22c2b9be53464ac296a844b3f743ea394e6f6550
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given relayd id.
421 *
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
424 */
425 static void update_endpoint_status_by_netidx(uint64_t relayd_id,
426 enum consumer_endpoint_status status)
427 {
428 struct lttng_ht_iter iter;
429 struct lttng_consumer_stream *stream;
430
431 DBG("Consumer set delete flag on stream by idx %" PRIu64, relayd_id);
432
433 rcu_read_lock();
434
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
437 if (stream->relayd_id == relayd_id) {
438 uatomic_set(&stream->endpoint_status, status);
439 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
440 }
441 }
442
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
445 if (stream->relayd_id == relayd_id) {
446 uatomic_set(&stream->endpoint_status, status);
447 DBG("Delete flag set to data stream %d", stream->wait_fd);
448 }
449 }
450 rcu_read_unlock();
451 }
452
453 /*
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
457 *
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
460 */
461 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
462 {
463 uint64_t netidx;
464
465 assert(relayd);
466
467 DBG("Cleaning up relayd object ID %"PRIu64, relayd->id);
468
469 /* Save the net sequence index before destroying the object */
470 netidx = relayd->id;
471
472 /*
473 * Delete the relayd from the relayd hash table, close the sockets and free
474 * the object in a RCU call.
475 */
476 consumer_destroy_relayd(relayd);
477
478 /* Set inactive endpoint to all streams */
479 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
480
481 /*
482 * With a local data context, notify the threads that the streams' state
483 * have changed. The write() action on the pipe acts as an "implicit"
484 * memory barrier ordering the updates of the end point status from the
485 * read of this status which happens AFTER receiving this notify.
486 */
487 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
488 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
489 }
490
491 /*
492 * Flag a relayd socket pair for destruction. Destroy it if the refcount
493 * reaches zero.
494 *
495 * RCU read side lock MUST be aquired before calling this function.
496 */
497 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
498 {
499 assert(relayd);
500
501 /* Set destroy flag for this object */
502 uatomic_set(&relayd->destroy_flag, 1);
503
504 /* Destroy the relayd if refcount is 0 */
505 if (uatomic_read(&relayd->refcount) == 0) {
506 consumer_destroy_relayd(relayd);
507 }
508 }
509
510 /*
511 * Completly destroy stream from every visiable data structure and the given
512 * hash table if one.
513 *
514 * One this call returns, the stream object is not longer usable nor visible.
515 */
516 void consumer_del_stream(struct lttng_consumer_stream *stream,
517 struct lttng_ht *ht)
518 {
519 consumer_stream_destroy(stream, ht);
520 }
521
522 /*
523 * XXX naming of del vs destroy is all mixed up.
524 */
525 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
526 {
527 consumer_stream_destroy(stream, data_ht);
528 }
529
530 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
531 {
532 consumer_stream_destroy(stream, metadata_ht);
533 }
534
535 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
536 uint64_t stream_key,
537 enum lttng_consumer_stream_state state,
538 const char *channel_name,
539 uid_t uid,
540 gid_t gid,
541 uint64_t relayd_id,
542 uint64_t session_id,
543 int cpu,
544 int *alloc_ret,
545 enum consumer_channel_type type,
546 unsigned int monitor)
547 {
548 int ret;
549 struct lttng_consumer_stream *stream;
550
551 stream = zmalloc(sizeof(*stream));
552 if (stream == NULL) {
553 PERROR("malloc struct lttng_consumer_stream");
554 ret = -ENOMEM;
555 goto end;
556 }
557
558 rcu_read_lock();
559
560 stream->key = stream_key;
561 stream->out_fd = -1;
562 stream->out_fd_offset = 0;
563 stream->output_written = 0;
564 stream->state = state;
565 stream->uid = uid;
566 stream->gid = gid;
567 stream->relayd_id = relayd_id;
568 stream->session_id = session_id;
569 stream->monitor = monitor;
570 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
571 stream->index_file = NULL;
572 stream->last_sequence_number = -1ULL;
573 pthread_mutex_init(&stream->lock, NULL);
574 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
575
576 /* If channel is the metadata, flag this stream as metadata. */
577 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
578 stream->metadata_flag = 1;
579 /* Metadata is flat out. */
580 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
581 /* Live rendez-vous point. */
582 pthread_cond_init(&stream->metadata_rdv, NULL);
583 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
584 } else {
585 /* Format stream name to <channel_name>_<cpu_number> */
586 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
587 channel_name, cpu);
588 if (ret < 0) {
589 PERROR("snprintf stream name");
590 goto error;
591 }
592 }
593
594 /* Key is always the wait_fd for streams. */
595 lttng_ht_node_init_u64(&stream->node, stream->key);
596
597 /* Init node per channel id key */
598 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
599
600 /* Init session id node with the stream session id */
601 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
602
603 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
604 " relayd_id %" PRIu64 ", session_id %" PRIu64,
605 stream->name, stream->key, channel_key,
606 stream->relayd_id, stream->session_id);
607
608 rcu_read_unlock();
609 return stream;
610
611 error:
612 rcu_read_unlock();
613 free(stream);
614 end:
615 if (alloc_ret) {
616 *alloc_ret = ret;
617 }
618 return NULL;
619 }
620
621 /*
622 * Add a stream to the global list protected by a mutex.
623 */
624 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
625 {
626 struct lttng_ht *ht = data_ht;
627 int ret = 0;
628
629 assert(stream);
630 assert(ht);
631
632 DBG3("Adding consumer stream %" PRIu64, stream->key);
633
634 pthread_mutex_lock(&consumer_data.lock);
635 pthread_mutex_lock(&stream->chan->lock);
636 pthread_mutex_lock(&stream->chan->timer_lock);
637 pthread_mutex_lock(&stream->lock);
638 rcu_read_lock();
639
640 /* Steal stream identifier to avoid having streams with the same key */
641 steal_stream_key(stream->key, ht);
642
643 lttng_ht_add_unique_u64(ht, &stream->node);
644
645 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
646 &stream->node_channel_id);
647
648 /*
649 * Add stream to the stream_list_ht of the consumer data. No need to steal
650 * the key since the HT does not use it and we allow to add redundant keys
651 * into this table.
652 */
653 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
654
655 /*
656 * When nb_init_stream_left reaches 0, we don't need to trigger any action
657 * in terms of destroying the associated channel, because the action that
658 * causes the count to become 0 also causes a stream to be added. The
659 * channel deletion will thus be triggered by the following removal of this
660 * stream.
661 */
662 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
663 /* Increment refcount before decrementing nb_init_stream_left */
664 cmm_smp_wmb();
665 uatomic_dec(&stream->chan->nb_init_stream_left);
666 }
667
668 /* Update consumer data once the node is inserted. */
669 consumer_data.stream_count++;
670 consumer_data.need_update = 1;
671
672 rcu_read_unlock();
673 pthread_mutex_unlock(&stream->lock);
674 pthread_mutex_unlock(&stream->chan->timer_lock);
675 pthread_mutex_unlock(&stream->chan->lock);
676 pthread_mutex_unlock(&consumer_data.lock);
677
678 return ret;
679 }
680
681 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
682 {
683 consumer_del_stream(stream, data_ht);
684 }
685
686 /*
687 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
688 * be acquired before calling this.
689 */
690 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
691 {
692 int ret = 0;
693 struct lttng_ht_node_u64 *node;
694 struct lttng_ht_iter iter;
695
696 assert(relayd);
697
698 lttng_ht_lookup(consumer_data.relayd_ht,
699 &relayd->id, &iter);
700 node = lttng_ht_iter_get_node_u64(&iter);
701 if (node != NULL) {
702 goto end;
703 }
704 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
705
706 end:
707 return ret;
708 }
709
710 /*
711 * Allocate and return a consumer relayd socket.
712 */
713 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
714 uint64_t relayd_id)
715 {
716 struct consumer_relayd_sock_pair *obj = NULL;
717
718 /* net sequence index of -1 is a failure */
719 if (relayd_id == (uint64_t) -1ULL) {
720 goto error;
721 }
722
723 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
724 if (obj == NULL) {
725 PERROR("zmalloc relayd sock");
726 goto error;
727 }
728
729 obj->id = relayd_id;
730 obj->refcount = 0;
731 obj->destroy_flag = 0;
732 obj->control_sock.sock.fd = -1;
733 obj->data_sock.sock.fd = -1;
734 lttng_ht_node_init_u64(&obj->node, obj->id);
735 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
736
737 error:
738 return obj;
739 }
740
741 /*
742 * Find a relayd socket pair in the global consumer data.
743 *
744 * Return the object if found else NULL.
745 * RCU read-side lock must be held across this call and while using the
746 * returned object.
747 */
748 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
749 {
750 struct lttng_ht_iter iter;
751 struct lttng_ht_node_u64 *node;
752 struct consumer_relayd_sock_pair *relayd = NULL;
753
754 /* Negative keys are lookup failures */
755 if (key == (uint64_t) -1ULL) {
756 goto error;
757 }
758
759 lttng_ht_lookup(consumer_data.relayd_ht, &key,
760 &iter);
761 node = lttng_ht_iter_get_node_u64(&iter);
762 if (node != NULL) {
763 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
764 }
765
766 error:
767 return relayd;
768 }
769
770 /*
771 * Find a relayd and send the stream
772 *
773 * Returns 0 on success, < 0 on error
774 */
775 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
776 char *path)
777 {
778 int ret = 0;
779 struct consumer_relayd_sock_pair *relayd;
780
781 assert(stream);
782 assert(stream->relayd_id != -1ULL);
783 assert(path);
784
785 /* The stream is not metadata. Get relayd reference if exists. */
786 rcu_read_lock();
787 relayd = consumer_find_relayd(stream->relayd_id);
788 if (relayd != NULL) {
789 /* Add stream on the relayd */
790 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
791 ret = relayd_add_stream(&relayd->control_sock, stream->name,
792 path, &stream->relayd_stream_id,
793 stream->chan->tracefile_size, stream->chan->tracefile_count);
794 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
795 if (ret < 0) {
796 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->id);
797 lttng_consumer_cleanup_relayd(relayd);
798 goto end;
799 }
800
801 uatomic_inc(&relayd->refcount);
802 stream->sent_to_relayd = 1;
803 } else {
804 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
805 stream->key, stream->relayd_id);
806 ret = -1;
807 goto end;
808 }
809
810 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
811 stream->name, stream->key, stream->relayd_id);
812
813 end:
814 rcu_read_unlock();
815 return ret;
816 }
817
818 /*
819 * Find a relayd and send the streams sent message
820 *
821 * Returns 0 on success, < 0 on error
822 */
823 int consumer_send_relayd_streams_sent(uint64_t relayd_id)
824 {
825 int ret = 0;
826 struct consumer_relayd_sock_pair *relayd;
827
828 assert(relayd_id != -1ULL);
829
830 /* The stream is not metadata. Get relayd reference if exists. */
831 rcu_read_lock();
832 relayd = consumer_find_relayd(relayd_id);
833 if (relayd != NULL) {
834 /* Add stream on the relayd */
835 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
836 ret = relayd_streams_sent(&relayd->control_sock);
837 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
838 if (ret < 0) {
839 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->id);
840 lttng_consumer_cleanup_relayd(relayd);
841 goto end;
842 }
843 } else {
844 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
845 relayd_id);
846 ret = -1;
847 goto end;
848 }
849
850 ret = 0;
851 DBG("All streams sent relayd id %" PRIu64, relayd_id);
852
853 end:
854 rcu_read_unlock();
855 return ret;
856 }
857
858 /*
859 * Find a relayd and close the stream
860 */
861 void close_relayd_stream(struct lttng_consumer_stream *stream)
862 {
863 struct consumer_relayd_sock_pair *relayd;
864
865 /* The stream is not metadata. Get relayd reference if exists. */
866 rcu_read_lock();
867 relayd = consumer_find_relayd(stream->relayd_id);
868 if (relayd) {
869 consumer_stream_relayd_close(stream, relayd);
870 }
871 rcu_read_unlock();
872 }
873
874 /*
875 * Handle stream for relayd transmission if the stream applies for network
876 * streaming where the net sequence index is set.
877 *
878 * Return destination file descriptor or negative value on error.
