Use lttng_event_{create, destroy} to manage lttng_event struct
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2016 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define _LGPL_SOURCE
21#define __USE_LINUX_IOCTL_DEFS
22#include <sys/ioctl.h>
23#include <string.h>
24#include <common/align.h>
25#include <errno.h>
26#include <stdarg.h>
27#include <assert.h>
28
29#include "kernel-ctl.h"
30#include "kernel-ioctl.h"
31
32#define LTTNG_IOCTL_CHECK(fildes, request, ...) ({ \
33 int ret = ioctl(fildes, request, ##__VA_ARGS__);\
34 assert(ret <= 0); \
35 !ret ? 0 : -errno; \
36})
37
38#define LTTNG_IOCTL_NO_CHECK(fildes, request, ...) ({ \
39 int ret = ioctl(fildes, request, ##__VA_ARGS__);\
40 ret >= 0 ? ret : -errno; \
41})
42
43/*
44 * This flag indicates which version of the kernel ABI to use. The old
45 * ABI (namespace _old) does not support a 32-bit user-space when the
46 * kernel is 64-bit. The old ABI is kept here for compatibility but is
47 * deprecated and will be removed eventually.
48 */
49static int lttng_kernel_use_old_abi = -1;
50
51/*
52 * Execute the new or old ioctl depending on the ABI version.
53 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
54 * this function tests if the new ABI is available and otherwise fallbacks
55 * on the old one.
56 * This function takes the fd on which the ioctl must be executed and the old
57 * and new request codes.
58 * It returns the return value of the ioctl executed.
59 */
60static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
61 unsigned long newname)
62{
63 int ret;
64
65 if (lttng_kernel_use_old_abi == -1) {
66 ret = LTTNG_IOCTL_NO_CHECK(fd, newname);
67 if (!ret) {
68 lttng_kernel_use_old_abi = 0;
69 goto end;
70 }
71 lttng_kernel_use_old_abi = 1;
72 }
73 if (lttng_kernel_use_old_abi) {
74 ret = LTTNG_IOCTL_NO_CHECK(fd, oldname);
75 } else {
76 ret = LTTNG_IOCTL_NO_CHECK(fd, newname);
77 }
78
79end:
80 return ret;
81}
82
83int kernctl_create_session(int fd)
84{
85 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
86 LTTNG_KERNEL_SESSION);
87}
88
89/* open the metadata global channel */
90int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
91{
92 struct lttng_kernel_channel channel;
93
94 if (lttng_kernel_use_old_abi) {
95 struct lttng_kernel_old_channel old_channel;
96
97 memset(&old_channel, 0, sizeof(old_channel));
98 old_channel.overwrite = chops->overwrite;
99 old_channel.subbuf_size = chops->subbuf_size;
100 old_channel.num_subbuf = chops->num_subbuf;
101 old_channel.switch_timer_interval = chops->switch_timer_interval;
102 old_channel.read_timer_interval = chops->read_timer_interval;
103 old_channel.output = chops->output;
104
105 memset(old_channel.padding, 0, sizeof(old_channel.padding));
106 /*
107 * The new channel padding is smaller than the old ABI so we use the
108 * new ABI padding size for the memcpy.
109 */
110 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
111
112 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_METADATA,
113 &old_channel);
114 }
115
116 memset(&channel, 0, sizeof(channel));
117 channel.overwrite = chops->overwrite;
118 channel.subbuf_size = chops->subbuf_size;
119 channel.num_subbuf = chops->num_subbuf;
120 channel.switch_timer_interval = chops->switch_timer_interval;
121 channel.read_timer_interval = chops->read_timer_interval;
122 channel.output = chops->output;
123 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
124
125 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_METADATA, &channel);
126}
127
128int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
129{
130 struct lttng_kernel_channel channel;
131
132 memset(&channel, 0, sizeof(channel));
133 if (lttng_kernel_use_old_abi) {
134 struct lttng_kernel_old_channel old_channel;
135
136 old_channel.overwrite = chops->overwrite;
137 old_channel.subbuf_size = chops->subbuf_size;
138 old_channel.num_subbuf = chops->num_subbuf;
139 old_channel.switch_timer_interval = chops->switch_timer_interval;
140 old_channel.read_timer_interval = chops->read_timer_interval;
141 old_channel.output = chops->output;
142
143 memset(old_channel.padding, 0, sizeof(old_channel.padding));
144 /*
145 * The new channel padding is smaller than the old ABI so we use the
146 * new ABI padding size for the memcpy.
