remove debug
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 void consumer_stream_copy_ro_channel_values(struct lttng_consumer_stream *stream,
545 struct lttng_consumer_channel *channel)
546 {
547 stream->channel_ro_tracefile_size = channel->tracefile_size;
548 memcpy(stream->channel_ro_pathname, channel->pathname, PATH_MAX);
549 }
550
551 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
552 uint64_t stream_key,
553 enum lttng_consumer_stream_state state,
554 const char *channel_name,
555 uid_t uid,
556 gid_t gid,
557 uint64_t relayd_id,
558 uint64_t session_id,
559 int cpu,
560 int *alloc_ret,
561 enum consumer_channel_type type,
562 unsigned int monitor)
563 {
564 int ret;
565 struct lttng_consumer_stream *stream;
566
567 stream = zmalloc(sizeof(*stream));
568 if (stream == NULL) {
569 PERROR("malloc struct lttng_consumer_stream");
570 ret = -ENOMEM;
571 goto end;
572 }
573
574 rcu_read_lock();
575
576 stream->key = stream_key;
577 stream->out_fd = -1;
578 stream->out_fd_offset = 0;
579 stream->output_written = 0;
580 stream->state = state;
581 stream->uid = uid;
582 stream->gid = gid;
583 stream->net_seq_idx = relayd_id;
584 stream->session_id = session_id;
585 stream->monitor = monitor;
586 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
587 stream->index_file = NULL;
588 stream->last_sequence_number = -1ULL;
589 pthread_mutex_init(&stream->lock, NULL);
590 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
591
592 /* If channel is the metadata, flag this stream as metadata. */
593 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
594 stream->metadata_flag = 1;
595 /* Metadata is flat out. */
596 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
597 /* Live rendez-vous point. */
598 pthread_cond_init(&stream->metadata_rdv, NULL);
599 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
600 } else {
601 /* Format stream name to <channel_name>_<cpu_number> */
602 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
603 channel_name, cpu);
604 if (ret < 0) {
605 PERROR("snprintf stream name");
606 goto error;
607 }
608 }
609
610 /* Key is always the wait_fd for streams. */
611 lttng_ht_node_init_u64(&stream->node, stream->key);
612
613 /* Init node per channel id key */
614 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
615
616 /* Init session id node with the stream session id */
617 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
618
619 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
620 " relayd_id %" PRIu64 ", session_id %" PRIu64,
621 stream->name, stream->key, channel_key,
622 stream->net_seq_idx, stream->session_id);
623
624 rcu_read_unlock();
625 return stream;
626
627 error:
628 rcu_read_unlock();
629 free(stream);
630 end:
631 if (alloc_ret) {
632 *alloc_ret = ret;
633 }
634 return NULL;
635 }
636
637 /*
638 * Add a stream to the global list protected by a mutex.
639 */
640 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
641 {
642 struct lttng_ht *ht = data_ht;
643 int ret = 0;
644
645 assert(stream);
646 assert(ht);
647
648 DBG3("Adding consumer stream %" PRIu64, stream->key);
649
650 pthread_mutex_lock(&consumer_data.lock);
651 pthread_mutex_lock(&stream->chan->lock);
652 pthread_mutex_lock(&stream->chan->timer_lock);
653 pthread_mutex_lock(&stream->lock);
654 rcu_read_lock();
655
656 /* Steal stream identifier to avoid having streams with the same key */
657 steal_stream_key(stream->key, ht);
658
659 lttng_ht_add_unique_u64(ht, &stream->node);
660
661 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
662 &stream->node_channel_id);
663
664 /*
665 * Add stream to the stream_list_ht of the consumer data. No need to steal
666 * the key since the HT does not use it and we allow to add redundant keys
667 * into this table.
668 */
669 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
670
671 /*
672 * When nb_init_stream_left reaches 0, we don't need to trigger any action
673 * in terms of destroying the associated channel, because the action that
674 * causes the count to become 0 also causes a stream to be added. The
675 * channel deletion will thus be triggered by the following removal of this
676 * stream.
677 */
678 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
679 /* Increment refcount before decrementing nb_init_stream_left */
680 cmm_smp_wmb();
681 uatomic_dec(&stream->chan->nb_init_stream_left);
682 }
683
684 /* Update consumer data once the node is inserted. */
685 consumer_data.stream_count++;
686 consumer_data.need_update = 1;
687
688 rcu_read_unlock();
689 pthread_mutex_unlock(&stream->lock);
690 pthread_mutex_unlock(&stream->chan->timer_lock);
691 pthread_mutex_unlock(&stream->chan->lock);
692 pthread_mutex_unlock(&consumer_data.lock);
693
694 return ret;
695 }
696
697 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
698 {
699 consumer_del_stream(stream, data_ht);
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Find a relayd and send the stream
788 *
789 * Returns 0 on success, < 0 on error
790 */
791 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
792 char *path, enum lttng_domain_type domain)
793 {
794 int ret = 0;
795 struct consumer_relayd_sock_pair *relayd;
796
797 assert(stream);
798 assert(stream->net_seq_idx != -1ULL);
799 assert(path);
800
801 /* The stream is not metadata. Get relayd reference if exists. */
802 rcu_read_lock();
803 relayd = consumer_find_relayd(stream->net_seq_idx);
804 if (relayd != NULL) {
805 /* Add stream on the relayd */
806 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
807 ret = relayd_add_stream(&relayd->control_sock, stream->name,
808 path, &stream->relayd_stream_id,
809 stream->chan->tracefile_size, stream->chan->tracefile_count,
810 domain);
811 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
812 if (ret < 0) {
813 goto end;
814 }
815
816 uatomic_inc(&relayd->refcount);
817 stream->sent_to_relayd = 1;
818 } else {
819 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
820 stream->key, stream->net_seq_idx);
821 ret = -1;
822 goto end;
823 }
824
825 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
826 stream->name, stream->key, stream->net_seq_idx);
827
828 end:
829 rcu_read_unlock();
830 return ret;
831 }
832
833 /*
834 * Find a relayd and send the streams sent message
835 *
836 * Returns 0 on success, < 0 on error
837 */
838 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
839 {
840 int ret = 0;
841 struct consumer_relayd_sock_pair *relayd;
842
843 assert(net_seq_idx != -1ULL);
844
845 /* The stream is not metadata. Get relayd reference if exists. */
846 rcu_read_lock();
847 relayd = consumer_find_relayd(net_seq_idx);
848 if (relayd != NULL) {
849 /* Add stream on the relayd */
850 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
851 ret = relayd_streams_sent(&relayd->control_sock);
852 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
853 if (ret < 0) {
854 goto end;
855 }
856 } else {
857 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
858 net_seq_idx);
859 ret = -1;
860 goto end;
861 }
862
863 ret = 0;
864 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
865
866 end:
867 rcu_read_unlock();
868 return ret;
869 }
870
871 /*
872 * Find a relayd and close the stream
873 */
874 void close_relayd_stream(struct lttng_consumer_stream *stream)
875 {
876 struct consumer_relayd_sock_pair *relayd;
877
878 /* The stream is not metadata. Get relayd reference if exists. */
879 rcu_read_lock();
880 relayd = consumer_find_relayd(stream->net_seq_idx);
881 if (relayd) {
882 consumer_stream_relayd_close(stream, relayd);
883 }
884 rcu_read_unlock();
885 }
886
887 /*
888 * Handle stream for relayd transmission if the stream applies for network
889 * streaming where the net sequence index is set.
890 *
891 * Return destination file descriptor or negative value on error.
892 */
893 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
894 size_t data_size, unsigned long padding,
895 struct consumer_relayd_sock_pair *relayd)
896 {
897 int outfd = -1, ret;
898 struct lttcomm_relayd_data_hdr data_hdr;
899
900 /* Safety net */
901 assert(stream);
902 assert(relayd);
903
904 /* Reset data header */
905 memset(&data_hdr, 0, sizeof(data_hdr));
906
907 if (stream->metadata_flag) {
908 /* Caller MUST acquire the relayd control socket lock */
909 ret = relayd_send_metadata(&relayd->control_sock, data_size);
910 if (ret < 0) {
911 goto error;
912 }
913
914 /* Metadata are always sent on the control socket. */
915 outfd = relayd->control_sock.sock.fd;
916 } else {
917 /* Set header with stream information */
918 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
919 data_hdr.data_size = htobe32(data_size);
920 data_hdr.padding_size = htobe32(padding);
921 /*
922 * Note that net_seq_num below is assigned with the *current* value of
923 * next_net_seq_num and only after that the next_net_seq_num will be
924 * increment. This is why when issuing a command on the relayd using
925 * this next value, 1 should always be substracted in order to compare
926 * the last seen sequence number on the relayd side to the last sent.
927 */
928 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
929 /* Other fields are zeroed previously */
930
931 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
932 sizeof(data_hdr));
933 if (ret < 0) {
934 goto error;
935 }
936
937 ++stream->next_net_seq_num;
938
939 /* Set to go on data socket */
940 outfd = relayd->data_sock.sock.fd;
941 }
942
943 error:
944 return outfd;
945 }
946
947 /*
948 * Allocate and return a new lttng_consumer_channel object using the given key
949 * to initialize the hash table node.
950 *
951 * On error, return NULL.
952 */
953 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
954 uint64_t session_id,
955 const char *pathname,
956 const char *name,
957 uid_t uid,
958 gid_t gid,
959 uint64_t relayd_id,
960 enum lttng_event_output output,
961 uint64_t tracefile_size,
962 uint64_t tracefile_count,
963 uint64_t session_id_per_pid,
964 unsigned int monitor,
965 unsigned int live_timer_interval,
966 const char *root_shm_path,
967 const char *shm_path)
968 {
969 struct lttng_consumer_channel *channel;
970
971 channel = zmalloc(sizeof(*channel));
972 if (channel == NULL) {
973 PERROR("malloc struct lttng_consumer_channel");
974 goto end;
975 }
976
977 channel->key = key;
978 channel->refcount = 0;
979 channel->session_id = session_id;
980 channel->session_id_per_pid = session_id_per_pid;
981 channel->uid = uid;
982 channel->gid = gid;
983 channel->relayd_id = relayd_id;
984 channel->tracefile_size = tracefile_size;
985 channel->tracefile_count = tracefile_count;
986 channel->monitor = monitor;
987 channel->live_timer_interval = live_timer_interval;
988 pthread_mutex_init(&channel->lock, NULL);
989 pthread_mutex_init(&channel->timer_lock, NULL);
990
991 switch (output) {
992 case LTTNG_EVENT_SPLICE:
993 channel->output = CONSUMER_CHANNEL_SPLICE;
994 break;
995 case LTTNG_EVENT_MMAP:
996 channel->output = CONSUMER_CHANNEL_MMAP;
997 break;
998 default:
999 assert(0);
1000 free(channel);
1001 channel = NULL;
1002 goto end;
1003 }
1004
1005 /*
1006 * In monitor mode, the streams associated with the channel will be put in
1007 * a special list ONLY owned by this channel. So, the refcount is set to 1
1008 * here meaning that the channel itself has streams that are referenced.
1009 *
1010 * On a channel deletion, once the channel is no longer visible, the
1011 * refcount is decremented and checked for a zero value to delete it. With
1012 * streams in no monitor mode, it will now be safe to destroy the channel.
1013 */
1014 if (!channel->monitor) {
1015 channel->refcount = 1;
1016 }
1017
1018 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1019 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1020
1021 strncpy(channel->name, name, sizeof(channel->name));
1022 channel->name[sizeof(channel->name) - 1] = '\0';
1023
1024 if (root_shm_path) {
1025 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1026 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1027 }
1028 if (shm_path) {
1029 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1030 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1031 }
1032
1033 lttng_ht_node_init_u64(&channel->node, channel->key);
1034
1035 channel->wait_fd = -1;
1036
1037 CDS_INIT_LIST_HEAD(&channel->streams.head);
1038
1039 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1040
1041 end:
1042 return channel;
1043 }
1044
1045 /*
1046 * Add a channel to the global list protected by a mutex.
1047 *
1048 * Always return 0 indicating success.
1049 */
1050 int consumer_add_channel(struct lttng_consumer_channel *channel,
1051 struct lttng_consumer_local_data *ctx)
1052 {
1053 pthread_mutex_lock(&consumer_data.lock);
1054 pthread_mutex_lock(&channel->lock);
1055 pthread_mutex_lock(&channel->timer_lock);
1056
1057 /*
1058 * This gives us a guarantee that the channel we are about to add to the
1059 * channel hash table will be unique. See this function comment on the why
1060 * we need to steel the channel key at this stage.
1061 */
1062 steal_channel_key(channel->key);
1063
1064 rcu_read_lock();
1065 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1066 rcu_read_unlock();
1067
1068 pthread_mutex_unlock(&channel->timer_lock);
1069 pthread_mutex_unlock(&channel->lock);
1070 pthread_mutex_unlock(&consumer_data.lock);
1071
1072 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1073 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1074 }
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * Allocate the pollfd structure and the local view of the out fds to avoid
1081 * doing a lookup in the linked list and concurrency issues when writing is
1082 * needed. Called with consumer_data.lock held.
1083 *
1084 * Returns the number of fds in the structures.
1085 */
1086 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1087 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1088 struct lttng_ht *ht)
1089 {
1090 int i = 0;
1091 struct lttng_ht_iter iter;
1092 struct lttng_consumer_stream *stream;
1093
1094 assert(ctx);
1095 assert(ht);
1096 assert(pollfd);
1097 assert(local_stream);
1098
1099 DBG("Updating poll fd array");
1100 rcu_read_lock();
1101 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1102 /*
1103 * Only active streams with an active end point can be added to the
1104 * poll set and local stream storage of the thread.
1105 *
1106 * There is a potential race here for endpoint_status to be updated
1107 * just after the check. However, this is OK since the stream(s) will
1108 * be deleted once the thread is notified that the end point state has
1109 * changed where this function will be called back again.
1110 */
1111 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1112 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1113 continue;
1114 }
1115 /*
1116 * This clobbers way too much the debug output. Uncomment that if you
1117 * need it for debugging purposes.