879 */
880 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
881 size_t data_size, unsigned long padding,
882 struct consumer_relayd_sock_pair *relayd)
883 {
884 int outfd = -1, ret;
885 struct lttcomm_relayd_data_hdr data_hdr;
886
887 /* Safety net */
888 assert(stream);
889 assert(relayd);
890
891 /* Reset data header */
892 memset(&data_hdr, 0, sizeof(data_hdr));
893
894 if (stream->metadata_flag) {
895 /* Caller MUST acquire the relayd control socket lock */
896 ret = relayd_send_metadata(&relayd->control_sock, data_size);
897 if (ret < 0) {
898 goto error;
899 }
900
901 /* Metadata are always sent on the control socket. */
902 outfd = relayd->control_sock.sock.fd;
903 } else {
904 /* Set header with stream information */
905 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
906 data_hdr.data_size = htobe32(data_size);
907 data_hdr.padding_size = htobe32(padding);
908 /*
909 * Note that net_seq_num below is assigned with the *current* value of
910 * next_net_seq_num and only after that the next_net_seq_num will be
911 * increment. This is why when issuing a command on the relayd using
912 * this next value, 1 should always be substracted in order to compare
913 * the last seen sequence number on the relayd side to the last sent.
914 */
915 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
916 /* Other fields are zeroed previously */
917
918 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
919 sizeof(data_hdr));
920 if (ret < 0) {
921 goto error;
922 }
923
924 ++stream->next_net_seq_num;
925
926 /* Set to go on data socket */
927 outfd = relayd->data_sock.sock.fd;
928 }
929
930 error:
931 return outfd;
932 }
933
934 /*
935 * Allocate and return a new lttng_consumer_channel object using the given key
936 * to initialize the hash table node.
937 *
938 * On error, return NULL.
939 */
940 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
941 uint64_t session_id,
942 const char *pathname,
943 const char *name,
944 uid_t uid,
945 gid_t gid,
946 uint64_t relayd_id,
947 enum lttng_event_output output,
948 uint64_t tracefile_size,
949 uint64_t tracefile_count,
950 uint64_t session_id_per_pid,
951 unsigned int monitor,
952 unsigned int live_timer_interval,
953 const char *root_shm_path,
954 const char *shm_path)
955 {
956 struct lttng_consumer_channel *channel;
957
958 channel = zmalloc(sizeof(*channel));
959 if (channel == NULL) {
960 PERROR("malloc struct lttng_consumer_channel");
961 goto end;
962 }
963
964 channel->key = key;
965 channel->refcount = 0;
966 channel->session_id = session_id;
967 channel->session_id_per_pid = session_id_per_pid;
968 channel->uid = uid;
969 channel->gid = gid;
970 channel->relayd_id = relayd_id;
971 channel->tracefile_size = tracefile_size;
972 channel->tracefile_count = tracefile_count;
973 channel->monitor = monitor;
974 channel->live_timer_interval = live_timer_interval;
975 pthread_mutex_init(&channel->lock, NULL);
976 pthread_mutex_init(&channel->timer_lock, NULL);
977
978 switch (output) {
979 case LTTNG_EVENT_SPLICE:
980 channel->output = CONSUMER_CHANNEL_SPLICE;
981 break;
982 case LTTNG_EVENT_MMAP:
983 channel->output = CONSUMER_CHANNEL_MMAP;
984 break;
985 default:
986 assert(0);
987 free(channel);
988 channel = NULL;
989 goto end;
990 }
991
992 /*
993 * In monitor mode, the streams associated with the channel will be put in
994 * a special list ONLY owned by this channel. So, the refcount is set to 1
995 * here meaning that the channel itself has streams that are referenced.
996 *
997 * On a channel deletion, once the channel is no longer visible, the
998 * refcount is decremented and checked for a zero value to delete it. With
999 * streams in no monitor mode, it will now be safe to destroy the channel.
1000 */
1001 if (!channel->monitor) {
1002 channel->refcount = 1;
1003 }
1004
1005 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1006 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1007
1008 strncpy(channel->name, name, sizeof(channel->name));
1009 channel->name[sizeof(channel->name) - 1] = '\0';
1010
1011 if (root_shm_path) {
1012 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1013 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1014 }
1015 if (shm_path) {
1016 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1017 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1018 }
1019
1020 lttng_ht_node_init_u64(&channel->node, channel->key);
1021
1022 channel->wait_fd = -1;
1023
1024 CDS_INIT_LIST_HEAD(&channel->streams.head);
1025
1026 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1027
1028 end:
1029 return channel;
1030 }
1031
1032 /*
1033 * Add a channel to the global list protected by a mutex.
1034 *
1035 * Always return 0 indicating success.
1036 */
1037 int consumer_add_channel(struct lttng_consumer_channel *channel,
1038 struct lttng_consumer_local_data *ctx)
1039 {
1040 pthread_mutex_lock(&consumer_data.lock);
1041 pthread_mutex_lock(&channel->lock);
1042 pthread_mutex_lock(&channel->timer_lock);
1043
1044 /*
1045 * This gives us a guarantee that the channel we are about to add to the
1046 * channel hash table will be unique. See this function comment on the why
1047 * we need to steel the channel key at this stage.
1048 */
1049 steal_channel_key(channel->key);
1050
1051 rcu_read_lock();
1052 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1053 rcu_read_unlock();
1054
1055 pthread_mutex_unlock(&channel->timer_lock);
1056 pthread_mutex_unlock(&channel->lock);
1057 pthread_mutex_unlock(&consumer_data.lock);
1058
1059 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1060 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Allocate the pollfd structure and the local view of the out fds to avoid
1068 * doing a lookup in the linked list and concurrency issues when writing is
1069 * needed. Called with consumer_data.lock held.
1070 *
1071 * Returns the number of fds in the structures.
1072 */
1073 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1074 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1075 struct lttng_ht *ht, int *nb_inactive_fd)
1076 {
1077 int i = 0;
1078 struct lttng_ht_iter iter;
1079 struct lttng_consumer_stream *stream;
1080
1081 assert(ctx);
1082 assert(ht);
1083 assert(pollfd);
1084 assert(local_stream);
1085
1086 DBG("Updating poll fd array");
1087 *nb_inactive_fd = 0;
1088 rcu_read_lock();
1089 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1090 /*
1091 * Only active streams with an active end point can be added to the
1092 * poll set and local stream storage of the thread.
1093 *
1094 * There is a potential race here for endpoint_status to be updated
1095 * just after the check. However, this is OK since the stream(s) will
1096 * be deleted once the thread is notified that the end point state has
1097 * changed where this function will be called back again.
1098 *
1099 * We track the number of inactive FDs because they still need to be
1100 * closed by the polling thread after a wakeup on the data_pipe or
1101 * metadata_pipe.
1102 */
1103 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1104 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1105 (*nb_inactive_fd)++;
1106 continue;
1107 }
1108 /*
1109 * This clobbers way too much the debug output. Uncomment that if you
1110 * need it for debugging purposes.
1111 *
1112 * DBG("Active FD %d", stream->wait_fd);
1113 */
1114 (*pollfd)[i].fd = stream->wait_fd;
1115 (*pollfd)[i].events = POLLIN | POLLPRI;
1116 local_stream[i] = stream;
1117 i++;
1118 }
1119 rcu_read_unlock();
1120
1121 /*
1122 * Insert the consumer_data_pipe at the end of the array and don't
1123 * increment i so nb_fd is the number of real FD.
1124 */
1125 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1126 (*pollfd)[i].events = POLLIN | POLLPRI;
1127
1128 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1129 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1130 return i;
1131 }
1132
1133 /*
1134 * Poll on the should_quit pipe and the command socket return -1 on
1135 * error, 1 if should exit, 0 if data is available on the command socket
1136 */
1137 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1138 {
1139 int num_rdy;
1140
1141 restart:
1142 num_rdy = poll(consumer_sockpoll, 2, -1);
1143 if (num_rdy == -1) {
1144 /*
1145 * Restart interrupted system call.
1146 */
1147 if (errno == EINTR) {
1148 goto restart;
1149 }
1150 PERROR("Poll error");
1151 return -1;
1152 }
1153 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1154 DBG("consumer_should_quit wake up");
1155 return 1;
1156 }
1157 return 0;
1158 }
1159
1160 /*
1161 * Set the error socket.
1162 */
1163 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1164 int sock)
1165 {
1166 ctx->consumer_error_socket = sock;
1167 }
1168
1169 /*
1170 * Set the command socket path.
1171 */
1172 void lttng_consumer_set_command_sock_path(
1173 struct lttng_consumer_local_data *ctx, char *sock)
1174 {
1175 ctx->consumer_command_sock_path = sock;
1176 }
1177
1178 /*
1179 * Send return code to the session daemon.
1180 * If the socket is not defined, we return 0, it is not a fatal error
1181 */
1182 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1183 {
1184 if (ctx->consumer_error_socket > 0) {
1185 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1186 sizeof(enum lttcomm_sessiond_command));
1187 }
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * Close all the tracefiles and stream fds and MUST be called when all
1194 * instances are destroyed i.e. when all threads were joined and are ended.
1195 */
1196 void lttng_consumer_cleanup(void)
1197 {
1198 struct lttng_ht_iter iter;
1199 struct lttng_consumer_channel *channel;
1200
1201 rcu_read_lock();
1202
1203 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1204 node.node) {
1205 consumer_del_channel(channel);
1206 }
1207
1208 rcu_read_unlock();
1209
1210 lttng_ht_destroy(consumer_data.channel_ht);
1211
1212 cleanup_relayd_ht();
1213
1214 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1215
1216 /*
1217 * This HT contains streams that are freed by either the metadata thread or
1218 * the data thread so we do *nothing* on the hash table and simply destroy
1219 * it.
1220 */
1221 lttng_ht_destroy(consumer_data.stream_list_ht);
1222 }
1223
1224 /*
1225 * Called from signal handler.
1226 */
1227 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1228 {
1229 ssize_t ret;
1230
1231 consumer_quit = 1;
1232 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1233 if (ret < 1) {
1234 PERROR("write consumer quit");
1235 }
1236
1237 DBG("Consumer flag that it should quit");
1238 }
1239
1240
1241 /*
1242 * Flush pending writes to trace output disk file.
1243 */
1244 static
1245 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1246 off_t orig_offset)
1247 {
1248 int ret;
1249 int outfd = stream->out_fd;
1250
1251 /*
1252 * This does a blocking write-and-wait on any page that belongs to the
1253 * subbuffer prior to the one we just wrote.
1254 * Don't care about error values, as these are just hints and ways to
1255 * limit the amount of page cache used.
1256 */
1257 if (orig_offset < stream->max_sb_size) {
1258 return;
1259 }
1260 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1261 stream->max_sb_size,
1262 SYNC_FILE_RANGE_WAIT_BEFORE
1263 | SYNC_FILE_RANGE_WRITE
1264 | SYNC_FILE_RANGE_WAIT_AFTER);
1265 /*
1266 * Give hints to the kernel about how we access the file:
1267 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1268 * we write it.
1269 *
1270 * We need to call fadvise again after the file grows because the
1271 * kernel does not seem to apply fadvise to non-existing parts of the
1272 * file.
1273 *
1274 * Call fadvise _after_ having waited for the page writeback to
1275 * complete because the dirty page writeback semantic is not well
1276 * defined. So it can be expected to lead to lower throughput in
1277 * streaming.
1278 */
1279 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1280 stream->max_sb_size, POSIX_FADV_DONTNEED);
1281 if (ret && ret != -ENOSYS) {
1282 errno = ret;
1283 PERROR("posix_fadvise on fd %i", outfd);
1284 }
1285 }
1286
1287 /*
1288 * Initialise the necessary environnement :
1289 * - create a new context
1290 * - create the poll_pipe
1291 * - create the should_quit pipe (for signal handler)
1292 * - create the thread pipe (for splice)
1293 *
1294 * Takes a function pointer as argument, this function is called when data is
1295 * available on a buffer. This function is responsible to do the
1296 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1297 * buffer configuration and then kernctl_put_next_subbuf at the end.
1298 *
1299 * Returns a pointer to the new context or NULL on error.
