fix: compare position safely even in case of overflow
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 void consumer_stream_copy_ro_channel_values(struct lttng_consumer_stream *stream,
545 struct lttng_consumer_channel *channel)
546 {
547 stream->channel_ro_tracefile_size = channel->tracefile_size;
548 memcpy(stream->channel_ro_pathname, channel->pathname, PATH_MAX);
549 }
550
551 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
552 uint64_t stream_key,
553 enum lttng_consumer_stream_state state,
554 const char *channel_name,
555 uid_t uid,
556 gid_t gid,
557 uint64_t relayd_id,
558 uint64_t session_id,
559 int cpu,
560 int *alloc_ret,
561 enum consumer_channel_type type,
562 unsigned int monitor)
563 {
564 int ret;
565 struct lttng_consumer_stream *stream;
566
567 stream = zmalloc(sizeof(*stream));
568 if (stream == NULL) {
569 PERROR("malloc struct lttng_consumer_stream");
570 ret = -ENOMEM;
571 goto end;
572 }
573
574 rcu_read_lock();
575
576 stream->key = stream_key;
577 stream->out_fd = -1;
578 stream->out_fd_offset = 0;
579 stream->output_written = 0;
580 stream->state = state;
581 stream->uid = uid;
582 stream->gid = gid;
583 stream->net_seq_idx = relayd_id;
584 stream->session_id = session_id;
585 stream->monitor = monitor;
586 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
587 stream->index_file = NULL;
588 stream->last_sequence_number = -1ULL;
589 pthread_mutex_init(&stream->lock, NULL);
590 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
591
592 /* If channel is the metadata, flag this stream as metadata. */
593 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
594 stream->metadata_flag = 1;
595 /* Metadata is flat out. */
596 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
597 /* Live rendez-vous point. */
598 pthread_cond_init(&stream->metadata_rdv, NULL);
599 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
600 } else {
601 /* Format stream name to <channel_name>_<cpu_number> */
602 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
603 channel_name, cpu);
604 if (ret < 0) {
605 PERROR("snprintf stream name");
606 goto error;
607 }
608 }
609
610 /* Key is always the wait_fd for streams. */
611 lttng_ht_node_init_u64(&stream->node, stream->key);
612
613 /* Init node per channel id key */
614 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
615
616 /* Init session id node with the stream session id */
617 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
618
619 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
620 " relayd_id %" PRIu64 ", session_id %" PRIu64,
621 stream->name, stream->key, channel_key,
622 stream->net_seq_idx, stream->session_id);
623
624 rcu_read_unlock();
625 return stream;
626
627 error:
628 rcu_read_unlock();
629 free(stream);
630 end:
631 if (alloc_ret) {
632 *alloc_ret = ret;
633 }
634 return NULL;
635 }
636
637 /*
638 * Add a stream to the global list protected by a mutex.
639 */
640 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
641 {
642 struct lttng_ht *ht = data_ht;
643 int ret = 0;
644
645 assert(stream);
646 assert(ht);
647
648 DBG3("Adding consumer stream %" PRIu64, stream->key);
649
650 pthread_mutex_lock(&consumer_data.lock);
651 pthread_mutex_lock(&stream->chan->lock);
652 pthread_mutex_lock(&stream->chan->timer_lock);
653 pthread_mutex_lock(&stream->lock);
654 rcu_read_lock();
655
656 /* Steal stream identifier to avoid having streams with the same key */
657 steal_stream_key(stream->key, ht);
658
659 lttng_ht_add_unique_u64(ht, &stream->node);
660
661 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
662 &stream->node_channel_id);
663
664 /*
665 * Add stream to the stream_list_ht of the consumer data. No need to steal
666 * the key since the HT does not use it and we allow to add redundant keys
667 * into this table.
668 */
669 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
670
671 /*
672 * When nb_init_stream_left reaches 0, we don't need to trigger any action
673 * in terms of destroying the associated channel, because the action that
674 * causes the count to become 0 also causes a stream to be added. The
675 * channel deletion will thus be triggered by the following removal of this
676 * stream.
677 */
678 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
679 /* Increment refcount before decrementing nb_init_stream_left */
680 cmm_smp_wmb();
681 uatomic_dec(&stream->chan->nb_init_stream_left);
682 }
683
684 /* Update consumer data once the node is inserted. */
685 consumer_data.stream_count++;
686 consumer_data.need_update = 1;
687
688 rcu_read_unlock();
689 pthread_mutex_unlock(&stream->lock);
690 pthread_mutex_unlock(&stream->chan->timer_lock);
691 pthread_mutex_unlock(&stream->chan->lock);
692 pthread_mutex_unlock(&consumer_data.lock);
693
694 return ret;
695 }
696
697 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
698 {
699 consumer_del_stream(stream, data_ht);
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Find a relayd and send the stream
788 *
789 * Returns 0 on success, < 0 on error
790 */
791 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
792 char *path, enum lttng_domain_type domain)
793 {
794 int ret = 0;
795 struct consumer_relayd_sock_pair *relayd;
796
797 assert(stream);
798 assert(stream->net_seq_idx != -1ULL);
799 assert(path);
800
801 /* The stream is not metadata. Get relayd reference if exists. */
802 rcu_read_lock();
803 relayd = consumer_find_relayd(stream->net_seq_idx);
804 if (relayd != NULL) {
805 /* Add stream on the relayd */
806 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
807 ret = relayd_add_stream(&relayd->control_sock, stream->name,
808 path, &stream->relayd_stream_id,
809 stream->chan->tracefile_size, stream->chan->tracefile_count,
810 domain);
811 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
812 if (ret < 0) {
813 goto end;
814 }
815
816 uatomic_inc(&relayd->refcount);
817 stream->sent_to_relayd = 1;
818 } else {
819 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
820 stream->key, stream->net_seq_idx);
821 ret = -1;
822 goto end;
823 }
824
825 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
826 stream->name, stream->key, stream->net_seq_idx);
827
828 end:
829 rcu_read_unlock();
830 return ret;
831 }
832
833 /*
834 * Find a relayd and send the streams sent message
835 *
836 * Returns 0 on success, < 0 on error
837 */
838 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
839 {
840 int ret = 0;
841 struct consumer_relayd_sock_pair *relayd;
842
843 assert(net_seq_idx != -1ULL);
844
845 /* The stream is not metadata. Get relayd reference if exists. */
846 rcu_read_lock();
847 relayd = consumer_find_relayd(net_seq_idx);
848 if (relayd != NULL) {
849 /* Add stream on the relayd */
850 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
851 ret = relayd_streams_sent(&relayd->control_sock);
852 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
853 if (ret < 0) {
854 goto end;
855 }
856 } else {
857 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
858 net_seq_idx);
859 ret = -1;
860 goto end;
861 }
862
863 ret = 0;
864 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
865
866 end:
867 rcu_read_unlock();
868 return ret;
869 }
870
871 /*
872 * Find a relayd and close the stream
873 */
874 void close_relayd_stream(struct lttng_consumer_stream *stream)
875 {
876 struct consumer_relayd_sock_pair *relayd;
877
878 /* The stream is not metadata. Get relayd reference if exists. */
879 rcu_read_lock();
880 relayd = consumer_find_relayd(stream->net_seq_idx);
881 if (relayd) {
882 consumer_stream_relayd_close(stream, relayd);
883 }
884 rcu_read_unlock();
885 }
886
887 /*
888 * Handle stream for relayd transmission if the stream applies for network
889 * streaming where the net sequence index is set.
890 *
891 * Return destination file descriptor or negative value on error.
892 */
893 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
894 size_t data_size, unsigned long padding,
895 struct consumer_relayd_sock_pair *relayd)
896 {
897 int outfd = -1, ret;
898 struct lttcomm_relayd_data_hdr data_hdr;
899
900 /* Safety net */
901 assert(stream);
902 assert(relayd);
903
904 /* Reset data header */
905 memset(&data_hdr, 0, sizeof(data_hdr));
906
907 if (stream->metadata_flag) {
908 /* Caller MUST acquire the relayd control socket lock */
909 ret = relayd_send_metadata(&relayd->control_sock, data_size);
910 if (ret < 0) {
911 goto error;
912 }
913
914 /* Metadata are always sent on the control socket. */
915 outfd = relayd->control_sock.sock.fd;
916 } else {
917 /* Set header with stream information */
918 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
919 data_hdr.data_size = htobe32(data_size);
920 data_hdr.padding_size = htobe32(padding);
921 /*
922 * Note that net_seq_num below is assigned with the *current* value of
923 * next_net_seq_num and only after that the next_net_seq_num will be
924 * increment. This is why when issuing a command on the relayd using
925 * this next value, 1 should always be substracted in order to compare
926 * the last seen sequence number on the relayd side to the last sent.
927 */
928 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
929 /* Other fields are zeroed previously */
930
931 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
932 sizeof(data_hdr));
933 if (ret < 0) {
934 goto error;
935 }
936
937 ++stream->next_net_seq_num;
938
939 /* Set to go on data socket */
940 outfd = relayd->data_sock.sock.fd;
941 }
942
943 error:
944 return outfd;
945 }
946
947 /*
948 * Allocate and return a new lttng_consumer_channel object using the given key
949 * to initialize the hash table node.
950 *
951 * On error, return NULL.
952 */
953 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
954 uint64_t session_id,
955 const char *pathname,
956 const char *name,
957 uid_t uid,
958 gid_t gid,
959 uint64_t relayd_id,
960 enum lttng_event_output output,
961 uint64_t tracefile_size,
962 uint64_t tracefile_count,
963 uint64_t session_id_per_pid,
964 unsigned int monitor,
965 unsigned int live_timer_interval,
966 const char *root_shm_path,
967 const char *shm_path)
968 {
969 struct lttng_consumer_channel *channel;
970
971 channel = zmalloc(sizeof(*channel));
972 if (channel == NULL) {
973 PERROR("malloc struct lttng_consumer_channel");
974 goto end;
975 }
976
977 channel->key = key;
978 channel->refcount = 0;
979 channel->session_id = session_id;
980 channel->session_id_per_pid = session_id_per_pid;
981 channel->uid = uid;
982 channel->gid = gid;
983 channel->relayd_id = relayd_id;
984 channel->tracefile_size = tracefile_size;
985 channel->tracefile_count = tracefile_count;
986 channel->monitor = monitor;
987 channel->live_timer_interval = live_timer_interval;
988 pthread_mutex_init(&channel->lock, NULL);
989 pthread_mutex_init(&channel->timer_lock, NULL);
990
991 switch (output) {
992 case LTTNG_EVENT_SPLICE:
993 channel->output = CONSUMER_CHANNEL_SPLICE;
994 break;
995 case LTTNG_EVENT_MMAP:
996 channel->output = CONSUMER_CHANNEL_MMAP;
997 break;
998 default:
999 assert(0);
1000 free(channel);
1001 channel = NULL;
1002 goto end;
1003 }
1004
1005 /*
1006 * In monitor mode, the streams associated with the channel will be put in
1007 * a special list ONLY owned by this channel. So, the refcount is set to 1
1008 * here meaning that the channel itself has streams that are referenced.
1009 *
1010 * On a channel deletion, once the channel is no longer visible, the
1011 * refcount is decremented and checked for a zero value to delete it. With
1012 * streams in no monitor mode, it will now be safe to destroy the channel.
1013 */
1014 if (!channel->monitor) {
1015 channel->refcount = 1;
1016 }
1017
1018 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1019 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1020
1021 strncpy(channel->name, name, sizeof(channel->name));
1022 channel->name[sizeof(channel->name) - 1] = '\0';
1023
1024 if (root_shm_path) {
1025 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1026 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1027 }
1028 if (shm_path) {
1029 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1030 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1031 }
1032
1033 lttng_ht_node_init_u64(&channel->node, channel->key);
1034
1035 channel->wait_fd = -1;
1036
1037 CDS_INIT_LIST_HEAD(&channel->streams.head);
1038
1039 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1040
1041 end:
1042 return channel;
1043 }
1044
1045 /*
1046 * Add a channel to the global list protected by a mutex.
1047 *
1048 * Always return 0 indicating success.
1049 */
1050 int consumer_add_channel(struct lttng_consumer_channel *channel,
1051 struct lttng_consumer_local_data *ctx)
1052 {
1053 pthread_mutex_lock(&consumer_data.lock);
1054 pthread_mutex_lock(&channel->lock);
1055 pthread_mutex_lock(&channel->timer_lock);
1056
1057 /*
1058 * This gives us a guarantee that the channel we are about to add to the
1059 * channel hash table will be unique. See this function comment on the why
1060 * we need to steel the channel key at this stage.
1061 */
1062 steal_channel_key(channel->key);
1063
1064 rcu_read_lock();
1065 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1066 rcu_read_unlock();
1067
1068 pthread_mutex_unlock(&channel->timer_lock);
1069 pthread_mutex_unlock(&channel->lock);
1070 pthread_mutex_unlock(&consumer_data.lock);
1071
1072 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1073 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1074 }
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * Allocate the pollfd structure and the local view of the out fds to avoid
1081 * doing a lookup in the linked list and concurrency issues when writing is
1082 * needed. Called with consumer_data.lock held.
1083 *
1084 * Returns the number of fds in the structures.
1085 */
1086 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1087 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1088 struct lttng_ht *ht)
1089 {
1090 int i = 0;
1091 struct lttng_ht_iter iter;
1092 struct lttng_consumer_stream *stream;
1093
1094 assert(ctx);
1095 assert(ht);
1096 assert(pollfd);
1097 assert(local_stream);
1098
1099 DBG("Updating poll fd array");
1100 rcu_read_lock();
1101 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1102 /*
1103 * Only active streams with an active end point can be added to the
1104 * poll set and local stream storage of the thread.
1105 *
1106 * There is a potential race here for endpoint_status to be updated
1107 * just after the check. However, this is OK since the stream(s) will
1108 * be deleted once the thread is notified that the end point state has
1109 * changed where this function will be called back again.
1110 */
1111 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1112 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1113 continue;
1114 }
1115 /*
1116 * This clobbers way too much the debug output. Uncomment that if you
1117 * need it for debugging purposes.
1118 *
1119 * DBG("Active FD %d", stream->wait_fd);
1120 */
1121 (*pollfd)[i].fd = stream->wait_fd;
1122 (*pollfd)[i].events = POLLIN | POLLPRI;
1123 local_stream[i] = stream;
1124 i++;
1125 }
1126 rcu_read_unlock();
1127
1128 /*
1129 * Insert the consumer_data_pipe at the end of the array and don't
1130 * increment i so nb_fd is the number of real FD.