1118 *
1119 * DBG("Active FD %d", stream->wait_fd);
1120 */
1121 (*pollfd)[i].fd = stream->wait_fd;
1122 (*pollfd)[i].events = POLLIN | POLLPRI;
1123 local_stream[i] = stream;
1124 i++;
1125 }
1126 rcu_read_unlock();
1127
1128 /*
1129 * Insert the consumer_data_pipe at the end of the array and don't
1130 * increment i so nb_fd is the number of real FD.
1131 */
1132 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1133 (*pollfd)[i].events = POLLIN | POLLPRI;
1134
1135 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1136 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1137
1138 (*pollfd)[i + 2].fd = lttng_pipe_get_readfd(ctx->consumer_data_rotate_pipe);
1139 (*pollfd)[i + 2].events = POLLIN | POLLPRI;
1140 return i;
1141 }
1142
1143 /*
1144 * Poll on the should_quit pipe and the command socket return -1 on
1145 * error, 1 if should exit, 0 if data is available on the command socket
1146 */
1147 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1148 {
1149 int num_rdy;
1150
1151 restart:
1152 num_rdy = poll(consumer_sockpoll, 2, -1);
1153 if (num_rdy == -1) {
1154 /*
1155 * Restart interrupted system call.
1156 */
1157 if (errno == EINTR) {
1158 goto restart;
1159 }
1160 PERROR("Poll error");
1161 return -1;
1162 }
1163 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1164 DBG("consumer_should_quit wake up");
1165 return 1;
1166 }
1167 return 0;
1168 }
1169
1170 /*
1171 * Set the error socket.
1172 */
1173 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1174 int sock)
1175 {
1176 ctx->consumer_error_socket = sock;
1177 }
1178
1179 /*
1180 * Set the command socket path.
1181 */
1182 void lttng_consumer_set_command_sock_path(
1183 struct lttng_consumer_local_data *ctx, char *sock)
1184 {
1185 ctx->consumer_command_sock_path = sock;
1186 }
1187
1188 /*
1189 * Send return code to the session daemon.
1190 * If the socket is not defined, we return 0, it is not a fatal error
1191 */
1192 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1193 {
1194 if (ctx->consumer_error_socket > 0) {
1195 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1196 sizeof(enum lttcomm_sessiond_command));
1197 }
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Close all the tracefiles and stream fds and MUST be called when all
1204 * instances are destroyed i.e. when all threads were joined and are ended.
1205 */
1206 void lttng_consumer_cleanup(void)
1207 {
1208 struct lttng_ht_iter iter;
1209 struct lttng_consumer_channel *channel;
1210
1211 rcu_read_lock();
1212
1213 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1214 node.node) {
1215 consumer_del_channel(channel);
1216 }
1217
1218 rcu_read_unlock();
1219
1220 lttng_ht_destroy(consumer_data.channel_ht);
1221
1222 cleanup_relayd_ht();
1223
1224 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1225
1226 /*
1227 * This HT contains streams that are freed by either the metadata thread or
1228 * the data thread so we do *nothing* on the hash table and simply destroy
1229 * it.
1230 */
1231 lttng_ht_destroy(consumer_data.stream_list_ht);
1232 }
1233
1234 /*
1235 * Called from signal handler.
1236 */
1237 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1238 {
1239 ssize_t ret;
1240
1241 CMM_STORE_SHARED(consumer_quit, 1);
1242 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1243 if (ret < 1) {
1244 PERROR("write consumer quit");
1245 }
1246
1247 DBG("Consumer flag that it should quit");
1248 }
1249
1250
1251 /*
1252 * Flush pending writes to trace output disk file.
1253 */
1254 static
1255 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1256 off_t orig_offset)
1257 {
1258 int ret;
1259 int outfd = stream->out_fd;
1260
1261 /*
1262 * This does a blocking write-and-wait on any page that belongs to the
1263 * subbuffer prior to the one we just wrote.
1264 * Don't care about error values, as these are just hints and ways to
1265 * limit the amount of page cache used.
1266 */
1267 if (orig_offset < stream->max_sb_size) {
1268 return;
1269 }
1270 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1271 stream->max_sb_size,
1272 SYNC_FILE_RANGE_WAIT_BEFORE
1273 | SYNC_FILE_RANGE_WRITE
1274 | SYNC_FILE_RANGE_WAIT_AFTER);
1275 /*
1276 * Give hints to the kernel about how we access the file:
1277 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1278 * we write it.
1279 *
1280 * We need to call fadvise again after the file grows because the
1281 * kernel does not seem to apply fadvise to non-existing parts of the
1282 * file.
1283 *
1284 * Call fadvise _after_ having waited for the page writeback to
1285 * complete because the dirty page writeback semantic is not well
1286 * defined. So it can be expected to lead to lower throughput in
1287 * streaming.
1288 */
1289 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1290 stream->max_sb_size, POSIX_FADV_DONTNEED);
1291 if (ret && ret != -ENOSYS) {
1292 errno = ret;
1293 PERROR("posix_fadvise on fd %i", outfd);
1294 }
1295 }
1296
1297 /*
1298 * Initialise the necessary environnement :
1299 * - create a new context
1300 * - create the poll_pipe
1301 * - create the should_quit pipe (for signal handler)
1302 * - create the thread pipe (for splice)
1303 *
1304 * Takes a function pointer as argument, this function is called when data is
1305 * available on a buffer. This function is responsible to do the
1306 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1307 * buffer configuration and then kernctl_put_next_subbuf at the end.
1308 *
1309 * Returns a pointer to the new context or NULL on error.
1310 */
1311 struct lttng_consumer_local_data *lttng_consumer_create(
1312 enum lttng_consumer_type type,
1313 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1314 struct lttng_consumer_local_data *ctx),
1315 int (*recv_channel)(struct lttng_consumer_channel *channel),
1316 int (*recv_stream)(struct lttng_consumer_stream *stream),
1317 int (*update_stream)(uint64_t stream_key, uint32_t state))
1318 {
1319 int ret;
1320 struct lttng_consumer_local_data *ctx;
1321
1322 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1323 consumer_data.type == type);
1324 consumer_data.type = type;
1325
1326 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1327 if (ctx == NULL) {
1328 PERROR("allocating context");
1329 goto error;
1330 }
1331
1332 ctx->consumer_error_socket = -1;
1333 ctx->consumer_metadata_socket = -1;
1334 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1335 /* assign the callbacks */
1336 ctx->on_buffer_ready = buffer_ready;
1337 ctx->on_recv_channel = recv_channel;
1338 ctx->on_recv_stream = recv_stream;
1339 ctx->on_update_stream = update_stream;
1340
1341 ctx->consumer_data_pipe = lttng_pipe_open(0);
1342 if (!ctx->consumer_data_pipe) {
1343 goto error_poll_pipe;
1344 }
1345
1346 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1347 if (!ctx->consumer_wakeup_pipe) {
1348 goto error_wakeup_pipe;
1349 }
1350
1351 ctx->consumer_data_rotate_pipe = lttng_pipe_open(0);
1352 if (!ctx->consumer_data_rotate_pipe) {
1353 goto error_data_rotate_pipe;
1354 }
1355
1356 ctx->consumer_metadata_rotate_pipe = lttng_pipe_open(0);
1357 if (!ctx->consumer_metadata_rotate_pipe) {
1358 goto error_metadata_rotate_pipe;
1359 }
1360
1361 ret = pipe(ctx->consumer_should_quit);
1362 if (ret < 0) {
1363 PERROR("Error creating recv pipe");
1364 goto error_quit_pipe;
1365 }
1366
1367 ret = pipe(ctx->consumer_channel_pipe);
1368 if (ret < 0) {
1369 PERROR("Error creating channel pipe");
1370 goto error_channel_pipe;
1371 }
1372
1373 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1374 if (!ctx->consumer_metadata_pipe) {
1375 goto error_metadata_pipe;
1376 }
1377
1378 ctx->channel_monitor_pipe = -1;
1379
1380 return ctx;
1381
1382 error_metadata_pipe:
1383 utils_close_pipe(ctx->consumer_channel_pipe);
1384 error_channel_pipe:
1385 utils_close_pipe(ctx->consumer_should_quit);
1386 error_quit_pipe:
1387 lttng_pipe_destroy(ctx->consumer_metadata_rotate_pipe);
1388 error_metadata_rotate_pipe:
1389 lttng_pipe_destroy(ctx->consumer_data_rotate_pipe);
1390 error_data_rotate_pipe:
1391 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1392 error_wakeup_pipe:
1393 lttng_pipe_destroy(ctx->consumer_data_pipe);
1394 error_poll_pipe:
1395 free(ctx);
1396 error:
1397 return NULL;
1398 }
1399
1400 /*
1401 * Iterate over all streams of the hashtable and free them properly.
1402 */
1403 static void destroy_data_stream_ht(struct lttng_ht *ht)
1404 {
1405 struct lttng_ht_iter iter;
1406 struct lttng_consumer_stream *stream;
1407
1408 if (ht == NULL) {
1409 return;
1410 }
1411
1412 rcu_read_lock();
1413 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1414 /*
1415 * Ignore return value since we are currently cleaning up so any error
1416 * can't be handled.
1417 */
1418 (void) consumer_del_stream(stream, ht);
1419 }
1420 rcu_read_unlock();
1421
1422 lttng_ht_destroy(ht);
1423 }
1424
1425 /*
1426 * Iterate over all streams of the metadata hashtable and free them
1427 * properly.
1428 */
1429 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1430 {
1431 struct lttng_ht_iter iter;
1432 struct lttng_consumer_stream *stream;
1433
1434 if (ht == NULL) {
1435 return;
1436 }
1437
1438 rcu_read_lock();
1439 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1440 /*
1441 * Ignore return value since we are currently cleaning up so any error
1442 * can't be handled.
1443 */
1444 (void) consumer_del_metadata_stream(stream, ht);
1445 }
1446 rcu_read_unlock();
1447
1448 lttng_ht_destroy(ht);
1449 }
1450
1451 /*
1452 * Close all fds associated with the instance and free the context.
1453 */
1454 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1455 {
1456 int ret;
1457
1458 DBG("Consumer destroying it. Closing everything.");
1459
1460 if (!ctx) {
1461 return;
1462 }
1463
1464 destroy_data_stream_ht(data_ht);
1465 destroy_metadata_stream_ht(metadata_ht);
1466
1467 ret = close(ctx->consumer_error_socket);
1468 if (ret) {
1469 PERROR("close");
1470 }
1471 ret = close(ctx->consumer_metadata_socket);
1472 if (ret) {
1473 PERROR("close");
1474 }
1475 utils_close_pipe(ctx->consumer_channel_pipe);
1476 lttng_pipe_destroy(ctx->consumer_data_pipe);
1477 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1478 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1479 lttng_pipe_destroy(ctx->consumer_data_rotate_pipe);
1480 lttng_pipe_destroy(ctx->consumer_metadata_rotate_pipe);
1481 utils_close_pipe(ctx->consumer_should_quit);
1482
1483 unlink(ctx->consumer_command_sock_path);
1484 free(ctx);
1485 }
1486
1487 /*
1488 * Write the metadata stream id on the specified file descriptor.
1489 */
1490 static int write_relayd_metadata_id(int fd,
1491 struct lttng_consumer_stream *stream,
1492 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1493 {
1494 ssize_t ret;
1495 struct lttcomm_relayd_metadata_payload hdr;
1496
1497 hdr.stream_id = htobe64(stream->relayd_stream_id);
1498 hdr.padding_size = htobe32(padding);
1499 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1500 if (ret < sizeof(hdr)) {
1501 /*
1502 * This error means that the fd's end is closed so ignore the PERROR
1503 * not to clubber the error output since this can happen in a normal
1504 * code path.
1505 */
1506 if (errno != EPIPE) {
1507 PERROR("write metadata stream id");
1508 }
1509 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1510 /*
1511 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1512 * handle writting the missing part so report that as an error and
1513 * don't lie to the caller.
1514 */
1515 ret = -1;
1516 goto end;
1517 }
1518 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1519 stream->relayd_stream_id, padding);
1520
1521 end:
1522 return (int) ret;
1523 }
1524
1525 /*
1526 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1527 * core function for writing trace buffers to either the local filesystem or
1528 * the network.
1529 *
1530 * It must be called with the stream lock held.
1531 *
1532 * Careful review MUST be put if any changes occur!
1533 *
1534 * Returns the number of bytes written
1535 */
1536 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1537 struct lttng_consumer_local_data *ctx,
1538 struct lttng_consumer_stream *stream, unsigned long len,
1539 unsigned long padding,
1540 struct ctf_packet_index *index)
1541 {
1542 unsigned long mmap_offset;
1543 void *mmap_base;
1544 ssize_t ret = 0;
1545 off_t orig_offset = stream->out_fd_offset;
1546 /* Default is on the disk */
1547 int outfd = stream->out_fd;
1548 struct consumer_relayd_sock_pair *relayd = NULL;
1549 unsigned int relayd_hang_up = 0;
1550
1551 /* RCU lock for the relayd pointer */
1552 rcu_read_lock();
1553
1554 /* Flag that the current stream if set for network streaming. */
1555 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1556 relayd = consumer_find_relayd(stream->net_seq_idx);
1557 if (relayd == NULL) {
1558 ret = -EPIPE;
1559 goto end;
1560 }
1561 }
1562
1563 /* get the offset inside the fd to mmap */
1564 switch (consumer_data.type) {
1565 case LTTNG_CONSUMER_KERNEL:
1566 mmap_base = stream->mmap_base;
1567 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1568 if (ret < 0) {
1569 PERROR("tracer ctl get_mmap_read_offset");
1570 goto end;
1571 }
1572 break;
1573 case LTTNG_CONSUMER32_UST:
1574 case LTTNG_CONSUMER64_UST:
1575 mmap_base = lttng_ustctl_get_mmap_base(stream);
1576 if (!mmap_base) {
1577 ERR("read mmap get mmap base for stream %s", stream->name);
1578 ret = -EPERM;
1579 goto end;
1580 }
1581 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1582 if (ret != 0) {
1583 PERROR("tracer ctl get_mmap_read_offset");
1584 ret = -EINVAL;
1585 goto end;
1586 }
1587 break;
1588 default:
1589 ERR("Unknown consumer_data type");
1590 assert(0);
1591 }
1592
1593 /* Handle stream on the relayd if the output is on the network */
1594 if (relayd) {
1595 unsigned long netlen = len;
1596
1597 /*
1598 * Lock the control socket for the complete duration of the function
1599 * since from this point on we will use the socket.