1300 */
1301 struct lttng_consumer_local_data *lttng_consumer_create(
1302 enum lttng_consumer_type type,
1303 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1304 struct lttng_consumer_local_data *ctx),
1305 int (*recv_channel)(struct lttng_consumer_channel *channel),
1306 int (*recv_stream)(struct lttng_consumer_stream *stream),
1307 int (*update_stream)(uint64_t stream_key, uint32_t state))
1308 {
1309 int ret;
1310 struct lttng_consumer_local_data *ctx;
1311
1312 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1313 consumer_data.type == type);
1314 consumer_data.type = type;
1315
1316 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1317 if (ctx == NULL) {
1318 PERROR("allocating context");
1319 goto error;
1320 }
1321
1322 ctx->consumer_error_socket = -1;
1323 ctx->consumer_metadata_socket = -1;
1324 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1325 /* assign the callbacks */
1326 ctx->on_buffer_ready = buffer_ready;
1327 ctx->on_recv_channel = recv_channel;
1328 ctx->on_recv_stream = recv_stream;
1329 ctx->on_update_stream = update_stream;
1330
1331 ctx->consumer_data_pipe = lttng_pipe_open(0);
1332 if (!ctx->consumer_data_pipe) {
1333 goto error_poll_pipe;
1334 }
1335
1336 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1337 if (!ctx->consumer_wakeup_pipe) {
1338 goto error_wakeup_pipe;
1339 }
1340
1341 ret = pipe(ctx->consumer_should_quit);
1342 if (ret < 0) {
1343 PERROR("Error creating recv pipe");
1344 goto error_quit_pipe;
1345 }
1346
1347 ret = pipe(ctx->consumer_channel_pipe);
1348 if (ret < 0) {
1349 PERROR("Error creating channel pipe");
1350 goto error_channel_pipe;
1351 }
1352
1353 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1354 if (!ctx->consumer_metadata_pipe) {
1355 goto error_metadata_pipe;
1356 }
1357
1358 return ctx;
1359
1360 error_metadata_pipe:
1361 utils_close_pipe(ctx->consumer_channel_pipe);
1362 error_channel_pipe:
1363 utils_close_pipe(ctx->consumer_should_quit);
1364 error_quit_pipe:
1365 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1366 error_wakeup_pipe:
1367 lttng_pipe_destroy(ctx->consumer_data_pipe);
1368 error_poll_pipe:
1369 free(ctx);
1370 error:
1371 return NULL;
1372 }
1373
1374 /*
1375 * Iterate over all streams of the hashtable and free them properly.
1376 */
1377 static void destroy_data_stream_ht(struct lttng_ht *ht)
1378 {
1379 struct lttng_ht_iter iter;
1380 struct lttng_consumer_stream *stream;
1381
1382 if (ht == NULL) {
1383 return;
1384 }
1385
1386 rcu_read_lock();
1387 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1388 /*
1389 * Ignore return value since we are currently cleaning up so any error
1390 * can't be handled.
1391 */
1392 (void) consumer_del_stream(stream, ht);
1393 }
1394 rcu_read_unlock();
1395
1396 lttng_ht_destroy(ht);
1397 }
1398
1399 /*
1400 * Iterate over all streams of the metadata hashtable and free them
1401 * properly.
1402 */
1403 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1404 {
1405 struct lttng_ht_iter iter;
1406 struct lttng_consumer_stream *stream;
1407
1408 if (ht == NULL) {
1409 return;
1410 }
1411
1412 rcu_read_lock();
1413 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1414 /*
1415 * Ignore return value since we are currently cleaning up so any error
1416 * can't be handled.
1417 */
1418 (void) consumer_del_metadata_stream(stream, ht);
1419 }
1420 rcu_read_unlock();
1421
1422 lttng_ht_destroy(ht);
1423 }
1424
1425 /*
1426 * Close all fds associated with the instance and free the context.
1427 */
1428 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1429 {
1430 int ret;
1431
1432 DBG("Consumer destroying it. Closing everything.");
1433
1434 if (!ctx) {
1435 return;
1436 }
1437
1438 destroy_data_stream_ht(data_ht);
1439 destroy_metadata_stream_ht(metadata_ht);
1440
1441 ret = close(ctx->consumer_error_socket);
1442 if (ret) {
1443 PERROR("close");
1444 }
1445 ret = close(ctx->consumer_metadata_socket);
1446 if (ret) {
1447 PERROR("close");
1448 }
1449 utils_close_pipe(ctx->consumer_channel_pipe);
1450 lttng_pipe_destroy(ctx->consumer_data_pipe);
1451 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1452 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1453 utils_close_pipe(ctx->consumer_should_quit);
1454
1455 unlink(ctx->consumer_command_sock_path);
1456 free(ctx);
1457 }
1458
1459 /*
1460 * Write the metadata stream id on the specified file descriptor.
1461 */
1462 static int write_relayd_metadata_id(int fd,
1463 struct lttng_consumer_stream *stream,
1464 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1465 {
1466 ssize_t ret;
1467 struct lttcomm_relayd_metadata_payload hdr;
1468
1469 hdr.stream_id = htobe64(stream->relayd_stream_id);
1470 hdr.padding_size = htobe32(padding);
1471 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1472 if (ret < sizeof(hdr)) {
1473 /*
1474 * This error means that the fd's end is closed so ignore the PERROR
1475 * not to clubber the error output since this can happen in a normal
1476 * code path.
1477 */
1478 if (errno != EPIPE) {
1479 PERROR("write metadata stream id");
1480 }
1481 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1482 /*
1483 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1484 * handle writting the missing part so report that as an error and
1485 * don't lie to the caller.
1486 */
1487 ret = -1;
1488 goto end;
1489 }
1490 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1491 stream->relayd_stream_id, padding);
1492
1493 end:
1494 return (int) ret;
1495 }
1496
1497 /*
1498 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1499 * core function for writing trace buffers to either the local filesystem or
1500 * the network.
1501 *
1502 * It must be called with the stream lock held.
1503 *
1504 * Careful review MUST be put if any changes occur!
1505 *
1506 * Returns the number of bytes written
1507 */
1508 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1509 struct lttng_consumer_local_data *ctx,
1510 struct lttng_consumer_stream *stream, unsigned long len,
1511 unsigned long padding,
1512 struct ctf_packet_index *index)
1513 {
1514 unsigned long mmap_offset;
1515 void *mmap_base;
1516 ssize_t ret = 0;
1517 off_t orig_offset = stream->out_fd_offset;
1518 /* Default is on the disk */
1519 int outfd = stream->out_fd;
1520 struct consumer_relayd_sock_pair *relayd = NULL;
1521 unsigned int relayd_hang_up = 0;
1522
1523 /* RCU lock for the relayd pointer */
1524 rcu_read_lock();
1525
1526 /* Flag that the current stream if set for network streaming. */
1527 if (stream->relayd_id != (uint64_t) -1ULL) {
1528 relayd = consumer_find_relayd(stream->relayd_id);
1529 if (relayd == NULL) {
1530 ret = -EPIPE;
1531 goto end;
1532 }
1533 }
1534
1535 /* get the offset inside the fd to mmap */
1536 switch (consumer_data.type) {
1537 case LTTNG_CONSUMER_KERNEL:
1538 mmap_base = stream->mmap_base;
1539 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1540 if (ret < 0) {
1541 PERROR("tracer ctl get_mmap_read_offset");
1542 goto end;
1543 }
1544 break;
1545 case LTTNG_CONSUMER32_UST:
1546 case LTTNG_CONSUMER64_UST:
1547 mmap_base = lttng_ustctl_get_mmap_base(stream);
1548 if (!mmap_base) {
1549 ERR("read mmap get mmap base for stream %s", stream->name);
1550 ret = -EPERM;
1551 goto end;
1552 }
1553 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1554 if (ret != 0) {
1555 PERROR("tracer ctl get_mmap_read_offset");
1556 ret = -EINVAL;
1557 goto end;
1558 }
1559 break;
1560 default:
1561 ERR("Unknown consumer_data type");
1562 assert(0);
1563 }
1564
1565 /* Handle stream on the relayd if the output is on the network */
1566 if (relayd) {
1567 unsigned long netlen = len;
1568
1569 /*
1570 * Lock the control socket for the complete duration of the function
1571 * since from this point on we will use the socket.
1572 */
1573 if (stream->metadata_flag) {
1574 /* Metadata requires the control socket. */
1575 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1576 if (stream->reset_metadata_flag) {
1577 ret = relayd_reset_metadata(&relayd->control_sock,
1578 stream->relayd_stream_id,
1579 stream->metadata_version);
1580 if (ret < 0) {
1581 relayd_hang_up = 1;
1582 goto write_error;
1583 }
1584 stream->reset_metadata_flag = 0;
1585 }
1586 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1587 }
1588
1589 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1590 if (ret < 0) {
1591 relayd_hang_up = 1;
1592 goto write_error;
1593 }
1594 /* Use the returned socket. */
1595 outfd = ret;
1596
1597 /* Write metadata stream id before payload */
1598 if (stream->metadata_flag) {
1599 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1600 if (ret < 0) {
1601 relayd_hang_up = 1;
1602 goto write_error;
1603 }
1604 }
1605 } else {
1606 /* No streaming, we have to set the len with the full padding */
1607 len += padding;
1608
1609 if (stream->metadata_flag && stream->reset_metadata_flag) {
1610 ret = utils_truncate_stream_file(stream->out_fd, 0);
1611 if (ret < 0) {
1612 ERR("Reset metadata file");
1613 goto end;
1614 }
1615 stream->reset_metadata_flag = 0;
1616 }
1617
1618 /*
1619 * Check if we need to change the tracefile before writing the packet.
1620 */
1621 if (stream->chan->tracefile_size > 0 &&
1622 (stream->tracefile_size_current + len) >
1623 stream->chan->tracefile_size) {
1624 ret = utils_rotate_stream_file(stream->chan->pathname,
1625 stream->name, stream->chan->tracefile_size,
1626 stream->chan->tracefile_count, stream->uid, stream->gid,
1627 stream->out_fd, &(stream->tracefile_count_current),
1628 &stream->out_fd);
1629 if (ret < 0) {
1630 ERR("Rotating output file");
1631 goto end;
1632 }
1633 outfd = stream->out_fd;
1634
1635 if (stream->index_file) {
1636 lttng_index_file_put(stream->index_file);
1637 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1638 stream->name, stream->uid, stream->gid,
1639 stream->chan->tracefile_size,
1640 stream->tracefile_count_current,
1641 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1642 if (!stream->index_file) {
1643 goto end;
1644 }
1645 }
1646
1647 /* Reset current size because we just perform a rotation. */
1648 stream->tracefile_size_current = 0;
1649 stream->out_fd_offset = 0;
1650 orig_offset = 0;
1651 }
1652 stream->tracefile_size_current += len;
1653 if (index) {
1654 index->offset = htobe64(stream->out_fd_offset);
1655 }
1656 }
1657
1658 /*
1659 * This call guarantee that len or less is returned. It's impossible to
1660 * receive a ret value that is bigger than len.
1661 */
1662 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1663 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1664 if (ret < 0 || ((size_t) ret != len)) {
1665 /*
1666 * Report error to caller if nothing was written else at least send the
1667 * amount written.
1668 */
1669 if (ret < 0) {
1670 ret = -errno;
1671 }
1672 relayd_hang_up = 1;
1673
1674 /* Socket operation failed. We consider the relayd dead */
1675 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1676 /*
1677 * This is possible if the fd is closed on the other side
1678 * (outfd) or any write problem. It can be verbose a bit for a
1679 * normal execution if for instance the relayd is stopped
1680 * abruptly. This can happen so set this to a DBG statement.
1681 */
1682 DBG("Consumer mmap write detected relayd hang up");
1683 } else {
1684 /* Unhandled error, print it and stop function right now. */
1685 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1686 }
1687 goto write_error;
1688 }
1689 stream->output_written += ret;
1690
1691 /* This call is useless on a socket so better save a syscall. */
1692 if (!relayd) {
1693 /* This won't block, but will start writeout asynchronously */
1694 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1695 SYNC_FILE_RANGE_WRITE);
1696 stream->out_fd_offset += len;
1697 lttng_consumer_sync_trace_file(stream, orig_offset);
1698 }
1699
1700 write_error:
1701 /*
1702 * This is a special case that the relayd has closed its socket. Let's
1703 * cleanup the relayd object and all associated streams.
1704 */
1705 if (relayd && relayd_hang_up) {
1706 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->id);
1707 lttng_consumer_cleanup_relayd(relayd);
1708 }
1709
1710 end:
1711 /* Unlock only if ctrl socket used */
1712 if (relayd && stream->metadata_flag) {
1713 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1714 }
1715
1716 rcu_read_unlock();
1717 return ret;
1718 }
1719
1720 /*
1721 * Splice the data from the ring buffer to the tracefile.