147 */
148 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
149
150 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_CHANNEL,
151 &old_channel);
152 }
153
154 channel.overwrite = chops->overwrite;
155 channel.subbuf_size = chops->subbuf_size;
156 channel.num_subbuf = chops->num_subbuf;
157 channel.switch_timer_interval = chops->switch_timer_interval;
158 channel.read_timer_interval = chops->read_timer_interval;
159 channel.output = chops->output;
160 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
161
162 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_CHANNEL, &channel);
163}
164
165int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
166{
167 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
168 size_t array_alloc_len;
169 char *new_mask;
170 int ret = 0;
171
172 if (!syscall_mask) {
173 ret = -1;
174 goto end;
175 }
176
177 if (!nr_bits) {
178 ret = -1;
179 goto end;
180 }
181
182 kmask_len.len = 0;
183 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
184 if (ret) {
185 goto end;
186 }
187
188 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
189
190 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
191 if (!kmask) {
192 ret = -1;
193 goto end;
194 }
195
196 kmask->len = kmask_len.len;
197 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
198 if (ret) {
199 goto end;
200 }
201
202 new_mask = realloc(*syscall_mask, array_alloc_len);
203 if (!new_mask) {
204 ret = -1;
205 goto end;
206 }
207 memcpy(new_mask, kmask->mask, array_alloc_len);
208 *syscall_mask = new_mask;
209 *nr_bits = kmask->len;
210
211end:
212 free(kmask);
213 return ret;
214}
215
216int kernctl_track_pid(int fd, int pid)
217{
218 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_TRACK_PID, pid);
219}
220
221int kernctl_untrack_pid(int fd, int pid)
222{
223 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_UNTRACK_PID, pid);
224}
225
226int kernctl_list_tracker_pids(int fd)
227{
228 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_SESSION_LIST_TRACKER_PIDS);
229}
230
231int kernctl_session_regenerate_metadata(int fd)
232{
233 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_METADATA_REGEN);
234}
235
236int kernctl_session_regenerate_statedump(int fd)
237{
238 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_STATEDUMP);
239}
240
241int kernctl_create_stream(int fd)
242{
243 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
244 LTTNG_KERNEL_STREAM);
245}
246
247int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
248{
249 if (lttng_kernel_use_old_abi) {
250 struct lttng_kernel_old_event old_event;
251
252 memset(&old_event, 0, sizeof(old_event));
253 memcpy(old_event.name, ev->name, sizeof(old_event.name));
254 old_event.instrumentation = ev->instrumentation;
255 switch (ev->instrumentation) {
256 case LTTNG_KERNEL_KPROBE:
257 old_event.u.kprobe.addr = ev->u.kprobe.addr;
258 old_event.u.kprobe.offset = ev->u.kprobe.offset;
259 memcpy(old_event.u.kprobe.symbol_name,
260 ev->u.kprobe.symbol_name,
261 sizeof(old_event.u.kprobe.symbol_name));
262 break;
263 case LTTNG_KERNEL_KRETPROBE:
264 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
265 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
266 memcpy(old_event.u.kretprobe.symbol_name,
267 ev->u.kretprobe.symbol_name,
268 sizeof(old_event.u.kretprobe.symbol_name));
269 break;
270 case LTTNG_KERNEL_FUNCTION:
271 memcpy(old_event.u.ftrace.symbol_name,
272 ev->u.ftrace.symbol_name,
273 sizeof(old_event.u.ftrace.symbol_name));
274 break;
275 default:
276 break;
277 }
278
279 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_EVENT,
280 &old_event);
281 }
282 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_EVENT, ev);
283}
284
285int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
286{
287 if (lttng_kernel_use_old_abi) {
288 struct lttng_kernel_old_context old_ctx;
289
290 memset(&old_ctx, 0, sizeof(old_ctx));
291 old_ctx.ctx = ctx->ctx;
292 /* only type that uses the union */
293 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
294 old_ctx.u.perf_counter.type =