1131 */
1132 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1133 (*pollfd)[i].events = POLLIN | POLLPRI;
1134
1135 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1136 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1137
1138 (*pollfd)[i + 2].fd = lttng_pipe_get_readfd(ctx->consumer_data_rotate_pipe);
1139 (*pollfd)[i + 2].events = POLLIN | POLLPRI;
1140 return i;
1141 }
1142
1143 /*
1144 * Poll on the should_quit pipe and the command socket return -1 on
1145 * error, 1 if should exit, 0 if data is available on the command socket
1146 */
1147 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1148 {
1149 int num_rdy;
1150
1151 restart:
1152 num_rdy = poll(consumer_sockpoll, 2, -1);
1153 if (num_rdy == -1) {
1154 /*
1155 * Restart interrupted system call.
1156 */
1157 if (errno == EINTR) {
1158 goto restart;
1159 }
1160 PERROR("Poll error");
1161 return -1;
1162 }
1163 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1164 DBG("consumer_should_quit wake up");
1165 return 1;
1166 }
1167 return 0;
1168 }
1169
1170 /*
1171 * Set the error socket.
1172 */
1173 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1174 int sock)
1175 {
1176 ctx->consumer_error_socket = sock;
1177 }
1178
1179 /*
1180 * Set the command socket path.
1181 */
1182 void lttng_consumer_set_command_sock_path(
1183 struct lttng_consumer_local_data *ctx, char *sock)
1184 {
1185 ctx->consumer_command_sock_path = sock;
1186 }
1187
1188 /*
1189 * Send return code to the session daemon.
1190 * If the socket is not defined, we return 0, it is not a fatal error
1191 */
1192 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1193 {
1194 if (ctx->consumer_error_socket > 0) {
1195 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1196 sizeof(enum lttcomm_sessiond_command));
1197 }
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Close all the tracefiles and stream fds and MUST be called when all
1204 * instances are destroyed i.e. when all threads were joined and are ended.
1205 */
1206 void lttng_consumer_cleanup(void)
1207 {
1208 struct lttng_ht_iter iter;
1209 struct lttng_consumer_channel *channel;
1210
1211 rcu_read_lock();
1212
1213 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1214 node.node) {
1215 consumer_del_channel(channel);
1216 }
1217
1218 rcu_read_unlock();
1219
1220 lttng_ht_destroy(consumer_data.channel_ht);
1221
1222 cleanup_relayd_ht();
1223
1224 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1225
1226 /*
1227 * This HT contains streams that are freed by either the metadata thread or
1228 * the data thread so we do *nothing* on the hash table and simply destroy
1229 * it.
1230 */
1231 lttng_ht_destroy(consumer_data.stream_list_ht);
1232 }
1233
1234 /*
1235 * Called from signal handler.
1236 */
1237 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1238 {
1239 ssize_t ret;
1240
1241 CMM_STORE_SHARED(consumer_quit, 1);
1242 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1243 if (ret < 1) {
1244 PERROR("write consumer quit");
1245 }
1246
1247 DBG("Consumer flag that it should quit");
1248 }
1249
1250
1251 /*
1252 * Flush pending writes to trace output disk file.
1253 */
1254 static
1255 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1256 off_t orig_offset)
1257 {
1258 int ret;
1259 int outfd = stream->out_fd;
1260
1261 /*
1262 * This does a blocking write-and-wait on any page that belongs to the
1263 * subbuffer prior to the one we just wrote.
1264 * Don't care about error values, as these are just hints and ways to
1265 * limit the amount of page cache used.
1266 */
1267 if (orig_offset < stream->max_sb_size) {
1268 return;
1269 }
1270 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1271 stream->max_sb_size,
1272 SYNC_FILE_RANGE_WAIT_BEFORE
1273 | SYNC_FILE_RANGE_WRITE
1274 | SYNC_FILE_RANGE_WAIT_AFTER);
1275 /*
1276 * Give hints to the kernel about how we access the file:
1277 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1278 * we write it.
1279 *
1280 * We need to call fadvise again after the file grows because the
1281 * kernel does not seem to apply fadvise to non-existing parts of the
1282 * file.
1283 *
1284 * Call fadvise _after_ having waited for the page writeback to
1285 * complete because the dirty page writeback semantic is not well
1286 * defined. So it can be expected to lead to lower throughput in
1287 * streaming.
1288 */
1289 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1290 stream->max_sb_size, POSIX_FADV_DONTNEED);
1291 if (ret && ret != -ENOSYS) {
1292 errno = ret;
1293 PERROR("posix_fadvise on fd %i", outfd);
1294 }
1295 }
1296
1297 /*
1298 * Initialise the necessary environnement :
1299 * - create a new context
1300 * - create the poll_pipe
1301 * - create the should_quit pipe (for signal handler)
1302 * - create the thread pipe (for splice)
1303 *
1304 * Takes a function pointer as argument, this function is called when data is
1305 * available on a buffer. This function is responsible to do the
1306 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1307 * buffer configuration and then kernctl_put_next_subbuf at the end.
1308 *
1309 * Returns a pointer to the new context or NULL on error.
1310 */
1311 struct lttng_consumer_local_data *lttng_consumer_create(
1312 enum lttng_consumer_type type,
1313 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1314 struct lttng_consumer_local_data *ctx),
1315 int (*recv_channel)(struct lttng_consumer_channel *channel),
1316 int (*recv_stream)(struct lttng_consumer_stream *stream),
1317 int (*update_stream)(uint64_t stream_key, uint32_t state))
1318 {
1319 int ret;
1320 struct lttng_consumer_local_data *ctx;
1321
1322 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1323 consumer_data.type == type);
1324 consumer_data.type = type;
1325
1326 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1327 if (ctx == NULL) {
1328 PERROR("allocating context");
1329 goto error;
1330 }
1331
1332 ctx->consumer_error_socket = -1;
1333 ctx->consumer_metadata_socket = -1;
1334 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1335 /* assign the callbacks */
1336 ctx->on_buffer_ready = buffer_ready;
1337 ctx->on_recv_channel = recv_channel;
1338 ctx->on_recv_stream = recv_stream;
1339 ctx->on_update_stream = update_stream;
1340
1341 ctx->consumer_data_pipe = lttng_pipe_open(0);
1342 if (!ctx->consumer_data_pipe) {
1343 goto error_poll_pipe;
1344 }
1345
1346 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1347 if (!ctx->consumer_wakeup_pipe) {
1348 goto error_wakeup_pipe;
1349 }
1350
1351 ctx->consumer_data_rotate_pipe = lttng_pipe_open(0);
1352 if (!ctx->consumer_data_rotate_pipe) {
1353 goto error_data_rotate_pipe;
1354 }
1355
1356 ctx->consumer_metadata_rotate_pipe = lttng_pipe_open(0);
1357 if (!ctx->consumer_metadata_rotate_pipe) {
1358 goto error_metadata_rotate_pipe;
1359 }
1360
1361 ret = pipe(ctx->consumer_should_quit);
1362 if (ret < 0) {
1363 PERROR("Error creating recv pipe");
1364 goto error_quit_pipe;
1365 }
1366
1367 ret = pipe(ctx->consumer_channel_pipe);
1368 if (ret < 0) {
1369 PERROR("Error creating channel pipe");
1370 goto error_channel_pipe;
1371 }
1372
1373 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1374 if (!ctx->consumer_metadata_pipe) {
1375 goto error_metadata_pipe;
1376 }
1377
1378 ctx->channel_monitor_pipe = -1;
1379
1380 return ctx;
1381
1382 error_metadata_pipe:
1383 utils_close_pipe(ctx->consumer_channel_pipe);
1384 error_channel_pipe:
1385 utils_close_pipe(ctx->consumer_should_quit);
1386 error_quit_pipe:
1387 lttng_pipe_destroy(ctx->consumer_metadata_rotate_pipe);
1388 error_metadata_rotate_pipe:
1389 lttng_pipe_destroy(ctx->consumer_data_rotate_pipe);
1390 error_data_rotate_pipe:
1391 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1392 error_wakeup_pipe:
1393 lttng_pipe_destroy(ctx->consumer_data_pipe);
1394 error_poll_pipe:
1395 free(ctx);
1396 error:
1397 return NULL;
1398 }
1399
1400 /*
1401 * Iterate over all streams of the hashtable and free them properly.
1402 */
1403 static void destroy_data_stream_ht(struct lttng_ht *ht)
1404 {
1405 struct lttng_ht_iter iter;
1406 struct lttng_consumer_stream *stream;
1407
1408 if (ht == NULL) {
1409 return;
1410 }
1411
1412 rcu_read_lock();
1413 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1414 /*
1415 * Ignore return value since we are currently cleaning up so any error
1416 * can't be handled.
1417 */
1418 (void) consumer_del_stream(stream, ht);
1419 }
1420 rcu_read_unlock();
1421
1422 lttng_ht_destroy(ht);
1423 }
1424
1425 /*
1426 * Iterate over all streams of the metadata hashtable and free them
1427 * properly.
1428 */
1429 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1430 {
1431 struct lttng_ht_iter iter;
1432 struct lttng_consumer_stream *stream;
1433
1434 if (ht == NULL) {
1435 return;
1436 }
1437
1438 rcu_read_lock();
1439 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1440 /*
1441 * Ignore return value since we are currently cleaning up so any error
1442 * can't be handled.
1443 */
1444 (void) consumer_del_metadata_stream(stream, ht);
1445 }
1446 rcu_read_unlock();
1447
1448 lttng_ht_destroy(ht);
1449 }
1450
1451 /*
1452 * Close all fds associated with the instance and free the context.
1453 */
1454 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1455 {
1456 int ret;
1457
1458 DBG("Consumer destroying it. Closing everything.");
1459
1460 if (!ctx) {
1461 return;
1462 }
1463
1464 destroy_data_stream_ht(data_ht);
1465 destroy_metadata_stream_ht(metadata_ht);
1466
1467 ret = close(ctx->consumer_error_socket);
1468 if (ret) {
1469 PERROR("close");
1470 }
1471 ret = close(ctx->consumer_metadata_socket);
1472 if (ret) {
1473 PERROR("close");
1474 }
1475 utils_close_pipe(ctx->consumer_channel_pipe);
1476 lttng_pipe_destroy(ctx->consumer_data_pipe);
1477 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1478 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1479 lttng_pipe_destroy(ctx->consumer_data_rotate_pipe);
1480 lttng_pipe_destroy(ctx->consumer_metadata_rotate_pipe);
1481 utils_close_pipe(ctx->consumer_should_quit);
1482
1483 unlink(ctx->consumer_command_sock_path);
1484 free(ctx);
1485 }
1486
1487 /*
1488 * Write the metadata stream id on the specified file descriptor.
1489 */
1490 static int write_relayd_metadata_id(int fd,
1491 struct lttng_consumer_stream *stream,
1492 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1493 {
1494 ssize_t ret;
1495 struct lttcomm_relayd_metadata_payload hdr;
1496
1497 hdr.stream_id = htobe64(stream->relayd_stream_id);
1498 hdr.padding_size = htobe32(padding);
1499 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1500 if (ret < sizeof(hdr)) {
1501 /*
1502 * This error means that the fd's end is closed so ignore the PERROR
1503 * not to clubber the error output since this can happen in a normal
1504 * code path.
1505 */
1506 if (errno != EPIPE) {
1507 PERROR("write metadata stream id");
1508 }
1509 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1510 /*
1511 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1512 * handle writting the missing part so report that as an error and
1513 * don't lie to the caller.
1514 */
1515 ret = -1;
1516 goto end;
1517 }
1518 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1519 stream->relayd_stream_id, padding);
1520
1521 end:
1522 return (int) ret;
1523 }
1524
1525 /*
1526 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1527 * core function for writing trace buffers to either the local filesystem or
1528 * the network.
1529 *
1530 * It must be called with the stream lock held.
1531 *
1532 * Careful review MUST be put if any changes occur!
1533 *
1534 * Returns the number of bytes written
1535 */
1536 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1537 struct lttng_consumer_local_data *ctx,
1538 struct lttng_consumer_stream *stream, unsigned long len,
1539 unsigned long padding,
1540 struct ctf_packet_index *index)
1541 {
1542 unsigned long mmap_offset;
1543 void *mmap_base;
1544 ssize_t ret = 0;
1545 off_t orig_offset = stream->out_fd_offset;
1546 /* Default is on the disk */
1547 int outfd = stream->out_fd;
1548 struct consumer_relayd_sock_pair *relayd = NULL;
1549 unsigned int relayd_hang_up = 0;
1550
1551 /* RCU lock for the relayd pointer */
1552 rcu_read_lock();
1553
1554 /* Flag that the current stream if set for network streaming. */
1555 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1556 relayd = consumer_find_relayd(stream->net_seq_idx);
1557 if (relayd == NULL) {
1558 ret = -EPIPE;
1559 goto end;
1560 }
1561 }
1562
1563 /* get the offset inside the fd to mmap */
1564 switch (consumer_data.type) {
1565 case LTTNG_CONSUMER_KERNEL:
1566 mmap_base = stream->mmap_base;
1567 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1568 if (ret < 0) {
1569 PERROR("tracer ctl get_mmap_read_offset");
1570 goto end;
1571 }
1572 break;
1573 case LTTNG_CONSUMER32_UST:
1574 case LTTNG_CONSUMER64_UST:
1575 mmap_base = lttng_ustctl_get_mmap_base(stream);
1576 if (!mmap_base) {
1577 ERR("read mmap get mmap base for stream %s", stream->name);
1578 ret = -EPERM;
1579 goto end;
1580 }
1581 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1582 if (ret != 0) {
1583 PERROR("tracer ctl get_mmap_read_offset");
1584 ret = -EINVAL;
1585 goto end;
1586 }
1587 break;
1588 default:
1589 ERR("Unknown consumer_data type");
1590 assert(0);
1591 }
1592
1593 /* Handle stream on the relayd if the output is on the network */
1594 if (relayd) {
1595 unsigned long netlen = len;
1596
1597 /*
1598 * Lock the control socket for the complete duration of the function
1599 * since from this point on we will use the socket.