1722 *
1723 * It must be called with the stream lock held.
1724 *
1725 * Returns the number of bytes spliced.
1726 */
1727 ssize_t lttng_consumer_on_read_subbuffer_splice(
1728 struct lttng_consumer_local_data *ctx,
1729 struct lttng_consumer_stream *stream, unsigned long len,
1730 unsigned long padding,
1731 struct ctf_packet_index *index)
1732 {
1733 ssize_t ret = 0, written = 0, ret_splice = 0;
1734 loff_t offset = 0;
1735 off_t orig_offset = stream->out_fd_offset;
1736 int fd = stream->wait_fd;
1737 /* Default is on the disk */
1738 int outfd = stream->out_fd;
1739 struct consumer_relayd_sock_pair *relayd = NULL;
1740 int *splice_pipe;
1741 unsigned int relayd_hang_up = 0;
1742
1743 switch (consumer_data.type) {
1744 case LTTNG_CONSUMER_KERNEL:
1745 break;
1746 case LTTNG_CONSUMER32_UST:
1747 case LTTNG_CONSUMER64_UST:
1748 /* Not supported for user space tracing */
1749 return -ENOSYS;
1750 default:
1751 ERR("Unknown consumer_data type");
1752 assert(0);
1753 }
1754
1755 /* RCU lock for the relayd pointer */
1756 rcu_read_lock();
1757
1758 /* Flag that the current stream if set for network streaming. */
1759 if (stream->relayd_id != (uint64_t) -1ULL) {
1760 relayd = consumer_find_relayd(stream->relayd_id);
1761 if (relayd == NULL) {
1762 written = -ret;
1763 goto end;
1764 }
1765 }
1766 splice_pipe = stream->splice_pipe;
1767
1768 /* Write metadata stream id before payload */
1769 if (relayd) {
1770 unsigned long total_len = len;
1771
1772 if (stream->metadata_flag) {
1773 /*
1774 * Lock the control socket for the complete duration of the function
1775 * since from this point on we will use the socket.
1776 */
1777 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1778
1779 if (stream->reset_metadata_flag) {
1780 ret = relayd_reset_metadata(&relayd->control_sock,
1781 stream->relayd_stream_id,
1782 stream->metadata_version);
1783 if (ret < 0) {
1784 relayd_hang_up = 1;
1785 goto write_error;
1786 }
1787 stream->reset_metadata_flag = 0;
1788 }
1789 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1790 padding);
1791 if (ret < 0) {
1792 written = ret;
1793 relayd_hang_up = 1;
1794 goto write_error;
1795 }
1796
1797 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1798 }
1799
1800 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1801 if (ret < 0) {
1802 written = ret;
1803 relayd_hang_up = 1;
1804 goto write_error;
1805 }
1806 /* Use the returned socket. */
1807 outfd = ret;
1808 } else {
1809 /* No streaming, we have to set the len with the full padding */
1810 len += padding;
1811
1812 if (stream->metadata_flag && stream->reset_metadata_flag) {
1813 ret = utils_truncate_stream_file(stream->out_fd, 0);
1814 if (ret < 0) {
1815 ERR("Reset metadata file");
1816 goto end;
1817 }
1818 stream->reset_metadata_flag = 0;
1819 }
1820 /*
1821 * Check if we need to change the tracefile before writing the packet.
1822 */
1823 if (stream->chan->tracefile_size > 0 &&
1824 (stream->tracefile_size_current + len) >
1825 stream->chan->tracefile_size) {
1826 ret = utils_rotate_stream_file(stream->chan->pathname,
1827 stream->name, stream->chan->tracefile_size,
1828 stream->chan->tracefile_count, stream->uid, stream->gid,
1829 stream->out_fd, &(stream->tracefile_count_current),
1830 &stream->out_fd);
1831 if (ret < 0) {
1832 written = ret;
1833 ERR("Rotating output file");
1834 goto end;
1835 }
1836 outfd = stream->out_fd;
1837
1838 if (stream->index_file) {
1839 lttng_index_file_put(stream->index_file);
1840 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1841 stream->name, stream->uid, stream->gid,
1842 stream->chan->tracefile_size,
1843 stream->tracefile_count_current,
1844 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1845 if (!stream->index_file) {
1846 goto end;
1847 }
1848 }
1849
1850 /* Reset current size because we just perform a rotation. */
1851 stream->tracefile_size_current = 0;
1852 stream->out_fd_offset = 0;
1853 orig_offset = 0;
1854 }
1855 stream->tracefile_size_current += len;
1856 index->offset = htobe64(stream->out_fd_offset);
1857 }
1858
1859 while (len > 0) {
1860 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1861 (unsigned long)offset, len, fd, splice_pipe[1]);
1862 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1863 SPLICE_F_MOVE | SPLICE_F_MORE);
1864 DBG("splice chan to pipe, ret %zd", ret_splice);
1865 if (ret_splice < 0) {
1866 ret = errno;
1867 written = -ret;
1868 PERROR("Error in relay splice");
1869 goto splice_error;
1870 }
1871
1872 /* Handle stream on the relayd if the output is on the network */
1873 if (relayd && stream->metadata_flag) {
1874 size_t metadata_payload_size =
1875 sizeof(struct lttcomm_relayd_metadata_payload);
1876
1877 /* Update counter to fit the spliced data */
1878 ret_splice += metadata_payload_size;
1879 len += metadata_payload_size;
1880 /*
1881 * We do this so the return value can match the len passed as
1882 * argument to this function.
1883 */
1884 written -= metadata_payload_size;
1885 }
1886
1887 /* Splice data out */
1888 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1889 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1890 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1891 outfd, ret_splice);
1892 if (ret_splice < 0) {
1893 ret = errno;
1894 written = -ret;
1895 relayd_hang_up = 1;
1896 goto write_error;
1897 } else if (ret_splice > len) {
1898 /*
1899 * We don't expect this code path to be executed but you never know
1900 * so this is an extra protection agains a buggy splice().
1901 */
1902 ret = errno;
1903 written += ret_splice;
1904 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1905 len);
1906 goto splice_error;
1907 } else {
1908 /* All good, update current len and continue. */
1909 len -= ret_splice;
1910 }
1911
1912 /* This call is useless on a socket so better save a syscall. */
1913 if (!relayd) {
1914 /* This won't block, but will start writeout asynchronously */
1915 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1916 SYNC_FILE_RANGE_WRITE);
1917 stream->out_fd_offset += ret_splice;
1918 }
1919 stream->output_written += ret_splice;
1920 written += ret_splice;
1921 }
1922 if (!relayd) {
1923 lttng_consumer_sync_trace_file(stream, orig_offset);
1924 }
1925 goto end;
1926
1927 write_error:
1928 /*
1929 * This is a special case that the relayd has closed its socket. Let's
1930 * cleanup the relayd object and all associated streams.
1931 */
1932 if (relayd && relayd_hang_up) {
1933 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->id);
1934 lttng_consumer_cleanup_relayd(relayd);
1935 /* Skip splice error so the consumer does not fail */
1936 goto end;
1937 }
1938
1939 splice_error:
1940 /* send the appropriate error description to sessiond */
1941 switch (ret) {
1942 case EINVAL:
1943 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1944 break;
1945 case ENOMEM:
1946 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1947 break;
1948 case ESPIPE:
1949 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1950 break;
1951 }
1952
1953 end:
1954 if (relayd && stream->metadata_flag) {
1955 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1956 }
1957
1958 rcu_read_unlock();
1959 return written;
1960 }
1961
1962 /*
1963 * Take a snapshot for a specific fd
1964 *
1965 * Returns 0 on success, < 0 on error
1966 */
1967 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1968 {
1969 switch (consumer_data.type) {
1970 case LTTNG_CONSUMER_KERNEL:
1971 return lttng_kconsumer_take_snapshot(stream);
1972 case LTTNG_CONSUMER32_UST:
1973 case LTTNG_CONSUMER64_UST:
1974 return lttng_ustconsumer_take_snapshot(stream);
1975 default:
1976 ERR("Unknown consumer_data type");
1977 assert(0);
1978 return -ENOSYS;
1979 }
1980 }
1981
1982 /*
1983 * Get the produced position
1984 *
1985 * Returns 0 on success, < 0 on error
1986 */
1987 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1988 unsigned long *pos)
1989 {
1990 switch (consumer_data.type) {
1991 case LTTNG_CONSUMER_KERNEL:
1992 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1993 case LTTNG_CONSUMER32_UST:
1994 case LTTNG_CONSUMER64_UST:
1995 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1996 default:
1997 ERR("Unknown consumer_data type");
1998 assert(0);
1999 return -ENOSYS;
2000 }
2001 }
2002
2003 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2004 int sock, struct pollfd *consumer_sockpoll)
2005 {
2006 switch (consumer_data.type) {
2007 case LTTNG_CONSUMER_KERNEL:
2008 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2009 case LTTNG_CONSUMER32_UST:
2010 case LTTNG_CONSUMER64_UST:
2011 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2012 default:
2013 ERR("Unknown consumer_data type");
2014 assert(0);
2015 return -ENOSYS;
2016 }
2017 }
2018
2019 void lttng_consumer_close_all_metadata(void)
2020 {
2021 switch (consumer_data.type) {
2022 case LTTNG_CONSUMER_KERNEL:
2023 /*
2024 * The Kernel consumer has a different metadata scheme so we don't
2025 * close anything because the stream will be closed by the session
2026 * daemon.
2027 */
2028 break;
2029 case LTTNG_CONSUMER32_UST:
2030 case LTTNG_CONSUMER64_UST:
2031 /*
2032 * Close all metadata streams. The metadata hash table is passed and
2033 * this call iterates over it by closing all wakeup fd. This is safe
2034 * because at this point we are sure that the metadata producer is
2035 * either dead or blocked.
2036 */
2037 lttng_ustconsumer_close_all_metadata(metadata_ht);
2038 break;
2039 default:
2040 ERR("Unknown consumer_data type");
2041 assert(0);
2042 }
2043 }
2044
2045 /*
2046 * Clean up a metadata stream and free its memory.
2047 */
2048 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2049 struct lttng_ht *ht)
2050 {
2051 struct lttng_consumer_channel *free_chan = NULL;
2052
2053 assert(stream);
2054 /*
2055 * This call should NEVER receive regular stream. It must always be
2056 * metadata stream and this is crucial for data structure synchronization.
2057 */
2058 assert(stream->metadata_flag);
2059
2060 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2061
2062 pthread_mutex_lock(&consumer_data.lock);
2063 pthread_mutex_lock(&stream->chan->lock);
2064 pthread_mutex_lock(&stream->lock);
2065 if (stream->chan->metadata_cache) {
2066 /* Only applicable to userspace consumers. */
2067 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2068 }
2069
2070 /* Remove any reference to that stream. */
2071 consumer_stream_delete(stream, ht);
2072
2073 /* Close down everything including the relayd if one. */
2074 consumer_stream_close(stream);
2075 /* Destroy tracer buffers of the stream. */
2076 consumer_stream_destroy_buffers(stream);
2077
2078 /* Atomically decrement channel refcount since other threads can use it. */
2079 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2080 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2081 /* Go for channel deletion! */
2082 free_chan = stream->chan;
2083 }
2084
2085 /*
2086 * Nullify the stream reference so it is not used after deletion. The
2087 * channel lock MUST be acquired before being able to check for a NULL
2088 * pointer value.
2089 */
2090 stream->chan->metadata_stream = NULL;
2091
2092 if (stream->chan->metadata_cache) {
2093 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2094 }
2095 pthread_mutex_unlock(&stream->lock);
2096 pthread_mutex_unlock(&stream->chan->lock);
2097 pthread_mutex_unlock(&consumer_data.lock);
2098
2099 if (free_chan) {
2100 consumer_del_channel(free_chan);
2101 }
2102
2103 consumer_stream_free(stream);
2104 }
2105
2106 /*
2107 * Action done with the metadata stream when adding it to the consumer internal
2108 * data structures to handle it.