1600 */
1601 if (stream->metadata_flag) {
1602 /* Metadata requires the control socket. */
1603 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1604 if (stream->reset_metadata_flag) {
1605 ret = relayd_reset_metadata(&relayd->control_sock,
1606 stream->relayd_stream_id,
1607 stream->metadata_version);
1608 if (ret < 0) {
1609 relayd_hang_up = 1;
1610 goto write_error;
1611 }
1612 stream->reset_metadata_flag = 0;
1613 }
1614 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1615 }
1616
1617 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1618 if (ret < 0) {
1619 relayd_hang_up = 1;
1620 goto write_error;
1621 }
1622 /* Use the returned socket. */
1623 outfd = ret;
1624
1625 /* Write metadata stream id before payload */
1626 if (stream->metadata_flag) {
1627 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1628 if (ret < 0) {
1629 relayd_hang_up = 1;
1630 goto write_error;
1631 }
1632 }
1633 } else {
1634 /* No streaming, we have to set the len with the full padding */
1635 len += padding;
1636
1637 if (stream->metadata_flag && stream->reset_metadata_flag) {
1638 ret = utils_truncate_stream_file(stream->out_fd, 0);
1639 if (ret < 0) {
1640 ERR("Reset metadata file");
1641 goto end;
1642 }
1643 stream->reset_metadata_flag = 0;
1644 }
1645
1646 /*
1647 * Check if we need to change the tracefile before writing the packet.
1648 */
1649 if (stream->chan->tracefile_size > 0 &&
1650 (stream->tracefile_size_current + len) >
1651 stream->chan->tracefile_size) {
1652 ret = utils_rotate_stream_file(stream->chan->pathname,
1653 stream->name, stream->chan->tracefile_size,
1654 stream->chan->tracefile_count, stream->uid, stream->gid,
1655 stream->out_fd, &(stream->tracefile_count_current),
1656 &stream->out_fd);
1657 if (ret < 0) {
1658 ERR("Rotating output file");
1659 goto end;
1660 }
1661 outfd = stream->out_fd;
1662
1663 if (stream->index_file) {
1664 lttng_index_file_put(stream->index_file);
1665 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1666 stream->name, stream->uid, stream->gid,
1667 stream->chan->tracefile_size,
1668 stream->tracefile_count_current,
1669 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1670 if (!stream->index_file) {
1671 goto end;
1672 }
1673 }
1674
1675 /* Reset current size because we just perform a rotation. */
1676 stream->tracefile_size_current = 0;
1677 stream->out_fd_offset = 0;
1678 orig_offset = 0;
1679 }
1680 stream->tracefile_size_current += len;
1681 if (index) {
1682 index->offset = htobe64(stream->out_fd_offset);
1683 }
1684 }
1685
1686 /*
1687 * This call guarantee that len or less is returned. It's impossible to
1688 * receive a ret value that is bigger than len.
1689 */
1690 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1691 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1692 if (ret < 0 || ((size_t) ret != len)) {
1693 /*
1694 * Report error to caller if nothing was written else at least send the
1695 * amount written.
1696 */
1697 if (ret < 0) {
1698 ret = -errno;
1699 }
1700 relayd_hang_up = 1;
1701
1702 /* Socket operation failed. We consider the relayd dead */
1703 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1704 /*
1705 * This is possible if the fd is closed on the other side
1706 * (outfd) or any write problem. It can be verbose a bit for a
1707 * normal execution if for instance the relayd is stopped
1708 * abruptly. This can happen so set this to a DBG statement.
1709 */
1710 DBG("Consumer mmap write detected relayd hang up");
1711 } else {
1712 /* Unhandled error, print it and stop function right now. */
1713 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1714 }
1715 goto write_error;
1716 }
1717 stream->output_written += ret;
1718
1719 /* This call is useless on a socket so better save a syscall. */
1720 if (!relayd) {
1721 /* This won't block, but will start writeout asynchronously */
1722 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1723 SYNC_FILE_RANGE_WRITE);
1724 stream->out_fd_offset += len;
1725 lttng_consumer_sync_trace_file(stream, orig_offset);
1726 }
1727
1728 write_error:
1729 /*
1730 * This is a special case that the relayd has closed its socket. Let's
1731 * cleanup the relayd object and all associated streams.
1732 */
1733 if (relayd && relayd_hang_up) {
1734 cleanup_relayd(relayd, ctx);
1735 }
1736
1737 end:
1738 /* Unlock only if ctrl socket used */
1739 if (relayd && stream->metadata_flag) {
1740 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1741 }
1742
1743 rcu_read_unlock();
1744 return ret;
1745 }
1746
1747 /*
1748 * Splice the data from the ring buffer to the tracefile.
1749 *
1750 * It must be called with the stream lock held.
1751 *
1752 * Returns the number of bytes spliced.
1753 */
1754 ssize_t lttng_consumer_on_read_subbuffer_splice(
1755 struct lttng_consumer_local_data *ctx,
1756 struct lttng_consumer_stream *stream, unsigned long len,
1757 unsigned long padding,
1758 struct ctf_packet_index *index)
1759 {
1760 ssize_t ret = 0, written = 0, ret_splice = 0;
1761 loff_t offset = 0;
1762 off_t orig_offset = stream->out_fd_offset;
1763 int fd = stream->wait_fd;
1764 /* Default is on the disk */
1765 int outfd = stream->out_fd;
1766 struct consumer_relayd_sock_pair *relayd = NULL;
1767 int *splice_pipe;
1768 unsigned int relayd_hang_up = 0;
1769
1770 switch (consumer_data.type) {
1771 case LTTNG_CONSUMER_KERNEL:
1772 break;
1773 case LTTNG_CONSUMER32_UST:
1774 case LTTNG_CONSUMER64_UST:
1775 /* Not supported for user space tracing */
1776 return -ENOSYS;
1777 default:
1778 ERR("Unknown consumer_data type");
1779 assert(0);
1780 }
1781
1782 /* RCU lock for the relayd pointer */
1783 rcu_read_lock();
1784
1785 /* Flag that the current stream if set for network streaming. */
1786 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1787 relayd = consumer_find_relayd(stream->net_seq_idx);
1788 if (relayd == NULL) {
1789 written = -ret;
1790 goto end;
1791 }
1792 }
1793 splice_pipe = stream->splice_pipe;
1794
1795 /* Write metadata stream id before payload */
1796 if (relayd) {
1797 unsigned long total_len = len;
1798
1799 if (stream->metadata_flag) {
1800 /*
1801 * Lock the control socket for the complete duration of the function
1802 * since from this point on we will use the socket.
1803 */
1804 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1805
1806 if (stream->reset_metadata_flag) {
1807 ret = relayd_reset_metadata(&relayd->control_sock,
1808 stream->relayd_stream_id,
1809 stream->metadata_version);
1810 if (ret < 0) {
1811 relayd_hang_up = 1;
1812 goto write_error;
1813 }
1814 stream->reset_metadata_flag = 0;
1815 }
1816 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1817 padding);
1818 if (ret < 0) {
1819 written = ret;
1820 relayd_hang_up = 1;
1821 goto write_error;
1822 }
1823
1824 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1825 }
1826
1827 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1828 if (ret < 0) {
1829 written = ret;
1830 relayd_hang_up = 1;
1831 goto write_error;
1832 }
1833 /* Use the returned socket. */
1834 outfd = ret;
1835 } else {
1836 /* No streaming, we have to set the len with the full padding */
1837 len += padding;
1838
1839 if (stream->metadata_flag && stream->reset_metadata_flag) {
1840 ret = utils_truncate_stream_file(stream->out_fd, 0);
1841 if (ret < 0) {
1842 ERR("Reset metadata file");
1843 goto end;
1844 }
1845 stream->reset_metadata_flag = 0;
1846 }
1847 /*
1848 * Check if we need to change the tracefile before writing the packet.
1849 */
1850 if (stream->chan->tracefile_size > 0 &&
1851 (stream->tracefile_size_current + len) >
1852 stream->chan->tracefile_size) {
1853 ret = utils_rotate_stream_file(stream->chan->pathname,
1854 stream->name, stream->chan->tracefile_size,
1855 stream->chan->tracefile_count, stream->uid, stream->gid,
1856 stream->out_fd, &(stream->tracefile_count_current),
1857 &stream->out_fd);
1858 if (ret < 0) {
1859 written = ret;
1860 ERR("Rotating output file");
1861 goto end;
1862 }
1863 outfd = stream->out_fd;
1864
1865 if (stream->index_file) {
1866 lttng_index_file_put(stream->index_file);
1867 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1868 stream->name, stream->uid, stream->gid,
1869 stream->chan->tracefile_size,
1870 stream->tracefile_count_current,
1871 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1872 if (!stream->index_file) {
1873 goto end;
1874 }
1875 }
1876
1877 /* Reset current size because we just perform a rotation. */
1878 stream->tracefile_size_current = 0;
1879 stream->out_fd_offset = 0;
1880 orig_offset = 0;
1881 }
1882 stream->tracefile_size_current += len;
1883 index->offset = htobe64(stream->out_fd_offset);
1884 }
1885
1886 while (len > 0) {
1887 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1888 (unsigned long)offset, len, fd, splice_pipe[1]);
1889 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1890 SPLICE_F_MOVE | SPLICE_F_MORE);
1891 DBG("splice chan to pipe, ret %zd", ret_splice);
1892 if (ret_splice < 0) {
1893 ret = errno;
1894 written = -ret;
1895 PERROR("Error in relay splice");
1896 goto splice_error;
1897 }
1898
1899 /* Handle stream on the relayd if the output is on the network */
1900 if (relayd && stream->metadata_flag) {
1901 size_t metadata_payload_size =
1902 sizeof(struct lttcomm_relayd_metadata_payload);
1903
1904 /* Update counter to fit the spliced data */
1905 ret_splice += metadata_payload_size;
1906 len += metadata_payload_size;
1907 /*
1908 * We do this so the return value can match the len passed as
1909 * argument to this function.
1910 */
1911 written -= metadata_payload_size;
1912 }
1913
1914 /* Splice data out */
1915 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1916 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1917 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1918 outfd, ret_splice);
1919 if (ret_splice < 0) {
1920 ret = errno;
1921 written = -ret;
1922 relayd_hang_up = 1;
1923 goto write_error;
1924 } else if (ret_splice > len) {
1925 /*
1926 * We don't expect this code path to be executed but you never know
1927 * so this is an extra protection agains a buggy splice().
1928 */
1929 ret = errno;
1930 written += ret_splice;
1931 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1932 len);
1933 goto splice_error;
1934 } else {
1935 /* All good, update current len and continue. */
1936 len -= ret_splice;
1937 }
1938
1939 /* This call is useless on a socket so better save a syscall. */
1940 if (!relayd) {
1941 /* This won't block, but will start writeout asynchronously */
1942 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1943 SYNC_FILE_RANGE_WRITE);
1944 stream->out_fd_offset += ret_splice;
1945 }
1946 stream->output_written += ret_splice;
1947 written += ret_splice;
1948 }
1949 if (!relayd) {
1950 lttng_consumer_sync_trace_file(stream, orig_offset);
1951 }
1952 goto end;
1953
1954 write_error:
1955 /*
1956 * This is a special case that the relayd has closed its socket. Let's
1957 * cleanup the relayd object and all associated streams.
1958 */
1959 if (relayd && relayd_hang_up) {
1960 cleanup_relayd(relayd, ctx);
1961 /* Skip splice error so the consumer does not fail */
1962 goto end;
1963 }
1964
1965 splice_error:
1966 /* send the appropriate error description to sessiond */
1967 switch (ret) {
1968 case EINVAL:
1969 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1970 break;
1971 case ENOMEM:
1972 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1973 break;
1974 case ESPIPE:
1975 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1976 break;
1977 }
1978
1979 end:
1980 if (relayd && stream->metadata_flag) {
1981 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1982 }
1983
1984 rcu_read_unlock();
1985 return written;
1986 }
1987
1988 /*
1989 * Sample the snapshot positions for a specific fd
1990 *
1991 * Returns 0 on success, < 0 on error
1992 */
1993 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1994 {
1995 switch (consumer_data.type) {
1996 case LTTNG_CONSUMER_KERNEL:
1997 return lttng_kconsumer_sample_snapshot_positions(stream);
1998 case LTTNG_CONSUMER32_UST:
1999 case LTTNG_CONSUMER64_UST:
2000 return lttng_ustconsumer_sample_snapshot_positions(stream);
2001 default:
2002 ERR("Unknown consumer_data type");
2003 assert(0);
2004 return -ENOSYS;
2005 }
2006 }
2007 /*
2008 * Take a snapshot for a specific fd
2009 *
2010 * Returns 0 on success, < 0 on error
2011 */
2012 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2013 {
2014 switch (consumer_data.type) {
2015 case LTTNG_CONSUMER_KERNEL:
2016 return lttng_kconsumer_take_snapshot(stream);
2017 case LTTNG_CONSUMER32_UST:
2018 case LTTNG_CONSUMER64_UST:
2019 return lttng_ustconsumer_take_snapshot(stream);
2020 default:
2021 ERR("Unknown consumer_data type");
2022 assert(0);
2023 return -ENOSYS;
2024 }
2025 }
2026
2027 /*
2028 * Get the produced position
2029 *
2030 * Returns 0 on success, < 0 on error
2031 */
2032 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2033 unsigned long *pos)
2034 {
2035 switch (consumer_data.type) {
2036 case LTTNG_CONSUMER_KERNEL:
2037 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2038 case LTTNG_CONSUMER32_UST:
2039 case LTTNG_CONSUMER64_UST:
2040 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2041 default:
2042 ERR("Unknown consumer_data type");
2043 assert(0);
2044 return -ENOSYS;
2045 }
2046 }
2047
2048 /*
2049 * Get the consumed position
2050 *
2051 * Returns 0 on success, < 0 on error
2052 */
2053 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2054 unsigned long *pos)
2055 {
2056 switch (consumer_data.type) {
2057 case LTTNG_CONSUMER_KERNEL:
2058 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2059 case LTTNG_CONSUMER32_UST:
2060 case LTTNG_CONSUMER64_UST:
2061 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2062 default:
2063 ERR("Unknown consumer_data type");
2064 assert(0);
2065 return -ENOSYS;
2066 }
2067 }
2068
2069 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2070 int sock, struct pollfd *consumer_sockpoll)
2071 {
2072 switch (consumer_data.type) {
2073 case LTTNG_CONSUMER_KERNEL:
2074 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2075 case LTTNG_CONSUMER32_UST:
2076 case LTTNG_CONSUMER64_UST:
2077 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2078 default:
2079 ERR("Unknown consumer_data type");
2080 assert(0);
2081 return -ENOSYS;
2082 }
2083 }
2084
2085 void lttng_consumer_close_all_metadata(void)
2086 {
2087 switch (consumer_data.type) {
2088 case LTTNG_CONSUMER_KERNEL:
2089 /*
2090 * The Kernel consumer has a different metadata scheme so we don't
2091 * close anything because the stream will be closed by the session
2092 * daemon.