1600 */
1601 if (stream->metadata_flag) {
1602 /* Metadata requires the control socket. */
1603 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1604 if (stream->reset_metadata_flag) {
1605 ret = relayd_reset_metadata(&relayd->control_sock,
1606 stream->relayd_stream_id,
1607 stream->metadata_version);
1608 if (ret < 0) {
1609 relayd_hang_up = 1;
1610 goto write_error;
1611 }
1612 stream->reset_metadata_flag = 0;
1613 }
1614 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1615 }
1616
1617 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1618 if (ret < 0) {
1619 relayd_hang_up = 1;
1620 goto write_error;
1621 }
1622 /* Use the returned socket. */
1623 outfd = ret;
1624
1625 /* Write metadata stream id before payload */
1626 if (stream->metadata_flag) {
1627 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1628 if (ret < 0) {
1629 relayd_hang_up = 1;
1630 goto write_error;
1631 }
1632 }
1633 } else {
1634 /* No streaming, we have to set the len with the full padding */
1635 len += padding;
1636
1637 if (stream->metadata_flag && stream->reset_metadata_flag) {
1638 ret = utils_truncate_stream_file(stream->out_fd, 0);
1639 if (ret < 0) {
1640 ERR("Reset metadata file");
1641 goto end;
1642 }
1643 stream->reset_metadata_flag = 0;
1644 }
1645
1646 /*
1647 * Check if we need to change the tracefile before writing the packet.
1648 */
1649 if (stream->chan->tracefile_size > 0 &&
1650 (stream->tracefile_size_current + len) >
1651 stream->chan->tracefile_size) {
1652 ret = utils_rotate_stream_file(stream->chan->pathname,
1653 stream->name, stream->chan->tracefile_size,
1654 stream->chan->tracefile_count, stream->uid, stream->gid,
1655 stream->out_fd, &(stream->tracefile_count_current),
1656 &stream->out_fd);
1657 if (ret < 0) {
1658 ERR("Rotating output file");
1659 goto end;
1660 }
1661 outfd = stream->out_fd;
1662
1663 if (stream->index_file) {
1664 lttng_index_file_put(stream->index_file);
1665 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1666 stream->name, stream->uid, stream->gid,
1667 stream->chan->tracefile_size,
1668 stream->tracefile_count_current,
1669 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1670 if (!stream->index_file) {
1671 goto end;
1672 }
1673 }
1674
1675 /* Reset current size because we just perform a rotation. */
1676 stream->tracefile_size_current = 0;
1677 stream->out_fd_offset = 0;
1678 orig_offset = 0;
1679 }
1680 stream->tracefile_size_current += len;
1681 if (index) {
1682 index->offset = htobe64(stream->out_fd_offset);
1683 }
1684 }
1685
1686 /*
1687 * This call guarantee that len or less is returned. It's impossible to
1688 * receive a ret value that is bigger than len.
1689 */
1690 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1691 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1692 if (ret < 0 || ((size_t) ret != len)) {
1693 /*
1694 * Report error to caller if nothing was written else at least send the
1695 * amount written.
1696 */
1697 if (ret < 0) {
1698 ret = -errno;
1699 }
1700 relayd_hang_up = 1;
1701
1702 /* Socket operation failed. We consider the relayd dead */
1703 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1704 /*
1705 * This is possible if the fd is closed on the other side
1706 * (outfd) or any write problem. It can be verbose a bit for a
1707 * normal execution if for instance the relayd is stopped
1708 * abruptly. This can happen so set this to a DBG statement.
1709 */
1710 DBG("Consumer mmap write detected relayd hang up");
1711 } else {
1712 /* Unhandled error, print it and stop function right now. */
1713 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1714 }
1715 goto write_error;
1716 }
1717 stream->output_written += ret;
1718
1719 /* This call is useless on a socket so better save a syscall. */
1720 if (!relayd) {
1721 /* This won't block, but will start writeout asynchronously */
1722 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1723 SYNC_FILE_RANGE_WRITE);
1724 stream->out_fd_offset += len;
1725 lttng_consumer_sync_trace_file(stream, orig_offset);
1726 }
1727
1728 write_error:
1729 /*
1730 * This is a special case that the relayd has closed its socket. Let's
1731 * cleanup the relayd object and all associated streams.
1732 */
1733 if (relayd && relayd_hang_up) {
1734 cleanup_relayd(relayd, ctx);
1735 }
1736
1737 end:
1738 /* Unlock only if ctrl socket used */
1739 if (relayd && stream->metadata_flag) {
1740 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1741 }
1742
1743 rcu_read_unlock();
1744 return ret;
1745 }
1746
1747 /*
1748 * Splice the data from the ring buffer to the tracefile.
1749 *
1750 * It must be called with the stream lock held.
1751 *
1752 * Returns the number of bytes spliced.
1753 */
1754 ssize_t lttng_consumer_on_read_subbuffer_splice(
1755 struct lttng_consumer_local_data *ctx,
1756 struct lttng_consumer_stream *stream, unsigned long len,
1757 unsigned long padding,
1758 struct ctf_packet_index *index)
1759 {
1760 ssize_t ret = 0, written = 0, ret_splice = 0;
1761 loff_t offset = 0;
1762 off_t orig_offset = stream->out_fd_offset;
1763 int fd = stream->wait_fd;
1764 /* Default is on the disk */
1765 int outfd = stream->out_fd;
1766 struct consumer_relayd_sock_pair *relayd = NULL;
1767 int *splice_pipe;
1768 unsigned int relayd_hang_up = 0;
1769
1770 switch (consumer_data.type) {
1771 case LTTNG_CONSUMER_KERNEL:
1772 break;
1773 case LTTNG_CONSUMER32_UST:
1774 case LTTNG_CONSUMER64_UST:
1775 /* Not supported for user space tracing */
1776 return -ENOSYS;
1777 default:
1778 ERR("Unknown consumer_data type");
1779 assert(0);
1780 }
1781
1782 /* RCU lock for the relayd pointer */
1783 rcu_read_lock();
1784
1785 /* Flag that the current stream if set for network streaming. */
1786 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1787 relayd = consumer_find_relayd(stream->net_seq_idx);
1788 if (relayd == NULL) {
1789 written = -ret;
1790 goto end;
1791 }
1792 }
1793 splice_pipe = stream->splice_pipe;
1794
1795 /* Write metadata stream id before payload */
1796 if (relayd) {
1797 unsigned long total_len = len;
1798
1799 if (stream->metadata_flag) {
1800 /*
1801 * Lock the control socket for the complete duration of the function
1802 * since from this point on we will use the socket.
1803 */
1804 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1805
1806 if (stream->reset_metadata_flag) {
1807 ret = relayd_reset_metadata(&relayd->control_sock,
1808 stream->relayd_stream_id,
1809 stream->metadata_version);
1810 if (ret < 0) {
1811 relayd_hang_up = 1;
1812 goto write_error;
1813 }
1814 stream->reset_metadata_flag = 0;
1815 }
1816 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1817 padding);
1818 if (ret < 0) {
1819 written = ret;
1820 relayd_hang_up = 1;
1821 goto write_error;
1822 }
1823
1824 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1825 }
1826
1827 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1828 if (ret < 0) {
1829 written = ret;
1830 relayd_hang_up = 1;
1831 goto write_error;
1832 }
1833 /* Use the returned socket. */
1834 outfd = ret;
1835 } else {
1836 /* No streaming, we have to set the len with the full padding */
1837 len += padding;
1838
1839 if (stream->metadata_flag && stream->reset_metadata_flag) {
1840 ret = utils_truncate_stream_file(stream->out_fd, 0);
1841 if (ret < 0) {
1842 ERR("Reset metadata file");
1843 goto end;
1844 }
1845 stream->reset_metadata_flag = 0;
1846 }
1847 /*
1848 * Check if we need to change the tracefile before writing the packet.
1849 */
1850 if (stream->chan->tracefile_size > 0 &&
1851 (stream->tracefile_size_current + len) >
1852 stream->chan->tracefile_size) {
1853 ret = utils_rotate_stream_file(stream->chan->pathname,
1854 stream->name, stream->chan->tracefile_size,
1855 stream->chan->tracefile_count, stream->uid, stream->gid,
1856 stream->out_fd, &(stream->tracefile_count_current),
1857 &stream->out_fd);
1858 if (ret < 0) {
1859 written = ret;
1860 ERR("Rotating output file");
1861 goto end;
1862 }
1863 outfd = stream->out_fd;
1864
1865 if (stream->index_file) {
1866 lttng_index_file_put(stream->index_file);
1867 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1868 stream->name, stream->uid, stream->gid,
1869 stream->chan->tracefile_size,
1870 stream->tracefile_count_current,
1871 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1872 if (!stream->index_file) {
1873 goto end;
1874 }
1875 }
1876
1877 /* Reset current size because we just perform a rotation. */
1878 stream->tracefile_size_current = 0;
1879 stream->out_fd_offset = 0;
1880 orig_offset = 0;
1881 }
1882 stream->tracefile_size_current += len;
1883 index->offset = htobe64(stream->out_fd_offset);
1884 }
1885
1886 while (len > 0) {
1887 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1888 (unsigned long)offset, len, fd, splice_pipe[1]);
1889 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1890 SPLICE_F_MOVE | SPLICE_F_MORE);
1891 DBG("splice chan to pipe, ret %zd", ret_splice);
1892 if (ret_splice < 0) {
1893 ret = errno;
1894 written = -ret;
1895 PERROR("Error in relay splice");
1896 goto splice_error;
1897 }
1898
1899 /* Handle stream on the relayd if the output is on the network */
1900 if (relayd && stream->metadata_flag) {
1901 size_t metadata_payload_size =
1902 sizeof(struct lttcomm_relayd_metadata_payload);
1903
1904 /* Update counter to fit the spliced data */
1905 ret_splice += metadata_payload_size;
1906 len += metadata_payload_size;
1907 /*
1908 * We do this so the return value can match the len passed as
1909 * argument to this function.
1910 */
1911 written -= metadata_payload_size;
1912 }
1913
1914 /* Splice data out */
1915 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1916 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1917 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1918 outfd, ret_splice);
1919 if (ret_splice < 0) {
1920 ret = errno;
1921 written = -ret;
1922 relayd_hang_up = 1;
1923 goto write_error;
1924 } else if (ret_splice > len) {
1925 /*
1926 * We don't expect this code path to be executed but you never know
1927 * so this is an extra protection agains a buggy splice().
1928 */
1929 ret = errno;
1930 written += ret_splice;
1931 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1932 len);
1933 goto splice_error;
1934 } else {
1935 /* All good, update current len and continue. */
1936 len -= ret_splice;
1937 }
1938
1939 /* This call is useless on a socket so better save a syscall. */
1940 if (!relayd) {
1941 /* This won't block, but will start writeout asynchronously */
1942 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1943 SYNC_FILE_RANGE_WRITE);
1944 stream->out_fd_offset += ret_splice;
1945 }
1946 stream->output_written += ret_splice;
1947 written += ret_splice;
1948 }
1949 if (!relayd) {
1950 lttng_consumer_sync_trace_file(stream, orig_offset);
1951 }
1952 goto end;
1953
1954 write_error:
1955 /*
1956 * This is a special case that the relayd has closed its socket. Let's
1957 * cleanup the relayd object and all associated streams.
1958 */
1959 if (relayd && relayd_hang_up) {
1960 cleanup_relayd(relayd, ctx);
1961 /* Skip splice error so the consumer does not fail */
1962 goto end;
1963 }
1964
1965 splice_error:
1966 /* send the appropriate error description to sessiond */
1967 switch (ret) {
1968 case EINVAL:
1969 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1970 break;
1971 case ENOMEM:
1972 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1973 break;
1974 case ESPIPE:
1975 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1976 break;
1977 }
1978
1979 end:
1980 if (relayd && stream->metadata_flag) {
1981 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1982 }
1983
1984 rcu_read_unlock();
1985 return written;
1986 }
1987
1988 /*
1989 * Sample the snapshot positions for a specific fd
1990 *
1991 * Returns 0 on success, < 0 on error
1992 */
1993 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1994 {
1995 switch (consumer_data.type) {
1996 case LTTNG_CONSUMER_KERNEL:
1997 return lttng_kconsumer_sample_snapshot_positions(stream);
1998 case LTTNG_CONSUMER32_UST:
1999 case LTTNG_CONSUMER64_UST:
2000 return lttng_ustconsumer_sample_snapshot_positions(stream);
2001 default:
2002 ERR("Unknown consumer_data type");
2003 assert(0);
2004 return -ENOSYS;
2005 }
2006 }
2007 /*
2008 * Take a snapshot for a specific fd
2009 *
2010 * Returns 0 on success, < 0 on error
2011 */
2012 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2013 {
2014 switch (consumer_data.type) {
2015 case LTTNG_CONSUMER_KERNEL:
2016 return lttng_kconsumer_take_snapshot(stream);
2017 case LTTNG_CONSUMER32_UST:
2018 case LTTNG_CONSUMER64_UST:
2019 return lttng_ustconsumer_take_snapshot(stream);
2020 default:
2021 ERR("Unknown consumer_data type");
2022 assert(0);
2023 return -ENOSYS;
2024 }
2025 }
2026
2027 /*
2028 * Get the produced position
2029 *
2030 * Returns 0 on success, < 0 on error
2031 */
2032 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2033 unsigned long *pos)
2034 {
2035 switch (consumer_data.type) {
2036 case LTTNG_CONSUMER_KERNEL:
2037 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2038 case LTTNG_CONSUMER32_UST:
2039 case LTTNG_CONSUMER64_UST:
2040 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2041 default:
2042 ERR("Unknown consumer_data type");
2043 assert(0);
2044 return -ENOSYS;
2045 }
2046 }
2047
2048 /*
2049 * Get the consumed position
2050 *
2051 * Returns 0 on success, < 0 on error
2052 */
2053 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2054 unsigned long *pos)
2055 {
2056 switch (consumer_data.type) {
2057 case LTTNG_CONSUMER_KERNEL:
2058 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2059 case LTTNG_CONSUMER32_UST:
2060 case LTTNG_CONSUMER64_UST:
2061 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2062 default:
2063 ERR("Unknown consumer_data type");
2064 assert(0);
2065 return -ENOSYS;
2066 }
2067 }
2068
2069 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2070 int sock, struct pollfd *consumer_sockpoll)
2071 {
2072 switch (consumer_data.type) {
2073 case LTTNG_CONSUMER_KERNEL:
2074 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2075 case LTTNG_CONSUMER32_UST:
2076 case LTTNG_CONSUMER64_UST:
2077 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2078 default:
2079 ERR("Unknown consumer_data type");
2080 assert(0);
2081 return -ENOSYS;
2082 }
2083 }
2084
2085 void lttng_consumer_close_all_metadata(void)
2086 {
2087 switch (consumer_data.type) {
2088 case LTTNG_CONSUMER_KERNEL:
2089 /*
2090 * The Kernel consumer has a different metadata scheme so we don't
2091 * close anything because the stream will be closed by the session
2092 * daemon.