2109 */
2110 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2111 {
2112 struct lttng_ht *ht = metadata_ht;
2113 int ret = 0;
2114 struct lttng_ht_iter iter;
2115 struct lttng_ht_node_u64 *node;
2116
2117 assert(stream);
2118 assert(ht);
2119
2120 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2121
2122 pthread_mutex_lock(&consumer_data.lock);
2123 pthread_mutex_lock(&stream->chan->lock);
2124 pthread_mutex_lock(&stream->chan->timer_lock);
2125 pthread_mutex_lock(&stream->lock);
2126
2127 /*
2128 * From here, refcounts are updated so be _careful_ when returning an error
2129 * after this point.
2130 */
2131
2132 rcu_read_lock();
2133
2134 /*
2135 * Lookup the stream just to make sure it does not exist in our internal
2136 * state. This should NEVER happen.
2137 */
2138 lttng_ht_lookup(ht, &stream->key, &iter);
2139 node = lttng_ht_iter_get_node_u64(&iter);
2140 assert(!node);
2141
2142 /*
2143 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2144 * in terms of destroying the associated channel, because the action that
2145 * causes the count to become 0 also causes a stream to be added. The
2146 * channel deletion will thus be triggered by the following removal of this
2147 * stream.
2148 */
2149 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2150 /* Increment refcount before decrementing nb_init_stream_left */
2151 cmm_smp_wmb();
2152 uatomic_dec(&stream->chan->nb_init_stream_left);
2153 }
2154
2155 lttng_ht_add_unique_u64(ht, &stream->node);
2156
2157 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2158 &stream->node_channel_id);
2159
2160 /*
2161 * Add stream to the stream_list_ht of the consumer data. No need to steal
2162 * the key since the HT does not use it and we allow to add redundant keys
2163 * into this table.
2164 */
2165 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2166
2167 rcu_read_unlock();
2168
2169 pthread_mutex_unlock(&stream->lock);
2170 pthread_mutex_unlock(&stream->chan->lock);
2171 pthread_mutex_unlock(&stream->chan->timer_lock);
2172 pthread_mutex_unlock(&consumer_data.lock);
2173 return ret;
2174 }
2175
2176 /*
2177 * Delete data stream that are flagged for deletion (endpoint_status).
2178 */
2179 static void validate_endpoint_status_data_stream(void)
2180 {
2181 struct lttng_ht_iter iter;
2182 struct lttng_consumer_stream *stream;
2183
2184 DBG("Consumer delete flagged data stream");
2185
2186 rcu_read_lock();
2187 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2188 /* Validate delete flag of the stream */
2189 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2190 continue;
2191 }
2192 /* Delete it right now */
2193 consumer_del_stream(stream, data_ht);
2194 }
2195 rcu_read_unlock();
2196 }
2197
2198 /*
2199 * Delete metadata stream that are flagged for deletion (endpoint_status).
2200 */
2201 static void validate_endpoint_status_metadata_stream(
2202 struct lttng_poll_event *pollset)
2203 {
2204 struct lttng_ht_iter iter;
2205 struct lttng_consumer_stream *stream;
2206
2207 DBG("Consumer delete flagged metadata stream");
2208
2209 assert(pollset);
2210
2211 rcu_read_lock();
2212 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2213 /* Validate delete flag of the stream */
2214 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2215 continue;
2216 }
2217 /*
2218 * Remove from pollset so the metadata thread can continue without
2219 * blocking on a deleted stream.
2220 */
2221 lttng_poll_del(pollset, stream->wait_fd);
2222
2223 /* Delete it right now */
2224 consumer_del_metadata_stream(stream, metadata_ht);
2225 }
2226 rcu_read_unlock();
2227 }
2228
2229 /*
2230 * Thread polls on metadata file descriptor and write them on disk or on the
2231 * network.
2232 */
2233 void *consumer_thread_metadata_poll(void *data)
2234 {
2235 int ret, i, pollfd, err = -1;
2236 uint32_t revents, nb_fd;
2237 struct lttng_consumer_stream *stream = NULL;
2238 struct lttng_ht_iter iter;
2239 struct lttng_ht_node_u64 *node;
2240 struct lttng_poll_event events;
2241 struct lttng_consumer_local_data *ctx = data;
2242 ssize_t len;
2243
2244 rcu_register_thread();
2245
2246 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2247
2248 if (testpoint(consumerd_thread_metadata)) {
2249 goto error_testpoint;
2250 }
2251
2252 health_code_update();
2253
2254 DBG("Thread metadata poll started");
2255
2256 /* Size is set to 1 for the consumer_metadata pipe */
2257 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2258 if (ret < 0) {
2259 ERR("Poll set creation failed");
2260 goto end_poll;
2261 }
2262
2263 ret = lttng_poll_add(&events,
2264 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2265 if (ret < 0) {
2266 goto end;
2267 }
2268
2269 /* Main loop */
2270 DBG("Metadata main loop started");
2271
2272 while (1) {
2273 restart:
2274 health_code_update();
2275 health_poll_entry();
2276 DBG("Metadata poll wait");
2277 ret = lttng_poll_wait(&events, -1);
2278 DBG("Metadata poll return from wait with %d fd(s)",
2279 LTTNG_POLL_GETNB(&events));
2280 health_poll_exit();
2281 DBG("Metadata event caught in thread");
2282 if (ret < 0) {
2283 if (errno == EINTR) {
2284 ERR("Poll EINTR caught");
2285 goto restart;
2286 }
2287 if (LTTNG_POLL_GETNB(&events) == 0) {
2288 err = 0; /* All is OK */
2289 }
2290 goto end;
2291 }
2292
2293 nb_fd = ret;
2294
2295 /* From here, the event is a metadata wait fd */
2296 for (i = 0; i < nb_fd; i++) {
2297 health_code_update();
2298
2299 revents = LTTNG_POLL_GETEV(&events, i);
2300 pollfd = LTTNG_POLL_GETFD(&events, i);
2301
2302 if (!revents) {
2303 /* No activity for this FD (poll implementation). */
2304 continue;
2305 }
2306
2307 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2308 if (revents & LPOLLIN) {
2309 ssize_t pipe_len;
2310
2311 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2312 &stream, sizeof(stream));
2313 if (pipe_len < sizeof(stream)) {
2314 if (pipe_len < 0) {
2315 PERROR("read metadata stream");
2316 }
2317 /*
2318 * Remove the pipe from the poll set and continue the loop
2319 * since their might be data to consume.
2320 */
2321 lttng_poll_del(&events,
2322 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2323 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2324 continue;
2325 }
2326
2327 /* A NULL stream means that the state has changed. */
2328 if (stream == NULL) {
2329 /* Check for deleted streams. */
2330 validate_endpoint_status_metadata_stream(&events);
2331 goto restart;
2332 }
2333
2334 DBG("Adding metadata stream %d to poll set",
2335 stream->wait_fd);
2336
2337 /* Add metadata stream to the global poll events list */
2338 lttng_poll_add(&events, stream->wait_fd,
2339 LPOLLIN | LPOLLPRI | LPOLLHUP);
2340 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2341 DBG("Metadata thread pipe hung up");
2342 /*
2343 * Remove the pipe from the poll set and continue the loop
2344 * since their might be data to consume.
2345 */
2346 lttng_poll_del(&events,
2347 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2348 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2349 continue;
2350 } else {
2351 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2352 goto end;
2353 }
2354
2355 /* Handle other stream */
2356 continue;
2357 }
2358
2359 rcu_read_lock();
2360 {
2361 uint64_t tmp_id = (uint64_t) pollfd;
2362
2363 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2364 }
2365 node = lttng_ht_iter_get_node_u64(&iter);
2366 assert(node);
2367
2368 stream = caa_container_of(node, struct lttng_consumer_stream,
2369 node);
2370
2371 if (revents & (LPOLLIN | LPOLLPRI)) {
2372 /* Get the data out of the metadata file descriptor */
2373 DBG("Metadata available on fd %d", pollfd);
2374 assert(stream->wait_fd == pollfd);
2375
2376 do {
2377 health_code_update();
2378
2379 len = ctx->on_buffer_ready(stream, ctx);
2380 /*
2381 * We don't check the return value here since if we get
2382 * a negative len, it means an error occurred thus we
2383 * simply remove it from the poll set and free the
2384 * stream.
2385 */
2386 } while (len > 0);
2387
2388 /* It's ok to have an unavailable sub-buffer */
2389 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2390 /* Clean up stream from consumer and free it. */
2391 lttng_poll_del(&events, stream->wait_fd);
2392 consumer_del_metadata_stream(stream, metadata_ht);
2393 }
2394 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2395 DBG("Metadata fd %d is hup|err.", pollfd);
2396 if (!stream->hangup_flush_done
2397 && (consumer_data.type == LTTNG_CONSUMER32_UST
2398 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2399 DBG("Attempting to flush and consume the UST buffers");
2400 lttng_ustconsumer_on_stream_hangup(stream);
2401
2402 /* We just flushed the stream now read it. */
2403 do {
2404 health_code_update();
2405
2406 len = ctx->on_buffer_ready(stream, ctx);
2407 /*
2408 * We don't check the return value here since if we get
2409 * a negative len, it means an error occurred thus we
2410 * simply remove it from the poll set and free the
2411 * stream.
2412 */
2413 } while (len > 0);
2414 }
2415
2416 lttng_poll_del(&events, stream->wait_fd);
2417 /*
2418 * This call update the channel states, closes file descriptors
2419 * and securely free the stream.
2420 */
2421 consumer_del_metadata_stream(stream, metadata_ht);
2422 } else {
2423 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2424 rcu_read_unlock();
2425 goto end;
2426 }
2427 /* Release RCU lock for the stream looked up */
2428 rcu_read_unlock();
2429 }
2430 }
2431
2432 /* All is OK */
2433 err = 0;
2434 end:
2435 DBG("Metadata poll thread exiting");
2436
2437 lttng_poll_clean(&events);
2438 end_poll:
2439 error_testpoint:
2440 if (err) {
2441 health_error();
2442 ERR("Health error occurred in %s", __func__);
2443 }
2444 health_unregister(health_consumerd);
2445 rcu_unregister_thread();
2446 return NULL;
2447 }
2448
2449 /*
2450 * This thread polls the fds in the set to consume the data and write
2451 * it to tracefile if necessary.
2452 */
2453 void *consumer_thread_data_poll(void *data)
2454 {
2455 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2456 struct pollfd *pollfd = NULL;
2457 /* local view of the streams */
2458 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2459 /* local view of consumer_data.fds_count */
2460 int nb_fd = 0;
2461 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2462 int nb_inactive_fd = 0;
2463 struct lttng_consumer_local_data *ctx = data;
2464 ssize_t len;
2465
2466 rcu_register_thread();
2467
2468 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2469
2470 if (testpoint(consumerd_thread_data)) {
2471 goto error_testpoint;
2472 }
2473
2474 health_code_update();
2475
2476 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2477 if (local_stream == NULL) {
2478 PERROR("local_stream malloc");
2479 goto end;
2480 }
2481
2482 while (1) {
2483 health_code_update();
2484
2485 high_prio = 0;
2486 num_hup = 0;
2487
2488 /*
2489 * the fds set has been updated, we need to update our
2490 * local array as well
2491 */
2492 pthread_mutex_lock(&consumer_data.lock);
2493 if (consumer_data.need_update) {
2494 free(pollfd);
2495 pollfd = NULL;
2496
2497 free(local_stream);
2498 local_stream = NULL;
2499
2500 /*
2501 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2502 * wake up pipe.
2503 */
2504 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2505 if (pollfd == NULL) {
2506 PERROR("pollfd malloc");
2507 pthread_mutex_unlock(&consumer_data.lock);
2508 goto end;
2509 }
2510
2511 local_stream = zmalloc((consumer_data.stream_count + 2) *
2512 sizeof(struct lttng_consumer_stream *));
2513 if (local_stream == NULL) {
2514 PERROR("local_stream malloc");
2515 pthread_mutex_unlock(&consumer_data.lock);
2516 goto end;
2517 }
2518 ret = update_poll_array(ctx, &pollfd, local_stream,
2519 data_ht, &nb_inactive_fd);
2520 if (ret < 0) {
2521 ERR("Error in allocating pollfd or local_outfds");
2522 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2523 pthread_mutex_unlock(&consumer_data.lock);
2524 goto end;
2525 }
2526 nb_fd = ret;
2527 consumer_data.need_update = 0;
2528 }
2529 pthread_mutex_unlock(&consumer_data.lock);
2530
2531 /* No FDs and consumer_quit, consumer_cleanup the thread */
2532 if (nb_fd == 0 && consumer_quit == 1 && nb_inactive_fd == 0) {
2533 err = 0; /* All is OK */
2534 goto end;
2535 }
2536 /* poll on the array of fds */
2537 restart:
2538 DBG("polling on %d fd", nb_fd + 2);
2539 health_poll_entry();
2540 num_rdy = poll(pollfd, nb_fd + 2, -1);
2541 health_poll_exit();
2542 DBG("poll num_rdy : %d", num_rdy);
2543 if (num_rdy == -1) {
2544 /*
2545 * Restart interrupted system call.
