point).
4395
4396 The adapter factory can be registered in the ''Activator'' of the plug-in that introduces it, in the ''start()'' method, and unregistered in the ''stop()'' method.
4397
4398 It is recommended to extend the ''AbstractTmfTraceAdapterFactory'' class when creating the adapter factory. This will ensure that a single instance of the adapter is created for a specific trace and reused by all components that need the adapter, and that the adapter is disposed when the trace is closed.
4399
4400 The adapter implementing the ''IMarkerEventSource'' interface must provide two methods:
4401
4402 * ''getMarkerCategories()'' returns a list of category names which will be displayed to the user, who can then enable or disable markers on a per-category basis.
4403
4404 * ''getMarkerList()'' returns a list of markers instances of class ''IMarkerEvent'' for the given category and time range. The resolution can be used to limit the number of markers returned for the current zoom level, and the progress monitor can be checked for early cancellation of the marker computation.
4405
4406 The trace-specific markers for a particular trace will appear in all views extending ''AbstractTimeGraphView'' when that trace (or an experiment containing that trace) is selected.
4407
4408 An example of a trace-specific markers implementation can be seen by examining classes ''LostEventsMarkerEventSourceFactory'', ''LostEventsMarkerEventSource'' and ''Activator'' in the ''org.eclipse.tracecompass.tmf.ui'' plug-in.
4409
4410 == View-specific markers ==
4411
4412 View-specific markers can by added in sub-classes of ''AbstractTimeGraphView'' by implementing the following two methods:
4413
4414 * ''getViewMarkerCategories()'' returns a list of category names which will be displayed to the user, who can then enable or disable markers on a per-category basis.
4415
4416 * ''getViewMarkerList()'' returns a list of markers instances of class ''IMarkerEvent'' for the given time range. The resolution can be used to limit the number of markers returned for the current zoom level, and the progress monitor can be checked for early cancellation of the marker computation.
4417
4418 = Virtual Machine Analysis =
4419
4420 Virtualized environment are becoming more popular and understanding them can be challenging as machines share resources (CPU, disks, memory, etc), but from their point of view, they are running on bare metal. Tracing all the machines (guests and hosts) in a virtualized environment allows information to be correlated between all the nodes to better understand the system. See the User documentation for more info on this analysis.
4421
4422 The virtual machine analysis has been implemented in the following plugins:
4423
4424 * '''org.eclipse.tracecompass.lttng2.kernel.core''' contains the virtual machine analysis itself, the model of the virtualized environment, as well as its implementation for different hypervisors.
4425 * '''org.eclipse.tracecompass.lttng2.kernel.ui''' contains the views for the analysis.
4426
4427 == Adding support for an hypervisor ==
4428
4429 Supporting a new hypervisor in Trace Compass requires implementing the model for this new hypervisor. The following sections will describe for each part of the model what has to be considered, what information we need to have, etc. Note that each hypervisor will require some work and investigation. The information might already be available as a single tracepoint for some, while other may require many tracepoints. It is also possible that some will require to add tracepoints, either to the kernel, or the hypervisor code itself, in which case a userspace trace (LTTng UST) might be necessary to get all the information.
4430
4431 === Virtual CPU analysis ===
4432
4433 This analysis tracks the state of the virtual CPUs in conjunction with the physical CPU it is running on. For this, we need the following information:
4434
4435 * A way to link a virtual CPU on a guest with a process on the host, such that it is possible to determine when the virtual CPU is preempted on the host. If trace data does not provide this information, some hypervisors have a command line option to dump that information. Manually feeding that information to the analysis is not supported now though.
4436 * A way to differentiate between hypervisor mode and normal mode for the virtual CPU. A virtual CPU usually runs within a process on the host, but sometimes that process may need to run hypervisor-specific code. That is called '''hypervisor mode'''. During that time, no code from the guest itself is run. Typically, the process is running on the host (not preempted), but from the guest's point of view, the virtual CPU should be preempted.
4437
4438 A model implementation for a new hypervisor will need to implement class '''IVirtualMachineModel''', that can be found in package '''org.eclipse.tracecompass.internal.lttng2.kernel.core.analysis.vm.model'''. See the javadoc in the class itself for more information on what each method does.
This page took 0.138365 seconds and 5 git commands to generate.