2093 */
2094 break;
2095 case LTTNG_CONSUMER32_UST:
2096 case LTTNG_CONSUMER64_UST:
2097 /*
2098 * Close all metadata streams. The metadata hash table is passed and
2099 * this call iterates over it by closing all wakeup fd. This is safe
2100 * because at this point we are sure that the metadata producer is
2101 * either dead or blocked.
2102 */
2103 lttng_ustconsumer_close_all_metadata(metadata_ht);
2104 break;
2105 default:
2106 ERR("Unknown consumer_data type");
2107 assert(0);
2108 }
2109 }
2110
2111 /*
2112 * Clean up a metadata stream and free its memory.
2113 */
2114 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2115 struct lttng_ht *ht)
2116 {
2117 struct lttng_consumer_channel *free_chan = NULL;
2118
2119 assert(stream);
2120 /*
2121 * This call should NEVER receive regular stream. It must always be
2122 * metadata stream and this is crucial for data structure synchronization.
2123 */
2124 assert(stream->metadata_flag);
2125
2126 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2127
2128 pthread_mutex_lock(&consumer_data.lock);
2129 pthread_mutex_lock(&stream->chan->lock);
2130 pthread_mutex_lock(&stream->lock);
2131 if (stream->chan->metadata_cache) {
2132 /* Only applicable to userspace consumers. */
2133 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2134 }
2135
2136 /* Remove any reference to that stream. */
2137 consumer_stream_delete(stream, ht);
2138
2139 /* Close down everything including the relayd if one. */
2140 consumer_stream_close(stream);
2141 /* Destroy tracer buffers of the stream. */
2142 consumer_stream_destroy_buffers(stream);
2143
2144 /* Atomically decrement channel refcount since other threads can use it. */
2145 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2146 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2147 /* Go for channel deletion! */
2148 free_chan = stream->chan;
2149 }
2150
2151 /*
2152 * Nullify the stream reference so it is not used after deletion. The
2153 * channel lock MUST be acquired before being able to check for a NULL
2154 * pointer value.
2155 */
2156 stream->chan->metadata_stream = NULL;
2157
2158 if (stream->chan->metadata_cache) {
2159 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2160 }
2161 pthread_mutex_unlock(&stream->lock);
2162 pthread_mutex_unlock(&stream->chan->lock);
2163 pthread_mutex_unlock(&consumer_data.lock);
2164
2165 if (free_chan) {
2166 consumer_del_channel(free_chan);
2167 }
2168
2169 consumer_stream_free(stream);
2170 }
2171
2172 /*
2173 * Action done with the metadata stream when adding it to the consumer internal
2174 * data structures to handle it.
2175 */
2176 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2177 {
2178 struct lttng_ht *ht = metadata_ht;
2179 int ret = 0;
2180 struct lttng_ht_iter iter;
2181 struct lttng_ht_node_u64 *node;
2182
2183 assert(stream);
2184 assert(ht);
2185
2186 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2187
2188 pthread_mutex_lock(&consumer_data.lock);
2189 pthread_mutex_lock(&stream->chan->lock);
2190 pthread_mutex_lock(&stream->chan->timer_lock);
2191 pthread_mutex_lock(&stream->lock);
2192
2193 /*
2194 * From here, refcounts are updated so be _careful_ when returning an error
2195 * after this point.
2196 */
2197
2198 rcu_read_lock();
2199
2200 /*
2201 * Lookup the stream just to make sure it does not exist in our internal
2202 * state. This should NEVER happen.
2203 */
2204 lttng_ht_lookup(ht, &stream->key, &iter);
2205 node = lttng_ht_iter_get_node_u64(&iter);
2206 assert(!node);
2207
2208 /*
2209 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2210 * in terms of destroying the associated channel, because the action that
2211 * causes the count to become 0 also causes a stream to be added. The
2212 * channel deletion will thus be triggered by the following removal of this
2213 * stream.
2214 */
2215 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2216 /* Increment refcount before decrementing nb_init_stream_left */
2217 cmm_smp_wmb();
2218 uatomic_dec(&stream->chan->nb_init_stream_left);
2219 }
2220
2221 lttng_ht_add_unique_u64(ht, &stream->node);
2222
2223 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2224 &stream->node_channel_id);
2225
2226 /*
2227 * Add stream to the stream_list_ht of the consumer data. No need to steal
2228 * the key since the HT does not use it and we allow to add redundant keys
2229 * into this table.
2230 */
2231 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2232
2233 rcu_read_unlock();
2234
2235 pthread_mutex_unlock(&stream->lock);
2236 pthread_mutex_unlock(&stream->chan->lock);
2237 pthread_mutex_unlock(&stream->chan->timer_lock);
2238 pthread_mutex_unlock(&consumer_data.lock);
2239 return ret;
2240 }
2241
2242 /*
2243 * Delete data stream that are flagged for deletion (endpoint_status).
2244 */
2245 static void validate_endpoint_status_data_stream(void)
2246 {
2247 struct lttng_ht_iter iter;
2248 struct lttng_consumer_stream *stream;
2249
2250 DBG("Consumer delete flagged data stream");
2251
2252 rcu_read_lock();
2253 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2254 /* Validate delete flag of the stream */
2255 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2256 continue;
2257 }
2258 /* Delete it right now */
2259 consumer_del_stream(stream, data_ht);
2260 }
2261 rcu_read_unlock();
2262 }
2263
2264 /*
2265 * Delete metadata stream that are flagged for deletion (endpoint_status).
2266 */
2267 static void validate_endpoint_status_metadata_stream(
2268 struct lttng_poll_event *pollset)
2269 {
2270 struct lttng_ht_iter iter;
2271 struct lttng_consumer_stream *stream;
2272
2273 DBG("Consumer delete flagged metadata stream");
2274
2275 assert(pollset);
2276
2277 rcu_read_lock();
2278 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2279 /* Validate delete flag of the stream */
2280 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2281 continue;
2282 }
2283 /*
2284 * Remove from pollset so the metadata thread can continue without
2285 * blocking on a deleted stream.
2286 */
2287 lttng_poll_del(pollset, stream->wait_fd);
2288
2289 /* Delete it right now */
2290 consumer_del_metadata_stream(stream, metadata_ht);
2291 }
2292 rcu_read_unlock();
2293 }
2294
2295 static
2296 int rotate_notify_sessiond(struct lttng_consumer_local_data *ctx,
2297 uint64_t key)
2298 {
2299 int ret;
2300
2301 do {
2302 ret = write(ctx->channel_rotate_pipe, &key, sizeof(key));
2303 } while (ret == -1 && errno == EINTR);
2304 if (ret == -1) {
2305 PERROR("write to the channel rotate pipe");
2306 } else {
2307 DBG("Sent channel rotation notification for channel key %"
2308 PRIu64, key);
2309 }
2310
2311 return ret;
2312 }
2313
2314 /*
2315 * Perform operations that need to be done after a stream has
2316 * rotated and released the stream lock.
2317 *
2318 * Multiple rotations cannot occur simultaneously, so we know the state of the
2319 * "rotated" stream flag cannot change.
2320 *
2321 * This MUST be called WITHOUT the stream lock held.
2322 */
2323 static
2324 int consumer_post_rotation(struct lttng_consumer_stream *stream,
2325 struct lttng_consumer_local_data *ctx)
2326 {
2327 int ret = 0;
2328
2329 if (!stream->rotated) {
2330 goto end;
2331 }
2332
2333 pthread_mutex_lock(&stream->chan->lock);
2334 switch (consumer_data.type) {
2335 case LTTNG_CONSUMER_KERNEL:
2336 break;
2337 case LTTNG_CONSUMER32_UST:
2338 case LTTNG_CONSUMER64_UST:
2339 /*
2340 * The ust_metadata_pushed counter has been reset to 0, so now
2341 * we can wakeup the metadata thread so it dumps the metadata
2342 * cache to the new file.
2343 */
2344 if (stream->metadata_flag) {
2345 consumer_metadata_wakeup_pipe(stream->chan);
2346 }
2347 break;
2348 default:
2349 ERR("Unknown consumer_data type");
2350 abort();
2351 }
2352
2353 if (--stream->chan->nr_stream_rotate_pending == 0) {
2354 ret = rotate_notify_sessiond(ctx, stream->chan->key);
2355 }
2356 pthread_mutex_unlock(&stream->chan->lock);
2357 stream->rotated = 0;
2358
2359 end:
2360 return ret;
2361 }
2362
2363 static
2364 int handle_rotate_wakeup_pipe(struct lttng_consumer_local_data *ctx,
2365 struct lttng_pipe *stream_pipe)
2366 {
2367 int ret;
2368 ssize_t pipe_len;
2369 struct lttng_consumer_stream *stream;
2370
2371 pipe_len = lttng_pipe_read(stream_pipe, &stream, sizeof(stream));
2372 if (pipe_len < sizeof(stream)) {
2373 if (pipe_len < 0) {
2374 PERROR("read metadata stream");
2375 }
2376 ERR("Failed to read stream on metadata rotate pipe");
2377 ret = -1;
2378 goto end;
2379 }
2380
2381 pthread_mutex_lock(&stream->lock);
2382 ret = lttng_consumer_rotate_stream(ctx, stream);
2383 pthread_mutex_unlock(&stream->lock);
2384 if (ret < 0) {
2385 ERR("Failed to rotate metadata stream");
2386 goto end;
2387 }
2388 ret = consumer_post_rotation(stream, ctx);
2389 if (ret < 0) {
2390 ERR("Failed after a rotation");
2391 ret = -1;
2392 }
2393
2394 ret = 0;
2395
2396 end:
2397 return ret;
2398 }
2399
2400 /*
2401 * Thread polls on metadata file descriptor and write them on disk or on the
2402 * network.
2403 */
2404 void *consumer_thread_metadata_poll(void *data)
2405 {
2406 int ret, i, pollfd, err = -1;
2407 uint32_t revents, nb_fd;
2408 struct lttng_consumer_stream *stream = NULL;
2409 struct lttng_ht_iter iter;
2410 struct lttng_ht_node_u64 *node;
2411 struct lttng_poll_event events;
2412 struct lttng_consumer_local_data *ctx = data;
2413 ssize_t len;
2414
2415 rcu_register_thread();
2416
2417 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2418
2419 if (testpoint(consumerd_thread_metadata)) {
2420 goto error_testpoint;
2421 }
2422
2423 health_code_update();
2424
2425 DBG("Thread metadata poll started");
2426
2427 /* Size is set to 1 for the consumer_metadata pipe */
2428 ret = lttng_poll_create(&events, 3, LTTNG_CLOEXEC);
2429 if (ret < 0) {
2430 ERR("Poll set creation failed");
2431 goto end_poll;
2432 }
2433
2434 ret = lttng_poll_add(&events,
2435 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2436 if (ret < 0) {
2437 goto end;
2438 }
2439
2440 ret = lttng_poll_add(&events,
2441 lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe), LPOLLIN);
2442 if (ret < 0) {
2443 goto end;
2444 }
2445
2446 /* Main loop */
2447 DBG("Metadata main loop started");
2448
2449 while (1) {
2450 restart:
2451 health_code_update();
2452 health_poll_entry();
2453 DBG("Metadata poll wait");
2454 ret = lttng_poll_wait(&events, -1);
2455 DBG("Metadata poll return from wait with %d fd(s)",
2456 LTTNG_POLL_GETNB(&events));
2457 health_poll_exit();
2458 DBG("Metadata event caught in thread");
2459 if (ret < 0) {
2460 if (errno == EINTR) {
2461 ERR("Poll EINTR caught");
2462 goto restart;
2463 }
2464 if (LTTNG_POLL_GETNB(&events) == 0) {
2465 err = 0; /* All is OK */
2466 }
2467 goto end;
2468 }
2469
2470 nb_fd = ret;
2471
2472 /* From here, the event is a metadata wait fd */
2473 for (i = 0; i < nb_fd; i++) {
2474 health_code_update();
2475
2476 revents = LTTNG_POLL_GETEV(&events, i);
2477 pollfd = LTTNG_POLL_GETFD(&events, i);
2478
2479 if (!revents) {
2480 /* No activity for this FD (poll implementation). */
2481 continue;
2482 }
2483
2484 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2485 if (revents & LPOLLIN) {
2486 ssize_t pipe_len;
2487
2488 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2489 &stream, sizeof(stream));
2490 if (pipe_len < sizeof(stream)) {
2491 if (pipe_len < 0) {
2492 PERROR("read metadata stream");
2493 }
2494 /*
2495 * Remove the pipe from the poll set and continue the loop
2496 * since their might be data to consume.
2497 */
2498 lttng_poll_del(&events,
2499 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2500 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2501 continue;
2502 }
2503
2504 /* A NULL stream means that the state has changed. */
2505 if (stream == NULL) {
2506 /* Check for deleted streams. */
2507 validate_endpoint_status_metadata_stream(&events);
2508 goto restart;
2509 }
2510
2511 DBG("Adding metadata stream %d to poll set",
2512 stream->wait_fd);
2513
2514 /* Add metadata stream to the global poll events list */
2515 lttng_poll_add(&events, stream->wait_fd,
2516 LPOLLIN | LPOLLPRI | LPOLLHUP);
2517 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2518 DBG("Metadata thread pipe hung up");
2519 /*
2520 * Remove the pipe from the poll set and continue the loop
2521 * since their might be data to consume.