295 ctx->u.perf_counter.type;
296 old_ctx.u.perf_counter.config =
297 ctx->u.perf_counter.config;
298 memcpy(old_ctx.u.perf_counter.name,
299 ctx->u.perf_counter.name,
300 sizeof(old_ctx.u.perf_counter.name));
301 }
302 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
303 }
304 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_CONTEXT, ctx);
305}
306
307
308/* Enable event, channel and session LTTNG_IOCTL_CHECK */
309int kernctl_enable(int fd)
310{
311 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
312 LTTNG_KERNEL_ENABLE);
313}
314
315/* Disable event, channel and session LTTNG_IOCTL_CHECK */
316int kernctl_disable(int fd)
317{
318 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
319 LTTNG_KERNEL_DISABLE);
320}
321
322int kernctl_start_session(int fd)
323{
324 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
325 LTTNG_KERNEL_SESSION_START);
326}
327
328int kernctl_stop_session(int fd)
329{
330 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
331 LTTNG_KERNEL_SESSION_STOP);
332}
333
334int kernctl_filter(int fd, struct lttng_filter_bytecode *filter)
335{
336 struct lttng_kernel_filter_bytecode *kb;
337 uint32_t len;
338 int ret;
339
340 /* Translate bytecode to kernel bytecode */
341 kb = zmalloc(sizeof(*kb) + filter->len);
342 if (!kb)
343 return -ENOMEM;
344 kb->len = len = filter->len;
345 kb->reloc_offset = filter->reloc_table_offset;
346 kb->seqnum = filter->seqnum;
347 memcpy(kb->data, filter->data, len);
348 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_FILTER, kb);
349 free(kb);
350 return ret;
351}
352
353int kernctl_tracepoint_list(int fd)
354{
355 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
356 LTTNG_KERNEL_TRACEPOINT_LIST);
357}
358
359int kernctl_syscall_list(int fd)
360{
361 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_SYSCALL_LIST);
362}
363
364int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
365{
366 int ret;
367
368 if (lttng_kernel_use_old_abi == -1) {
369 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_VERSION, v);
370 if (!ret) {
371 lttng_kernel_use_old_abi = 0;
372 goto end;
373 }
374 lttng_kernel_use_old_abi = 1;
375 }
376 if (lttng_kernel_use_old_abi) {
377 struct lttng_kernel_old_tracer_version old_v;
378
379 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
380 if (ret) {
381 goto end;
382 }
383 v->major = old_v.major;
384 v->minor = old_v.minor;
385 v->patchlevel = old_v.patchlevel;
386 } else {
387 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_VERSION, v);
388 }
389
390end:
391 return ret;
392}
393
394int kernctl_tracer_abi_version(int fd,
395 struct lttng_kernel_tracer_abi_version *v)
396{
397 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_ABI_VERSION, v);
398}
399
400int kernctl_wait_quiescent(int fd)
401{
402 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
403 LTTNG_KERNEL_WAIT_QUIESCENT);
404}
405
406int kernctl_buffer_flush(int fd)
407{
408 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_FLUSH);
409}
410
411int kernctl_buffer_flush_empty(int fd)
412{
413 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_FLUSH_EMPTY);
414}
415
416/* returns the version of the metadata. */
417int kernctl_get_metadata_version(int fd, uint64_t *version)
418{
419 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_METADATA_VERSION, version);
420}
421
422int kernctl_metadata_cache_dump(int fd)
423{
424 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_METADATA_CACHE_DUMP);
425}
426
427/* Buffer operations */
428
429/* For mmap mode, readable without "get" operation */
430
431/* returns the length to mmap. */
432int kernctl_get_mmap_len(int fd, unsigned long *len)
433{
434 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MMAP_LEN, len);
435}
436
437/* returns the maximum size for sub-buffers. */
438int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
439{
440 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
441}
442
443/*
444 * For mmap mode, operate on the current packet (between get/put or
445 * get_next/put_next).