2546 */
2547 if (errno == EINTR) {
2548 goto restart;
2549 }
2550 PERROR("Poll error");
2551 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2552 goto end;
2553 } else if (num_rdy == 0) {
2554 DBG("Polling thread timed out");
2555 goto end;
2556 }
2557
2558 /*
2559 * If the consumer_data_pipe triggered poll go directly to the
2560 * beginning of the loop to update the array. We want to prioritize
2561 * array update over low-priority reads.
2562 */
2563 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2564 ssize_t pipe_readlen;
2565
2566 DBG("consumer_data_pipe wake up");
2567 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2568 &new_stream, sizeof(new_stream));
2569 if (pipe_readlen < sizeof(new_stream)) {
2570 PERROR("Consumer data pipe");
2571 /* Continue so we can at least handle the current stream(s). */
2572 continue;
2573 }
2574
2575 /*
2576 * If the stream is NULL, just ignore it. It's also possible that
2577 * the sessiond poll thread changed the consumer_quit state and is
2578 * waking us up to test it.
2579 */
2580 if (new_stream == NULL) {
2581 validate_endpoint_status_data_stream();
2582 continue;
2583 }
2584
2585 /* Continue to update the local streams and handle prio ones */
2586 continue;
2587 }
2588
2589 /* Handle wakeup pipe. */
2590 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2591 char dummy;
2592 ssize_t pipe_readlen;
2593
2594 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2595 sizeof(dummy));
2596 if (pipe_readlen < 0) {
2597 PERROR("Consumer data wakeup pipe");
2598 }
2599 /* We've been awakened to handle stream(s). */
2600 ctx->has_wakeup = 0;
2601 }
2602
2603 /* Take care of high priority channels first. */
2604 for (i = 0; i < nb_fd; i++) {
2605 health_code_update();
2606
2607 if (local_stream[i] == NULL) {
2608 continue;
2609 }
2610 if (pollfd[i].revents & POLLPRI) {
2611 DBG("Urgent read on fd %d", pollfd[i].fd);
2612 high_prio = 1;
2613 len = ctx->on_buffer_ready(local_stream[i], ctx);
2614 /* it's ok to have an unavailable sub-buffer */
2615 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2616 /* Clean the stream and free it. */
2617 consumer_del_stream(local_stream[i], data_ht);
2618 local_stream[i] = NULL;
2619 } else if (len > 0) {
2620 local_stream[i]->data_read = 1;
2621 }
2622 }
2623 }
2624
2625 /*
2626 * If we read high prio channel in this loop, try again
2627 * for more high prio data.
2628 */
2629 if (high_prio) {
2630 continue;
2631 }
2632
2633 /* Take care of low priority channels. */
2634 for (i = 0; i < nb_fd; i++) {
2635 health_code_update();
2636
2637 if (local_stream[i] == NULL) {
2638 continue;
2639 }
2640 if ((pollfd[i].revents & POLLIN) ||
2641 local_stream[i]->hangup_flush_done ||
2642 local_stream[i]->has_data) {
2643 DBG("Normal read on fd %d", pollfd[i].fd);
2644 len = ctx->on_buffer_ready(local_stream[i], ctx);
2645 /* it's ok to have an unavailable sub-buffer */
2646 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2647 /* Clean the stream and free it. */
2648 consumer_del_stream(local_stream[i], data_ht);
2649 local_stream[i] = NULL;
2650 } else if (len > 0) {
2651 local_stream[i]->data_read = 1;
2652 }
2653 }
2654 }
2655
2656 /* Handle hangup and errors */
2657 for (i = 0; i < nb_fd; i++) {
2658 health_code_update();
2659
2660 if (local_stream[i] == NULL) {
2661 continue;
2662 }
2663 if (!local_stream[i]->hangup_flush_done
2664 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2665 && (consumer_data.type == LTTNG_CONSUMER32_UST
2666 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2667 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2668 pollfd[i].fd);
2669 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2670 /* Attempt read again, for the data we just flushed. */
2671 local_stream[i]->data_read = 1;
2672 }
2673 /*
2674 * If the poll flag is HUP/ERR/NVAL and we have
2675 * read no data in this pass, we can remove the
2676 * stream from its hash table.
2677 */
2678 if ((pollfd[i].revents & POLLHUP)) {
2679 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2680 if (!local_stream[i]->data_read) {
2681 consumer_del_stream(local_stream[i], data_ht);
2682 local_stream[i] = NULL;
2683 num_hup++;
2684 }
2685 } else if (pollfd[i].revents & POLLERR) {
2686 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2687 if (!local_stream[i]->data_read) {
2688 consumer_del_stream(local_stream[i], data_ht);
2689 local_stream[i] = NULL;
2690 num_hup++;
2691 }
2692 } else if (pollfd[i].revents & POLLNVAL) {
2693 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2694 if (!local_stream[i]->data_read) {
2695 consumer_del_stream(local_stream[i], data_ht);
2696 local_stream[i] = NULL;
2697 num_hup++;
2698 }
2699 }
2700 if (local_stream[i] != NULL) {
2701 local_stream[i]->data_read = 0;
2702 }
2703 }
2704 }
2705 /* All is OK */
2706 err = 0;
2707 end:
2708 DBG("polling thread exiting");
2709 free(pollfd);
2710 free(local_stream);
2711
2712 /*
2713 * Close the write side of the pipe so epoll_wait() in
2714 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2715 * read side of the pipe. If we close them both, epoll_wait strangely does
2716 * not return and could create a endless wait period if the pipe is the
2717 * only tracked fd in the poll set. The thread will take care of closing
2718 * the read side.
2719 */
2720 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2721
2722 error_testpoint:
2723 if (err) {
2724 health_error();
2725 ERR("Health error occurred in %s", __func__);
2726 }
2727 health_unregister(health_consumerd);
2728
2729 rcu_unregister_thread();
2730 return NULL;
2731 }
2732
2733 /*
2734 * Close wake-up end of each stream belonging to the channel. This will
2735 * allow the poll() on the stream read-side to detect when the
2736 * write-side (application) finally closes them.
2737 */
2738 static
2739 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2740 {
2741 struct lttng_ht *ht;
2742 struct lttng_consumer_stream *stream;
2743 struct lttng_ht_iter iter;
2744
2745 ht = consumer_data.stream_per_chan_id_ht;
2746
2747 rcu_read_lock();
2748 cds_lfht_for_each_entry_duplicate(ht->ht,
2749 ht->hash_fct(&channel->key, lttng_ht_seed),
2750 ht->match_fct, &channel->key,
2751 &iter.iter, stream, node_channel_id.node) {
2752 /*
2753 * Protect against teardown with mutex.
2754 */
2755 pthread_mutex_lock(&stream->lock);
2756 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2757 goto next;
2758 }
2759 switch (consumer_data.type) {
2760 case LTTNG_CONSUMER_KERNEL:
2761 break;
2762 case LTTNG_CONSUMER32_UST:
2763 case LTTNG_CONSUMER64_UST:
2764 if (stream->metadata_flag) {
2765 /* Safe and protected by the stream lock. */
2766 lttng_ustconsumer_close_metadata(stream->chan);
2767 } else {
2768 /*
2769 * Note: a mutex is taken internally within
2770 * liblttng-ust-ctl to protect timer wakeup_fd
2771 * use from concurrent close.
2772 */
2773 lttng_ustconsumer_close_stream_wakeup(stream);
2774 }
2775 break;
2776 default:
2777 ERR("Unknown consumer_data type");
2778 assert(0);
2779 }
2780 next:
2781 pthread_mutex_unlock(&stream->lock);
2782 }
2783 rcu_read_unlock();
2784 }
2785
2786 static void destroy_channel_ht(struct lttng_ht *ht)
2787 {
2788 struct lttng_ht_iter iter;
2789 struct lttng_consumer_channel *channel;
2790 int ret;
2791
2792 if (ht == NULL) {
2793 return;
2794 }
2795
2796 rcu_read_lock();
2797 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2798 ret = lttng_ht_del(ht, &iter);
2799 assert(ret != 0);
2800 }
2801 rcu_read_unlock();
2802
2803 lttng_ht_destroy(ht);
2804 }
2805
2806 /*
2807 * This thread polls the channel fds to detect when they are being
2808 * closed. It closes all related streams if the channel is detected as
2809 * closed. It is currently only used as a shim layer for UST because the
2810 * consumerd needs to keep the per-stream wakeup end of pipes open for
2811 * periodical flush.
2812 */
2813 void *consumer_thread_channel_poll(void *data)
2814 {
2815 int ret, i, pollfd, err = -1;
2816 uint32_t revents, nb_fd;
2817 struct lttng_consumer_channel *chan = NULL;
2818 struct lttng_ht_iter iter;
2819 struct lttng_ht_node_u64 *node;
2820 struct lttng_poll_event events;
2821 struct lttng_consumer_local_data *ctx = data;
2822 struct lttng_ht *channel_ht;
2823
2824 rcu_register_thread();
2825
2826 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2827
2828 if (testpoint(consumerd_thread_channel)) {
2829 goto error_testpoint;
2830 }
2831
2832 health_code_update();
2833
2834 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2835 if (!channel_ht) {
2836 /* ENOMEM at this point. Better to bail out. */
2837 goto end_ht;
2838 }
2839
2840 DBG("Thread channel poll started");
2841
2842 /* Size is set to 1 for the consumer_channel pipe */
2843 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2844 if (ret < 0) {
2845 ERR("Poll set creation failed");
2846 goto end_poll;
2847 }
2848
2849 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2850 if (ret < 0) {
2851 goto end;
2852 }
2853
2854 /* Main loop */
2855 DBG("Channel main loop started");
2856
2857 while (1) {
2858 restart:
2859 health_code_update();
2860 DBG("Channel poll wait");
2861 health_poll_entry();
2862 ret = lttng_poll_wait(&events, -1);
2863 DBG("Channel poll return from wait with %d fd(s)",
2864 LTTNG_POLL_GETNB(&events));
2865 health_poll_exit();
2866 DBG("Channel event caught in thread");
2867 if (ret < 0) {
2868 if (errno == EINTR) {
2869 ERR("Poll EINTR caught");
2870 goto restart;
2871 }
2872 if (LTTNG_POLL_GETNB(&events) == 0) {
2873 err = 0; /* All is OK */
2874 }
2875 goto end;
2876 }
2877
2878 nb_fd = ret;
2879
2880 /* From here, the event is a channel wait fd */
2881 for (i = 0; i < nb_fd; i++) {
2882 health_code_update();
2883
2884 revents = LTTNG_POLL_GETEV(&events, i);
2885 pollfd = LTTNG_POLL_GETFD(&events, i);
2886
2887 if (!revents) {
2888 /* No activity for this FD (poll implementation). */
2889 continue;
2890 }
2891
2892 if (pollfd == ctx->consumer_channel_pipe[0]) {
2893 if (revents & LPOLLIN) {
2894 enum consumer_channel_action action;
2895 uint64_t key;
2896
2897 ret = read_channel_pipe(ctx, &chan, &key, &action);
2898 if (ret <= 0) {
2899 if (ret < 0) {
2900 ERR("Error reading channel pipe");
2901 }
2902 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2903 continue;
2904 }
2905
2906 switch (action) {
2907 case CONSUMER_CHANNEL_ADD:
2908 DBG("Adding channel %d to poll set",
2909 chan->wait_fd);
2910
2911 lttng_ht_node_init_u64(&chan->wait_fd_node,
2912 chan->wait_fd);
2913 rcu_read_lock();
2914 lttng_ht_add_unique_u64(channel_ht,
2915 &chan->wait_fd_node);
2916 rcu_read_unlock();
2917 /* Add channel to the global poll events list */
2918 lttng_poll_add(&events, chan->wait_fd,
2919 LPOLLERR | LPOLLHUP);
2920 break;
2921 case CONSUMER_CHANNEL_DEL:
2922 {
2923 /*
2924 * This command should never be called if the channel
2925 * has streams monitored by either the data or metadata
2926 * thread. The consumer only notify this thread with a
2927 * channel del. command if it receives a destroy
2928 * channel command from the session daemon that send it
2929 * if a command prior to the GET_CHANNEL failed.