2522 */
2523 lttng_poll_del(&events,
2524 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2525 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2526 continue;
2527 } else {
2528 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2529 goto end;
2530 }
2531
2532 /* Handle other stream */
2533 continue;
2534 } else if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe)) {
2535 if (revents & LPOLLIN) {
2536 ret = handle_rotate_wakeup_pipe(ctx,
2537 ctx->consumer_metadata_rotate_pipe);
2538 if (ret < 0) {
2539 ERR("Failed to rotate metadata stream");
2540 lttng_poll_del(&events,
2541 lttng_pipe_get_readfd(
2542 ctx->consumer_metadata_rotate_pipe));
2543 lttng_pipe_read_close(
2544 ctx->consumer_metadata_rotate_pipe);
2545 goto end;
2546 }
2547 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2548 DBG("Metadata rotate pipe hung up");
2549 /*
2550 * Remove the pipe from the poll set and continue the loop
2551 * since their might be data to consume.
2552 */
2553 lttng_poll_del(&events,
2554 lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe));
2555 lttng_pipe_read_close(ctx->consumer_metadata_rotate_pipe);
2556 continue;
2557 } else {
2558 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2559 goto end;
2560 }
2561 continue;
2562 }
2563
2564 rcu_read_lock();
2565 {
2566 uint64_t tmp_id = (uint64_t) pollfd;
2567
2568 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2569 }
2570 node = lttng_ht_iter_get_node_u64(&iter);
2571 assert(node);
2572
2573 stream = caa_container_of(node, struct lttng_consumer_stream,
2574 node);
2575
2576 if (revents & (LPOLLIN | LPOLLPRI)) {
2577 /* Get the data out of the metadata file descriptor */
2578 DBG("Metadata available on fd %d", pollfd);
2579 assert(stream->wait_fd == pollfd);
2580
2581 do {
2582 health_code_update();
2583
2584 len = ctx->on_buffer_ready(stream, ctx);
2585 /*
2586 * We don't check the return value here since if we get
2587 * a negative len, it means an error occurred thus we
2588 * simply remove it from the poll set and free the
2589 * stream.
2590 */
2591 } while (len > 0);
2592
2593 /* It's ok to have an unavailable sub-buffer */
2594 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2595 /* Clean up stream from consumer and free it. */
2596 lttng_poll_del(&events, stream->wait_fd);
2597 consumer_del_metadata_stream(stream, metadata_ht);
2598 }
2599 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2600 DBG("Metadata fd %d is hup|err.", pollfd);
2601 if (!stream->hangup_flush_done
2602 && (consumer_data.type == LTTNG_CONSUMER32_UST
2603 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2604 DBG("Attempting to flush and consume the UST buffers");
2605 lttng_ustconsumer_on_stream_hangup(stream);
2606
2607 /* We just flushed the stream now read it. */
2608 do {
2609 health_code_update();
2610
2611 len = ctx->on_buffer_ready(stream, ctx);
2612 /*
2613 * We don't check the return value here since if we get
2614 * a negative len, it means an error occurred thus we
2615 * simply remove it from the poll set and free the
2616 * stream.
2617 */
2618 } while (len > 0);
2619 }
2620
2621 lttng_poll_del(&events, stream->wait_fd);
2622 /*
2623 * This call update the channel states, closes file descriptors
2624 * and securely free the stream.
2625 */
2626 consumer_del_metadata_stream(stream, metadata_ht);
2627 } else {
2628 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2629 rcu_read_unlock();
2630 goto end;
2631 }
2632 /* Release RCU lock for the stream looked up */
2633 rcu_read_unlock();
2634 }
2635 }
2636
2637 /* All is OK */
2638 err = 0;
2639 end:
2640 DBG("Metadata poll thread exiting");
2641
2642 lttng_poll_clean(&events);
2643 end_poll:
2644 error_testpoint:
2645 if (err) {
2646 health_error();
2647 ERR("Health error occurred in %s", __func__);
2648 }
2649 health_unregister(health_consumerd);
2650 rcu_unregister_thread();
2651 return NULL;
2652 }
2653
2654 /*
2655 * This thread polls the fds in the set to consume the data and write
2656 * it to tracefile if necessary.
2657 */
2658 void *consumer_thread_data_poll(void *data)
2659 {
2660 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2661 struct pollfd *pollfd = NULL;
2662 /* local view of the streams */
2663 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2664 /* local view of consumer_data.fds_count */
2665 int nb_fd = 0, nb_pipes_fd;
2666 struct lttng_consumer_local_data *ctx = data;
2667 ssize_t len;
2668
2669 rcu_register_thread();
2670
2671 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2672
2673 if (testpoint(consumerd_thread_data)) {
2674 goto error_testpoint;
2675 }
2676
2677 health_code_update();
2678
2679 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2680 if (local_stream == NULL) {
2681 PERROR("local_stream malloc");
2682 goto end;
2683 }
2684
2685 while (1) {
2686 health_code_update();
2687
2688 high_prio = 0;
2689 num_hup = 0;
2690
2691 /*
2692 * the fds set has been updated, we need to update our
2693 * local array as well
2694 */
2695 pthread_mutex_lock(&consumer_data.lock);
2696 if (consumer_data.need_update) {
2697 free(pollfd);
2698 pollfd = NULL;
2699
2700 free(local_stream);
2701 local_stream = NULL;
2702
2703 /*
2704 * Allocate for all fds + 3:
2705 * +1 for the consumer_data_pipe
2706 * +1 for wake up pipe
2707 * +1 for consumer_data_rotate_pipe.
2708 */
2709 nb_pipes_fd = 3;
2710 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2711 if (pollfd == NULL) {
2712 PERROR("pollfd malloc");
2713 pthread_mutex_unlock(&consumer_data.lock);
2714 goto end;
2715 }
2716
2717 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2718 sizeof(struct lttng_consumer_stream *));
2719 if (local_stream == NULL) {
2720 PERROR("local_stream malloc");
2721 pthread_mutex_unlock(&consumer_data.lock);
2722 goto end;
2723 }
2724 ret = update_poll_array(ctx, &pollfd, local_stream,
2725 data_ht);
2726 if (ret < 0) {
2727 ERR("Error in allocating pollfd or local_outfds");
2728 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2729 pthread_mutex_unlock(&consumer_data.lock);
2730 goto end;
2731 }
2732 nb_fd = ret;
2733 consumer_data.need_update = 0;
2734 }
2735 pthread_mutex_unlock(&consumer_data.lock);
2736
2737 /* No FDs and consumer_quit, consumer_cleanup the thread */
2738 if (nb_fd == 0 && CMM_LOAD_SHARED(consumer_quit) == 1) {
2739 err = 0; /* All is OK */
2740 goto end;
2741 }
2742 /* poll on the array of fds */
2743 restart:
2744 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2745 if (testpoint(consumerd_thread_data_poll)) {
2746 goto end;
2747 }
2748 health_poll_entry();
2749 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2750 health_poll_exit();
2751 DBG("poll num_rdy : %d", num_rdy);
2752 if (num_rdy == -1) {
2753 /*
2754 * Restart interrupted system call.
2755 */
2756 if (errno == EINTR) {
2757 goto restart;
2758 }
2759 PERROR("Poll error");
2760 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2761 goto end;
2762 } else if (num_rdy == 0) {
2763 DBG("Polling thread timed out");
2764 goto end;
2765 }
2766
2767 if (caa_unlikely(data_consumption_paused)) {
2768 DBG("Data consumption paused, sleeping...");
2769 sleep(1);
2770 goto restart;
2771 }
2772
2773 /*
2774 * If the consumer_data_pipe triggered poll go directly to the
2775 * beginning of the loop to update the array. We want to prioritize
2776 * array update over low-priority reads.
2777 */
2778 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2779 ssize_t pipe_readlen;
2780
2781 DBG("consumer_data_pipe wake up");
2782 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2783 &new_stream, sizeof(new_stream));
2784 if (pipe_readlen < sizeof(new_stream)) {
2785 PERROR("Consumer data pipe");
2786 /* Continue so we can at least handle the current stream(s). */
2787 continue;
2788 }
2789
2790 /*
2791 * If the stream is NULL, just ignore it. It's also possible that
2792 * the sessiond poll thread changed the consumer_quit state and is
2793 * waking us up to test it.
2794 */
2795 if (new_stream == NULL) {
2796 validate_endpoint_status_data_stream();
2797 continue;
2798 }
2799
2800 /* Continue to update the local streams and handle prio ones */
2801 continue;
2802 }
2803
2804 /* Handle wakeup pipe. */
2805 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2806 char dummy;
2807 ssize_t pipe_readlen;
2808
2809 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2810 sizeof(dummy));
2811 if (pipe_readlen < 0) {
2812 PERROR("Consumer data wakeup pipe");
2813 }
2814 /* We've been awakened to handle stream(s). */
2815 ctx->has_wakeup = 0;
2816 }
2817
2818 /* Handle consumer_data_rotate_pipe. */
2819 if (pollfd[nb_fd + 2].revents & (POLLIN | POLLPRI)) {
2820 ret = handle_rotate_wakeup_pipe(ctx,
2821 ctx->consumer_data_rotate_pipe);
2822 if (ret < 0) {
2823 ERR("Failed to rotate metadata stream");
2824 goto end;
2825 }
2826 }
2827
2828 /* Take care of high priority channels first. */
2829 for (i = 0; i < nb_fd; i++) {
2830 health_code_update();
2831
2832 if (local_stream[i] == NULL) {
2833 continue;
2834 }
2835 if (pollfd[i].revents & POLLPRI) {
2836 DBG("Urgent read on fd %d", pollfd[i].fd);
2837 high_prio = 1;
2838 len = ctx->on_buffer_ready(local_stream[i], ctx);
2839 /* it's ok to have an unavailable sub-buffer */
2840 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2841 /* Clean the stream and free it. */
2842 consumer_del_stream(local_stream[i], data_ht);
2843 local_stream[i] = NULL;
2844 } else if (len > 0) {
2845 local_stream[i]->data_read = 1;
2846 }
2847 }
2848 }
2849
2850 /*
2851 * If we read high prio channel in this loop, try again
2852 * for more high prio data.
2853 */
2854 if (high_prio) {
2855 continue;
2856 }
2857
2858 /* Take care of low priority channels. */
2859 for (i = 0; i < nb_fd; i++) {
2860 health_code_update();
2861
2862 if (local_stream[i] == NULL) {
2863 continue;
2864 }
2865 if ((pollfd[i].revents & POLLIN) ||
2866 local_stream[i]->hangup_flush_done ||
2867 local_stream[i]->has_data) {
2868 DBG("Normal read on fd %d", pollfd[i].fd);
2869 len = ctx->on_buffer_ready(local_stream[i], ctx);
2870 /* it's ok to have an unavailable sub-buffer */
2871 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2872 /* Clean the stream and free it. */
2873 consumer_del_stream(local_stream[i], data_ht);
2874 local_stream[i] = NULL;
2875 } else if (len > 0) {
2876 local_stream[i]->data_read = 1;
2877 }
2878 }
2879 }
2880
2881 /* Handle hangup and errors */
2882 for (i = 0; i < nb_fd; i++) {
2883 health_code_update();
2884
2885 if (local_stream[i] == NULL) {
2886 continue;
2887 }
2888 if (!local_stream[i]->hangup_flush_done
2889 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2890 && (consumer_data.type == LTTNG_CONSUMER32_UST
2891 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2892 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2893 pollfd[i].fd);
2894 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2895 /* Attempt read again, for the data we just flushed. */
2896 local_stream[i]->data_read = 1;
2897 }
2898 /*
2899 * If the poll flag is HUP/ERR/NVAL and we have
2900 * read no data in this pass, we can remove the
2901 * stream from its hash table.
2902 */
2903 if ((pollfd[i].revents & POLLHUP)) {
2904 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2905 if (!local_stream[i]->data_read) {
2906 consumer_del_stream(local_stream[i], data_ht);
2907 local_stream[i] = NULL;
2908 num_hup++;
2909 }
2910 } else if (pollfd[i].revents & POLLERR) {
2911 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2912 if (!local_stream[i]->data_read) {
2913 consumer_del_stream(local_stream[i], data_ht);
2914 local_stream[i] = NULL;
2915 num_hup++;
2916 }
2917 } else if (pollfd[i].revents & POLLNVAL) {
2918 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2919 if (!local_stream[i]->data_read) {
2920 consumer_del_stream(local_stream[i], data_ht);
2921 local_stream[i] = NULL;
2922 num_hup++;
2923 }
2924 }
2925 if (local_stream[i] != NULL) {
2926 local_stream[i]->data_read = 0;
2927 }
2928 }
2929 }
2930 /* All is OK */
2931 err = 0;
2932 end:
2933 DBG("polling thread exiting");
2934 free(pollfd);
2935 free(local_stream);
2936
2937 /*
2938 * Close the write side of the pipe so epoll_wait() in
2939 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2940 * read side of the pipe. If we close them both, epoll_wait strangely does
2941 * not return and could create a endless wait period if the pipe is the
2942 * only tracked fd in the poll set. The thread will take care of closing
2943 * the read side.
2944 */
2945 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2946 (void) lttng_pipe_write_close(ctx->consumer_metadata_rotate_pipe);
2947
2948 error_testpoint:
2949 if (err) {
2950 health_error();
2951 ERR("Health error occurred in %s", __func__);
2952 }
2953 health_unregister(health_consumerd);
2954
2955 rcu_unregister_thread();
2956 return NULL;
2957 }
2958
2959 /*
2960 * Close wake-up end of each stream belonging to the channel. This will
2961 * allow the poll() on the stream read-side to detect when the
2962 * write-side (application) finally closes them.
2963 */
2964 static
2965 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2966 {
2967 struct lttng_ht *ht;
2968 struct lttng_consumer_stream *stream;
2969 struct lttng_ht_iter iter;
2970
2971 ht = consumer_data.stream_per_chan_id_ht;
2972
2973 rcu_read_lock();
2974 cds_lfht_for_each_entry_duplicate(ht->ht,
2975 ht->hash_fct(&channel->key, lttng_ht_seed),
2976 ht->match_fct, &channel->key,
2977 &iter.iter, stream, node_channel_id.node) {
2978 /*
2979 * Protect against teardown with mutex.