2093 */
2094 break;
2095 case LTTNG_CONSUMER32_UST:
2096 case LTTNG_CONSUMER64_UST:
2097 /*
2098 * Close all metadata streams. The metadata hash table is passed and
2099 * this call iterates over it by closing all wakeup fd. This is safe
2100 * because at this point we are sure that the metadata producer is
2101 * either dead or blocked.
2102 */
2103 lttng_ustconsumer_close_all_metadata(metadata_ht);
2104 break;
2105 default:
2106 ERR("Unknown consumer_data type");
2107 assert(0);
2108 }
2109 }
2110
2111 /*
2112 * Clean up a metadata stream and free its memory.
2113 */
2114 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2115 struct lttng_ht *ht)
2116 {
2117 struct lttng_consumer_channel *free_chan = NULL;
2118
2119 assert(stream);
2120 /*
2121 * This call should NEVER receive regular stream. It must always be
2122 * metadata stream and this is crucial for data structure synchronization.
2123 */
2124 assert(stream->metadata_flag);
2125
2126 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2127
2128 pthread_mutex_lock(&consumer_data.lock);
2129 pthread_mutex_lock(&stream->chan->lock);
2130 pthread_mutex_lock(&stream->lock);
2131 if (stream->chan->metadata_cache) {
2132 /* Only applicable to userspace consumers. */
2133 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2134 }
2135
2136 /* Remove any reference to that stream. */
2137 consumer_stream_delete(stream, ht);
2138
2139 /* Close down everything including the relayd if one. */
2140 consumer_stream_close(stream);
2141 /* Destroy tracer buffers of the stream. */
2142 consumer_stream_destroy_buffers(stream);
2143
2144 /* Atomically decrement channel refcount since other threads can use it. */
2145 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2146 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2147 /* Go for channel deletion! */
2148 free_chan = stream->chan;
2149 }
2150
2151 /*
2152 * Nullify the stream reference so it is not used after deletion. The
2153 * channel lock MUST be acquired before being able to check for a NULL
2154 * pointer value.
2155 */
2156 stream->chan->metadata_stream = NULL;
2157
2158 if (stream->chan->metadata_cache) {
2159 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2160 }
2161 pthread_mutex_unlock(&stream->lock);
2162 pthread_mutex_unlock(&stream->chan->lock);
2163 pthread_mutex_unlock(&consumer_data.lock);
2164
2165 if (free_chan) {
2166 consumer_del_channel(free_chan);
2167 }
2168
2169 consumer_stream_free(stream);
2170 }
2171
2172 /*
2173 * Action done with the metadata stream when adding it to the consumer internal
2174 * data structures to handle it.
2175 */
2176 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2177 {
2178 struct lttng_ht *ht = metadata_ht;
2179 int ret = 0;
2180 struct lttng_ht_iter iter;
2181 struct lttng_ht_node_u64 *node;
2182
2183 assert(stream);
2184 assert(ht);
2185
2186 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2187
2188 pthread_mutex_lock(&consumer_data.lock);
2189 pthread_mutex_lock(&stream->chan->lock);
2190 pthread_mutex_lock(&stream->chan->timer_lock);
2191 pthread_mutex_lock(&stream->lock);
2192
2193 /*
2194 * From here, refcounts are updated so be _careful_ when returning an error
2195 * after this point.
2196 */
2197
2198 rcu_read_lock();
2199
2200 /*
2201 * Lookup the stream just to make sure it does not exist in our internal
2202 * state. This should NEVER happen.
2203 */
2204 lttng_ht_lookup(ht, &stream->key, &iter);
2205 node = lttng_ht_iter_get_node_u64(&iter);
2206 assert(!node);
2207
2208 /*
2209 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2210 * in terms of destroying the associated channel, because the action that
2211 * causes the count to become 0 also causes a stream to be added. The
2212 * channel deletion will thus be triggered by the following removal of this
2213 * stream.
2214 */
2215 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2216 /* Increment refcount before decrementing nb_init_stream_left */
2217 cmm_smp_wmb();
2218 uatomic_dec(&stream->chan->nb_init_stream_left);
2219 }
2220
2221 lttng_ht_add_unique_u64(ht, &stream->node);
2222
2223 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2224 &stream->node_channel_id);
2225
2226 /*
2227 * Add stream to the stream_list_ht of the consumer data. No need to steal
2228 * the key since the HT does not use it and we allow to add redundant keys
2229 * into this table.
2230 */
2231 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2232
2233 rcu_read_unlock();
2234
2235 pthread_mutex_unlock(&stream->lock);
2236 pthread_mutex_unlock(&stream->chan->lock);
2237 pthread_mutex_unlock(&stream->chan->timer_lock);
2238 pthread_mutex_unlock(&consumer_data.lock);
2239 return ret;
2240 }
2241
2242 /*
2243 * Delete data stream that are flagged for deletion (endpoint_status).
2244 */
2245 static void validate_endpoint_status_data_stream(void)
2246 {
2247 struct lttng_ht_iter iter;
2248 struct lttng_consumer_stream *stream;
2249
2250 DBG("Consumer delete flagged data stream");
2251
2252 rcu_read_lock();
2253 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2254 /* Validate delete flag of the stream */
2255 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2256 continue;
2257 }
2258 /* Delete it right now */
2259 consumer_del_stream(stream, data_ht);
2260 }
2261 rcu_read_unlock();
2262 }
2263
2264 /*
2265 * Delete metadata stream that are flagged for deletion (endpoint_status).
2266 */
2267 static void validate_endpoint_status_metadata_stream(
2268 struct lttng_poll_event *pollset)
2269 {
2270 struct lttng_ht_iter iter;
2271 struct lttng_consumer_stream *stream;
2272
2273 DBG("Consumer delete flagged metadata stream");
2274
2275 assert(pollset);
2276
2277 rcu_read_lock();
2278 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2279 /* Validate delete flag of the stream */
2280 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2281 continue;
2282 }
2283 /*
2284 * Remove from pollset so the metadata thread can continue without
2285 * blocking on a deleted stream.
2286 */
2287 lttng_poll_del(pollset, stream->wait_fd);
2288
2289 /* Delete it right now */
2290 consumer_del_metadata_stream(stream, metadata_ht);
2291 }
2292 rcu_read_unlock();
2293 }
2294
2295 static
2296 int rotate_notify_sessiond(struct lttng_consumer_local_data *ctx,
2297 uint64_t key)
2298 {
2299 int ret;
2300
2301 fprintf(stderr, "Notif send\n");
2302 do {
2303 ret = write(ctx->channel_rotate_pipe, &key, sizeof(key));
2304 } while (ret == -1 && errno == EINTR);
2305 if (ret == -1) {
2306 PERROR("write to the channel rotate pipe");
2307 } else {
2308 DBG("Sent channel rotation notification for channel key %"
2309 PRIu64, key);
2310 }
2311 fprintf(stderr, "Notif done\n");
2312
2313 return ret;
2314 }
2315
2316 /*
2317 * Perform operations that need to be done after a stream has
2318 * rotated and released the stream lock.
2319 *
2320 * Multiple rotations cannot occur simultaneously, so we know the state of the
2321 * "rotated" stream flag cannot change.
2322 *
2323 * This MUST be called WITHOUT the stream lock held.
2324 */
2325 static
2326 int consumer_post_rotation(struct lttng_consumer_stream *stream,
2327 struct lttng_consumer_local_data *ctx)
2328 {
2329 int ret = 0;
2330
2331 if (!stream->rotated) {
2332 goto end;
2333 }
2334
2335 pthread_mutex_lock(&stream->chan->lock);
2336 switch (consumer_data.type) {
2337 case LTTNG_CONSUMER_KERNEL:
2338 break;
2339 case LTTNG_CONSUMER32_UST:
2340 case LTTNG_CONSUMER64_UST:
2341 /*
2342 * The ust_metadata_pushed counter has been reset to 0, so now
2343 * we can wakeup the metadata thread so it dumps the metadata
2344 * cache to the new file.
2345 */
2346 if (stream->metadata_flag) {
2347 consumer_metadata_wakeup_pipe(stream->chan);
2348 }
2349 break;
2350 default:
2351 ERR("Unknown consumer_data type");
2352 abort();
2353 }
2354
2355 fprintf(stderr, "nr_pending: %lu\n", stream->chan->nr_stream_rotate_pending);
2356 if (--stream->chan->nr_stream_rotate_pending == 0) {
2357 ret = rotate_notify_sessiond(ctx, stream->chan->key);
2358 }
2359 pthread_mutex_unlock(&stream->chan->lock);
2360 stream->rotated = 0;
2361
2362 end:
2363 return ret;
2364 }
2365
2366 static
2367 int handle_rotate_wakeup_pipe(struct lttng_consumer_local_data *ctx,
2368 struct lttng_pipe *stream_pipe)
2369 {
2370 int ret;
2371 ssize_t pipe_len;
2372 struct lttng_consumer_stream *stream;
2373
2374 pipe_len = lttng_pipe_read(stream_pipe, &stream, sizeof(stream));
2375 if (pipe_len < sizeof(stream)) {
2376 if (pipe_len < 0) {
2377 PERROR("read metadata stream");
2378 }
2379 ERR("Failed to read stream on metadata rotate pipe");
2380 ret = -1;
2381 goto end;
2382 }
2383
2384 pthread_mutex_lock(&stream->lock);
2385 fprintf(stderr, "Rotate wakeup pipe, stream %lu\n", stream->key);
2386 ret = lttng_consumer_rotate_stream(ctx, stream);
2387 pthread_mutex_unlock(&stream->lock);
2388 if (ret < 0) {
2389 ERR("Failed to rotate metadata stream");
2390 goto end;
2391 }
2392 ret = consumer_post_rotation(stream, ctx);
2393 if (ret < 0) {
2394 ERR("Failed after a rotation");
2395 ret = -1;
2396 }
2397
2398 ret = 0;
2399
2400 end:
2401 return ret;
2402 }
2403
2404 /*
2405 * Thread polls on metadata file descriptor and write them on disk or on the
2406 * network.
2407 */
2408 void *consumer_thread_metadata_poll(void *data)
2409 {
2410 int ret, i, pollfd, err = -1;
2411 uint32_t revents, nb_fd;
2412 struct lttng_consumer_stream *stream = NULL;
2413 struct lttng_ht_iter iter;
2414 struct lttng_ht_node_u64 *node;
2415 struct lttng_poll_event events;
2416 struct lttng_consumer_local_data *ctx = data;
2417 ssize_t len;
2418
2419 rcu_register_thread();
2420
2421 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2422
2423 if (testpoint(consumerd_thread_metadata)) {
2424 goto error_testpoint;
2425 }
2426
2427 health_code_update();
2428
2429 DBG("Thread metadata poll started");
2430
2431 /* Size is set to 1 for the consumer_metadata pipe */
2432 ret = lttng_poll_create(&events, 3, LTTNG_CLOEXEC);
2433 if (ret < 0) {
2434 ERR("Poll set creation failed");
2435 goto end_poll;
2436 }
2437
2438 ret = lttng_poll_add(&events,
2439 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2440 if (ret < 0) {
2441 goto end;
2442 }
2443
2444 ret = lttng_poll_add(&events,
2445 lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe), LPOLLIN);
2446 if (ret < 0) {
2447 goto end;
2448 }
2449
2450 /* Main loop */
2451 DBG("Metadata main loop started");
2452
2453 while (1) {
2454 restart:
2455 health_code_update();
2456 health_poll_entry();
2457 DBG("Metadata poll wait");
2458 ret = lttng_poll_wait(&events, -1);
2459 DBG("Metadata poll return from wait with %d fd(s)",
2460 LTTNG_POLL_GETNB(&events));
2461 health_poll_exit();
2462 DBG("Metadata event caught in thread");
2463 if (ret < 0) {
2464 if (errno == EINTR) {
2465 ERR("Poll EINTR caught");
2466 goto restart;
2467 }
2468 if (LTTNG_POLL_GETNB(&events) == 0) {
2469 err = 0; /* All is OK */
2470 }
2471 goto end;
2472 }
2473
2474 nb_fd = ret;
2475
2476 /* From here, the event is a metadata wait fd */
2477 for (i = 0; i < nb_fd; i++) {
2478 health_code_update();
2479
2480 revents = LTTNG_POLL_GETEV(&events, i);
2481 pollfd = LTTNG_POLL_GETFD(&events, i);
2482
2483 if (!revents) {
2484 /* No activity for this FD (poll implementation). */
2485 continue;
2486 }
2487
2488 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2489 if (revents & LPOLLIN) {
2490 ssize_t pipe_len;
2491
2492 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2493 &stream, sizeof(stream));
2494 if (pipe_len < sizeof(stream)) {
2495 if (pipe_len < 0) {
2496 PERROR("read metadata stream");
2497 }
2498 /*
2499 * Remove the pipe from the poll set and continue the loop
2500 * since their might be data to consume.
2501 */
2502 lttng_poll_del(&events,
2503 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2504 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2505 continue;
2506 }
2507
2508 /* A NULL stream means that the state has changed. */
2509 if (stream == NULL) {
2510 /* Check for deleted streams. */
2511 validate_endpoint_status_metadata_stream(&events);
2512 goto restart;
2513 }
2514
2515 DBG("Adding metadata stream %d to poll set",
2516 stream->wait_fd);
2517
2518 /* Add metadata stream to the global poll events list */
2519 lttng_poll_add(&events, stream->wait_fd,
2520 LPOLLIN | LPOLLPRI | LPOLLHUP);
2521 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2522 DBG("Metadata thread pipe hung up");
2523 /*
2524 * Remove the pipe from the poll set and continue the loop
2525 * since their might be data to consume.
2526 */
2527 lttng_poll_del(&events,
2528 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2529 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2530 continue;
2531 } else {
2532 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2533 goto end;
2534 }
2535
2536 /* Handle other stream */
2537 continue;
2538 } else if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe)) {
2539 if (revents & LPOLLIN) {
2540 ret = handle_rotate_wakeup_pipe(ctx,
2541 ctx->consumer_metadata_rotate_pipe);
2542 if (ret < 0) {
2543 ERR("Failed to rotate metadata stream");
2544 lttng_poll_del(&events,
2545 lttng_pipe_get_readfd(
2546 ctx->consumer_metadata_rotate_pipe));
2547 lttng_pipe_read_close(
2548 ctx->consumer_metadata_rotate_pipe);
2549 goto end;
2550 }
2551 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2552 DBG("Metadata rotate pipe hung up");
2553 fprintf(stderr, "Metadata rotate pipe hung up");
2554 /*
2555 * Remove the pipe from the poll set and continue the loop
2556 * since their might be data to consume.