446 */
447
448/* returns the offset of the subbuffer belonging to the mmap reader. */
449int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
450{
451 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
452}
453
454/* returns the size of the current sub-buffer, without padding (for mmap). */
455int kernctl_get_subbuf_size(int fd, unsigned long *len)
456{
457 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
458}
459
460/* returns the size of the current sub-buffer, without padding (for mmap). */
461int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
462{
463 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
464}
465
466/* Get exclusive read access to the next sub-buffer that can be read. */
467int kernctl_get_next_subbuf(int fd)
468{
469 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_NEXT_SUBBUF);
470}
471
472
473/* Release exclusive sub-buffer access, move consumer forward. */
474int kernctl_put_next_subbuf(int fd)
475{
476 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
477}
478
479/* snapshot */
480
481/* Get a snapshot of the current ring buffer producer and consumer positions */
482int kernctl_snapshot(int fd)
483{
484 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT);
485}
486
487/*
488 * Get a snapshot of the current ring buffer producer and consumer positions,
489 * regardless of whether or not the two positions are contained within the
490 * same sub-buffer.
491 */
492int kernctl_snapshot_sample_positions(int fd)
493{
494 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_SAMPLE_POSITIONS);
495}
496
497/* Get the consumer position (iteration start) */
498int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
499{
500 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
501}
502
503/* Get the producer position (iteration end) */
504int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
505{
506 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
507}
508
509/* Get exclusive read access to the specified sub-buffer position */
510int kernctl_get_subbuf(int fd, unsigned long *len)
511{
512 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_SUBBUF, len);
513}
514
515/* Release exclusive sub-buffer access */
516int kernctl_put_subbuf(int fd)
517{
518 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_PUT_SUBBUF);
519}
520
521/* Returns the timestamp begin of the current sub-buffer. */
522int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
523{
524 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN,
525 timestamp_begin);
526}
527
528/* Returns the timestamp end of the current sub-buffer. */
529int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
530{
531 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END,
532 timestamp_end);
533}
534
535/* Returns the number of discarded events in the current sub-buffer. */
536int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
537{
538 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED,
539 events_discarded);
540}
541
542/* Returns the content size in the current sub-buffer. */
543int kernctl_get_content_size(int fd, uint64_t *content_size)
544{
545 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE,
546 content_size);
547}
548
549/* Returns the packet size in the current sub-buffer. */
550int kernctl_get_packet_size(int fd, uint64_t *packet_size)
551{
552 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE,
553 packet_size);
554}
555
556/* Returns the stream id of the current sub-buffer. */
557int kernctl_get_stream_id(int fd, uint64_t *stream_id)
558{
559 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_STREAM_ID,
560 stream_id);
561}
562
563/* Returns the current timestamp. */
564int kernctl_get_current_timestamp(int fd, uint64_t *ts)
565{
566 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP,
567 ts);
568}
569
570/* Returns the packet sequence number of the current sub-buffer. */
571int kernctl_get_sequence_number(int fd, uint64_t *seq)
572{
573 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_SEQ_NUM, seq);
574}
575
576/* Returns the stream instance id. */
577int kernctl_get_instance_id(int fd, uint64_t *id)
578{
579 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_INSTANCE_ID, id);
580}
This page took 0.031608 seconds and 5 git commands to generate.