2980 */
2981 pthread_mutex_lock(&stream->lock);
2982 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2983 goto next;
2984 }
2985 switch (consumer_data.type) {
2986 case LTTNG_CONSUMER_KERNEL:
2987 break;
2988 case LTTNG_CONSUMER32_UST:
2989 case LTTNG_CONSUMER64_UST:
2990 if (stream->metadata_flag) {
2991 /* Safe and protected by the stream lock. */
2992 lttng_ustconsumer_close_metadata(stream->chan);
2993 } else {
2994 /*
2995 * Note: a mutex is taken internally within
2996 * liblttng-ust-ctl to protect timer wakeup_fd
2997 * use from concurrent close.
2998 */
2999 lttng_ustconsumer_close_stream_wakeup(stream);
3000 }
3001 break;
3002 default:
3003 ERR("Unknown consumer_data type");
3004 assert(0);
3005 }
3006 next:
3007 pthread_mutex_unlock(&stream->lock);
3008 }
3009 rcu_read_unlock();
3010 }
3011
3012 static void destroy_channel_ht(struct lttng_ht *ht)
3013 {
3014 struct lttng_ht_iter iter;
3015 struct lttng_consumer_channel *channel;
3016 int ret;
3017
3018 if (ht == NULL) {
3019 return;
3020 }
3021
3022 rcu_read_lock();
3023 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
3024 ret = lttng_ht_del(ht, &iter);
3025 assert(ret != 0);
3026 }
3027 rcu_read_unlock();
3028
3029 lttng_ht_destroy(ht);
3030 }
3031
3032 /*
3033 * This thread polls the channel fds to detect when they are being
3034 * closed. It closes all related streams if the channel is detected as
3035 * closed. It is currently only used as a shim layer for UST because the
3036 * consumerd needs to keep the per-stream wakeup end of pipes open for
3037 * periodical flush.
3038 */
3039 void *consumer_thread_channel_poll(void *data)
3040 {
3041 int ret, i, pollfd, err = -1;
3042 uint32_t revents, nb_fd;
3043 struct lttng_consumer_channel *chan = NULL;
3044 struct lttng_ht_iter iter;
3045 struct lttng_ht_node_u64 *node;
3046 struct lttng_poll_event events;
3047 struct lttng_consumer_local_data *ctx = data;
3048 struct lttng_ht *channel_ht;
3049
3050 rcu_register_thread();
3051
3052 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
3053
3054 if (testpoint(consumerd_thread_channel)) {
3055 goto error_testpoint;
3056 }
3057
3058 health_code_update();
3059
3060 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3061 if (!channel_ht) {
3062 /* ENOMEM at this point. Better to bail out. */
3063 goto end_ht;
3064 }
3065
3066 DBG("Thread channel poll started");
3067
3068 /* Size is set to 1 for the consumer_channel pipe */
3069 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3070 if (ret < 0) {
3071 ERR("Poll set creation failed");
3072 goto end_poll;
3073 }
3074
3075 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3076 if (ret < 0) {
3077 goto end;
3078 }
3079
3080 /* Main loop */
3081 DBG("Channel main loop started");
3082
3083 while (1) {
3084 restart:
3085 health_code_update();
3086 DBG("Channel poll wait");
3087 health_poll_entry();
3088 ret = lttng_poll_wait(&events, -1);
3089 DBG("Channel poll return from wait with %d fd(s)",
3090 LTTNG_POLL_GETNB(&events));
3091 health_poll_exit();
3092 DBG("Channel event caught in thread");
3093 if (ret < 0) {
3094 if (errno == EINTR) {
3095 ERR("Poll EINTR caught");
3096 goto restart;
3097 }
3098 if (LTTNG_POLL_GETNB(&events) == 0) {
3099 err = 0; /* All is OK */
3100 }
3101 goto end;
3102 }
3103
3104 nb_fd = ret;
3105
3106 /* From here, the event is a channel wait fd */
3107 for (i = 0; i < nb_fd; i++) {
3108 health_code_update();
3109
3110 revents = LTTNG_POLL_GETEV(&events, i);
3111 pollfd = LTTNG_POLL_GETFD(&events, i);
3112
3113 if (!revents) {
3114 /* No activity for this FD (poll implementation). */
3115 continue;
3116 }
3117
3118 if (pollfd == ctx->consumer_channel_pipe[0]) {
3119 if (revents & LPOLLIN) {
3120 enum consumer_channel_action action;
3121 uint64_t key;
3122
3123 ret = read_channel_pipe(ctx, &chan, &key, &action);
3124 if (ret <= 0) {
3125 if (ret < 0) {
3126 ERR("Error reading channel pipe");
3127 }
3128 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3129 continue;
3130 }
3131
3132 switch (action) {
3133 case CONSUMER_CHANNEL_ADD:
3134 DBG("Adding channel %d to poll set",
3135 chan->wait_fd);
3136
3137 lttng_ht_node_init_u64(&chan->wait_fd_node,
3138 chan->wait_fd);
3139 rcu_read_lock();
3140 lttng_ht_add_unique_u64(channel_ht,
3141 &chan->wait_fd_node);
3142 rcu_read_unlock();
3143 /* Add channel to the global poll events list */
3144 lttng_poll_add(&events, chan->wait_fd,
3145 LPOLLERR | LPOLLHUP);
3146 break;
3147 case CONSUMER_CHANNEL_DEL:
3148 {
3149 /*
3150 * This command should never be called if the channel
3151 * has streams monitored by either the data or metadata
3152 * thread. The consumer only notify this thread with a
3153 * channel del. command if it receives a destroy
3154 * channel command from the session daemon that send it
3155 * if a command prior to the GET_CHANNEL failed.
3156 */
3157
3158 rcu_read_lock();
3159 chan = consumer_find_channel(key);
3160 if (!chan) {
3161 rcu_read_unlock();
3162 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3163 break;
3164 }
3165 lttng_poll_del(&events, chan->wait_fd);
3166 iter.iter.node = &chan->wait_fd_node.node;
3167 ret = lttng_ht_del(channel_ht, &iter);
3168 assert(ret == 0);
3169
3170 switch (consumer_data.type) {
3171 case LTTNG_CONSUMER_KERNEL:
3172 break;
3173 case LTTNG_CONSUMER32_UST:
3174 case LTTNG_CONSUMER64_UST:
3175 health_code_update();
3176 /* Destroy streams that might have been left in the stream list. */
3177 clean_channel_stream_list(chan);
3178 break;
3179 default:
3180 ERR("Unknown consumer_data type");
3181 assert(0);
3182 }
3183
3184 /*
3185 * Release our own refcount. Force channel deletion even if
3186 * streams were not initialized.
3187 */
3188 if (!uatomic_sub_return(&chan->refcount, 1)) {
3189 consumer_del_channel(chan);
3190 }
3191 rcu_read_unlock();
3192 goto restart;
3193 }
3194 case CONSUMER_CHANNEL_QUIT:
3195 /*
3196 * Remove the pipe from the poll set and continue the loop
3197 * since their might be data to consume.
3198 */
3199 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3200 continue;
3201 default:
3202 ERR("Unknown action");
3203 break;
3204 }
3205 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3206 DBG("Channel thread pipe hung up");
3207 /*
3208 * Remove the pipe from the poll set and continue the loop
3209 * since their might be data to consume.
3210 */
3211 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3212 continue;
3213 } else {
3214 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3215 goto end;
3216 }
3217
3218 /* Handle other stream */
3219 continue;
3220 }
3221
3222 rcu_read_lock();
3223 {
3224 uint64_t tmp_id = (uint64_t) pollfd;
3225
3226 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3227 }
3228 node = lttng_ht_iter_get_node_u64(&iter);
3229 assert(node);
3230
3231 chan = caa_container_of(node, struct lttng_consumer_channel,
3232 wait_fd_node);
3233
3234 /* Check for error event */
3235 if (revents & (LPOLLERR | LPOLLHUP)) {
3236 DBG("Channel fd %d is hup|err.", pollfd);
3237
3238 lttng_poll_del(&events, chan->wait_fd);
3239 ret = lttng_ht_del(channel_ht, &iter);
3240 assert(ret == 0);
3241
3242 /*
3243 * This will close the wait fd for each stream associated to
3244 * this channel AND monitored by the data/metadata thread thus
3245 * will be clean by the right thread.
3246 */
3247 consumer_close_channel_streams(chan);
3248
3249 /* Release our own refcount */
3250 if (!uatomic_sub_return(&chan->refcount, 1)
3251 && !uatomic_read(&chan->nb_init_stream_left)) {
3252 consumer_del_channel(chan);
3253 }
3254 } else {
3255 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3256 rcu_read_unlock();
3257 goto end;
3258 }
3259
3260 /* Release RCU lock for the channel looked up */
3261 rcu_read_unlock();
3262 }
3263 }
3264
3265 /* All is OK */
3266 err = 0;
3267 end:
3268 lttng_poll_clean(&events);
3269 end_poll:
3270 destroy_channel_ht(channel_ht);
3271 end_ht:
3272 error_testpoint:
3273 DBG("Channel poll thread exiting");
3274 if (err) {
3275 health_error();
3276 ERR("Health error occurred in %s", __func__);
3277 }
3278 health_unregister(health_consumerd);
3279 rcu_unregister_thread();
3280 return NULL;
3281 }
3282
3283 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3284 struct pollfd *sockpoll, int client_socket)
3285 {
3286 int ret;
3287
3288 assert(ctx);
3289 assert(sockpoll);
3290
3291 ret = lttng_consumer_poll_socket(sockpoll);
3292 if (ret) {
3293 goto error;
3294 }
3295 DBG("Metadata connection on client_socket");
3296
3297 /* Blocking call, waiting for transmission */
3298 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3299 if (ctx->consumer_metadata_socket < 0) {
3300 WARN("On accept metadata");
3301 ret = -1;
3302 goto error;
3303 }
3304 ret = 0;
3305
3306 error:
3307 return ret;
3308 }
3309
3310 /*
3311 * This thread listens on the consumerd socket and receives the file
3312 * descriptors from the session daemon.
3313 */
3314 void *consumer_thread_sessiond_poll(void *data)
3315 {
3316 int sock = -1, client_socket, ret, err = -1;
3317 /*
3318 * structure to poll for incoming data on communication socket avoids
3319 * making blocking sockets.
3320 */
3321 struct pollfd consumer_sockpoll[2];
3322 struct lttng_consumer_local_data *ctx = data;
3323
3324 rcu_register_thread();
3325
3326 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3327
3328 if (testpoint(consumerd_thread_sessiond)) {
3329 goto error_testpoint;
3330 }
3331
3332 health_code_update();
3333
3334 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3335 unlink(ctx->consumer_command_sock_path);
3336 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3337 if (client_socket < 0) {
3338 ERR("Cannot create command socket");
3339 goto end;
3340 }
3341
3342 ret = lttcomm_listen_unix_sock(client_socket);
3343 if (ret < 0) {
3344 goto end;
3345 }
3346
3347 DBG("Sending ready command to lttng-sessiond");
3348 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3349 /* return < 0 on error, but == 0 is not fatal */
3350 if (ret < 0) {
3351 ERR("Error sending ready command to lttng-sessiond");
3352 goto end;
3353 }
3354
3355 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3356 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3357 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3358 consumer_sockpoll[1].fd = client_socket;
3359 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3360
3361 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3362 if (ret) {
3363 if (ret > 0) {
3364 /* should exit */
3365 err = 0;
3366 }
3367 goto end;
3368 }
3369 DBG("Connection on client_socket");
3370
3371 /* Blocking call, waiting for transmission */
3372 sock = lttcomm_accept_unix_sock(client_socket);
3373 if (sock < 0) {
3374 WARN("On accept");
3375 goto end;
3376 }
3377
3378 /*
3379 * Setup metadata socket which is the second socket connection on the
3380 * command unix socket.
3381 */
3382 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3383 if (ret) {
3384 if (ret > 0) {
3385 /* should exit */
3386 err = 0;
3387 }
3388 goto end;
3389 }
3390
3391 /* This socket is not useful anymore. */
3392 ret = close(client_socket);
3393 if (ret < 0) {
3394 PERROR("close client_socket");
3395 }
3396 client_socket = -1;
3397
3398 /* update the polling structure to poll on the established socket */
3399 consumer_sockpoll[1].fd = sock;
3400 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3401
3402 while (1) {
3403 health_code_update();
3404
3405 health_poll_entry();
3406 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3407 health_poll_exit();
3408 if (ret) {
3409 if (ret > 0) {
3410 /* should exit */
3411 err = 0;
3412 }
3413 goto end;
3414 }
3415 DBG("Incoming command on sock");
3416 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3417 if (ret <= 0) {
3418 /*
3419 * This could simply be a session daemon quitting. Don't output
3420 * ERR() here.
3421 */
3422 DBG("Communication interrupted on command socket");
3423 err = 0;
3424 goto end;
3425 }
3426 if (CMM_LOAD_SHARED(consumer_quit)) {
3427 DBG("consumer_thread_receive_fds received quit from signal");
3428 err = 0; /* All is OK */
3429 goto end;
3430 }
3431 DBG("received command on sock");
3432 }
3433 /* All is OK */
3434 err = 0;
3435
3436 end:
3437 DBG("Consumer thread sessiond poll exiting");
3438
3439 /*
3440 * Close metadata streams since the producer is the session daemon which
3441 * just died.
3442 *
3443 * NOTE: for now, this only applies to the UST tracer.
3444 */
3445 lttng_consumer_close_all_metadata();
3446
3447 /*
3448 * when all fds have hung up, the polling thread
3449 * can exit cleanly
3450 */
3451 CMM_STORE_SHARED(consumer_quit, 1);
3452
3453 /*
3454 * Notify the data poll thread to poll back again and test the
3455 * consumer_quit state that we just set so to quit gracefully.