2557 */
2558 lttng_poll_del(&events,
2559 lttng_pipe_get_readfd(ctx->consumer_metadata_rotate_pipe));
2560 lttng_pipe_read_close(ctx->consumer_metadata_rotate_pipe);
2561 continue;
2562 } else {
2563 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2564 goto end;
2565 }
2566 continue;
2567 }
2568
2569 rcu_read_lock();
2570 {
2571 uint64_t tmp_id = (uint64_t) pollfd;
2572
2573 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2574 }
2575 node = lttng_ht_iter_get_node_u64(&iter);
2576 assert(node);
2577
2578 stream = caa_container_of(node, struct lttng_consumer_stream,
2579 node);
2580
2581 if (revents & (LPOLLIN | LPOLLPRI)) {
2582 /* Get the data out of the metadata file descriptor */
2583 DBG("Metadata available on fd %d", pollfd);
2584 assert(stream->wait_fd == pollfd);
2585
2586 do {
2587 health_code_update();
2588
2589 len = ctx->on_buffer_ready(stream, ctx);
2590 /*
2591 * We don't check the return value here since if we get
2592 * a negative len, it means an error occurred thus we
2593 * simply remove it from the poll set and free the
2594 * stream.
2595 */
2596 } while (len > 0);
2597
2598 /* It's ok to have an unavailable sub-buffer */
2599 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2600 /* Clean up stream from consumer and free it. */
2601 lttng_poll_del(&events, stream->wait_fd);
2602 consumer_del_metadata_stream(stream, metadata_ht);
2603 }
2604 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2605 DBG("Metadata fd %d is hup|err.", pollfd);
2606 if (!stream->hangup_flush_done
2607 && (consumer_data.type == LTTNG_CONSUMER32_UST
2608 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2609 DBG("Attempting to flush and consume the UST buffers");
2610 lttng_ustconsumer_on_stream_hangup(stream);
2611
2612 /* We just flushed the stream now read it. */
2613 do {
2614 health_code_update();
2615
2616 len = ctx->on_buffer_ready(stream, ctx);
2617 /*
2618 * We don't check the return value here since if we get
2619 * a negative len, it means an error occurred thus we
2620 * simply remove it from the poll set and free the
2621 * stream.
2622 */
2623 } while (len > 0);
2624 }
2625
2626 lttng_poll_del(&events, stream->wait_fd);
2627 /*
2628 * This call update the channel states, closes file descriptors
2629 * and securely free the stream.
2630 */
2631 consumer_del_metadata_stream(stream, metadata_ht);
2632 } else {
2633 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2634 rcu_read_unlock();
2635 goto end;
2636 }
2637 /* Release RCU lock for the stream looked up */
2638 rcu_read_unlock();
2639 }
2640 }
2641
2642 /* All is OK */
2643 err = 0;
2644 end:
2645 DBG("Metadata poll thread exiting");
2646
2647 lttng_poll_clean(&events);
2648 end_poll:
2649 error_testpoint:
2650 if (err) {
2651 health_error();
2652 ERR("Health error occurred in %s", __func__);
2653 }
2654 health_unregister(health_consumerd);
2655 rcu_unregister_thread();
2656 return NULL;
2657 }
2658
2659 /*
2660 * This thread polls the fds in the set to consume the data and write
2661 * it to tracefile if necessary.
2662 */
2663 void *consumer_thread_data_poll(void *data)
2664 {
2665 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2666 struct pollfd *pollfd = NULL;
2667 /* local view of the streams */
2668 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2669 /* local view of consumer_data.fds_count */
2670 int nb_fd = 0, nb_pipes_fd;
2671 struct lttng_consumer_local_data *ctx = data;
2672 ssize_t len;
2673
2674 rcu_register_thread();
2675
2676 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2677
2678 if (testpoint(consumerd_thread_data)) {
2679 goto error_testpoint;
2680 }
2681
2682 health_code_update();
2683
2684 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2685 if (local_stream == NULL) {
2686 PERROR("local_stream malloc");
2687 goto end;
2688 }
2689
2690 while (1) {
2691 health_code_update();
2692
2693 high_prio = 0;
2694 num_hup = 0;
2695
2696 /*
2697 * the fds set has been updated, we need to update our
2698 * local array as well
2699 */
2700 pthread_mutex_lock(&consumer_data.lock);
2701 if (consumer_data.need_update) {
2702 free(pollfd);
2703 pollfd = NULL;
2704
2705 free(local_stream);
2706 local_stream = NULL;
2707
2708 /*
2709 * Allocate for all fds + 3:
2710 * +1 for the consumer_data_pipe
2711 * +1 for wake up pipe
2712 * +1 for consumer_data_rotate_pipe.
2713 */
2714 nb_pipes_fd = 3;
2715 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2716 if (pollfd == NULL) {
2717 PERROR("pollfd malloc");
2718 pthread_mutex_unlock(&consumer_data.lock);
2719 goto end;
2720 }
2721
2722 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2723 sizeof(struct lttng_consumer_stream *));
2724 if (local_stream == NULL) {
2725 PERROR("local_stream malloc");
2726 pthread_mutex_unlock(&consumer_data.lock);
2727 goto end;
2728 }
2729 ret = update_poll_array(ctx, &pollfd, local_stream,
2730 data_ht);
2731 if (ret < 0) {
2732 ERR("Error in allocating pollfd or local_outfds");
2733 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2734 pthread_mutex_unlock(&consumer_data.lock);
2735 goto end;
2736 }
2737 nb_fd = ret;
2738 consumer_data.need_update = 0;
2739 }
2740 pthread_mutex_unlock(&consumer_data.lock);
2741
2742 /* No FDs and consumer_quit, consumer_cleanup the thread */
2743 if (nb_fd == 0 && CMM_LOAD_SHARED(consumer_quit) == 1) {
2744 err = 0; /* All is OK */
2745 goto end;
2746 }
2747 /* poll on the array of fds */
2748 restart:
2749 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2750 if (testpoint(consumerd_thread_data_poll)) {
2751 goto end;
2752 }
2753 health_poll_entry();
2754 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2755 health_poll_exit();
2756 DBG("poll num_rdy : %d", num_rdy);
2757 if (num_rdy == -1) {
2758 /*
2759 * Restart interrupted system call.
2760 */
2761 if (errno == EINTR) {
2762 goto restart;
2763 }
2764 PERROR("Poll error");
2765 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2766 goto end;
2767 } else if (num_rdy == 0) {
2768 DBG("Polling thread timed out");
2769 goto end;
2770 }
2771
2772 if (caa_unlikely(data_consumption_paused)) {
2773 DBG("Data consumption paused, sleeping...");
2774 sleep(1);
2775 goto restart;
2776 }
2777
2778 /*
2779 * If the consumer_data_pipe triggered poll go directly to the
2780 * beginning of the loop to update the array. We want to prioritize
2781 * array update over low-priority reads.
2782 */
2783 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2784 ssize_t pipe_readlen;
2785
2786 DBG("consumer_data_pipe wake up");
2787 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2788 &new_stream, sizeof(new_stream));
2789 if (pipe_readlen < sizeof(new_stream)) {
2790 PERROR("Consumer data pipe");
2791 /* Continue so we can at least handle the current stream(s). */
2792 continue;
2793 }
2794
2795 /*
2796 * If the stream is NULL, just ignore it. It's also possible that
2797 * the sessiond poll thread changed the consumer_quit state and is
2798 * waking us up to test it.
2799 */
2800 if (new_stream == NULL) {
2801 validate_endpoint_status_data_stream();
2802 continue;
2803 }
2804
2805 /* Continue to update the local streams and handle prio ones */
2806 continue;
2807 }
2808
2809 /* Handle wakeup pipe. */
2810 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2811 char dummy;
2812 ssize_t pipe_readlen;
2813
2814 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2815 sizeof(dummy));
2816 if (pipe_readlen < 0) {
2817 PERROR("Consumer data wakeup pipe");
2818 }
2819 /* We've been awakened to handle stream(s). */
2820 ctx->has_wakeup = 0;
2821 }
2822
2823 /* Handle consumer_data_rotate_pipe. */
2824 if (pollfd[nb_fd + 2].revents & (POLLIN | POLLPRI)) {
2825 fprintf(stderr, "data wakeup pipe\n");
2826 ret = handle_rotate_wakeup_pipe(ctx,
2827 ctx->consumer_data_rotate_pipe);
2828 if (ret < 0) {
2829 ERR("Failed to rotate metadata stream");
2830 goto end;
2831 }
2832 }
2833
2834 /* Take care of high priority channels first. */
2835 for (i = 0; i < nb_fd; i++) {
2836 health_code_update();
2837
2838 if (local_stream[i] == NULL) {
2839 continue;
2840 }
2841 if (pollfd[i].revents & POLLPRI) {
2842 DBG("Urgent read on fd %d", pollfd[i].fd);
2843 high_prio = 1;
2844 len = ctx->on_buffer_ready(local_stream[i], ctx);
2845 /* it's ok to have an unavailable sub-buffer */
2846 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2847 /* Clean the stream and free it. */
2848 consumer_del_stream(local_stream[i], data_ht);
2849 local_stream[i] = NULL;
2850 } else if (len > 0) {
2851 local_stream[i]->data_read = 1;
2852 }
2853 }
2854 }
2855
2856 /*
2857 * If we read high prio channel in this loop, try again
2858 * for more high prio data.
2859 */
2860 if (high_prio) {
2861 continue;
2862 }
2863
2864 /* Take care of low priority channels. */
2865 for (i = 0; i < nb_fd; i++) {
2866 health_code_update();
2867
2868 if (local_stream[i] == NULL) {
2869 continue;
2870 }
2871 if ((pollfd[i].revents & POLLIN) ||
2872 local_stream[i]->hangup_flush_done ||
2873 local_stream[i]->has_data) {
2874 DBG("Normal read on fd %d", pollfd[i].fd);
2875 len = ctx->on_buffer_ready(local_stream[i], ctx);
2876 /* it's ok to have an unavailable sub-buffer */
2877 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2878 /* Clean the stream and free it. */
2879 consumer_del_stream(local_stream[i], data_ht);
2880 local_stream[i] = NULL;
2881 } else if (len > 0) {
2882 local_stream[i]->data_read = 1;
2883 }
2884 }
2885 }
2886
2887 /* Handle hangup and errors */
2888 for (i = 0; i < nb_fd; i++) {
2889 health_code_update();
2890
2891 if (local_stream[i] == NULL) {
2892 continue;
2893 }
2894 if (!local_stream[i]->hangup_flush_done
2895 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2896 && (consumer_data.type == LTTNG_CONSUMER32_UST
2897 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2898 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2899 pollfd[i].fd);
2900 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2901 /* Attempt read again, for the data we just flushed. */
2902 local_stream[i]->data_read = 1;
2903 }
2904 /*
2905 * If the poll flag is HUP/ERR/NVAL and we have
2906 * read no data in this pass, we can remove the
2907 * stream from its hash table.
2908 */
2909 if ((pollfd[i].revents & POLLHUP)) {
2910 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2911 if (!local_stream[i]->data_read) {
2912 consumer_del_stream(local_stream[i], data_ht);
2913 local_stream[i] = NULL;
2914 num_hup++;
2915 }
2916 } else if (pollfd[i].revents & POLLERR) {
2917 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2918 if (!local_stream[i]->data_read) {
2919 consumer_del_stream(local_stream[i], data_ht);
2920 local_stream[i] = NULL;
2921 num_hup++;
2922 }
2923 } else if (pollfd[i].revents & POLLNVAL) {
2924 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2925 if (!local_stream[i]->data_read) {
2926 consumer_del_stream(local_stream[i], data_ht);
2927 local_stream[i] = NULL;
2928 num_hup++;
2929 }
2930 }
2931 if (local_stream[i] != NULL) {
2932 local_stream[i]->data_read = 0;
2933 }
2934 }
2935 }
2936 /* All is OK */
2937 err = 0;
2938 end:
2939 DBG("polling thread exiting");
2940 free(pollfd);
2941 free(local_stream);
2942
2943 /*
2944 * Close the write side of the pipe so epoll_wait() in
2945 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2946 * read side of the pipe. If we close them both, epoll_wait strangely does
2947 * not return and could create a endless wait period if the pipe is the
2948 * only tracked fd in the poll set. The thread will take care of closing
2949 * the read side.
2950 */
2951 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2952 (void) lttng_pipe_write_close(ctx->consumer_metadata_rotate_pipe);
2953
2954 error_testpoint:
2955 if (err) {
2956 health_error();
2957 ERR("Health error occurred in %s", __func__);
2958 }
2959 health_unregister(health_consumerd);
2960
2961 rcu_unregister_thread();
2962 return NULL;
2963 }
2964
2965 /*
2966 * Close wake-up end of each stream belonging to the channel. This will
2967 * allow the poll() on the stream read-side to detect when the
2968 * write-side (application) finally closes them.
2969 */
2970 static
2971 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2972 {
2973 struct lttng_ht *ht;
2974 struct lttng_consumer_stream *stream;
2975 struct lttng_ht_iter iter;
2976
2977 ht = consumer_data.stream_per_chan_id_ht;
2978
2979 rcu_read_lock();
2980 cds_lfht_for_each_entry_duplicate(ht->ht,
2981 ht->hash_fct(&channel->key, lttng_ht_seed),
2982 ht->match_fct, &channel->key,
2983 &iter.iter, stream, node_channel_id.node) {
2984 /*
2985 * Protect against teardown with mutex.
2986 */
2987 pthread_mutex_lock(&stream->lock);
2988 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2989 goto next;
2990 }
2991 switch (consumer_data.type) {
2992 case LTTNG_CONSUMER_KERNEL:
2993 break;
2994 case LTTNG_CONSUMER32_UST:
2995 case LTTNG_CONSUMER64_UST:
2996 if (stream->metadata_flag) {
2997 /* Safe and protected by the stream lock. */
2998 lttng_ustconsumer_close_metadata(stream->chan);
2999 } else {
3000 /*
3001 * Note: a mutex is taken internally within
3002 * liblttng-ust-ctl to protect timer wakeup_fd
3003 * use from concurrent close.