2930 */
2931
2932 rcu_read_lock();
2933 chan = consumer_find_channel(key);
2934 if (!chan) {
2935 rcu_read_unlock();
2936 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2937 break;
2938 }
2939 lttng_poll_del(&events, chan->wait_fd);
2940 iter.iter.node = &chan->wait_fd_node.node;
2941 ret = lttng_ht_del(channel_ht, &iter);
2942 assert(ret == 0);
2943
2944 switch (consumer_data.type) {
2945 case LTTNG_CONSUMER_KERNEL:
2946 break;
2947 case LTTNG_CONSUMER32_UST:
2948 case LTTNG_CONSUMER64_UST:
2949 health_code_update();
2950 /* Destroy streams that might have been left in the stream list. */
2951 clean_channel_stream_list(chan);
2952 break;
2953 default:
2954 ERR("Unknown consumer_data type");
2955 assert(0);
2956 }
2957
2958 /*
2959 * Release our own refcount. Force channel deletion even if
2960 * streams were not initialized.
2961 */
2962 if (!uatomic_sub_return(&chan->refcount, 1)) {
2963 consumer_del_channel(chan);
2964 }
2965 rcu_read_unlock();
2966 goto restart;
2967 }
2968 case CONSUMER_CHANNEL_QUIT:
2969 /*
2970 * Remove the pipe from the poll set and continue the loop
2971 * since their might be data to consume.
2972 */
2973 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2974 continue;
2975 default:
2976 ERR("Unknown action");
2977 break;
2978 }
2979 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2980 DBG("Channel thread pipe hung up");
2981 /*
2982 * Remove the pipe from the poll set and continue the loop
2983 * since their might be data to consume.
2984 */
2985 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2986 continue;
2987 } else {
2988 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2989 goto end;
2990 }
2991
2992 /* Handle other stream */
2993 continue;
2994 }
2995
2996 rcu_read_lock();
2997 {
2998 uint64_t tmp_id = (uint64_t) pollfd;
2999
3000 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3001 }
3002 node = lttng_ht_iter_get_node_u64(&iter);
3003 assert(node);
3004
3005 chan = caa_container_of(node, struct lttng_consumer_channel,
3006 wait_fd_node);
3007
3008 /* Check for error event */
3009 if (revents & (LPOLLERR | LPOLLHUP)) {
3010 DBG("Channel fd %d is hup|err.", pollfd);
3011
3012 lttng_poll_del(&events, chan->wait_fd);
3013 ret = lttng_ht_del(channel_ht, &iter);
3014 assert(ret == 0);
3015
3016 /*
3017 * This will close the wait fd for each stream associated to
3018 * this channel AND monitored by the data/metadata thread thus
3019 * will be clean by the right thread.
3020 */
3021 consumer_close_channel_streams(chan);
3022
3023 /* Release our own refcount */
3024 if (!uatomic_sub_return(&chan->refcount, 1)
3025 && !uatomic_read(&chan->nb_init_stream_left)) {
3026 consumer_del_channel(chan);
3027 }
3028 } else {
3029 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3030 rcu_read_unlock();
3031 goto end;
3032 }
3033
3034 /* Release RCU lock for the channel looked up */
3035 rcu_read_unlock();
3036 }
3037 }
3038
3039 /* All is OK */
3040 err = 0;
3041 end:
3042 lttng_poll_clean(&events);
3043 end_poll:
3044 destroy_channel_ht(channel_ht);
3045 end_ht:
3046 error_testpoint:
3047 DBG("Channel poll thread exiting");
3048 if (err) {
3049 health_error();
3050 ERR("Health error occurred in %s", __func__);
3051 }
3052 health_unregister(health_consumerd);
3053 rcu_unregister_thread();
3054 return NULL;
3055 }
3056
3057 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3058 struct pollfd *sockpoll, int client_socket)
3059 {
3060 int ret;
3061
3062 assert(ctx);
3063 assert(sockpoll);
3064
3065 ret = lttng_consumer_poll_socket(sockpoll);
3066 if (ret) {
3067 goto error;
3068 }
3069 DBG("Metadata connection on client_socket");
3070
3071 /* Blocking call, waiting for transmission */
3072 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3073 if (ctx->consumer_metadata_socket < 0) {
3074 WARN("On accept metadata");
3075 ret = -1;
3076 goto error;
3077 }
3078 ret = 0;
3079
3080 error:
3081 return ret;
3082 }
3083
3084 /*
3085 * This thread listens on the consumerd socket and receives the file
3086 * descriptors from the session daemon.
3087 */
3088 void *consumer_thread_sessiond_poll(void *data)
3089 {
3090 int sock = -1, client_socket, ret, err = -1;
3091 /*
3092 * structure to poll for incoming data on communication socket avoids
3093 * making blocking sockets.
3094 */
3095 struct pollfd consumer_sockpoll[2];
3096 struct lttng_consumer_local_data *ctx = data;
3097
3098 rcu_register_thread();
3099
3100 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3101
3102 if (testpoint(consumerd_thread_sessiond)) {
3103 goto error_testpoint;
3104 }
3105
3106 health_code_update();
3107
3108 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3109 unlink(ctx->consumer_command_sock_path);
3110 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3111 if (client_socket < 0) {
3112 ERR("Cannot create command socket");
3113 goto end;
3114 }
3115
3116 ret = lttcomm_listen_unix_sock(client_socket);
3117 if (ret < 0) {
3118 goto end;
3119 }
3120
3121 DBG("Sending ready command to lttng-sessiond");
3122 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3123 /* return < 0 on error, but == 0 is not fatal */
3124 if (ret < 0) {
3125 ERR("Error sending ready command to lttng-sessiond");
3126 goto end;
3127 }
3128
3129 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3130 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3131 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3132 consumer_sockpoll[1].fd = client_socket;
3133 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3134
3135 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3136 if (ret) {
3137 if (ret > 0) {
3138 /* should exit */
3139 err = 0;
3140 }
3141 goto end;
3142 }
3143 DBG("Connection on client_socket");
3144
3145 /* Blocking call, waiting for transmission */
3146 sock = lttcomm_accept_unix_sock(client_socket);
3147 if (sock < 0) {
3148 WARN("On accept");
3149 goto end;
3150 }
3151
3152 /*
3153 * Setup metadata socket which is the second socket connection on the
3154 * command unix socket.
3155 */
3156 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3157 if (ret) {
3158 if (ret > 0) {
3159 /* should exit */
3160 err = 0;
3161 }
3162 goto end;
3163 }
3164
3165 /* This socket is not useful anymore. */
3166 ret = close(client_socket);
3167 if (ret < 0) {
3168 PERROR("close client_socket");
3169 }
3170 client_socket = -1;
3171
3172 /* update the polling structure to poll on the established socket */
3173 consumer_sockpoll[1].fd = sock;
3174 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3175
3176 while (1) {
3177 health_code_update();
3178
3179 health_poll_entry();
3180 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3181 health_poll_exit();
3182 if (ret) {
3183 if (ret > 0) {
3184 /* should exit */
3185 err = 0;
3186 }
3187 goto end;
3188 }
3189 DBG("Incoming command on sock");
3190 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3191 if (ret <= 0) {
3192 /*
3193 * This could simply be a session daemon quitting. Don't output
3194 * ERR() here.
3195 */
3196 DBG("Communication interrupted on command socket");
3197 err = 0;
3198 goto end;
3199 }
3200 if (consumer_quit) {
3201 DBG("consumer_thread_receive_fds received quit from signal");
3202 err = 0; /* All is OK */
3203 goto end;
3204 }
3205 DBG("received command on sock");
3206 }
3207 /* All is OK */
3208 err = 0;
3209
3210 end:
3211 DBG("Consumer thread sessiond poll exiting");
3212
3213 /*
3214 * Close metadata streams since the producer is the session daemon which
3215 * just died.
3216 *
3217 * NOTE: for now, this only applies to the UST tracer.
3218 */
3219 lttng_consumer_close_all_metadata();
3220
3221 /*
3222 * when all fds have hung up, the polling thread
3223 * can exit cleanly
3224 */
3225 consumer_quit = 1;
3226
3227 /*
3228 * Notify the data poll thread to poll back again and test the
3229 * consumer_quit state that we just set so to quit gracefully.
3230 */
3231 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3232
3233 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3234
3235 notify_health_quit_pipe(health_quit_pipe);
3236
3237 /* Cleaning up possibly open sockets. */
3238 if (sock >= 0) {
3239 ret = close(sock);
3240 if (ret < 0) {
3241 PERROR("close sock sessiond poll");
3242 }
3243 }
3244 if (client_socket >= 0) {
3245 ret = close(client_socket);
3246 if (ret < 0) {
3247 PERROR("close client_socket sessiond poll");
3248 }
3249 }
3250
3251 error_testpoint:
3252 if (err) {
3253 health_error();
3254 ERR("Health error occurred in %s", __func__);
3255 }
3256 health_unregister(health_consumerd);
3257
3258 rcu_unregister_thread();
3259 return NULL;
3260 }
3261
3262 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3263 struct lttng_consumer_local_data *ctx)
3264 {
3265 ssize_t ret;
3266
3267 pthread_mutex_lock(&stream->lock);
3268 if (stream->metadata_flag) {
3269 pthread_mutex_lock(&stream->metadata_rdv_lock);
3270 }
3271
3272 switch (consumer_data.type) {
3273 case LTTNG_CONSUMER_KERNEL:
3274 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3275 break;
3276 case LTTNG_CONSUMER32_UST:
3277 case LTTNG_CONSUMER64_UST:
3278 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3279 break;
3280 default:
3281 ERR("Unknown consumer_data type");
3282 assert(0);
3283 ret = -ENOSYS;
3284 break;
3285 }
3286
3287 if (stream->metadata_flag) {
3288 pthread_cond_broadcast(&stream->metadata_rdv);
3289 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3290 }
3291 pthread_mutex_unlock(&stream->lock);
3292 return ret;
3293 }
3294
3295 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3296 {
3297 switch (consumer_data.type) {
3298 case LTTNG_CONSUMER_KERNEL:
3299 return lttng_kconsumer_on_recv_stream(stream);
3300 case LTTNG_CONSUMER32_UST:
3301 case LTTNG_CONSUMER64_UST:
3302 return lttng_ustconsumer_on_recv_stream(stream);
3303 default:
3304 ERR("Unknown consumer_data type");
3305 assert(0);
3306 return -ENOSYS;
3307 }
3308 }
3309
3310 /*
3311 * Allocate and set consumer data hash tables.
3312 */
3313 int lttng_consumer_init(void)
3314 {
3315 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3316 if (!consumer_data.channel_ht) {
3317 goto error;
3318 }
3319
3320 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3321 if (!consumer_data.relayd_ht) {
3322 goto error;
3323 }
3324
3325 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3326 if (!consumer_data.stream_list_ht) {
3327 goto error;
3328 }
3329
3330 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3331 if (!consumer_data.stream_per_chan_id_ht) {
3332 goto error;
3333 }
3334
3335 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3336 if (!data_ht) {
3337 goto error;
3338 }
3339
3340 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3341 if (!metadata_ht) {
3342 goto error;
3343 }
3344
3345 return 0;
3346
3347 error:
3348 return -1;
3349 }
3350
3351 /*
3352 * Process the ADD_RELAYD command receive by a consumer.
3353 *
3354 * This will create a relayd socket pair and add it to the relayd hash table.
3355 * The caller MUST acquire a RCU read side lock before calling it.