3456 */
3457 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3458
3459 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3460
3461 notify_health_quit_pipe(health_quit_pipe);
3462
3463 /* Cleaning up possibly open sockets. */
3464 if (sock >= 0) {
3465 ret = close(sock);
3466 if (ret < 0) {
3467 PERROR("close sock sessiond poll");
3468 }
3469 }
3470 if (client_socket >= 0) {
3471 ret = close(client_socket);
3472 if (ret < 0) {
3473 PERROR("close client_socket sessiond poll");
3474 }
3475 }
3476
3477 error_testpoint:
3478 if (err) {
3479 health_error();
3480 ERR("Health error occurred in %s", __func__);
3481 }
3482 health_unregister(health_consumerd);
3483
3484 rcu_unregister_thread();
3485 return NULL;
3486 }
3487
3488 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3489 struct lttng_consumer_local_data *ctx)
3490 {
3491 ssize_t ret;
3492 int rotate_ret;
3493
3494 pthread_mutex_lock(&stream->lock);
3495 if (stream->metadata_flag) {
3496 pthread_mutex_lock(&stream->metadata_rdv_lock);
3497 }
3498
3499 switch (consumer_data.type) {
3500 case LTTNG_CONSUMER_KERNEL:
3501 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3502 break;
3503 case LTTNG_CONSUMER32_UST:
3504 case LTTNG_CONSUMER64_UST:
3505 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3506 break;
3507 default:
3508 ERR("Unknown consumer_data type");
3509 assert(0);
3510 ret = -ENOSYS;
3511 break;
3512 }
3513
3514 if (stream->metadata_flag) {
3515 pthread_cond_broadcast(&stream->metadata_rdv);
3516 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3517 }
3518 pthread_mutex_unlock(&stream->lock);
3519
3520 rotate_ret = consumer_post_rotation(stream, ctx);
3521 if (rotate_ret < 0) {
3522 ERR("Failed after a rotation");
3523 ret = -1;
3524 }
3525
3526 return ret;
3527 }
3528
3529 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3530 {
3531 switch (consumer_data.type) {
3532 case LTTNG_CONSUMER_KERNEL:
3533 return lttng_kconsumer_on_recv_stream(stream);
3534 case LTTNG_CONSUMER32_UST:
3535 case LTTNG_CONSUMER64_UST:
3536 return lttng_ustconsumer_on_recv_stream(stream);
3537 default:
3538 ERR("Unknown consumer_data type");
3539 assert(0);
3540 return -ENOSYS;
3541 }
3542 }
3543
3544 /*
3545 * Allocate and set consumer data hash tables.
3546 */
3547 int lttng_consumer_init(void)
3548 {
3549 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3550 if (!consumer_data.channel_ht) {
3551 goto error;
3552 }
3553
3554 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3555 if (!consumer_data.relayd_ht) {
3556 goto error;
3557 }
3558
3559 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3560 if (!consumer_data.stream_list_ht) {
3561 goto error;
3562 }
3563
3564 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3565 if (!consumer_data.stream_per_chan_id_ht) {
3566 goto error;
3567 }
3568
3569 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3570 if (!data_ht) {
3571 goto error;
3572 }
3573
3574 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3575 if (!metadata_ht) {
3576 goto error;
3577 }
3578
3579 return 0;
3580
3581 error:
3582 return -1;
3583 }
3584
3585 /*
3586 * Process the ADD_RELAYD command receive by a consumer.
3587 *
3588 * This will create a relayd socket pair and add it to the relayd hash table.
3589 * The caller MUST acquire a RCU read side lock before calling it.
3590 */
3591 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3592 struct lttng_consumer_local_data *ctx, int sock,
3593 struct pollfd *consumer_sockpoll,
3594 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3595 uint64_t relayd_session_id)
3596 {
3597 int fd = -1, ret = -1, relayd_created = 0;
3598 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3599 struct consumer_relayd_sock_pair *relayd = NULL;
3600
3601 assert(ctx);
3602 assert(relayd_sock);
3603
3604 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3605
3606 /* Get relayd reference if exists. */
3607 relayd = consumer_find_relayd(net_seq_idx);
3608 if (relayd == NULL) {
3609 assert(sock_type == LTTNG_STREAM_CONTROL);
3610 /* Not found. Allocate one. */
3611 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3612 if (relayd == NULL) {
3613 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3614 goto error;
3615 } else {
3616 relayd->sessiond_session_id = sessiond_id;
3617 relayd_created = 1;
3618 }
3619
3620 /*
3621 * This code path MUST continue to the consumer send status message to
3622 * we can notify the session daemon and continue our work without
3623 * killing everything.
3624 */
3625 } else {
3626 /*
3627 * relayd key should never be found for control socket.
3628 */
3629 assert(sock_type != LTTNG_STREAM_CONTROL);
3630 }
3631
3632 /* First send a status message before receiving the fds. */
3633 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3634 if (ret < 0) {
3635 /* Somehow, the session daemon is not responding anymore. */
3636 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3637 goto error_nosignal;
3638 }
3639
3640 /* Poll on consumer socket. */
3641 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3642 if (ret) {
3643 /* Needing to exit in the middle of a command: error. */
3644 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3645 goto error_nosignal;
3646 }
3647
3648 /* Get relayd socket from session daemon */
3649 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3650 if (ret != sizeof(fd)) {
3651 fd = -1; /* Just in case it gets set with an invalid value. */
3652
3653 /*
3654 * Failing to receive FDs might indicate a major problem such as
3655 * reaching a fd limit during the receive where the kernel returns a
3656 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3657 * don't take any chances and stop everything.
3658 *
3659 * XXX: Feature request #558 will fix that and avoid this possible
3660 * issue when reaching the fd limit.
3661 */
3662 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3663 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3664 goto error;
3665 }
3666
3667 /* Copy socket information and received FD */
3668 switch (sock_type) {
3669 case LTTNG_STREAM_CONTROL:
3670 /* Copy received lttcomm socket */
3671 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3672 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3673 /* Handle create_sock error. */
3674 if (ret < 0) {
3675 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3676 goto error;
3677 }
3678 /*
3679 * Close the socket created internally by
3680 * lttcomm_create_sock, so we can replace it by the one
3681 * received from sessiond.
3682 */
3683 if (close(relayd->control_sock.sock.fd)) {
3684 PERROR("close");
3685 }
3686
3687 /* Assign new file descriptor */
3688 relayd->control_sock.sock.fd = fd;
3689 fd = -1; /* For error path */
3690 /* Assign version values. */
3691 relayd->control_sock.major = relayd_sock->major;
3692 relayd->control_sock.minor = relayd_sock->minor;
3693
3694 relayd->relayd_session_id = relayd_session_id;
3695
3696 break;
3697 case LTTNG_STREAM_DATA:
3698 /* Copy received lttcomm socket */
3699 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3700 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3701 /* Handle create_sock error. */
3702 if (ret < 0) {
3703 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3704 goto error;
3705 }
3706 /*
3707 * Close the socket created internally by
3708 * lttcomm_create_sock, so we can replace it by the one
3709 * received from sessiond.
3710 */
3711 if (close(relayd->data_sock.sock.fd)) {
3712 PERROR("close");
3713 }
3714
3715 /* Assign new file descriptor */
3716 relayd->data_sock.sock.fd = fd;
3717 fd = -1; /* for eventual error paths */
3718 /* Assign version values. */
3719 relayd->data_sock.major = relayd_sock->major;
3720 relayd->data_sock.minor = relayd_sock->minor;
3721 break;
3722 default:
3723 ERR("Unknown relayd socket type (%d)", sock_type);
3724 ret_code = LTTCOMM_CONSUMERD_FATAL;
3725 goto error;
3726 }
3727
3728 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3729 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3730 relayd->net_seq_idx, fd);
3731
3732 /* We successfully added the socket. Send status back. */
3733 ret = consumer_send_status_msg(sock, ret_code);
3734 if (ret < 0) {
3735 /* Somehow, the session daemon is not responding anymore. */
3736 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3737 goto error_nosignal;
3738 }
3739
3740 /*
3741 * Add relayd socket pair to consumer data hashtable. If object already
3742 * exists or on error, the function gracefully returns.
3743 */
3744 add_relayd(relayd);
3745
3746 /* All good! */
3747 return;
3748
3749 error:
3750 if (consumer_send_status_msg(sock, ret_code) < 0) {
3751 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3752 }
3753
3754 error_nosignal:
3755 /* Close received socket if valid. */
3756 if (fd >= 0) {
3757 if (close(fd)) {
3758 PERROR("close received socket");
3759 }
3760 }
3761
3762 if (relayd_created) {
3763 free(relayd);
3764 }
3765 }
3766
3767 /*
3768 * Try to lock the stream mutex.
3769 *
3770 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3771 */
3772 static int stream_try_lock(struct lttng_consumer_stream *stream)
3773 {
3774 int ret;
3775
3776 assert(stream);
3777
3778 /*
3779 * Try to lock the stream mutex. On failure, we know that the stream is
3780 * being used else where hence there is data still being extracted.
3781 */
3782 ret = pthread_mutex_trylock(&stream->lock);
3783 if (ret) {
3784 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3785 ret = 0;
3786 goto end;
3787 }
3788
3789 ret = 1;
3790
3791 end:
3792 return ret;
3793 }
3794
3795 /*
3796 * Search for a relayd associated to the session id and return the reference.
3797 *
3798 * A rcu read side lock MUST be acquire before calling this function and locked
3799 * until the relayd object is no longer necessary.
3800 */
3801 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3802 {
3803 struct lttng_ht_iter iter;
3804 struct consumer_relayd_sock_pair *relayd = NULL;
3805
3806 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3807 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3808 node.node) {
3809 /*
3810 * Check by sessiond id which is unique here where the relayd session
3811 * id might not be when having multiple relayd.
3812 */
3813 if (relayd->sessiond_session_id == id) {
3814 /* Found the relayd. There can be only one per id. */
3815 goto found;
3816 }
3817 }
3818
3819 return NULL;
3820
3821 found:
3822 return relayd;
3823 }
3824
3825 /*
3826 * Check if for a given session id there is still data needed to be extract
3827 * from the buffers.
3828 *
3829 * Return 1 if data is pending or else 0 meaning ready to be read.
3830 */
3831 int consumer_data_pending(uint64_t id)
3832 {
3833 int ret;
3834 struct lttng_ht_iter iter;
3835 struct lttng_ht *ht;
3836 struct lttng_consumer_stream *stream;
3837 struct consumer_relayd_sock_pair *relayd = NULL;
3838 int (*data_pending)(struct lttng_consumer_stream *);
3839
3840 DBG("Consumer data pending command on session id %" PRIu64, id);
3841
3842 rcu_read_lock();
3843 pthread_mutex_lock(&consumer_data.lock);
3844
3845 switch (consumer_data.type) {
3846 case LTTNG_CONSUMER_KERNEL:
3847 data_pending = lttng_kconsumer_data_pending;
3848 break;
3849 case LTTNG_CONSUMER32_UST:
3850 case LTTNG_CONSUMER64_UST:
3851 data_pending = lttng_ustconsumer_data_pending;
3852 break;
3853 default:
3854 ERR("Unknown consumer data type");
3855 assert(0);
3856 }
3857
3858 /* Ease our life a bit */
3859 ht = consumer_data.stream_list_ht;
3860
3861 relayd = find_relayd_by_session_id(id);
3862 if (relayd) {
3863 /* Send init command for data pending. */
3864 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3865 ret = relayd_begin_data_pending(&relayd->control_sock,
3866 relayd->relayd_session_id);
3867 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3868 if (ret < 0) {
3869 /* Communication error thus the relayd so no data pending. */
3870 goto data_not_pending;
3871 }
3872 }
3873
3874 cds_lfht_for_each_entry_duplicate(ht->ht,
3875 ht->hash_fct(&id, lttng_ht_seed),
3876 ht->match_fct, &id,
3877 &iter.iter, stream, node_session_id.node) {
3878 /* If this call fails, the stream is being used hence data pending. */
3879 ret = stream_try_lock(stream);
3880 if (!ret) {
3881 goto data_pending;
3882 }
3883
3884 /*
3885 * A removed node from the hash table indicates that the stream has
3886 * been deleted thus having a guarantee that the buffers are closed
3887 * on the consumer side. However, data can still be transmitted
3888 * over the network so don't skip the relayd check.
3889 */
3890 ret = cds_lfht_is_node_deleted(&stream->node.node);
3891 if (!ret) {
3892 /* Check the stream if there is data in the buffers. */
3893 ret = data_pending(stream);
3894 if (ret == 1) {
3895 pthread_mutex_unlock(&stream->lock);
3896 goto data_pending;
3897 }
3898 }
3899
3900 /* Relayd check */
3901 if (relayd) {
3902 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3903 if (stream->metadata_flag) {
3904 ret = relayd_quiescent_control(&relayd->control_sock,
3905 stream->relayd_stream_id);
3906 } else {
3907 ret = relayd_data_pending(&relayd->control_sock,
3908 stream->relayd_stream_id,
3909 stream->next_net_seq_num - 1);
3910 }
3911 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3912 if (ret == 1) {
3913 pthread_mutex_unlock(&stream->lock);
3914 goto data_pending;
3915 }
3916 }
3917 pthread_mutex_unlock(&stream->lock);
3918 }
3919
3920 if (relayd) {
3921 unsigned int is_data_inflight = 0;
3922
3923 /* Send init command for data pending. */
3924 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3925 ret = relayd_end_data_pending(&relayd->control_sock,
3926 relayd->relayd_session_id, &is_data_inflight);
3927 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3928 if (ret < 0) {
3929 goto data_not_pending;
3930 }
3931 if (is_data_inflight) {
3932 goto data_pending;
3933 }
3934 }
3935
3936 /*
3937 * Finding _no_ node in the hash table and no inflight data means that the
3938 * stream(s) have been removed thus data is guaranteed to be available for
3939 * analysis from the trace files.
3940 */
3941
3942 data_not_pending:
3943 /* Data is available to be read by a viewer. */
3944 pthread_mutex_unlock(&consumer_data.lock);
3945 rcu_read_unlock();
3946 return 0;
3947
3948 data_pending:
3949 /* Data is still being extracted from buffers. */
3950 pthread_mutex_unlock(&consumer_data.lock);
3951 rcu_read_unlock();
3952 return 1;
3953 }
3954
3955 /*
3956 * Send a ret code status message to the sessiond daemon.
3957 *
3958 * Return the sendmsg() return value.
3959 */
3960 int consumer_send_status_msg(int sock, int ret_code)
3961 {
3962 struct lttcomm_consumer_status_msg msg;
3963
3964 memset(&msg, 0, sizeof(msg));
3965 msg.ret_code = ret_code;
3966
3967 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3968 }
3969
3970 /*
3971 * Send a channel status message to the sessiond daemon.