3004 */
3005 lttng_ustconsumer_close_stream_wakeup(stream);
3006 }
3007 break;
3008 default:
3009 ERR("Unknown consumer_data type");
3010 assert(0);
3011 }
3012 next:
3013 pthread_mutex_unlock(&stream->lock);
3014 }
3015 rcu_read_unlock();
3016 }
3017
3018 static void destroy_channel_ht(struct lttng_ht *ht)
3019 {
3020 struct lttng_ht_iter iter;
3021 struct lttng_consumer_channel *channel;
3022 int ret;
3023
3024 if (ht == NULL) {
3025 return;
3026 }
3027
3028 rcu_read_lock();
3029 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
3030 ret = lttng_ht_del(ht, &iter);
3031 assert(ret != 0);
3032 }
3033 rcu_read_unlock();
3034
3035 lttng_ht_destroy(ht);
3036 }
3037
3038 /*
3039 * This thread polls the channel fds to detect when they are being
3040 * closed. It closes all related streams if the channel is detected as
3041 * closed. It is currently only used as a shim layer for UST because the
3042 * consumerd needs to keep the per-stream wakeup end of pipes open for
3043 * periodical flush.
3044 */
3045 void *consumer_thread_channel_poll(void *data)
3046 {
3047 int ret, i, pollfd, err = -1;
3048 uint32_t revents, nb_fd;
3049 struct lttng_consumer_channel *chan = NULL;
3050 struct lttng_ht_iter iter;
3051 struct lttng_ht_node_u64 *node;
3052 struct lttng_poll_event events;
3053 struct lttng_consumer_local_data *ctx = data;
3054 struct lttng_ht *channel_ht;
3055
3056 rcu_register_thread();
3057
3058 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
3059
3060 if (testpoint(consumerd_thread_channel)) {
3061 goto error_testpoint;
3062 }
3063
3064 health_code_update();
3065
3066 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3067 if (!channel_ht) {
3068 /* ENOMEM at this point. Better to bail out. */
3069 goto end_ht;
3070 }
3071
3072 DBG("Thread channel poll started");
3073
3074 /* Size is set to 1 for the consumer_channel pipe */
3075 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3076 if (ret < 0) {
3077 ERR("Poll set creation failed");
3078 goto end_poll;
3079 }
3080
3081 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3082 if (ret < 0) {
3083 goto end;
3084 }
3085
3086 /* Main loop */
3087 DBG("Channel main loop started");
3088
3089 while (1) {
3090 restart:
3091 health_code_update();
3092 DBG("Channel poll wait");
3093 health_poll_entry();
3094 ret = lttng_poll_wait(&events, -1);
3095 DBG("Channel poll return from wait with %d fd(s)",
3096 LTTNG_POLL_GETNB(&events));
3097 health_poll_exit();
3098 DBG("Channel event caught in thread");
3099 if (ret < 0) {
3100 if (errno == EINTR) {
3101 ERR("Poll EINTR caught");
3102 goto restart;
3103 }
3104 if (LTTNG_POLL_GETNB(&events) == 0) {
3105 err = 0; /* All is OK */
3106 }
3107 goto end;
3108 }
3109
3110 nb_fd = ret;
3111
3112 /* From here, the event is a channel wait fd */
3113 for (i = 0; i < nb_fd; i++) {
3114 health_code_update();
3115
3116 revents = LTTNG_POLL_GETEV(&events, i);
3117 pollfd = LTTNG_POLL_GETFD(&events, i);
3118
3119 if (!revents) {
3120 /* No activity for this FD (poll implementation). */
3121 continue;
3122 }
3123
3124 if (pollfd == ctx->consumer_channel_pipe[0]) {
3125 if (revents & LPOLLIN) {
3126 enum consumer_channel_action action;
3127 uint64_t key;
3128
3129 ret = read_channel_pipe(ctx, &chan, &key, &action);
3130 if (ret <= 0) {
3131 if (ret < 0) {
3132 ERR("Error reading channel pipe");
3133 }
3134 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3135 continue;
3136 }
3137
3138 switch (action) {
3139 case CONSUMER_CHANNEL_ADD:
3140 DBG("Adding channel %d to poll set",
3141 chan->wait_fd);
3142
3143 lttng_ht_node_init_u64(&chan->wait_fd_node,
3144 chan->wait_fd);
3145 rcu_read_lock();
3146 lttng_ht_add_unique_u64(channel_ht,
3147 &chan->wait_fd_node);
3148 rcu_read_unlock();
3149 /* Add channel to the global poll events list */
3150 lttng_poll_add(&events, chan->wait_fd,
3151 LPOLLERR | LPOLLHUP);
3152 break;
3153 case CONSUMER_CHANNEL_DEL:
3154 {
3155 /*
3156 * This command should never be called if the channel
3157 * has streams monitored by either the data or metadata
3158 * thread. The consumer only notify this thread with a
3159 * channel del. command if it receives a destroy
3160 * channel command from the session daemon that send it
3161 * if a command prior to the GET_CHANNEL failed.
3162 */
3163
3164 rcu_read_lock();
3165 chan = consumer_find_channel(key);
3166 if (!chan) {
3167 rcu_read_unlock();
3168 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3169 break;
3170 }
3171 lttng_poll_del(&events, chan->wait_fd);
3172 iter.iter.node = &chan->wait_fd_node.node;
3173 ret = lttng_ht_del(channel_ht, &iter);
3174 assert(ret == 0);
3175
3176 switch (consumer_data.type) {
3177 case LTTNG_CONSUMER_KERNEL:
3178 break;
3179 case LTTNG_CONSUMER32_UST:
3180 case LTTNG_CONSUMER64_UST:
3181 health_code_update();
3182 /* Destroy streams that might have been left in the stream list. */
3183 clean_channel_stream_list(chan);
3184 break;
3185 default:
3186 ERR("Unknown consumer_data type");
3187 assert(0);
3188 }
3189
3190 /*
3191 * Release our own refcount. Force channel deletion even if
3192 * streams were not initialized.
3193 */
3194 if (!uatomic_sub_return(&chan->refcount, 1)) {
3195 consumer_del_channel(chan);
3196 }
3197 rcu_read_unlock();
3198 goto restart;
3199 }
3200 case CONSUMER_CHANNEL_QUIT:
3201 /*
3202 * Remove the pipe from the poll set and continue the loop
3203 * since their might be data to consume.
3204 */
3205 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3206 continue;
3207 default:
3208 ERR("Unknown action");
3209 break;
3210 }
3211 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3212 DBG("Channel thread pipe hung up");
3213 /*
3214 * Remove the pipe from the poll set and continue the loop
3215 * since their might be data to consume.
3216 */
3217 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3218 continue;
3219 } else {
3220 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3221 goto end;
3222 }
3223
3224 /* Handle other stream */
3225 continue;
3226 }
3227
3228 rcu_read_lock();
3229 {
3230 uint64_t tmp_id = (uint64_t) pollfd;
3231
3232 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3233 }
3234 node = lttng_ht_iter_get_node_u64(&iter);
3235 assert(node);
3236
3237 chan = caa_container_of(node, struct lttng_consumer_channel,
3238 wait_fd_node);
3239
3240 /* Check for error event */
3241 if (revents & (LPOLLERR | LPOLLHUP)) {
3242 DBG("Channel fd %d is hup|err.", pollfd);
3243
3244 lttng_poll_del(&events, chan->wait_fd);
3245 ret = lttng_ht_del(channel_ht, &iter);
3246 assert(ret == 0);
3247
3248 /*
3249 * This will close the wait fd for each stream associated to
3250 * this channel AND monitored by the data/metadata thread thus
3251 * will be clean by the right thread.
3252 */
3253 consumer_close_channel_streams(chan);
3254
3255 /* Release our own refcount */
3256 if (!uatomic_sub_return(&chan->refcount, 1)
3257 && !uatomic_read(&chan->nb_init_stream_left)) {
3258 consumer_del_channel(chan);
3259 }
3260 } else {
3261 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3262 rcu_read_unlock();
3263 goto end;
3264 }
3265
3266 /* Release RCU lock for the channel looked up */
3267 rcu_read_unlock();
3268 }
3269 }
3270
3271 /* All is OK */
3272 err = 0;
3273 end:
3274 lttng_poll_clean(&events);
3275 end_poll:
3276 destroy_channel_ht(channel_ht);
3277 end_ht:
3278 error_testpoint:
3279 DBG("Channel poll thread exiting");
3280 if (err) {
3281 health_error();
3282 ERR("Health error occurred in %s", __func__);
3283 }
3284 health_unregister(health_consumerd);
3285 rcu_unregister_thread();
3286 return NULL;
3287 }
3288
3289 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3290 struct pollfd *sockpoll, int client_socket)
3291 {
3292 int ret;
3293
3294 assert(ctx);
3295 assert(sockpoll);
3296
3297 ret = lttng_consumer_poll_socket(sockpoll);
3298 if (ret) {
3299 goto error;
3300 }
3301 DBG("Metadata connection on client_socket");
3302
3303 /* Blocking call, waiting for transmission */
3304 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3305 if (ctx->consumer_metadata_socket < 0) {
3306 WARN("On accept metadata");
3307 ret = -1;
3308 goto error;
3309 }
3310 ret = 0;
3311
3312 error:
3313 return ret;
3314 }
3315
3316 /*
3317 * This thread listens on the consumerd socket and receives the file
3318 * descriptors from the session daemon.
3319 */
3320 void *consumer_thread_sessiond_poll(void *data)
3321 {
3322 int sock = -1, client_socket, ret, err = -1;
3323 /*
3324 * structure to poll for incoming data on communication socket avoids
3325 * making blocking sockets.
3326 */
3327 struct pollfd consumer_sockpoll[2];
3328 struct lttng_consumer_local_data *ctx = data;
3329
3330 rcu_register_thread();
3331
3332 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3333
3334 if (testpoint(consumerd_thread_sessiond)) {
3335 goto error_testpoint;
3336 }
3337
3338 health_code_update();
3339
3340 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3341 unlink(ctx->consumer_command_sock_path);
3342 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3343 if (client_socket < 0) {
3344 ERR("Cannot create command socket");
3345 goto end;
3346 }
3347
3348 ret = lttcomm_listen_unix_sock(client_socket);
3349 if (ret < 0) {
3350 goto end;
3351 }
3352
3353 DBG("Sending ready command to lttng-sessiond");
3354 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3355 /* return < 0 on error, but == 0 is not fatal */
3356 if (ret < 0) {
3357 ERR("Error sending ready command to lttng-sessiond");
3358 goto end;
3359 }
3360
3361 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3362 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3363 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3364 consumer_sockpoll[1].fd = client_socket;
3365 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3366
3367 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3368 if (ret) {
3369 if (ret > 0) {
3370 /* should exit */
3371 err = 0;
3372 }
3373 goto end;
3374 }
3375 DBG("Connection on client_socket");
3376
3377 /* Blocking call, waiting for transmission */
3378 sock = lttcomm_accept_unix_sock(client_socket);
3379 if (sock < 0) {
3380 WARN("On accept");
3381 goto end;
3382 }
3383
3384 /*
3385 * Setup metadata socket which is the second socket connection on the
3386 * command unix socket.
3387 */
3388 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3389 if (ret) {
3390 if (ret > 0) {
3391 /* should exit */
3392 err = 0;
3393 }
3394 goto end;
3395 }
3396
3397 /* This socket is not useful anymore. */
3398 ret = close(client_socket);
3399 if (ret < 0) {
3400 PERROR("close client_socket");
3401 }
3402 client_socket = -1;
3403
3404 /* update the polling structure to poll on the established socket */
3405 consumer_sockpoll[1].fd = sock;
3406 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3407
3408 while (1) {
3409 health_code_update();
3410
3411 health_poll_entry();
3412 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3413 health_poll_exit();
3414 if (ret) {
3415 if (ret > 0) {
3416 /* should exit */
3417 err = 0;
3418 }
3419 goto end;
3420 }
3421 DBG("Incoming command on sock");
3422 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3423 if (ret <= 0) {
3424 /*
3425 * This could simply be a session daemon quitting. Don't output
3426 * ERR() here.
3427 */
3428 DBG("Communication interrupted on command socket");
3429 err = 0;
3430 goto end;
3431 }
3432 if (CMM_LOAD_SHARED(consumer_quit)) {
3433 DBG("consumer_thread_receive_fds received quit from signal");
3434 err = 0; /* All is OK */
3435 goto end;
3436 }
3437 DBG("received command on sock");
3438 }
3439 /* All is OK */
3440 err = 0;
3441
3442 end:
3443 DBG("Consumer thread sessiond poll exiting");
3444
3445 /*
3446 * Close metadata streams since the producer is the session daemon which
3447 * just died.
3448 *
3449 * NOTE: for now, this only applies to the UST tracer.
3450 */
3451 lttng_consumer_close_all_metadata();
3452
3453 /*
3454 * when all fds have hung up, the polling thread
3455 * can exit cleanly
3456 */
3457 CMM_STORE_SHARED(consumer_quit, 1);
3458
3459 /*
3460 * Notify the data poll thread to poll back again and test the
3461 * consumer_quit state that we just set so to quit gracefully.
3462 */
3463 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3464
3465 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3466
3467 notify_health_quit_pipe(health_quit_pipe);
3468
3469 /* Cleaning up possibly open sockets. */
3470 if (sock >= 0) {
3471 ret = close(sock);
3472 if (ret < 0) {
3473 PERROR("close sock sessiond poll");
3474 }
3475 }
3476 if (client_socket >= 0) {
3477 ret = close(client_socket);
3478 if (ret < 0) {
3479 PERROR("close client_socket sessiond poll");
3480 }
3481 }
3482
3483 error_testpoint:
3484 if (err) {
3485 health_error();
3486 ERR("Health error occurred in %s", __func__);
3487 }
3488 health_unregister(health_consumerd);
3489
3490 rcu_unregister_thread();
3491 return NULL;
3492 }
3493
3494 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3495 struct lttng_consumer_local_data *ctx)
3496 {
3497 ssize_t ret;
3498 int rotate_ret;
3499
3500 pthread_mutex_lock(&stream->lock);
3501 if (stream->metadata_flag) {
3502 pthread_mutex_lock(&stream->metadata_rdv_lock);
3503 }
3504
3505 switch (consumer_data.type) {
3506 case LTTNG_CONSUMER_KERNEL:
3507 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3508 break;
3509 case LTTNG_CONSUMER32_UST:
3510 case LTTNG_CONSUMER64_UST:
3511 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3512 break;
3513 default:
3514 ERR("Unknown consumer_data type");
3515 assert(0);
3516 ret = -ENOSYS;
3517 break;
3518 }
3519
3520 if (stream->metadata_flag) {
3521 pthread_cond_broadcast(&stream->metadata_rdv);
3522 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3523 }
3524 fprintf(stderr, "rotated: %d\n", stream->rotated);
3525 pthread_mutex_unlock(&stream->lock);
3526
3527 rotate_ret = consumer_post_rotation(stream, ctx);
3528 if (rotate_ret < 0) {
3529 ERR("Failed after a rotation");
3530 ret = -1;
3531 }
3532
3533 return ret;
3534 }
3535
3536 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3537 {
3538 switch (consumer_data.type) {
3539 case LTTNG_CONSUMER_KERNEL:
3540 return lttng_kconsumer_on_recv_stream(stream);
3541 case LTTNG_CONSUMER32_UST:
3542 case LTTNG_CONSUMER64_UST:
3543 return lttng_ustconsumer_on_recv_stream(stream);
3544 default:
3545 ERR("Unknown consumer_data type");
3546 assert(0);
3547 return -ENOSYS;
3548 }
3549 }
3550
3551 /*
3552 * Allocate and set consumer data hash tables.