3356 */
3357 void consumer_add_relayd_socket(uint64_t relayd_id, int sock_type,
3358 struct lttng_consumer_local_data *ctx, int sock,
3359 struct pollfd *consumer_sockpoll,
3360 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3361 uint64_t relayd_session_id)
3362 {
3363 int fd = -1, ret = -1, relayd_created = 0;
3364 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3365 struct consumer_relayd_sock_pair *relayd = NULL;
3366
3367 assert(ctx);
3368 assert(relayd_sock);
3369
3370 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", relayd_id);
3371
3372 /* Get relayd reference if exists. */
3373 relayd = consumer_find_relayd(relayd_id);
3374 if (relayd == NULL) {
3375 assert(sock_type == LTTNG_STREAM_CONTROL);
3376 /* Not found. Allocate one. */
3377 relayd = consumer_allocate_relayd_sock_pair(relayd_id);
3378 if (relayd == NULL) {
3379 ret = -ENOMEM;
3380 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3381 goto error;
3382 } else {
3383 relayd->sessiond_session_id = sessiond_id;
3384 relayd_created = 1;
3385 }
3386
3387 /*
3388 * This code path MUST continue to the consumer send status message to
3389 * we can notify the session daemon and continue our work without
3390 * killing everything.
3391 */
3392 } else {
3393 /*
3394 * relayd key should never be found for control socket.
3395 */
3396 assert(sock_type != LTTNG_STREAM_CONTROL);
3397 }
3398
3399 /* First send a status message before receiving the fds. */
3400 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3401 if (ret < 0) {
3402 /* Somehow, the session daemon is not responding anymore. */
3403 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3404 goto error_nosignal;
3405 }
3406
3407 /* Poll on consumer socket. */
3408 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3409 if (ret) {
3410 /* Needing to exit in the middle of a command: error. */
3411 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3412 ret = -EINTR;
3413 goto error_nosignal;
3414 }
3415
3416 /* Get relayd socket from session daemon */
3417 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3418 if (ret != sizeof(fd)) {
3419 ret = -1;
3420 fd = -1; /* Just in case it gets set with an invalid value. */
3421
3422 /*
3423 * Failing to receive FDs might indicate a major problem such as
3424 * reaching a fd limit during the receive where the kernel returns a
3425 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3426 * don't take any chances and stop everything.
3427 *
3428 * XXX: Feature request #558 will fix that and avoid this possible
3429 * issue when reaching the fd limit.
3430 */
3431 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3432 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3433 goto error;
3434 }
3435
3436 /* Copy socket information and received FD */
3437 switch (sock_type) {
3438 case LTTNG_STREAM_CONTROL:
3439 /* Copy received lttcomm socket */
3440 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3441 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3442 /* Handle create_sock error. */
3443 if (ret < 0) {
3444 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3445 goto error;
3446 }
3447 /*
3448 * Close the socket created internally by
3449 * lttcomm_create_sock, so we can replace it by the one
3450 * received from sessiond.
3451 */
3452 if (close(relayd->control_sock.sock.fd)) {
3453 PERROR("close");
3454 }
3455
3456 /* Assign new file descriptor */
3457 relayd->control_sock.sock.fd = fd;
3458 fd = -1; /* For error path */
3459 /* Assign version values. */
3460 relayd->control_sock.major = relayd_sock->major;
3461 relayd->control_sock.minor = relayd_sock->minor;
3462
3463 relayd->relayd_session_id = relayd_session_id;
3464
3465 break;
3466 case LTTNG_STREAM_DATA:
3467 /* Copy received lttcomm socket */
3468 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3469 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3470 /* Handle create_sock error. */
3471 if (ret < 0) {
3472 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3473 goto error;
3474 }
3475 /*
3476 * Close the socket created internally by
3477 * lttcomm_create_sock, so we can replace it by the one
3478 * received from sessiond.
3479 */
3480 if (close(relayd->data_sock.sock.fd)) {
3481 PERROR("close");
3482 }
3483
3484 /* Assign new file descriptor */
3485 relayd->data_sock.sock.fd = fd;
3486 fd = -1; /* for eventual error paths */
3487 /* Assign version values. */
3488 relayd->data_sock.major = relayd_sock->major;
3489 relayd->data_sock.minor = relayd_sock->minor;
3490 break;
3491 default:
3492 ERR("Unknown relayd socket type (%d)", sock_type);
3493 ret = -1;
3494 ret_code = LTTCOMM_CONSUMERD_FATAL;
3495 goto error;
3496 }
3497
3498 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3499 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3500 relayd->id, fd);
3501
3502 /* We successfully added the socket. Send status back. */
3503 ret = consumer_send_status_msg(sock, ret_code);
3504 if (ret < 0) {
3505 /* Somehow, the session daemon is not responding anymore. */
3506 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3507 goto error_nosignal;
3508 }
3509
3510 /*
3511 * Add relayd socket pair to consumer data hashtable. If object already
3512 * exists or on error, the function gracefully returns.
3513 */
3514 relayd->ctx = ctx;
3515 add_relayd(relayd);
3516
3517 /* All good! */
3518 return;
3519
3520 error:
3521 if (consumer_send_status_msg(sock, ret_code) < 0) {
3522 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3523 }
3524
3525 error_nosignal:
3526 /* Close received socket if valid. */
3527 if (fd >= 0) {
3528 if (close(fd)) {
3529 PERROR("close received socket");
3530 }
3531 }
3532
3533 if (relayd_created) {
3534 free(relayd);
3535 }
3536 }
3537
3538 /*
3539 * Search for a relayd associated to the session id and return the reference.
3540 *
3541 * A rcu read side lock MUST be acquire before calling this function and locked
3542 * until the relayd object is no longer necessary.
3543 */
3544 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3545 {
3546 struct lttng_ht_iter iter;
3547 struct consumer_relayd_sock_pair *relayd = NULL;
3548
3549 /* Iterate over all relayd since they are indexed by relayd_id. */
3550 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3551 node.node) {
3552 /*
3553 * Check by sessiond id which is unique here where the relayd session
3554 * id might not be when having multiple relayd.
3555 */
3556 if (relayd->sessiond_session_id == id) {
3557 /* Found the relayd. There can be only one per id. */
3558 goto found;
3559 }
3560 }
3561
3562 return NULL;
3563
3564 found:
3565 return relayd;
3566 }
3567
3568 /*
3569 * Check if for a given session id there is still data needed to be extract
3570 * from the buffers.
3571 *
3572 * Return 1 if data is pending or else 0 meaning ready to be read.
3573 */
3574 int consumer_data_pending(uint64_t id)
3575 {
3576 int ret;
3577 struct lttng_ht_iter iter;
3578 struct lttng_ht *ht;
3579 struct lttng_consumer_stream *stream;
3580 struct consumer_relayd_sock_pair *relayd = NULL;
3581 int (*data_pending)(struct lttng_consumer_stream *);
3582
3583 DBG("Consumer data pending command on session id %" PRIu64, id);
3584
3585 rcu_read_lock();
3586 pthread_mutex_lock(&consumer_data.lock);
3587
3588 switch (consumer_data.type) {
3589 case LTTNG_CONSUMER_KERNEL:
3590 data_pending = lttng_kconsumer_data_pending;
3591 break;
3592 case LTTNG_CONSUMER32_UST:
3593 case LTTNG_CONSUMER64_UST:
3594 data_pending = lttng_ustconsumer_data_pending;
3595 break;
3596 default:
3597 ERR("Unknown consumer data type");
3598 assert(0);
3599 }
3600
3601 /* Ease our life a bit */
3602 ht = consumer_data.stream_list_ht;
3603
3604 cds_lfht_for_each_entry_duplicate(ht->ht,
3605 ht->hash_fct(&id, lttng_ht_seed),
3606 ht->match_fct, &id,
3607 &iter.iter, stream, node_session_id.node) {
3608 pthread_mutex_lock(&stream->lock);
3609
3610 /*
3611 * A removed node from the hash table indicates that the stream has
3612 * been deleted thus having a guarantee that the buffers are closed
3613 * on the consumer side. However, data can still be transmitted
3614 * over the network so don't skip the relayd check.
3615 */
3616 ret = cds_lfht_is_node_deleted(&stream->node.node);
3617 if (!ret) {
3618 /* Check the stream if there is data in the buffers. */
3619 ret = data_pending(stream);
3620 if (ret == 1) {
3621 DBG("Data is pending locally on stream %" PRIu64, stream->key);
3622 pthread_mutex_unlock(&stream->lock);
3623 goto data_pending;
3624 }
3625 }
3626
3627 pthread_mutex_unlock(&stream->lock);
3628 }
3629
3630 relayd = find_relayd_by_session_id(id);
3631 if (relayd) {
3632 unsigned int is_data_inflight = 0;
3633
3634 /* Send init command for data pending. */
3635 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3636 ret = relayd_begin_data_pending(&relayd->control_sock,
3637 relayd->relayd_session_id);
3638 if (ret < 0) {
3639 /* Communication error thus the relayd so no data pending. */
3640 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3641 ERR("Relayd begin data pending failed. Cleaning up relayd %" PRIu64".", relayd->id);
3642 lttng_consumer_cleanup_relayd(relayd);
3643 goto data_not_pending;
3644 }
3645
3646 cds_lfht_for_each_entry_duplicate(ht->ht,
3647 ht->hash_fct(&id, lttng_ht_seed),
3648 ht->match_fct, &id,
3649 &iter.iter, stream, node_session_id.node) {
3650 if (stream->metadata_flag) {
3651 ret = relayd_quiescent_control(&relayd->control_sock,
3652 stream->relayd_stream_id);
3653 } else {
3654 ret = relayd_data_pending(&relayd->control_sock,
3655 stream->relayd_stream_id,
3656 stream->next_net_seq_num - 1);
3657 }
3658 if (ret == 1) {
3659 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3660 pthread_mutex_unlock(&stream->lock);
3661 goto data_pending;
3662 }
3663 if (ret < 0) {
3664 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->id);
3665 lttng_consumer_cleanup_relayd(relayd);
3666 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3667 pthread_mutex_unlock(&stream->lock);
3668 goto data_not_pending;
3669 }
3670 }
3671
3672 /* Send end command for data pending. */
3673 ret = relayd_end_data_pending(&relayd->control_sock,
3674 relayd->relayd_session_id, &is_data_inflight);
3675 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3676 if (ret < 0) {
3677 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->id);
3678 lttng_consumer_cleanup_relayd(relayd);
3679 goto data_not_pending;
3680 }
3681 if (is_data_inflight) {
3682 DBG("Data is in flight on relayd %" PRIu64, relayd->id);
3683 goto data_pending;
3684 }
3685 }
3686
3687 /*
3688 * Finding _no_ node in the hash table and no inflight data means that the
3689 * stream(s) have been removed thus data is guaranteed to be available for
3690 * analysis from the trace files.
3691 */
3692
3693 data_not_pending:
3694 /* Data is available to be read by a viewer. */
3695 pthread_mutex_unlock(&consumer_data.lock);
3696 rcu_read_unlock();
3697 return 0;
3698
3699 data_pending:
3700 /* Data is still being extracted from buffers. */
3701 pthread_mutex_unlock(&consumer_data.lock);
3702 rcu_read_unlock();
3703 return 1;
3704 }
3705
3706 /*
3707 * Send a ret code status message to the sessiond daemon.
3708 *
3709 * Return the sendmsg() return value.
3710 */
3711 int consumer_send_status_msg(int sock, int ret_code)
3712 {
3713 struct lttcomm_consumer_status_msg msg;
3714
3715 memset(&msg, 0, sizeof(msg));
3716 msg.ret_code = ret_code;
3717
3718 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3719 }
3720
3721 /*
3722 * Send a channel status message to the sessiond daemon.
3723 *
3724 * Return the sendmsg() return value.
3725 */
3726 int consumer_send_status_channel(int sock,
3727 struct lttng_consumer_channel *channel)
3728 {
3729 struct lttcomm_consumer_status_channel msg;
3730
3731 assert(sock >= 0);
3732
3733 memset(&msg, 0, sizeof(msg));
3734 if (!channel) {
3735 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3736 } else {
3737 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3738 msg.key = channel->key;
3739 msg.stream_count = channel->streams.count;
3740 }
3741
3742 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3743 }
3744
3745 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3746 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3747 uint64_t max_sb_size)
3748 {
3749 unsigned long start_pos;
3750
3751 if (!nb_packets_per_stream) {
3752 return consumed_pos; /* Grab everything */
3753 }
3754 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3755 start_pos -= max_sb_size * nb_packets_per_stream;
3756 if ((long) (start_pos - consumed_pos) < 0) {
3757 return consumed_pos; /* Grab everything */
3758 }
3759 return start_pos;
3760 }
This page took 0.106358 seconds and 4 git commands to generate.