3972 *
3973 * Return the sendmsg() return value.
3974 */
3975 int consumer_send_status_channel(int sock,
3976 struct lttng_consumer_channel *channel)
3977 {
3978 struct lttcomm_consumer_status_channel msg;
3979
3980 assert(sock >= 0);
3981
3982 memset(&msg, 0, sizeof(msg));
3983 if (!channel) {
3984 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3985 } else {
3986 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3987 msg.key = channel->key;
3988 msg.stream_count = channel->streams.count;
3989 }
3990
3991 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3992 }
3993
3994 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3995 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3996 uint64_t max_sb_size)
3997 {
3998 unsigned long start_pos;
3999
4000 if (!nb_packets_per_stream) {
4001 return consumed_pos; /* Grab everything */
4002 }
4003 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
4004 start_pos -= max_sb_size * nb_packets_per_stream;
4005 if ((long) (start_pos - consumed_pos) < 0) {
4006 return consumed_pos; /* Grab everything */
4007 }
4008 return start_pos;
4009 }
4010
4011 static
4012 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
4013 {
4014 int ret = 0;
4015
4016 switch (consumer_data.type) {
4017 case LTTNG_CONSUMER_KERNEL:
4018 ret = kernctl_buffer_flush(stream->wait_fd);
4019 if (ret < 0) {
4020 ERR("Failed to flush kernel stream");
4021 goto end;
4022 }
4023 break;
4024 case LTTNG_CONSUMER32_UST:
4025 case LTTNG_CONSUMER64_UST:
4026 lttng_ustctl_flush_buffer(stream, producer_active);
4027 break;
4028 default:
4029 ERR("Unknown consumer_data type");
4030 abort();
4031 }
4032
4033 end:
4034 return ret;
4035 }
4036
4037 /*
4038 * Sample the rotate position for all the streams of a channel.
4039 *
4040 * Returns 0 on success, < 0 on error
4041 */
4042 int lttng_consumer_rotate_channel(uint64_t key, char *path,
4043 uint64_t relayd_id, uint32_t metadata, uint64_t new_chunk_id,
4044 struct lttng_consumer_local_data *ctx)
4045 {
4046 int ret;
4047 struct lttng_consumer_channel *channel;
4048 struct lttng_consumer_stream *stream;
4049 struct lttng_ht_iter iter;
4050 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4051
4052 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4053
4054 rcu_read_lock();
4055
4056 channel = consumer_find_channel(key);
4057 if (!channel) {
4058 ERR("No channel found for key %" PRIu64, key);
4059 ret = -1;
4060 goto end;
4061 }
4062 pthread_mutex_lock(&channel->lock);
4063 channel->current_chunk_id = new_chunk_id;
4064 snprintf(channel->pathname, PATH_MAX, "%s", path);
4065 ret = utils_mkdir_recursive(channel->pathname, S_IRWXU | S_IRWXG,
4066 channel->uid, channel->gid);
4067 if (ret < 0) {
4068 ERR("Trace directory creation error");
4069 ret = -1;
4070 pthread_mutex_unlock(&channel->lock);
4071 goto end;
4072 }
4073 pthread_mutex_unlock(&channel->lock);
4074
4075 cds_lfht_for_each_entry_duplicate(ht->ht,
4076 ht->hash_fct(&channel->key, lttng_ht_seed),
4077 ht->match_fct, &channel->key, &iter.iter,
4078 stream, node_channel_id.node) {
4079 uint64_t consumed_pos;
4080
4081 health_code_update();
4082
4083 /*
4084 * Lock stream because we are about to change its state.
4085 */
4086 pthread_mutex_lock(&stream->lock);
4087
4088 memcpy(stream->channel_ro_pathname, channel->pathname, PATH_MAX);
4089 ret = lttng_consumer_sample_snapshot_positions(stream);
4090 if (ret < 0) {
4091 ERR("Taking snapshot positions");
4092 goto end_unlock;
4093 }
4094
4095 ret = lttng_consumer_get_produced_snapshot(stream,
4096 &stream->rotate_position);
4097 if (ret < 0) {
4098 ERR("Produced snapshot position");
4099 goto end_unlock;
4100 }
4101 lttng_consumer_get_consumed_snapshot(stream,
4102 &consumed_pos);
4103 if (consumed_pos == stream->rotate_position) {
4104 stream->rotate_ready = 1;
4105 }
4106 channel->nr_stream_rotate_pending++;
4107
4108 ret = consumer_flush_buffer(stream, 1);
4109 if (ret < 0) {
4110 ERR("Failed to flush stream");
4111 goto end_unlock;
4112 }
4113
4114 pthread_mutex_unlock(&stream->lock);
4115 }
4116
4117 ret = 0;
4118 goto end;
4119
4120 end_unlock:
4121 pthread_mutex_unlock(&stream->lock);
4122 end:
4123 rcu_read_unlock();
4124 return ret;
4125 }
4126
4127 /*
4128 * Check if a stream is ready to be rotated after extracting it.
4129 *
4130 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4131 * error. Stream lock must be held.
4132 */
4133 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4134 {
4135 int ret;
4136 unsigned long consumed_pos;
4137
4138 if (!stream->rotate_position && !stream->rotate_ready) {
4139 ret = 0;
4140 goto end;
4141 }
4142
4143 if (stream->rotate_ready) {
4144 ret = 1;
4145 goto end;
4146 }
4147
4148 /*
4149 * If we don't have the rotate_ready flag, check the consumed position
4150 * to determine if we need to rotate.
4151 */
4152 ret = lttng_consumer_sample_snapshot_positions(stream);
4153 if (ret < 0) {
4154 ERR("Taking kernel snapshot positions");
4155 goto end;
4156 }
4157
4158 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4159 if (ret < 0) {
4160 ERR("Consumed kernel snapshot position");
4161 goto end;
4162 }
4163
4164 /* Rotate position not reached yet. */
4165 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4166 ret = 0;
4167 goto end;
4168 }
4169 ret = 1;
4170
4171 end:
4172 return ret;
4173 }
4174
4175 /*
4176 * Reset the state for a stream after a rotation occurred.
4177 */
4178 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4179 {
4180 stream->rotate_position = 0;
4181 stream->rotate_ready = 0;
4182 stream->rotated = 1;
4183 }
4184
4185 /*
4186 * Perform the rotation a local stream file.
4187 */
4188 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4189 struct lttng_consumer_stream *stream)
4190 {
4191 int ret;
4192
4193 ret = close(stream->out_fd);
4194 if (ret < 0) {
4195 PERROR("Closing tracefile");
4196 goto error;
4197 }
4198
4199 ret = utils_create_stream_file(stream->channel_ro_pathname, stream->name,
4200 stream->channel_ro_tracefile_size, stream->tracefile_count_current,
4201 stream->uid, stream->gid, NULL);
4202 if (ret < 0) {
4203 goto error;
4204 }
4205 stream->out_fd = ret;
4206 stream->tracefile_size_current = 0;
4207
4208 if (!stream->metadata_flag) {
4209 struct lttng_index_file *index_file;
4210
4211 lttng_index_file_put(stream->index_file);
4212
4213 index_file = lttng_index_file_create(stream->channel_ro_pathname,
4214 stream->name, stream->uid, stream->gid,
4215 stream->channel_ro_tracefile_size,
4216 stream->tracefile_count_current,
4217 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
4218 if (!index_file) {
4219 goto error;
4220 }
4221 stream->index_file = index_file;
4222 stream->out_fd_offset = 0;
4223 }
4224
4225 ret = 0;
4226 goto end;
4227
4228 error:
4229 ret = -1;
4230 end:
4231 return ret;
4232
4233 }
4234
4235 /*
4236 * Perform the rotation a stream file on the relay.
4237 */
4238 int rotate_relay_stream(struct lttng_consumer_local_data *ctx,
4239 struct lttng_consumer_stream *stream)
4240 {
4241 int ret;
4242 struct consumer_relayd_sock_pair *relayd;
4243
4244 relayd = consumer_find_relayd(stream->net_seq_idx);
4245 if (!relayd) {
4246 ERR("Failed to find relayd");
4247 ret = -1;
4248 goto end;
4249 }
4250
4251 /* FIXME: chan_ro ? */
4252 ret = relayd_rotate_stream(&relayd->control_sock,
4253 stream->relayd_stream_id, stream->channel_ro_pathname,
4254 stream->chan->current_chunk_id,
4255 stream->last_sequence_number);
4256
4257 end:
4258 return ret;
4259 }
4260
4261 /*
4262 * Performs the stream rotation for the rotate session feature if needed.
4263 * It must be called with the stream lock held.
4264 *
4265 * Return 0 on success, a negative number of error.
4266 */
4267 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4268 struct lttng_consumer_stream *stream)
4269 {
4270 int ret;
4271
4272 if (stream->net_seq_idx != (uint64_t) -1ULL) {
4273 ret = rotate_relay_stream(ctx, stream);
4274 } else {
4275 ret = rotate_local_stream(ctx, stream);
4276 }
4277 if (ret < 0) {
4278 goto error;
4279 }
4280
4281 if (stream->metadata_flag) {
4282 switch (consumer_data.type) {
4283 case LTTNG_CONSUMER_KERNEL:
4284 /*
4285 * Reset the position of what has been read from the metadata
4286 * cache to 0 so we can dump it again.
4287 */
4288 ret = kernctl_metadata_cache_dump(stream->wait_fd);
4289 if (ret < 0) {
4290 ERR("Failed to dump the kernel metadata cache after rotation");
4291 goto error;
4292 }
4293 break;
4294 case LTTNG_CONSUMER32_UST:
4295 case LTTNG_CONSUMER64_UST:
4296 /*
4297 * Reset the position pushed from the metadata cache so it
4298 * will write from the beginning on the next push.
4299 */
4300 stream->ust_metadata_pushed = 0;
4301 break;
4302 default:
4303 ERR("Unknown consumer_data type");
4304 abort();
4305 }
4306 }
4307 lttng_consumer_reset_stream_rotate_state(stream);
4308
4309 ret = 0;
4310
4311 error:
4312 return ret;
4313 }
4314
4315 /*
4316 * Rotate all the ready streams.
4317 *
4318 * This is especially important for low throughput streams that have already
4319 * been consumed, we cannot wait for their next packet to perform the
4320 * rotation.
4321 *
4322 * Returns 0 on success, < 0 on error
4323 */
4324 int lttng_consumer_rotate_ready_streams(uint64_t key,
4325 struct lttng_consumer_local_data *ctx)
4326 {
4327 int ret;
4328 struct lttng_consumer_channel *channel;
4329 struct lttng_consumer_stream *stream;
4330 struct lttng_pipe *stream_pipe;
4331 struct lttng_ht_iter iter;
4332 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4333
4334 rcu_read_lock();
4335
4336 channel = consumer_find_channel(key);
4337 if (!channel) {
4338 ERR("No channel found for key %" PRIu64, key);
4339 ret = -1;
4340 goto end;
4341 }
4342
4343 if (channel->metadata_stream) {
4344 stream_pipe = ctx->consumer_metadata_rotate_pipe;
4345 } else {
4346 stream_pipe = ctx->consumer_data_rotate_pipe;
4347 }
4348
4349 cds_lfht_for_each_entry_duplicate(ht->ht,
4350 ht->hash_fct(&channel->key, lttng_ht_seed),
4351 ht->match_fct, &channel->key, &iter.iter,
4352 stream, node_channel_id.node) {
4353 health_code_update();
4354
4355 if (stream->rotate_ready == 0) {
4356 continue;
4357 }
4358 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
4359 if (ret < 0) {
4360 ERR("Failed to wakeup consumer rotate pipe");
4361 goto end;
4362 }
4363 }
4364
4365 ret = 0;
4366
4367 end:
4368 rcu_read_unlock();
4369 return ret;
4370 }
4371
4372 static
4373 int rotate_rename_local(char *current_path, char *new_path,
4374 uid_t uid, gid_t gid)
4375 {
4376 int ret;
4377
4378 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG,
4379 uid, gid);
4380 if (ret < 0) {
4381 ERR("Create directory on rotate");
4382 goto end;
4383 }
4384
4385 ret = rename(current_path, new_path);
4386 /*
4387 * If a domain has not yet created its channel, the domain-specific
4388 * folder might not exist, but this is not an error.
4389 */
4390 if (ret < 0 && errno != ENOENT) {
4391 PERROR("Rename completed rotation chunk");
4392 goto end;
4393 }
4394
4395 ret = 0;
4396
4397 end:
4398 return ret;
4399 }
4400
4401 static
4402 int rotate_rename_relay(char *current_path, char *new_path, uint64_t relayd_id)
4403 {
4404 int ret;
4405 struct consumer_relayd_sock_pair *relayd;
4406
4407 relayd = consumer_find_relayd(relayd_id);
4408 if (!relayd) {
4409 ERR("Failed to find relayd");
4410 ret = -1;
4411 goto end;
4412 }
4413
4414 ret = relayd_rotate_rename(&relayd->control_sock, current_path, new_path);
4415
4416 end:
4417 return ret;
4418
4419 }
4420
4421 int lttng_consumer_rotate_rename(char *current_path, char *new_path,
4422 uid_t uid, gid_t gid, uint64_t relayd_id)
4423 {
4424 if (relayd_id != (uint64_t) -1ULL) {
4425 return rotate_rename_relay(current_path, new_path, relayd_id);
4426 } else {
4427 return rotate_rename_local(current_path, new_path, uid, gid);
4428 }
4429 }
4430
4431 int lttng_consumer_rotate_pending_relay(uint64_t session_id,
4432 uint64_t relayd_id, uint64_t chunk_id)
4433 {
4434 int ret;
4435 struct consumer_relayd_sock_pair *relayd;
4436
4437 relayd = consumer_find_relayd(relayd_id);
4438 if (!relayd) {
4439 ERR("Failed to find relayd");
4440 ret = -1;
4441 goto end;
4442 }
4443
4444 ret = relayd_rotate_pending(&relayd->control_sock, chunk_id);
4445
4446 end:
4447 return ret;
4448
4449 }
This page took 0.133533 seconds and 5 git commands to generate.