3553 */
3554 int lttng_consumer_init(void)
3555 {
3556 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3557 if (!consumer_data.channel_ht) {
3558 goto error;
3559 }
3560
3561 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3562 if (!consumer_data.relayd_ht) {
3563 goto error;
3564 }
3565
3566 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3567 if (!consumer_data.stream_list_ht) {
3568 goto error;
3569 }
3570
3571 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3572 if (!consumer_data.stream_per_chan_id_ht) {
3573 goto error;
3574 }
3575
3576 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3577 if (!data_ht) {
3578 goto error;
3579 }
3580
3581 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3582 if (!metadata_ht) {
3583 goto error;
3584 }
3585
3586 return 0;
3587
3588 error:
3589 return -1;
3590 }
3591
3592 /*
3593 * Process the ADD_RELAYD command receive by a consumer.
3594 *
3595 * This will create a relayd socket pair and add it to the relayd hash table.
3596 * The caller MUST acquire a RCU read side lock before calling it.
3597 */
3598 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3599 struct lttng_consumer_local_data *ctx, int sock,
3600 struct pollfd *consumer_sockpoll,
3601 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3602 uint64_t relayd_session_id)
3603 {
3604 int fd = -1, ret = -1, relayd_created = 0;
3605 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3606 struct consumer_relayd_sock_pair *relayd = NULL;
3607
3608 assert(ctx);
3609 assert(relayd_sock);
3610
3611 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3612
3613 /* Get relayd reference if exists. */
3614 relayd = consumer_find_relayd(net_seq_idx);
3615 if (relayd == NULL) {
3616 assert(sock_type == LTTNG_STREAM_CONTROL);
3617 /* Not found. Allocate one. */
3618 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3619 if (relayd == NULL) {
3620 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3621 goto error;
3622 } else {
3623 relayd->sessiond_session_id = sessiond_id;
3624 relayd_created = 1;
3625 }
3626
3627 /*
3628 * This code path MUST continue to the consumer send status message to
3629 * we can notify the session daemon and continue our work without
3630 * killing everything.
3631 */
3632 } else {
3633 /*
3634 * relayd key should never be found for control socket.
3635 */
3636 assert(sock_type != LTTNG_STREAM_CONTROL);
3637 }
3638
3639 /* First send a status message before receiving the fds. */
3640 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3641 if (ret < 0) {
3642 /* Somehow, the session daemon is not responding anymore. */
3643 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3644 goto error_nosignal;
3645 }
3646
3647 /* Poll on consumer socket. */
3648 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3649 if (ret) {
3650 /* Needing to exit in the middle of a command: error. */
3651 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3652 goto error_nosignal;
3653 }
3654
3655 /* Get relayd socket from session daemon */
3656 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3657 if (ret != sizeof(fd)) {
3658 fd = -1; /* Just in case it gets set with an invalid value. */
3659
3660 /*
3661 * Failing to receive FDs might indicate a major problem such as
3662 * reaching a fd limit during the receive where the kernel returns a
3663 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3664 * don't take any chances and stop everything.
3665 *
3666 * XXX: Feature request #558 will fix that and avoid this possible
3667 * issue when reaching the fd limit.
3668 */
3669 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3670 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3671 goto error;
3672 }
3673
3674 /* Copy socket information and received FD */
3675 switch (sock_type) {
3676 case LTTNG_STREAM_CONTROL:
3677 /* Copy received lttcomm socket */
3678 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3679 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3680 /* Handle create_sock error. */
3681 if (ret < 0) {
3682 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3683 goto error;
3684 }
3685 /*
3686 * Close the socket created internally by
3687 * lttcomm_create_sock, so we can replace it by the one
3688 * received from sessiond.
3689 */
3690 if (close(relayd->control_sock.sock.fd)) {
3691 PERROR("close");
3692 }
3693
3694 /* Assign new file descriptor */
3695 relayd->control_sock.sock.fd = fd;
3696 fd = -1; /* For error path */
3697 /* Assign version values. */
3698 relayd->control_sock.major = relayd_sock->major;
3699 relayd->control_sock.minor = relayd_sock->minor;
3700
3701 relayd->relayd_session_id = relayd_session_id;
3702
3703 break;
3704 case LTTNG_STREAM_DATA:
3705 /* Copy received lttcomm socket */
3706 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3707 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3708 /* Handle create_sock error. */
3709 if (ret < 0) {
3710 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3711 goto error;
3712 }
3713 /*
3714 * Close the socket created internally by
3715 * lttcomm_create_sock, so we can replace it by the one
3716 * received from sessiond.
3717 */
3718 if (close(relayd->data_sock.sock.fd)) {
3719 PERROR("close");
3720 }
3721
3722 /* Assign new file descriptor */
3723 relayd->data_sock.sock.fd = fd;
3724 fd = -1; /* for eventual error paths */
3725 /* Assign version values. */
3726 relayd->data_sock.major = relayd_sock->major;
3727 relayd->data_sock.minor = relayd_sock->minor;
3728 break;
3729 default:
3730 ERR("Unknown relayd socket type (%d)", sock_type);
3731 ret_code = LTTCOMM_CONSUMERD_FATAL;
3732 goto error;
3733 }
3734
3735 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3736 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3737 relayd->net_seq_idx, fd);
3738
3739 /* We successfully added the socket. Send status back. */
3740 ret = consumer_send_status_msg(sock, ret_code);
3741 if (ret < 0) {
3742 /* Somehow, the session daemon is not responding anymore. */
3743 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3744 goto error_nosignal;
3745 }
3746
3747 /*
3748 * Add relayd socket pair to consumer data hashtable. If object already
3749 * exists or on error, the function gracefully returns.
3750 */
3751 add_relayd(relayd);
3752
3753 /* All good! */
3754 return;
3755
3756 error:
3757 if (consumer_send_status_msg(sock, ret_code) < 0) {
3758 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3759 }
3760
3761 error_nosignal:
3762 /* Close received socket if valid. */
3763 if (fd >= 0) {
3764 if (close(fd)) {
3765 PERROR("close received socket");
3766 }
3767 }
3768
3769 if (relayd_created) {
3770 free(relayd);
3771 }
3772 }
3773
3774 /*
3775 * Try to lock the stream mutex.
3776 *
3777 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3778 */
3779 static int stream_try_lock(struct lttng_consumer_stream *stream)
3780 {
3781 int ret;
3782
3783 assert(stream);
3784
3785 /*
3786 * Try to lock the stream mutex. On failure, we know that the stream is
3787 * being used else where hence there is data still being extracted.
3788 */
3789 ret = pthread_mutex_trylock(&stream->lock);
3790 if (ret) {
3791 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3792 ret = 0;
3793 goto end;
3794 }
3795
3796 ret = 1;
3797
3798 end:
3799 return ret;
3800 }
3801
3802 /*
3803 * Search for a relayd associated to the session id and return the reference.
3804 *
3805 * A rcu read side lock MUST be acquire before calling this function and locked
3806 * until the relayd object is no longer necessary.
3807 */
3808 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3809 {
3810 struct lttng_ht_iter iter;
3811 struct consumer_relayd_sock_pair *relayd = NULL;
3812
3813 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3814 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3815 node.node) {
3816 /*
3817 * Check by sessiond id which is unique here where the relayd session
3818 * id might not be when having multiple relayd.
3819 */
3820 if (relayd->sessiond_session_id == id) {
3821 /* Found the relayd. There can be only one per id. */
3822 goto found;
3823 }
3824 }
3825
3826 return NULL;
3827
3828 found:
3829 return relayd;
3830 }
3831
3832 /*
3833 * Check if for a given session id there is still data needed to be extract
3834 * from the buffers.
3835 *
3836 * Return 1 if data is pending or else 0 meaning ready to be read.
3837 */
3838 int consumer_data_pending(uint64_t id)
3839 {
3840 int ret;
3841 struct lttng_ht_iter iter;
3842 struct lttng_ht *ht;
3843 struct lttng_consumer_stream *stream;
3844 struct consumer_relayd_sock_pair *relayd = NULL;
3845 int (*data_pending)(struct lttng_consumer_stream *);
3846
3847 DBG("Consumer data pending command on session id %" PRIu64, id);
3848
3849 rcu_read_lock();
3850 pthread_mutex_lock(&consumer_data.lock);
3851
3852 switch (consumer_data.type) {
3853 case LTTNG_CONSUMER_KERNEL:
3854 data_pending = lttng_kconsumer_data_pending;
3855 break;
3856 case LTTNG_CONSUMER32_UST:
3857 case LTTNG_CONSUMER64_UST:
3858 data_pending = lttng_ustconsumer_data_pending;
3859 break;
3860 default:
3861 ERR("Unknown consumer data type");
3862 assert(0);
3863 }
3864
3865 /* Ease our life a bit */
3866 ht = consumer_data.stream_list_ht;
3867
3868 relayd = find_relayd_by_session_id(id);
3869 if (relayd) {
3870 /* Send init command for data pending. */
3871 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3872 ret = relayd_begin_data_pending(&relayd->control_sock,
3873 relayd->relayd_session_id);
3874 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3875 if (ret < 0) {
3876 /* Communication error thus the relayd so no data pending. */
3877 goto data_not_pending;
3878 }
3879 }
3880
3881 cds_lfht_for_each_entry_duplicate(ht->ht,
3882 ht->hash_fct(&id, lttng_ht_seed),
3883 ht->match_fct, &id,
3884 &iter.iter, stream, node_session_id.node) {
3885 /* If this call fails, the stream is being used hence data pending. */
3886 ret = stream_try_lock(stream);
3887 if (!ret) {
3888 goto data_pending;
3889 }
3890
3891 /*
3892 * A removed node from the hash table indicates that the stream has
3893 * been deleted thus having a guarantee that the buffers are closed
3894 * on the consumer side. However, data can still be transmitted
3895 * over the network so don't skip the relayd check.
3896 */
3897 ret = cds_lfht_is_node_deleted(&stream->node.node);
3898 if (!ret) {
3899 /* Check the stream if there is data in the buffers. */
3900 ret = data_pending(stream);
3901 if (ret == 1) {
3902 pthread_mutex_unlock(&stream->lock);
3903 goto data_pending;
3904 }
3905 }
3906
3907 /* Relayd check */
3908 if (relayd) {
3909 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3910 if (stream->metadata_flag) {
3911 ret = relayd_quiescent_control(&relayd->control_sock,
3912 stream->relayd_stream_id);
3913 } else {
3914 ret = relayd_data_pending(&relayd->control_sock,
3915 stream->relayd_stream_id,
3916 stream->next_net_seq_num - 1);
3917 }
3918 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3919 if (ret == 1) {
3920 pthread_mutex_unlock(&stream->lock);
3921 goto data_pending;
3922 }
3923 }
3924 pthread_mutex_unlock(&stream->lock);
3925 }
3926
3927 if (relayd) {
3928 unsigned int is_data_inflight = 0;
3929
3930 /* Send init command for data pending. */
3931 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3932 ret = relayd_end_data_pending(&relayd->control_sock,
3933 relayd->relayd_session_id, &is_data_inflight);
3934 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3935 if (ret < 0) {
3936 goto data_not_pending;
3937 }
3938 if (is_data_inflight) {
3939 goto data_pending;
3940 }
3941 }
3942
3943 /*
3944 * Finding _no_ node in the hash table and no inflight data means that the
3945 * stream(s) have been removed thus data is guaranteed to be available for
3946 * analysis from the trace files.
3947 */
3948
3949 data_not_pending:
3950 /* Data is available to be read by a viewer. */
3951 pthread_mutex_unlock(&consumer_data.lock);
3952 rcu_read_unlock();
3953 return 0;
3954
3955 data_pending:
3956 /* Data is still being extracted from buffers. */
3957 pthread_mutex_unlock(&consumer_data.lock);
3958 rcu_read_unlock();
3959 return 1;
3960 }
3961
3962 /*
3963 * Send a ret code status message to the sessiond daemon.
3964 *
3965 * Return the sendmsg() return value.
3966 */
3967 int consumer_send_status_msg(int sock, int ret_code)
3968 {
3969 struct lttcomm_consumer_status_msg msg;
3970
3971 memset(&msg, 0, sizeof(msg));
3972 msg.ret_code = ret_code;
3973
3974 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3975 }
3976
3977 /*
3978 * Send a channel status message to the sessiond daemon.
3979 *
3980 * Return the sendmsg() return value.
3981 */
3982 int consumer_send_status_channel(int sock,
3983 struct lttng_consumer_channel *channel)
3984 {
3985 struct lttcomm_consumer_status_channel msg;
3986
3987 assert(sock >= 0);
3988
3989 memset(&msg, 0, sizeof(msg));
3990 if (!channel) {
3991 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3992 } else {
3993 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3994 msg.key = channel->key;
3995 msg.stream_count = channel->streams.count;
3996 }
3997
3998 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3999 }
4000
4001 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
4002 unsigned long produced_pos, uint64_t nb_packets_per_stream,
4003 uint64_t max_sb_size)
4004 {
4005 unsigned long start_pos;
4006
4007 if (!nb_packets_per_stream) {
4008 return consumed_pos; /* Grab everything */
4009 }
4010 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
4011 start_pos -= max_sb_size * nb_packets_per_stream;
4012 if ((long) (start_pos - consumed_pos) < 0) {
4013 return consumed_pos; /* Grab everything */
4014 }
4015 return start_pos;
4016 }
4017
4018 static
4019 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
4020 {
4021 int ret = 0;
4022
4023 switch (consumer_data.type) {
4024 case LTTNG_CONSUMER_KERNEL:
4025 ret = kernctl_buffer_flush(stream->wait_fd);
4026 if (ret < 0) {
4027 ERR("Failed to flush kernel stream");
4028 goto end;
4029 }
4030 break;
4031 case LTTNG_CONSUMER32_UST:
4032 case LTTNG_CONSUMER64_UST:
4033 lttng_ustctl_flush_buffer(stream, producer_active);
4034 break;
4035 default:
4036 ERR("Unknown consumer_data type");
4037 abort();
4038 }
4039
4040 end:
4041 return ret;
4042 }
4043
4044 /*
4045 * Sample the rotate position for all the streams of a channel.
4046 *
4047 * Returns 0 on success, < 0 on error
4048 */
4049 int lttng_consumer_rotate_channel(uint64_t key, char *path,
4050 uint64_t relayd_id, uint32_t metadata, uint64_t new_chunk_id,
4051 struct lttng_consumer_local_data *ctx)
4052 {
4053 int ret;
4054 struct lttng_consumer_channel *channel;
4055 struct lttng_consumer_stream *stream;
4056 struct lttng_ht_iter iter;
4057 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4058
4059 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4060
4061 rcu_read_lock();
4062
4063 channel = consumer_find_channel(key);
4064 if (!channel) {
4065 ERR("No channel found for key %" PRIu64, key);
4066 ret = -1;
4067 goto end;
4068 }
4069 pthread_mutex_lock(&channel->lock);
4070 channel->current_chunk_id = new_chunk_id;
4071 snprintf(channel->pathname, PATH_MAX, "%s", path);
4072 ret = utils_mkdir_recursive(channel->pathname, S_IRWXU | S_IRWXG,
4073 channel->uid, channel->gid);
4074 if (ret < 0) {
4075 ERR("Trace directory creation error");
4076 ret = -1;
4077 pthread_mutex_unlock(&channel->lock);
4078 goto end;
4079 }
4080 pthread_mutex_unlock(&channel->lock);
4081
4082 cds_lfht_for_each_entry_duplicate(ht->ht,
4083 ht->hash_fct(&channel->key, lttng_ht_seed),
4084 ht->match_fct, &channel->key, &iter.iter,
4085 stream, node_channel_id.node) {
4086 uint64_t consumed_pos;
4087
4088 health_code_update();
4089
4090 /*
4091 * Lock stream because we are about to change its state.
4092 */
4093 pthread_mutex_lock(&stream->lock);
4094
4095 memcpy(stream->channel_ro_pathname, channel->pathname, PATH_MAX);
4096 ret = lttng_consumer_sample_snapshot_positions(stream);
4097 if (ret < 0) {
4098 ERR("Taking snapshot positions");
4099 goto end_unlock;
4100 }
4101
4102 ret = lttng_consumer_get_produced_snapshot(stream,
4103 &stream->rotate_position);
4104 if (ret < 0) {
4105 ERR("Produced snapshot position");
4106 goto end_unlock;
4107 }
4108 fprintf(stderr, "Stream %lu should rotate after %lu to %s\n",
4109 stream->key, stream->rotate_position,
4110 channel->pathname);
4111 lttng_consumer_get_consumed_snapshot(stream,
4112 &consumed_pos);
4113 fprintf(stderr, "consumed %lu\n", consumed_pos);
4114 if (consumed_pos == stream->rotate_position) {
4115 stream->rotate_ready = 1;
4116 fprintf(stderr, "Stream %lu ready to rotate to %s\n",
4117 stream->key, channel->pathname);
4118 }
4119 fprintf(stderr, "before increasinc nr_pending: %lu\n", channel->nr_stream_rotate_pending);
4120 channel->nr_stream_rotate_pending++;
4121
4122 ret = consumer_flush_buffer(stream, 1);
4123 if (ret < 0) {
4124 ERR("Failed to flush stream");
4125 goto end_unlock;
4126 }
4127
4128 pthread_mutex_unlock(&stream->lock);
4129 }
4130
4131 ret = 0;
4132 goto end;
4133
4134 end_unlock:
4135 pthread_mutex_unlock(&stream->lock);
4136 end:
4137 rcu_read_unlock();
4138 return ret;
4139 }
4140
4141 /*
4142 * Check if a stream is ready to be rotated after extracting it.
4143 *
4144 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4145 * error. Stream lock must be held.
4146 */
4147 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4148 {
4149 int ret;
4150 unsigned long consumed_pos;
4151
4152 if (!stream->rotate_position && !stream->rotate_ready) {
4153 ret = 0;
4154 goto end;
4155 }
4156
4157 if (stream->rotate_ready) {
4158 fprintf(stderr, "Rotate position reached for stream %lu\n",
4159 stream->key);
4160 ret = 1;
4161 goto end;
4162 }
4163
4164 /*
4165 * If we don't have the rotate_ready flag, check the consumed position
4166 * to determine if we need to rotate.
4167 */
4168 ret = lttng_consumer_sample_snapshot_positions(stream);
4169 if (ret < 0) {
4170 ERR("Taking kernel snapshot positions");
4171 goto end;
4172 }
4173
4174 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4175 if (ret < 0) {
4176 ERR("Consumed kernel snapshot position");
4177 goto end;
4178 }
4179
4180 fprintf(stderr, "packet %lu, pos %lu\n", stream->key, consumed_pos);
4181 /* Rotate position not reached yet. */
4182 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4183 ret = 0;
4184 goto end;
4185 }
4186 fprintf(stderr, "Rotate position %lu (expected %lu) reached for stream %lu\n",
4187 consumed_pos, stream->rotate_position,
4188 stream->key);
4189 ret = 1;
4190
4191 end:
4192 return ret;
4193 }
4194
4195 /*
4196 * Reset the state for a stream after a rotation occurred.
4197 */
4198 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4199 {
4200 stream->rotate_position = 0;
4201 stream->rotate_ready = 0;
4202 stream->rotated = 1;
4203 }
4204
4205 /*
4206 * Perform the rotation a local stream file.
4207 */
4208 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4209 struct lttng_consumer_stream *stream)
4210 {
4211 int ret;
4212
4213 ret = close(stream->out_fd);
4214 if (ret < 0) {
4215 PERROR("Closing tracefile");
4216 goto error;
4217 }
4218
4219 fprintf(stderr, "Rotating stream %lu to %s/%s\n", stream->key,
4220 stream->channel_ro_pathname, stream->name);
4221 ret = utils_create_stream_file(stream->channel_ro_pathname, stream->name,
4222 stream->channel_ro_tracefile_size, stream->tracefile_count_current,
4223 stream->uid, stream->gid, NULL);
4224 if (ret < 0) {
4225 goto error;
4226 }
4227 stream->out_fd = ret;
4228 stream->tracefile_size_current = 0;
4229
4230 if (!stream->metadata_flag) {
4231 struct lttng_index_file *index_file;
4232
4233 lttng_index_file_put(stream->index_file);
4234
4235 index_file = lttng_index_file_create(stream->channel_ro_pathname,
4236 stream->name, stream->uid, stream->gid,
4237 stream->channel_ro_tracefile_size,
4238 stream->tracefile_count_current,
4239 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
4240 if (!index_file) {
4241 goto error;
4242 }
4243 stream->index_file = index_file;
4244 stream->out_fd_offset = 0;
4245 }
4246
4247 ret = 0;
4248 goto end;
4249
4250 error:
4251 ret = -1;
4252 end:
4253 return ret;
4254
4255 }
4256
4257 /*
4258 * Perform the rotation a stream file on the relay.
4259 */
4260 int rotate_relay_stream(struct lttng_consumer_local_data *ctx,
4261 struct lttng_consumer_stream *stream)
4262 {
4263 int ret;
4264 struct consumer_relayd_sock_pair *relayd;
4265
4266 relayd = consumer_find_relayd(stream->net_seq_idx);
4267 if (!relayd) {
4268 ERR("Failed to find relayd");
4269 ret = -1;
4270 goto end;
4271 }
4272
4273 /* FIXME: chan_ro ? */
4274 ret = relayd_rotate_stream(&relayd->control_sock,
4275 stream->relayd_stream_id, stream->channel_ro_pathname,
4276 stream->chan->current_chunk_id,
4277 stream->last_sequence_number);
4278
4279 end:
4280 return ret;
4281 }
4282
4283 /*
4284 * Performs the stream rotation for the rotate session feature if needed.
4285 * It must be called with the stream lock held.
4286 *
4287 * Return 0 on success, a negative number of error.
4288 */
4289 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4290 struct lttng_consumer_stream *stream)
4291 {
4292 int ret;
4293
4294 if (stream->net_seq_idx != (uint64_t) -1ULL) {
4295 ret = rotate_relay_stream(ctx, stream);
4296 } else {
4297 ret = rotate_local_stream(ctx, stream);
4298 }
4299 if (ret < 0) {
4300 goto error;
4301 }
4302
4303 if (stream->metadata_flag) {
4304 switch (consumer_data.type) {
4305 case LTTNG_CONSUMER_KERNEL:
4306 /*
4307 * Reset the position of what has been read from the metadata
4308 * cache to 0 so we can dump it again.
4309 */
4310 ret = kernctl_metadata_cache_dump(stream->wait_fd);
4311 if (ret < 0) {
4312 ERR("Failed to dump the kernel metadata cache after rotation");
4313 goto error;
4314 }
4315 break;
4316 case LTTNG_CONSUMER32_UST:
4317 case LTTNG_CONSUMER64_UST:
4318 /*
4319 * Reset the position pushed from the metadata cache so it
4320 * will write from the beginning on the next push.
4321 */
4322 stream->ust_metadata_pushed = 0;
4323 break;
4324 default:
4325 ERR("Unknown consumer_data type");
4326 abort();
4327 }
4328 }
4329 lttng_consumer_reset_stream_rotate_state(stream);
4330
4331 ret = 0;
4332
4333 error:
4334 return ret;
4335 }
4336
4337 /*
4338 * Rotate all the ready streams.
4339 *
4340 * This is especially important for low throughput streams that have already
4341 * been consumed, we cannot wait for their next packet to perform the
4342 * rotation.
4343 *
4344 * Returns 0 on success, < 0 on error
4345 */
4346 int lttng_consumer_rotate_ready_streams(uint64_t key,
4347 struct lttng_consumer_local_data *ctx)
4348 {
4349 int ret;
4350 struct lttng_consumer_channel *channel;
4351 struct lttng_consumer_stream *stream;
4352 struct lttng_pipe *stream_pipe;
4353 struct lttng_ht_iter iter;
4354 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4355
4356 rcu_read_lock();
4357
4358 channel = consumer_find_channel(key);
4359 if (!channel) {
4360 ERR("No channel found for key %" PRIu64, key);
4361 ret = -1;
4362 goto end;
4363 }
4364
4365 if (channel->metadata_stream) {
4366 fprintf(stderr, "M\n");
4367 stream_pipe = ctx->consumer_metadata_rotate_pipe;
4368 } else {
4369 fprintf(stderr, "D\n");
4370 stream_pipe = ctx->consumer_data_rotate_pipe;
4371 }
4372
4373 cds_lfht_for_each_entry_duplicate(ht->ht,
4374 ht->hash_fct(&channel->key, lttng_ht_seed),
4375 ht->match_fct, &channel->key, &iter.iter,
4376 stream, node_channel_id.node) {
4377 health_code_update();
4378
4379 if (stream->rotate_ready == 0) {
4380 continue;
4381 }
4382 fprintf(stderr, "send stream %lu on wakeup pipe\n", stream->key);
4383 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
4384 if (ret < 0) {
4385 ERR("Failed to wakeup consumer rotate pipe");
4386 goto end;
4387 }
4388 fprintf(stderr, "done sending stream %lu on wakeup pipe\n", stream->key);
4389 }
4390
4391 ret = 0;
4392
4393 end:
4394 rcu_read_unlock();
4395 return ret;
4396 }
4397
4398 static
4399 int rotate_rename_local(char *current_path, char *new_path,
4400 uid_t uid, gid_t gid)
4401 {
4402 int ret;
4403
4404 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG,
4405 uid, gid);
4406 if (ret < 0) {
4407 ERR("Create directory on rotate");
4408 goto end;
4409 }
4410
4411 ret = rename(current_path, new_path);
4412 /*
4413 * If a domain has not yet created its channel, the domain-specific
4414 * folder might not exist, but this is not an error.
4415 */
4416 if (ret < 0 && errno != ENOENT) {
4417 PERROR("Rename completed rotation chunk");
4418 goto end;
4419 }
4420
4421 ret = 0;
4422
4423 end:
4424 return ret;
4425 }
4426
4427 static
4428 int rotate_rename_relay(char *current_path, char *new_path, uint64_t relayd_id)
4429 {
4430 int ret;
4431 struct consumer_relayd_sock_pair *relayd;
4432
4433 relayd = consumer_find_relayd(relayd_id);
4434 if (!relayd) {
4435 ERR("Failed to find relayd");
4436 ret = -1;
4437 goto end;
4438 }
4439
4440 ret = relayd_rotate_rename(&relayd->control_sock, current_path, new_path);
4441
4442 end:
4443 return ret;
4444
4445 }
4446
4447 int lttng_consumer_rotate_rename(char *current_path, char *new_path,
4448 uid_t uid, gid_t gid, uint64_t relayd_id)
4449 {
4450 if (relayd_id != (uint64_t) -1ULL) {
4451 return rotate_rename_relay(current_path, new_path, relayd_id);
4452 } else {
4453 return rotate_rename_local(current_path, new_path, uid, gid);
4454 }
4455 }
4456
4457 int lttng_consumer_rotate_pending_relay(uint64_t session_id,
4458 uint64_t relayd_id, uint64_t chunk_id)
4459 {
4460 int ret;
4461 struct consumer_relayd_sock_pair *relayd;
4462
4463 relayd = consumer_find_relayd(relayd_id);
4464 if (!relayd) {
4465 ERR("Failed to find relayd");
4466 ret = -1;
4467 goto end;
4468 }
4469
4470 ret = relayd_rotate_pending(&relayd->control_sock, chunk_id);
4471
4472 end:
4473 return ret;
4474
4475 }
This page took 0.121363 seconds and 5 git commands to generate.